WO2012173115A1 - Solar power generation device configuration extraction apparatus, solar power generation device configuration extraction method, solar power generation device configuration extraction program, and solar power generation device configuration assessment system - Google Patents

Solar power generation device configuration extraction apparatus, solar power generation device configuration extraction method, solar power generation device configuration extraction program, and solar power generation device configuration assessment system Download PDF

Info

Publication number
WO2012173115A1
WO2012173115A1 PCT/JP2012/065012 JP2012065012W WO2012173115A1 WO 2012173115 A1 WO2012173115 A1 WO 2012173115A1 JP 2012065012 W JP2012065012 W JP 2012065012W WO 2012173115 A1 WO2012173115 A1 WO 2012173115A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
information indicating
configuration
generation device
solar
Prior art date
Application number
PCT/JP2012/065012
Other languages
French (fr)
Japanese (ja)
Inventor
時由 梅田
内田 秀樹
英臣 由井
前田 強
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012173115A1 publication Critical patent/WO2012173115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S2201/00Prediction; Simulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar power generation device configuration extraction device, a solar power generation device configuration extraction method, a solar power generation device configuration extraction program, and a solar power generation device configuration determination system.
  • Patent Document 1 discloses a solar cell module in which the calculation means in the solar cell module layout design support apparatus assigns to each system the number of possible systems and the number of possible solar cell modules arranged on this installation surface for each installation surface. A system decomposition candidate consisting of the type and the number thereof is obtained, and a combination of system decomposition candidates on each installation surface is calculated. Then, the calculation means selects the combination of the power conditioners having the highest power conversion efficiency and the lowest price for each of the calculated combinations of system decomposition candidates.
  • the allocation means performs allocation to the system of modules that belong to any system of each solar cell module on the installation surface, and obtains a plurality of system-specific module allocation information, It is shown that the best module-specific module allocation information is selected from them.
  • Patent Document 2 discloses a photovoltaic power generation apparatus grounding support system that includes a calculation unit that calculates an installation area of a photovoltaic power generation apparatus based on geographic information.
  • an aspect of the present invention is to provide a technique that can easily provide a configuration of a photovoltaic power generation apparatus according to the installation location of the photovoltaic power generation apparatus in a short time.
  • the solar power generation device configuration extraction device includes a configuration determination unit that determines the configuration of the solar power generation device based on information indicating installation conditions of the solar power generation device input from the outside,
  • the configuration determination unit includes a solar radiation amount storage unit in which information indicating a location and information indicating a solar radiation amount at the location are associated and stored, and one of the information indicating the input installation conditions indicates the installation location Information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location, the amount of solar radiation reading unit that reads from the amount of solar radiation storage unit, and the information indicating the position of the sun is information indicating the location
  • a solar position storage unit stored in association with information indicating the date and time, and information indicating the position of the sun at each date and time in the installation location is read from the solar position storage unit, It comprises information indicating the position of the sun has, based on the information indicating the read insolation, a configuration calculation unit for calculating the configuration of the photovoltaic device.
  • the configuration calculation unit changes information indicating the position of the sun and information indicating the read solar radiation every time the configuration is changed.
  • a power generation amount calculation unit that calculates a power generation amount of the solar power generation apparatus and a configuration extraction unit that extracts a configuration in which the calculated power generation amount exceeds a predetermined threshold may be provided.
  • a configuration storage unit in which information indicating the configuration and information indicating a coefficient for changing the power generation amount of the solar power generation device are associated and stored.
  • the power generation amount calculation unit reads information indicating the coefficient associated with the information indicating the configuration from the configuration storage unit, information indicating the read coefficient, and the sun
  • the power generation amount of the solar power generation device may be calculated based on information indicating the position of the solar power generation device and information indicating the amount of solar radiation.
  • one of the information indicating the configuration stored in the configuration storage unit is a shape light collector and a fluorescent light collector provided in the solar power generator. It is information indicating the stacking order, and the power generation amount calculation unit reads information indicating the coefficient associated with the information indicating the stacking order from the configuration storage unit every time the stacking order is changed, and reads the read.
  • the power generation amount of the solar power generation device may be calculated based on information indicating a coefficient, information indicating the position of the sun, and information indicating the amount of solar radiation.
  • one of the information indicating the configuration stored in the configuration storage unit is information indicating a shape of a shape light collector provided in the solar power generation device.
  • the power generation amount calculation unit reads information indicating the coefficient associated with information indicating the shape of the shape light collector plate from the configuration storage unit every time the shape of the shape light collector plate is changed.
  • the power generation amount of the solar power generation device may be calculated based on information indicating a coefficient, information indicating the position of the sun, and information indicating the amount of solar radiation.
  • one of the information indicating the configuration stored in the configuration storage unit is information indicating an installation elevation angle of the solar power generation device with respect to the ground.
  • the power generation amount calculation unit reads information indicating the coefficient associated with information indicating the installation elevation angle from the configuration storage unit every time the installation elevation angle is changed, and information indicating the read coefficient, You may calculate the electric power generation amount of the said solar power generation device based on the information which shows the position of the sun, and the information which shows the said solar radiation amount.
  • one of the information indicating the configuration stored in the configuration storage unit is information indicating the type of the solar cell
  • the power generation amount calculation The unit reads information indicating the coefficient associated with the information indicating the type of the solar cell from the configuration storage unit every time the type of the solar cell is changed, and information indicating the read coefficient
  • the power generation amount of the solar power generation device may be calculated based on information indicating the position of the solar power generation device and information indicating the amount of solar radiation.
  • one of the information indicating the configuration stored in the configuration storage unit is at least one normal line of the shape light collector and the fluorescent light collector. Is the information indicating the presence or absence of solar tracking to change the direction of the solar power generation device so that the direction of the sun, the power generation amount calculation unit, whether to change the presence or absence of the solar tracking, the presence or absence of the solar tracking.
  • the information indicating the coefficient associated with the information to be displayed is read from the configuration storage unit, and based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, You may calculate the electric power generation amount of a photovoltaic device.
  • an installation condition storage unit that stores information indicating installation conditions and installation condition identification information that identifies the installation conditions, and the input is stored.
  • An installation condition extraction unit that extracts from the installation condition storage unit the installation condition identification information associated with an installation condition that satisfies a predetermined requirement with reference to information indicating the installation condition, the installation condition identification information, and the photovoltaic power generation Corresponding to the extracted installation condition identification information when the installation condition identification information is extracted by the second configuration storage unit stored in association with information indicating the configuration of the apparatus and the installation condition extraction unit
  • a configuration reading unit that reads information indicating the configuration of the solar power generation device from the second configuration storage unit.
  • the configuration determination unit may include information indicating the input installation conditions when the installation condition identification information is not extracted by the installation condition extraction unit. Based on this, the configuration of the solar power generation device may be determined.
  • the solar power generation device configuration extraction device further includes a price storage unit that stores information indicating the configuration of the solar power generation device and information indicating a price at the time of the configuration, And a price reading unit that reads information indicating a price corresponding to the configuration of the photovoltaic power generation apparatus determined by the configuration determination unit from the price storage unit.
  • a solar power generation device configuration extraction device includes a configuration determination unit that determines the configuration of the solar power generation device based on information indicating installation conditions of the solar power generation device input from the outside.
  • the configuration determination unit includes a configuration storage unit in which information indicating the installation conditions of the solar power generation device and information indicating the configuration of the solar power generation device are associated and stored, and information indicating the input installation conditions And a configuration reading unit that reads from the configuration storage unit information indicating the configuration of the photovoltaic power generation apparatus that is associated with the installation condition information that satisfies a predetermined requirement with reference to.
  • information indicating the configuration of the solar power generation device stored in the configuration storage unit is further associated with information indicating power generation efficiency, and the configuration reading unit reads the read.
  • the information indicating the power generation efficiency corresponding to the information indicating the configuration of the photovoltaic power generation apparatus may be read from the configuration storage unit.
  • the information indicating the price when taking the configuration stored in the configuration storage unit further includes information indicating the configuration of the solar power generation device and the price when taking the configuration.
  • the configuration reading unit may read information indicating a price corresponding to the information indicating the configuration of the photovoltaic power generation device to be read from the configuration storage unit.
  • the configuration storage unit indicates installation condition information input from the outside, information indicating the configuration of the solar power generation device, information indicating the power generation conversion efficiency, or price. At least one of the information may be additionally stored.
  • the photovoltaic power generation device configuration extraction method includes determining the configuration of the photovoltaic power generation device based on information indicating installation conditions of the photovoltaic power generation device input from the outside.
  • One of the information indicating the installation conditions is information indicating the installation location, reading information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location, and the position of the sun at each date and time at the installation location And calculating the configuration of the photovoltaic power generation device based on the read information indicating the position of the sun and the read information indicating the amount of solar radiation. .
  • a photovoltaic power generation device configuration extraction program determines a configuration of the photovoltaic power generation device based on information indicating an installation condition of the photovoltaic power generation device input from an external device to a computer.
  • the information indicating the location and the information indicating the amount of solar radiation at the location are stored in association with each other, and one of the information indicating the input installation conditions is installed.
  • Information indicating a location reading information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location, reading information indicating the position of the sun at each date and time at the installation location, and reading the sun Calculating the configuration of the photovoltaic power generation apparatus based on the information indicating the position of the solar power generation and the information indicating the read solar radiation amount.
  • the solar power generation device configuration determination system includes a terminal device and a solar power generation device configuration extraction device, and the solar power generation device configuration extraction device is a solar input from the terminal device.
  • a configuration determination unit that determines the configuration of the photovoltaic power generation device based on information indicating installation conditions of the photovoltaic power generation device, the configuration determination unit includes information indicating a location and information indicating an amount of solar radiation at the location.
  • One of the information indicating the installed solar radiation amount storage unit and the input installation condition is information indicating the installation location, and indicates the solar radiation amount of a point within a predetermined distance range from the installation location.
  • a solar radiation amount reading unit that reads information from the solar radiation amount storage unit, and a solar position storage unit in which information indicating the position of the sun is stored in association with information indicating the location and information indicating the date and time;
  • the information indicating the position of the sun at each date and time at the installation location is read from the sun position storage unit, and the sun is based on the information indicating the position of the read sun and the information indicating the read amount of solar radiation.
  • a configuration calculation unit that calculates the configuration of the photovoltaic power generation device.
  • the terminal device and the solar power generation configuration extraction device may be connected via a communication network.
  • the configuration determination unit further stores information indicating installation conditions and installation condition identification information for identifying the installation conditions in association with each other.
  • the installation condition identification information is extracted by the second configuration storage unit in which the condition identification information and the information indicating the configuration of the photovoltaic power generation apparatus are associated and stored, and the installation condition extraction unit, the extraction is performed.
  • a configuration reading unit that reads information indicating the configuration of the photovoltaic power generation device corresponding to the installation condition identification information from the second configuration storage unit.
  • the configuration determination unit further includes information indicating installation conditions of the solar power generation device and information indicating the configuration of the solar power generation device.
  • a third configuration storage unit that is stored, and the configuration determination by the configuration determination unit includes information indicating an optimal configuration corresponding to the input information indicating installation conditions of the photovoltaic power generation device; It may be performed by reading from the unit.
  • a solar power generation device configuration extraction method that includes information indicating the position of the sun at each date and time at a solar power generation device installation location, Based on the information indicating the amount of solar radiation, the configuration of the solar power generation device is determined.
  • the configuration of the solar power generation device according to the installation location of the solar power generation device can be easily provided in a short time.
  • the location id is “00000001”
  • the average of the month in which the solar radiation amount changes with time due to direct light and the average of the same month of the temporal change in the solar radiation amount due to scattered light are shown.
  • table T3 memorize
  • table T4 coefficient r 2 which depends on the shape of the shape collector panel stored in the configuration storage unit.
  • table T5 photoelectric conversion efficiency r 5 stored in the configuration storage unit.
  • table T6 in which the information Cp which shows the structure of the solar power generation device memorize
  • table T8 in which the installation condition identification information Cid stored in the configuration storage unit and the information Cp indicating the configuration of the photovoltaic power generation apparatus are associated with each other. It is the flowchart which showed the flow of the process of the solar power generation device structure extraction apparatus in 3rd Embodiment. It is a schematic block diagram which shows the structure of the solar power generation device structure judgment system in 4th Embodiment. It is a schematic block diagram which shows the structure of the solar power generation device structure extraction apparatus in 4th Embodiment. It is an example of table T9 memorize
  • FIG. 1 is a schematic block diagram illustrating a configuration of a solar power generation device configuration determination system 1 according to the first embodiment.
  • the solar power generation device configuration determination system 1 includes a terminal device 10 and a solar power generation device configuration extraction device 100.
  • the solar power generation device will be described by taking a tandem concentrating solar power generation device including a fluorescent light collector and a shape light collector as an example.
  • the present invention is not limited to this.
  • the terminal device 10 and the solar power generation device configuration extraction device 100 are connected by a wired or wireless line.
  • the terminal device 10 receives information indicating installation conditions when the following solar power generation device is input by a user of the terminal device.
  • the installation conditions are, for example, information indicating a location where the photovoltaic power generation apparatus is installed (for example, information indicating longitude x, information indicating latitude y) and the direction of the panel of the photovoltaic power generation apparatus.
  • the angle formed by the straight line connecting the east and west of the fluorescent light collecting plate or the shape light collecting plate included in the solar power generation device is input. In addition, you may add the shadow produced by the surrounding environment in an installation place to installation conditions.
  • the terminal device 10 includes information indicating installation conditions when installing the received photovoltaic power generation device (information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and direction ⁇ _1. Information) to the photovoltaic power generation device configuration extraction unit 100.
  • the solar power generation device configuration extraction device 100 extracts the configuration of the solar power generation device and the price of the configuration based on information indicating installation conditions when installing the solar power generation device supplied from the terminal device 10. And the information which shows the structure of the extracted solar power generation device, and the information which shows the price of the structure are output to the exterior of an own apparatus, for example, information processing apparatus of a manufacturer.
  • the solar power generation device configuration extraction device 100 may output information indicating the configuration of the extracted solar power generation device and information indicating the price of the configuration to the user terminal device 10.
  • the solar power generation device configuration extraction device 100 can extract the configuration of the solar power generation device according to the installation conditions of the solar power generation device. As a result, the solar power generation device configuration extraction device 100 can easily provide the manufacturer with the optimal configuration of the solar power generation device according to the installation location of the solar power generation device in a short time.
  • FIG. 2 is a schematic block diagram illustrating a configuration of the terminal device 10 according to the first embodiment.
  • the terminal device 10 includes a storage unit 11, a control unit 12, a display unit 13, an input unit 14, and a communication unit 15.
  • the storage unit 11 stores an installation condition input program for inputting installation conditions executed by the control unit 12.
  • the control unit 12 reads the installation condition input program from the storage unit 11, executes the read installation condition input program, and causes the display unit 13 to display a screen for inputting the installation conditions.
  • the input unit 14 displays information indicating the installation condition (for example, information indicating the longitude x, information indicating the latitude y, and presence / absence of the sun tracking function Ft). And information indicating the direction ⁇ _1 are received.
  • the input unit 14 outputs information indicating the accepted installation conditions to the control unit 12.
  • the control unit 12 causes the storage unit 11 to store information indicating the installation conditions supplied from the input unit 14.
  • control unit 12 obtains information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and direction ⁇ _1 via the communication unit 15). Control information to be transmitted to the solar power generation device configuration extraction device 100.
  • the communication unit 15 includes information indicating installation conditions supplied from the control unit 12 (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and information indicating direction ⁇ _1. ) Is transmitted to the photovoltaic power generation device configuration extraction device 100.
  • FIG. 3 is a schematic block diagram illustrating the configuration of the photovoltaic power generation device configuration extraction device 100 according to the first embodiment.
  • the solar power generation device configuration extraction device 100 includes a configuration determination unit 110, a price storage unit 121, and a price reading unit 122.
  • the configuration determination unit 110 determines the configuration of the solar power generation device based on information indicating the installation conditions of the solar power generation device input from the outside of the device itself.
  • the configuration determining unit 110 includes a solar radiation amount storage unit 111, a solar radiation amount reading unit 112, a solar position storage unit 113, a configuration storage unit 114, and a configuration calculation unit 115.
  • the configuration calculation unit 115 includes a power generation amount calculation unit 116 and a configuration extraction unit 117.
  • the solar radiation amount storage unit 111 stores information indicating a location and information indicating the solar radiation amount at the location in association with each other.
  • FIG. 4 is an example of a table T1 stored in the solar radiation amount storage unit 111.
  • location identification information Pid which is identification information unique to a location
  • latitude y and longitude x are associated.
  • the location identification information Pid is “00000001”
  • it is identification information indicating the location of Tokyo
  • the latitude y is 35 degrees 40 minutes
  • the longitude x is 139 degrees 42 minutes.
  • the solar radiation amount storage unit 111 information indicating the month (Month), information indicating the hour (Hour), information indicating the daily solar radiation amount by direct light averaged for each month, and averaged for each month Information indicating the amount of solar radiation for each hour due to scattered light is stored in association with each other, and these pieces of information are stored in a separate table T2_i (i is an integer from 1 to the number of Pids) for each piece of location identification information Pid. ing.
  • the direct light is light that directly reaches the solar power generation device from the sun.
  • the scattered light is light that has been scattered by a cloud or the like and has reached the solar power generation device.
  • FIG. 5 is an example of a table T2_00000001 of the amount of solar radiation for each date and time when the location identification information Pid is “00000001”.
  • the monthly (Month), the hour (Hour), the amount of solar radiation averaged every hour of the direct light averaged every month, and the amount of solar radiation per hour by the scattered light averaged monthly Is associated.
  • the solar radiation amount per hour by direct light averaged monthly is 0 [W / m 2 ]
  • the solar radiation amount per hour by scattered light averaged monthly is 0. [W / m 2 ].
  • the amount of solar radiation at 12:00 by direct light averaged every month is 943 [W / m 2 ]
  • the amount of solar radiation at 12:00 by scattered light averaged by month Is 60 [W / m 2 ].
  • FIG. 6 is a diagram showing the average of the month in which the solar radiation amount changes with time due to direct light and the average of the same month of the temporal change in the solar radiation amount due to scattered light when the location id is “00000001”. is there.
  • a polygonal line W51 indicating the temporal change of the direct light averaged in a certain month
  • a polygonal line W52 indicating the temporal change of the scattered light averaged in the same month are shown.
  • both the amount of solar radiation by direct light and the amount of solar radiation by scattered light are in the daytime from 7:00 to 18:00.
  • the amount of solar radiation by direct light increases from 7 o'clock to 12 o'clock and decreases from 12 o'clock to 18 o'clock.
  • the amount of solar radiation by scattered light is substantially constant from 7:00 to 18:00.
  • the amount of solar radiation by direct light is larger than the amount of solar radiation by scattered light during the daytime from 7:00 to 18:00.
  • the solar radiation amount reading unit 112 determines a predetermined amount from the installation location based on the information indicating the location (information indicating the longitude x and the information indicating the latitude y) which is one of the information indicating the installation conditions.
  • Information indicating the amount of solar radiation at a point within the distance range is read from the solar radiation amount storage unit 111.
  • the solar radiation amount reading unit 112 extracts the longitude and latitude closest to the longitude x and the latitude y in the table T1 stored in the solar radiation amount storage unit 111, and is associated with the extracted longitude and latitude.
  • the location identification information Pid is referred to.
  • the solar radiation amount reading unit 112 refers to the table T2_Pid for each place identification information Pid stored in the solar radiation amount storage unit 111, and in each month and each hour, the solar radiation amount reading unit 112 is averaged by the direct light averaged every month. reading the information representing the amount of solar radiation I D, and information indicating the amount of solar radiation I S for each time the average scattered light for each month.
  • the solar radiation amount reading unit 112 shows information indicating the amount of solar radiation I D for every time by the read monthly averaged the direct light, the solar radiation amount I S of each time the average scattered light for each month
  • the information is output to the power generation amount calculation unit 116 of the configuration calculation unit 115 together with information indicating the longitude x, information indicating the latitude y, information indicating the presence / absence Ft of the sun tracking function, and information indicating the direction ⁇ _1.
  • FIG. 7 is an example of a cross-sectional view of the solar power generation device 60.
  • a cross-sectional view of the photovoltaic power generator 60 is shown on the YZ plane.
  • the solar power generation device 60 includes a fluorescent light collector 61, a reflector 62, a first solar cell 63, a shape collector 65, a second solar cell 66, and a reflector 67.
  • the solar power generation device 60 is laminated
  • the fluorescent light collector 61 is installed closer to the sun S68 than the shape light collector 65.
  • the fact that the fluorescent light collecting plate 61 is closer to the sun S68 than the shape light collecting plate 65 means that the shape light collecting plate 65 and the fluorescent light collecting plate 61 are stacked. Which of the fluorescent light collecting plate 61 and the shape light collecting plate 65 is closer to the sun S68 depends on the installation location, and is determined by the configuration calculation unit 115 to have a larger total annual power generation amount.
  • the light L1 irradiated from the sun S68 is incident on the first main surface 61a of the fluorescent light collector 61.
  • a plurality of types of phosphors having different absorption wavelength ranges (for example, the first phosphor 61b, the second phosphor 61g, and the third phosphor 61r in FIG. 7) are dispersed in the fluorescent light collector 61.
  • the first phosphor 61b absorbs ultraviolet light and emits blue fluorescence
  • the second phosphor 61g absorbs blue light and emits green fluorescence
  • the third phosphor 61r emits green light. Absorbs and emits red fluorescence.
  • the first phosphor 61b, the second phosphor 61g, and the third phosphor 61r are mixed when, for example, a PMMA resin is molded.
  • the mixing ratio of the first phosphor 61b, the second phosphor 61g, and the third phosphor 61r is, for example, 0.02% for the first phosphor 61b, 0.02% for the second phosphor 61g, and the third phosphor 61r. Is 0.02%.
  • the mixing ratio of the first phosphor 61b, the second phosphor 61g, and the third phosphor 61r is shown as a volume ratio with respect to the PMMA resin.
  • FIG. 8 is a view of the fluorescent light collector 61 as viewed from above.
  • the reflective plate 62 in FIG. 7 corresponds to the reflective plate 62a, the reflective plate 62b, and the reflective plate 62c in FIG.
  • the fluorescent light collecting plate 61 has three end faces covered with a reflecting plate 62a, a reflecting plate 62b, and a reflecting plate 62c, and the first end face 62d, which is the remaining one end face, is covered with a first solar cell 63. .
  • the reflecting plate 62a, the reflecting plate 62b, and the reflecting plate 62c reflect the fluorescence emitted from the fluorescent substance inside the fluorescent light collecting plate 61, and guide the reflected fluorescence L2 in the light collecting direction D74. As a result, the reflected fluorescence L2 is guided to the first end face 62d in FIG. 7, and the fluorescence guided to the first end face 62c is incident on the first solar cell 63.
  • the first solar cell 63 converts the incident fluorescence into electricity with a conversion efficiency R depending on the type of the first solar cell 63.
  • the fluorescent light collector 61 transmits the light L3 out of the incident light L1 and causes the light L3 to enter the first main surface 65a of the shape light collector 65.
  • the second main surface 65b of the shape light collector 65 is provided with a plurality of grooves T65 that reflect the light incident from the first main surface 65a and change the traveling direction of the light toward the first end surface 65c. .
  • the prism shape provided on the second main surface 65 b of the shape light collector 65 is enlarged. It is sectional drawing of groove
  • an inclined surface T1 that forms an angle ⁇ _1 (for example, 90 degrees) with respect to the Y axis and an inclined surface T2 that forms an angle ⁇ _2 (for example, 30 degrees) with respect to the Y axis intersect at a ridge line T3. It is a V-shaped groove.
  • An inclined surface T2 is disposed on the first end surface 65c side with respect to the ridge line T3, and an inclined surface T1 is disposed on the opposite side to the first end surface 65c.
  • the length l of the prism which is the width in the Y direction of one groove T, is 100 ⁇ m
  • the prism interval s is 20 ⁇ m
  • the refractive index of the shape light collector 65 is 1.5.
  • the angle ⁇ _1, the angle ⁇ _2, the prism length l, the prism interval s, and the refractive index of the shape light collector 65 are not limited thereto.
  • the reflection plate 67 reflects the light transmitted through the second main surface 65b of the shape light collector 65 and causes the reflected light to enter the second main surface 65b of the shape light collector 65. Thereby, the reflecting plate 67 can reflect the light leaking outside from the second main surface 65 b of the shape light collector 65.
  • the groove T65 of the shape light collector 65 guides light incident from the second main surface 65b to the first end surface 65c. Thereby, the light reflected by the reflecting plate 67 is also used for solar power generation.
  • the light L4 guided to the first end face 65c is incident on the second solar cell 66.
  • the second solar cell 66 converts the incident light L4 into electricity with a conversion efficiency R depending on the type of the second solar cell 66.
  • FIG. 9 is a diagram for explaining the direction ⁇ _1 of the sun and the direction ⁇ _1 of the solar power generation device 60.
  • E indicates east
  • W indicates west
  • S indicates south
  • N indicates north.
  • the direction ⁇ _1 of the sun S68 is an angle formed by a straight line from the sun S68 to the solar power generation device 60 and the x axis.
  • the direction ⁇ _1 of the solar power generation device 60 is an angle formed by the first principal surface 61a of the shape light collector 61 of the solar power generation device 60 and the x axis.
  • FIG. 10 is a diagram for explaining an incident angle ⁇ _2 of the sun with respect to the ground and an installation elevation angle ⁇ _2 that is an angle at which the solar power generation device 60 is installed with respect to the ground.
  • the installation elevation angle ⁇ _2 is an angle formed by the first main surface 61a of the fluorescent light collector 61 included in the solar power generation device 60 with respect to the ground 82.
  • the incident angle ⁇ _2 of the sunlight L1 is an angle of the sunlight L1 with respect to the ground 82.
  • the angle ⁇ is represented by the sum of the incident angle ⁇ _2 and the installation elevation angle ⁇ _2.
  • the sun position storage unit 113 stores information indicating the position of the sun in association with information indicating the place and information indicating the date and time. Specifically, for example, in the solar position storage unit 113, information indicating latitude x, information indicating longitude y, information indicating month MM, information indicating hour HH, and information indicating sun direction ⁇ _1. And information indicating the elevation angle ⁇ _2 of the sun are associated with each other.
  • FIG. 11 is an example of a table T3 in which information indicating the position of the sun stored in the sun position storage unit 113 is stored.
