WO2012173148A1 - Conductive polymer precursor, conductive polymer, and solid electrolyte capacitor - Google Patents

Conductive polymer precursor, conductive polymer, and solid electrolyte capacitor Download PDF

Info

Publication number
WO2012173148A1
WO2012173148A1 PCT/JP2012/065148 JP2012065148W WO2012173148A1 WO 2012173148 A1 WO2012173148 A1 WO 2012173148A1 JP 2012065148 W JP2012065148 W JP 2012065148W WO 2012173148 A1 WO2012173148 A1 WO 2012173148A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
group
carbon atoms
linear
salt
Prior art date
Application number
PCT/JP2012/065148
Other languages
French (fr)
Japanese (ja)
Inventor
隆幸 斉藤
井上 祥来
洋子 篠田
正志 鵜澤
浩幸 森
山田 耕平
酒井 隆宏
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Publication of WO2012173148A1 publication Critical patent/WO2012173148A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/24Sulfonic acids having sulfo groups bound to acyclic carbon atoms of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process

Definitions

  • the present invention relates to a conductive polymer precursor suitable as a precursor of a conductive polymer, a conductive polymer obtained by polymerizing the conductive polymer precursor, and a solid electrolytic capacitor including a solid electrolyte layer containing the conductive polymer.
  • qn ⁇ (I)
  • the carrier charge (q) is an eigenvalue determined by the type of carrier. Therefore, in order to improve conductivity, the number of carriers (n) and mobility ( ⁇ ) must be set. It is important to increase. In order to increase the mobility ( ⁇ ), it is considered effective to increase the molecular weight of the conductive polymer or reduce the proportion of impurities contained in the conductive polymer. On the other hand, in order to increase the number (n) of carriers, it is considered effective to introduce an acidic group such as a sulfonic acid group or a carboxyl group and remove a base that inhibits dope.
  • an acidic group such as a sulfonic acid group or a carboxyl group
  • Patent Literature As a polyaniline-based conductive polymer having an acidic group introduced therein, for example, a conductive polymer obtained by polymerizing a compound (II) shown below: 2-aminoanisole-4-sulfonic acid as a precursor has been proposed (Patent Literature). 1).
  • a solid electrolytic capacitor having a solid electrolyte layer containing a conductive polymer has a metal foil of a valve metal such as aluminum, tantalum, or niobium, or an anodized film of a porous molded body on the surface of a sintered metal body.
  • An electrolyte is in contact with the anodic oxide coating, and this electrolyte functions as a cathode for drawing an electrode from the anodic oxide coating.
  • electrolytic capacitors employing various types of electrolytes have been proposed.
  • a conductive polymer such as polyethylenedioxythiophene (PEDOT) is widely used as a solid electrolyte.
  • PEDOT polyethylenedioxythiophene
  • an oxidant and a dopant are added to the monomer, and the monomer and the oxidant are directly reacted on the anodized film to form a solid electrolyte layer (conductive polymer layer).
  • a chemical oxidative polymerization method is used to form.
  • a chemical oxidative polymerization method in which 3,4-ethylenedioxythiophene (EDOT), an oxidizing agent and a dopant are dissolved in an organic solvent and reacted on an anodic oxide film to form a conductive polymer layer (Patent Document) 2) has been proposed.
  • an electrolytic capacitor with reduced equivalent series resistance (hereinafter abbreviated as ESR)
  • a capacitor element is immersed in a solution containing a doping agent and then dried, and a monomer that becomes a conductive polymer by oxidation polymerization is used.
  • a method of forming a solid electrolyte layer in the capacitor element by sequentially dropping and impregnating the capacitor element with an aqueous solution of an oxidant (Patent Document 3), or a conductivity containing a dopant agent having high electrical conductivity
  • An electrolytic capacitor (Patent Document 4) impregnated with a polymer and an electrolytic solution has been proposed.
  • Patent Document 5 Also proposed is a method of forming a solid electrolyte layer by preparing a solution of a conductive polymer, impregnating the solution into an anodic oxide coating, drying and forming a coating.
  • Patent Document 6 a method for improving the heat resistance by adding a basic compound to a conductive polymer solution has been proposed.
  • the conductive polymer is used for various applications such as a capacitor.
  • a conductive polymer when used for a capacitor, a conductive polymer is usually applied on a metal electrode and heat-treated at a predetermined temperature to form a conductive polymer layer (electrolyte layer).
  • a conductive polymer layer electroactive polymer layer
  • the conductive polymer described in Patent Document 1 has excellent conductivity, it does not satisfy the thermal stability. Therefore, when used in applications such as capacitors that include a heat treatment step in the manufacturing process, sufficient conductivity cannot be exhibited.
  • the conductive polymer layer is not easily formed up to the fine irregularities of the anodic oxide coating, and further a solid containing a dopant agent.
  • the electrolyte layer has a problem that since the dopant agent easily escapes (de-dope) from the solid electrolyte layer in the electrolytic solution, the electrical conductivity of the solid electrolyte layer decreases and the ESR gradually increases.
  • the method of preparing a conductive polymer solution having an acidic group as a dopant in the molecule and forming a coating film in advance is a simpler manufacturing method than the method of polymerizing on an anodic oxide coating, The performance is not sufficient and has similar problems. Also, the method of adding a basic compound to a conductive polymer is not sufficient in heat resistance for use in applications such as capacitors, and has the same problem.
  • the present invention has been made in view of the above circumstances, and has a high conductivity and a conductive polymer precursor suitable as a precursor of a conductive polymer excellent in thermal stability, and a high conductivity,
  • An object of the present invention is to provide a conductive polymer excellent in thermal stability and a conductive composition containing the conductive polymer.
  • Another object of the present invention is to provide a solid electrolytic capacitor having excellent heat resistance and low equivalent series resistance.
  • the present inventors have found that when an electrically conductive polymer into which an acidic group has been introduced is heated, the acidic group is eliminated, which causes a decrease in electrical conductivity. Therefore, by using a soluble aniline-based conductive polymer having a repeating unit (also referred to as a conductive polymer precursor) in which an acidic group is introduced via an alkylene group having a specific carbon number, the conductivity is maintained while maintaining the conductivity. It has been found that the thermal stability of the polymer can be improved, and the present invention has been completed.
  • a solid electrolytic capacitor having excellent heat resistance and low equivalent series resistance can be obtained by using a soluble aniline-based conductive polymer having the repeating unit.
  • the soluble aniline-based conductive polymer of the present invention has high solubility in water, an organic solvent, and a water-containing organic solvent, and does not require a doping step after film formation, thereby simplifying the method for manufacturing a capacitor.
  • the present invention has the following aspects.
  • the first aspect of the present invention is a conductive polymer precursor represented by the following general formula (1).
  • R 1 to R 4 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group Or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1-20.
  • the R 2 is a hydrogen atom, and at least one of R 1 , R 3 , and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms. It is a conductive polymer precursor as described in 1 aspect.
  • R 2 is a hydrogen atom
  • one of R 1 , R 3 , and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms
  • the rest is a hydrogen atom
  • the fourth aspect of the present invention is a conductive polymer obtained by polymerizing the conductive polymer precursor according to any one of the first to third aspects.
  • the fifth aspect of the present invention is a conductive composition
  • a aniline conductive polymer having a repeating unit represented by the following general formula (1-A) and a solvent (b).
  • R 1 , R 3 and R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, or a linear or branched alkoxy group having 1 to 24 carbon atoms.
  • An acidic group or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom is an acidic group or a salt thereof, and n is an integer of 1 to 20.
  • the sixth aspect of the present invention is the conductive composition according to the fifth aspect, wherein at least one of R 1 , R 3 and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms. It is a thing.
  • a seventh aspect of the present invention is the fifth aspect, wherein one of R 1 , R 3 , and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms, and the remainder is a hydrogen atom. It is an electroconductive composition of description.
  • the eighth aspect of the present invention is the conductive composition according to any one of the fifth to seventh aspects, further including a basic compound (c).
  • 9th aspect of this invention is a conductor which has a coating film formed from the conductive polymer as described in the said 4th aspect.
  • a tenth aspect of the present invention is a conductor having a coating film formed from the conductive composition according to any one of the fifth to seventh aspects.
  • the eleventh aspect of the present invention is a conductor having a coating film formed from the conductive composition according to the eighth aspect.
  • a twelfth aspect of the present invention is a solid electrolytic capacitor comprising a solid electrolyte layer containing the conductive polymer according to the fourth aspect on an anodized film formed on a valve action metal body.
  • a thirteenth aspect of the present invention comprises a solid electrolytic layer formed from the conductive composition according to any one of the fifth to seventh aspects on an anodized film formed on a valve action metal body. It is a solid electrolytic capacitor.
  • a fourteenth aspect of the present invention is a solid electrolytic capacitor comprising a solid electrolyte layer formed from the conductive composition according to the eighth aspect on an anodized film formed on a valve action metal body. is there.
  • the fifteenth aspect of the present invention is the following general formula (1):
  • R 1 to R 4 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group.
  • the conductive polymer precursor according to any one of the first to third aspects is polymerized in the presence of an oxidizing agent, and is represented by the following general formula (1-A).
  • This is a method for producing an aniline-based conductive polymer (a) having a repeating unit.
  • R 1 , R 3 and R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkyl group having 1 to 24 carbon atoms. It is selected from the group consisting of an alkoxy group, an acidic group or a salt thereof, a hydroxyl group, a nitro group and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1-20.
  • R 1 in the formula (1) and the formula (1-A) is preferably a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and a hydrogen atom, a linear chain having 1 to 3 carbon atoms or A branched alkyl group is more preferable, and a hydrogen atom is particularly preferable.
  • R 2 in Formula (1) and Formula (1-A) is preferably a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a hydrogen atom, a linear chain having 1 to 3 carbon atoms or A branched alkyl group is more preferable, and a hydrogen atom is particularly preferable.
  • R 3 in formula (1) and formula (1-A) is preferably a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and a hydrogen atom, a linear chain having 1 to 3 carbon atoms or A branched alkyl group is more preferable, and a hydrogen atom is particularly preferable.
  • R 4 in Formula (1) and Formula (1-A) is a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, or a linear or branched alkoxy group having 1 to 10 carbon atoms.
  • a linear or branched alkoxy group having 1 to 10 carbon atoms is more preferable, and a linear or branched alkoxy group having 1 to 5 carbon atoms is particularly preferable.
  • A is an acidic group or a salt thereof, preferably a carboxyl group, a sulfonic acid group or a salt thereof, and more preferably a sulfonic acid group or a salt thereof.
  • N in the formula (1) and the formula (1-A) is preferably 1 to 10, more preferably 1 to 6, further preferably 1 to 3, and particularly preferably 1 or 2.
  • the conductive polymer precursor of the present invention is suitable as a precursor of a conductive polymer having high conductivity and excellent thermal stability. Moreover, the conductive polymer of this invention has high electroconductivity, and is excellent in thermal stability. In addition, by using the conductive polymer and conductive composition of the present invention, a solid electrolytic capacitor having a high conductivity solid electrolytic layer with low equivalent series resistance and excellent heat resistance can be produced.
  • Example 2 is a cross-sectional view schematically showing an example of the solid electrolytic capacitor of the present invention.
  • the conductive polymer precursor of the present invention is a compound represented by the following general formula (1) (hereinafter referred to as “compound (1)”).
  • compound (1) a compound represented by the following general formula (1)
  • “conductive” means that a coating film having a film thickness of about 0.1 ⁇ m has a surface resistance value of 10 14 ⁇ / ⁇ or less.
  • R 1 to R 4 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group Or it is chosen from the group which consists of the salt, a hydroxyl group, a nitro group, and a halogen atom.
  • the alkyl group include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, t-butyl group, pentyl group, hexyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, a sec-butoxy group, a t-butoxy group, a pentoxy group, and a hexoxy group.
  • acidic groups include sulfonic acid groups and carboxyl groups. Each of these may be contained in an acid state (—SO 3 H, —COOH) or may be contained in an ionic state. Among these, a sulfonic acid group or a carboxyl group is preferable, and a sulfonic acid group is more preferable from the viewpoint that the affinity for water can be increased, and when a conductive polymer is obtained, higher conductivity can be expressed.
  • the salt of an acidic group at least one of an alkali metal salt, an alkaline earth metal salt, an ammonium salt, and a substituted ammonium salt of an acidic group is shown.
  • Examples of the alkali metal include lithium, sodium, and potassium.
  • Examples of the alkaline earth metal include magnesium and calcium.
  • Examples of substituted ammonium include alicyclic ammoniums, cyclic saturated ammoniums, and cyclic unsaturated ammoniums.
  • Examples of the aliphatic ammoniums include ammoniums represented by the following general formula (III).
  • R 5 to R 8 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • fatty ammoniums include methylammonium, dimethylammonium, trimethylammonium, ethylammonium, diethylammonium, triethylammonium, methylethylammonium, diethylmethylammonium, dimethylethylammonium, propylammonium, dipropylammonium, Isopropyl ammonium, diisopropyl ammonium, butyl ammonium, dibutyl ammonium, methyl propyl ammonium, ethyl propyl ammonium, methyl isopropyl ammonium, ethyl isopropyl ammonium, methyl butyl ammonium, ethyl butyl ammonium, tetramethyl ammonium, tetramethylol ammonium,
  • R 5 to R 8 is a hydrogen atom, and the other three are alkyl groups having 1 to 4 carbon atoms, and then two of R 5 to R 8 are A hydrogen atom and the other two are preferably alkyl groups having 1 to 4 carbon atoms.
  • Examples of the cyclic saturated ammoniums include piperidinium, pyrrolidinium, morpholinium, piperazinium, and derivatives having these skeletons.
  • Examples of the cyclic unsaturated ammonium include pyridinium, ⁇ -picolinium, ⁇ -picolinium, ⁇ -picolinium, quinolinium, isoquinolinium, pyrrolinium, and derivatives having these skeletons.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • A is an acidic group or its salt.
  • “acidic group” means a sulfonic acid group or a carboxyl group.
  • Examples of the acidic group and the acidic group salt include the acidic group and acidic group salts exemplified above in the description of R 1 to R 4 .
  • A is preferably a sulfonic acid group or a salt thereof from the viewpoint that the affinity for water can be increased, and when a conductive polymer is obtained, higher conductivity can be expressed.
  • n is an integer of 1 to 20.
  • n is 1 or more, a conductive polymer excellent in thermal stability can be obtained.
  • N is preferably 1 to 10, more preferably 1 to 6, further preferably 1 to 3, and particularly preferably 1 or 2.
  • R 2 is a hydrogen atom
  • R 1 , R 3 , and R 4 At least one is preferably a linear or branched alkoxy group having 1 to 24 carbon atoms.
  • R 2 is a hydrogen atom
  • one of R 1 , R 3 , and R 4 is 1 carbon atom. It is preferably a linear or branched alkoxy group of ⁇ 24, with the remainder being a hydrogen atom.
  • Compound (1) can be produced, for example, by the following steps (a) and (b).
  • R 1 ⁇ R 4, A and n are the same as the general formula (1) of R 1 ⁇ R 4, A and n.
  • D in the general formula (2) is a detachable substituent and may be any group that can be converted to A by the reaction in the step (a). Specifically, for example, a chlorine atom , Halogen atoms such as bromine atom and iodine atom, mesyl group, tosyl group and the like.
  • compound (1-1) a compound in which A is an alkali metal salt, ammonium salt or substituted ammonium salt of a sulfonic acid group
  • compound (1-2) a method for producing a compound in which A is a sulfonic acid group
  • M is an alkali metal, ammonium, or substituted ammonium.
  • Step (a) includes the following step (a-1).
  • Step (a-1) The compound (2) and the sulfonating agent (M 2 SO 3 ) are reacted in a solvent to give a compound represented by the following general formula (3-1) (hereinafter referred to as “compound ( 3-1) ").
  • the reaction ratio (mol ratio) between the compound (2) and the sulfonating agent is preferably 1: 0.5 to 1: 5. When there are too few sulfonating agents, it will become difficult to complete reaction. When there are too many sulfonating agents, it is necessary to remove the unreacted sulfonating agent, which requires labor and manufacturing costs.
  • the reaction temperature is preferably 0 ° C. or higher, and the reaction time is preferably 0.5 to 12 hours.
  • the sulfonating agent examples include sodium sulfite, potassium sulfite, lithium sulfite, ammonium sulfite, sodium hydrogen sulfite, and potassium hydrogen sulfite.
  • the solvent examples include alcohols such as water, methanol, ethanol and propanol; ethers such as tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and diisopropyl ether; amides such as dimethylformamide and dimethylacetamide. It is done. These solvents may be used alone or in combination of two or more.
  • step (b) In the step (b), the compound (3-1) is reduced to obtain the compound (1-1).
  • the reaction conditions in the step (b) are not particularly limited as long as they are general reduction conditions for a nitro group. Specific examples include catalytic hydrogenation using a reducing agent such as palladium carbon and Raney nickel, and reduction using a reducing agent such as zinc powder and tin under acidic conditions.
  • Step (a) The step (a) has the following steps (a-1) and (a-2).
  • Step (a-1) A step of obtaining a compound (3-1) by reacting the compound (2) with a sulfonating agent in a solvent.
  • Step (a-2) A step of protonating the compound (3-1) to obtain a compound represented by the following general formula (3-2) (hereinafter referred to as “compound (3-2)”).
  • step (a-1) is the same as the step (a-1) included in the production step of the compound (1-1).
  • the step (a-2) is a step of protonating the salt of the sulfonic acid group in the compound (3-1) to a sulfonic acid group
  • the protonation conditions in the step (a-2) are general protonation conditions.
  • the conditions are not particularly limited, but the reaction ratio (mol ratio) between the compound (3-1) and the reagent used for protonation (protonating agent) is preferably 1: 0.5 to 1:10.
  • the reaction temperature is preferably 0 ° C. or higher, and the reaction time is preferably 0.5 to 12 hours.
  • Protonating agents include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid; organic acids such as methanesulfonic acid and trifluoromethanesulfonic acid.
  • step (b) In the step (b), the compound (3-2) is reduced to obtain the compound (1-2).
  • the step (b) is the same as the step (b) included in the production step of the compound (1-1).
  • step (a) A step of obtaining a compound (2) by subjecting a compound represented by the following general formula (4) (hereinafter referred to as “compound (4)”) to halogenation, mesylation, or tosylation. .
  • compound (4) a compound represented by the following general formula (4)
  • Step (c) is a step of substituting the hydroxyl group (alcohol) in compound (4) with a substituent (D), and the reaction conditions in step (c) are general halogenation conditions and mesylation conditions for alcohol. Or any tosylation conditions.
  • the reaction conditions in step (c) are general halogenation conditions and mesylation conditions for alcohol. Or any tosylation conditions.
  • a reagent used in the step (c) when an alcohol is halogenated, thionyl chloride, sulfuryl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus tribromide, phosphorus pentabromide, hydrogen chloride, hydrogen bromide , Hydrogen iodide, N-chlorosuccinimide, N-bromosuccinimide and the like.
  • mesylating alcohol methanesulfonyl chloride etc. are mentioned.
  • R 4 is R 4 ′ (alkoxy group)
  • R 1 to R 3 are hydrogen atoms
  • D is D 2 (halogen atom)
  • compound (2-1)
  • compound can also be obtained by, for example, haloalkylating a compound represented by the following general formula (5) (hereinafter referred to as” compound (5) ").
  • the reaction ratio (mol ratio) between the compound (5) and the reagent used for the haloalkylation (haloalkylating agent) is preferably 1: 0.5 to 1:10.
  • the reaction temperature is preferably ⁇ 10 ° C. or higher, and the reaction time is preferably 0.5 to 24 hours.
  • haloalkylating agent examples include methoxymethyl chloride, methoxyethyl chloride, methoxypropyl chloride, a mixture of hydrogen chloride and formalin.
  • an acidic group or a salt thereof (corresponding to A in the compound (1)) is bonded to an aromatic ring via an alkylene group having a specific carbon number.
  • the conductive polymer precursor of the present invention as described above, an acidic group or a salt thereof is bonded to an aromatic ring via an alkylene group. Therefore, the carbon atom on the aromatic ring bonded to the alkylene group is less affected by electron withdrawing than the case where the acidic group is directly bonded to the aromatic ring, and the decrease in electron density is reduced. Conceivable. Therefore, the conductive polymer using the conductive polymer precursor of the present invention can maintain the conductivity because the acidic group is not easily detached even by heat treatment.
  • R 2 is a hydrogen atom
  • at least one of R 1 , R 3 and R 4 is an alkoxy group, more preferably R 2 is a hydrogen atom.
  • the conductive polymer precursor of the present invention is suitable as a precursor (raw material) of a conductive polymer having high conductivity and excellent thermal stability.
  • the conductive polymer of the present invention (also referred to as aniline-based conductive polymer (a)) is obtained by polymerizing an aniline-based monomer component containing the conductive polymer precursor of the present invention, and has the following general formula (1-A ).
  • R 1 , R 3 and R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkyl group having 1 to 24 carbon atoms. It is selected from the group consisting of an alkoxy group, an acidic group or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1-20.
  • n is preferably 1 to 10, more preferably 1 to 5, and particularly preferably 1 to 3. This is considered to be because the elimination of the acidic group due to heating can be suppressed by inserting a spacer between the acidic group and the aromatic ring.
  • the aniline-based conductive polymer contains the conductive polymer precursor of the present invention as an essential component, but is soluble, conductive as a structural unit (monomer component) other than that represented by the general formula (1-A).
  • the content of the conductive polymer precursor is preferably 1 to 100% by mass, more preferably 10 to 100% by mass in 100% by mass of the aniline monomer component, and has high conductivity and thermal stability. It becomes easy to obtain an excellent conductive polymer.
  • the aniline-based conductive polymer of the present invention preferably contains 70% or more of the content of the acidic group with respect to the repeating unit of the general formula (1-A), that is, the aromatic ring, from the viewpoint of improving the solubility. % Or more is preferable, and especially 90% or more is preferable.
  • those having an acidic group content of 70% or less with respect to the aromatic ring are not preferable because of insufficient solubility in water.
  • the higher the content of acidic groups with respect to the aromatic ring the better the solubility, which is suitable for capacitor production.
  • the conductive polymer precursor may be used alone, or two or more different conductive polymers may be mixed and used in an arbitrary ratio within the range corresponding to the general formula (1-A).
  • the weight average molecular weight of the aniline-based conductive polymer is preferably 3000 to 500,000, more preferably 5000 to 200,000, and more preferably 7000 to 10 in terms of sodium polystyrene sulfonate, from the viewpoint of conductivity, film formability and film strength. Many are particularly preferred.
  • the weight average molecular weight is 3000 or less, the solubility is excellent but the film formability and conductivity are insufficient.
  • the weight average molecular weight is 500,000 or more, the solubility and impregnation into the porous molded body are inferior. It is enough.
  • a soluble conductive polymer having a conductivity of 0.01 S / cm or more, preferably 0.05 S / cm or more is used as the solid electrolytic capacitor has better performance such as frequency characteristics.
  • aniline monomer is not particularly limited as long as it is an aniline monomer copolymerizable with the conductive polymer precursor of the present invention.
  • aniline methylaniline, dimethylaniline, trimethylaniline, tetramethyl Aniline, ethylaniline, diethylaniline, triethylaniline, tetraethylaniline, propylaniline, dipropylaniline, tripropylaniline, tetrapropylaniline, butylaniline, dibutylaniline, tributylaniline, tetrabutylaniline, methoxyaniline, dimethoxyaniline, trimethoxy Aniline, tetramethoxyaniline, ethoxyaniline, diethoxyaniline, triethoxyaniline, tetraethoxyaniline, bromoaniline, chloroaniline, aniline fluoride, shear Aniline, hydroxyaniline, nitroaniline,
  • the content of the other aniline monomer is preferably 0 to 99% by mass, more preferably 0 to 90% by mass in 100% by mass of the aniline monomer component, has high conductivity, and is thermally stable. It becomes easy to obtain a conductive polymer having excellent properties.
  • the conductive polymer of the present invention can be obtained, for example, by polymerizing the above aniline monomer component with an oxidizing agent in a polymerization solvent.
  • the aniline monomer used in the present invention has a sulfone group and / or a carboxyl group.
  • Examples of such an acid group-substituted aniline monomer include an acid group-substituted aniline, an alkali metal salt thereof, and an alkaline earth metal.
  • a compound selected from the group consisting of a salt, an ammonium salt, and a substituted ammonium salt is preferred.
  • a compound represented by the general formula (1) is preferable in view of exhibiting excellent conductivity and improving water solubility.
  • oxidizing agent examples include peroxodisulfuric acids such as peroxodisulfuric acid, ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate; hydrogen peroxide.
  • peroxodisulfuric acids such as peroxodisulfuric acid, ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate
  • hydrogen peroxide examples include hydrogen peroxide.
  • peroxodisulfuric acids such as peroxodisulfuric acid, ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate
  • hydrogen peroxide examples include hydrogen peroxide.
  • the amount of the oxidizing agent used is preferably 1 to 5 mol, more preferably 1 to 3 mol, relative to 1 mol of the aniline monomer component.
  • the conductive polymer can be sufficiently polymerized and the main chain can be oxidized sufficiently. It is also effective to use a transition metal compound such as iron or copper in combination with an oxidizing agent as a catalyst.
  • Examples of the polymerization solvent include water and organic solvents.
  • Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, propyl alcohol and butanol; ketones such as acetone and ethyl isobutyl ketone; ethylene glycols such as ethylene glycol and ethylene glycol methyl ether; propylene glycol and propylene glycol Propylene glycols such as methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether and propylene glycol propyl ether; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methylpyrrolidone, N-ethylpyrrolidone and the like Pyrrolidones and the like.
  • As the polymerization solvent water or a mixed solvent of water and an organic solvent is preferable.
  • a conductive polymer is obtained by chemically oxidatively polymerizing the above aniline monomer component with an oxidizing agent in a polymerization solvent (polymerization step). Specifically, an aniline monomer component solution (precursor solution) is dropped into an oxidant solution, an oxidizer solution is dropped into an aniline monomer component solution, an aniline simple substance is added to a reaction vessel or the like.
  • a method of dropping a monomer component solution and an oxidant solution simultaneously a method of continuously supplying an aniline monomer component solution and an oxidant solution to a reaction vessel or the like, and a method of polymerizing in an extruded flow
  • a conductive polymer is obtained.
  • the above-described polymerization solvent can be used.
  • a protonic acid may be added to the reaction system.
  • the protic acid include mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, and borofluoric acid, super strong acids such as trifluoromethanesulfonic acid, and organic substances such as methanesulfonic acid, dodecylbenzenesulfonic acid, toluenesulfonic acid, and camphorsulfonic acid.
  • examples thereof include sulfonic acids, and polymer acids such as polystyrene sulfonic acid, polyacrylic acid, polyvinyl sulfonic acid, poly-2-methylpropane-2-acrylamide sulfonic acid, and the like.
  • the internal temperature of the polymerization reaction is preferably 50 ° C. or less, more preferably ⁇ 15 to 50 ° C., and further preferably ⁇ 10 to 20 ° C. In particular, if the internal temperature of the polymerization reaction is 20 ° C. or lower, it is possible to suppress a decrease in conductivity due to the progress of side reactions and changes in the redox structure of the main chain. Further, when the internal temperature of the polymerization reaction is ⁇ 15 ° C. or higher, a sufficient reaction rate can be maintained and the reaction time can be shortened.
  • the conductive polymer is obtained in the state of a polymer solution dissolved or dispersed in a solvent.
  • the conductive polymer may be used for various applications as it is after removing the solvent, but the polymer solution may contain unreacted monomers (aniline monomer components), oligomers, impurities, and the like. Therefore, it is preferable to use the conductive polymer after purification (purification step).
  • Examples of the method for purifying the conductive polymer include a cleaning method using a solvent, a membrane filtration method, and a cation exchange method.
  • the conductive polymer thus obtained can be obtained by polymerizing an aniline monomer component containing the conductive polymer precursor of the present invention.
  • the conductive polymer precursor of the present invention is a monomer in which an acidic group or a salt thereof is bonded to an aromatic ring via an alkylene group having 1 to 20 carbon atoms. Salt is not easily released. Therefore, the conductive polymer of the present invention has high conductivity and is excellent in thermal stability. Therefore, conductivity can be maintained even after heat treatment.
  • the conductive polymer of the present invention is considered to have a phenylenediamine structure (reduced type) and a quinodiimine structure (oxidized type) represented by the following general formula (6).
  • R 9 to R 24 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group A group or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), and at least one of R 11 , R 15 , R 19 , and R 23 Is — (CH 2 ) n —A.
  • A is an acidic group or a salt thereof
  • n is an integer of 1-20.
  • Y represents the degree of polymerization.
  • This phenylenediamine structure (reduced type) and quinodiimine structure (oxidized type) can be reversibly converted at an arbitrary ratio by oxidation or reduction.
  • the ratio (x) of the phenylenediamine structure to the quinodiimine structure is preferably in the range of 0.2 ⁇ x ⁇ 0.8 from the viewpoint of conductivity and solubility, and more preferably 0.3 ⁇ x ⁇ 0.7.
  • the conductive polymer of the present invention can be dissolved in simple water, water containing a base and a basic salt, water containing an acid, a solvent such as methanol, ethanol, iso-propanol, or a mixture thereof. Excellent workability.
  • the conductive polymer of the present invention forms a conductor by a simple method such as spray coating, dip coating, roll coating, gravure coating, reverse coating, roll brushing, air knife coating, curtain coating, etc. can do.
  • the composition comprising the conductive polymer of the present invention as a main component includes various antistatic agents, capacitors, batteries, EMI shields, chemical sensors, display elements, nonlinear materials, anticorrosion, adhesives, fibers, antistatic paints, anticorrosion. It can be applied to paints, electrodeposition paints, plating primers, electrostatic coating bases, cathodic protection, and battery storage capacity improvement. Among these, since the conductive polymer of the present invention is excellent in thermal stability and can maintain conductivity even after heat treatment, it is suitable for applications such as a capacitor including a heat treatment step in the production process.
  • the aniline-based conductive polymer (a) obtained by the above production method may form a salt with a cation, which is a factor that impedes conductivity, and it is desirable to remove these cations. .
  • a method of bringing the conductive polymer dispersion or solution into contact with a cation exchange resin is preferred.
  • the conductive polymer is subjected to impurity removal with a cation exchange resin, it is used in a state dispersed or dissolved in a solvent.
  • Solvents include alcohols such as water, methanol, ethanol, isopropanol, propanol, and butanol; ketones such as acetone, methyl ethyl ketone, ethyl isobutyl ketone, methyl isobutyl ketone; ethylene glycol, ethylene glycol methyl ether, ethylene glycol mono-n- Ethylene glycols such as propyl ether; propylene glycols such as propylene glycol, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether and propylene glycol propyl ether; amides such as dimethylformamide and dimethylacetamide; N-methylpyrrolidone; Pyrrolidones such as N-ethylpyrrolidone; methyl lactate, ethyl lactate, ⁇ -methoxy Methylbutyric acid, hydroxy esters such
  • the concentration when the conductive polymer is dispersed or dissolved in the solvent is preferably from 0.1 to 20% by mass, more preferably from 0.1 to 10% by mass, from the viewpoint of industrial properties and purification efficiency.
  • the cation exchange resin can be used as the cation exchange resin, and for example, strong acid type cation exchange resins such as “Amberlite” manufactured by Organo Corporation are preferred.
  • the form of the cation exchange resin is not particularly limited, and various forms can be used. Examples thereof include spherical fine particles, membranes, and fibers.
  • the amount of the cation exchange resin with respect to the conductive polymer is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass with respect to 1 part by mass of the conductive polymer from the viewpoint of industrial properties and purification efficiency.
  • the dispersion or solution of the conductive polymer and the cation exchange resin are placed in a container, and the mixture is stirred or rotated to exchange the cation.
  • the method of making it contact with resin is mentioned.
  • space velocity SV (1 / hr) flow rate (m 3 / hr) / filter medium amount (volume: m 3 ).
  • the time for which the conductive polymer dispersion or solution is brought into contact with the cation exchange resin is preferably 0.1 hour or longer, and more preferably 0.5 hour or longer.
  • the upper limit of the contact time is not particularly limited, and may be appropriately set in accordance with conditions such as the concentration of the dispersion or eluent of the conductive polymer, the amount of the cation exchange resin, and the contact temperature described later.
  • the temperature at which the conductive polymer dispersion or solution is brought into contact with the cation exchange resin is preferably 10 to 50 ° C., more preferably 10 to 30 ° C., from an industrial viewpoint.
  • the conductive polymer purified in this way exhibits a superior conductivity because low molecular weight substances such as oligomers and monomers and impurities such as cations are sufficiently removed.
  • the solvent (b) used in the conductive composition is not particularly limited as long as it is a solvent that dissolves the conductive polymer (a), but water and / or a water-soluble organic solvent is preferable.
  • water-soluble organic solvents include alcohols such as acetonitrile, methanol, ethanol, isopropanol, n-propanol, and n-butanol, ketones such as acetone, methyl ethyl ketone, ethyl isobutyl ketone, and methyl isobutyl ketone, ethylene glycol, Ethylene glycols such as ethylene glycol methyl ether, propylene glycols such as propylene glycol and propylene glycol methyl ether, amides such as dimethylformamide and dimethylacetamide, pyrrolidones such as N-methylpyrrolidone and N-ethylpyrrolidone, and lactic acid Examples
  • the concentration of the conductive composition is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 10% by mass from the viewpoint of industrial properties and purification efficiency.
  • a solid electrolyte layer having a sufficient thickness can be formed as the concentration is higher.
  • the concentration the more the agglomeration of the conductive polymer and compound in the solution can be suppressed, the higher the viscosity becomes, and the fine irregularities of the anodized film can be easily impregnated.
  • the basic compound (c) include inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide and calcium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrahydroxide Organic hydroxides such as butylammonium, primary alkylamines such as methylamine, ethylamine, propylamine, butylamine, pentylamine and hexylamine, primary amines such as benzylamine and aniline, dimethylamine, diethylamine and dipropylamine Secondary alkylamines such as dibutylamine, dipentylamine and dihexylamine, secondary
  • Examples include heterocyclic amine water, benzylamine, methoxyethylamine, aminopyridine, hydroxymethylpyridine, pyridinol, ethylenediamine, and ammonia. Among these, sodium hydroxide or ammonia is preferable. Any one of these basic compounds may be used alone, or two or more thereof may be mixed and used.
  • the basic compound (c) is an acidic group-substituted aniline or the like, and remains in the conductive composition that is used when the monomer that is a raw material of the conductive polymer (a) is oxidatively polymerized in a solution.
  • the same or different basic compound may be added to the conductive composition.
  • the addition amount of the basic compound (c) is preferably 0.01 to 2.0 mol with respect to 1 mol of the repeating unit of the conductive polymer (a) from the viewpoint of conductivity and / or heat resistance. 1 to 1.5 mol is more preferable, 0.15 to 1.0 mol is more preferable, and 0.2 to 0.65 mol is particularly preferable.
  • the solid electrolyte layer is formed from a conductive composition obtained by mixing the aniline conductive polymer and a solvent.
  • a dip coating method As a method for forming a solid electrolyte layer, a dip coating method, a brush coating method, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a spray coating method, Examples thereof include a flow coating method, a screen method printing, a flexographic printing method, an offset printing method, and an ink jet printing method.
  • the dip coating method is preferable because it is easy to operate.
  • the immersion time in the conductive composition is preferably 1 to 30 minutes from the viewpoint of workability.
  • drying method after forming the solid electrolyte layer heat drying is preferable, but for example, air drying, spinning and physical drying may be used.
  • the drying conditions are determined by the types of the conductive polymer (a) and the solvent (b).
  • the drying temperature is preferably 50 ° C. to 190 ° C. from the viewpoint of drying properties, and the drying time is 1 to 120 minutes is preferred.
  • the wound solid electrolytic capacitor is manufactured by a known technique in addition to the solid electrolyte layer forming step. For example, after the surface layer vicinity of the aluminum foil is made porous by etching, an anodic oxide film is formed by anodic oxidation, the solid charge including the solid electrolyte layer according to the present embodiment is formed, and then the cathode portion is formed.
  • the wound solid electrolytic capacitor according to the present embodiment can be obtained by connecting external terminals to the anode part and the cathode part and providing an exterior.
  • the anodized film is formed by anodizing an electrode (valve action metal body) made of a metal material (film forming metal) such as aluminum, tantalum, niobium or nickel.
  • An anodized film formed by anodizing a porous valve metal body reflects the surface state of the valve metal body, and has a concavo-convex structure with a fine surface.
  • the period of the unevenness is usually about 200 nm or less, although it depends on the type of valve action metal body.
  • the depth of the recesses (pores) forming the irregularities is not easily determined because it is particularly dependent on the type of valve action metal body, but when using aluminum, for example, the depth of the recesses is It is about several tens of nm to 1 ⁇ m.
  • the multilayer solid electrolytic capacitor is manufactured by a known technique in addition to the solid electrolyte layer forming step. For example, after the surface layer vicinity of the valve action metal body such as an aluminum foil is made porous by etching, an anodized film is formed by anodization. Next, after forming a solid electrolyte layer on the anodized film, this is immersed in a graphite solution, or a graphite solution is applied to form a graphite layer on the solid electrolyte layer, and a metal layer is further formed on the graphite layer. Form. Furthermore, the multilayer solid electrolytic capacitor according to the present embodiment can be obtained by connecting and externally connecting external terminals to the cathode part and the anode part.
  • NMR measurement The compound was identified by measuring 1 H-NMR spectrum. This measurement was performed by using FT-NMR (“JNM-GX270” manufactured by JEOL Ltd.) and dissolving a measurement sample in deuterated dimethyl sulfoxide to a concentration of about 5% by mass. The sample was placed in a 5 mm ⁇ test tube, and the measurement was performed at a measurement temperature of 25 ° C., a measurement frequency of 270 MHz, and a single pulse mode with 64 integrations.
  • a conductive polymer solution is applied on a glass substrate using a spin coater, heated on a hot plate at a predetermined temperature for 5 minutes, and a test piece having a coating film (film thickness: about 100 nm) formed on the glass substrate is obtained. Obtained. The surface resistance value of the obtained test piece was measured by attaching a two-probe probe to a resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., “Hiresta IP”).
  • the weight of the powder was divided by the molecular weight of the polymer repeating unit to determine the repeating unit (monomer unit) [mol] of the conductive polymer.
  • the solution or dispersion is dried at 100 ° C. for 1 hour, and the remaining solid is used as a conductive polymer powder.
  • the conductive polymer is a repeating unit (monomer unit). [Mol] was determined.
  • Pd—C palladium carbon
  • Example 2 ⁇ Production of conductive polymer (a)> 2.24 g (100 mmol) of ammonium peroxodisulfate (molecular weight 224.20) was stirred and dissolved in 25 g of water to prepare an oxidant solution. Separately, an aniline monomer component consisting of 2.17 g (100 mmol) of 3-amino-4-methoxyphenylmethanesulfonic acid (molecular weight 217.24) was dissolved in 25 g of water, and an aniline monomer component solution (precursor) Solution) was prepared. While the oxidant solution was cooled in an ice bath and stirred, the precursor solution was added dropwise over 1 hour.
  • the obtained poly (3-amino-4-methoxyphenylmethanesulfonic acid) (a) was dissolved in 0.2 mol / L ammonia water to prepare a conductive polymer solution.
  • thermal stability and conductivity were evaluated.
  • a total of seven test pieces were prepared by changing the heating temperature, and the surface resistance value of each test piece was measured. From the obtained results, a graph was prepared by plotting the heating temperature (° C.) on the X axis and the surface resistance value ( ⁇ / ⁇ ) of the test piece on the Y axis. The graph is shown in FIG.
  • the obtained poly (2-aminoanisole-4-sulfonic acid) was dissolved in water at room temperature (25 ° C.) and ion exchanged with a strongly acidic ion exchange resin (manufactured by Organo Corporation, “Amberlite IR-120B”). This was treated to obtain a conductive polymer solution (a′-2). Using the obtained conductive polymer solution, thermal stability and electrical conductivity were evaluated in the same manner as in Example 2. The results are shown in FIG.
  • the conductive polymer obtained in Example 2 has a stable surface resistance value and can maintain high conductivity even when the heating temperature is increased. Therefore, it was shown that the conductive polymer obtained from the conductive polymer precursor of the present invention has excellent thermal stability and high conductivity even when heat-treated at a high temperature of 200 ° C. or higher.
  • a conductive polymer (Comparative Example 1) obtained from a monomer in which an acidic group or a salt thereof is bonded to an aromatic ring without an alkylene group has a higher surface resistance as the heating temperature is higher, and the conductivity is higher. Declined.
  • the proportion of the conductive polymer was 4.5% by mass (4.7 parts by mass with respect to 100 parts by mass of the solvent). Further, the content of the basic compounds (triethylamine and ammonia) forming the salt contained in the conductive polymer solution (a-2) was 0.1% by mass or less.
  • Example 4 A conductive composition solution was prepared using the conductive polymer solution (a-2) obtained in Example 3. After immersing the conductive composition solution in the anodic oxide coating of the aluminum capacitor for 2 minutes, it is dried by a hot air dryer at 120 ° C. for 30 minutes, and further subjected to heat treatment at 180 ° C. for 120 minutes, and then on the anodic oxide coating. A solid electrolyte layer was formed. Table 1 also shows the equivalent series resistance of the obtained wound solid electrolytic capacitor.
  • Example 5 A solid electrolyte layer was formed in the same manner as in Example 4 except that diethanolamine was added as a basic compound to the polymer solution (a-2) obtained in Example 3, and the resulting wound solid was obtained.
  • Table 1 also shows the equivalent series resistance of the electrolytic capacitor.
  • Example 6 Further, a solid electrolyte layer was formed by the same method as in Example 4 except that lithium hydroxide was added as a basic compound to the polymer solution (a-2) obtained in Example 3. Table 1 also shows the equivalent series resistance of the wound solid electrolytic capacitor.
  • Example 4 using the conductive polymer solution (a-2) containing the conductive polymer (a) suppressed the increase in equivalent series resistance even after the heat treatment, and was excellent after the heat treatment. It showed heat resistance. Moreover, even if Example 5 and Example 6 which respectively added diethanolamine and lithium hydroxide as a basic compound (c) were heat-processed, the increase in equivalent series resistance was suppressed.
  • Comparative Example 2 using a conductive polymer solution (a′-2) containing a conductive high polymer (a ′) in which an acidic group is directly bonded to an aromatic ring is As a result, the equivalent series resistance significantly increased and the heat resistance was poor after the heat treatment.
  • the conductive polymer precursor of the present invention is particularly suitable as a precursor of a conductive polymer used for applications such as capacitors including a heat treatment step in the production process, and is practically useful.
  • the conductive polymer of the present invention can also be suitably used for applications such as capacitors that include a heat treatment step in the production process.