  • the latitude x, the longitude y, the month MM, the hour HH, the sun direction ⁇ _1, and the sun elevation angle ⁇ _2 are associated with each other. For example, in the case of latitude of 35 degrees 40 minutes corresponding to Tokyo and longitude of 139 degrees 42 minutes, in the case of 12:00 in January, it is indicated that the sun's direction is 90 degrees and the sun's elevation angle is 35 degrees.
  • the power generation amount calculation unit 116 stores the solar position of each month MM and each hour HH associated with the information indicating the longitude x supplied from the solar radiation amount reading unit 112 and the information indicating the latitude y.
  • Information indicating the solar direction ⁇ _1 and information indicating the solar incident angle ⁇ _2 are read from the unit 113.
  • the configuration storage unit 114 information indicating the configuration and information indicating coefficients (r 1 , r 2 , r 5 , r 6 ) for changing the power generation amount of the photovoltaic power generation apparatus are stored in association with each other. Specifically, for each information Fud indicating the stacking order of the fluorescent light collecting plate and the shape light collecting plate, information indicating the coefficient r 1 depending on the stacking order and information indicating the coefficient r 6 depending on the stacking order are the configuration storage unit. 114.
  • the information Fud indicating the stacking order is 1 or 0. In the case of 1, the shape light collector 65 and the fluorescent light collector 61 are stacked in this order. It is assumed that they are stacked in order.
  • the configuration storage unit 114 stores information indicating the coefficient r 2 depending on the installation location of the photovoltaic power generation apparatus and the lower surface prism shape of the shape light collector 65 in association with information indicating the shape of the shape light collector 65. Has been. Specifically, for example, for each predetermined distance (for example, a length of 1 degree latitude or a length of 1 degree longitude), it is calculated by the existing ray software for each bottom prism shape of the shape light collector 65.
  • the coefficient r 2 is stored in the configuration storage unit 114.
  • the coefficient r 2 is related to the information indicating the shape of the shape light collector 65.
  • the present invention is not limited to this. Instead, the coefficient r 2 is the value of the solar power generation device. It may be related to the shape.
  • Figure 12 is an example of the coefficient r 2 of the table T4 that depends on the lower surface prism shapes of collector panel 65 stored in the configuration storage unit 114.
  • table T4 in the figure and latitude y, and longitude x, the angle Shita_1, the angle Shita_2, prism and length l, and a prism spacing s, and the coefficient r 2 is associated.
  • the coefficient r 2 is 0.9. That is, when the installation location of the photovoltaic power generation device and the shape of the lower surface prism of the shape light collector 65 are determined, the coefficient r 2 is uniquely determined.
  • FIG. 13 is an example of a table T5 photoelectric conversion efficiency r 5 stored in the configuration storage unit 114.
  • the solar cell identification information SBid identifying the solar cell, the type of solar cell, the photoelectric conversion efficiency r 5 is associated.
  • the solar cell identification information SBid is 1, the type of the solar cell of amorphous Si (silicon), photoelectric conversion efficiency r 5 is 10%.
  • the configuration calculation unit 115 reads information indicating the position of the sun at each date and time at the installation location from the sun position storage unit 113, and information indicating the read position of the sun and the read amount of solar radiation The configuration of the photovoltaic power generation apparatus is calculated based on the information indicating
  • the power generation amount calculation unit 116 included in the configuration calculation unit 115 is based on information indicating the position of the sun and information indicating the read amount of solar radiation every time the configuration of the photovoltaic power generation apparatus is changed. The power generation amount of the solar power generation device is calculated. Then, the power generation amount calculation unit 117 included in the configuration calculation unit 115 extracts the configuration of the solar power generation device having the highest power generation amount among the calculated power generation amounts of the solar power generation device.
  • the power generation amount calculation unit 116 each time the power generation amount calculation unit 116 changes the configuration, the information indicating the coefficient associated with the information indicating the configuration is read from the configuration storage unit 114, Based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, the power generation amount of the photovoltaic power generation apparatus is calculated.
  • the power generation amount calculation unit 116 reads the coefficient r 1 (Fud) and the coefficient r 6 (Fud) associated with the information Fud indicating the stacking order from the configuration storage unit 114. . Every time the angle ⁇ _1, the angle ⁇ _2, the prism length l, and the prism interval s are changed, the power generation amount calculation unit 116 indicates the information, the information indicating the longitude x input from the solar radiation amount reading unit 112, and the latitude y. Information indicating the coefficient r 2 (x, y, ⁇ _1, ⁇ _2, l, s) associated with the information is read from the table T4 of the configuration storage unit 114.
  • the power generation amount calculation unit 116 is installed in the table T4 stored in the configuration storage unit 114.
  • the longitude x and latitude y closest to the place are extracted from the table T4 of the configuration storage unit 114.
  • the power generation amount calculation unit 116 indicates the coefficient r 2 associated with the extracted longitude x and latitude y. Read information. Thereby, the power generation amount calculation unit 116 can obtain the coefficient r 2 from the installation location of the solar power generation device and the lower surface prism shape of the shape light collector 65.
  • the power generation amount calculation unit 116 may calculate the coefficient r 2 each time according to the longitude x and the latitude y indicated by the information input from the solar radiation amount reading unit 112. In that case, the power generation amount calculation unit 116 reads the ray software stored in the configuration storage unit 114 in advance, and the longitude x, latitude y, and angle ⁇ _1 indicated by the information input from the solar radiation amount reading unit 112 are stored in the ray software. , the angle Shita_2, prism length l, by entering and running information indicating each prism spacing s, may be calculated coefficient r 2.
  • the power generation amount calculation unit 116 changes a coefficient r 3 (Ft, x, y, i, j, ⁇ _1) that changes the power generation amount depending on the direction ⁇ _1. Is calculated according to the following equation (1).
  • the coefficient r 3 represents a component of light that is perpendicularly incident on the first main surface 61a in the solar irradiation light L1, and is a value that is determined depending on the solar irradiation angle ⁇ _1 and the direction ⁇ _1 of the solar power generation device 60. is there.
  • the power generation amount calculation unit 116 changes the power generation amount depending on the installation elevation angle ⁇ _2 every time the installation elevation angle ⁇ _2 of the solar power generation device 60 is changed, r 4 (x, y, i, j, ⁇ _2). Is calculated according to the following equation (2).
  • the angle ⁇ indicates the angle ⁇ in FIG.
  • Coefficient r 4 out of the irradiation light L1 of the sun, represents the component of the light incident perpendicularly to the first main surface 61a, depending on the installation elevation ⁇ _2 installing the incident angle ⁇ _2 and photovoltaic device of the solar It is a determined value.
  • the power generation amount calculation unit 116 reads the coefficient r 5 for changing the power generation amount depending on the type of solar cell from the configuration storage unit 114.
  • Power generation amount calculating unit 116 each time changing the configuration of the photovoltaic power generator, calculates the power generation amount P D annually by the direct light.
  • Power generation amount calculating unit 116 in accordance with the following equation (4), each time changing the configuration of the photovoltaic power generator, calculates the power generation amount P S Annual by scattered light.
  • the configuration storage unit 114 calculates the total annual power generation amount PT for all the configuration combinations, and outputs information indicating the total annual power generation amount PT for each calculated configuration combination to the configuration extraction unit 117.
  • one piece of information indicating the configuration stored in the configuration storage unit 114 indicates the stacking order of the shape light collecting plate and the fluorescent light collecting plate included in the solar power generation device.
  • the power generation amount calculation unit 116 reads the information indicating the coefficient associated with the information indicating the stacking order from the configuration storage unit 114, and the information indicating the read coefficient, Based on the information indicating the position of the sun and the information indicating the amount of solar radiation, the power generation amount of the solar power generation device is calculated.
  • One piece of information indicating the configuration stored in the configuration storage unit 114 is information indicating the shape of the shape light collector included in the solar power generation device, and the power generation amount calculation unit 116 changes the shape of the shape light collector.
  • information indicating a coefficient associated with information indicating the shape of the shape light collector is read from the configuration storage unit 114, information indicating the read coefficient, information indicating the position of the sun, and information indicating the amount of solar radiation. Based on the above, the power generation amount of the solar power generation device is calculated.
  • One piece of information indicating the configuration stored in the configuration storage unit 114 is information indicating the elevation angle of the photovoltaic power generation apparatus with respect to the ground, and the power generation amount calculation unit 116 changes the installation elevation angle every time the installation elevation angle is changed.
  • Information indicating a coefficient associated with the information to be displayed is read from the configuration storage unit 114, and based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, The amount of power generation is calculated.
  • One piece of information indicating the configuration stored in the configuration storage unit 114 is information indicating the type of solar cell, and the power generation amount calculation unit 116 changes the type of solar cell each time the type of solar cell is changed.
  • the information indicating the coefficient associated with the information indicating the information is read from the configuration storage unit 114, and based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, Calculate the amount of power generated by the photovoltaic device.
  • One piece of information indicating the configuration stored in the configuration storage unit 114 indicates the presence or absence of solar tracking that changes the orientation of the solar power generation device so that the normal of the shape light collector or the fluorescent light collector is in the direction of the sun.
  • the power generation amount calculation unit reads information indicating a coefficient associated with information indicating the presence / absence of solar tracking from the configuration storage unit 114, and information indicating the read coefficient
  • the electric power generation amount of a solar power generation device is calculated based on the information which shows the position of the sun, and the information which shows the amount of solar radiation.
  • the configuration extraction unit 117 extracts the configuration of the solar power generation device having the highest annual total power generation amount PT supplied from the configuration storage unit 114, and reads the information Cp indicating the extracted configuration of the solar power generation device. To the unit 122. Note that the configuration extraction unit 117 may extract a configuration in which the annual total power generation amount PT exceeds a predetermined threshold.
  • FIG. 14 is an example of a table T6 in which information Cp indicating the configuration of the photovoltaic power generation apparatus stored in the price storage unit 121 is associated with information P indicating the price when this configuration is taken.
  • the stacking order, the presence / absence of the solar tracking function, the type of solar cell, and the price are associated with each other.
  • the stacking order is 1 (that is, the stacking order is the order of the reflector 67, the shape light collector 65, and the fluorescent light collector 61), and the sun tracking function is 0 (that is, the sun tracking). If the solar cell is amorphous Si, the price is 100,000 yen.
  • the price reading unit 122 reads information P indicating the price associated with the information Cp indicating the configuration of the solar power generation apparatus supplied from the configuration extracting unit 117 from the price storage unit 121. And the price reading part 122 outputs the information Cp which shows the structure of a solar power generation device, and the information P which shows a price to the exterior of an own apparatus.
  • FIG. 15 is a flowchart illustrating a processing flow of the photovoltaic power generation device configuration extraction device according to the first embodiment.
  • the solar radiation amount reading unit 112 receives an input of installation conditions (step S101).
  • the solar radiation amount reading unit 112 reads the solar radiation amount corresponding to the input installation conditions (step S102).
  • the power generation amount calculating unit 116 calculates a power generation amount P D by the direct light of the annual (step S103).
  • the power generation amount calculating unit 116 calculates a power generation amount P S by scattered light year (step S104).
  • the power generation amount calculation unit 116 calculates an annual total power generation amount PT (step S105).
  • the power generation amount calculation unit 116 determines whether or not the annual total power generation amount PT is calculated for all the solar power generation devices (step S106). When the total power generation amount PT is not calculated for all the configurations of the solar power generation devices (NO in step S106), the power generation amount calculation unit 116 changes the configuration and returns to the process of step S103 (step S107).
  • the configuration extraction unit 117 extracts a configuration that maximizes the total annual power generation amount PT (step S108). ).
  • the price reading unit 122 reads information indicating the price corresponding to the configuration. Above, the process of this flowchart is complete
  • the solar power generation device configuration extraction device 100 reads information indicating the coefficient associated with the information indicating the configuration from the configuration storage unit 114 every time the configuration of the solar power generation device is changed. Based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, the power generation amount of the photovoltaic power generation apparatus is calculated. The solar power generation device configuration extraction device 100 extracts the configuration with the largest power generation amount when the power generation amount of the solar power generation device is calculated in all configurations.
  • the photovoltaic power generation device configuration extracting device 100 can extract the configuration of the photovoltaic power generation device that generates the largest amount of power under the installation conditions of the photovoltaic power generation device.
  • the solar power generation device configuration extraction device 100 can easily provide the user of the terminal device 10 with the optimal configuration of the solar power generation device according to the installation location in a short time.
  • the solar power generation device configuration extraction device 100 outputs information indicating the extracted configuration of the solar power generation device to the outside of the device itself. Thereby, the manufacturer of the solar power generation apparatus that has received the information indicating the configuration of the solar power generation apparatus can manufacture the solar power generation apparatus based on the information indicating the configuration.
  • the solar power generation device configuration extraction device 100 outputs information indicating the price at the time of configuration of the extracted solar power generation device to the outside of the own device. Accordingly, the shipper or installer of the solar power generation apparatus that has received the information indicating the price when the solar power generation apparatus is configured can ship or install the solar power generation apparatus at that price.
  • the solar power generation device structure extraction apparatus 100 of this embodiment used the solar radiation amount of the direct light for every hour averaged for every month and the solar radiation amount of the scattered light for every hour averaged for every month. Is not limited to this.
  • the solar power generation device configuration extraction device 100 may use the amount of solar radiation that has been observed in the past every day and the amount of solar light that has been observed in the past and the amount of sunlight that has been observed in the past every day.
  • the solar power generation device structure extraction apparatus 100 is the amount of insolation of the direct light for every hour averaged for the past predetermined years, and the amount of insolation of the scattered light for every hour of hours averaged for the past predetermined years. And may be used.
  • FIG. 16 is a schematic block diagram illustrating a configuration of the solar power generation device configuration determination system 2 according to the second embodiment.
  • symbol is attached
  • the configuration of the solar power generation device configuration determination system 2 in FIG. 16 is that the communication network 20 is added to the configuration of the solar power generation device configuration determination system 1 in FIG. 1, the terminal device 10 is changed to the terminal device 10b, The solar power generation device configuration extraction device 100 is changed to the solar power generation device configuration extraction device 100b.
  • the communication network 20 is, for example, a network that is widely interconnected on a global scale.
  • the terminal device 10b includes information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and the direction of the solar power generation apparatus when there is no solar tracking function) (information indicating ⁇ _1) is output to the photovoltaic power generation device configuration extraction device 100b via the communication network 20.
  • information indicating installation conditions for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and the direction of the solar power generation apparatus when there is no solar tracking function
  • the solar power generation device configuration extraction device 100b is configured to receive information Cp indicating the configuration of the solar power generation device and information P indicating the price at the time of configuration based on the information indicating the installation conditions input via the communication network 20. And extract.
  • the solar power generation device configuration extraction device 100b outputs information Cp indicating the configuration of the extracted solar power generation device and information P indicating the price at the time of configuration to the terminal device 10b via the communication network 20.
  • the terminal device 10b When the terminal device 10b displays information Cp indicating the configuration of the supplied photovoltaic power generation apparatus and information P indicating the price at the time of configuration, and receives information instructing ordering, the terminal device 10b receives information o regarding ordering (for example, , The installation location) together with the information Cp indicating the configuration of the photovoltaic power generation apparatus and the information P indicating the price at the time of the configuration are output to the outside of the apparatus, for example, the information processing apparatus of the manufacturer.
  • ordering for example, , The installation location
  • FIG. 17 is a schematic block diagram showing the configuration of the terminal device 10b in the second embodiment.
  • symbol is attached
  • the configuration of the terminal device 10b in FIG. 17 is such that the control unit 12 is changed to the control unit 12b and the communication unit 15 is changed to the communication unit 15b with respect to the configuration of the terminal device 10 in FIG. .
  • the control unit 12b sends the communication unit 15b via the communication network 20 information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and sun Control is performed so that the information indicating the direction ⁇ _1 of the photovoltaic power generation apparatus when there is no tracking function is output to the photovoltaic power generation apparatus configuration extracting apparatus 100b.
  • information indicating installation conditions for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and sun Control is performed so that the information indicating the direction ⁇ _1 of the photovoltaic power generation apparatus when there is no tracking function is output to the photovoltaic power generation apparatus configuration extracting apparatus 100b.
  • the communication unit 15b includes information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and the direction of the solar power generation apparatus when there is no sun tracking function) (information indicating ⁇ _1) is output to the photovoltaic power generation device configuration extraction device 100b (FIG. 16) via the communication network 20.
  • information indicating installation conditions for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and the direction of the solar power generation apparatus when there is no sun tracking function
  • information indicating ⁇ _1 is output to the photovoltaic power generation device configuration extraction device 100b (FIG. 16) via the communication network 20.
  • the communication unit 15b receives information Cp indicating the configuration of the solar power generation apparatus supplied from the solar power generation apparatus configuration extracting apparatus 100b (FIG. 16) via the communication network 20, and information P indicating the price at the time of the configuration. Receive and output to the control unit 12b.
  • the control unit 12b displays information Cp indicating the configuration of the photovoltaic power generation apparatus, information P indicating the price at the time of configuration, and the display unit 14. Thereby, the user of the terminal device 10b can confirm a structure and the price at the time of the structure in a solar power generation device.
  • the input unit 14 After the information Cp indicating the configuration of the photovoltaic power generation apparatus and the information P indicating the price at the time of configuration are displayed on the display unit 13, the input unit 14 receives input of information instructing an order input by the user. When receiving the information for instructing the order, the input unit 14 outputs the information for instructing the order to the control unit 12b.
  • the control unit 12b outputs information o (for example, installation location) relating to ordering together with information Cp indicating the configuration of the photovoltaic power generation apparatus and information P indicating the price at the time of configuration to the information processing apparatus of the manufacturer.
  • information o for example, installation location
  • information Cp the configuration of the photovoltaic power generation apparatus
  • information P the price at the time of configuration
  • the manufacturer who received the order information o and the information Cp indicating the configuration of the solar power generation device can manufacture the solar power generation device based on the configuration.
  • the delivery company or the installation company can install or deliver the solar power generation device.
  • FIG. 18 is a schematic block diagram illustrating the configuration of the photovoltaic power generation device configuration extraction device 100b according to the second embodiment.
  • symbol is attached
  • the configuration of the solar power generation device configuration extraction device 100b in FIG. 18 is obtained by adding a communication unit 123 to the configuration of the solar power generation device configuration extraction device 100 in FIG.
  • the communication unit 123 includes information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, and information indicating presence / absence Ft of the sun tracking function) supplied from the terminal device 10b via the communication network 20. (Information indicating the direction ⁇ _1 of the solar power generation apparatus when there is no solar tracking function).
  • the communication unit 123 includes information indicating the installation conditions (for example, information indicating the longitude x, information indicating the latitude y, information indicating the presence / absence Ft of the solar tracking function, and the solar power generation apparatus when there is no solar tracking function) (Information indicating the direction ⁇ _1) is output to the solar radiation amount reading unit 112.
  • the communication unit 123 outputs information Cp indicating the configuration of the photovoltaic power generation apparatus supplied from the price reading unit 122 and information P indicating the price at the time of configuration to the terminal device 10b via the communication network 20.
  • the solar power generation device structure extraction apparatus 100b transmits the information Cp which shows the structure of the extracted solar power generation device, and the information P which shows the price at the time of the structure to the terminal device 10b via the communication network 20.
  • the solar power generation device configuration extraction device 100b is the information Cp indicating the configuration of the solar power generation device based on the information indicating the installation conditions input from the terminal device 10b via the communication network 20. And information P indicating the price at the time of configuration. And the solar power generation device structure extraction apparatus 100b transmits the information Cp which shows the structure of the extracted solar power generation device, and the information P which shows the price at the time of the structure to the terminal device 10b via the communication network 20.
  • the solar power generation device configuration extraction device 100b has the largest amount of power generated under the installation conditions according to the installation conditions of the solar power generation device input from the terminal device 10b existing at a distance.
  • the configuration of the power generation device can be extracted.
  • the solar power generation device configuration extraction device 100b can easily provide the user of the terminal device 10b with the optimal configuration of the solar power generation device according to the installation location in a short time.
  • FIG. 19 is a schematic block diagram illustrating the configuration of the solar power generation device configuration determination system 3 according to the third embodiment.
  • symbol is attached
  • the configuration of the solar power generation device configuration determination system 3 in FIG. 19 is different from the configuration of the solar power generation device configuration determination system 1 in FIG. It has been changed to.
  • FIG. 20 is a schematic block diagram illustrating the configuration of the photovoltaic power generation device configuration extraction device 100c according to the third embodiment.
  • symbol is attached
  • the photovoltaic power generation device configuration extraction device 100c includes a configuration determination unit 110c, an installation condition storage unit 131, an installation condition extraction unit 132, a second configuration storage unit 114, a configuration reading unit 135, and a price storage unit 121.
  • the installation condition storage unit 131 information indicating the installation condition and installation condition identification information for identifying the installation condition are stored in association with each other.
  • FIG. 21 is an example of a table T7 in which information indicating the installation conditions stored in the installation condition storage unit 131 is associated with installation condition identification information for identifying the installation conditions.
  • the installation condition identification information Cid the latitude y, the longitude x, the presence / absence Ft of the solar tracking function, and the direction ⁇ _1 of the solar power generation device 60 are associated.
  • the installation condition identification information Cid is 1, it means that the latitude y is 35 degrees 40 minutes, the longitude x is 139 degrees 42 minutes, the presence / absence of the solar tracking function Ft is 1, and the direction of the photovoltaic power generation apparatus ⁇ _1 is 135 degrees.
  • the installation condition extraction unit 132 extracts installation condition identification information associated with an installation condition that satisfies a predetermined requirement with reference to information indicating the installation condition input from the terminal device 10. Specifically, for example, the installation condition extraction unit 132 uses the information indicating the installation location longitude x and the information indicating the latitude y among the information indicating the installation conditions supplied from the terminal device 10 to determine the predetermined location from the installation location. It is determined whether or not the installation condition storage unit 131 has information on a point within a distance (for example, a radius of 20 km).
  • the installation condition extraction unit 132 displays information indicating the installation condition (for example, information indicating longitude x, information indicating latitude y, and presence / absence of the sun tracking function Ft And information indicating the direction ⁇ _1 of the photovoltaic power generation apparatus when there is no solar tracking function) are supplied to the configuration determining unit 110.
  • the installation condition extraction unit 132 is 0 when the input information indicating the presence / absence Ft of the sun tracking function is 0 (that is, when there is no sun tracking function). ),
  • the information indicating the presence or absence of the solar tracking function among the information of points within a predetermined distance (for example, a radius of 20 km) from the installation location is 0, and the installation condition with the closest direction ⁇ _1 of the photovoltaic power generation device is Information to be shown is referred to in the installation condition storage unit 131.
  • the installation condition extraction unit 132 is 1 indicating the presence / absence of the solar tracking function.
  • the installation condition storage unit 131 refers to information indicating the installation condition that is closest to the installation location.
  • the installation condition extraction unit 132 reads the installation condition identification information Cid associated with the information indicating the referenced installation condition, and outputs the read installation condition identification information Cid to the configuration reading unit 135.
  • the installation condition extraction unit 132 refers to the closest installation condition. However, the installation condition extraction unit 132 refers to a plurality of installation conditions with similar setting conditions in the installation condition storage unit 131 and associates each of the plurality of installation conditions with reference to each other.
  • the installed installation condition identification information Cid may be read out.
  • the second configuration storage unit 114 stores installation condition identification information Cid and information Cp indicating the configuration of the solar power generation apparatus in association with each other.
  • FIG. 22 is an example of a table T8 in which the installation condition identification information Cid stored in the second configuration storage unit 114 is associated with information Cp indicating the configuration of the solar power generation device.
  • installation condition identification information Cid In table T8 in FIG. 22, installation condition identification information Cid, stacking order Fud, angle ⁇ _1, angle ⁇ _2, prism length l, prism interval s, presence / absence of solar tracking function Ft, and installation elevation angle ⁇ _2.
  • the type of solar cell is stored in association with each other.
  • the installation condition identification information Cid is 1
  • the stacking order Fud is 1, that is, the stacking order is the shape light collector 65 and the fluorescent light collector 61
  • the angle ⁇ _1 is 90 degrees
  • the angle ⁇ _2 is 30 degrees
  • the prism This means that the length l is 100 ⁇ m
  • the prism interval s is 20 ⁇ m
  • the presence / absence of the solar tracking function Ft is 1
  • the installation elevation angle ⁇ _2 is 20 degrees
  • the solar cell type is amorphous Si.
  • the configuration reading unit 135 reads information Cp indicating the configuration associated with the installation condition identification information Cid supplied from the installation condition extraction unit 132 from the second configuration storage unit 114.
  • the configuration reading unit 135 supplies information Cp indicating the read configuration to the price reading unit 122c.
  • the configuration determination unit 110c includes information indicating the installation conditions supplied from the installation condition extraction unit 132 (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and the sun tracking function) Information indicating the configuration is determined on the basis of the information indicating the direction ⁇ _1 of the photovoltaic power generation apparatus when there is no power.
  • the configuration of the configuration determination unit 110c of the present embodiment is the same as the configuration of the configuration determination unit 110 in the first embodiment, and the process in which the configuration determination unit 110c determines the configuration of the photovoltaic power generation apparatus is the first implementation. Since the configuration determining unit 110 in the embodiment is the same as the process of determining the configuration of the solar power generation device, the description thereof is omitted.
  • the configuration determining unit 110c outputs information indicating the determined configuration to the price reading unit 122c.
  • the configuration determining unit 110c newly generates installation condition identification information Cid, the generated installation condition identification information Cid, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, The information indicating the direction ⁇ _1 of the solar power generation apparatus when there is no solar tracking function is associated with the setting condition storage unit 131 and added.
  • the configuration determining unit 110c associates the generated installation condition identification information Cid with the information Cp indicating the determined configuration, and causes the second configuration storage unit 114 to additionally write the information.
  • the price reading unit 122c reads information P indicating the price associated with the information Cp indicating the configuration supplied from the configuration determining unit 110c or the configuration reading unit 135 from the price storage unit 121, and automatically reads the information P indicating the read price.
  • the data is output to the outside of the apparatus, for example, the information processing apparatus of the manufacturer.
  • FIG. 23 is a flowchart illustrating a processing flow of the photovoltaic power generation device configuration extraction device 100c according to the third embodiment.
  • the installation condition extraction unit 132 receives information indicating the installation conditions supplied from the terminal device 10 (step S301).