Abstract

The present invention relates to a conductive polymer precursor represented by general formula (1). (In formula (1), R1 to R4 are each independently selected from among the group comprising a hydrogen atom, a straight chain or branched chain alkyl group having 1 to 24 carbon atoms, a straight chain or branched chain alkoxy group having 1 to 24 carbon atoms, an acidic group or a salt thereof, a hydroxyl group, a nitro group and a halogen atom; A is an acidic group or a salt thereof, and n is an integer between 1 and 20.)

Description

導電性ポリマー前駆体、導電性ポリマー、及び固体電解コンデンサConductive polymer precursor, conductive polymer, and solid electrolytic capacitor
 本発明は、導電性ポリマーの前駆体として好適な導電性ポリマー前駆体、及びこれを重合させて得られる導電性ポリマー、ならびに導電性ポリマーを含む固体電解質層を具備する固体電解コンデンサに関する。本願は、2011年6月14日に、日本に出願された特願2011-132184号、及び2012年5月14日に、日本に出願された特願2012-110285号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a conductive polymer precursor suitable as a precursor of a conductive polymer, a conductive polymer obtained by polymerizing the conductive polymer precursor, and a solid electrolytic capacitor including a solid electrolyte layer containing the conductive polymer. This application claims priority based on Japanese Patent Application No. 2011-132184 filed in Japan on June 14, 2011 and Japanese Patent Application No. 2012-110285 filed on May 14, 2012 in Japan. , The contents of which are incorporated herein.
 多様な用途で用いられる導電性ポリマーとしては、ポリアニリン系、ポリチオフェン系、ポリピロール系などの導電性ポリマーが知られている。
 一般的に、導電性ポリマーの導電性(σ)は、キャリアの電荷(q)、キャリアの数(n)、ならびにキャリアの分子鎖間及び分子鎖内の易動度(μ)に依存し、下記式(I)より導き出される。
 σ=qnμ  ・・・(I)
As conductive polymers used in various applications, polyaniline-based, polythiophene-based, and polypyrrole-based conductive polymers are known.
In general, the conductivity (σ) of a conductive polymer depends on the carrier charge (q), the number of carriers (n), and the mobility (μ) between and within the molecular chains of the carrier, It is derived from the following formula (I).
σ = qnμ (I)
 ポリアニリン系の導電性ポリマーの場合、キャリアの電荷(q)はキャリアの種類によって決まる固有値となるため、導電性を向上させるためには、キャリアの数(n)、及び易動度(μ)を増大させることが重要である。
 易動度(μ)を増大させるには、導電性ポリマーの分子量を高くしたり、導電性ポリマー中に含まれる不純物の割合を低減したりすることなどが有効であると考えられている。
 一方、キャリアの数(n)を増大させるには、スルホン酸基、カルボキシル基、などの酸性基を導入し、ドープを阻害する塩基を除去すること等が有効であると考えられている。
In the case of a polyaniline-based conductive polymer, the carrier charge (q) is an eigenvalue determined by the type of carrier. Therefore, in order to improve conductivity, the number of carriers (n) and mobility (μ) must be set. It is important to increase.
In order to increase the mobility (μ), it is considered effective to increase the molecular weight of the conductive polymer or reduce the proportion of impurities contained in the conductive polymer.
On the other hand, in order to increase the number (n) of carriers, it is considered effective to introduce an acidic group such as a sulfonic acid group or a carboxyl group and remove a base that inhibits dope.
 酸性基を導入したポリアニリン系の導電性ポリマーとしては、例えば下記に示す化合物(II):2-アミノアニソール-4-スルホン酸を前駆体として重合させた導電性ポリマーが提案されている(特許文献1参照)。 As a polyaniline-based conductive polymer having an acidic group introduced therein, for example, a conductive polymer obtained by polymerizing a compound (II) shown below: 2-aminoanisole-4-sulfonic acid as a precursor has been proposed (Patent Literature). 1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、導電性ポリマーを含む固体電解質層を具備する固体電解コンデンサは、アルミニウム、タンタル、又は、ニオブ等の弁作用金属の金属箔や金属焼結体の表面に多孔質成形体の陽極酸化被膜を形成し、前記陽極酸化被膜を誘電体として構成されるコンデンサである。前記陽極酸化被膜には電解質が接触しており、この電解質が、前記陽極酸化被膜からの電極の引き出しを行う陰極として機能する。 In addition, a solid electrolytic capacitor having a solid electrolyte layer containing a conductive polymer has a metal foil of a valve metal such as aluminum, tantalum, or niobium, or an anodized film of a porous molded body on the surface of a sintered metal body. A capacitor formed and having the anodic oxide coating as a dielectric. An electrolyte is in contact with the anodic oxide coating, and this electrolyte functions as a cathode for drawing an electrode from the anodic oxide coating.
 陰極としての電解質は、電解コンデンサの電気特性に大きな影響を及ぼすことから、従来から、様々な種類の電解質が採用された電解コンデンサが提案されている。固体電解コンデンサにおいては、固体電解質として導電性ポリマーであるポリエチレンジオキシチオフェン(PEDOT)等が広く用いられている。さらに、コンデンサ素子を酸化剤溶液とモノマー溶液との混合溶液に浸漬することによって、コンデンサ素子に酸化剤及びモノマーを含浸させて、コンデンサ素子における絶縁膜上において、酸化剤とモノマーとの重合反応を促進して固体電解質を形成する方法が知られている。 Since the electrolyte as the cathode has a great influence on the electrical characteristics of the electrolytic capacitor, electrolytic capacitors employing various types of electrolytes have been proposed. In solid electrolytic capacitors, a conductive polymer such as polyethylenedioxythiophene (PEDOT) is widely used as a solid electrolyte. Further, by immersing the capacitor element in a mixed solution of an oxidant solution and a monomer solution, the capacitor element is impregnated with the oxidant and the monomer, and a polymerization reaction between the oxidant and the monomer is performed on the insulating film in the capacitor element. Methods for promoting and forming solid electrolytes are known.
 また、電解質の導電性能を高める方法として、モノマーに酸化剤及びドーパント(導電補助剤)を加え、モノマーと酸化剤とを陽極酸化被膜上で直接反応させて固体電解質層(導電性ポリマー層)を形成する、化学酸化重合法が用いられている。その製法として、3,4-エチレンジオキシチオフェン(EDOT)と酸化剤及びドーパントを有機溶媒に溶解させ、陽極酸化被膜の上で反応させて導電性ポリマー層を形成する化学酸化重合法(特許文献2)が提案されている。 Moreover, as a method for improving the conductive performance of the electrolyte, an oxidant and a dopant (conducting aid) are added to the monomer, and the monomer and the oxidant are directly reacted on the anodized film to form a solid electrolyte layer (conductive polymer layer). A chemical oxidative polymerization method is used to form. As its production method, a chemical oxidative polymerization method in which 3,4-ethylenedioxythiophene (EDOT), an oxidizing agent and a dopant are dissolved in an organic solvent and reacted on an anodic oxide film to form a conductive polymer layer (Patent Document) 2) has been proposed.
 また、等価直列抵抗(以下、ESRと略す)を低減させた電解コンデンサの製造方法として、コンデンサ素子を、ドーピング剤を含む溶液に浸漬した後、乾燥させ、酸化重合により導電性ポリマーとなるモノマーを滴下し、該コンデンサ素子を酸化剤の水溶液に含浸することを順に経ることでコンデンサ素子内に固体電解質層を形成する方法(特許文献3)や、電気伝導度の高いドーパント剤を含んだ導電性ポリマーと電解液とを含浸した電解コンデンサ(特許文献4)が提案されている。 In addition, as a method of manufacturing an electrolytic capacitor with reduced equivalent series resistance (hereinafter abbreviated as ESR), a capacitor element is immersed in a solution containing a doping agent and then dried, and a monomer that becomes a conductive polymer by oxidation polymerization is used. A method of forming a solid electrolyte layer in the capacitor element by sequentially dropping and impregnating the capacitor element with an aqueous solution of an oxidant (Patent Document 3), or a conductivity containing a dopant agent having high electrical conductivity An electrolytic capacitor (Patent Document 4) impregnated with a polymer and an electrolytic solution has been proposed.
 また、導電性ポリマーの溶液を調製し、その溶液を陽極酸化被膜に含浸させ、乾燥させて、塗膜化することで固体電解質層を形成する方法(特許文献5)が提案されている。 Also proposed is a method of forming a solid electrolyte layer by preparing a solution of a conductive polymer, impregnating the solution into an anodic oxide coating, drying and forming a coating (Patent Document 5).
 また、導電性ポリマーの溶液に、塩基性化合物を添加することで、耐熱性を向上させる方法が(特許文献6)が提案されている。 Also, a method for improving the heat resistance by adding a basic compound to a conductive polymer solution has been proposed (Patent Document 6).
特開平7-196791号公報Japanese Unexamined Patent Publication No. 7-196791 特開平02-15611号公報Japanese Patent Laid-Open No. 02-15611 特開2000-223364号公報JP 2000-223364 A 特開平11-186110号公報Japanese Patent Laid-Open No. 11-186110 特開平09-22833号公報JP 09-22833 A 特開2010-116441号公報JP 2010-116441 A
 ところで、導電性ポリマーは、コンデンサなどの様々な用途に用いられる。例えばコンデンサに用いる場合、通常、金属電極上に導電性ポリマーを塗布し、所定の温度に加熱処理して導電性ポリマー層(電解質層)を形成する。
 しかしながら、特許文献1に記載の導電性ポリマーは、優れた導電性を有するものの、熱安定性を満足するものではなかった。そのため、製造過程に加熱処理工程を含むコンデンサなどの用途に用いると、十分な導電性を発揮できなかった。
By the way, the conductive polymer is used for various applications such as a capacitor. For example, when used for a capacitor, a conductive polymer is usually applied on a metal electrode and heat-treated at a predetermined temperature to form a conductive polymer layer (electrolyte layer).
However, although the conductive polymer described in Patent Document 1 has excellent conductivity, it does not satisfy the thermal stability. Therefore, when used in applications such as capacitors that include a heat treatment step in the manufacturing process, sufficient conductivity cannot be exhibited.
 また、固体電解質層については、陽極酸化被膜上で固体電解質を重合させる前記方法では、陽極酸化被膜の微細な凹凸部分まで導電性ポリマー層が充分に形成されにくく、さらに、ドーパント剤を含んだ固体電解質層は電解液中において固体電解質層からドーパント剤が抜け出す(脱ドープ)現象が発生しやすいため、固体電解質層の電気伝導度が低下し、ESRが次第に高くなるという問題を有している。
 一方、ドーパントとなる酸性基を分子内に有する導電性ポリマー溶液を予め調製し、塗膜化する方法では、陽極酸化被膜上で重合する方法に比べ簡便な製造方法であるが、導電性ポリマーの性能が十分とは言えず、同様な問題を有している。
 また、導電性ポリマーに塩基性化合物を添加する方法も、コンデンサ等の用途に用いるには、耐熱性が十分とは言えず、同様な問題を有している。
As for the solid electrolyte layer, in the above-described method of polymerizing the solid electrolyte on the anodic oxide coating, the conductive polymer layer is not easily formed up to the fine irregularities of the anodic oxide coating, and further a solid containing a dopant agent. The electrolyte layer has a problem that since the dopant agent easily escapes (de-dope) from the solid electrolyte layer in the electrolytic solution, the electrical conductivity of the solid electrolyte layer decreases and the ESR gradually increases.
On the other hand, the method of preparing a conductive polymer solution having an acidic group as a dopant in the molecule and forming a coating film in advance is a simpler manufacturing method than the method of polymerizing on an anodic oxide coating, The performance is not sufficient and has similar problems.
Also, the method of adding a basic compound to a conductive polymer is not sufficient in heat resistance for use in applications such as capacitors, and has the same problem.
 本発明は上記事情に鑑みてなされたもので、高い導電性を有し、かつ熱安定性に優れた導電性ポリマーの前駆体として好適な導電性ポリマー前駆体、及び高い導電性を有し、かつ熱安定性に優れた導電性ポリマー、及びこの導電性ポリマーを含む導電性組成物を提供することを目的とする。また、本発明は耐熱性に優れ、かつ、等価直列抵抗が低い固体電解コンデンサを提供することも目的とする。 The present invention has been made in view of the above circumstances, and has a high conductivity and a conductive polymer precursor suitable as a precursor of a conductive polymer excellent in thermal stability, and a high conductivity, An object of the present invention is to provide a conductive polymer excellent in thermal stability and a conductive composition containing the conductive polymer. Another object of the present invention is to provide a solid electrolytic capacitor having excellent heat resistance and low equivalent series resistance.
 本発明者らは鋭意検討した結果、酸性基を導入した導電性ポリマーを加熱すると、酸性基が脱離することが導電性低下の原因であることを突き止めた。
 そこで、特定の炭素数のアルキレン基を介して酸性基を導入した繰返し単位(導電性ポリマー前駆体ともいう)を有する可溶性アニリン系導電性ポリマーとすることで、導電性を維持しつつ、導電性ポリマーの熱安定性を向上できることを見出し、本発明を完成するに至った。
As a result of intensive studies, the present inventors have found that when an electrically conductive polymer into which an acidic group has been introduced is heated, the acidic group is eliminated, which causes a decrease in electrical conductivity.
Therefore, by using a soluble aniline-based conductive polymer having a repeating unit (also referred to as a conductive polymer precursor) in which an acidic group is introduced via an alkylene group having a specific carbon number, the conductivity is maintained while maintaining the conductivity. It has been found that the thermal stability of the polymer can be improved, and the present invention has been completed.
 さらに、前記繰返し単位を有する可溶性のアニリン系導電性ポリマーを用いることで、耐熱性に優れ、かつ、等価直列抵抗が低い固体電解コンデンサが得られることを見出した。
 また、本発明の可溶性アニリン系導電性ポリマーは、水、有機溶媒及び含水有機溶媒に対する溶解性が高く、また製膜後のドーピング工程が必要ないためコンデンサの製造方法が簡素化される。
Furthermore, it has been found that a solid electrolytic capacitor having excellent heat resistance and low equivalent series resistance can be obtained by using a soluble aniline-based conductive polymer having the repeating unit.
In addition, the soluble aniline-based conductive polymer of the present invention has high solubility in water, an organic solvent, and a water-containing organic solvent, and does not require a doping step after film formation, thereby simplifying the method for manufacturing a capacitor.
 本発明は、以下の態様を有する。 The present invention has the following aspects.
 本発明の第1の態様は、下記一般式(1)で表される、導電性ポリマー前駆体である。 The first aspect of the present invention is a conductive polymer precursor represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R~Rはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基、及びハロゲン原子よりなる群から選ばれ、Aは酸性基又はその塩であり、nは1~20の整数である。 In formula (1), R 1 to R 4 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group Or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1-20.
 本発明の第2の態様は、前記Rが水素原子であり、R、R、Rのうち少なくとも1つは炭素数1~24の直鎖又は分岐のアルコキシ基である、前記第1の態様に記載の導電性ポリマー前駆体である。 In a second aspect of the present invention, the R 2 is a hydrogen atom, and at least one of R 1 , R 3 , and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms. It is a conductive polymer precursor as described in 1 aspect.
 本発明の第3の態様は、前記Rが水素原子であり、R、R、Rのうち1つが炭素数1~24の直鎖又は分岐のアルコキシ基であり、残りが水素原子である、前記第2の態様に記載の導電性ポリマー前駆体である。 In a third aspect of the present invention, R 2 is a hydrogen atom, one of R 1 , R 3 , and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms, and the rest is a hydrogen atom The conductive polymer precursor according to the second aspect.
 本発明の第4の態様は、前記第1~3のいずれか1つの態様に記載の導電性ポリマー前駆体を重合させて得られる、導電性ポリマーである。 The fourth aspect of the present invention is a conductive polymer obtained by polymerizing the conductive polymer precursor according to any one of the first to third aspects.
 本発明の第5の態様は、下記一般式(1-A)で表される繰り返し単位を有するアニリン系導電性ポリマー(a)及び溶剤(b)を含む導電性組成物である。 The fifth aspect of the present invention is a conductive composition comprising an aniline conductive polymer (a) having a repeating unit represented by the following general formula (1-A) and a solvent (b).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)中、R、R及びRはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基及びハロゲン原子よりなる群から選ばれ、Aは酸性基又はその塩であり、nは1~20の整数である。 In formula (1), R 1 , R 3 and R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, or a linear or branched alkoxy group having 1 to 24 carbon atoms. , An acidic group or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1 to 20.
 本発明の第6の態様は、R、R、Rのうち少なくとも1つは炭素数1~24の直鎖又は分岐のアルコキシ基である、前記第5の態様に記載の導電性組成物である。 The sixth aspect of the present invention is the conductive composition according to the fifth aspect, wherein at least one of R 1 , R 3 and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms. It is a thing.
 本発明の第7の態様は、R、R、Rのうち1つが炭素数1~24の直鎖又は分岐のアルコキシ基であり、残りが水素原子である、前記第5の態様に記載の導電性組成物である。 A seventh aspect of the present invention is the fifth aspect, wherein one of R 1 , R 3 , and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms, and the remainder is a hydrogen atom. It is an electroconductive composition of description.
 本発明の第8の態様は、さらに、塩基性化合物(c)を含む前記第5~7のいずれか1つの態様に記載の導電性組成物である。 The eighth aspect of the present invention is the conductive composition according to any one of the fifth to seventh aspects, further including a basic compound (c).
 本発明の第9の態様は、前記第4の態様に記載の導電性ポリマーより形成される塗膜を有する導電体である。 9th aspect of this invention is a conductor which has a coating film formed from the conductive polymer as described in the said 4th aspect.
 本発明の第10の態様は、前記第5~7のいずれか1つの態様に記載の導電性組成物より形成される塗膜を有する導電体である。 A tenth aspect of the present invention is a conductor having a coating film formed from the conductive composition according to any one of the fifth to seventh aspects.
 本発明の第11の態様は、前記第8の態様に記載の導電性組成物より形成される塗膜を有する導電体である。 The eleventh aspect of the present invention is a conductor having a coating film formed from the conductive composition according to the eighth aspect.
 本発明の第12の態様は、弁作用金属体上に形成した陽極酸化被膜上に、前記第4の態様に記載の導電性ポリマーを含む固体電解質層を具備する、固体電解コンデンサである。 A twelfth aspect of the present invention is a solid electrolytic capacitor comprising a solid electrolyte layer containing the conductive polymer according to the fourth aspect on an anodized film formed on a valve action metal body.
 本発明の第13の態様は、弁作用金属体上に形成した陽極酸化被膜上に、前記第5~7のいずれか1つの態様に記載の導電性組成物から形成された固体電解層を具備する、固体電解コンデンサである。 A thirteenth aspect of the present invention comprises a solid electrolytic layer formed from the conductive composition according to any one of the fifth to seventh aspects on an anodized film formed on a valve action metal body. It is a solid electrolytic capacitor.
 本発明の第14の態様は、弁作用金属体上に形成した陽極酸化被膜上に、前記第8の態様に記載の導電性組成物から形成された固体電解質層を具備する、固体電解コンデンサである。 A fourteenth aspect of the present invention is a solid electrolytic capacitor comprising a solid electrolyte layer formed from the conductive composition according to the eighth aspect on an anodized film formed on a valve action metal body. is there.
 本発明の第15の態様は、下記一般式(1): The fifteenth aspect of the present invention is the following general formula (1):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (式(1)中、R~Rはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基及びハロゲン原子よりなる群から選ばれ、Aは酸性基又はその塩であり、nは1~20の整数である)で表される化合物の導電性ポリマー前駆体としての使用である。 (In the formula (1), R 1 to R 4 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group. A conductive polymer precursor of a compound selected from the group consisting of a group or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom, wherein A is an acidic group or a salt thereof, and n is an integer of 1 to 20. As a use.
 本発明の第16の態様は、酸化剤存在下で、前記第1~3のいずれか1つの態様に記載の導電性ポリマー前駆体を重合させ、下記一般式(1-A)で表される繰り返し単位を有するアニリン系導電性ポリマー(a)を製造する方法である。 In a sixteenth aspect of the present invention, the conductive polymer precursor according to any one of the first to third aspects is polymerized in the presence of an oxidizing agent, and is represented by the following general formula (1-A). This is a method for producing an aniline-based conductive polymer (a) having a repeating unit.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1-A)中、R、R及びRはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基及びハロゲン原子よりなる群から選ばれ、Aは酸性基又はその塩であり、nは1~20の整数である。 In formula (1-A), R 1 , R 3 and R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkyl group having 1 to 24 carbon atoms. It is selected from the group consisting of an alkoxy group, an acidic group or a salt thereof, a hydroxyl group, a nitro group and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1-20.
 式(1)及び式(1-A)におけるRは、水素原子、炭素数1~10の直鎖又は分岐のアルキル基であることが好ましく、水素原子、炭素数1~3の直鎖又は分岐のアルキル基であることがさらに好ましく、水素原子であることが特に好ましい。 R 1 in the formula (1) and the formula (1-A) is preferably a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and a hydrogen atom, a linear chain having 1 to 3 carbon atoms or A branched alkyl group is more preferable, and a hydrogen atom is particularly preferable.
 式(1)及び式(1-A)におけるRは、水素原子、炭素数1~10の直鎖又は分岐のアルキル基であることが好ましく、水素原子、炭素数1~3の直鎖又は分岐のアルキル基であることがさらに好ましく、水素原子であることが特に好ましい。 R 2 in Formula (1) and Formula (1-A) is preferably a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a hydrogen atom, a linear chain having 1 to 3 carbon atoms or A branched alkyl group is more preferable, and a hydrogen atom is particularly preferable.