  • the installation condition extraction unit 132 determines whether information indicating installation conditions within a radius of 20 km from the installation location included in the information indicating installation conditions exists in the installation condition storage unit 131 (step S302).
  • the installation condition extraction unit 132 When information indicating the installation condition within the radius of 20 km exists in the installation condition storage unit 131 (YES in step S302), the installation condition extraction unit 132 indicates that the presence / absence Ft of the sun tracking function included in the received information indicating the installation condition is 1. Whether or not to use the solar tracking function in the received installation conditions is determined (step S303). When the presence / absence Ft of the sun tracking function is 1, the installation condition storage unit 131 reads the installation condition identification information Cid associated with the installation condition closest to the received installation condition from the installation condition storage unit 131 (step S304). The process proceeds to step S306.
  • the installation condition storage unit 131 reads the installation condition identification information Cid associated with the installation condition closest to the direction ⁇ _1 of the photovoltaic power generation apparatus included in the received installation condition ( The process proceeds to step S305) and step S306.
  • the configuration reading unit 135 reads information indicating the configuration associated with the installation condition identification information Cid from the second configuration storage unit 114 (step S306), and proceeds to the process of step S310.
  • step S302 when the information indicating the installation condition within the radius of 20 km does not exist in the installation condition storage unit 131 (NO in step S302), the configuration determining unit 110c extracts information indicating the configuration in which the total annual power generation amount is maximum. (Step S307). Next, the configuration determining unit 110c adds information indicating the installation condition to the installation condition storage unit 131 (step S308). Next, the configuration determining unit 110c adds information indicating the configuration to the second configuration storage unit 114 (step S309).
  • the price reading unit 122c reads information indicating the price associated with the information indicating the configuration from the price storage unit 121 (step S310). Above, the process of this flowchart is complete
  • the information indicating the installation conditions of a point within a predetermined distance range from the input installation location is stored in the installation condition storage unit 131 in advance. If there is, the installation condition identification information for identifying the installation condition is read from the installation condition storage unit 131. Then, the solar power generation device configuration extraction device 100 c reads out information Cp indicating the configuration associated with the read installation condition identification information from the second configuration storage unit 114.
  • the solar power generation device configuration extraction device 100c can extract the information indicating the configuration in a shorter time than the configuration is determined by the configuration determination unit 110c.
  • the solar power generation device configuration extraction device 100c can easily provide the user of the terminal device 10 with the configuration of the solar power generation device according to the installation location of the solar power generation device in a short time.
  • the photovoltaic power generation device configuration extraction device 100c is configured so that the information indicating the installation condition of a point within a predetermined distance range from the input installation location is not stored in the installation condition storage unit 131 in advance. 110c determines the configuration, and adds information indicating the determined configuration to the second configuration storage unit 114. In addition, the configuration determining unit 110c adds information indicating the installation conditions at that time to the installation condition storage unit 131.
  • the photovoltaic power generation device configuration extraction device 100c new data is added to the installation condition storage unit 131 and the second configuration storage unit 114. Therefore, as the data is added, when the installation condition is input next, the installation condition extraction unit 132 is likely to be able to extract data having a condition close to the installation condition. Thereby, the ratio which extracts the information which shows a structure using the structure reading part 135 is higher than the structure determination part 110c in the solar power generation device structure extraction apparatus 100c. As a result, it is possible to increase the possibility of providing the configuration of the photovoltaic power generation apparatus according to the installation location of the photovoltaic power generation apparatus in a short time.
  • FIG. 24 is a schematic block diagram showing the configuration of the solar power generation device configuration determination system 4 in the fourth embodiment.
  • symbol is attached
  • the configuration of the solar power generation device configuration determination system 4 in FIG. 24 is different from the configuration of the solar power generation device configuration determination system 2 in FIG. 16 in that the terminal device 10b is changed to the terminal device 10d, and the solar power generation device configuration extraction device 100b is changed to the solar power generation device configuration extraction device 100d.
  • the terminal device 10d includes information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and a direction of the solar power generation apparatus when there is no solar tracking function) (information indicating ⁇ _1) is output to the photovoltaic power generation device configuration extraction device 100d via the communication network 20. Since the configuration of the terminal device 10d is the same as the configuration of the terminal device 10b, description thereof is omitted.
  • information indicating installation conditions for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and a direction of the solar power generation apparatus when there is no solar tracking function
  • the solar power generation device configuration extraction device 100d based on the information indicating the installation conditions supplied from the terminal device 10d, information Cp indicating the configuration, information R indicating the power generation efficiency, and information P indicating the price at the time of the configuration Are transmitted to the terminal device 10d via the communication network 20.
  • FIG. 25 is a schematic block diagram showing the configuration of the solar power generation device configuration extraction device 100d according to the fourth embodiment.
  • the solar power generation device configuration extraction device 100d includes a communication unit 123 and a configuration determination unit 110d.
  • the configuration determining unit 110d includes a configuration reading unit 142 and a third configuration storage unit (configuration storage unit) 141.
  • the communication unit 123 includes information indicating installation conditions supplied via the communication network 20 (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and a sun tracking function). Information indicating the direction ⁇ _1 of the photovoltaic power generation apparatus in the absence of the information) is output to the configuration reading unit 142. In addition, the communication unit 123 receives information Cp indicating the configuration supplied from the configuration reading unit 142, information R indicating power generation efficiency, and information P indicating the price at the time of configuration via the communication network 20. 10d (FIG. 24).
  • the third configuration storage unit 141 information indicating installation conditions, information Cp indicating configuration, information R indicating power generation efficiency, and information P indicating price are stored in advance and associated with each other. It is remembered.
  • the third configuration storage unit 141 stores information indicating the installation conditions supplied from the outside of the device itself, information Cp indicating the configuration, information R indicating the power generation efficiency, and information P indicating the price in association with each other. I will do it.
  • FIG. 26 is an example of a table T9 stored in the third configuration storage unit 141.
  • the latitude y, the longitude x, the presence / absence Ft of the solar tracking function, the configuration identification information Kid for identifying the configuration, the power generation efficiency R, and the price are associated with each other.
  • the latitude y is 35 degrees 40 minutes
  • the longitude x is 139 degrees 42 minutes
  • the sun tracking function is not provided
  • the configuration identification information Kid is 1
  • the power generation efficiency R is 5
  • the price is 100,000 yen.
  • FIG. 27 is an example of a table T10 in which the configuration identification information Kid stored in the third configuration storage unit 141 is associated with the information Cp indicating the configuration.
  • the configuration identification information Kid the stacking order Fud, the angle ⁇ _1, the angle ⁇ _2, the prism length l, the prism interval s, the installation elevation angle ⁇ _2, and the type of solar cell are associated. ing.
  • the configuration identification information Kid is 1, the stacking order Fud is 1 (in the order of the shape light collector 65 and the fluorescent light collector 61), the angle ⁇ _1 is 90 degrees, the angle ⁇ _2 is 30 degrees, and the prism length l is 100 ⁇ m, prism spacing s is 20 ⁇ m, installation elevation angle ⁇ _2 is 20 degrees, and the type of solar cell is amorphous Si.
  • the configuration reading unit 142 reads out information Cp indicating a configuration associated with information indicating installation conditions, information R indicating power generation efficiency, and information P indicating price. Then, the configuration reading unit 142 outputs the information Cp indicating the read configuration, the information R indicating the power generation efficiency, the information P indicating the price, and the communication unit 123.
  • the photovoltaic power generation device configuration extraction device 100d of the present embodiment has the information Cp indicating the configuration associated with the information indicating the installation conditions input from the outside of the own device, the information R indicating the power generation efficiency, and the price. It reads with the information P which shows. Then, the solar power generation device configuration extraction device 100d outputs the read information to the terminal device 10d via the communication network 20.
  • the photovoltaic power generation device configuration extraction device 100d can quickly supply information indicating the optimum configuration to the terminal device 10d without calculating the optimum configuration. it can.
  • the solar power generation device configuration extraction device 100d can provide the configuration of the solar power generation device according to the installation location of the solar power generation device in a short time.
  • the program for performing each process of the solar power generation device structure extraction apparatus (100, 100b, 100c, 100d) of this embodiment was recorded on the computer-readable recording medium, and was recorded on the said recording medium You may perform the various processes mentioned above which concern on a solar power generation device structure extracting device (100, 100b, 100c, 100d) by making a computer system read and run a program.
  • the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
  • the “computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement
  • the configuration of the solar power generation device according to the installation location of the solar power generation device can be easily provided in a short time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Photovoltaic Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A solar power generation device configuration extraction apparatus is provided with a configuration determination unit which determines the configuration of a solar power generation device on the basis of pieces of information indicating installation conditions of the solar power generation device, the pieces of information being input from the outside. The configuration determination unit comprises: a solar radiation quantity storage unit in which pieces of information indicating locations and sets of information indicating solar radiation quantities at the respective locations are stored in association with one another; a solar radiation quantity reading-out unit which reads out, from the solar radiation quantity storage unit, a set of information indicating the solar radiation quantity at a point within a predetermined distance range from an installation location, where one of the input pieces of information indicating the installation conditions is information indicating the installation location; a sun position storage unit in which pieces of information each indicating a position of the sun are stored in association with the pieces of information indicating locations and pieces of information each indicating a date and time; and a configuration calculation unit which reads out, from the sun position storage unit, pieces of information each indicating a position of the sun at the installation location at each date and time, and calculates the configuration of the solar power generation device on the basis of the read-out pieces of information each indicating a position of the sun and the read-out set of information indicating the solar radiation quantity.

Description

太陽光発電装置構成抽出装置、太陽光発電装置構成抽出方法、太陽光発電装置構成抽出プログラムおよび太陽光発電装置構成判断システムSolar power generation device configuration extraction device, solar power generation device configuration extraction method, solar power generation device configuration extraction program, and solar power generation device configuration determination system
 本発明は、太陽光発電装置構成抽出装置、太陽光発電装置構成抽出方法および太陽光発電装置構成抽出プログラムおよび太陽光発電装置構成判断システムに関する。
 本願は、2011年6月15日に、日本に出願された特願2011-133168号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solar power generation device configuration extraction device, a solar power generation device configuration extraction method, a solar power generation device configuration extraction program, and a solar power generation device configuration determination system.
This application claims priority on June 15, 2011 based on Japanese Patent Application No. 2011-133168 for which it applied to Japan, and uses the content here.
 一般的に、太陽光発電装置は、複数のモジュールから構成されている。従来、太陽電池モジュールの配置設計を支援する装置が知られている。
 例えば、特許文献1には、太陽電池モジュールの配置設計支援装置における算出手段が、設置面ごとにこの設置面に配置される太陽電池モジュールについて、とりうる系統の数および各系統に割り付ける太陽電池モジュールの種類とその数からなる系統分解候補を求め、各設置面の系統分解候補の組合せを算出する。そして、算出手段が、算出された系統分解候補の組合せのそれぞれについて、最も電力変換効率の高くかつ安価なパワーコンディショナの組合せを選択する。
Generally, a solar power generation device is composed of a plurality of modules. 2. Description of the Related Art Conventionally, devices that support layout design of solar cell modules are known.
For example, Patent Document 1 discloses a solar cell module in which the calculation means in the solar cell module layout design support apparatus assigns to each system the number of possible systems and the number of possible solar cell modules arranged on this installation surface for each installation surface. A system decomposition candidate consisting of the type and the number thereof is obtained, and a combination of system decomposition candidates on each installation surface is calculated. Then, the calculation means selects the combination of the power conditioners having the highest power conversion efficiency and the lowest price for each of the calculated combinations of system decomposition candidates.
 そして、割り付け手段が、系統分解候補の組合せのそれぞれについて、設置面上の各太陽電池モジュールをいずれかの系統に属させるモジュールの系統への割り付けを行って複数の系統別モジュール割り付け情報を求め、その中から最善の系統別モジュール割り付け情報を選択することが示されている。 Then, for each combination of system decomposition candidates, the allocation means performs allocation to the system of modules that belong to any system of each solar cell module on the installation surface, and obtains a plurality of system-specific module allocation information, It is shown that the best module-specific module allocation information is selected from them.
 特許文献2は、地理情報に基づいて太陽光発電装置の設置面積を算出する算出手段を備える太陽光発電装置接地支援システムを開示している。 Patent Document 2 discloses a photovoltaic power generation apparatus grounding support system that includes a calculation unit that calculates an installation area of a photovoltaic power generation apparatus based on geographic information.
特開2004-164325号公報JP 2004-164325 A 特開2006-185367号公報JP 2006-185367 A
 一方、設置場所(緯度、経度)が異なると、太陽光の入射条件が異なる。それゆえ、太陽光発電装置において、設置場所が異なれば、発電効率の良い構成が異なることになる。
 しかし、太陽光発電装置を設置する毎に、マニュアルで設置場所に応じた最適な太陽光発電装置の構成を抽出することは困難であり時間がかかる。
On the other hand, when the installation location (latitude, longitude) is different, the incident condition of sunlight is different. Therefore, in a solar power generation device, if the installation location is different, the configuration with good power generation efficiency is different.
However, every time a solar power generation device is installed, it is difficult and time-consuming to manually extract the optimum configuration of the solar power generation device according to the installation location.
 そこで本発明の態様は、太陽光発電装置の設置場所に応じた太陽光発電装置の構成を短時間で、簡単に提供することを可能とする技術を提供することを課題の一つとする。 Therefore, an aspect of the present invention is to provide a technique that can easily provide a configuration of a photovoltaic power generation apparatus according to the installation location of the photovoltaic power generation apparatus in a short time.
 本発明の一態様における太陽光発電装置構成抽出装置は、外部から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定する構成決定部を備え、前記構成決定部は、場所を示す情報と前記場所における日射量を示す情報とが関連付けられて記憶されている日射量記憶部と、前記入力された設置条件を示す情報の一つが設置場所を示す情報であり、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報を前記日射量記憶部から読み出す日射量読出部と、前記太陽の位置を示す情報が、前記場所を示す情報と日時を示す情報とに関連付けられて記憶されている太陽位置記憶部と、前記設置場所における各日時における太陽の位置を示す情報を前記太陽位置記憶部から読み出し、前記読み出した太陽の位置を示す情報と、前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の構成を算出する構成算出部と、を備える。 The solar power generation device configuration extraction device according to an aspect of the present invention includes a configuration determination unit that determines the configuration of the solar power generation device based on information indicating installation conditions of the solar power generation device input from the outside, The configuration determination unit includes a solar radiation amount storage unit in which information indicating a location and information indicating a solar radiation amount at the location are associated and stored, and one of the information indicating the input installation conditions indicates the installation location Information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location, the amount of solar radiation reading unit that reads from the amount of solar radiation storage unit, and the information indicating the position of the sun is information indicating the location And a solar position storage unit stored in association with information indicating the date and time, and information indicating the position of the sun at each date and time in the installation location is read from the solar position storage unit, It comprises information indicating the position of the sun has, based on the information indicating the read insolation, a configuration calculation unit for calculating the configuration of the photovoltaic device.
 本発明の一態様における前記太陽光発電装置構成抽出装置において、前記構成算出部は、前記構成を変更する毎に、前記太陽の位置を示す情報と前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出する発電量算出部と、前記算出された発電量が所定の閾値を超える構成を抽出する構成抽出部と、を備えていてもよい。 In the solar power generation device configuration extraction device according to an aspect of the present invention, the configuration calculation unit changes information indicating the position of the sun and information indicating the read solar radiation every time the configuration is changed. A power generation amount calculation unit that calculates a power generation amount of the solar power generation apparatus and a configuration extraction unit that extracts a configuration in which the calculated power generation amount exceeds a predetermined threshold may be provided.
 本発明の一態様における前記太陽光発電装置構成抽出装置において、前記構成を示す情報と前記太陽光発電装置の発電量を変化させる係数を示す情報とが関連付けられて記憶されている構成記憶部を備え、前記発電量算出部は、前記構成を変更する毎に、前記構成を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出してもよい。 In the solar power generation device configuration extraction device according to one aspect of the present invention, a configuration storage unit in which information indicating the configuration and information indicating a coefficient for changing the power generation amount of the solar power generation device are associated and stored. Each time the configuration is changed, the power generation amount calculation unit reads information indicating the coefficient associated with the information indicating the configuration from the configuration storage unit, information indicating the read coefficient, and the sun The power generation amount of the solar power generation device may be calculated based on information indicating the position of the solar power generation device and information indicating the amount of solar radiation.
 本発明の一態様における前記太陽光発電装置構成抽出装置において、前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記太陽光発電装置が備える形状集光板と蛍光集光板の積層順を示す情報であり、前記発電量算出部は、前記積層順を変更する毎に、前記積層順を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出してもよい。 In the solar power generation device configuration extraction device according to an aspect of the present invention, one of the information indicating the configuration stored in the configuration storage unit is a shape light collector and a fluorescent light collector provided in the solar power generator. It is information indicating the stacking order, and the power generation amount calculation unit reads information indicating the coefficient associated with the information indicating the stacking order from the configuration storage unit every time the stacking order is changed, and reads the read The power generation amount of the solar power generation device may be calculated based on information indicating a coefficient, information indicating the position of the sun, and information indicating the amount of solar radiation.
 本発明の一態様における前記太陽光発電装置構成抽出装置において、前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記太陽光発電装置が備える形状集光板の形状を示す情報であり、前記発電量算出部は、前記形状集光板の形状を変更する毎に、前記形状集光板の形状を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出してもよい。 In the solar power generation device configuration extraction device according to one aspect of the present invention, one of the information indicating the configuration stored in the configuration storage unit is information indicating a shape of a shape light collector provided in the solar power generation device. The power generation amount calculation unit reads information indicating the coefficient associated with information indicating the shape of the shape light collector plate from the configuration storage unit every time the shape of the shape light collector plate is changed. The power generation amount of the solar power generation device may be calculated based on information indicating a coefficient, information indicating the position of the sun, and information indicating the amount of solar radiation.
 本発明の一態様における前記太陽光発電装置構成抽出装置において、前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記太陽光発電装置の地面に対する設置仰角を示す情報であり、前記発電量算出部は、前記設置仰角を変更する毎に、前記設置仰角を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出してもよい。 In the solar power generation device configuration extraction device according to one aspect of the present invention, one of the information indicating the configuration stored in the configuration storage unit is information indicating an installation elevation angle of the solar power generation device with respect to the ground. The power generation amount calculation unit reads information indicating the coefficient associated with information indicating the installation elevation angle from the configuration storage unit every time the installation elevation angle is changed, and information indicating the read coefficient, You may calculate the electric power generation amount of the said solar power generation device based on the information which shows the position of the sun, and the information which shows the said solar radiation amount.
 本発明の一態様における前記太陽光発電装置構成抽出装置において、前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記太陽電池の種類を示す情報であり、前記発電量算出部は、前記太陽電池の種類を変更する毎に、前記太陽電池の種類を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出してもよい。 In the solar power generation device configuration extraction device according to one aspect of the present invention, one of the information indicating the configuration stored in the configuration storage unit is information indicating the type of the solar cell, and the power generation amount calculation The unit reads information indicating the coefficient associated with the information indicating the type of the solar cell from the configuration storage unit every time the type of the solar cell is changed, and information indicating the read coefficient, The power generation amount of the solar power generation device may be calculated based on information indicating the position of the solar power generation device and information indicating the amount of solar radiation.
 本発明の一態様における前記太陽光発電装置構成抽出装置において、前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記形状集光板と前記蛍光集光板の少なくとも一つの法線が太陽の方向になるように太陽発電装置の向きを変更する太陽追尾の有無を示す情報であり、前記発電量算出部は、前記太陽追尾の有無を変更する毎に、前記太陽追尾の有無を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出してもよい。 In the solar power generation device configuration extraction device according to an aspect of the present invention, one of the information indicating the configuration stored in the configuration storage unit is at least one normal line of the shape light collector and the fluorescent light collector. Is the information indicating the presence or absence of solar tracking to change the direction of the solar power generation device so that the direction of the sun, the power generation amount calculation unit, whether to change the presence or absence of the solar tracking, the presence or absence of the solar tracking The information indicating the coefficient associated with the information to be displayed is read from the configuration storage unit, and based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, You may calculate the electric power generation amount of a photovoltaic device.
 本発明の一態様における前記太陽光発電装置構成抽出装置において、設置条件を示す情報と前記設置条件を識別する設置条件識別情報とが関連付けられて記憶されている設置条件記憶部と、前記入力された設置条件を示す情報を基準として所定の要件を満たす設置条件に関連付けられた前記設置条件識別情報を前記設置条件記憶部から抽出する設置条件抽出部と、前記設置条件識別情報と前記太陽光発電装置の構成を示す情報とが関連付けられて記憶されている第2の構成記憶部と、前記設置条件抽出部により前記設置条件識別情報が抽出された場合、前記抽出された設置条件識別情報に対応する前記太陽光発電装置の構成を示す情報を前記第2の構成記憶部から読み出す構成読出部と、を備えていてもよい。 In the solar power generation device configuration extraction device according to one aspect of the present invention, an installation condition storage unit that stores information indicating installation conditions and installation condition identification information that identifies the installation conditions, and the input is stored. An installation condition extraction unit that extracts from the installation condition storage unit the installation condition identification information associated with an installation condition that satisfies a predetermined requirement with reference to information indicating the installation condition, the installation condition identification information, and the photovoltaic power generation Corresponding to the extracted installation condition identification information when the installation condition identification information is extracted by the second configuration storage unit stored in association with information indicating the configuration of the apparatus and the installation condition extraction unit A configuration reading unit that reads information indicating the configuration of the solar power generation device from the second configuration storage unit.
本発明の一態様における前記太陽光発電装置構成抽出装置において、前記構成決定部は、前記設置条件抽出部により前記設置条件識別情報が抽出されなかった場合、前記入力された設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定してもよい。 In the solar power generation device configuration extraction device according to an aspect of the present invention, the configuration determination unit may include information indicating the input installation conditions when the installation condition identification information is not extracted by the installation condition extraction unit. Based on this, the configuration of the solar power generation device may be determined.
 本発明の一態様における前記太陽光発電装置構成抽出装置は、さらに前記太陽光発電装置の構成を示す情報と該構成時の価格を示す情報とが関連付けられて記憶されている価格記憶部と、前記構成決定部により決定された前記太陽光発電装置の構成に対応する価格を示す情報を前記価格記憶部から読み出す価格読出部と、を備えていてもよい。 The solar power generation device configuration extraction device according to an aspect of the present invention further includes a price storage unit that stores information indicating the configuration of the solar power generation device and information indicating a price at the time of the configuration, And a price reading unit that reads information indicating a price corresponding to the configuration of the photovoltaic power generation apparatus determined by the configuration determination unit from the price storage unit.
 本発明の他の態様における太陽光発電装置構成抽出装置は、外部から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定する構成決定部を備え、前記構成決定部は、太陽光発電装置の設置条件を示す情報と太陽光発電装置の構成を示す情報とが関連付けられて記憶されている構成記憶部と、前記入力された設置条件を示す情報を基準として所定の要件を満たす前記設置条件の情報に関連付けられた太陽光発電装置の構成を示す情報を前記構成記憶部から読み出す構成読出部と、を更に備える。 A solar power generation device configuration extraction device according to another aspect of the present invention includes a configuration determination unit that determines the configuration of the solar power generation device based on information indicating installation conditions of the solar power generation device input from the outside. The configuration determination unit includes a configuration storage unit in which information indicating the installation conditions of the solar power generation device and information indicating the configuration of the solar power generation device are associated and stored, and information indicating the input installation conditions And a configuration reading unit that reads from the configuration storage unit information indicating the configuration of the photovoltaic power generation apparatus that is associated with the installation condition information that satisfies a predetermined requirement with reference to.
前記太陽光発電装置構成抽出装置において、前記構成記憶部に記憶されている太陽光発電装置の構成を示す情報は、更に発電効率を示す情報と関連付けられており、前記構成読出部は、前記読み出される太陽光発電装置の構成を示す情報に対応する発電効率を示す情報を前記構成記憶部から読み出してもよい。 In the solar power generation device configuration extraction device, information indicating the configuration of the solar power generation device stored in the configuration storage unit is further associated with information indicating power generation efficiency, and the configuration reading unit reads the read The information indicating the power generation efficiency corresponding to the information indicating the configuration of the photovoltaic power generation apparatus may be read from the configuration storage unit.
 前記太陽光発電装置構成抽出装置において、前記構成記憶部に記憶されている前記構成をとるときの価格を示す情報は、更に太陽光発電装置の構成を示す情報と該構成をとるときの価格を示す情報が関連付けられており、前記構成読出部は、前記読み出される太陽光発電装置の構成を示す情報に対応する価格を示す情報を前記構成記憶部から読み出してもよい。 In the solar power generation device configuration extracting device, the information indicating the price when taking the configuration stored in the configuration storage unit further includes information indicating the configuration of the solar power generation device and the price when taking the configuration. The configuration reading unit may read information indicating a price corresponding to the information indicating the configuration of the photovoltaic power generation device to be read from the configuration storage unit.
 前記太陽光発電装置構成抽出装置において、前記構成記憶部は、前記外部から入力された設置条件の情報と、前記太陽光発電装置の構成を示す情報、前記発電変換効率を示す情報または価格を示す情報のうち少なくとも1つとが追加保存されていってもよい。 In the solar power generation device configuration extraction device, the configuration storage unit indicates installation condition information input from the outside, information indicating the configuration of the solar power generation device, information indicating the power generation conversion efficiency, or price. At least one of the information may be additionally stored.
 本発明のさらに他の態様である太陽光発電装置構成抽出方法は、外部から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定することを有する太陽光発電装置構成抽出方法であって、前記太陽光発電装置の構成を決定することは、場所を示す情報と前記場所における日射量を示す情報とが関連付けられて記憶することと、前記入力された設置条件を示す情報の一つが設置場所を示す情報であり、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報を読み出すことと、前記設置場所における各日時における太陽の位置を示す情報を読み出し、前記読み出した太陽の位置を示す情報と、前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の構成を算出することを含む。 The photovoltaic power generation device configuration extraction method according to still another aspect of the present invention includes determining the configuration of the photovoltaic power generation device based on information indicating installation conditions of the photovoltaic power generation device input from the outside. A method for extracting a configuration of a photovoltaic power generation apparatus, wherein determining the configuration of the photovoltaic power generation apparatus is related to storing information indicating a location and information indicating an amount of solar radiation at the location, and inputting the information. One of the information indicating the installation conditions is information indicating the installation location, reading information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location, and the position of the sun at each date and time at the installation location And calculating the configuration of the photovoltaic power generation device based on the read information indicating the position of the sun and the read information indicating the amount of solar radiation. .