 式(1)及び式(1-A)におけるRは、水素原子、炭素数1~10の直鎖又は分岐のアルキル基であることが好ましく、水素原子、炭素数1~3の直鎖又は分岐のアルキル基であることがさらに好ましく、水素原子であることが特に好ましい。 R 3 in formula (1) and formula (1-A) is preferably a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and a hydrogen atom, a linear chain having 1 to 3 carbon atoms or A branched alkyl group is more preferable, and a hydrogen atom is particularly preferable.
 式(1)及び式(1-A)におけるRは、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~10の直鎖又は分岐のアルコキシ基であることが好ましく、炭素数1~10の直鎖又は分岐のアルコキシ基であることがさらに好ましく、炭素数1~5の直鎖又は分岐のアルコキシ基であることが特に好ましい。 R 4 in Formula (1) and Formula (1-A) is a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, or a linear or branched alkoxy group having 1 to 10 carbon atoms. A linear or branched alkoxy group having 1 to 10 carbon atoms is more preferable, and a linear or branched alkoxy group having 1 to 5 carbon atoms is particularly preferable.
 式(1)及び式(1-A)におけるAは酸性基又はその塩であり、カルボキシル基、スルホン酸基又はその塩であることが好ましく、スルホン酸基又はその塩であることがさらに好ましい。 In Formula (1) and Formula (1-A), A is an acidic group or a salt thereof, preferably a carboxyl group, a sulfonic acid group or a salt thereof, and more preferably a sulfonic acid group or a salt thereof.
 式(1)及び式(1-A)におけるnとしては、1~10が好ましく、1~6がより好ましく、1~3がさらに好ましく、1又は2が特に好ましい。 N in the formula (1) and the formula (1-A) is preferably 1 to 10, more preferably 1 to 6, further preferably 1 to 3, and particularly preferably 1 or 2.
 本発明の導電性ポリマー前駆体は、高い導電性を有し、かつ熱安定性に優れた導電性ポリマーの前駆体として好適である。
 また、本発明の導電性ポリマーは、高い導電性を有し、かつ熱安定性に優れる。
 また、本発明の導電性ポリマー、導電性組成物を用いることによって、等価直列抵抗が低く、耐熱性に優れた高導電率の固体電解層を備えた固体電解コンデンサを製造することができる。
The conductive polymer precursor of the present invention is suitable as a precursor of a conductive polymer having high conductivity and excellent thermal stability.
Moreover, the conductive polymer of this invention has high electroconductivity, and is excellent in thermal stability.
In addition, by using the conductive polymer and conductive composition of the present invention, a solid electrolytic capacitor having a high conductivity solid electrolytic layer with low equivalent series resistance and excellent heat resistance can be produced.
実施例2及び比較例1について、X軸に加熱温度(℃)、Y軸に試験片の表面抵抗値(Ω/□)をプロットしたグラフである。In Example 2 and Comparative Example 1, the heating temperature (° C.) is plotted on the X axis and the surface resistance value (Ω / □) of the test piece is plotted on the Y axis. 図2は、本発明の固体電解コンデンサの一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of the solid electrolytic capacitor of the present invention.
 以下、本発明を詳細に説明する。
[導電性ポリマー前駆体]
 本発明の導電性ポリマー前駆体は、下記一般式(1)で表される化合物(以下、「化合物(1)」という。)である。
 なお、本発明において「導電性」とは、膜厚約0.1μmの塗膜が、1014Ω/□以下の表面抵抗値を有することである。
Hereinafter, the present invention will be described in detail.
[Conductive polymer precursor]
The conductive polymer precursor of the present invention is a compound represented by the following general formula (1) (hereinafter referred to as “compound (1)”).
In the present invention, “conductive” means that a coating film having a film thickness of about 0.1 μm has a surface resistance value of 10 14 Ω / □ or less.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)中、R~Rはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基、及びハロゲン原子よりなる群から選ばれる。
 アルキル基としては、例えばメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基 、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基などが挙げられる。
In formula (1), R 1 to R 4 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group Or it is chosen from the group which consists of the salt, a hydroxyl group, a nitro group, and a halogen atom.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, t-butyl group, pentyl group, hexyl group and the like.
 アルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、ペントキシ基、ヘコキシ基などが挙げられる。 Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, a sec-butoxy group, a t-butoxy group, a pentoxy group, and a hexoxy group.
 酸性基としては、スルホン酸基、カルボキシル基などが挙げられる。
 これらは、それぞれ酸の状態(-SOH、-COOH)で含まれていてもよく、イオンの状態で含まれていてもよい。
これらの中でも、特に水に対する親和性を高めることができ、導電性ポリマーとなったときに、さらに高い導電性を発現できる観点で、スルホン酸基又はカルボキシル基が好ましく、スルホン酸基がより好ましい。
 酸性基の塩としては、酸性基のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、置換アンモニウム塩の少なくとも1種を示す。
Examples of acidic groups include sulfonic acid groups and carboxyl groups.
Each of these may be contained in an acid state (—SO 3 H, —COOH) or may be contained in an ionic state.
Among these, a sulfonic acid group or a carboxyl group is preferable, and a sulfonic acid group is more preferable from the viewpoint that the affinity for water can be increased, and when a conductive polymer is obtained, higher conductivity can be expressed.
As the salt of an acidic group, at least one of an alkali metal salt, an alkaline earth metal salt, an ammonium salt, and a substituted ammonium salt of an acidic group is shown.
 アルカリ金属としては、例えばリチウム、ナトリウム、カリウムなどが挙げられる。
 アルカリ土類金属としては、例えばマグネシウム、カルシウムなどが挙げられる。
 置換アンモニウムとしては、例えば脂式アンモニウム類、環式飽和アンモニウム類、環式不飽和アンモニウム類などが挙げられる。
 前記脂式アンモニウム類としては、下式一般式(III)で表されるアンモニウムが挙げられる。
Examples of the alkali metal include lithium, sodium, and potassium.
Examples of the alkaline earth metal include magnesium and calcium.
Examples of substituted ammonium include alicyclic ammoniums, cyclic saturated ammoniums, and cyclic unsaturated ammoniums.
Examples of the aliphatic ammoniums include ammoniums represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(III)中、R~Rはそれぞれ独立して、水素原子、又は炭素数1~4のアルキル基である。
 このような脂式アンモニウム類としては、具体的にメチルアンモニウム、ジメチルアンモニウム、トリメチルアンモニウム、エチルアンモニウム、ジエチルアンモニウム、トリエチルアンモニウム、メチルエチルアンモニウム、ジエチルメチルアンモニウム、ジメチルエチルアンモニウム、プロピルアンモニウム、ジプロピルアンモニウム、イソプロピルアンモニウム、ジイソプロピルアンモニウム、ブチルアンモニウム、ジブチルアンモニウム、メチルプロピルアンモニウム、エチルプロピルアンモニウム、メチルイソプロピルアンモニウム、エチルイソプロピルアンモニウム、メチルブチルアンモニウム、エチルブチルアンモニウム、テトラメチルアンモニウム、テトラメチロールアンモニウム、テトラエチルアンモニウム、テトラn-ブチルアンモニウム、テトラsec-ブチルアンモニウム、テトラt-ブチルアンモニウムなどを例示することができる。これらの中でも、溶解性の観点から、R~Rのうち1つが水素原子、他の3つが炭素数1~4のアルキル基の場合が最も好ましく、次いでR~Rのうち2つが水素原子、他の2つが炭素数1~4のアルキル基の場合が好ましい。
In formula (III), R 5 to R 8 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
Specific examples of such fatty ammoniums include methylammonium, dimethylammonium, trimethylammonium, ethylammonium, diethylammonium, triethylammonium, methylethylammonium, diethylmethylammonium, dimethylethylammonium, propylammonium, dipropylammonium, Isopropyl ammonium, diisopropyl ammonium, butyl ammonium, dibutyl ammonium, methyl propyl ammonium, ethyl propyl ammonium, methyl isopropyl ammonium, ethyl isopropyl ammonium, methyl butyl ammonium, ethyl butyl ammonium, tetramethyl ammonium, tetramethylol ammonium, tetraethyl ammonium, tetra n- Chill ammonium, tetra sec- butyl ammonium, and the like can be exemplified tetra t- butyl ammonium. Among these, from the viewpoint of solubility, it is most preferable that one of R 5 to R 8 is a hydrogen atom, and the other three are alkyl groups having 1 to 4 carbon atoms, and then two of R 5 to R 8 are A hydrogen atom and the other two are preferably alkyl groups having 1 to 4 carbon atoms.
 環式飽和アンモニウム類としては、例えばピペリジニウム、ピロリジニウム、モルホリニウム、ピペラジニウム及びこれらの骨格を有する誘導体などが挙げられる。
 環式不飽和アンモニウム類としては、例えばピリジニウム、α-ピコリニウム、β-ピコリニウム、γ-ピコリニウム、キノリニウム、イソキノリニウム、ピロリニウム及びこれらの骨格を有する誘導体などが挙げられる。
Examples of the cyclic saturated ammoniums include piperidinium, pyrrolidinium, morpholinium, piperazinium, and derivatives having these skeletons.
Examples of the cyclic unsaturated ammonium include pyridinium, α-picolinium, β-picolinium, γ-picolinium, quinolinium, isoquinolinium, pyrrolinium, and derivatives having these skeletons.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 また、式(1)中、Aは酸性基又はその塩である。
 ここで、「酸性基」とは、スルホン酸基、カルボキシル基を意味する。
 酸性基及び酸性基の塩としては、R~Rの説明において先に例示した酸性基及び酸性基の塩が挙げられる。中でも、特に水に対する親和性を高めることができ、導電性ポリマーとなったときに、さらに高い導電性を発現できる観点で、Aとしてはスルホン酸基又はその塩が好ましい。
Moreover, in Formula (1), A is an acidic group or its salt.
Here, “acidic group” means a sulfonic acid group or a carboxyl group.
Examples of the acidic group and the acidic group salt include the acidic group and acidic group salts exemplified above in the description of R 1 to R 4 . Among these, A is preferably a sulfonic acid group or a salt thereof from the viewpoint that the affinity for water can be increased, and when a conductive polymer is obtained, higher conductivity can be expressed.
 また、式(1)中、nは1~20の整数である。nが1以上であれば、熱安定性に優れた導電性ポリマーが得られる。 In the formula (1), n is an integer of 1 to 20. When n is 1 or more, a conductive polymer excellent in thermal stability can be obtained.
 nとしては、1~10が好ましく、1~6がより好ましく、1~3がさらに好ましく、1又は2が特に好ましい。 N is preferably 1 to 10, more preferably 1 to 6, further preferably 1 to 3, and particularly preferably 1 or 2.
 化合物(1)としては、導電性ポリマーの熱安定性が向上し、かつ化合物(1)の製造が容易である観点から、Rが水素原子であり、R、R、Rのうち少なくとも1つは炭素数1~24の直鎖又は分岐のアルコキシ基であることが好ましく、その中でも特に、Rが水素原子であり、R、R、Rのうち1つが炭素数1~24の直鎖又は分岐のアルコキシ基であり、残りが水素原子であることが好ましい。 As the compound (1), from the viewpoint that the thermal stability of the conductive polymer is improved and the production of the compound (1) is easy, R 2 is a hydrogen atom, and R 1 , R 3 , and R 4 At least one is preferably a linear or branched alkoxy group having 1 to 24 carbon atoms. Among them, R 2 is a hydrogen atom, and one of R 1 , R 3 , and R 4 is 1 carbon atom. It is preferably a linear or branched alkoxy group of ˜24, with the remainder being a hydrogen atom.
 化合物(1)は、例えば以下に示す(a)工程及び(b)工程により製造できる。
 (a)工程:下記一般式(2)で表される化合物(以下、「化合物(2)」という。)を、スルホン化又はカルボキシル化して、下記一般式(3)で表される化合物(以下、「化合物(3)」という。)を得る工程。
 (b)工程:化合物(3)を還元して、化合物(1)を得る工程。
Compound (1) can be produced, for example, by the following steps (a) and (b).
Step (a): A compound represented by the following general formula (2) (hereinafter referred to as “compound (2)”) is sulfonated or carboxylated to give a compound represented by the following general formula (3) (hereinafter referred to as “compound (2)”). , “Compound (3)”).
(B) Step: A step of obtaining compound (1) by reducing compound (3).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(3)中、R~R、A及びnは、一般式(1)中のR~R、A及びnと同じである。また、一般式(2)中のDは脱離性を有する置換基であり、(a)工程における反応により、Aに変換される基であればよいが、具体的には、例えば、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子、メシル基、トシル基などが挙げられる。 In the general formula (3), R 1 ~ R 4, A and n are the same as the general formula (1) of R 1 ~ R 4, A and n. Further, D in the general formula (2) is a detachable substituent and may be any group that can be converted to A by the reaction in the step (a). Specifically, for example, a chlorine atom , Halogen atoms such as bromine atom and iodine atom, mesyl group, tosyl group and the like.
 以下、各工程について詳しく説明する。なお、以下に示す方法は、化合物(1)のうち、Aがスルホン酸基のアルカリ金属塩、アンモニウム塩、又は置換アンモニウム塩である化合物(以下、「化合物(1-1)」という。)、又はAがスルホン酸基である化合物(以下、「化合物(1-2)」という。)を製造する方法である。
 また、以下に示す反応式中、Mはアルカリ金属、アンモニウム、又は置換アンモニウムである。
Hereinafter, each step will be described in detail. In the method shown below, among compounds (1), a compound in which A is an alkali metal salt, ammonium salt or substituted ammonium salt of a sulfonic acid group (hereinafter referred to as “compound (1-1)”), Alternatively, it is a method for producing a compound in which A is a sulfonic acid group (hereinafter referred to as “compound (1-2)”).
In the reaction formulas shown below, M is an alkali metal, ammonium, or substituted ammonium.
<化合物(1-1)の製造>
((a)工程)
 (a)工程は、以下に示す(a-1)工程を有する。
 (a-1)工程:溶媒中にて化合物(2)とスルホン化剤(MSO)とを反応させて、下記一般式(3-1)で表される化合物(以下、「化合物(3-1)」という。)を得る工程。
<Production of Compound (1-1)>
(Step (a))
The step (a) includes the following step (a-1).
Step (a-1): The compound (2) and the sulfonating agent (M 2 SO 3 ) are reacted in a solvent to give a compound represented by the following general formula (3-1) (hereinafter referred to as “compound ( 3-1) ").
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 化合物(2)とスルホン化剤との反応割合(mol比)は、1:0.5~1:5が好ましい。スルホン化剤が少なすぎると、反応が完結しにくくなる。スルホン化剤が多すぎると、未反応のスルホン化剤を除去する必要があり、手間や製造コストがかかる。
 反応温度は、0℃以上が好ましく、反応時間は、0.5~12時間が好ましい。
The reaction ratio (mol ratio) between the compound (2) and the sulfonating agent is preferably 1: 0.5 to 1: 5. When there are too few sulfonating agents, it will become difficult to complete reaction. When there are too many sulfonating agents, it is necessary to remove the unreacted sulfonating agent, which requires labor and manufacturing costs.
The reaction temperature is preferably 0 ° C. or higher, and the reaction time is preferably 0.5 to 12 hours.
 スルホン化剤としては、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸リチウム、亜硫酸アンモニウム、亜硫酸水素ナトリウム、亜硫酸水素カリウムなどが挙げられる。
 溶媒としては、水、メタノール、エタノール、プロパノール等のアルコール類;テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、ジイソプロピルエーテル等のエーテル類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類などが挙げられる。これら溶媒は1種単独で用いてもよいし、2種以上を混合して用いてもよい。
Examples of the sulfonating agent include sodium sulfite, potassium sulfite, lithium sulfite, ammonium sulfite, sodium hydrogen sulfite, and potassium hydrogen sulfite.
Examples of the solvent include alcohols such as water, methanol, ethanol and propanol; ethers such as tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and diisopropyl ether; amides such as dimethylformamide and dimethylacetamide. It is done. These solvents may be used alone or in combination of two or more.
((b)工程)
 (b)工程では、化合物(3-1)を還元して、化合物(1-1)を得る。
((B) Process)
In the step (b), the compound (3-1) is reduced to obtain the compound (1-1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(b)工程における反応条件は、ニトロ基に対する一般的な還元条件であれば、特に限定されない。具体的には、パラジウムカーボン、ラネーニッケルなどの還元剤を用いた接触水素化や、酸性条件下において亜鉛粉やスズ等の還元剤を用いた還元などの方法が挙げられる。 The reaction conditions in the step (b) are not particularly limited as long as they are general reduction conditions for a nitro group. Specific examples include catalytic hydrogenation using a reducing agent such as palladium carbon and Raney nickel, and reduction using a reducing agent such as zinc powder and tin under acidic conditions.
<化合物(1-2)の製造>
((a)工程)
 (a)工程は、以下に示す(a-1)工程及び(a-2)工程を有する。
 (a-1)工程:溶媒中にて化合物(2)とスルホン化剤とを反応させて、化合物(3-1)を得る工程。
 (a-2)工程:化合物(3-1)をプロトン化して、下記一般式(3-2)で表される化合物(以下、「化合物(3-2)」という。)を得る工程。
<Production of Compound (1-2)>
(Step (a))
The step (a) has the following steps (a-1) and (a-2).
Step (a-1): A step of obtaining a compound (3-1) by reacting the compound (2) with a sulfonating agent in a solvent.
Step (a-2): A step of protonating the compound (3-1) to obtain a compound represented by the following general formula (3-2) (hereinafter referred to as “compound (3-2)”).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(a-1)工程:
 (a-1)工程は、化合物(1-1)の製造工程に含まれる(a-1)工程と同じである。
(A-1) Step:
The step (a-1) is the same as the step (a-1) included in the production step of the compound (1-1).
(a-2)工程:
 (a-2)工程は、化合物(3-1)中のスルホン酸基の塩をスルホン酸基にプロトン化する工程であり、(a-2)工程におけるプロトン化条件は、一般的なプロトン化条件であれば特に限定されないが、化合物(3-1)とプロトン化に用いる試薬(プロトン化剤)との反応割合(mol比)は、1:0.5~1:10が好ましい。プロトン化剤が少なすぎると、反応が完結しにくくなる。プロトン化剤が多すぎると、未反応のプロトン化剤を除去する必要があり、手間や製造コストがかかる。
 反応温度は、0℃以上が好ましく、反応時間は、0.5~12時間が好ましい。
(A-2) Process:
The step (a-2) is a step of protonating the salt of the sulfonic acid group in the compound (3-1) to a sulfonic acid group, and the protonation conditions in the step (a-2) are general protonation conditions. The conditions are not particularly limited, but the reaction ratio (mol ratio) between the compound (3-1) and the reagent used for protonation (protonating agent) is preferably 1: 0.5 to 1:10. When there are too few protonating agents, it becomes difficult to complete the reaction. When there are too many protonating agents, it is necessary to remove unreacted protonating agents, which requires labor and manufacturing costs.
The reaction temperature is preferably 0 ° C. or higher, and the reaction time is preferably 0.5 to 12 hours.
 プロトン化剤としては、硫酸、塩酸、硝酸、りん酸等の無機酸;メタンスルホン酸、トリフルオロメタンスルホン酸等の有機酸などが挙げられる。 Protonating agents include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid; organic acids such as methanesulfonic acid and trifluoromethanesulfonic acid.
((b)工程)
 (b)工程では、化合物(3-2)を還元して、化合物(1-2)を得る。
((B) Process)
In the step (b), the compound (3-2) is reduced to obtain the compound (1-2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(b)工程は、化合物(1-1)の製造工程に含まれる(b)工程と同じである。 The step (b) is the same as the step (b) included in the production step of the compound (1-1).
 なお、(a)工程で用いる化合物(2)としては、市販品を用いてもよし、合成品を用いてもよい。化合物(2)として合成品を用いる場合、化合物(2)は例えば以下に示す(c)工程を経て得られる。
 (c)工程:下記一般式(4)で表される化合物(以下、「化合物(4)」という。)を、ハロゲン化、メシル化、又はトシル化などして、化合物(2)を得る工程。
In addition, as the compound (2) used in the step (a), a commercially available product or a synthetic product may be used. When a synthetic product is used as the compound (2), the compound (2) is obtained through, for example, the following step (c).
(C) Step: A step of obtaining a compound (2) by subjecting a compound represented by the following general formula (4) (hereinafter referred to as “compound (4)”) to halogenation, mesylation, or tosylation. .
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 (c)工程は、化合物(4)中の水酸基(アルコール)を置換基(D)に置換する工程であり、(c)工程における反応条件は、アルコールに対する一般的なハロゲン化条件、メシル化条件、又はトシル化条件であれば、特に限定されない。
 また、(c)工程で用いる試薬としては、アルコールをハロゲン化する場合は、塩化チオニル、塩化スルフリル、三塩化リン、五塩化リン、三臭化リン、五臭化リン、塩化水素、臭化水素、ヨウ化水素、N-クロロコハク酸イミド、N-ブロモコハク酸イミドなどが挙げられる。また、アルコールをメシル化する場合は、塩化メタンスルホニルなどが挙げられる。また、アルコールをトシル化する場合は、塩化パラトルエンスルホニルなどが挙げられる。
Step (c) is a step of substituting the hydroxyl group (alcohol) in compound (4) with a substituent (D), and the reaction conditions in step (c) are general halogenation conditions and mesylation conditions for alcohol. Or any tosylation conditions.
In addition, as a reagent used in the step (c), when an alcohol is halogenated, thionyl chloride, sulfuryl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus tribromide, phosphorus pentabromide, hydrogen chloride, hydrogen bromide , Hydrogen iodide, N-chlorosuccinimide, N-bromosuccinimide and the like. Moreover, when mesylating alcohol, methanesulfonyl chloride etc. are mentioned. Moreover, when alcohol is tosylated, para-toluenesulfonyl chloride etc. are mentioned.
 なお、化合物(2)のうち、RがR4’(アルコキシ基)であり、R~Rが水素原子であり、かつDがD(ハロゲン原子)である化合物(以下、「化合物(2-1)」という。)は、例えば下記一般式(5)で表される化合物(以下、「化合物(5)」という。)をハロアルキル化することでも得られる。 Of the compounds (2), R 4 is R 4 ′ (alkoxy group), R 1 to R 3 are hydrogen atoms, and D is D 2 (halogen atom) (hereinafter “compound”) (2-1) ") can also be obtained by, for example, haloalkylating a compound represented by the following general formula (5) (hereinafter referred to as" compound (5) ").
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 化合物(5)とハロアルキル化に用いる試薬(ハロアルキル化剤)との反応割合(mol比)は、1:0.5~1:10が好ましい。ハロアルキル化剤が少なすぎると、反応が完結しにくくなる。ハロアルキル化剤が多すぎると、副生物が生成しやすくなり、反応後に副生物を除去する必要があり、手間や製造コストがかかる。
 反応温度は、-10℃以上が好ましく、反応時間は、0.5~24時間が好ましい。
The reaction ratio (mol ratio) between the compound (5) and the reagent used for the haloalkylation (haloalkylating agent) is preferably 1: 0.5 to 1:10. When there are too few haloalkylating agents, it will become difficult to complete reaction. When there are too many haloalkylating agents, by-products are likely to be generated, and it is necessary to remove the by-products after the reaction, which requires labor and manufacturing costs.