 本発明のさらに他の態様である太陽光発電装置構成抽出プログラムは、コンピュータに、外部から入力された前記太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定させるためのものであって、前記構成決定ステップは、場所を示す情報と前記場所における日射量を示す情報とが関連付けられて記憶することと、前記入力された設置条件を示す情報の一つが設置場所を示す情報であり、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報を読み出すことと、前記設置場所における各日時における太陽の位置を示す情報を読み出し、前記読み出した太陽の位置を示す情報と、前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の構成を算出することを含む。 According to another aspect of the present invention, a photovoltaic power generation device configuration extraction program determines a configuration of the photovoltaic power generation device based on information indicating an installation condition of the photovoltaic power generation device input from an external device to a computer. In the configuration determining step, the information indicating the location and the information indicating the amount of solar radiation at the location are stored in association with each other, and one of the information indicating the input installation conditions is installed. Information indicating a location, reading information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location, reading information indicating the position of the sun at each date and time at the installation location, and reading the sun Calculating the configuration of the photovoltaic power generation apparatus based on the information indicating the position of the solar power generation and the information indicating the read solar radiation amount.
 本発明のさらに他の態様である太陽光発電装置構成判断システムは、端末装置と太陽光発電装置構成抽出装置とを備え、前記太陽光発電装置構成抽出装置は、前記端末装置から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定する構成決定部を備え、前記構成決定部は、場所を示す情報と前記場所における日射量を示す情報とが関連付けられて記憶されている日射量記憶部と、前記入力された設置条件を示す情報の一つが設置場所を示す情報であり、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報を前記日射量記憶部から読み出す日射量読出部と、前記太陽の位置を示す情報が、前記場所を示す情報と日時を示す情報とに関連付けられて記憶されている太陽位置記憶部と、前記設置場所における各日時における太陽の位置を示す情報を前記太陽位置記憶部から読み出し、前記読み出した太陽の位置を示す情報と、前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の構成を算出する構成算出部と、を含む。 The solar power generation device configuration determination system according to still another aspect of the present invention includes a terminal device and a solar power generation device configuration extraction device, and the solar power generation device configuration extraction device is a solar input from the terminal device. A configuration determination unit that determines the configuration of the photovoltaic power generation device based on information indicating installation conditions of the photovoltaic power generation device, the configuration determination unit includes information indicating a location and information indicating an amount of solar radiation at the location. One of the information indicating the installed solar radiation amount storage unit and the input installation condition is information indicating the installation location, and indicates the solar radiation amount of a point within a predetermined distance range from the installation location. A solar radiation amount reading unit that reads information from the solar radiation amount storage unit, and a solar position storage unit in which information indicating the position of the sun is stored in association with information indicating the location and information indicating the date and time; The information indicating the position of the sun at each date and time at the installation location is read from the sun position storage unit, and the sun is based on the information indicating the position of the read sun and the information indicating the read amount of solar radiation. And a configuration calculation unit that calculates the configuration of the photovoltaic power generation device.
 本発明のさらに他の態様における前記太陽光発電装置構成判断システムは、前記端末装置と前記太陽光発電構成抽出装置は通信網を介して接続されていてもよい。 In the solar power generation device configuration determination system in still another aspect of the present invention, the terminal device and the solar power generation configuration extraction device may be connected via a communication network.
 本発明のさらに他の態様における前記太陽光発電装置構成判断システムにおいて、前記構成決定部は、さらに設置条件を示す情報と前記設置条件を識別する設置条件識別情報とが関連付けられて記憶されている設置条件記憶部と、前記入力された設置条件を示す情報を基準として所定の要件を満たす設置条件に関連付けられた設置条件識別情報を前記設置条件記憶部から抽出する設置条件抽出部と、前記設置条件識別情報と前記太陽光発電装置の構成を示す情報とが関連付けられて記憶されている第2の構成記憶部と、前記設置条件抽出部により設置条件識別情報が抽出された場合、前記抽出された設置条件識別情報に対応する前記太陽光発電装置の構成を示す情報を前記第2の構成記憶部から読み出す構成読出部と、を備えていてもよい。 In the photovoltaic power generation apparatus configuration determination system according to still another aspect of the present invention, the configuration determination unit further stores information indicating installation conditions and installation condition identification information for identifying the installation conditions in association with each other. An installation condition storage unit; an installation condition extraction unit that extracts installation condition identification information associated with an installation condition that satisfies a predetermined requirement with reference to the information indicating the input installation condition; and the installation When the installation condition identification information is extracted by the second configuration storage unit in which the condition identification information and the information indicating the configuration of the photovoltaic power generation apparatus are associated and stored, and the installation condition extraction unit, the extraction is performed. A configuration reading unit that reads information indicating the configuration of the photovoltaic power generation device corresponding to the installation condition identification information from the second configuration storage unit.
 本発明のさらに他の態様における前記太陽光発電装置構成判断システムにおいて、前記構成決定部は、さらに太陽光発電装置の設置条件を示す情報と太陽光発電装置の構成を示す情報とが関連付けられて記憶されている第3の構成記憶部を備え、前記構成決定部による構成の決定は、前記入力された太陽光発電装置の設置条件を示す情報に対応する最適な構成を示す情報を前記構成記憶部から読み出すことにより行われてもよい。 In the solar power generation device configuration determination system according to still another aspect of the present invention, the configuration determination unit further includes information indicating installation conditions of the solar power generation device and information indicating the configuration of the solar power generation device. A third configuration storage unit that is stored, and the configuration determination by the configuration determination unit includes information indicating an optimal configuration corresponding to the input information indicating installation conditions of the photovoltaic power generation device; It may be performed by reading from the unit.
 本発明のさらに他の態様における太陽光発電装置構成抽出方法は、太陽光発電装置の設置場所における各日時での太陽の位置を示す情報と、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報とに基づいて、前記太陽光発電装置の構成を決定する。 According to still another aspect of the present invention, there is provided a solar power generation device configuration extraction method that includes information indicating the position of the sun at each date and time at a solar power generation device installation location, Based on the information indicating the amount of solar radiation, the configuration of the solar power generation device is determined.
 本発明の態様によれば、太陽光発電装置の設置場所に応じた太陽光発電装置の構成を短時間で、簡単に提供することができる。 According to the aspect of the present invention, the configuration of the solar power generation device according to the installation location of the solar power generation device can be easily provided in a short time.
第1の実施形態における太陽光発電装置構成判断システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the solar power generation device structure judgment system in 1st Embodiment. 第1の実施形態における端末装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal device in 1st Embodiment. 第1の実施形態における太陽光発電装置構成抽出装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the solar power generation device structure extraction apparatus in 1st Embodiment. 日射量記憶部に記憶されているテーブルT1の一例である。It is an example of table T1 memorize | stored in the solar radiation amount memory | storage part. 場所識別情報Pidが「00000001」の場合の日時毎の日射量のテーブルT2_00000001の一例である。It is an example of a table T2_00000001 of the amount of solar radiation for each date and time when the place identification information Pid is “00000001”. 場所idが「00000001」の場合において、直達光による日射量の時間変化のある月の平均と、散乱光による日射量の時間変化のその同じ月の平均とが示された図である。When the location id is “00000001”, the average of the month in which the solar radiation amount changes with time due to direct light and the average of the same month of the temporal change in the solar radiation amount due to scattered light are shown. 太陽光発電装置の断面図の一例である。It is an example of sectional drawing of a solar power generation device. 蛍光集光板を上から見た図である。It is the figure which looked at the fluorescence condensing plate from the top. 太陽の方角α_1と太陽光発電装置の方角β_1とを説明するための図である。It is a figure for demonstrating the direction (alpha) _1 of a sun, and the direction (beta) _1 of a solar power generation device. 地面に対する太陽の入射角α_2と地面に対して太陽光発電装置を設置する角度である設置仰角β_2とを説明するための図である。It is a figure for demonstrating the incident angle (alpha) _2 of the sun with respect to the ground, and the installation elevation angle (beta) _2 which is an angle which installs a solar power generation device with respect to the ground. 太陽位置記憶部に記憶されている太陽の位置を示す情報が記憶されたテーブルT3の一例である。It is an example of table T3 memorize | stored the information which shows the position of the sun memorize | stored in the sun position memory | storage part. 構成記憶部に記憶されている形状集光板の形状に依存する係数rのテーブルT4の一例である。It is an example of a table T4 coefficient r 2 which depends on the shape of the shape collector panel stored in the configuration storage unit. 構成記憶部に記憶されている光電変換効率rのテーブルT5の一例である。It is an example of a table T5 photoelectric conversion efficiency r 5 stored in the configuration storage unit. 価格記憶部に記憶されている太陽光発電装置の構成を示す情報Cpと該構成をとるときの価格を示す情報Pが関連付けられたテーブルT6の一例である。It is an example of table T6 in which the information Cp which shows the structure of the solar power generation device memorize | stored in the price memory | storage part and the information P which shows the price when taking this structure are linked | related. 第1の実施形態における太陽光発電装置構成抽出装置の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of the solar power generation device structure extraction apparatus in 1st Embodiment. 第2の実施形態における太陽光発電装置構成判断システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the solar power generation device structure judgment system in 2nd Embodiment. 第2の実施形態における端末装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal device in 2nd Embodiment. 第2の実施形態における太陽光発電装置構成抽出装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the solar power generation device structure extraction apparatus in 2nd Embodiment. 第3の実施形態における太陽光発電装置構成判断システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the solar power generation device structure judgment system in 3rd Embodiment. 第3の実施形態における太陽光発電装置構成抽出装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the solar power generation device structure extraction apparatus in 3rd Embodiment. 設置条件記憶部に記憶されている設置条件を示す情報と該設置条件を識別する設置条件識別情報とが関連付けられたテーブルT7の一例である。It is an example of a table T7 in which information indicating the installation conditions stored in the installation condition storage unit is associated with installation condition identification information for identifying the installation conditions. 構成記憶部に記憶されている設置条件識別情報Cidと太陽光発電装置の構成を示す情報Cpとが関連付けられたテーブルT8の一例である。It is an example of table T8 in which the installation condition identification information Cid stored in the configuration storage unit and the information Cp indicating the configuration of the photovoltaic power generation apparatus are associated with each other. 第3の実施形態における太陽光発電装置構成抽出装置の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of the solar power generation device structure extraction apparatus in 3rd Embodiment. 第4の実施形態における太陽光発電装置構成判断システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the solar power generation device structure judgment system in 4th Embodiment. 第4の実施形態における太陽光発電装置構成抽出装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the solar power generation device structure extraction apparatus in 4th Embodiment. 第3の構成記憶部に記憶されているテーブルT9の一例である。It is an example of table T9 memorize | stored in the 3rd structure memory | storage part. 第3の構成記憶部に記憶されている構成識別情報Kidと構成を示す情報Cpが関連付けられたテーブルT10の一例である。It is an example of table T10 with which the structure identification information Kid memorize | stored in the 3rd structure memory | storage part and the information Cp which shows a structure were linked | related.
 <第1の実施形態>
 以下、本発明の実施形態について、図面を参照して詳細に説明する。図1は、第1の実施形態における太陽光発電装置構成判断システム1の構成を示す概略ブロック図である。
 太陽光発電装置構成判断システム1は、端末装置10と、太陽光発電装置構成抽出装置100とを有する。本実施形態では、太陽光発電装置は、一例として蛍光集光板と形状集光板とを備えたタンデムの集光型太陽光発電装置を対象として説明するが、これに限ったものではない。端末装置10と太陽光発電装置構成抽出装置100とは有線または無線の回線により接続されている。
<First Embodiment>
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic block diagram illustrating a configuration of a solar power generation device configuration determination system 1 according to the first embodiment.
The solar power generation device configuration determination system 1 includes a terminal device 10 and a solar power generation device configuration extraction device 100. In the present embodiment, the solar power generation device will be described by taking a tandem concentrating solar power generation device including a fluorescent light collector and a shape light collector as an example. However, the present invention is not limited to this. The terminal device 10 and the solar power generation device configuration extraction device 100 are connected by a wired or wireless line.
 端末装置10は、端末装置のユーザによって入力される下記の太陽光発電装置を設置する際の設置条件を示す情報を受け付ける。設置条件とは、例えば、太陽光発電装置を設置する場所を示す情報(ここでは、例えば、経度xを示す情報、緯度yを示す情報)と、太陽光発電装置のパネルの向きを太陽が出ている方角に追尾する機能(太陽追尾機能)の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報(ここでは、方角β_1は、真西を基準としたときに、太陽光発電装置が備える蛍光集光板または形状集光板が東西を結ぶ直線と成す角度である)とが入力される。
 なお、設置場所における周囲環境によって生じる影を設置条件に加えても良い。
The terminal device 10 receives information indicating installation conditions when the following solar power generation device is input by a user of the terminal device. The installation conditions are, for example, information indicating a location where the photovoltaic power generation apparatus is installed (for example, information indicating longitude x, information indicating latitude y) and the direction of the panel of the photovoltaic power generation apparatus. Information indicating presence / absence Ft of tracking function (solar tracking function) and information indicating the direction β_1 of the solar power generation apparatus when there is no solar tracking function (here, direction β_1 is based on true west) The angle formed by the straight line connecting the east and west of the fluorescent light collecting plate or the shape light collecting plate included in the solar power generation device is input.
In addition, you may add the shadow produced by the surrounding environment in an installation place to installation conditions.
 端末装置10は、受け付けた太陽光発電装置を設置する際の設置条件を示す情報(経度xを示す情報と、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、方角β_1を示す情報)とを太陽光発電装置構成抽出部100に出力する。
 太陽光発電装置構成抽出装置100は、端末装置10から供給された太陽光発電装置を設置する際の設置条件を示す情報に基づいて、この太陽光発電装置の構成とその構成の価格とを抽出し、抽出した太陽光発電装置の構成を示す情報とその構成の価格を示す情報とを自装置の外部、例えば製造業者の情報処理装置に出力する。なお、太陽光発電装置構成抽出装置100は、抽出した太陽光発電装置の構成を示す情報とその構成の価格を示す情報とをユーザの端末装置10に出力してもよい。
The terminal device 10 includes information indicating installation conditions when installing the received photovoltaic power generation device (information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and direction β_1. Information) to the photovoltaic power generation device configuration extraction unit 100.
The solar power generation device configuration extraction device 100 extracts the configuration of the solar power generation device and the price of the configuration based on information indicating installation conditions when installing the solar power generation device supplied from the terminal device 10. And the information which shows the structure of the extracted solar power generation device, and the information which shows the price of the structure are output to the exterior of an own apparatus, for example, information processing apparatus of a manufacturer. Note that the solar power generation device configuration extraction device 100 may output information indicating the configuration of the extracted solar power generation device and information indicating the price of the configuration to the user terminal device 10.
 これにより、太陽光発電装置構成抽出装置100は、太陽光発電装置の設置条件に応じて、太陽光発電装置の構成を抽出することができる。その結果、太陽光発電装置構成抽出装置100は、短時間で簡単に太陽光発電装置の設置場所に応じた最適な太陽光発電装置の構成を製造業者に提供することができる。 Thereby, the solar power generation device configuration extraction device 100 can extract the configuration of the solar power generation device according to the installation conditions of the solar power generation device. As a result, the solar power generation device configuration extraction device 100 can easily provide the manufacturer with the optimal configuration of the solar power generation device according to the installation location of the solar power generation device in a short time.
 図2は、第1の実施形態における端末装置10の構成を示す概略ブロック図である。端末装置10は、記憶部11と、制御部12と、表示部13と、入力部14と、通信部15とを備える。
 記憶部11には、制御部12が実行する設置条件を入力するための設置条件入力プログラムが記憶されている。制御部12は記憶部11から設置条件入力プログラムを読み出し、読み出した設置条件入力プログラムを実行し、設置条件を入力するための画面を表示部13に表示させる。
FIG. 2 is a schematic block diagram illustrating a configuration of the terminal device 10 according to the first embodiment. The terminal device 10 includes a storage unit 11, a control unit 12, a display unit 13, an input unit 14, and a communication unit 15.
The storage unit 11 stores an installation condition input program for inputting installation conditions executed by the control unit 12. The control unit 12 reads the installation condition input program from the storage unit 11, executes the read installation condition input program, and causes the display unit 13 to display a screen for inputting the installation conditions.
 設置条件を入力するための画面が表示部13に表示された後に、入力部14は設置条件を示す情報(例えば、経度xを示す情報と、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、方角β_1を示す情報)の入力を受け付ける。入力部14は、受け付けた設置条件を示す情報を制御部12に出力する。制御部12は、入力部14から供給された設置条件を示す情報を記憶部11に記憶させる。 After the screen for inputting the installation condition is displayed on the display unit 13, the input unit 14 displays information indicating the installation condition (for example, information indicating the longitude x, information indicating the latitude y, and presence / absence of the sun tracking function Ft). And information indicating the direction β_1 are received. The input unit 14 outputs information indicating the accepted installation conditions to the control unit 12. The control unit 12 causes the storage unit 11 to store information indicating the installation conditions supplied from the input unit 14.
 また、制御部12は、通信部15を介して、設置条件を示す情報(例えば、経度xを示す情報と、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、方角β_1を示す情報)を太陽光発電装置構成抽出装置100に送信するよう制御する。
 通信部15は、制御部12から供給された設置条件を示す情報(例えば、経度xを示す情報と、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、方角β_1を示す情報)を太陽光発電装置構成抽出装置100に送信する。
Further, the control unit 12 obtains information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and direction β_1 via the communication unit 15). Control information to be transmitted to the solar power generation device configuration extraction device 100.
The communication unit 15 includes information indicating installation conditions supplied from the control unit 12 (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and information indicating direction β_1. ) Is transmitted to the photovoltaic power generation device configuration extraction device 100.
 図3は、第1の実施形態における太陽光発電装置構成抽出装置100の構成を示す概略ブロック図である。太陽光発電装置構成抽出装置100は、構成決定部110と、価格記憶部121と、価格読出部122とを備える。
 構成決定部110は、自装置の外部から入力された太陽光発電装置の設置条件を示す情報に基づいて、この太陽光発電装置の構成を決定する。ここで、構成決定部110は、日射量記憶部111と、日射量読出部112と、太陽位置記憶部113と、構成記憶部114と、構成算出部115と、を備える。また、構成算出部115は、発電量算出部116と、構成抽出部117とを備える。
FIG. 3 is a schematic block diagram illustrating the configuration of the photovoltaic power generation device configuration extraction device 100 according to the first embodiment. The solar power generation device configuration extraction device 100 includes a configuration determination unit 110, a price storage unit 121, and a price reading unit 122.
The configuration determination unit 110 determines the configuration of the solar power generation device based on information indicating the installation conditions of the solar power generation device input from the outside of the device itself. Here, the configuration determining unit 110 includes a solar radiation amount storage unit 111, a solar radiation amount reading unit 112, a solar position storage unit 113, a configuration storage unit 114, and a configuration calculation unit 115. The configuration calculation unit 115 includes a power generation amount calculation unit 116 and a configuration extraction unit 117.
 日射量記憶部111には、場所を示す情報と該場所における日射量を示す情報とが関連付けられて記憶されている。図4は、日射量記憶部111に記憶されているテーブルT1の一例である。同図のテーブルT1には、場所に固有の識別情報である場所識別情報Pidと、緯度yと、経度xとが関連付けられている。例えば、場所識別情報Pidが「00000001」の場合、東京の場所を示す識別情報であり、緯度yは35度40分であり、経度xは139度42分である。 The solar radiation amount storage unit 111 stores information indicating a location and information indicating the solar radiation amount at the location in association with each other. FIG. 4 is an example of a table T1 stored in the solar radiation amount storage unit 111. In the table T1 in the figure, location identification information Pid, which is identification information unique to a location, latitude y, and longitude x are associated. For example, when the location identification information Pid is “00000001”, it is identification information indicating the location of Tokyo, the latitude y is 35 degrees 40 minutes, and the longitude x is 139 degrees 42 minutes.
 日射量記憶部111には、月(Month)を示す情報と、時間(Hour)を示す情報と、月毎に平均された直達光による時間毎の日射量を示す情報と、月毎に平均された散乱光による時間毎の日射量を示す情報とが関連付けられて記憶されており、これらの情報が場所識別情報Pid毎に別テーブルT2_i(iは1からPidの個数までの整数)に格納されている。ここで、直達光とは、太陽から直接太陽光発電装置に到達する光である。散乱光は、雲などにより散乱された光が太陽光発電装置に到達した光である。 In the solar radiation amount storage unit 111, information indicating the month (Month), information indicating the hour (Hour), information indicating the daily solar radiation amount by direct light averaged for each month, and averaged for each month Information indicating the amount of solar radiation for each hour due to scattered light is stored in association with each other, and these pieces of information are stored in a separate table T2_i (i is an integer from 1 to the number of Pids) for each piece of location identification information Pid. ing. Here, the direct light is light that directly reaches the solar power generation device from the sun. The scattered light is light that has been scattered by a cloud or the like and has reached the solar power generation device.
 図5は、場所識別情報Pidが「00000001」の場合の日時毎の日射量のテーブルT2_00000001の一例である。同図のテーブルT2_00000001において、月(Month)と、時間(Hour)と、月毎に平均された直達光の時間毎の日射量と、月毎に平均された散乱光による時間毎の日射量とが関連付けられている。
 例えば、1月の1時の場合、月毎に平均された直達光による1時の日射量は0[W/m]で、月毎に平均された散乱光による1時の日射量は0[W/m]である。また、例えば、1月の12時の場合、月毎に平均された直達光による12時の日射量は943[W/m]で、月毎に平均された散乱光による12時の日射量は60[W/m]である。
FIG. 5 is an example of a table T2_00000001 of the amount of solar radiation for each date and time when the location identification information Pid is “00000001”. In the table T2 — 00000001 in the figure, the monthly (Month), the hour (Hour), the amount of solar radiation averaged every hour of the direct light averaged every month, and the amount of solar radiation per hour by the scattered light averaged monthly Is associated.
For example, in the case of 1 o'clock in January, the solar radiation amount per hour by direct light averaged monthly is 0 [W / m 2 ], and the solar radiation amount per hour by scattered light averaged monthly is 0. [W / m 2 ]. For example, in the case of 12:00 in January, the amount of solar radiation at 12:00 by direct light averaged every month is 943 [W / m 2 ], and the amount of solar radiation at 12:00 by scattered light averaged by month Is 60 [W / m 2 ].
 図6は、場所idが「00000001」の場合において、直達光による日射量の時間変化のある月の平均と、散乱光による日射量の時間変化のその同じ月の平均とが示された図である。同図において、ある月において平均された直達光の時間変化を示す折れ線W51と、その同じ月において平均された散乱光の時間変化を示す折れ線W52とが示されている。同図に示されているように、直達光による日射量と散乱光による日射量とは、共に、7時から18時までの日中に日射量があることが示されている。また、直達光による日射量は、7時から12時に掛けて上昇し、12時から18時に掛けて減少する。一方、散乱光による日射量は、7時から18時までほぼ一定であることが示されている。また、7時から18時までの日中において、直達光による日射量は散乱光による日射量より多いことが示されている。 FIG. 6 is a diagram showing the average of the month in which the solar radiation amount changes with time due to direct light and the average of the same month of the temporal change in the solar radiation amount due to scattered light when the location id is “00000001”. is there. In the figure, a polygonal line W51 indicating the temporal change of the direct light averaged in a certain month and a polygonal line W52 indicating the temporal change of the scattered light averaged in the same month are shown. As shown in the figure, it is shown that both the amount of solar radiation by direct light and the amount of solar radiation by scattered light are in the daytime from 7:00 to 18:00. Further, the amount of solar radiation by direct light increases from 7 o'clock to 12 o'clock and decreases from 12 o'clock to 18 o'clock. On the other hand, it is shown that the amount of solar radiation by scattered light is substantially constant from 7:00 to 18:00. Moreover, it is shown that the amount of solar radiation by direct light is larger than the amount of solar radiation by scattered light during the daytime from 7:00 to 18:00.
 図3に戻って、日射量読出部112は、入力された設置条件を示す情報の一つである場所を示す情報(経度xを示す情報と緯度yを示す情報)に基づき、設置場所から所定の距離範囲内にある地点の日射量を示す情報を日射量記憶部111から読み出す。
 具体的には、例えば、日射量読出部112は、日射量記憶部111に記憶されているテーブルT1において経度xと緯度yに最も近い経度および緯度を抽出し、抽出した経度および緯度に関連付けられている場所識別情報Pidを参照する。
Referring back to FIG. 3, the solar radiation amount reading unit 112 determines a predetermined amount from the installation location based on the information indicating the location (information indicating the longitude x and the information indicating the latitude y) which is one of the information indicating the installation conditions. Information indicating the amount of solar radiation at a point within the distance range is read from the solar radiation amount storage unit 111.
Specifically, for example, the solar radiation amount reading unit 112 extracts the longitude and latitude closest to the longitude x and the latitude y in the table T1 stored in the solar radiation amount storage unit 111, and is associated with the extracted longitude and latitude. The location identification information Pid is referred to.
 そして、日射量読出部112は、日射量記憶部111に記憶されている場所識別情報Pid毎のテーブルT2_Pidを参照し、各月、各時間において、月毎に平均された直達光による時間毎の日射量Iを示す情報と、月毎に平均された散乱光による時間毎の日射量Iを示す情報とを読み出す。 Then, the solar radiation amount reading unit 112 refers to the table T2_Pid for each place identification information Pid stored in the solar radiation amount storage unit 111, and in each month and each hour, the solar radiation amount reading unit 112 is averaged by the direct light averaged every month. reading the information representing the amount of solar radiation I D, and information indicating the amount of solar radiation I S for each time the average scattered light for each month.
 そして、日射量読出部112は、読み出した月毎に平均された直達光による時間毎の日射量Iを示す情報と、月毎に平均された散乱光による時間毎の日射量Iを示す情報とを、経度xを示す情報と、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、方角β_1を示す情報とともに構成算出部115の発電量算出部116に出力する。 The solar radiation amount reading unit 112 shows information indicating the amount of solar radiation I D for every time by the read monthly averaged the direct light, the solar radiation amount I S of each time the average scattered light for each month The information is output to the power generation amount calculation unit 116 of the configuration calculation unit 115 together with information indicating the longitude x, information indicating the latitude y, information indicating the presence / absence Ft of the sun tracking function, and information indicating the direction β_1.