The reaction temperature is preferably −10 ° C. or higher, and the reaction time is preferably 0.5 to 24 hours.
 ハロアルキル化剤としては、例えばメトキシメチルクロリド、メトキシエチルクロリド、メトキシプロピルクロリド、塩化水素とホルマリンとの混合物などが挙げられる。 Examples of the haloalkylating agent include methoxymethyl chloride, methoxyethyl chloride, methoxypropyl chloride, a mixture of hydrogen chloride and formalin.
 このようにして得られる本発明の導電性ポリマー前駆体は、酸性基あるいはその塩(化合物(1)中のAに相当)が特定の炭素数のアルキレン基を介して芳香環に結合している。 In the conductive polymer precursor of the present invention thus obtained, an acidic group or a salt thereof (corresponding to A in the compound (1)) is bonded to an aromatic ring via an alkylene group having a specific carbon number. .
 ところで、酸性基は電子吸引性を有するため、酸性基と結合する不飽和炭素原子上の電子密度は低下し、その結果、加熱すると酸性基と炭素原子の結合が切断されやすくなる。
 よって、上述した2-アミノアニソール-4-スルホン酸のように、酸性基が芳香環に直接結合している化合物を重合して得られる導電性ポリマーの場合、加熱処理を行うと、酸性基と炭素原子の結合が切断されて酸性基が脱離し、導電性が低下すると考えられる。
By the way, since an acidic group has electron withdrawing property, the electron density on the unsaturated carbon atom bonded to the acidic group is lowered. As a result, when heated, the bond between the acidic group and the carbon atom is easily broken.
Therefore, in the case of a conductive polymer obtained by polymerizing a compound in which an acidic group is directly bonded to an aromatic ring, such as 2-aminoanisole-4-sulfonic acid, the acidic group and It is considered that the bond of the carbon atom is broken, the acidic group is eliminated, and the conductivity is lowered.
 しかしながら、本発明の導電性ポリマー前駆体であれば、上述したように酸性基あるいはその塩がアルキレン基を介して芳香環に結合している。そのため、アルキレン基と結合している芳香環上の炭素原子は、酸性基が芳香環に直接結合している場合と比べて電子吸引性の影響を受けにくく、電子密度の低下は軽減されると考えられる。従って、本発明の導電性ポリマー前駆体を用いた導電性ポリマーは、加熱処理しても酸性基が脱離しにくく、導電性を維持できる。特に、上記一般式(1)中、Rが水素原子であり、R、R、Rのうち少なくとも1つがアルコキシ基である導電性ポリマー前駆体、より好ましくはRが水素原子であり、R、R、Rのうち1つがアルコキシ基であり、残りが水素原子である導電性ポリマー前駆体であれば、より高い導電性を発現できる導電性ポリマーが得られる。
 よって、本発明の導電性ポリマー前駆体は、高い導電性を有し、かつ熱安定性に優れた導電性ポリマーの前駆体(原料)として好適である。
However, in the case of the conductive polymer precursor of the present invention, as described above, an acidic group or a salt thereof is bonded to an aromatic ring via an alkylene group. Therefore, the carbon atom on the aromatic ring bonded to the alkylene group is less affected by electron withdrawing than the case where the acidic group is directly bonded to the aromatic ring, and the decrease in electron density is reduced. Conceivable. Therefore, the conductive polymer using the conductive polymer precursor of the present invention can maintain the conductivity because the acidic group is not easily detached even by heat treatment. In particular, in the general formula (1), R 2 is a hydrogen atom, and at least one of R 1 , R 3 and R 4 is an alkoxy group, more preferably R 2 is a hydrogen atom. If a conductive polymer precursor in which one of R 1 , R 3 , and R 4 is an alkoxy group and the rest is a hydrogen atom, a conductive polymer that can exhibit higher conductivity can be obtained.
Therefore, the conductive polymer precursor of the present invention is suitable as a precursor (raw material) of a conductive polymer having high conductivity and excellent thermal stability.
[導電性ポリマー(アニリン系導電性ポリマー(a))]
 本発明の導電性ポリマー(アニリン系導電性ポリマー(a)ともいう)は、本発明の導電性ポリマー前駆体を含むアニリン系単量体成分を重合させて得られ、下記一般式(1-A)で表される繰り返し単位を有する。
[Conductive polymer (aniline-based conductive polymer (a))]
The conductive polymer of the present invention (also referred to as aniline-based conductive polymer (a)) is obtained by polymerizing an aniline-based monomer component containing the conductive polymer precursor of the present invention, and has the following general formula (1-A ).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(1-A)中、R、R及びRはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基、及びハロゲン原子よりなる群から選ばれ、Aは酸性基又はその塩であり、nは1~20の整数である。
 特に、導電性や可溶性の観点から、nは、1~10が好ましく、1~5がより好ましく、1~3が特に好ましい。
 これは、酸性基と芳香環の間に、スペーサーを入れることにより、加熱による酸性基の脱離を抑制することができるためと考えられる。
In formula (1-A), R 1 , R 3 and R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkyl group having 1 to 24 carbon atoms. It is selected from the group consisting of an alkoxy group, an acidic group or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1-20.
In particular, from the viewpoint of conductivity and solubility, n is preferably 1 to 10, more preferably 1 to 5, and particularly preferably 1 to 3.
This is considered to be because the elimination of the acidic group due to heating can be suppressed by inserting a spacer between the acidic group and the aromatic ring.
 アニリン系導電性ポリマーとしては、本発明の導電性ポリマー前駆体を必須成分として含むが、前記一般式(1-A)で表される以外の構造単位(単量体成分)として、可溶性、導電性及び性状に影響を及ぼさない限り、置換又は無置換のアニリン(他のアニリン系単量体)、チオフェン、ピロール、フェニレン、ビニレン、その他二価の不飽和基及び二価の飽和基からなる群より選ばれる少なくとも一種の構造単位(単量体成分)を含んでいてもよい。
 導電性ポリマー前駆体の含有量は、アニリン系単量体成分100質量%中、1~100質量%が好ましく、10~100質量%がより好ましく、高い導電性を有し、かつ熱安定性に優れた導電性ポリマーが得られやすくなる。
The aniline-based conductive polymer contains the conductive polymer precursor of the present invention as an essential component, but is soluble, conductive as a structural unit (monomer component) other than that represented by the general formula (1-A). A group consisting of substituted or unsubstituted aniline (other aniline monomers), thiophene, pyrrole, phenylene, vinylene, other divalent unsaturated groups and divalent saturated groups, as long as the properties and properties are not affected. It may contain at least one structural unit (monomer component) selected from the above.
The content of the conductive polymer precursor is preferably 1 to 100% by mass, more preferably 10 to 100% by mass in 100% by mass of the aniline monomer component, and has high conductivity and thermal stability. It becomes easy to obtain an excellent conductive polymer.
 本発明のアニリン系導電性ポリマーは、前記一般式(1-A)の繰り返し単位、すなわち芳香環に対する酸性基の含有率を、可溶性向上の観点から、70%以上含まれるものが好ましく、さらに80%以上含まれるものが好ましく、特に90%以上含まれるもの好ましい。ここで、芳香環に対する酸性基の含有率が70%以下のものは水に対する溶解性が不十分で好ましくない。また、芳香環に対する酸性基の含有率が高くなるほど溶解性は向上しコンデンサ製造に適している。
 なお、導電性ポリマー前駆体は、1種単独で用いてもよく、一般式(1-A)に該当する範囲で異なる2種以上を任意の割合で混合して用いてもよい。
The aniline-based conductive polymer of the present invention preferably contains 70% or more of the content of the acidic group with respect to the repeating unit of the general formula (1-A), that is, the aromatic ring, from the viewpoint of improving the solubility. % Or more is preferable, and especially 90% or more is preferable. Here, those having an acidic group content of 70% or less with respect to the aromatic ring are not preferable because of insufficient solubility in water. Further, the higher the content of acidic groups with respect to the aromatic ring, the better the solubility, which is suitable for capacitor production.
In addition, the conductive polymer precursor may be used alone, or two or more different conductive polymers may be mixed and used in an arbitrary ratio within the range corresponding to the general formula (1-A).
 前記アニリン系導電性ポリマーの重量平均分子量は、導電性、成膜性及び膜強度の観点で、ポリスチレンスルホン酸ナトリウム換算で、3000~50万が好ましく、5000~20万がより好ましく、7000~10万のものが特に好ましい。
 ここで、重量平均分子量が3000以下の場合、溶解性は優れているが成膜性及び導電性が不足しており、50万以上の場合、溶解性及び多孔質成形体への含浸性が不十分である。
 また、固体電解コンデンサは、導電率がよいものほど周波数特性などの性能が良いことから、導電率が0.01S/cm以上、好ましくは0.05S/cm以上の可溶性導電性ポリマーが用いられる。
The weight average molecular weight of the aniline-based conductive polymer is preferably 3000 to 500,000, more preferably 5000 to 200,000, and more preferably 7000 to 10 in terms of sodium polystyrene sulfonate, from the viewpoint of conductivity, film formability and film strength. Many are particularly preferred.
Here, when the weight average molecular weight is 3000 or less, the solubility is excellent but the film formability and conductivity are insufficient. When the weight average molecular weight is 500,000 or more, the solubility and impregnation into the porous molded body are inferior. It is enough.
In addition, as the solid electrolytic capacitor has better performance such as frequency characteristics, a soluble conductive polymer having a conductivity of 0.01 S / cm or more, preferably 0.05 S / cm or more is used.
 他のアニリン系単量体としては、本発明の導電性ポリマー前駆体と共重合可能なアニリン系単量体であれば特に限定されないが、例えばアニリン、メチルアニリン、ジメチルアニリン、トリメチルアニリン、テトラメチルアニリン、エチルアニリン、ジエチルアニリン、トリエチルアニリン、テトラエチルアニリン、プロピルアニリン、ジプロピルアニリン、トリプロピルアニリン、テトラプロピルアニリン、ブチルアニリン、ジブチルアニリン、トリブチルアニリン、テトラブチルアニリン、メトキシアニリン、ジメトキシアニリン、トリメトキシアニリン、テトラメトキシアニリン、エトキシアニリン、ジエトキシアニリン、トリエトキシアニリン、テトラエトキシアニリン、ブロモアニリン、クロロアニリン、フッ化アニリン、シアノアニリン、ヒドロキシアニリン、ニトロアニリン、ジブロモアニリン、ジクロロアニリン、ジフッ化アニリン、ジシアノアニリン、ジヒドロキシアニリン、ジニトロアニリン、ジアミノベンゼン、N-メチルアニリン、N-エチルアニリン、N-n-プロピルアニリン、N-iso-プロピルアニリン、N-ブチルアニリン、アミノベンゼンスルホン酸、アミノベンゼンジスルホン酸、アミノフェノールスルホン酸、アミノフェノールジスルホン酸、メトキシアニリンスルホン酸、アミノ安息香酸、アミノベンゼンジカルボン酸、アミノベンゼンリン酸、アミノベンゼンジリン酸、アミノベンゼンスルホンアミド、アミノベンゼンチオール、アミノベンズアミド、アセトトルイジン、アミノアセトフェノン、アミノベンゼンチオール、アミノクロロフェノール、アミノナフタレン、アミノナフタレンスルホン酸、アミノナフタレンカルボン酸、アミノナフタレンリン酸、アミノニトロフェノール、アミノフェニル、アミノフェニルフェノール、アミノキンリン、アミノベンゾトリフルオリド、アミノベンジルアルコール、アミノフェニルボロン酸、アミノクレゾール、アミノインドール、ルミノールなどが挙げられる。 The other aniline monomer is not particularly limited as long as it is an aniline monomer copolymerizable with the conductive polymer precursor of the present invention. For example, aniline, methylaniline, dimethylaniline, trimethylaniline, tetramethyl Aniline, ethylaniline, diethylaniline, triethylaniline, tetraethylaniline, propylaniline, dipropylaniline, tripropylaniline, tetrapropylaniline, butylaniline, dibutylaniline, tributylaniline, tetrabutylaniline, methoxyaniline, dimethoxyaniline, trimethoxy Aniline, tetramethoxyaniline, ethoxyaniline, diethoxyaniline, triethoxyaniline, tetraethoxyaniline, bromoaniline, chloroaniline, aniline fluoride, shear Aniline, hydroxyaniline, nitroaniline, dibromoaniline, dichloroaniline, difluorinated aniline, dicyanoaniline, dihydroxyaniline, dinitroaniline, diaminobenzene, N-methylaniline, N-ethylaniline, Nn-propylaniline, N-iso -Propylaniline, N-butylaniline, aminobenzenesulfonic acid, aminobenzenedisulfonic acid, aminophenolsulfonic acid, aminophenoldisulfonic acid, methoxyanilinesulfonic acid, aminobenzoic acid, aminobenzenedicarboxylic acid, aminobenzenephosphoric acid, aminobenzene Diphosphoric acid, aminobenzenesulfonamide, aminobenzenethiol, aminobenzamide, acetotoluidine, aminoacetophenone, aminobenzenethiol, amino Chlorophenol, aminonaphthalene, aminonaphthalenesulfonic acid, aminonaphthalenecarboxylic acid, aminonaphthalenephosphoric acid, aminonitrophenol, aminophenyl, aminophenylphenol, aminoquinline, aminobenzotrifluoride, aminobenzyl alcohol, aminophenylboronic acid, amino Examples include cresol, aminoindole, and luminol.
 他のアニリン系単量体の含有量は、アニリン系単量体成分100質量%中、0~99質量%が好ましく、0~90質量%がより好ましく、高い導電性を有し、かつ熱安定性に優れた導電性ポリマーが得られやすくなる。 The content of the other aniline monomer is preferably 0 to 99% by mass, more preferably 0 to 90% by mass in 100% by mass of the aniline monomer component, has high conductivity, and is thermally stable. It becomes easy to obtain a conductive polymer having excellent properties.
 本発明の導電性ポリマーの製造方法としては特に限定されず、酸化剤による化学重合法や電解重合法など、公知の製造方法を用いることができる。
 以下、本発明の導電性ポリマーの製造方法の一例について、具体的に説明する。
It does not specifically limit as a manufacturing method of the conductive polymer of this invention, Well-known manufacturing methods, such as the chemical polymerization method and electrolytic polymerization method by an oxidizing agent, can be used.
Hereinafter, an example of the manufacturing method of the conductive polymer of this invention is demonstrated concretely.
 本発明の導電性ポリマーは、例えば重合溶媒中で上述したアニリン系単量体成分を酸化剤により重合させて得られる。
 本発明で用いるアニリン系単量体は、スルホン基及び/又はカルボキシル基を有し、このような酸性基置換アニリン系単量体としては、酸性基置換アニリン、そのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、及び置換アンモニウム塩よりなる群から選ばれる化合物が好ましい。
 また、酸性基置換アニリン系単量体としては、優れた導電性を発現し、且つ水溶性を向上させるという点を考慮すると、一般式(1)で表される化合物が好ましい。
The conductive polymer of the present invention can be obtained, for example, by polymerizing the above aniline monomer component with an oxidizing agent in a polymerization solvent.
The aniline monomer used in the present invention has a sulfone group and / or a carboxyl group. Examples of such an acid group-substituted aniline monomer include an acid group-substituted aniline, an alkali metal salt thereof, and an alkaline earth metal. A compound selected from the group consisting of a salt, an ammonium salt, and a substituted ammonium salt is preferred.
In addition, as the acidic group-substituted aniline monomer, a compound represented by the general formula (1) is preferable in view of exhibiting excellent conductivity and improving water solubility.
<酸化剤>
 酸化剤としては、例えばペルオキソ二硫酸、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等のペルオキソ二硫酸類;過酸化水素などが挙げられる。
 これら酸化剤は、1種単独で用いてもよく、2種以上を任意の割合で混合して用いてもよい。
<Oxidizing agent>
Examples of the oxidizing agent include peroxodisulfuric acids such as peroxodisulfuric acid, ammonium peroxodisulfate, sodium peroxodisulfate, and potassium peroxodisulfate; hydrogen peroxide.
These oxidizing agents may be used individually by 1 type, and 2 or more types may be mixed and used for them in arbitrary ratios.
 酸化剤の使用量は、アニリン系単量体成分1molに対して1~5molが好ましく、より好ましくは1~3molである。酸化剤の使用量が上記範囲内であれば、導電性ポリマーの高分子量化や、主鎖の酸化を十分に行うことができる。
 なお、触媒として、鉄、銅などの遷移金属化合物を酸化剤と併用することも有効である。
The amount of the oxidizing agent used is preferably 1 to 5 mol, more preferably 1 to 3 mol, relative to 1 mol of the aniline monomer component. When the amount of the oxidizing agent used is within the above range, the conductive polymer can be sufficiently polymerized and the main chain can be oxidized sufficiently.
It is also effective to use a transition metal compound such as iron or copper in combination with an oxidizing agent as a catalyst.
<重合溶媒>
 重合溶媒としては、水や有機溶媒が挙げられる。有機溶媒としては、例えばメタノール、エタノール、イソプロピルアルコール、プロピルアルコール、ブタノール等のアルコール類;アセトン、エチルイソブチルケトン等のケトン類;エチレングリコール、エチレングリコールメチルエーテル等のエチレングリコール類;プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のプロピレングリコール類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;N-メチルピロリドン、N-エチルピロリドン等のピロリドン類などが挙げられる。
 重合溶媒としては、水、又は水と有機溶媒との混合溶媒が好ましい。
<Polymerization solvent>
Examples of the polymerization solvent include water and organic solvents. Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, propyl alcohol and butanol; ketones such as acetone and ethyl isobutyl ketone; ethylene glycols such as ethylene glycol and ethylene glycol methyl ether; propylene glycol and propylene glycol Propylene glycols such as methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether and propylene glycol propyl ether; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methylpyrrolidone, N-ethylpyrrolidone and the like Pyrrolidones and the like.
As the polymerization solvent, water or a mixed solvent of water and an organic solvent is preferable.
<重合工程>
 上述したアニリン系単量体成分を、重合溶媒中で酸化剤により化学酸化重合することで、導電性ポリマーを得る(重合工程)。
 具体的には、酸化剤溶液中にアニリン系単量体成分溶液(前駆体溶液)を滴下する方法、アニリン系単量体成分溶液に酸化剤溶液を滴下する方法、反応容器等にアニリン系単量体成分溶液と酸化剤溶液とを同時に滴下する方法、反応容器等にアニリン系単量体成分溶液と酸化剤溶液とを連続的に供給し、押し出し流れで重合させる方法などの各種方法によって、導電性ポリマーを得る。
 重合の際には、上述した重合溶媒を用いることができる。
<Polymerization process>
A conductive polymer is obtained by chemically oxidatively polymerizing the above aniline monomer component with an oxidizing agent in a polymerization solvent (polymerization step).
Specifically, an aniline monomer component solution (precursor solution) is dropped into an oxidant solution, an oxidizer solution is dropped into an aniline monomer component solution, an aniline simple substance is added to a reaction vessel or the like. By various methods, such as a method of dropping a monomer component solution and an oxidant solution simultaneously, a method of continuously supplying an aniline monomer component solution and an oxidant solution to a reaction vessel or the like, and a method of polymerizing in an extruded flow, A conductive polymer is obtained.
In the polymerization, the above-described polymerization solvent can be used.
 また、重合の際には、反応系内にプロトン酸を加えてもよい。
 プロトン酸としては、例えば塩酸、硝酸、硫酸、ホウ化フッ素酸等の鉱酸類、トリフルオロメタンスルホン酸等の超強酸類、メタンスルホン酸、ドデシルベンゼンスルホン酸、トルエンスルホン酸、カンファスルホン酸等の有機スルホン酸類、及びポリスチレンスルホン酸、ポリアクリル酸、ポリビニルスルホン酸、ポリ-2-メチルプロパン-2-アクリルアミドスルホン酸等の高分子酸類などが挙げられる。
In the polymerization, a protonic acid may be added to the reaction system.
Examples of the protic acid include mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, and borofluoric acid, super strong acids such as trifluoromethanesulfonic acid, and organic substances such as methanesulfonic acid, dodecylbenzenesulfonic acid, toluenesulfonic acid, and camphorsulfonic acid. Examples thereof include sulfonic acids, and polymer acids such as polystyrene sulfonic acid, polyacrylic acid, polyvinyl sulfonic acid, poly-2-methylpropane-2-acrylamide sulfonic acid, and the like.
 重合反応の内温は50℃以下が好ましく、より好ましくは-15~50℃、さらに好ましくは-10~20℃である。特に、重合反応の内温が20℃以下であれば、副反応の進行や、主鎖の酸化還元構造の変化による導電性の低下を抑止できる。また、重合反応の内温が-15℃以上であれば、十分な反応速度を維持でき、反応時間を短縮できる。 The internal temperature of the polymerization reaction is preferably 50 ° C. or less, more preferably −15 to 50 ° C., and further preferably −10 to 20 ° C. In particular, if the internal temperature of the polymerization reaction is 20 ° C. or lower, it is possible to suppress a decrease in conductivity due to the progress of side reactions and changes in the redox structure of the main chain. Further, when the internal temperature of the polymerization reaction is −15 ° C. or higher, a sufficient reaction rate can be maintained and the reaction time can be shortened.
<精製工程>
 導電性ポリマーは、溶媒に溶解又は分散したポリマー溶液の状態で得られる。導電性ポリマーは、溶媒を除去した後、そのまま各種用途に用いてもよいが、ポリマー溶液には未反応のモノマー(アニリン系単量体成分)、オリゴマー、不純物などが含まれる場合がある。従って、導電性ポリマーを精製してから用いるのが好ましい(精製工程)。
 導電性ポリマーを精製する方法としては、溶剤を用いた洗浄法、膜濾過法、陽イオン交換法などが挙げられる。
<Purification process>
The conductive polymer is obtained in the state of a polymer solution dissolved or dispersed in a solvent. The conductive polymer may be used for various applications as it is after removing the solvent, but the polymer solution may contain unreacted monomers (aniline monomer components), oligomers, impurities, and the like. Therefore, it is preferable to use the conductive polymer after purification (purification step).
Examples of the method for purifying the conductive polymer include a cleaning method using a solvent, a membrane filtration method, and a cation exchange method.
 このようにして得られる導電性ポリマーは、本発明の導電性ポリマー前駆体を含むアニリン系単量体成分を重合して得られる。上述したように、本発明の導電性ポリマー前駆体は、酸性基あるいはその塩が炭素数1~20のアルキレン基を介して芳香環に結合したモノマーであり、加熱処理しても酸性基あるいはその塩が脱離しにくい。従って、本発明の導電性ポリマーは、高い導電性を有し、かつ熱安定性に優れる。よって、加熱処理しても導電性を維持できる。 The conductive polymer thus obtained can be obtained by polymerizing an aniline monomer component containing the conductive polymer precursor of the present invention. As described above, the conductive polymer precursor of the present invention is a monomer in which an acidic group or a salt thereof is bonded to an aromatic ring via an alkylene group having 1 to 20 carbon atoms. Salt is not easily released. Therefore, the conductive polymer of the present invention has high conductivity and is excellent in thermal stability. Therefore, conductivity can be maintained even after heat treatment.
 なお、本発明の導電性ポリマーは、下記一般式(6)で表されるフェニレンジアミン構造(還元型)とキノジイミン構造(酸化型)を有していると考えられる。 The conductive polymer of the present invention is considered to have a phenylenediamine structure (reduced type) and a quinodiimine structure (oxidized type) represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(6)中、R~R24は、それぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基、及びハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)よりなる群から選ばれ、かつR11、R15、R19、R23のうち少なくとも1つは-(CH)-Aである。ここで、Aは酸性基又はその塩であり、nは1~20の整数である。また、yは重合度を示す。 In formula (6), R 9 to R 24 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group A group or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), and at least one of R 11 , R 15 , R 19 , and R 23 Is — (CH 2 ) n —A. Here, A is an acidic group or a salt thereof, and n is an integer of 1-20. Y represents the degree of polymerization.
 このフェニレンジアミン構造(還元型)とキノジイミン構造(酸化型)は、酸化又は還元により任意の比率で可逆的に変換させることが可能である。フェニレンジアミン構造とキノジイミン構造の比率(x)は、0.2<x<0.8の範囲が導電性及び溶解性の面から好ましく、0.3<x<0.7がより好ましい。 This phenylenediamine structure (reduced type) and quinodiimine structure (oxidized type) can be reversibly converted at an arbitrary ratio by oxidation or reduction. The ratio (x) of the phenylenediamine structure to the quinodiimine structure is preferably in the range of 0.2 <x <0.8 from the viewpoint of conductivity and solubility, and more preferably 0.3 <x <0.7.
 なお、本発明の導電性ポリマーは、単なる水、塩基及び塩基性塩を含む水、酸を含む水、又はメタノール、エタノール、iso-プロパノール等の溶媒、又はそれらの混合物に溶解することができ、加工性にも優れる。 The conductive polymer of the present invention can be dissolved in simple water, water containing a base and a basic salt, water containing an acid, a solvent such as methanol, ethanol, iso-propanol, or a mixture thereof. Excellent workability.
 本発明の導電性ポリマーは、スプレーコート法、ディップコート法、ロールコート法、グラビアコート法、リバースコート法、ロールブラッシュ法、エアーナイフコート法、カーテンコート法等の簡便な手法で導電体を形成することができる。 The conductive polymer of the present invention forms a conductor by a simple method such as spray coating, dip coating, roll coating, gravure coating, reverse coating, roll brushing, air knife coating, curtain coating, etc. can do.
 また、本発明の導電性ポリマーを主成分とする組成物は、各種帯電防止剤、コンデンサ、電池、EMIシールド、化学センサー、表示素子、非線形材料、防食、接着剤、繊維、帯電防止塗料、防食塗料、電着塗料、メッキプライマー、静電塗装の下地、電気防食、電池の蓄電能力向上等に適応可能である。
 これらの中でも、本発明の導電性ポリマーは熱安定性に優れ、加熱処理しても導電性を維持できることから、製造過程に加熱処理工程を含むコンデンサなどの用途に好適である。
The composition comprising the conductive polymer of the present invention as a main component includes various antistatic agents, capacitors, batteries, EMI shields, chemical sensors, display elements, nonlinear materials, anticorrosion, adhesives, fibers, antistatic paints, anticorrosion. It can be applied to paints, electrodeposition paints, plating primers, electrostatic coating bases, cathodic protection, and battery storage capacity improvement.
Among these, since the conductive polymer of the present invention is excellent in thermal stability and can maintain conductivity even after heat treatment, it is suitable for applications such as a capacitor including a heat treatment step in the production process.
 前記製造方法により得られるアニリン系導電性ポリマー(a)は陽イオンと塩を形成している場合があり、導電性を阻害する要因となっていることから、これら陽イオンを除去することが望ましい。 The aniline-based conductive polymer (a) obtained by the above production method may form a salt with a cation, which is a factor that impedes conductivity, and it is desirable to remove these cations. .
 陽イオンなどの不純物を除去するには、前記導電性ポリマーの分散液又は溶解液を陽イオン交換樹脂に接触させる方法が好ましい。前記導電性ポリマーを陽イオン交換樹脂により不純物除去する場合、溶媒に分散又は溶解させた状態で用いる。 In order to remove impurities such as cations, a method of bringing the conductive polymer dispersion or solution into contact with a cation exchange resin is preferred. When the conductive polymer is subjected to impurity removal with a cation exchange resin, it is used in a state dispersed or dissolved in a solvent.
 溶媒としては、水、メタノール、エタノール、イソプロパノール、プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、エチルイソブチルケトン、メチルイソブチルケトン等のケトン類;エチレングリコール、エチレングリコールメチルエーテル、エチレングリコールモノ-n-プロピルエーテル等のエチレングリコール類;プロピレングリコール、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテル等のプロピレングリコール類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;N-メチルピロリドン、N-エチルピロリドン等のピロリドン類;乳酸メチル、乳酸エチル、β-メトキシイソ酪酸メチル、α-ヒドロキシイソ酪酸メチル等のヒドロキシエステル類、及びこれらを混合したものが好ましい。 Solvents include alcohols such as water, methanol, ethanol, isopropanol, propanol, and butanol; ketones such as acetone, methyl ethyl ketone, ethyl isobutyl ketone, methyl isobutyl ketone; ethylene glycol, ethylene glycol methyl ether, ethylene glycol mono-n- Ethylene glycols such as propyl ether; propylene glycols such as propylene glycol, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether and propylene glycol propyl ether; amides such as dimethylformamide and dimethylacetamide; N-methylpyrrolidone; Pyrrolidones such as N-ethylpyrrolidone; methyl lactate, ethyl lactate, β-methoxy Methylbutyric acid, hydroxy esters such as α- hydroxy methyl isobutyrate, and a mixture of these preferred.
 前記導電性ポリマーを前記溶媒に分散又は溶解させる際の濃度としては、工業性や精製効率の観点から、0.1~20質量%が好ましく、0.1~10質量%がより好ましい。 The concentration when the conductive polymer is dispersed or dissolved in the solvent is preferably from 0.1 to 20% by mass, more preferably from 0.1 to 10% by mass, from the viewpoint of industrial properties and purification efficiency.
 陽イオン交換樹脂としては、市販品を用いることができ、例えば、オルガノ株式会社製の「アンバーライト」などの強酸型の陽イオン交換樹脂が好ましい。
 陽イオン交換樹脂の形態については特に限定されることなく、種々の形態のものを使用でき、例えば球状細粒、膜状や繊維状などが挙げられる。
 導電性ポリマーに対する陽イオン交換樹脂の量は、工業性や精製効率の観点から、導電性ポリマー1質量部に対して1~20質量部が好ましく、5~15質量部がより好ましい。
Commercially available products can be used as the cation exchange resin, and for example, strong acid type cation exchange resins such as “Amberlite” manufactured by Organo Corporation are preferred.
The form of the cation exchange resin is not particularly limited, and various forms can be used. Examples thereof include spherical fine particles, membranes, and fibers.
The amount of the cation exchange resin with respect to the conductive polymer is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass with respect to 1 part by mass of the conductive polymer from the viewpoint of industrial properties and purification efficiency.
 導電性ポリマーの分散液又は溶解液と、陽イオン交換樹脂の接触方法としては、容器に導電性ポリマーの分散液又は溶解液と陽イオン交換樹脂を入れ、攪拌又は回転させることで、陽イオン交換樹脂と接触させる方法が挙げられる。
 また、陽イオン交換樹脂をカラムに充填し、導電性ポリマーの分散液又は溶解液を、好ましくはSV=0.01~20、より好ましくはSV=0.2~5の流量で通過させて、陽イオン交換処理を行う方法でもよい。
 ここで、空間速度SV(1/hr)=流量(m/hr)/濾材量(体積:m)である。
 導電性ポリマーの分散液又は溶解液と、陽イオン交換樹脂を接触させる時間は、精製効率の観点から、0.1時間以上が好ましく、0.5時間以上がより好ましい。
 なお、接触時間の上限値については特に制限されず、導電性ポリマーの分散液又は溶離液の濃度、陽イオン交換樹脂の量、後述する接触温度などの条件に併せて、適宜設定すればよい。
As a method of contacting the dispersion or solution of the conductive polymer with the cation exchange resin, the dispersion or solution of the conductive polymer and the cation exchange resin are placed in a container, and the mixture is stirred or rotated to exchange the cation. The method of making it contact with resin is mentioned.
In addition, the column is filled with a cation exchange resin, and the dispersion or solution of the conductive polymer is preferably passed at a flow rate of SV = 0.01 to 20, more preferably SV = 0.2 to 5, A method of performing cation exchange treatment may be used.
Here, space velocity SV (1 / hr) = flow rate (m 3 / hr) / filter medium amount (volume: m 3 ).
From the viewpoint of purification efficiency, the time for which the conductive polymer dispersion or solution is brought into contact with the cation exchange resin is preferably 0.1 hour or longer, and more preferably 0.5 hour or longer.
The upper limit of the contact time is not particularly limited, and may be appropriately set in accordance with conditions such as the concentration of the dispersion or eluent of the conductive polymer, the amount of the cation exchange resin, and the contact temperature described later.
 導電性ポリマーの分散液又は溶解液と、陽イオン交換樹脂を接触させる際の温度は、工業的観点から、10~50℃が好ましく、10~30℃がより好ましい。 The temperature at which the conductive polymer dispersion or solution is brought into contact with the cation exchange resin is preferably 10 to 50 ° C., more preferably 10 to 30 ° C., from an industrial viewpoint.
 このようにして精製された導電性ポリマーは、オリゴマーやモノマーなどの低分子量体や、陽イオンなどの不純物が十分に除去されているので、より優れた導電性を示す。 The conductive polymer purified in this way exhibits a superior conductivity because low molecular weight substances such as oligomers and monomers and impurities such as cations are sufficiently removed.
<溶剤(b)>
 前記導電性組成物に用いられる溶媒(b)としては、前記導電性ポリマー(a)を溶解する溶媒であれば特に限定されないが、水及び/又は水溶性有機溶剤などが好ましい。
 水溶性有機溶剤として、具体的には、アセトニトリル、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノール等のアルコール類、アセトン、メチルエチルケトン、エチルイソブチルケトン、メチルイソブチルケトン等のケトン類、エチレングリコール、エチレングリコールメチルエーテル等のエチレングリコール類、プロピレングリコール、プロピレングリコールメチルエーテル等のプロピレングリコール類、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類、N-メチルピロリドン、N-エチルピロリドン等のピロリドン類、そして、乳酸メチル、乳酸エチル、β-メトキシイソ酪酸メチル、α-ヒドロキシイソ酪酸メチル等のヒドロキシエステル類などが挙げられる。
 これらの中でも、工業的観点から、アルコール類、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド等が好ましい。
<Solvent (b)>
The solvent (b) used in the conductive composition is not particularly limited as long as it is a solvent that dissolves the conductive polymer (a), but water and / or a water-soluble organic solvent is preferable.
Specific examples of water-soluble organic solvents include alcohols such as acetonitrile, methanol, ethanol, isopropanol, n-propanol, and n-butanol, ketones such as acetone, methyl ethyl ketone, ethyl isobutyl ketone, and methyl isobutyl ketone, ethylene glycol, Ethylene glycols such as ethylene glycol methyl ether, propylene glycols such as propylene glycol and propylene glycol methyl ether, amides such as dimethylformamide and dimethylacetamide, pyrrolidones such as N-methylpyrrolidone and N-ethylpyrrolidone, and lactic acid Examples thereof include hydroxy esters such as methyl, ethyl lactate, methyl β-methoxyisobutyrate and methyl α-hydroxyisobutyrate.
Among these, alcohols, acetone, acetonitrile, dimethylformamide, dimethylacetamide and the like are preferable from an industrial viewpoint.
 導電性組成物の濃度としては、工業性や精製効率の観点から、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。濃度が高いほど十分な膜厚の固体電解質層を形成することができる。一方、濃度が低いほど溶液中の導電性ポリマー及び化合物が凝集するのを抑制でき、高粘度化しにくくなり、陽極酸化被膜の微細な凹凸の内部に含浸しやすくなる。 The concentration of the conductive composition is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 10% by mass from the viewpoint of industrial properties and purification efficiency. A solid electrolyte layer having a sufficient thickness can be formed as the concentration is higher. On the other hand, the lower the concentration, the more the agglomeration of the conductive polymer and compound in the solution can be suppressed, the higher the viscosity becomes, and the fine irregularities of the anodized film can be easily impregnated.
<塩基性化合物(c)>
 本発明の導電性組成物に塩基性化合物(c)が含有されることで耐熱性が向上する。その理由として、塩基性化合物(c)が導電性ポリマー(a)の分解を阻止するためと考えられる。塩基性化合物(c)としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、等の無機塩基、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム等の有機水酸化物、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン等の1級アルキルアミン類、ベンジルアミン、アニリン等の1級アミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン等の2級アルキルアミン類、メチルアニリン等の2級アミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン等の3級アルキルアミン類、ジメチルアニリン等の3級アミン、2-アミノエタノール、ジエタノールアミン、トリエタノールアミン等のアルコールアミン類、α-ピコリン、β-ピコリン、γ-ピコリン、ピリジン、ピレリジン等のヘテロ環式アミン水、ベンジルアミン、メトキシエチルアミン、アミノピリジン、ヒドロキシメチルピリジン、ピリジノール、エチレンジアミン、アンモニア等が挙げられる。中でも、水酸化ナトリウム又はアンモニアが好ましい。これらの塩基性化合物は、いずれか1種を単独で用いてもよく、2種以上混合して用いてもよい。
<Basic compound (c)>
Heat resistance improves by containing the basic compound (c) in the electrically conductive composition of this invention. The reason is considered that the basic compound (c) prevents decomposition of the conductive polymer (a). Examples of the basic compound (c) include inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide and calcium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrahydroxide Organic hydroxides such as butylammonium, primary alkylamines such as methylamine, ethylamine, propylamine, butylamine, pentylamine and hexylamine, primary amines such as benzylamine and aniline, dimethylamine, diethylamine and dipropylamine Secondary alkylamines such as dibutylamine, dipentylamine and dihexylamine, secondary amines such as methylaniline, trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, Tertiary alkylamines such as silamine, tertiary amines such as dimethylaniline, alcohol amines such as 2-aminoethanol, diethanolamine, and triethanolamine, α-picoline, β-picoline, γ-picoline, pyridine, pyreridine, etc. Examples include heterocyclic amine water, benzylamine, methoxyethylamine, aminopyridine, hydroxymethylpyridine, pyridinol, ethylenediamine, and ammonia. Among these, sodium hydroxide or ammonia is preferable. Any one of these basic compounds may be used alone, or two or more thereof may be mixed and used.
 塩基性化合物(c)は、酸性基置換アニリン等、導電性ポリマー(a)の原料となる単量体を溶液中で酸化重合する際に用いられたものが残存して導電性組成物に含有されてもよいし、それ以外に、それと同種又は異種の塩基性化合物が導電性組成物に添加されていてもよい。
 また、塩基性化合物(c)の添加量は、導電性及び/又は耐熱性の観点から、導電性ポリマー(a)の繰り返し単位1molに対して、0.01~2.0molが好ましく、0.1~1.5molがより好ましく、0.15~1.0molがさらに好ましく、0.2~0.65molが特に好ましい。
The basic compound (c) is an acidic group-substituted aniline or the like, and remains in the conductive composition that is used when the monomer that is a raw material of the conductive polymer (a) is oxidatively polymerized in a solution. In addition, the same or different basic compound may be added to the conductive composition.
In addition, the addition amount of the basic compound (c) is preferably 0.01 to 2.0 mol with respect to 1 mol of the repeating unit of the conductive polymer (a) from the viewpoint of conductivity and / or heat resistance. 1 to 1.5 mol is more preferable, 0.15 to 1.0 mol is more preferable, and 0.2 to 0.65 mol is particularly preferable.
<固体電解質層(導電性ポリマー層)>
 本発明において、固体電解質層は、前記アニリン系導電性ポリマーと溶剤を混合して得られた導電性組成物から形成される。
<Solid electrolyte layer (conductive polymer layer)>
In the present invention, the solid electrolyte layer is formed from a conductive composition obtained by mixing the aniline conductive polymer and a solvent.
 固体電解質層の形成方法としては、ディップコート法、刷毛塗り法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、スプレーコート法、フローコート法、スクリーン法印刷、フレキソ印刷法、オフセット印刷法、インクジェットプリント法などが挙げられる。中でも、操作が容易である点で、ディップコート法が好ましい。
 ディップコート法により導電性組成物を塗布する場合、作業性の観点から、導電性組成物への浸漬時間は、1~30分が好ましい。また、ディップコートする際に、減圧時にディップさせて常圧に戻す、あるいは、ディップ時に加圧するなどの方法も有効である。
As a method for forming a solid electrolyte layer, a dip coating method, a brush coating method, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a spray coating method, Examples thereof include a flow coating method, a screen method printing, a flexographic printing method, an offset printing method, and an ink jet printing method. Among these, the dip coating method is preferable because it is easy to operate.
When the conductive composition is applied by the dip coating method, the immersion time in the conductive composition is preferably 1 to 30 minutes from the viewpoint of workability. In addition, when dip-coating, it is also effective to dip at the time of depressurization to return to normal pressure, or to pressurize at the time of dip.
 固体電解質層を形成した後の乾燥方法としては、加熱乾燥が好ましいが、例えば、風乾や、スピンさせて物理的に乾燥させる方法などを用いてもよい。
 また、乾燥条件は、前記導電性ポリマー(a)や前記溶剤(b)の種類により決定されるが、通常、乾燥温度は乾燥性の観点から50℃~190℃が好ましく、乾燥時間は1~120分が好ましい。
As a drying method after forming the solid electrolyte layer, heat drying is preferable, but for example, air drying, spinning and physical drying may be used.
The drying conditions are determined by the types of the conductive polymer (a) and the solvent (b). Usually, the drying temperature is preferably 50 ° C. to 190 ° C. from the viewpoint of drying properties, and the drying time is 1 to 120 minutes is preferred.
<巻回型固体電解コンデンサの製造方法>
 本発明の実施の形態において、巻回型固体電解コンデンサは、固体電解質層の形成工程の他、公知の技術により製造される。
 例えば、アルミニウム箔の表層近傍をエッチングにより多孔質体化した後、陽極酸化により陽極酸化被膜を形成し、本実施の形態による固体電解質層を含む固体電荷質を形成した後、陰極部を形成し、陽極部及び陰極部には外部端子を接続し外装を施して、本実施の形態にかかる巻回型固体電解コンデンサを得ることが出来る。
 前記陽極酸化被膜は、アルミニウム、タンタル、ニオブ、ニッケル等の金属材料(被膜形成金属)からなる電極(弁作用金属体)を陽極酸化して形成されたものである。多孔質の弁作用金属体を陽極酸化して形成される陽極酸化被膜は、弁作用金属体の表面状態を反映し、表面が微細な凹凸構造と成っている。この凹凸の周期は弁作用金属体の種類などに依存するが、通常、200nm以下程度である。
 また、凹凸を形成する凹部(細孔部)の深さは、弁作用金属体の種類などに特に依存しやすいので一概には決められないが、例えば、アルミニウムを用いる場合、凹部の深さは数十nm~1μm程度である。
<Method for manufacturing wound solid electrolytic capacitor>
In the embodiment of the present invention, the wound solid electrolytic capacitor is manufactured by a known technique in addition to the solid electrolyte layer forming step.
For example, after the surface layer vicinity of the aluminum foil is made porous by etching, an anodic oxide film is formed by anodic oxidation, the solid charge including the solid electrolyte layer according to the present embodiment is formed, and then the cathode portion is formed. The wound solid electrolytic capacitor according to the present embodiment can be obtained by connecting external terminals to the anode part and the cathode part and providing an exterior.
The anodized film is formed by anodizing an electrode (valve action metal body) made of a metal material (film forming metal) such as aluminum, tantalum, niobium or nickel. An anodized film formed by anodizing a porous valve metal body reflects the surface state of the valve metal body, and has a concavo-convex structure with a fine surface. The period of the unevenness is usually about 200 nm or less, although it depends on the type of valve action metal body.
In addition, the depth of the recesses (pores) forming the irregularities is not easily determined because it is particularly dependent on the type of valve action metal body, but when using aluminum, for example, the depth of the recesses is It is about several tens of nm to 1 μm.
<積層型固体電解コンデンサの製造方法>
 本発明の実施の形態において、積層型固体電解コンデンサは、固体電解質層の形成工程の他、公知の技術により製造される。
 例えば、アルミニウム箔などの弁作用金属体の表層近傍をエッチングにより多孔質体化した後、陽極酸化により陽極酸化被膜を形成する。ついで、陽極酸化被膜上に固体電解質層を形成した後、これをグラファイト液に浸漬させて、又はグラファイト液を塗布して固体電解質層上にグラファイト層を形成し、さらにグラファイト層上に金属層を形成する。さらに、陰極部及び陽極部に外部端子を接続して外装することで、本実施の形態にかかる積層型固体電解コンデンサを得ることが出来る。
<Manufacturing method of multilayer solid electrolytic capacitor>
In the embodiment of the present invention, the multilayer solid electrolytic capacitor is manufactured by a known technique in addition to the solid electrolyte layer forming step.
For example, after the surface layer vicinity of the valve action metal body such as an aluminum foil is made porous by etching, an anodized film is formed by anodization. Next, after forming a solid electrolyte layer on the anodized film, this is immersed in a graphite solution, or a graphite solution is applied to form a graphite layer on the solid electrolyte layer, and a metal layer is further formed on the graphite layer. Form. Furthermore, the multilayer solid electrolytic capacitor according to the present embodiment can be obtained by connecting and externally connecting external terminals to the cathode part and the anode part.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例及び比較例における測定・評価方法は、以下の通りである。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