 ここで、太陽光発電装置60の一例について図7を用いて説明する。図7は、太陽光発電装置60の断面図の一例である。同図において、太陽光発電装置60の断面図がYZ平面上に示されている。太陽光発電装置60は、蛍光集光板61と、反射板62と、第1の太陽電池63と、形状集光板65と、第2の太陽電池66と、反射板67と、を備える。
 太陽光発電装置60は、一例として反射板67、形状集光板65、蛍光集光板61の順に積層されている。
Here, an example of the solar power generation device 60 will be described with reference to FIG. FIG. 7 is an example of a cross-sectional view of the solar power generation device 60. In the figure, a cross-sectional view of the photovoltaic power generator 60 is shown on the YZ plane. The solar power generation device 60 includes a fluorescent light collector 61, a reflector 62, a first solar cell 63, a shape collector 65, a second solar cell 66, and a reflector 67.
The solar power generation device 60 is laminated | stacked in order of the reflecting plate 67, the shape light-condensing plate 65, and the fluorescence light-condensing plate 61 as an example.
 同図の太陽光発電装置60では、蛍光集光板61が形状集光板65よりも太陽S68に近い方に設置されている。ここで、蛍光集光板61が形状集光板65よりも太陽S68に近い方であるということは、形状集光板65、蛍光集光板61の積層順であることを意味する。蛍光集光板61と形状集光板65のうちどちらを太陽S68に近い方にするかは設置場所に依存し、構成算出部115により年間の総発電量が多い方に決定される。 In the photovoltaic power generation apparatus 60 of the figure, the fluorescent light collector 61 is installed closer to the sun S68 than the shape light collector 65. Here, the fact that the fluorescent light collecting plate 61 is closer to the sun S68 than the shape light collecting plate 65 means that the shape light collecting plate 65 and the fluorescent light collecting plate 61 are stacked. Which of the fluorescent light collecting plate 61 and the shape light collecting plate 65 is closer to the sun S68 depends on the installation location, and is determined by the configuration calculation unit 115 to have a larger total annual power generation amount.
 太陽S68から照射された光L1が蛍光集光板61の第1主面61aに入射される。蛍光集光板61の内部には、互いに吸収波長域の異なる複数種類の蛍光体(図7では例えば第1蛍光体61b、第2蛍光体61g及び第3蛍光体61r)が分散されている。第1蛍光体61bは、紫外光を吸収して青色の蛍光を放射し、第2蛍光体61gは、青色光を吸収して緑色の蛍光を放射し、第3蛍光体61rは、緑色光を吸収して赤色の蛍光を放射する。 The light L1 irradiated from the sun S68 is incident on the first main surface 61a of the fluorescent light collector 61. A plurality of types of phosphors having different absorption wavelength ranges (for example, the first phosphor 61b, the second phosphor 61g, and the third phosphor 61r in FIG. 7) are dispersed in the fluorescent light collector 61. The first phosphor 61b absorbs ultraviolet light and emits blue fluorescence, the second phosphor 61g absorbs blue light and emits green fluorescence, and the third phosphor 61r emits green light. Absorbs and emits red fluorescence.
 第1蛍光体61b、第2蛍光体61g及び第3蛍光体61rは、例えば、PMMA樹脂を成型する際に混入される。第1蛍光体61b、第2蛍光体61g及び第3蛍光体61rの混合比率は例えば、第1蛍光体61bが0.02%、第2蛍光体61gが0.02%、第3蛍光体61rが0.02%である。ここで、第1蛍光体61b、第2蛍光体61g及び第3蛍光体61rの混合比率はPMMA樹脂に対する体積比率で示している。 The first phosphor 61b, the second phosphor 61g, and the third phosphor 61r are mixed when, for example, a PMMA resin is molded. The mixing ratio of the first phosphor 61b, the second phosphor 61g, and the third phosphor 61r is, for example, 0.02% for the first phosphor 61b, 0.02% for the second phosphor 61g, and the third phosphor 61r. Is 0.02%. Here, the mixing ratio of the first phosphor 61b, the second phosphor 61g, and the third phosphor 61r is shown as a volume ratio with respect to the PMMA resin.
 図8は、蛍光集光板61を上から見た図である。図7の反射板62は、図8の反射板62aと反射板62bと、反射板62cとに相当する。蛍光集光板61は3つの端面を反射板62aと反射板62bと反射板62cとに覆われており、残る1つの端面である第1の端面62dが第1の太陽電池63に覆われている。反射板62aと反射板62bと反射板62cは、蛍光集光板61の内部の蛍光体から放射された蛍光を反射し、反射した蛍光L2を集光方向D74に導く。その結果、反射した蛍光L2は図7の第1の端面62dに導かれ、第1の端面62cに導かれた蛍光は、第1の太陽電池63に入射される。 FIG. 8 is a view of the fluorescent light collector 61 as viewed from above. The reflective plate 62 in FIG. 7 corresponds to the reflective plate 62a, the reflective plate 62b, and the reflective plate 62c in FIG. The fluorescent light collecting plate 61 has three end faces covered with a reflecting plate 62a, a reflecting plate 62b, and a reflecting plate 62c, and the first end face 62d, which is the remaining one end face, is covered with a first solar cell 63. . The reflecting plate 62a, the reflecting plate 62b, and the reflecting plate 62c reflect the fluorescence emitted from the fluorescent substance inside the fluorescent light collecting plate 61, and guide the reflected fluorescence L2 in the light collecting direction D74. As a result, the reflected fluorescence L2 is guided to the first end face 62d in FIG. 7, and the fluorescence guided to the first end face 62c is incident on the first solar cell 63.
 図7に戻って、第1の太陽電池63は、入射された蛍光を第1の太陽電池63の種類に依存した変換効率Rで電気に変換する。
 蛍光集光板61は入射された光L1のうち光L3を透過させ、光L3を形状集光板65の第1主面65aに入射させる。
Returning to FIG. 7, the first solar cell 63 converts the incident fluorescence into electricity with a conversion efficiency R depending on the type of the first solar cell 63.
The fluorescent light collector 61 transmits the light L3 out of the incident light L1 and causes the light L3 to enter the first main surface 65a of the shape light collector 65.
 形状集光板65の第2主面65bには、第1主面65aから入射した光を反射させて光の進行方向を第1端面65cに向かう方向に変更する複数の溝T65が設けられている。
 図7の下側には、形状集光板65の第2主面65bに設けられたプリズム形状が拡大されている。形状集光板65の第2主面65bに設けられる溝T65の断面図である。
The second main surface 65b of the shape light collector 65 is provided with a plurality of grooves T65 that reflect the light incident from the first main surface 65a and change the traveling direction of the light toward the first end surface 65c. .
On the lower side of FIG. 7, the prism shape provided on the second main surface 65 b of the shape light collector 65 is enlarged. It is sectional drawing of groove | channel T65 provided in the 2nd main surface 65b of the shape light-condensing plate 65. FIG.
 溝T65は、Y軸に対して角度θ_1(例えば、90度)をなす傾斜面T1と、Y軸に対して角度θ_2(例えば、30度)をなす傾斜面T2と、が稜線T3において交差するV字状の溝である。稜線T3を挟んで第1端面65c側に傾斜面T2が配置され、第1端面65cとは反対側に傾斜面T1が配置されている。 In the groove T65, an inclined surface T1 that forms an angle θ_1 (for example, 90 degrees) with respect to the Y axis and an inclined surface T2 that forms an angle θ_2 (for example, 30 degrees) with respect to the Y axis intersect at a ridge line T3. It is a V-shaped groove. An inclined surface T2 is disposed on the first end surface 65c side with respect to the ridge line T3, and an inclined surface T1 is disposed on the opposite side to the first end surface 65c.
 例えば、1本の溝TのY方向の幅であるプリズムの長さlは100μmであり、プリズム間隔sは20μmであり、形状集光板65の屈折率は1.5である。なお、角度θ_1、角度θ_2、プリズムの長さl、プリズム間隔s、及び形状集光板65の屈折率はこれに限定するものではない。 For example, the length l of the prism, which is the width in the Y direction of one groove T, is 100 μm, the prism interval s is 20 μm, and the refractive index of the shape light collector 65 is 1.5. The angle θ_1, the angle θ_2, the prism length l, the prism interval s, and the refractive index of the shape light collector 65 are not limited thereto.
 反射板67は、形状集光板65の第2主面65bを透過した光を反射し、反射した光を形状集光板65の第2の主面65bに入射させる。これにより、反射板67は、形状集光板65の第2主面65bから外部に洩れ出る光を反射することができる。形状集光板65の溝T65は、第2の主面65bから入射された光を第1の端面65cに導く。これにより反射板67により反射された光も太陽光発電に利用される。
 第1の端面65cに導かれた光L4は、第2の太陽電池66に入射される。
 第2の太陽電池66は、入射された光L4を第2の太陽電池66の種類に依存した変換効率Rで電気に変換する。
The reflection plate 67 reflects the light transmitted through the second main surface 65b of the shape light collector 65 and causes the reflected light to enter the second main surface 65b of the shape light collector 65. Thereby, the reflecting plate 67 can reflect the light leaking outside from the second main surface 65 b of the shape light collector 65. The groove T65 of the shape light collector 65 guides light incident from the second main surface 65b to the first end surface 65c. Thereby, the light reflected by the reflecting plate 67 is also used for solar power generation.
The light L4 guided to the first end face 65c is incident on the second solar cell 66.
The second solar cell 66 converts the incident light L4 into electricity with a conversion efficiency R depending on the type of the second solar cell 66.
 続いて、太陽の方角α_1と太陽光発電装置60の方角β_1について図9を用いて説明する。図9は、太陽の方角α_1と太陽光発電装置60の方角β_1とを説明するための図である。同図において、太陽光発電装置60の中心を原点とするxy座標系において、Eが東、Wが西、Sが南、Nが北を示している。同図において、真西を0度とすると、太陽S68の方角α_1は、太陽S68から太陽光発電装置60までの直線と、x軸が成す角度である。同様に、太陽光発電装置60の方角β_1は、太陽光発電装置60の形状集光板61の第1主面61aとx軸が成す角度である。 Subsequently, the direction α_1 of the sun and the direction β_1 of the solar power generation device 60 will be described with reference to FIG. FIG. 9 is a diagram for explaining the direction α_1 of the sun and the direction β_1 of the solar power generation device 60. In the drawing, in an xy coordinate system with the center of the solar power generation device 60 as the origin, E indicates east, W indicates west, S indicates south, and N indicates north. In the figure, when the true west is 0 degree, the direction α_1 of the sun S68 is an angle formed by a straight line from the sun S68 to the solar power generation device 60 and the x axis. Similarly, the direction β_1 of the solar power generation device 60 is an angle formed by the first principal surface 61a of the shape light collector 61 of the solar power generation device 60 and the x axis.
 図10は、地面に対する太陽の入射角α_2と地面に対して太陽光発電装置60を設置する角度である設置仰角β_2とを説明するための図である。同図において、xz座標系において太陽光発電装置60と家81と地面82との断面図が示されている。
 ここで、設置仰角β_2は、太陽光発電装置60が備える蛍光集光板61の第1主面61aが地面82に対して成す角度である。太陽光L1の入射角α_2は地面82に対する太陽光L1の角度である。ここで角度φは、入射角α_2と設置仰角β_2の和で表される。
FIG. 10 is a diagram for explaining an incident angle α_2 of the sun with respect to the ground and an installation elevation angle β_2 that is an angle at which the solar power generation device 60 is installed with respect to the ground. In the same figure, sectional views of the photovoltaic power generation device 60, the house 81, and the ground 82 are shown in the xz coordinate system.
Here, the installation elevation angle β_2 is an angle formed by the first main surface 61a of the fluorescent light collector 61 included in the solar power generation device 60 with respect to the ground 82. The incident angle α_2 of the sunlight L1 is an angle of the sunlight L1 with respect to the ground 82. Here, the angle φ is represented by the sum of the incident angle α_2 and the installation elevation angle β_2.
 図3に戻って、太陽位置記憶部113には、太陽の位置を示す情報が、場所を示す情報と日時を示す情報とに関連付けられて記憶されている。具体的には、例えば、太陽位置記憶部113には、緯度xを示す情報と、経度yを示す情報と、月MMを示す情報と、時HHを示す情報と、太陽の方角α_1を示す情報と、太陽の仰角α_2を示す情報とが関連付けられている。 Referring back to FIG. 3, the sun position storage unit 113 stores information indicating the position of the sun in association with information indicating the place and information indicating the date and time. Specifically, for example, in the solar position storage unit 113, information indicating latitude x, information indicating longitude y, information indicating month MM, information indicating hour HH, and information indicating sun direction α_1. And information indicating the elevation angle α_2 of the sun are associated with each other.
 図11は、太陽位置記憶部113に記憶されている太陽の位置を示す情報が記憶されたテーブルT3の一例である。同図のテーブルT3において、緯度xと、経度yと、月MMと、時HHと、太陽の方角α_1と、太陽の仰角α_2とが関連付けられている。例えば、東京に相当する緯度35度40分で経度139度42分の場合、1月の12時の場合、太陽の方角90度で太陽の仰角35度であることが示されている。 FIG. 11 is an example of a table T3 in which information indicating the position of the sun stored in the sun position storage unit 113 is stored. In the table T3 in the figure, the latitude x, the longitude y, the month MM, the hour HH, the sun direction α_1, and the sun elevation angle α_2 are associated with each other. For example, in the case of latitude of 35 degrees 40 minutes corresponding to Tokyo and longitude of 139 degrees 42 minutes, in the case of 12:00 in January, it is indicated that the sun's direction is 90 degrees and the sun's elevation angle is 35 degrees.
 図3に戻って、発電量算出部116は、日射量読出部112から供給された経度xを示す情報と、緯度yを示す情報とに関連付けられた各月MM、各時HHの太陽位置記憶部113から太陽の方角α_1を示す情報と、太陽の入射角α_2を示す情報とを読み出す。 Returning to FIG. 3, the power generation amount calculation unit 116 stores the solar position of each month MM and each hour HH associated with the information indicating the longitude x supplied from the solar radiation amount reading unit 112 and the information indicating the latitude y. Information indicating the solar direction α_1 and information indicating the solar incident angle α_2 are read from the unit 113.
 構成記憶部114には、構成を示す情報と太陽光発電装置の発電量を変化させる係数(r、r、r、r)を示す情報とが関連付けられて記憶されている。具体的には、蛍光集光板と形状集光板との積層順を示す情報Fud毎に、積層順に依存する係数rを示す情報と、積層順に依存する係数rを示す情報とが構成記憶部114に記憶されている。
 ここで、例えば、積層順を示す情報Fudは1または0であり、1の場合、形状集光板65、蛍光集光板61の順に積層され、0の場合、蛍光集光板61、形状集光板65の順に積層されているものとする。
In the configuration storage unit 114, information indicating the configuration and information indicating coefficients (r 1 , r 2 , r 5 , r 6 ) for changing the power generation amount of the photovoltaic power generation apparatus are stored in association with each other. Specifically, for each information Fud indicating the stacking order of the fluorescent light collecting plate and the shape light collecting plate, information indicating the coefficient r 1 depending on the stacking order and information indicating the coefficient r 6 depending on the stacking order are the configuration storage unit. 114.
Here, for example, the information Fud indicating the stacking order is 1 or 0. In the case of 1, the shape light collector 65 and the fluorescent light collector 61 are stacked in this order. It is assumed that they are stacked in order.
 また、構成記憶部114には、太陽光発電装置の設置場所と形状集光板65の下面プリズム形状とに依存する係数rを示す情報が形状集光板65の形状を示す情報と関連付けられて記憶されている。具体的には、例えば、予め決められた距離(例えば、緯度1度の長さまたは経度1度の長さ)毎に、形状集光板65の下面プリズム形状毎に既存の光線ソフトウェアによって算出された係数rが構成記憶部114に記憶されている。
 なお、本実施形態では、係数rが形状集光板65の形状を示す情報に関係付けられているとしたが、これに限ったものではなく、その代わりに係数rが太陽光発電装置の形状に関係付けられていてもよい。
Further, the configuration storage unit 114 stores information indicating the coefficient r 2 depending on the installation location of the photovoltaic power generation apparatus and the lower surface prism shape of the shape light collector 65 in association with information indicating the shape of the shape light collector 65. Has been. Specifically, for example, for each predetermined distance (for example, a length of 1 degree latitude or a length of 1 degree longitude), it is calculated by the existing ray software for each bottom prism shape of the shape light collector 65. The coefficient r 2 is stored in the configuration storage unit 114.
In the present embodiment, the coefficient r 2 is related to the information indicating the shape of the shape light collector 65. However, the present invention is not limited to this. Instead, the coefficient r 2 is the value of the solar power generation device. It may be related to the shape.
 図12は、構成記憶部114に記憶されている形状集光板65の下面プリズム形状に依存する係数rのテーブルT4の一例である。
 同図のテーブルT4において、緯度yと、経度xと、角度θ_1と、角度θ_2と、プリズム長さlと、プリズム間隔sと、係数rとが関連付けられている。例えば、緯度yが35度40分で、経度139度42分で、角度θ_1が90度で、角度θ_2が30度で、プリズム長さlが100μmで、プリズム間隔sが20μmの場合、係数rが0.9である。すなわち、太陽光発電装置の設置場所と形状集光板65の下面プリズム形状が定まると、係数rが一意に定まる。
Figure 12 is an example of the coefficient r 2 of the table T4 that depends on the lower surface prism shapes of collector panel 65 stored in the configuration storage unit 114.
In table T4 in the figure, and latitude y, and longitude x, the angle Shita_1, the angle Shita_2, prism and length l, and a prism spacing s, and the coefficient r 2 is associated. For example, when the latitude y is 35 degrees 40 minutes, the longitude is 139 degrees 42 minutes, the angle θ_1 is 90 degrees, the angle θ_2 is 30 degrees, the prism length l is 100 μm, and the prism interval s is 20 μm, the coefficient r 2 is 0.9. That is, when the installation location of the photovoltaic power generation device and the shape of the lower surface prism of the shape light collector 65 are determined, the coefficient r 2 is uniquely determined.
 また、構成記憶部114には、光電変換効率rを示す情報が太陽電池の種類を示す情報と関連付けられて記憶されている。図13は、構成記憶部114に記憶されている光電変換効率rのテーブルT5の一例である。同図のテーブルT5において、太陽電池を識別する太陽電池識別情報SBidと、太陽電池の種類と、光電変換効率rとが関連付けられている。例えば、太陽電池識別情報SBidが1、太陽電池の種類がアモルファスSi(シリコン)、光電変換効率rが10%である。 Further, in the configuration storage unit 114, information indicating the photoelectric conversion efficiency r 5 are stored in association with the information indicating the type of solar cell. Figure 13 is an example of a table T5 photoelectric conversion efficiency r 5 stored in the configuration storage unit 114. In table T5 in the figure, the solar cell identification information SBid identifying the solar cell, the type of solar cell, the photoelectric conversion efficiency r 5 is associated. For example, the solar cell identification information SBid is 1, the type of the solar cell of amorphous Si (silicon), photoelectric conversion efficiency r 5 is 10%.
 図3に戻って、構成算出部115は、設置場所における各日時における太陽の位置を示す情報を太陽位置記憶部113から読み出し、この読み出した太陽の位置を示す情報と、読み出された日射量を示す情報とに基づいて、太陽光発電装置の構成を算出する。 Returning to FIG. 3, the configuration calculation unit 115 reads information indicating the position of the sun at each date and time at the installation location from the sun position storage unit 113, and information indicating the read position of the sun and the read amount of solar radiation The configuration of the photovoltaic power generation apparatus is calculated based on the information indicating
 具体的には、構成算出部115が備える発電量算出部116は、太陽光発電装置の構成を変更する毎に、太陽の位置を示す情報と読み出された日射量を示す情報とに基づいて、太陽光発電装置の発電量を算出する。そして、構成算出部115が備える発電量算出部117は、算出した太陽光発電装置の発電量のうち、もっとも発電量が高い太陽光発電装置の構成を抽出する。
 太陽光発電装置の発電量の算出の処理の概要としては、発電量算出部116が、構成を変更する毎に、構成を示す情報に関連付けられた係数を示す情報を構成記憶部114から読み出し、該読み出した係数を示す情報と、太陽の位置を示す情報と、日射量を示す情報とに基づいて、太陽光発電装置の発電量を算出する。
Specifically, the power generation amount calculation unit 116 included in the configuration calculation unit 115 is based on information indicating the position of the sun and information indicating the read amount of solar radiation every time the configuration of the photovoltaic power generation apparatus is changed. The power generation amount of the solar power generation device is calculated. Then, the power generation amount calculation unit 117 included in the configuration calculation unit 115 extracts the configuration of the solar power generation device having the highest power generation amount among the calculated power generation amounts of the solar power generation device.
As an overview of the process of calculating the power generation amount of the solar power generation device, each time the power generation amount calculation unit 116 changes the configuration, the information indicating the coefficient associated with the information indicating the configuration is read from the configuration storage unit 114, Based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, the power generation amount of the photovoltaic power generation apparatus is calculated.
 以下、発電量算出部116の具体的な発電量の算出処理について説明する。発電量算出部116は、積層順を示す情報Fudを変更する毎に、その積層順を示す情報Fudに関連付けられた係数r(Fud)と係数r(Fud)と構成記憶部114から読み出す。
 発電量算出部116は、角度θ_1と角度θ_2とプリズム長さlとプリズム間隔sを変更する毎に、それらの情報と日射量読出部112から入力された経度xを示す情報と緯度yを示す情報とに関連付けられた係数r(x,y,θ_1,θ_2,l,s)を示す情報を構成記憶部114のテーブルT4から読み出す。
Hereinafter, specific power generation amount calculation processing of the power generation amount calculation unit 116 will be described. Each time the information Fud indicating the stacking order is changed, the power generation amount calculation unit 116 reads the coefficient r 1 (Fud) and the coefficient r 6 (Fud) associated with the information Fud indicating the stacking order from the configuration storage unit 114. .
Every time the angle θ_1, the angle θ_2, the prism length l, and the prism interval s are changed, the power generation amount calculation unit 116 indicates the information, the information indicating the longitude x input from the solar radiation amount reading unit 112, and the latitude y. Information indicating the coefficient r 2 (x, y, θ_1, θ_2, l, s) associated with the information is read from the table T4 of the configuration storage unit 114.
 また、構成記憶部114に記憶されているテーブルT4において、日射量読出部112から入力された情報が示す経度xと緯度yとの組み合わせが記憶されていない場合、発電量算出部116は、設置場所に最も近い経度xと緯度yとを構成記憶部114のテーブルT4から抽出する。そして、発電量算出部116は、角度θ_1と角度θ_2とプリズム長さlとプリズム間隔sを変更する毎に、それらの情報と抽出した経度xと緯度yとに関連付けられた係数rを示す情報を読み出す。
 これにより、発電量算出部116は、太陽光発電装置の設置場所と形状集光板65の下面プリズム形状とから、係数rを得ることができる。
In addition, in the table T4 stored in the configuration storage unit 114, when the combination of the longitude x and the latitude y indicated by the information input from the solar radiation amount reading unit 112 is not stored, the power generation amount calculation unit 116 is installed. The longitude x and latitude y closest to the place are extracted from the table T4 of the configuration storage unit 114. Then, every time the angle θ_1, the angle θ_2, the prism length l, and the prism interval s are changed, the power generation amount calculation unit 116 indicates the coefficient r 2 associated with the extracted longitude x and latitude y. Read information.
Thereby, the power generation amount calculation unit 116 can obtain the coefficient r 2 from the installation location of the solar power generation device and the lower surface prism shape of the shape light collector 65.
 なお、発電量算出部116は、日射量読出部112から入力された情報が示す経度xと緯度yとに応じて、毎回、係数rを算出してもよい。その場合、発電量算出部116は、予め構成記憶部114に記憶されている光線ソフトウェアを読み出し、その光線ソフトウェアに、日射量読出部112から入力された情報が示す経度x及び緯度y、角度θ_1、角度θ_2、プリズム長さl、プリズム間隔sそれぞれを示す情報を入力して実行することにより、係数rを算出してもよい。 Note that the power generation amount calculation unit 116 may calculate the coefficient r 2 each time according to the longitude x and the latitude y indicated by the information input from the solar radiation amount reading unit 112. In that case, the power generation amount calculation unit 116 reads the ray software stored in the configuration storage unit 114 in advance, and the longitude x, latitude y, and angle θ_1 indicated by the information input from the solar radiation amount reading unit 112 are stored in the ray software. , the angle Shita_2, prism length l, by entering and running information indicating each prism spacing s, may be calculated coefficient r 2.
 また、発電量算出部116は、太陽光発電装置60の方角β_1を変更する毎に、方角β_1に依存して発電量を変更する係数r(Ft,x,y,i,j,β_1)を以下の式(1)に従って、算出する。 Moreover, every time the direction β_1 of the solar power generation device 60 is changed, the power generation amount calculation unit 116 changes a coefficient r 3 (Ft, x, y, i, j, β_1) that changes the power generation amount depending on the direction β_1. Is calculated according to the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 ここで、太陽追尾機能の有無Ftは1のとき追尾機能があり、係数rは1である。太陽追尾機能の有無Ftは0のとき追尾機能がないことを示している。係数rは、太陽の照射光L1のうち第1主面61aに垂直に入射する光の成分を表し、太陽の照射角度α_1と太陽光発電装置60の方角β_1とに依存して決まる値である。 Here, when the presence / absence Ft of the sun tracking function is 1, the tracking function is present, and the coefficient r 3 is 1. When the sun tracking function Ft is 0, it indicates that there is no tracking function. The coefficient r 3 represents a component of light that is perpendicularly incident on the first main surface 61a in the solar irradiation light L1, and is a value that is determined depending on the solar irradiation angle α_1 and the direction β_1 of the solar power generation device 60. is there.
 また、発電量算出部116は、太陽光発電装置60の設置仰角β_2を変更する毎に、設置仰角β_2に依存して発電量を変更する係数r(x,y,i,j,β_2)を以下の式(2)に従って、算出する。 The power generation amount calculation unit 116 changes the power generation amount depending on the installation elevation angle β_2 every time the installation elevation angle β_2 of the solar power generation device 60 is changed, r 4 (x, y, i, j, β_2). Is calculated according to the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

 ここで、角度φは、図10の角度φを示している。係数rは、太陽の照射光L1のうち、第1主面61aに垂直に入射する光の成分を表し、太陽の入射角α_2と太陽光発電装置を設置する設置仰角β_2とに依存して決まる値である。
 また、発電量算出部116は、太陽電池の種類を変更する毎に、太陽電池の種類に依存して発電量を変更する係数rを構成記憶部114から読み出す。
Here, the angle φ indicates the angle φ in FIG. Coefficient r 4, out of the irradiation light L1 of the sun, represents the component of the light incident perpendicularly to the first main surface 61a, depending on the installation elevation β_2 installing the incident angle α_2 and photovoltaic device of the solar It is a determined value.