In addition, the measurement / evaluation method in an Example and a comparative example is as follows.
(NMRの測定)
 H-NMRスペクトルの測定により化合物の同定を行った。この測定は、FT-NMR(日本電子株式会社製、「JNM-GX270」)を用いて、重水素化ジメチルスルホキシドに、濃度が約5質量%になるように測定サンプルを溶解したものを、直径5mmΦの試験管に入れ、測定温度25℃、測定周波数270MHz、シングルパルスモードにて64回の積算回数で行った。
(NMR measurement)
The compound was identified by measuring 1 H-NMR spectrum. This measurement was performed by using FT-NMR (“JNM-GX270” manufactured by JEOL Ltd.) and dissolving a measurement sample in deuterated dimethyl sulfoxide to a concentration of about 5% by mass. The sample was placed in a 5 mmφ test tube, and the measurement was performed at a measurement temperature of 25 ° C., a measurement frequency of 270 MHz, and a single pulse mode with 64 integrations.
(導電性ポリマーの質量平均分子量の測定)
 まず、水(超純水)とメタノールを、容積比が水:メタノール=8:2となるように混合した混合溶媒に、炭酸ナトリウムと炭酸水素ナトリウムを、それぞれの固形分濃度が20mmol/L、30mmol/Lになるように添加して、溶離液を調製した。得られた溶離液は、25℃でのpHが10.8であった。この溶離液に、導電性ポリマーを固形分濃度が0.1質量%となるように溶解させ、試験溶液を調製した。
 得られた試験溶液について、ゲル浸透クロマトグラフを備えた高分子材料評価装置を使用して分子量分布を測定した。
 ついで、得られたクロマトグラムについて、保持時間をポリスチレンスルホン酸ナトリウム換算の分子量(M)へと換算し、導電性ポリマーの質量平均分子量を求めた。
(Measurement of mass average molecular weight of conductive polymer)
First, in a mixed solvent in which water (ultra pure water) and methanol are mixed so that the volume ratio is water: methanol = 8: 2, sodium carbonate and sodium hydrogen carbonate, each solid content concentration is 20 mmol / L, The eluent was prepared by adding 30 mmol / L. The resulting eluent had a pH of 10.8 at 25 ° C. In this eluent, the conductive polymer was dissolved so that the solid content concentration was 0.1% by mass to prepare a test solution.
About the obtained test solution, molecular weight distribution was measured using the polymeric material evaluation apparatus provided with the gel permeation chromatograph.
Subsequently, about the obtained chromatogram, the retention time was converted into the molecular weight (M) of polystyrene sulfonate conversion, and the mass average molecular weight of the conductive polymer was obtained.
(熱安定性及び導電性の評価)
 スピンコータを用いて導電性ポリマー溶液をガラス基板上に塗布し、ホットプレート上で、所定温度で5分間加熱して、塗膜(膜厚:約100nm)がガラス基板上に形成された試験片を得た。
 得られた試験片の表面抵抗値を、抵抗率計(株式会社三菱化学アナリテック製、「ハイレスタIP」)に2探針プローブを装着して測定した。
(Evaluation of thermal stability and conductivity)
A conductive polymer solution is applied on a glass substrate using a spin coater, heated on a hot plate at a predetermined temperature for 5 minutes, and a test piece having a coating film (film thickness: about 100 nm) formed on the glass substrate is obtained. Obtained.
The surface resistance value of the obtained test piece was measured by attaching a two-probe probe to a resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., “Hiresta IP”).
(電気容量測定・等価直列抵抗測定)
 電気容量及び等価直列抵抗は、LCRメータ(アジレント・テクノロジー株式会社製E4980A プレシジョンLCRメータ)を用いて周波数120Hzにて電気容量、100kHzにて等価直列抵抗を測定した。
(Capacitance measurement / Equivalent series resistance measurement)
The electric capacity and equivalent series resistance were measured by using an LCR meter (E4980A Precision LCR meter manufactured by Agilent Technologies) at an electric frequency of 120 Hz and an equivalent series resistance at 100 kHz.
(導電性ポリマーの繰り返し単位(モノマーユニット)[mol])
 導電性ポリマーの粉末に対し、粉末の重量を高分子の繰り返し単位の分子量で除して、導電性ポリマーの繰り返し単位(モノマーユニット)[mol]を求めた。
 導電性ポリマーの分散液又は溶解液の場合、溶解液又は分散液を100℃で1時間乾燥し、残存した固形分を導電性ポリマーの粉末として、同様に導電性ポリマーの繰り返し単位(モノマーユニット)[mol]を求めた。
(Repeating unit of conductive polymer (monomer unit) [mol])
With respect to the conductive polymer powder, the weight of the powder was divided by the molecular weight of the polymer repeating unit to determine the repeating unit (monomer unit) [mol] of the conductive polymer.
In the case of a dispersion or solution of a conductive polymer, the solution or dispersion is dried at 100 ° C. for 1 hour, and the remaining solid is used as a conductive polymer powder. Similarly, the conductive polymer is a repeating unit (monomer unit). [Mol] was determined.
[実施例1]
<導電性ポリマー前駆体の合成>
(c)工程:3-ニトロ-4-メトキシベンジルクロライドの合成
 3-ニトロ-4-メトキシベンジルアルコール(4-1)4.8g(26.2mmol)を塩化メチレン48mLに溶解した溶液に、塩化チオニル6.2g(52.4mmol)を添加した。この溶液を20時間室温で攪拌した後、トルエン30mLを加え、減圧濃縮した。得られた固体をヘキサンに懸濁した後、これを濾過し、残渣を乾燥することで、3-ニトロ-4-メトキシベンジルクロライド(2-2)5.13gを得た(収率97.2%)。
[Example 1]
<Synthesis of conductive polymer precursor>
Step (c): Synthesis of 3-nitro-4-methoxybenzyl chloride Thionyl chloride was added to a solution of 4.8 g (26.2 mmol) of 3-nitro-4-methoxybenzyl alcohol (4-1) in 48 mL of methylene chloride. 6.2 g (52.4 mmol) was added. The solution was stirred for 20 hours at room temperature, 30 mL of toluene was added, and the mixture was concentrated under reduced pressure. The obtained solid was suspended in hexane, then filtered, and the residue was dried to obtain 5.13 g of 3-nitro-4-methoxybenzyl chloride (2-2) (yield 97.2). %).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(a)工程:3-ニトロ-4-メトキシフェニルメタンスルホン酸の合成
 水6mLに3-ニトロ-4-メトキシベンジルクロライド(2-2)3.00g(14.9mmol)、亜硫酸ナトリウム3.48g(9.21mmol)を混合し、100℃で3時間加熱還流した((a-1)工程)。
 反応液を冷却後、析出した固体(3-3)に水を加えて溶解させ、これに50質量%硫酸6.18gを加えた。この溶液を減圧濃縮し、さらにエタノール80mLを加え再度減圧濃縮した。得られた固体をメタノールに懸濁した後、これを減圧濾過した。濾液を減圧濃縮することで、3-ニトロ-4-メトキシフェニルメタンスルホン酸(3-4)2.64gを得た((a-2)工程)(収率71.7%)。
Step (a): Synthesis of 3-nitro-4-methoxyphenylmethanesulfonic acid 3.0 mL (14.9 mmol) of 3-nitro-4-methoxybenzyl chloride (2-2) and 3.48 g of sodium sulfite in 6 mL of water ( 9.21 mmol) was mixed and heated to reflux at 100 ° C. for 3 hours (step (a-1)).
After cooling the reaction solution, water was added to the precipitated solid (3-3) to dissolve it, and 6.18 g of 50% by mass sulfuric acid was added thereto. This solution was concentrated under reduced pressure, 80 mL of ethanol was further added, and the mixture was concentrated again under reduced pressure. The obtained solid was suspended in methanol and then filtered under reduced pressure. The filtrate was concentrated under reduced pressure to obtain 2.64 g of 3-nitro-4-methoxyphenylmethanesulfonic acid (3-4) (step (a-2)) (yield 71.7%).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 得られた3-ニトロ-4-メトキシフェニルメタンスルホン酸(3-4)のH-NMRスペクトルの帰属を下記に示す。
 H-NMR(270MHz in DMSO):δ7.79(s,1H)、δ7.58(d,1H,J=8.37Hz)、δ7.27(d,1H,J=8.37Hz)、δ3.90(s,3H)、δ3.73(s,2H).
Assignment of the 1 H-NMR spectrum of the obtained 3-nitro-4-methoxyphenylmethanesulfonic acid (3-4) is shown below.
1 H-NMR (270 MHz in DMSO): δ 7.79 (s, 1 H), δ 7.58 (d, 1 H, J = 8.37 Hz), δ 7.27 (d, 1 H, J = 8.37 Hz), δ 3 .90 (s, 3H), δ 3.73 (s, 2H).
(b)工程:3-アミノ-4-メトキシフェニルメタンスルホン酸の合成
 3-ニトロ-4-メトキシフェニルメタンスルホン酸(3-4)2.2g(8.9mmol)をメタノール27.7mLに溶解し、これにパラジウムカーボン(Pd-C)0.22gを加えた。反応容器を水素置換し、室温(25℃)にて3時間攪拌した後、反応液を濾過し、濾液を減圧濃縮することで、3-アミノ-4-メトキシフェニルメタンスルホン酸(1-3)1.95gを得た(収率90%)。
Step (b): Synthesis of 3-amino-4-methoxyphenylmethanesulfonic acid 2.2 g (8.9 mmol) of 3-nitro-4-methoxyphenylmethanesulfonic acid (3-4) was dissolved in 27.7 mL of methanol. Then, 0.22 g of palladium carbon (Pd—C) was added thereto. The reaction vessel was purged with hydrogen and stirred at room temperature (25 ° C.) for 3 hours. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to give 3-amino-4-methoxyphenylmethanesulfonic acid (1-3) 1.95 g was obtained (90% yield).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 得られた3-アミノ-4-メトキシフェニルメタンスルホン酸(1-3)のH-NMRスペクトルの帰属を下記に示す。
 H-NMR(270MHz in DMSO):δ6.65(d,1H,J=9.99Hz)、δ6.64(s,1H)、δ6.44(d,1H,J=9.99Hz)、δ3.72(s,3H)、δ3.51(s,2H).
Assignment of 1 H-NMR spectrum of the obtained 3-amino-4-methoxyphenylmethanesulfonic acid (1-3) is shown below.
1 H-NMR (270 MHz in DMSO): δ 6.65 (d, 1H, J = 9.99 Hz), δ 6.64 (s, 1H), δ 6.44 (d, 1H, J = 9.99 Hz), δ3 .72 (s, 3H), δ 3.51 (s, 2H).
[実施例2]
<導電性ポリマー(a)の製造>
 ペルオキソ二硫酸アンモニウム(分子量224.20)2.24g(100mmol)を25gの水に攪拌溶解し、酸化剤溶液を調製した。
 別途、3-アミノ-4-メトキシフェニルメタンスルホン酸(分子量217.24)2.17g(100mmol)からなるアニリン系単量体成分を水25gに溶解し、アニリン系単量体成分溶液(前駆体溶液)を調製した。
 酸化剤溶液を氷浴にて冷却し攪拌しながら、前駆体溶液を1時間かけて滴下し、滴下終了後、氷冷下で2時間攪拌を継続した。次いで室温(25℃)で2時間攪拌を継続し重合反応を行い、黒色沈殿物を得た。
 得られた黒色沈殿を濾過し、残渣を水にて洗浄した後、減圧乾燥し、導電性ポリマー(ポリ(3-アミノ-4-メトキシフェニルメタンスルホン酸))(a)1.5gを得た。得られたポリ(3-アミノ-4-メトキシフェニルメタンスルホン酸)の質量平均分子量は25000であった。
[Example 2]
<Production of conductive polymer (a)>
2.24 g (100 mmol) of ammonium peroxodisulfate (molecular weight 224.20) was stirred and dissolved in 25 g of water to prepare an oxidant solution.
Separately, an aniline monomer component consisting of 2.17 g (100 mmol) of 3-amino-4-methoxyphenylmethanesulfonic acid (molecular weight 217.24) was dissolved in 25 g of water, and an aniline monomer component solution (precursor) Solution) was prepared.
While the oxidant solution was cooled in an ice bath and stirred, the precursor solution was added dropwise over 1 hour. After completion of the addition, stirring was continued for 2 hours under ice cooling. Subsequently, stirring was continued at room temperature (25 ° C.) for 2 hours to conduct a polymerization reaction, thereby obtaining a black precipitate.
The resulting black precipitate was filtered, and the residue was washed with water and then dried under reduced pressure to obtain 1.5 g of a conductive polymer (poly (3-amino-4-methoxyphenylmethanesulfonic acid)) (a). . The obtained poly (3-amino-4-methoxyphenylmethanesulfonic acid) had a weight average molecular weight of 25,000.
 得られたポリ(3-アミノ-4-メトキシフェニルメタンスルホン酸)(a)を0.2mol/Lのアンモニア水に溶解し、導電性ポリマー溶液を調製した。
 この導電性ポリマー溶液を用いて熱安定性及び導電性の評価を行った。
 なお、試験片は加熱温度を変更して合計で7つ作製し、各試験片について表面抵抗値を測定した。得られた結果から、X軸に加熱温度(℃)、Y軸に試験片の表面抵抗値(Ω/□)をプロットしたグラフを作成した。該グラフを図1に示す。
The obtained poly (3-amino-4-methoxyphenylmethanesulfonic acid) (a) was dissolved in 0.2 mol / L ammonia water to prepare a conductive polymer solution.
Using this conductive polymer solution, thermal stability and conductivity were evaluated.
A total of seven test pieces were prepared by changing the heating temperature, and the surface resistance value of each test piece was measured. From the obtained results, a graph was prepared by plotting the heating temperature (° C.) on the X axis and the surface resistance value (Ω / □) of the test piece on the Y axis. The graph is shown in FIG.
[比較例1]
<導電性ポリマー前駆体(a´)の合成>
 ペルオキソ二硫酸アンモニウム(分子量224.20)2.24g(100mmol)を10gの水及びアセトニトリルの混合溶媒(体積比=1:1)に攪拌溶解し、酸化剤溶液を調製した。
 別途、東京化成工業株式会社から市販されている2-アミノアニソール-4-スルホン酸(分子量203.22)2.03g(100mmol)とトリエチルアミン1.1gを、10gの水及びアセトニトリルの混合溶媒(体積比=1:1)に溶解し、前駆体溶液を調製した。
 これらの酸化剤溶液及び前駆体溶液を用いた以外は、実施例1と同様にして重合反応を行い、得られた黒色沈殿を濾過し、残渣を水にて洗浄した後、減圧乾燥し、導電性ポリマー(ポリ(2-アミノアニソール-4-スルホン酸))(a´)1.2gを得た。得られたポリ(2-アミノアニソール-4-スルホン酸)の質量平均分子量は23000であった。
 得られたポリ(2-アミノアニソール-4-スルホン酸)を室温(25℃)で水に溶解し、強酸性イオン交換樹脂(オルガノ株式会社製、「アンバーライトIR-120B」)にてイオン交換処理を行い、これを導電性ポリマー溶液(a´-2)とした。
 得られた導電性ポリマー溶液を用いて、実施例2と同様にして熱安定性及び導電性の評価を行った。結果を図1に示す。
[Comparative Example 1]
<Synthesis of Conductive Polymer Precursor (a ′)>
2.24 g (100 mmol) of ammonium peroxodisulfate (molecular weight 224.20) was stirred and dissolved in 10 g of a mixed solvent of water and acetonitrile (volume ratio = 1: 1) to prepare an oxidant solution.
Separately, 2.03 g (100 mmol) of 2-aminoanisole-4-sulfonic acid (molecular weight 203.22) commercially available from Tokyo Chemical Industry Co., Ltd. and 1.1 g of triethylamine were mixed with 10 g of water and acetonitrile (volume). The solution was dissolved in a ratio = 1: 1) to prepare a precursor solution.
Except for using these oxidant solution and precursor solution, the polymerization reaction was carried out in the same manner as in Example 1. The resulting black precipitate was filtered, the residue was washed with water, dried under reduced pressure, and electrically conductive. 1.2 g of a functional polymer (poly (2-aminoanisole-4-sulfonic acid)) (a ′) was obtained. The obtained poly (2-aminoanisole-4-sulfonic acid) had a mass average molecular weight of 23,000.
The obtained poly (2-aminoanisole-4-sulfonic acid) was dissolved in water at room temperature (25 ° C.) and ion exchanged with a strongly acidic ion exchange resin (manufactured by Organo Corporation, “Amberlite IR-120B”). This was treated to obtain a conductive polymer solution (a′-2).
Using the obtained conductive polymer solution, thermal stability and electrical conductivity were evaluated in the same manner as in Example 2. The results are shown in FIG.
 図1から明らかなように、実施例2で得られた導電性ポリマーは、加熱温度が高くなっても、表面抵抗値が安定しており、高い導電性を維持できた。従って、本発明の導電性ポリマー前駆体から得られる導電性ポリマーは、200℃以上の高温に加熱処理しても熱安定性に優れ、高い導電性を有することが示された。
 一方、酸性基あるいはその塩がアルキレン基を介さずに芳香環に結合したモノマーから得られた導電性ポリマー(比較例1)は、加熱温度が高くなるにつれて表面抵抗値が高くなり、導電性が低下した。
As is clear from FIG. 1, the conductive polymer obtained in Example 2 has a stable surface resistance value and can maintain high conductivity even when the heating temperature is increased. Therefore, it was shown that the conductive polymer obtained from the conductive polymer precursor of the present invention has excellent thermal stability and high conductivity even when heat-treated at a high temperature of 200 ° C. or higher.
On the other hand, a conductive polymer (Comparative Example 1) obtained from a monomer in which an acidic group or a salt thereof is bonded to an aromatic ring without an alkylene group has a higher surface resistance as the heating temperature is higher, and the conductivity is higher. Declined.
 [実施例3]
<導電性組成物の製造>
 得られた導電性ポリマー(a)5質量部を水95質量部に室温で溶解させ、導電性ポリマー溶液(a-1)を得た。
 なお、「室温」とは、25℃のことである。
 得られた導電性ポリマー水溶液(a-1)100質量部に対して、50質量部となるように酸性陽イオン交換樹脂(オルガノ株式会社製、「アンバーライト」)をカラムに充填し、該カラムに導電性ポリマー溶液(a-1)をSV=8の流量で通過させて陽イオン交換処理を行い、精製された導電性ポリマー溶液(a-2)を得た。
 得られた導電性ポリマー溶液(a-2)において、導電性ポリマーの割合は4.5質量%であった(溶剤100質量部に対して、4.7質量部)。また導電性ポリマー溶液(a-2)中に含まれる塩を形成している塩基性化合物(トリエチルアミン及びアンモニア)の含有量は0.1質量%以下であった。
[Example 3]
<Manufacture of conductive composition>
5 parts by mass of the obtained conductive polymer (a) was dissolved in 95 parts by mass of water at room temperature to obtain a conductive polymer solution (a-1).
“Room temperature” means 25 ° C.
An acidic cation exchange resin (manufactured by Organo Co., Ltd., “Amberlite”) is packed into a column so as to be 50 parts by mass with respect to 100 parts by mass of the obtained aqueous conductive polymer solution (a-1). Then, the conductive polymer solution (a-1) was passed at a flow rate of SV = 8 to perform a cation exchange treatment to obtain a purified conductive polymer solution (a-2).
In the obtained conductive polymer solution (a-2), the proportion of the conductive polymer was 4.5% by mass (4.7 parts by mass with respect to 100 parts by mass of the solvent). Further, the content of the basic compounds (triethylamine and ammonia) forming the salt contained in the conductive polymer solution (a-2) was 0.1% by mass or less.
[実施例4]
 実施例3で得られた導電性ポリマー溶液(a-2)を用いて、導電性組成物溶液を調製した。アルミコンデンサの陽極酸化被膜に、前記導電性組成物溶液を2分間浸漬させた後、熱風乾燥機により120℃、30分間乾燥させ、更に180℃、120分間加熱処理を行い、陽極酸化被膜上に固体電解質層を形成させた。得られた巻回型固体電解コンデンサの等価直列抵抗を表1に併せて示す。
[Example 4]
A conductive composition solution was prepared using the conductive polymer solution (a-2) obtained in Example 3. After immersing the conductive composition solution in the anodic oxide coating of the aluminum capacitor for 2 minutes, it is dried by a hot air dryer at 120 ° C. for 30 minutes, and further subjected to heat treatment at 180 ° C. for 120 minutes, and then on the anodic oxide coating. A solid electrolyte layer was formed. Table 1 also shows the equivalent series resistance of the obtained wound solid electrolytic capacitor.
[比較例2]
 比較例1で得られた導電性ポリマー溶液(a´-2)を用いた以外は、実施例4と同様に行い、得られた固体電解コンデンサの等価直列抵抗を表1に合わせて示す。
[Comparative Example 2]
Except for using the conductive polymer solution (a′-2) obtained in Comparative Example 1, the same procedure as in Example 4 was performed, and the equivalent series resistance of the obtained solid electrolytic capacitor is shown in Table 1.
[実施例5]
 実施例3で得られたポリマー溶液(a-2)に、塩基性化合物としてジエタノールアミンを添加した以外は、実施例4と同様の方法により、固体電解質層を形成し、得られた巻回型固体電解コンデンサの等価直列抵抗を表1に併せて示す。
[Example 5]
A solid electrolyte layer was formed in the same manner as in Example 4 except that diethanolamine was added as a basic compound to the polymer solution (a-2) obtained in Example 3, and the resulting wound solid was obtained. Table 1 also shows the equivalent series resistance of the electrolytic capacitor.
[実施例6]
 また、実施例3で得られたポリマー溶液(a-2)に、塩基性化合物として水酸化リチウムを添加した以外は、実施例4と同様の方法により、固体電解質層を形成し、得られた巻回型固体電解コンデンサの等価直列抵抗を表1に併せて示す。
[Example 6]
Further, a solid electrolyte layer was formed by the same method as in Example 4 except that lithium hydroxide was added as a basic compound to the polymer solution (a-2) obtained in Example 3. Table 1 also shows the equivalent series resistance of the wound solid electrolytic capacitor.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表1中の耐熱性の評価は、下記基準で行った。
 A:120℃×30分間加熱乾燥した時の等価直列抵抗値に比べ、更に180℃×120分間加熱処理した時の等価直列抵抗値の増加が、5倍未満である。
 B:120℃×30分間加熱乾燥した時の等価直列抵抗値に比べ、更に180℃×120分間加熱処理した時の等価直列抵抗値の増加が、5倍以上である。
Evaluation of heat resistance in Table 1 was performed according to the following criteria.
A: Compared to the equivalent series resistance value when heat-dried at 120 ° C. for 30 minutes, the increase in equivalent series resistance value when heated at 180 ° C. for 120 minutes is less than 5 times.
B: Compared with the equivalent series resistance value when heated at 120 ° C. for 30 minutes, the increase in equivalent series resistance value when heated at 180 ° C. for 120 minutes is 5 times or more.
 表1より、導電性ポリマー(a)を含有する導電性ポリマー溶液(a-2)を用いた実施例4は、加熱処理しても、等価直列抵抗の増加が抑制され、加熱処理後に優れた耐熱性を示した。
 また、塩基性化合物(c)として、ジエタノールアミン、水酸化リチウムを各々添加した実施例5、実施例6も、加熱処理しても、等価直列抵抗の増加が抑制されていた。
 一方、導電性ポリマー(a)とは異なり、酸性基が芳香環に直結する導電性高ポリマー(a´)を含有する導電性ポリマー溶液(a´-2)を用いた比較例2は、加熱により等価直列抵抗が著しく増加し、加熱処理後は耐熱性が悪かった。
From Table 1, Example 4 using the conductive polymer solution (a-2) containing the conductive polymer (a) suppressed the increase in equivalent series resistance even after the heat treatment, and was excellent after the heat treatment. It showed heat resistance.
Moreover, even if Example 5 and Example 6 which respectively added diethanolamine and lithium hydroxide as a basic compound (c) were heat-processed, the increase in equivalent series resistance was suppressed.
On the other hand, unlike the conductive polymer (a), Comparative Example 2 using a conductive polymer solution (a′-2) containing a conductive high polymer (a ′) in which an acidic group is directly bonded to an aromatic ring is As a result, the equivalent series resistance significantly increased and the heat resistance was poor after the heat treatment.
 本発明の導電性ポリマー前駆体は、製造過程に加熱処理工程を含むコンデンサなどの用途に用いられる導電性ポリマーの前駆体として特に好適であり、実用上有用である。
 また、本発明の導電性ポリマーは、製造過程に加熱処理工程を含むコンデンサなどの用途にも好適に用いることができる。
The conductive polymer precursor of the present invention is particularly suitable as a precursor of a conductive polymer used for applications such as capacitors including a heat treatment step in the production process, and is practically useful.
The conductive polymer of the present invention can also be suitably used for applications such as capacitors that include a heat treatment step in the production process.
 20  固体電解コンデンサ
 21  陽極
 22  陰極
 23  セパレータ
 24  外部端子
20 Solid Electrolytic Capacitor 21 Anode 22 Cathode 23 Separator 24 External Terminal

Claims (15)

  1.  下記一般式(1)で表される、導電性ポリマー前駆体。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、R~Rはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基、及びハロゲン原子よりなる群から選ばれ、Aは酸性基又はその塩であり、nは1~20の整数である。
    A conductive polymer precursor represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), R 1 to R 4 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, an acidic group Or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1-20.
  2.  前記Rが水素原子であり、R、R、Rのうち少なくとも1つは炭素数1~24の直鎖又は分岐のアルコキシ基である、請求項1に記載の導電性ポリマー前駆体。 The conductive polymer precursor according to claim 1, wherein R 2 is a hydrogen atom, and at least one of R 1 , R 3 and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms. .
  3.  前記Rが水素原子であり、R、R、Rのうち1つが炭素数1~24の直鎖又は分岐のアルコキシ基であり、残りが水素原子である、請求項2に記載の導電性ポリマー前駆体。 The R 2 is a hydrogen atom, one of R 1 , R 3 , and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms, and the remainder is a hydrogen atom. Conductive polymer precursor.
  4.  請求項1~3のいずれか一項に記載の導電性ポリマー前駆体を重合させて得られる、導電性ポリマー。 A conductive polymer obtained by polymerizing the conductive polymer precursor according to any one of claims 1 to 3.
  5.  下記一般式(1-A)で表される繰り返し単位を有するアニリン系導電性ポリマー(a)及び溶剤(b)を含む導電性組成物。
    Figure JPOXMLDOC01-appb-C000002
     式(1)中、R、R及びRはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基及びハロゲン原子よりなる群から選ばれ、Aは酸性基又はその塩であり、nは1~20の整数である。
    A conductive composition comprising an aniline-based conductive polymer (a) having a repeating unit represented by the following general formula (1-A) and a solvent (b).
    Figure JPOXMLDOC01-appb-C000002
    In formula (1), R 1 , R 3 and R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, or a linear or branched alkoxy group having 1 to 24 carbon atoms. , An acidic group or a salt thereof, a hydroxyl group, a nitro group, and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1 to 20.
  6.  前記Rが水素原子であり、R、R、Rのうち少なくとも1つは炭素数1~24の直鎖又は分岐のアルコキシ基である、請求項5に記載の導電性組成物。 The conductive composition according to claim 5, wherein R 2 is a hydrogen atom, and at least one of R 1 , R 3 and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms.
  7.  R、R、Rのうち1つが炭素数1~24の直鎖又は分岐のアルコキシ基であり、残りが水素原子である、請求項5に記載の導電性組成物。 6. The conductive composition according to claim 5, wherein one of R 1 , R 3 and R 4 is a linear or branched alkoxy group having 1 to 24 carbon atoms, and the rest is a hydrogen atom.
  8.  さらに、塩基性化合物(c)を含む請求項5~7のいずれか1項に記載の導電性組成物。 The conductive composition according to any one of claims 5 to 7, further comprising a basic compound (c).
  9.  請求項4に記載の導電性ポリマーより形成される塗膜を有する導電体。 A conductor having a coating film formed from the conductive polymer according to claim 4.
  10.  請求項5~7のいずれか一項に記載の導電性組成物より形成される塗膜を有する導電体。 A conductor having a coating film formed from the conductive composition according to any one of claims 5 to 7.
  11.  請求項8に記載の導電性組成物より形成される塗膜を有する導電体。 A conductor having a coating film formed from the conductive composition according to claim 8.
  12.  弁作用金属体上に形成した陽極酸化被膜上に、請求項4に記載の導電性ポリマーを含む固体電解質層を具備する、固体電解コンデンサ。 A solid electrolytic capacitor comprising a solid electrolyte layer containing the conductive polymer according to claim 4 on an anodized film formed on a valve action metal body.
  13.  弁作用金属体上に形成した陽極酸化被膜上に、請求項5~7のいずれか一項に記載の導電性組成物から形成された固体電解質層を具備する、固体電解コンデンサ。 A solid electrolytic capacitor comprising a solid electrolyte layer formed of the conductive composition according to any one of claims 5 to 7 on an anodized film formed on a valve action metal body.
  14.  弁作用金属体上に形成した陽極酸化被膜上に、請求項8に記載の導電性組成物から形成された固体電解質層を具備する、固体電解コンデンサ。 A solid electrolytic capacitor comprising a solid electrolyte layer formed from the conductive composition according to claim 8 on an anodized film formed on a valve action metal body.
  15.  酸化剤存在下で、請求項1~3のいずれか一項に記載の導電性ポリマー前駆体を重合させ、下記一般式(1-A)で表される繰り返し単位を有するアニリン系導電性ポリマー(a)を製造する方法。
    Figure JPOXMLDOC01-appb-C000003
     式(1-A)中、R、R及びRはそれぞれ独立して、水素原子、炭素数1~24の直鎖又は分岐のアルキル基、炭素数1~24の直鎖又は分岐のアルコキシ基、酸性基又はその塩、水酸基、ニトロ基及びハロゲン原子よりなる群から選ばれ、Aは酸性基又はその塩であり、nは1~20の整数である。
    An aniline-based conductive polymer having a repeating unit represented by the following general formula (1-A) by polymerizing the conductive polymer precursor according to any one of claims 1 to 3 in the presence of an oxidizing agent ( Method for producing a).
    Figure JPOXMLDOC01-appb-C000003
    In formula (1-A), R 1 , R 3 and R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkyl group having 1 to 24 carbon atoms. It is selected from the group consisting of an alkoxy group, an acidic group or a salt thereof, a hydroxyl group, a nitro group and a halogen atom, A is an acidic group or a salt thereof, and n is an integer of 1-20.
PCT/JP2012/065148 2011-06-14 2012-06-13 Conductive polymer precursor, conductive polymer, and solid electrolyte capacitor WO2012173148A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011132184 2011-06-14
JP2011-132184 2011-06-14
JP2012110285 2012-05-14
JP2012-110285 2012-05-14