In addition, every time the type of solar cell is changed, the power generation amount calculation unit 116 reads the coefficient r 5 for changing the power generation amount depending on the type of solar cell from the configuration storage unit 114.
 発電量算出部116は、以下の式(3)に従って、太陽光発電装置の構成を変更する毎に、直達光による年間の発電量Pを算出する。 Power generation amount calculating unit 116, in accordance with the following equation (3), each time changing the configuration of the photovoltaic power generator, calculates the power generation amount P D annually by the direct light.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003

 ここで、iは月を示すインデックスであり(iは1から12までの整数)、jは時(Hour)を示すインデックスであり(jは1から24までの整数)、NDAY(i)は月i毎の日数である。
 発電量算出部116は、以下の式(4)に従って、太陽光発電装置の構成を変更する毎に、散乱光による年間の発電量Pを算出する。
Here, i is an index indicating the month (i is an integer from 1 to 12), j is an index indicating the hour (Hour) (j is an integer from 1 to 24), and N DAY (i) is The number of days per month i.
Power generation amount calculating unit 116, in accordance with the following equation (4), each time changing the configuration of the photovoltaic power generator, calculates the power generation amount P S Annual by scattered light.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004

 そして、構成記憶部114は、太陽光発電装置の構成を変更する毎に算出された直達光による年間の発電量Pと散乱光による年間の発電量Pとを用いて、発電量Pと発電量Pの和である年間の総発電量P(=P+P)を算出する。
 構成記憶部114は、全ての構成の組み合わせで、年間の総発電量Pを算出し、算出した構成の組み合わせ毎の年間の総発電量Pを示す情報を構成抽出部117に出力する。
The configuration storage unit 114, by using the power generation amount P S of annual and power generation amount P D annually by the direct light, which is calculated each time to change the configuration of a photovoltaic power generator according to the scattered light, the power generation amount P D And the total power generation amount P T (= P D + P S ) for the year, which is the sum of the power generation amount P S and the power generation amount PS.
The configuration storage unit 114 calculates the total annual power generation amount PT for all the configuration combinations, and outputs information indicating the total annual power generation amount PT for each calculated configuration combination to the configuration extraction unit 117.
 以下、発電量算出部116の処理についてまとめると、構成記憶部114に記憶されている前記構成を示す情報の一つは、太陽光発電装置が備える形状集光板と蛍光集光板の積層順を示す情報であり、発電量算出部116は、設置順を変更する毎に、積層順を示す情報に関連付けられた前記係数を示す情報を構成記憶部114から読み出し、この読み出した係数を示す情報と、太陽の位置を示す情報と、日射量を示す情報とに基づいて、太陽光発電装置の発電量を算出する。 Hereinafter, when the processing of the power generation amount calculation unit 116 is summarized, one piece of information indicating the configuration stored in the configuration storage unit 114 indicates the stacking order of the shape light collecting plate and the fluorescent light collecting plate included in the solar power generation device. Each time the power generation amount calculation unit 116 changes the installation order, the power generation amount calculation unit 116 reads the information indicating the coefficient associated with the information indicating the stacking order from the configuration storage unit 114, and the information indicating the read coefficient, Based on the information indicating the position of the sun and the information indicating the amount of solar radiation, the power generation amount of the solar power generation device is calculated.
 構成記憶部114に記憶されている構成を示す情報の一つは、太陽光発電装置が備える形状集光板の形状を示す情報であり、発電量算出部116は、形状集光板の形状を変更する毎に、形状集光板の形状を示す情報に関連付けられた係数を示す情報を構成記憶部114から読み出し、この読み出した係数を示す情報と、太陽の位置を示す情報と、日射量を示す情報とに基づいて、太陽光発電装置の発電量を算出する。 One piece of information indicating the configuration stored in the configuration storage unit 114 is information indicating the shape of the shape light collector included in the solar power generation device, and the power generation amount calculation unit 116 changes the shape of the shape light collector. Each time, information indicating a coefficient associated with information indicating the shape of the shape light collector is read from the configuration storage unit 114, information indicating the read coefficient, information indicating the position of the sun, and information indicating the amount of solar radiation. Based on the above, the power generation amount of the solar power generation device is calculated.
 構成記憶部114に記憶されている構成を示す情報の一つは、太陽光発電装置の地面に対する仰角を示す情報であり、発電量算出部116は、設置仰角を変更する毎に、設置仰角を示す情報に関連付けられた係数を示す情報を構成記憶部114から読み出し、この読み出した係数を示す情報と、前記太陽の位置を示す情報と、日射量を示す情報とに基づいて、太陽光発電装置の発電量を算出する。 One piece of information indicating the configuration stored in the configuration storage unit 114 is information indicating the elevation angle of the photovoltaic power generation apparatus with respect to the ground, and the power generation amount calculation unit 116 changes the installation elevation angle every time the installation elevation angle is changed. Information indicating a coefficient associated with the information to be displayed is read from the configuration storage unit 114, and based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, The amount of power generation is calculated.
 構成記憶部114に記憶されている前記構成を示す情報の一つは、太陽電池の種類を示す情報であり、発電量算出部116は、太陽電池の種類を変更する毎に、太陽電池の種類を示す情報に関連付けられた係数を示す情報を構成記憶部114から読み出し、この読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出する。 One piece of information indicating the configuration stored in the configuration storage unit 114 is information indicating the type of solar cell, and the power generation amount calculation unit 116 changes the type of solar cell each time the type of solar cell is changed. The information indicating the coefficient associated with the information indicating the information is read from the configuration storage unit 114, and based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, Calculate the amount of power generated by the photovoltaic device.
 構成記憶部114に記憶されている構成を示す情報の一つは、形状集光板または蛍光集光板の法線が太陽の方向になるように太陽発電装置の向きを変更する太陽追尾の有無を示す情報であり、発電量算出部は、太陽追尾の有無を変更する毎に、太陽追尾の有無を示す情報に関連付けられた係数を示す情報を構成記憶部114から読み出し、この読み出した係数を示す情報と、太陽の位置を示す情報と、日射量を示す情報とに基づいて、太陽光発電装置の発電量を算出する。 One piece of information indicating the configuration stored in the configuration storage unit 114 indicates the presence or absence of solar tracking that changes the orientation of the solar power generation device so that the normal of the shape light collector or the fluorescent light collector is in the direction of the sun. Each time the power generation amount calculation unit changes the presence / absence of solar tracking, the power generation amount calculation unit reads information indicating a coefficient associated with information indicating the presence / absence of solar tracking from the configuration storage unit 114, and information indicating the read coefficient And the electric power generation amount of a solar power generation device is calculated based on the information which shows the position of the sun, and the information which shows the amount of solar radiation.
 構成抽出部117は、構成記憶部114から供給された年間の総発電量Pが最も高くなる太陽光発電装置の構成を抽出し、抽出した太陽光発電装置の構成を示す情報Cpを価格読出部122に出力する。
 なお、構成抽出部117は、年間の総発電量Pが所定の閾値を超える構成を抽出してもよい。
The configuration extraction unit 117 extracts the configuration of the solar power generation device having the highest annual total power generation amount PT supplied from the configuration storage unit 114, and reads the information Cp indicating the extracted configuration of the solar power generation device. To the unit 122.
Note that the configuration extraction unit 117 may extract a configuration in which the annual total power generation amount PT exceeds a predetermined threshold.
 価格記憶部121には、太陽光発電装置の構成を示す情報Cpとこの構成をとるときの価格を示す情報Pが関連付けられて記憶されている。図14は、価格記憶部121に記憶されている太陽光発電装置の構成を示す情報Cpとこの構成を取るときの価格を示す情報Pが関連付けられたテーブルT6の一例である。
 同図のテーブルT6において、積層順と、太陽追尾機能の有無と、太陽電池の種類と、価格とが関連付けられている。例えば、テーブルT6の3行目の例では、積層順が1(すなわち、積層順が反射板67、形状集光板65、蛍光集光板61の順)で、太陽追尾機能が0(すなわち、太陽追尾機能無し)で、太陽電池の種類がアモルファスSiの場合、価格が100,000円である。
In the price storage unit 121, information Cp indicating the configuration of the photovoltaic power generation apparatus and information P indicating the price when this configuration is taken are stored in association with each other. FIG. 14 is an example of a table T6 in which information Cp indicating the configuration of the photovoltaic power generation apparatus stored in the price storage unit 121 is associated with information P indicating the price when this configuration is taken.
In the table T6 in the figure, the stacking order, the presence / absence of the solar tracking function, the type of solar cell, and the price are associated with each other. For example, in the example of the third row of the table T6, the stacking order is 1 (that is, the stacking order is the order of the reflector 67, the shape light collector 65, and the fluorescent light collector 61), and the sun tracking function is 0 (that is, the sun tracking). If the solar cell is amorphous Si, the price is 100,000 yen.
 図3に戻って、価格読出部122は構成抽出部117から供給された太陽光発電装置の構成を示す情報Cpに関連付けられた価格を示す情報Pを価格記憶部121から読み出す。そして、価格読出部122は太陽光発電装置の構成を示す情報Cpと価格を示す情報Pを自装置の外部に出力する。 Returning to FIG. 3, the price reading unit 122 reads information P indicating the price associated with the information Cp indicating the configuration of the solar power generation apparatus supplied from the configuration extracting unit 117 from the price storage unit 121. And the price reading part 122 outputs the information Cp which shows the structure of a solar power generation device, and the information P which shows a price to the exterior of an own apparatus.
 図15は、第1の実施形態における太陽光発電装置構成抽出装置の処理の流れを示したフローチャートである。まず、日射量読出部112は、設置条件の入力を受け付ける(ステップS101)。次に、日射量読出部112は、入力された設置条件に対応する日射量を読み出す(ステップS102)。次に、発電量算出部116は、年間の直達光による発電量Pを算出する(ステップS103)。次に、発電量算出部116は、年間の散乱光による発電量Pを算出する(ステップS104)。 FIG. 15 is a flowchart illustrating a processing flow of the photovoltaic power generation device configuration extraction device according to the first embodiment. First, the solar radiation amount reading unit 112 receives an input of installation conditions (step S101). Next, the solar radiation amount reading unit 112 reads the solar radiation amount corresponding to the input installation conditions (step S102). Next, the power generation amount calculating unit 116 calculates a power generation amount P D by the direct light of the annual (step S103). Next, the power generation amount calculating unit 116 calculates a power generation amount P S by scattered light year (step S104).
 次に、発電量算出部116は、年間の総発電量Pを算出する(ステップS105)。
 次に、発電量算出部116は、全ての太陽光発電装置の構成で年間の総発電量Pを算出したか否か判定する(ステップS106)。全ての太陽光発電装置の構成で年間の総発電量Pを算出していない場合(ステップS106 NO)、発電量算出部116は構成を変更してステップS103の処理に戻る(ステップS107)。
Next, the power generation amount calculation unit 116 calculates an annual total power generation amount PT (step S105).
Next, the power generation amount calculation unit 116 determines whether or not the annual total power generation amount PT is calculated for all the solar power generation devices (step S106). When the total power generation amount PT is not calculated for all the configurations of the solar power generation devices (NO in step S106), the power generation amount calculation unit 116 changes the configuration and returns to the process of step S103 (step S107).
 全ての太陽光発電装置の構成で年間の総発電量Pを算出した場合(ステップS106 YES)、構成抽出部117は、年間の全発電量Pが最大となる構成を抽出する(ステップS108)。次に、価格読出部122は、構成に対応する価格を示す情報を読み出す。以上で、本フローチャートの処理を終了する。 When the total annual power generation amount PT is calculated for all the configurations of the solar power generation devices (YES in step S106), the configuration extraction unit 117 extracts a configuration that maximizes the total annual power generation amount PT (step S108). ). Next, the price reading unit 122 reads information indicating the price corresponding to the configuration. Above, the process of this flowchart is complete | finished.
 以上、第1の実施形態における太陽光発電装置構成抽出装置100は、太陽光発電装置の構成を変更する毎に、構成を示す情報に関連付けられた係数を示す情報を構成記憶部114から読み出し、この読み出した係数を示す情報と、太陽の位置を示す情報と、日射量を示す情報とに基づいて、太陽光発電装置の発電量を算出する。太陽光発電装置構成抽出装置100は、全ての構成で太陽光発電装置の発電量を算出した場合、発電量が最も多くなる構成を抽出する。 As described above, the solar power generation device configuration extraction device 100 according to the first embodiment reads information indicating the coefficient associated with the information indicating the configuration from the configuration storage unit 114 every time the configuration of the solar power generation device is changed. Based on the information indicating the read coefficient, the information indicating the position of the sun, and the information indicating the amount of solar radiation, the power generation amount of the photovoltaic power generation apparatus is calculated. The solar power generation device configuration extraction device 100 extracts the configuration with the largest power generation amount when the power generation amount of the solar power generation device is calculated in all configurations.
 これにより、太陽光発電装置構成抽出装置100は、太陽光発電装置の設置条件下で、発電量が最も多くなる太陽光発電装置の構成を抽出することができる。その結果、太陽光発電装置構成抽出装置100は、短時間で簡単に設置場所に応じた最適な太陽光発電装置の構成を端末装置10のユーザに提供することができる。 Thereby, the photovoltaic power generation device configuration extracting device 100 can extract the configuration of the photovoltaic power generation device that generates the largest amount of power under the installation conditions of the photovoltaic power generation device. As a result, the solar power generation device configuration extraction device 100 can easily provide the user of the terminal device 10 with the optimal configuration of the solar power generation device according to the installation location in a short time.
 また、太陽光発電装置構成抽出装置100は、抽出した太陽光発電装置の構成を示す情報を自装置の外部に出力する。これにより、太陽光発電装置の構成を示す情報を受け取った太陽光発電装置の製造業者は、その構成を示す情報に基づいて、太陽光発電装置を製造することができる。 Also, the solar power generation device configuration extraction device 100 outputs information indicating the extracted configuration of the solar power generation device to the outside of the device itself. Thereby, the manufacturer of the solar power generation apparatus that has received the information indicating the configuration of the solar power generation apparatus can manufacture the solar power generation apparatus based on the information indicating the configuration.
 また、太陽光発電装置構成抽出装置100は、抽出した太陽光発電装置の構成時の価格を示す情報を自装置の外部に出力する。これにより、太陽光発電装置の構成時の価格を示す情報を受け取った太陽光発電装置の出荷業者または設置業者は、その価格で太陽光発電装置を出荷または設置することができる。 Also, the solar power generation device configuration extraction device 100 outputs information indicating the price at the time of configuration of the extracted solar power generation device to the outside of the own device. Accordingly, the shipper or installer of the solar power generation apparatus that has received the information indicating the price when the solar power generation apparatus is configured can ship or install the solar power generation apparatus at that price.
 なお、本実施形態の太陽光発電装置構成抽出装置100は、月毎に平均された時間ごとの直達光の日射量と、月毎に平均された時間ごとの散乱光の日射量とを用いたがこれに限ったものではない。太陽光発電装置構成抽出装置100は、過去に観測された毎日の時間ごとの直達光の日射量と、過去に観測された毎日の時間ごとの散乱光の日射量とを用いてもよい。また、太陽光発電装置構成抽出装置100は、過去所定の年数分平均された毎日の時間ごとの直達光の日射量と、過去所定の年数分平均された毎日の時間ごとの散乱光の日射量とを用いてよい。 In addition, the solar power generation device structure extraction apparatus 100 of this embodiment used the solar radiation amount of the direct light for every hour averaged for every month and the solar radiation amount of the scattered light for every hour averaged for every month. Is not limited to this. The solar power generation device configuration extraction device 100 may use the amount of solar radiation that has been observed in the past every day and the amount of solar light that has been observed in the past and the amount of sunlight that has been observed in the past every day. Moreover, the solar power generation device structure extraction apparatus 100 is the amount of insolation of the direct light for every hour averaged for the past predetermined years, and the amount of insolation of the scattered light for every hour of hours averaged for the past predetermined years. And may be used.
 <第2の実施形態>
 図16は、第2の実施形態における太陽光発電装置構成判断システム2の構成を示す概略ブロック図である。なお、図1の第1の実施形態における太陽光発電装置構成判断システム1と共通する要素には同一の符号を付し、その具体的な説明を省略する。図16の太陽光発電装置構成判断システム2の構成は、図1の太陽光発電装置構成判断システム1の構成に対して、通信網20が追加され、端末装置10が端末装置10bに変更され、太陽光発電装置構成抽出装置100が、太陽光発電装置構成抽出装置100bに変更されたものとなっている。通信網20は、例えば、地球規模で広く相互接続されているネットワークである。
<Second Embodiment>
FIG. 16 is a schematic block diagram illustrating a configuration of the solar power generation device configuration determination system 2 according to the second embodiment. In addition, the same code | symbol is attached | subjected to the element which is common in the solar power generation device structure judgment system 1 in 1st Embodiment of FIG. 1, and the specific description is abbreviate | omitted. The configuration of the solar power generation device configuration determination system 2 in FIG. 16 is that the communication network 20 is added to the configuration of the solar power generation device configuration determination system 1 in FIG. 1, the terminal device 10 is changed to the terminal device 10b, The solar power generation device configuration extraction device 100 is changed to the solar power generation device configuration extraction device 100b. The communication network 20 is, for example, a network that is widely interconnected on a global scale.
 まず、太陽光発電装置構成判断システム2の概要について説明する。端末装置10bは、設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)を通信網20を介して太陽光発電装置構成抽出装置100bに出力する。 First, an overview of the solar power generation device configuration determination system 2 will be described. The terminal device 10b includes information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and the direction of the solar power generation apparatus when there is no solar tracking function) (information indicating β_1) is output to the photovoltaic power generation device configuration extraction device 100b via the communication network 20.
 太陽光発電装置構成抽出装置100bは、通信網20を介して、入力された設置条件を示す情報に基づいて、太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとを抽出する。太陽光発電装置構成抽出装置100bは、抽出した太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとを通信網20を介して、端末装置10bに出力する。 The solar power generation device configuration extraction device 100b is configured to receive information Cp indicating the configuration of the solar power generation device and information P indicating the price at the time of configuration based on the information indicating the installation conditions input via the communication network 20. And extract. The solar power generation device configuration extraction device 100b outputs information Cp indicating the configuration of the extracted solar power generation device and information P indicating the price at the time of configuration to the terminal device 10b via the communication network 20.
 端末装置10bは、供給された太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとを表示し、発注を指示する情報を受け取った場合、発注に関する情報o(例えば、設置場所)を太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとともに自装置の外部、例えば、製造業者の情報処理装置に出力する。 When the terminal device 10b displays information Cp indicating the configuration of the supplied photovoltaic power generation apparatus and information P indicating the price at the time of configuration, and receives information instructing ordering, the terminal device 10b receives information o regarding ordering (for example, , The installation location) together with the information Cp indicating the configuration of the photovoltaic power generation apparatus and the information P indicating the price at the time of the configuration are output to the outside of the apparatus, for example, the information processing apparatus of the manufacturer.
 図17は、第2の実施形態における端末装置10bの構成を示す概略ブロック図である。なお、図2の第1の実施形態における端末装置10bと共通する要素には同一の符号を付し、その具体的な説明を省略する。図17の端末装置10bの構成は、図2の端末装置10の構成に対して、制御部12が制御部12bに変更され、通信部15が、通信部15bに変更されたものとなっている。 FIG. 17 is a schematic block diagram showing the configuration of the terminal device 10b in the second embodiment. In addition, the same code | symbol is attached | subjected to the element which is common in the terminal device 10b in 1st Embodiment of FIG. 2, and the specific description is abbreviate | omitted. The configuration of the terminal device 10b in FIG. 17 is such that the control unit 12 is changed to the control unit 12b and the communication unit 15 is changed to the communication unit 15b with respect to the configuration of the terminal device 10 in FIG. .
 制御部12bは、通信部15bに、通信網20を介して、設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)を太陽光発電装置構成抽出装置100bに出力するよう制御する。
 通信部15bは、設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)を通信網20を介して、太陽光発電装置構成抽出装置100b(図16)に出力する。
The control unit 12b sends the communication unit 15b via the communication network 20 information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and sun Control is performed so that the information indicating the direction β_1 of the photovoltaic power generation apparatus when there is no tracking function is output to the photovoltaic power generation apparatus configuration extracting apparatus 100b.
The communication unit 15b includes information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and the direction of the solar power generation apparatus when there is no sun tracking function) (information indicating β_1) is output to the photovoltaic power generation device configuration extraction device 100b (FIG. 16) via the communication network 20.
 通信部15bは、太陽光発電装置構成抽出装置100b(図16)から通信網20を介して供給された太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとを受信し、制御部12bに出力する。
 制御部12bは、太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pと表示部14に表示させる。これにより、端末装置10bのユーザは、太陽光発電装置に構成とその構成時の価格を確認することができる。
The communication unit 15b receives information Cp indicating the configuration of the solar power generation apparatus supplied from the solar power generation apparatus configuration extracting apparatus 100b (FIG. 16) via the communication network 20, and information P indicating the price at the time of the configuration. Receive and output to the control unit 12b.
The control unit 12b displays information Cp indicating the configuration of the photovoltaic power generation apparatus, information P indicating the price at the time of configuration, and the display unit 14. Thereby, the user of the terminal device 10b can confirm a structure and the price at the time of the structure in a solar power generation device.
 表示部13により太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pが表示された後に、入力部14は、ユーザの入力する発注を指示する情報の入力を受け付ける。
 入力部14は、発注を指示する情報を受けた場合、その発注を指示する情報を制御部12bに出力する。
After the information Cp indicating the configuration of the photovoltaic power generation apparatus and the information P indicating the price at the time of configuration are displayed on the display unit 13, the input unit 14 receives input of information instructing an order input by the user.
When receiving the information for instructing the order, the input unit 14 outputs the information for instructing the order to the control unit 12b.
 制御部12bは、発注に関する情報o(例えば、設置場所)を太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとともに製造業者の情報処理装置に出力する。これにより、発注情報oと太陽光発電装置の構成を示す情報Cpを受け取った製造業者がその構成に基づいて、太陽光発電装置を製造することができる。
 また、発注情報oとその構成時の価格を示す情報Pとに基づいて、納品業者または設置業者が太陽光発電装置を設置または納品することができる。
The control unit 12b outputs information o (for example, installation location) relating to ordering together with information Cp indicating the configuration of the photovoltaic power generation apparatus and information P indicating the price at the time of configuration to the information processing apparatus of the manufacturer. Thereby, the manufacturer who received the order information o and the information Cp indicating the configuration of the solar power generation device can manufacture the solar power generation device based on the configuration.
Further, based on the order information o and the information P indicating the price at the time of the configuration, the delivery company or the installation company can install or deliver the solar power generation device.
 図18は、第2の実施形態における太陽光発電装置構成抽出装置100bの構成を示す概略ブロック図である。なお、図3の第1の実施形態における太陽光発電装置構成抽出装置100と共通する要素には同一の符号を付し、その具体的な説明を省略する。図18の太陽光発電装置構成抽出装置100bの構成は、図3の太陽光発電装置構成抽出装置100の構成に対して、通信部123が追加されたものとなっている。 FIG. 18 is a schematic block diagram illustrating the configuration of the photovoltaic power generation device configuration extraction device 100b according to the second embodiment. In addition, the same code | symbol is attached | subjected to the element which is common in the solar power generation device structure extracting device 100 in 1st Embodiment of FIG. 3, and the specific description is abbreviate | omitted. The configuration of the solar power generation device configuration extraction device 100b in FIG. 18 is obtained by adding a communication unit 123 to the configuration of the solar power generation device configuration extraction device 100 in FIG.
 通信部123は、端末装置10bから通信網20を介して供給された設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)を受信する。
 通信部123は、当該設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)を日射量読出部112に出力する。
The communication unit 123 includes information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, and information indicating presence / absence Ft of the sun tracking function) supplied from the terminal device 10b via the communication network 20. (Information indicating the direction β_1 of the solar power generation apparatus when there is no solar tracking function).
The communication unit 123 includes information indicating the installation conditions (for example, information indicating the longitude x, information indicating the latitude y, information indicating the presence / absence Ft of the solar tracking function, and the solar power generation apparatus when there is no solar tracking function) (Information indicating the direction β_1) is output to the solar radiation amount reading unit 112.
 通信部123は、価格読出部122から供給された太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pを通信網20を介して、端末装置10bに出力する。
 そして、太陽光発電装置構成抽出装置100bは、抽出した太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとを通信網20を介して端末装置10bに送信する。
The communication unit 123 outputs information Cp indicating the configuration of the photovoltaic power generation apparatus supplied from the price reading unit 122 and information P indicating the price at the time of configuration to the terminal device 10b via the communication network 20.
And the solar power generation device structure extraction apparatus 100b transmits the information Cp which shows the structure of the extracted solar power generation device, and the information P which shows the price at the time of the structure to the terminal device 10b via the communication network 20. FIG.
 以上、第2の実施形態における太陽光発電装置構成抽出装置100bは、端末装置10bから通信網20を介して入力された設置条件を示す情報に基づいて、太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとを抽出する。そして、太陽光発電装置構成抽出装置100bは、抽出した太陽光発電装置の構成を示す情報Cpと、その構成時の価格を示す情報Pとを通信網20を介して端末装置10bに送信する。 As described above, the solar power generation device configuration extraction device 100b according to the second embodiment is the information Cp indicating the configuration of the solar power generation device based on the information indicating the installation conditions input from the terminal device 10b via the communication network 20. And information P indicating the price at the time of configuration. And the solar power generation device structure extraction apparatus 100b transmits the information Cp which shows the structure of the extracted solar power generation device, and the information P which shows the price at the time of the structure to the terminal device 10b via the communication network 20. FIG.
 これにより、太陽光発電装置構成抽出装置100bは、離れた距離に存在する端末装置10bから入力された太陽光発電装置の設置条件に応じて、その設置条件下で発電量が最も多くなる太陽光発電装置の構成を抽出することができる。その結果、太陽光発電装置構成抽出装置100bは、短時間で簡単に設置場所に応じた最適な太陽光発電装置の構成を端末装置10bのユーザに提供することができる。 As a result, the solar power generation device configuration extraction device 100b has the largest amount of power generated under the installation conditions according to the installation conditions of the solar power generation device input from the terminal device 10b existing at a distance. The configuration of the power generation device can be extracted. As a result, the solar power generation device configuration extraction device 100b can easily provide the user of the terminal device 10b with the optimal configuration of the solar power generation device according to the installation location in a short time.
  <第3の実施形態>
 図19は、第3の実施形態における太陽光発電装置構成判断システム3の構成を示す概略ブロック図である。なお、図1の第1の実施形態における太陽光発電装置構成判断システム3と共通する要素には同一の符号を付し、その具体的な説明を省略する。図19の太陽光発電装置構成判断システム3の構成は、図1の太陽光発電装置構成判断システム1の構成に対して、太陽光発電装置構成抽出装置100が、太陽光発電装置構成抽出装置100cに変更されたものとなっている。
<Third Embodiment>
FIG. 19 is a schematic block diagram illustrating the configuration of the solar power generation device configuration determination system 3 according to the third embodiment. In addition, the same code | symbol is attached | subjected to the element which is common in the solar power generation device structure determination system 3 in 1st Embodiment of FIG. 1, and the specific description is abbreviate | omitted. The configuration of the solar power generation device configuration determination system 3 in FIG. 19 is different from the configuration of the solar power generation device configuration determination system 1 in FIG. It has been changed to.
 図20は、第3の実施形態における太陽光発電装置構成抽出装置100cの構成を示す概略ブロック図である。なお、図3の第1の実施形態における太陽光発電装置構成抽出装置100と共通する要素には同一の符号を付し、その具体的な説明を省略する。 FIG. 20 is a schematic block diagram illustrating the configuration of the photovoltaic power generation device configuration extraction device 100c according to the third embodiment. In addition, the same code | symbol is attached | subjected to the element which is common in the solar power generation device structure extracting device 100 in 1st Embodiment of FIG. 3, and the specific description is abbreviate | omitted.
 太陽光発電装置構成抽出装置100cは、構成決定部110cと、設置条件記憶部131と、設置条件抽出部132と、第2の構成記憶部114と、構成読出部135と、価格記憶部121と、価格読出部122cとを備える。
 設置条件記憶部131には、設置条件を示す情報とこの設置条件を識別する設置条件識別情報とが関連付けられて記憶されている。
The photovoltaic power generation device configuration extraction device 100c includes a configuration determination unit 110c, an installation condition storage unit 131, an installation condition extraction unit 132, a second configuration storage unit 114, a configuration reading unit 135, and a price storage unit 121. A price reading unit 122c.
In the installation condition storage unit 131, information indicating the installation condition and installation condition identification information for identifying the installation condition are stored in association with each other.
 図21は、設置条件記憶部131に記憶されている設置条件を示す情報とこの設置条件を識別する設置条件識別情報とが関連付けられたテーブルT7の一例である。同図のテーブルT7には、設置条件識別情報Cidと、緯度yと、経度xと、太陽追尾機能の有無Ftと、太陽光発電装置60の方角β_1とが関連付けられている。例えば、設置条件識別情報Cidが1の場合、緯度yは35度40分で、経度xは139度42分で、太陽追尾機能の有無Ftが1で有りを意味し、太陽光発電装置の方角β_1は135度である。 FIG. 21 is an example of a table T7 in which information indicating the installation conditions stored in the installation condition storage unit 131 is associated with installation condition identification information for identifying the installation conditions. In the table T7 in the figure, the installation condition identification information Cid, the latitude y, the longitude x, the presence / absence Ft of the solar tracking function, and the direction β_1 of the solar power generation device 60 are associated. For example, when the installation condition identification information Cid is 1, it means that the latitude y is 35 degrees 40 minutes, the longitude x is 139 degrees 42 minutes, the presence / absence of the solar tracking function Ft is 1, and the direction of the photovoltaic power generation apparatus β_1 is 135 degrees.
 図20に戻って、設置条件抽出部132は、端末装置10から入力された設置条件を示す情報を基準として所定の要件を満たす設置条件に関連付けられた設置条件識別情報を抽出する。
 具体的には、例えば、設置条件抽出部132は、端末装置10から供給された設置条件を示す情報のうち設置場所の経度xを示す情報と緯度yを示す情報を用いて、設置場所から所定の距離(例えば、半径20km)範囲内の地点の情報が設置条件記憶部131に有るか否か判定する。
Returning to FIG. 20, the installation condition extraction unit 132 extracts installation condition identification information associated with an installation condition that satisfies a predetermined requirement with reference to information indicating the installation condition input from the terminal device 10.
Specifically, for example, the installation condition extraction unit 132 uses the information indicating the installation location longitude x and the information indicating the latitude y among the information indicating the installation conditions supplied from the terminal device 10 to determine the predetermined location from the installation location. It is determined whether or not the installation condition storage unit 131 has information on a point within a distance (for example, a radius of 20 km).
 設置場所から所定の距離範囲内の地点の情報がない場合、設置条件抽出部132は、設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)を構成決定部110に供給する。 When there is no information on a point within a predetermined distance range from the installation location, the installation condition extraction unit 132 displays information indicating the installation condition (for example, information indicating longitude x, information indicating latitude y, and presence / absence of the sun tracking function Ft And information indicating the direction β_1 of the photovoltaic power generation apparatus when there is no solar tracking function) are supplied to the configuration determining unit 110.
 一方、設置場所から所定の距離範囲内の地点の情報がある場合、設置条件抽出部132は、入力された太陽追尾機能の有無Ftを示す情報が0の場合(すなわち、太陽追尾機能がない場合)には、設置場所から所定の距離(例えば、半径20km)範囲内の地点の情報のうち、太陽追尾機能の有無を示す情報が0で、太陽光発電装置の方角β_1が最も近い設置条件を示す情報を設置条件記憶部131において参照する。 On the other hand, when there is information on a point within a predetermined distance range from the installation location, the installation condition extraction unit 132 is 0 when the input information indicating the presence / absence Ft of the sun tracking function is 0 (that is, when there is no sun tracking function). ), The information indicating the presence or absence of the solar tracking function among the information of points within a predetermined distance (for example, a radius of 20 km) from the installation location is 0, and the installation condition with the closest direction β_1 of the photovoltaic power generation device is Information to be shown is referred to in the installation condition storage unit 131.
 一方、設置条件抽出部132は、入力された太陽追尾機能の有無Ftを示す情報が1の場合(すなわち、太陽追尾機能がある場合)には、太陽追尾機能の有無を示す情報が1で、設置場所から所定の距離(例えば、半径20km)範囲内の地点の情報のうち、設置場所から最も近い距離ある設置条件を示す情報を設置条件記憶部131において参照する。 On the other hand, when the input information indicating the presence / absence Ft of the solar tracking function is 1 (that is, when the solar tracking function is present), the installation condition extraction unit 132 is 1 indicating the presence / absence of the solar tracking function. Of the information on points within a predetermined distance (for example, a radius of 20 km) from the installation location, the installation condition storage unit 131 refers to information indicating the installation condition that is closest to the installation location.
 設置条件抽出部132は、参照した設置条件を示す情報に関連付けられた設置条件識別情報Cidを読み出し、読み出した設置条件識別情報Cidを構成読出部135に出力する。 The installation condition extraction unit 132 reads the installation condition identification information Cid associated with the information indicating the referenced installation condition, and outputs the read installation condition identification information Cid to the configuration reading unit 135.
 なお、設置条件抽出部132は、最も近い設置条件を参照したが、これに限らず、設定条件が近い複数の設置条件を設置条件記憶部131において参照し、参照した複数の設置条件それぞれに関連付けられた設置条件識別情報Cidを読み出してもよい。 The installation condition extraction unit 132 refers to the closest installation condition. However, the installation condition extraction unit 132 refers to a plurality of installation conditions with similar setting conditions in the installation condition storage unit 131 and associates each of the plurality of installation conditions with reference to each other. The installed installation condition identification information Cid may be read out.
 第2の構成記憶部114には、設置条件識別情報Cidと太陽光発電装置の構成を示す情報Cpとが関連付けられて記憶されている。図22は、第2の構成記憶部114に記憶されている設置条件識別情報Cidと太陽光発電装置の構成を示す情報Cpとが関連付けられたテーブルT8の一例である。 The second configuration storage unit 114 stores installation condition identification information Cid and information Cp indicating the configuration of the solar power generation apparatus in association with each other. FIG. 22 is an example of a table T8 in which the installation condition identification information Cid stored in the second configuration storage unit 114 is associated with information Cp indicating the configuration of the solar power generation device.
 図22にテーブルT8において、設置条件識別情報Cidと、積層順Fudと、角度θ_1と、角度θ_2と、プリズム長さlと、プリズム間隔sと、太陽追尾機能の有無Ftと、設置仰角β_2と、太陽電池の種類とが関連付けられて記憶されている。例えば、設置条件識別情報Cidが1の場合、積層順Fudが1、すなわち積層順が形状集光板65、蛍光集光板61の順で、角度θ_1が90度で、角度θ_2が30度で、プリズム長さlが100μmで、プリズム間隔sが20μmで、太陽追尾機能の有無Ftが1で有りを意味し、設置仰角β_2が20度で、太陽電池の種類がアモルファスSiである。 In table T8 in FIG. 22, installation condition identification information Cid, stacking order Fud, angle θ_1, angle θ_2, prism length l, prism interval s, presence / absence of solar tracking function Ft, and installation elevation angle β_2. The type of solar cell is stored in association with each other. For example, when the installation condition identification information Cid is 1, the stacking order Fud is 1, that is, the stacking order is the shape light collector 65 and the fluorescent light collector 61, the angle θ_1 is 90 degrees, the angle θ_2 is 30 degrees, and the prism This means that the length l is 100 μm, the prism interval s is 20 μm, the presence / absence of the solar tracking function Ft is 1, the installation elevation angle β_2 is 20 degrees, and the solar cell type is amorphous Si.
 図20に戻って、構成読出部135は、設置条件抽出部132から供給された設置条件識別情報Cidに関連付けられた構成を示す情報Cpを第2の構成記憶部114から読み出す。構成読出部135は、読み出した構成を示す情報Cpを価格読出部122cに供給する。 Referring back to FIG. 20, the configuration reading unit 135 reads information Cp indicating the configuration associated with the installation condition identification information Cid supplied from the installation condition extraction unit 132 from the second configuration storage unit 114. The configuration reading unit 135 supplies information Cp indicating the read configuration to the price reading unit 122c.
 構成決定部110cは、設置条件抽出部132から供給された設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)に基づいて、構成を示す情報を決定する。本実施形態の構成決定部110cの構成は、第1の実施形態における構成決定部110の構成と同一であり、構成決定部110cが太陽光発電装置の構成を決定する処理は、第1の実施形態における構成決定部110が太陽光発電装置の構成を決定する処理と同一であるので、その説明を省略する。構成決定部110cは、決定した構成を示す情報を価格読出部122cに出力する。 The configuration determination unit 110c includes information indicating the installation conditions supplied from the installation condition extraction unit 132 (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and the sun tracking function) Information indicating the configuration is determined on the basis of the information indicating the direction β_1 of the photovoltaic power generation apparatus when there is no power. The configuration of the configuration determination unit 110c of the present embodiment is the same as the configuration of the configuration determination unit 110 in the first embodiment, and the process in which the configuration determination unit 110c determines the configuration of the photovoltaic power generation apparatus is the first implementation. Since the configuration determining unit 110 in the embodiment is the same as the process of determining the configuration of the solar power generation device, the description thereof is omitted. The configuration determining unit 110c outputs information indicating the determined configuration to the price reading unit 122c.
 構成決定部110cは、新たに設置条件識別情報Cidを生成し、生成した設置条件識別情報Cidと、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報とを関連付けて設置条件記憶部131に追記させる。
 構成決定部110cは、生成した設置条件識別情報Cidと、決定した構成を示す情報Cpとを関連付けて第2の構成記憶部114に追記させる。
The configuration determining unit 110c newly generates installation condition identification information Cid, the generated installation condition identification information Cid, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, The information indicating the direction β_1 of the solar power generation apparatus when there is no solar tracking function is associated with the setting condition storage unit 131 and added.
The configuration determining unit 110c associates the generated installation condition identification information Cid with the information Cp indicating the determined configuration, and causes the second configuration storage unit 114 to additionally write the information.
 価格読出部122cは、構成決定部110cまたは構成読出部135から供給された構成を示す情報Cpに関連付けられた価格を示す情報Pを価格記憶部121から読み出し、読み出した価格を示す情報Pを自装置の外部、例えば製造業者の情報処理装置に出力する。 The price reading unit 122c reads information P indicating the price associated with the information Cp indicating the configuration supplied from the configuration determining unit 110c or the configuration reading unit 135 from the price storage unit 121, and automatically reads the information P indicating the read price. The data is output to the outside of the apparatus, for example, the information processing apparatus of the manufacturer.
 図23は、第3の実施形態における太陽光発電装置構成抽出装置100cの処理の流れを示したフローチャートである。まず、設置条件抽出部132は、端末装置10から供給された設置条件を示す情報を受信する(ステップS301)。
 次に、設置条件抽出部132は、設置条件を示す情報に含まれる設置場所から半径20km圏内の設置条件を示す情報が設置条件記憶部131に存在するか否か判定する(ステップS302)。
FIG. 23 is a flowchart illustrating a processing flow of the photovoltaic power generation device configuration extraction device 100c according to the third embodiment. First, the installation condition extraction unit 132 receives information indicating the installation conditions supplied from the terminal device 10 (step S301).
Next, the installation condition extraction unit 132 determines whether information indicating installation conditions within a radius of 20 km from the installation location included in the information indicating installation conditions exists in the installation condition storage unit 131 (step S302).
 半径20km圏内の設置条件を示す情報が設置条件記憶部131に存在する場合(ステップS302 YES)、設置条件抽出部132は、受信した設置条件を示す情報に含まれる太陽追尾機能の有無Ftが1か否か、すなわち受信した設置条件では太陽追尾機能を使用するか否か判定する(ステップS303)。
 太陽追尾機能の有無Ftが1の場合、設置条件記憶部131は受信した設置条件と最も近い距離にある設置条件に関連付けられた設置条件識別情報Cidを設置条件記憶部131から読み出し(ステップS304)、ステップS306の処理に進む。
When information indicating the installation condition within the radius of 20 km exists in the installation condition storage unit 131 (YES in step S302), the installation condition extraction unit 132 indicates that the presence / absence Ft of the sun tracking function included in the received information indicating the installation condition is 1. Whether or not to use the solar tracking function in the received installation conditions is determined (step S303).
When the presence / absence Ft of the sun tracking function is 1, the installation condition storage unit 131 reads the installation condition identification information Cid associated with the installation condition closest to the received installation condition from the installation condition storage unit 131 (step S304). The process proceeds to step S306.
 一方、太陽追尾機能の有無Ftが0の場合、設置条件記憶部131は受信した設置条件に含まれる太陽光発電装置の方角β_1と最も近い設置条件に関連付けられた設置条件識別情報Cidを読み出し(ステップS305)、ステップS306の処理に進む。
 次に、構成読出部135は、設置条件識別情報Cidに関連付けられた構成を示す情報を第2の構成記憶部114から読み出し(ステップS306)、ステップS310の処理に進む。
On the other hand, when the presence / absence Ft of the solar tracking function is 0, the installation condition storage unit 131 reads the installation condition identification information Cid associated with the installation condition closest to the direction β_1 of the photovoltaic power generation apparatus included in the received installation condition ( The process proceeds to step S305) and step S306.
Next, the configuration reading unit 135 reads information indicating the configuration associated with the installation condition identification information Cid from the second configuration storage unit 114 (step S306), and proceeds to the process of step S310.
 ステップS302において、半径20km圏内の設置条件を示す情報が設置条件記憶部131に存在しない場合(ステップS302 NO)、構成決定部110cは、年間の総発電量が最大となる構成を示す情報を抽出する(ステップS307)。
 次に、構成決定部110cは、設置条件を示す情報を設置条件記憶部131に追記する(ステップS308)。次に、構成決定部110cは、構成を示す情報を第2の構成記憶部114に追記する(ステップS309)。
In step S302, when the information indicating the installation condition within the radius of 20 km does not exist in the installation condition storage unit 131 (NO in step S302), the configuration determining unit 110c extracts information indicating the configuration in which the total annual power generation amount is maximum. (Step S307).
Next, the configuration determining unit 110c adds information indicating the installation condition to the installation condition storage unit 131 (step S308). Next, the configuration determining unit 110c adds information indicating the configuration to the second configuration storage unit 114 (step S309).
 次に、価格読出部122cは、価格記憶部121から構成を示す情報に関連付けられた価格を示す情報を読み出す(ステップS310)。以上で、本フローチャートの処理を終了する。 Next, the price reading unit 122c reads information indicating the price associated with the information indicating the configuration from the price storage unit 121 (step S310). Above, the process of this flowchart is complete | finished.
 以上、第3の実施形態における太陽光発電装置構成抽出装置100cは、入力された設置場所から所定の距離範囲内にある地点の設置条件を示す情報が、予め設置条件記憶部131に記憶されている場合、その設置条件を識別する設置条件識別情報を設置条件記憶部131から読み出す。そして、太陽光発電装置構成抽出装置100cは、読み出した設置条件識別情報に関連付けられた構成を示す情報Cpを第2の構成記憶部114から読み出す。 As described above, in the solar power generation device configuration extraction device 100c according to the third embodiment, the information indicating the installation conditions of a point within a predetermined distance range from the input installation location is stored in the installation condition storage unit 131 in advance. If there is, the installation condition identification information for identifying the installation condition is read from the installation condition storage unit 131. Then, the solar power generation device configuration extraction device 100 c reads out information Cp indicating the configuration associated with the read installation condition identification information from the second configuration storage unit 114.
 これにより、太陽光発電装置構成抽出装置100cは、構成決定部110cで構成を決定するよりも短時間で構成を示す情報を抽出することができる。その結果、太陽光発電装置構成抽出装置100cは、短時間で簡単に太陽光発電装置の設置場所に応じた太陽光発電装置の構成を端末装置10のユーザに提供することができる。 Thereby, the solar power generation device configuration extraction device 100c can extract the information indicating the configuration in a shorter time than the configuration is determined by the configuration determination unit 110c. As a result, the solar power generation device configuration extraction device 100c can easily provide the user of the terminal device 10 with the configuration of the solar power generation device according to the installation location of the solar power generation device in a short time.
 また、太陽光発電装置構成抽出装置100cは、入力された設置場所から所定の距離範囲内にある地点の設置条件を示す情報が、予め設置条件記憶部131に記憶されていない場合、構成決定部110cが構成を決定し、決定した構成を示す情報を第2の構成記憶部114追記する。また、構成決定部110cは、その際の設置条件を示す情報を設置条件記憶部131に追記する。 In addition, the photovoltaic power generation device configuration extraction device 100c is configured so that the information indicating the installation condition of a point within a predetermined distance range from the input installation location is not stored in the installation condition storage unit 131 in advance. 110c determines the configuration, and adds information indicating the determined configuration to the second configuration storage unit 114. In addition, the configuration determining unit 110c adds information indicating the installation conditions at that time to the installation condition storage unit 131.
 これにより、太陽光発電装置構成抽出装置100cは、設置条件記憶部131と第2の構成記憶部114とには、新たなデータが追加されていく。それゆえ、データが追加されていくに従って、次に設置条件が入力された場合に、設置条件抽出部132は、その設置条件と近い条件のデータを抽出できる可能性が高くなる。これにより、太陽光発電装置構成抽出装置100cは、構成決定部110cよりも構成読出部135を使って構成を示す情報を抽出する割合が高まる。その結果、太陽光発電装置の設置場所に応じた太陽光発電装置の構成を短時間で提供する可能性を高めることができる。 Thereby, in the photovoltaic power generation device configuration extraction device 100c, new data is added to the installation condition storage unit 131 and the second configuration storage unit 114. Therefore, as the data is added, when the installation condition is input next, the installation condition extraction unit 132 is likely to be able to extract data having a condition close to the installation condition. Thereby, the ratio which extracts the information which shows a structure using the structure reading part 135 is higher than the structure determination part 110c in the solar power generation device structure extraction apparatus 100c. As a result, it is possible to increase the possibility of providing the configuration of the photovoltaic power generation apparatus according to the installation location of the photovoltaic power generation apparatus in a short time.
 <第4の実施形態>
 図24は、第4の実施形態における太陽光発電装置構成判断システム4の構成を示す概略ブロック図である。なお、図16の第2の実施形態における太陽光発電装置構成判断システム2と共通する通信網20には同一の符号を付し、その具体的な説明を省略する。図24の太陽光発電装置構成判断システム4の構成は、図16の太陽光発電装置構成判断システム2の構成に対して、端末装置10bが端末装置10dに変更され、太陽光発電装置構成抽出装置100bが、太陽光発電装置構成抽出装置100dに変更されたものとなっている。
<Fourth Embodiment>
FIG. 24 is a schematic block diagram showing the configuration of the solar power generation device configuration determination system 4 in the fourth embodiment. In addition, the same code | symbol is attached | subjected to the communication network 20 which is common with the solar power generation device structure judgment system 2 in 2nd Embodiment of FIG. 16, and the specific description is abbreviate | omitted. The configuration of the solar power generation device configuration determination system 4 in FIG. 24 is different from the configuration of the solar power generation device configuration determination system 2 in FIG. 16 in that the terminal device 10b is changed to the terminal device 10d, and the solar power generation device configuration extraction device 100b is changed to the solar power generation device configuration extraction device 100d.
 端末装置10dは、設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)を、通信網20を介して太陽光発電装置構成抽出装置100dに出力する。端末装置10dの構成は、端末装置10bの構成と同一であるので、その説明を省略する。 The terminal device 10d includes information indicating installation conditions (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and a direction of the solar power generation apparatus when there is no solar tracking function) (information indicating β_1) is output to the photovoltaic power generation device configuration extraction device 100d via the communication network 20. Since the configuration of the terminal device 10d is the same as the configuration of the terminal device 10b, description thereof is omitted.
 太陽光発電装置構成抽出装置100dは、端末装置10dから供給された設置条件を示す情報に基づいて、構成を示す情報Cpと、発電効率を示す情報Rと、その構成時の価格を示す情報Pとを、通信網20を介して端末装置10dに送信する。 The solar power generation device configuration extraction device 100d, based on the information indicating the installation conditions supplied from the terminal device 10d, information Cp indicating the configuration, information R indicating the power generation efficiency, and information P indicating the price at the time of the configuration Are transmitted to the terminal device 10d via the communication network 20.
 図25は、第4の実施形態における太陽光発電装置構成抽出装置100dの構成を示す概略ブロック図である。太陽光発電装置構成抽出装置100dは、通信部123と、構成決定部110dとを備える。ここで、構成決定部110dは、構成読出部142と第3の構成記憶部(構成記憶部)141とを備える。 FIG. 25 is a schematic block diagram showing the configuration of the solar power generation device configuration extraction device 100d according to the fourth embodiment. The solar power generation device configuration extraction device 100d includes a communication unit 123 and a configuration determination unit 110d. Here, the configuration determining unit 110d includes a configuration reading unit 142 and a third configuration storage unit (configuration storage unit) 141.
 通信部123は、通信網20を介して供給された設置条件を示す情報(例えば、経度xを示す情報、緯度yを示す情報と、太陽追尾機能の有無Ftを示す情報と、太陽追尾機能が無い場合の太陽光発電装置の方角β_1を示す情報)を構成読出部142に出力する。
 また、通信部123は、構成読出部142から供給された構成を示す情報Cpと、発電効率を示す情報Rと、その構成時の価格を示す情報Pとを、通信網20を介して端末装置10d(図24)に出力する。
The communication unit 123 includes information indicating installation conditions supplied via the communication network 20 (for example, information indicating longitude x, information indicating latitude y, information indicating presence / absence Ft of the sun tracking function, and a sun tracking function). Information indicating the direction β_1 of the photovoltaic power generation apparatus in the absence of the information) is output to the configuration reading unit 142.
In addition, the communication unit 123 receives information Cp indicating the configuration supplied from the configuration reading unit 142, information R indicating power generation efficiency, and information P indicating the price at the time of configuration via the communication network 20. 10d (FIG. 24).
 第3の構成記憶部141には、設置条件を示す情報と、構成を示す情報Cpと、発電効率を示す情報Rと、価格を示す情報Pとが前もって格納され、かつ、それらが関連付けられて記憶されている。また、第3の構成記憶部141は、自装置の外部から供給された設置条件を示す情報と構成を示す情報Cpと、発電効率を示す情報Rと、価格を示す情報Pとを関連付けて蓄積していく。 In the third configuration storage unit 141, information indicating installation conditions, information Cp indicating configuration, information R indicating power generation efficiency, and information P indicating price are stored in advance and associated with each other. It is remembered. The third configuration storage unit 141 stores information indicating the installation conditions supplied from the outside of the device itself, information Cp indicating the configuration, information R indicating the power generation efficiency, and information P indicating the price in association with each other. I will do it.
 図26は、第3の構成記憶部141に記憶されているテーブルT9の一例である。同図のテーブルT9において、緯度yと、経度xと、太陽追尾機能の有無Ftと、構成を識別する構成識別情報Kidと、発電効率Rと、価格と、が関連付けられている。例えば、テーブルT9の1行目の例では、緯度yが35度40分で、経度xが139度42分で、太陽追尾機能が無しで、構成識別情報Kidが1で、発電効率Rが5%で、価格が10万円である。 FIG. 26 is an example of a table T9 stored in the third configuration storage unit 141. In the table T9 in the figure, the latitude y, the longitude x, the presence / absence Ft of the solar tracking function, the configuration identification information Kid for identifying the configuration, the power generation efficiency R, and the price are associated with each other. For example, in the example of the first row of the table T9, the latitude y is 35 degrees 40 minutes, the longitude x is 139 degrees 42 minutes, the sun tracking function is not provided, the configuration identification information Kid is 1, and the power generation efficiency R is 5 The price is 100,000 yen.