Publications (1)

Publication Number Publication Date
WO2012173148A1 true WO2012173148A1 (en) 2012-12-20

Family

ID=47357133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065148 WO2012173148A1 (en) 2011-06-14 2012-06-13 Conductive polymer precursor, conductive polymer, and solid electrolyte capacitor

Country Status (3)

Country Link
JP (1) JPWO2012173148A1 (en)
TW (1) TW201302854A (en)
WO (1) WO2012173148A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088704A (en) * 2015-11-06 2017-05-25 信越ポリマー株式会社 Conductive polymer dispersion, capacitor, and method of manufacturing the same
JP2020152748A (en) * 2019-03-18 2020-09-24 三菱ケミカル株式会社 Conductive polymer and production method of the same, and conductive composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101979170B1 (en) 2012-07-24 2019-05-15 미쯔비시 케미컬 주식회사 Conductor, conductive composition, and laminate
KR102188125B1 (en) 2013-05-16 2020-12-07 미쯔비시 케미컬 주식회사 Electroconductive composition, electrical conductor, laminate and method for producing same, electroconductive film, and solid electrolyte capacitor
WO2015060231A1 (en) * 2013-10-21 2015-04-30 三菱レイヨン株式会社 Electrically conductive composition, electrical conductor, electrical conductor formation method, and production method for polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133451A (en) * 1986-11-26 1988-06-06 Showa Denko Kk Secondary battery
JPS6426637A (en) * 1987-07-23 1989-01-27 Tetsuya Aisaka Electrochemical polymerization of aniline and aniline derivative
JP2002140930A (en) * 2000-11-01 2002-05-17 Mitsubishi Rayon Co Ltd Conductive composition and flexible conductive material
JP2009238754A (en) * 2009-05-11 2009-10-15 Hitachi Ltd Solid polymer electrolyte and its membrane, membrane/electrode junction using the membrane, and fuel cell
JP2010116441A (en) * 2008-11-11 2010-05-27 Mitsubishi Rayon Co Ltd Conductive composition for capacitor electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133451A (en) * 1986-11-26 1988-06-06 Showa Denko Kk Secondary battery
JPS6426637A (en) * 1987-07-23 1989-01-27 Tetsuya Aisaka Electrochemical polymerization of aniline and aniline derivative
JP2002140930A (en) * 2000-11-01 2002-05-17 Mitsubishi Rayon Co Ltd Conductive composition and flexible conductive material
JP2010116441A (en) * 2008-11-11 2010-05-27 Mitsubishi Rayon Co Ltd Conductive composition for capacitor electrode
JP2009238754A (en) * 2009-05-11 2009-10-15 Hitachi Ltd Solid polymer electrolyte and its membrane, membrane/electrode junction using the membrane, and fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIVAS, B.L. ET AL.: "Electrical conductivity and thermal properties of poly(m-aminophenyl acetic acid) and its copolymers with aniline", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 89, no. 6, 2003, pages 1484 - 1492 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088704A (en) * 2015-11-06 2017-05-25 信越ポリマー株式会社 Conductive polymer dispersion, capacitor, and method of manufacturing the same
JP2020152748A (en) * 2019-03-18 2020-09-24 三菱ケミカル株式会社 Conductive polymer and production method of the same, and conductive composition

Also Published As

Publication number Publication date
JPWO2012173148A1 (en) 2015-02-23
TW201302854A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP6020165B2 (en) Conductive composition, conductor using the conductive composition, and solid electrolytic capacitor
EP2239294B1 (en) Soluble conductive polymer and method for preparing same
WO2012173148A1 (en) Conductive polymer precursor, conductive polymer, and solid electrolyte capacitor
JP2010116441A (en) Conductive composition for capacitor electrode
JP2018123213A (en) Polythiophene and composition thereof, and use therefor
JP2014015550A (en) Conductive composition and conductor using the conductive composition
JP3906071B2 (en) Conductive polyaniline composition, film thereof, and production method thereof
JP2012511261A (en) Intrinsically conductive polymer
JPH0138808B2 (en)
US7094865B2 (en) Thiophenes and polymers derived therefrom
JP2001240730A (en) Electroconductive polythiophene
JP3464733B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2004525946A (en) Thiophenes and polymers derived from them
JP2015048370A (en) Conductive composite material
JP2001240742A (en) Polyanilines and its preparation process
JP2013253125A (en) Electroconductive composition and electroconductive material produced by using the electroconductive composition
JP3213994B2 (en) Method for manufacturing solid electrolytic capacitor
JP4565522B2 (en) Method for producing conductive polymer dispersion, conductive polymer dispersion, conductive polymer and use thereof
JP7297618B2 (en) (7-halo-2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methanol
JP2013136759A (en) Conductive composition for capacitor electrode
JP2016124889A (en) Conductive composite material and solid electrolytic capacitor prepared therewith
JP2012224721A (en) Polymeric composite for conductive film, and production method and use of the same
JP2014231540A (en) Conductive polymer precursor, conductive polymer, and method for producing the same
JP3649526B2 (en) Conductive polyaniline composition and solid electrolytic capacitor using the same as solid electrolyte
JPH03174437A (en) Electroconductive polymer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012531155

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800998

Country of ref document: EP

Kind code of ref document: A1