 ここで、構成識別情報Kidには、構成を示す情報Cpが関連付けられている。図27は、第3の構成記憶部141に記憶されている構成識別情報Kidと構成を示す情報Cpが関連付けられたテーブルT10の一例である。同図のテーブルT10において、構成識別情報Kidと、積層順Fudと、角度θ_1と、角度θ_2と、プリズム長さlと、プリズム間隔sと、設置仰角β_2と、太陽電池の種類とが関連付けられている。例えば、構成識別情報Kidが1の場合、積層順Fudは1(形状集光板65、蛍光集光板61の順)で、角度θ_1は90度で、角度θ_2は30度で、プリズム長さlが100μmで、プリズム間隔sが20μmで、設置仰角β_2が20度で、太陽電池の種類がアモルファスSiである。 Here, the configuration identification information Kid is associated with information Cp indicating the configuration. FIG. 27 is an example of a table T10 in which the configuration identification information Kid stored in the third configuration storage unit 141 is associated with the information Cp indicating the configuration. In the table T10 in the figure, the configuration identification information Kid, the stacking order Fud, the angle θ_1, the angle θ_2, the prism length l, the prism interval s, the installation elevation angle β_2, and the type of solar cell are associated. ing. For example, when the configuration identification information Kid is 1, the stacking order Fud is 1 (in the order of the shape light collector 65 and the fluorescent light collector 61), the angle θ_1 is 90 degrees, the angle θ_2 is 30 degrees, and the prism length l is 100 μm, prism spacing s is 20 μm, installation elevation angle β_2 is 20 degrees, and the type of solar cell is amorphous Si.
 図25に戻って、構成読出部142は、設置条件を示す情報と関連付けられた構成を示す情報Cpと、発電効率を示す情報Rと、価格を示す情報Pと読み出す。そして、構成読出部142は、読み出した構成を示す情報Cpと、発電効率を示す情報Rと、価格を示す情報Pと通信部123に出力する。 25, the configuration reading unit 142 reads out information Cp indicating a configuration associated with information indicating installation conditions, information R indicating power generation efficiency, and information P indicating price. Then, the configuration reading unit 142 outputs the information Cp indicating the read configuration, the information R indicating the power generation efficiency, the information P indicating the price, and the communication unit 123.
 以上、本実施形態の太陽光発電装置構成抽出装置100dは、自装置の外部から入力された設置条件を示す情報に関連付けられた構成を示す情報Cpと、発電効率を示す情報Rと、価格を示す情報Pと読み出す。そして、太陽光発電装置構成抽出装置100dは、読み出したこれらの情報を、通信網20を介して端末装置10dに出力する。 As described above, the photovoltaic power generation device configuration extraction device 100d of the present embodiment has the information Cp indicating the configuration associated with the information indicating the installation conditions input from the outside of the own device, the information R indicating the power generation efficiency, and the price. It reads with the information P which shows. Then, the solar power generation device configuration extraction device 100d outputs the read information to the terminal device 10d via the communication network 20.
 これにより、太陽光発電装置構成抽出装置100dは、最適な構成がデータベース化されているため、最適な構成を計算することなく、迅速に最適な構成を示す情報を端末装置10dに供給することができる。その結果、太陽光発電装置構成抽出装置100dは、短時間で太陽光発電装置の設置場所に応じた太陽光発電装置の構成を提供することができる。 Thereby, since the optimum configuration is stored in the database, the photovoltaic power generation device configuration extraction device 100d can quickly supply information indicating the optimum configuration to the terminal device 10d without calculating the optimum configuration. it can. As a result, the solar power generation device configuration extraction device 100d can provide the configuration of the solar power generation device according to the installation location of the solar power generation device in a short time.
 また、本実施形態の太陽光発電装置構成抽出装置(100、100b、100c、100d)の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、太陽光発電装置構成抽出装置(100、100b、100c、100d)に係る上述した種々の処理を行ってもよい。 Moreover, the program for performing each process of the solar power generation device structure extraction apparatus (100, 100b, 100c, 100d) of this embodiment was recorded on the computer-readable recording medium, and was recorded on the said recording medium You may perform the various processes mentioned above which concern on a solar power generation device structure extracting device (100, 100b, 100c, 100d) by making a computer system read and run a program.
 なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。 Note that the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used. The “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。 Further, the “computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time. The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be sufficient.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design and the like within a scope not departing from the gist of the present invention.
 本発明の態様によれば、太陽光発電装置の設置場所に応じた太陽光発電装置の構成を短時間で、簡単に提供することができる。 According to the aspect of the present invention, the configuration of the solar power generation device according to the installation location of the solar power generation device can be easily provided in a short time.
1、2、3、4 太陽光発電装置構成判断システム
10、10b、10d 端末装置
20 通信網
100、100b、100c、100d 太陽光発電装置構成抽出装置
110、110c、110d 構成決定部
111 日射量記憶部
112 日射量読出部
113 太陽位置記憶部
114 構成記憶部
115 構成算出部
116 発電量算出部
117 構成抽出部
121 価格記憶部
122、122c 価格読出部
123 通信部
131 設置条件記憶部
132 設置条件抽出部
134 第2の構成記憶部
135、142 構成読出部
141 第3の構成記憶部(構成記憶部)
1, 2, 3, 4 Solar power generation device configuration determination system 10, 10b, 10d Terminal device 20 Communication network 100, 100b, 100c, 100d Solar power generation device configuration extraction device 110, 110c, 110d Configuration determination unit 111 Solar radiation amount storage Unit 112 solar radiation amount reading unit 113 solar position storage unit 114 configuration storage unit 115 configuration calculation unit 116 power generation amount calculation unit 117 configuration extraction unit 121 price storage unit 122, 122c price reading unit 123 communication unit 131 installation condition storage unit 132 installation condition extraction Unit 134 second configuration storage unit 135, 142 configuration reading unit 141 third configuration storage unit (configuration storage unit)

Claims (22)

  1.  外部から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定する構成決定部を備え、
     前記構成決定部は、
     場所を示す情報と前記場所における日射量を示す情報とが関連付けられて記憶されている日射量記憶部と、
     前記入力された設置条件を示す情報の一つが設置場所を示す情報であり、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報を前記日射量記憶部から読み出す日射量読出部と、
     前記太陽の位置を示す情報が、前記場所を示す情報と日時を示す情報とに関連付けられて記憶されている太陽位置記憶部と、
     前記設置場所における各日時における太陽の位置を示す情報を前記太陽位置記憶部から読み出し、前記読み出した太陽の位置を示す情報と、前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の構成を算出する構成算出部と、
     を含む太陽光発電装置構成抽出装置。
    A configuration determination unit that determines the configuration of the solar power generation device based on information indicating installation conditions of the solar power generation device input from the outside,
    The configuration determining unit
    A solar radiation amount storage unit in which information indicating a place and information indicating a solar radiation amount at the place are associated and stored;
    One of the information indicating the input installation conditions is information indicating the installation location, and a solar radiation amount reading unit that reads information indicating the solar radiation amount at a point within a predetermined distance range from the installation location from the solar radiation amount storage unit When,
    Information indicating the position of the sun is stored in association with information indicating the location and information indicating the date and time,
    Information indicating the position of the sun at each date and time at the installation location is read from the solar position storage unit, and the sun is based on the information indicating the read position of the sun and the information indicating the read amount of solar radiation. A configuration calculation unit that calculates the configuration of the photovoltaic power generation device;
    A solar power generation device configuration extraction device.
  2.  前記構成算出部は、
     前記構成を変更する毎に、前記太陽の位置を示す情報と前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出する発電量算出部と、
     前記算出された発電量が所定の閾値を超える構成を抽出する構成抽出部と、
     を備える請求項1に記載の太陽光発電装置構成抽出装置。
    The configuration calculation unit
    A power generation amount calculation unit that calculates the power generation amount of the solar power generation device based on information indicating the position of the sun and information indicating the read amount of solar radiation every time the configuration is changed,
    A configuration extraction unit that extracts a configuration in which the calculated power generation amount exceeds a predetermined threshold;
    The solar power generation device structure extraction apparatus of Claim 1 provided with.
  3.  さらに、前記構成を示す情報と前記太陽光発電装置の発電量を変化させる係数を示す情報とが関連付けられて記憶されている構成記憶部を備え、
     前記発電量算出部は、前記構成を変更する毎に、前記構成を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出する請求項2に記載の太陽光発電装置構成抽出装置。
    Furthermore, a configuration storage unit is provided in which information indicating the configuration and information indicating a coefficient for changing the power generation amount of the photovoltaic power generation apparatus are associated and stored,
    The power generation amount calculation unit reads information indicating the coefficient associated with the information indicating the configuration from the configuration storage unit every time the configuration is changed, information indicating the read coefficient, and the position of the sun The solar power generation device structure extraction device according to claim 2, wherein the power generation amount of the solar power generation device is calculated based on information indicating the amount of solar radiation and information indicating the amount of solar radiation.
  4.  前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記太陽光発電装置が備える形状集光板と蛍光集光板の積層順を示す情報であり、
     前記発電量算出部は、前記積層順を変更する毎に、前記積層順を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出する請求項3に記載の太陽光発電装置構成抽出装置。
    One of the information indicating the configuration stored in the configuration storage unit is information indicating the stacking order of the shape light collector and the fluorescent light collector provided in the solar power generation device,
    The power generation amount calculation unit reads information indicating the coefficient associated with the information indicating the stacking order from the configuration storage unit every time the stacking order is changed, information indicating the read coefficient, and the sun The solar power generation device structure extraction apparatus of Claim 3 which calculates the electric power generation amount of the said solar power generation device based on the information which shows the position of and the information which shows the said solar radiation amount.
  5.  前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記太陽光発電装置が備える形状集光板の形状を示す情報であり、
     前記発電量算出部は、前記形状集光板の形状を変更する毎に、前記形状集光板の形状を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出する請求項3に記載の太陽光発電装置構成抽出装置。
    One of the information indicating the configuration stored in the configuration storage unit is information indicating the shape of the shape light collector provided in the solar power generation device,
    The power generation amount calculation unit reads information indicating the coefficient associated with the information indicating the shape of the shape light collector from the configuration storage unit every time the shape of the shape light collector is changed, and calculates the read coefficient. The solar power generation device structure extraction apparatus of Claim 3 which calculates the electric power generation amount of the said solar power generation device based on the information to show, the information which shows the position of the said sun, and the information which shows the said solar radiation amount.
  6.  前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記太陽光発電装置の地面に対する設置仰角を示す情報であり、
     前記発電量算出部は、前記設置仰角を変更する毎に、前記設置仰角を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出する請求項3に記載の太陽光発電装置構成抽出装置。
    One of the information indicating the configuration stored in the configuration storage unit is information indicating an installation elevation angle with respect to the ground of the solar power generation device,
    The power generation amount calculation unit reads information indicating the coefficient associated with information indicating the installation elevation angle from the configuration storage unit every time the installation elevation angle is changed, information indicating the read coefficient, and the sun The solar power generation device structure extraction apparatus of Claim 3 which calculates the electric power generation amount of the said solar power generation device based on the information which shows the position of and the information which shows the said solar radiation amount.
  7.  前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記太陽電池の種類を示す情報であり、
     前記発電量算出部は、前記太陽電池の種類を変更する毎に、前記太陽電池の種類を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出することを特徴とする請求項3に記載の太陽光発電装置構成抽出装置。
    One of the information indicating the configuration stored in the configuration storage unit is information indicating the type of the solar cell,
    The power generation amount calculation unit reads information indicating the coefficient associated with information indicating the type of the solar cell from the configuration storage unit every time the type of the solar cell is changed, and information indicating the read coefficient The power generation amount of the solar power generation device is calculated based on the information indicating the position of the sun and the information indicating the amount of solar radiation. apparatus.
  8.  前記構成記憶部に記憶されている前記構成を示す情報の一つは、前記形状集光板と前記蛍光集光板の少なくとも一つの法線が太陽の方向になるように太陽発電装置の向きを変更する太陽追尾の有無を示す情報であり、
     前記発電量算出部は、前記太陽追尾の有無を変更する毎に、前記太陽追尾の有無を示す情報に関連付けられた前記係数を示す情報を前記構成記憶部から読み出し、前記読み出した係数を示す情報と、前記太陽の位置を示す情報と、前記日射量を示す情報とに基づいて、前記太陽光発電装置の発電量を算出する請求項3に記載の太陽光発電装置構成抽出装置。
    One of the information indicating the configuration stored in the configuration storage unit is to change the orientation of the solar power generation device so that at least one normal line of the shape light collector and the fluorescent light collector is in the sun direction. Information indicating the presence or absence of solar tracking,
    The power generation amount calculation unit reads the information indicating the coefficient associated with the information indicating the presence / absence of the sun tracking from the configuration storage unit every time the presence / absence of the sun tracking is changed, and information indicating the read coefficient The solar power generation device structure extraction device according to claim 3, wherein the power generation amount of the solar power generation device is calculated based on information indicating the position of the sun and information indicating the amount of solar radiation.
  9.  さらに、設置条件を示す情報と前記設置条件を識別する設置条件識別情報とが関連付けられて記憶されている設置条件記憶部と、
     前記入力された設置条件を示す情報を基準として所定の要件を満たす設置条件に関連付けられた前記設置条件識別情報を前記設置条件記憶部から抽出する設置条件抽出部と、
     前記設置条件識別情報と前記太陽光発電装置の構成を示す情報とが関連付けられて記憶されている第2の構成記憶部と、
     前記設置条件抽出部により前記設置条件識別情報が抽出された場合、前記抽出された設置条件識別情報に対応する前記太陽光発電装置の構成を示す情報を前記第2の構成記憶部から読み出す構成読出部と、
     を備える請求項1に記載に太陽光発電装置構成抽出装置。
    Further, an installation condition storage unit that stores information indicating installation conditions and installation condition identification information that identifies the installation conditions,
    An installation condition extraction unit that extracts from the installation condition storage unit the installation condition identification information associated with an installation condition that satisfies a predetermined requirement on the basis of information indicating the input installation condition;
    A second configuration storage unit in which the installation condition identification information and information indicating the configuration of the photovoltaic power generation apparatus are stored in association with each other;
    When the installation condition identification information is extracted by the installation condition extraction unit, the configuration reading that reads information indicating the configuration of the photovoltaic power generation apparatus corresponding to the extracted installation condition identification information from the second configuration storage unit And
    The solar power generation device structure extraction device according to claim 1, comprising:
  10.  前記構成決定部は、前記設置条件抽出部により前記設置条件識別情報が抽出されなかった場合、前記入力された設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定する請求項9に記載に太陽光発電装置構成抽出装置。 The said structure determination part determines the structure of the said photovoltaic power generation apparatus based on the information which shows the said input installation conditions, when the said installation condition identification information is not extracted by the said installation condition extraction part. A solar power generation device configuration extraction device according to claim 1.
  11.  さらに、前記太陽光発電装置の構成を示す情報と前記構成時の価格を示す情報とが関連付けられて記憶されている価格記憶部と、
     前記構成決定部により決定された前記太陽光発電装置の構成に対応する価格を示す情報を前記価格記憶部から読み出す価格読出部と、
     を備える請求項1に記載の太陽光発電装置構成抽出装置。
    Further, a price storage unit that stores information indicating the configuration of the photovoltaic power generation apparatus and information indicating the price at the time of the configuration,
    A price reading unit that reads information indicating a price corresponding to the configuration of the photovoltaic power generation apparatus determined by the configuration determination unit from the price storage unit;
    The solar power generation device structure extraction apparatus of Claim 1 provided with.
  12.   外部から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定する構成決定部を備え、
     前記構成決定部は、
     前記太陽光発電装置の設置条件を示す情報と太陽光発電装置の構成を示す情報とが関連付けられて記憶されている構成記憶部と、
     前記入力された設置条件を示す情報を基準として所定の要件を満たす前記設置条件の情報に関連付けられた太陽光発電装置の構成を示す情報を前記構成記憶部から読み出す構成読出部と、
     を備える太陽光発電装置構成抽出装置。
    A configuration determination unit that determines the configuration of the solar power generation device based on information indicating installation conditions of the solar power generation device input from the outside,
    The configuration determining unit
    A configuration storage unit in which information indicating installation conditions of the solar power generation device and information indicating the configuration of the solar power generation device are stored in association with each other;
    A configuration reading unit that reads from the configuration storage unit information indicating the configuration of the photovoltaic power generation apparatus associated with the installation condition information that satisfies a predetermined requirement with reference to the information indicating the input installation condition;
    A photovoltaic power generation device configuration extraction device.
  13.  前記構成記憶部に記憶されている太陽光発電装置の構成を示す情報は、更に発電効率を示す情報と関連付けられており、
     前記構成読出部は、前記読み出される太陽光発電装置の構成を示す情報に対応する発電効率を示す情報を前記構成記憶部から読み出す請求項12に記載の太陽光発電装置構成抽出装置。
    Information indicating the configuration of the photovoltaic power generation device stored in the configuration storage unit is further associated with information indicating power generation efficiency,
    The solar power generation device configuration extraction device according to claim 12, wherein the configuration reading unit reads information indicating power generation efficiency corresponding to information indicating the configuration of the read solar power generation device from the configuration storage unit.
  14.  前記構成記憶部に記憶されている前記構成をとるときの価格を示す情報は、更に太陽光発電装置の構成を示す情報と関連付けられており、
     前記構成読出部は、前記読み出される太陽光発電装置の構成を示す情報に対応する価格を示す情報を前記構成記憶部から読み出す請求項13に記載の太陽光発電装置構成抽出装置。
    Information indicating the price when taking the configuration stored in the configuration storage unit is further associated with information indicating the configuration of the photovoltaic power generation device,
    The solar power generation device configuration extraction device according to claim 13, wherein the configuration reading unit reads information indicating a price corresponding to information indicating the configuration of the solar power generation device to be read from the configuration storage unit.
  15.  前記構成記憶部は、前記外部から入力された設置条件の情報と、前記太陽光発電装置の構成を示す情報、前記発電変換効率を示す情報または前記価格を示す情報のうち少なくとも1つとが追加保存されていく請求項14に記載の太陽光発電装置構成抽出装置。 The configuration storage unit additionally stores at least one of installation condition information input from the outside, information indicating the configuration of the photovoltaic power generation apparatus, information indicating the power generation conversion efficiency, or information indicating the price. The solar power generation device structure extraction device according to claim 14.
  16.  外部から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定すること有する太陽光発電装置構成抽出方法であって、
     前記太陽光発電装置の構成を決定することは、
     場所を示す情報と前記場所における日射量を示す情報とが関連付けられて記憶することと、
     前記入力された設置条件を示す情報の一つが設置場所を示す情報であり、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報を読み出すことと、
     前記設置場所における各日時における太陽の位置を示す情報を読み出し、前記読み出した太陽の位置を示す情報と、前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の構成を算出することを含む太陽光発電装置構成抽出方法。
    A solar power generation device configuration extraction method comprising determining the configuration of the solar power generation device based on information indicating installation conditions of the solar power generation device input from the outside,
    Determining the configuration of the photovoltaic power generator
    Storing the information indicating the location and the information indicating the amount of solar radiation at the location in association with each other;
    One of the information indicating the input installation conditions is information indicating an installation location, and reading information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location;
    Read the information indicating the position of the sun at each date and time at the installation location, and based on the information indicating the read position of the sun and the information indicating the read amount of solar radiation, the configuration of the solar power generation device A photovoltaic power generation device configuration extraction method including calculating.
  17.  コンピュータに、
     外部から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定する構成を決定させるためのものであって、
     前記構成決定ステップは、
    場所を示す情報と前記場所における日射量を示す情報とが関連付けられて記憶することと、
     前記入力された設置条件を示す情報の一つが設置場所を示す情報であり、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報を読み出すことと、
     前記設置場所における各日時における太陽の位置を示す情報を読み出し、前記読み出した太陽の位置を示す情報と、前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の構成を算出することを含む太陽光発電装置構成抽出プログラム。
    On the computer,
    Based on the information indicating the installation conditions of the photovoltaic power generation apparatus input from the outside, for determining the configuration for determining the configuration of the photovoltaic power generation apparatus,
    The configuration determining step includes:
    Storing the information indicating the location and the information indicating the amount of solar radiation at the location in association with each other;
    One of the information indicating the input installation conditions is information indicating an installation location, and reading information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location;
    Read the information indicating the position of the sun at each date and time at the installation location, and based on the information indicating the read position of the sun and the information indicating the read amount of solar radiation, the configuration of the solar power generation device A photovoltaic power generator configuration extraction program including calculating.
  18.  端末装置と太陽光発電装置構成抽出装置とを備え、
     前記太陽光発電装置構成抽出装置は、前記端末装置から入力された太陽光発電装置の設置条件を示す情報に基づいて、前記太陽光発電装置の構成を決定する構成決定部を備え、
     前記構成決定部は、
     場所を示す情報と前記場所における日射量を示す情報とが関連付けられて記憶されている日射量記憶部と、
     前記入力された設置条件を示す情報の一つが設置場所を示す情報であり、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報を前記日射量記憶部から読み出す日射量読出部と、
     前記太陽の位置を示す情報が、前記場所を示す情報と日時を示す情報とに関連付けられて記憶されている太陽位置記憶部と、
     前記設置場所における各日時における太陽の位置を示す情報を前記太陽位置記憶部から読み出し、前記読み出した太陽の位置を示す情報と、前記読み出された日射量を示す情報とに基づいて、前記太陽光発電装置の構成を算出する構成算出部と、
     を含む太陽光発電装置構成判断システム。
    A terminal device and a solar power generation device configuration extraction device;
    The solar power generation device configuration extraction device includes a configuration determination unit that determines the configuration of the solar power generation device based on information indicating installation conditions of the solar power generation device input from the terminal device,
    The configuration determining unit
    A solar radiation amount storage unit in which information indicating a place and information indicating a solar radiation amount at the place are associated and stored;
    One of the information indicating the input installation conditions is information indicating the installation location, and a solar radiation amount reading unit that reads information indicating the solar radiation amount at a point within a predetermined distance range from the installation location from the solar radiation amount storage unit When,
    Information indicating the position of the sun is stored in association with information indicating the location and information indicating the date and time,
    Information indicating the position of the sun at each date and time at the installation location is read from the solar position storage unit, and the sun is based on the information indicating the read position of the sun and the information indicating the read amount of solar radiation. A configuration calculation unit that calculates the configuration of the photovoltaic power generation device;
    A solar power generation device configuration determination system including
  19.  前記端末装置と前記太陽光発電構成抽出装置は通信網を介して接続されている請求項18に記載の太陽光発電装置構成判断システム。 The solar power generation device configuration determination system according to claim 18, wherein the terminal device and the solar power generation configuration extraction device are connected via a communication network.
  20.  前記構成決定部は、さらに設置条件を示す情報と前記設置条件を識別する設置条件識別情報とが関連付けられて記憶されている設置条件記憶部と、
     前記入力された設置条件を示す情報を基準として所定の要件を満たす設置条件に関連付けられた設置条件識別情報を前記設置条件記憶部から抽出する設置条件抽出部と、
     前記設置条件識別情報と前記太陽光発電装置の構成を示す情報とが関連付けられて記憶されている第2の構成記憶部と、
     前記設置条件抽出部により設置条件識別情報が抽出された場合、前記抽出された設置条件識別情報に対応する前記太陽光発電装置の構成を示す情報を前記第2の構成記憶部から読み出す構成読出部と、
     を備える請求項18に記載の太陽光発電装置構成判断システム。
    The configuration determining unit further includes an installation condition storage unit that stores information indicating installation conditions and installation condition identification information that identifies the installation conditions,
    An installation condition extraction unit that extracts, from the installation condition storage unit, installation condition identification information associated with an installation condition that satisfies a predetermined requirement with reference to the information indicating the input installation condition;
    A second configuration storage unit in which the installation condition identification information and information indicating the configuration of the photovoltaic power generation apparatus are stored in association with each other;
    When the installation condition identification information is extracted by the installation condition extraction unit, a configuration reading unit that reads information indicating the configuration of the photovoltaic power generation apparatus corresponding to the extracted installation condition identification information from the second configuration storage unit When,
    The solar power generation device structure judgment system of Claim 18 provided with.
  21.  前記構成決定部は、さらに太陽光発電装置の設置条件を示す情報と太陽光発電装置の構成を示す情報とが関連付けられて記憶されている第3の構成記憶部を備え、
     前記構成決定部による構成の決定は、前記入力された太陽光発電装置の設置条件を示す情報に対応する最適な構成を示す情報を前記構成記憶部から読み出すことにより行われる請求項18に記載の太陽光発電装置構成判断システム。
    The configuration determination unit further includes a third configuration storage unit that stores information indicating the installation conditions of the solar power generation device and information indicating the configuration of the solar power generation device in association with each other,
    The configuration determination by the configuration determination unit is performed by reading out information indicating an optimal configuration corresponding to the input information indicating installation conditions of the photovoltaic power generation apparatus from the configuration storage unit. Solar power generation device configuration judgment system.
  22.  太陽光発電装置の設置場所における各日時での太陽の位置を示す情報と、前記設置場所から所定の距離範囲内にある地点の日射量を示す情報とに基づいて、前記太陽光発電装置の構成を決定する太陽光発電装置構成抽出方法。 The configuration of the solar power generation device based on information indicating the position of the sun at each date and time at the installation location of the solar power generation device and information indicating the amount of solar radiation at a point within a predetermined distance range from the installation location A method for extracting the configuration of a photovoltaic power generation apparatus.
PCT/JP2012/065012 2011-06-15 2012-06-12 Solar power generation device configuration extraction apparatus, solar power generation device configuration extraction method, solar power generation device configuration extraction program, and solar power generation device configuration assessment system WO2012173115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011133168A JP2014160687A (en) 2011-06-15 2011-06-15 Photovoltaic power generation apparatus configuration extraction apparatus, photovoltaic power generation apparatus configuration extraction method, photovoltaic power generation apparatus configuration extraction program, and photovoltaic power generation apparatus configuration determination system
JP2011-133168 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012173115A1 true WO2012173115A1 (en) 2012-12-20

Family

ID=47357102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065012 WO2012173115A1 (en) 2011-06-15 2012-06-12 Solar power generation device configuration extraction apparatus, solar power generation device configuration extraction method, solar power generation device configuration extraction program, and solar power generation device configuration assessment system

Country Status (2)

Country Link
JP (1) JP2014160687A (en)
WO (1) WO2012173115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122503A1 (en) * 2014-02-14 2015-08-20 日本発條株式会社 Reflective sheet for concentrating solar cell device or for solar thermal power generation device and reflective member for concentrating solar cell device or for solar thermal power generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108486A (en) * 1996-09-26 1998-04-24 Kansai Electric Power Co Inc:The Power generation predicting method for solar power generation system
JP2004047875A (en) * 2002-07-15 2004-02-12 Sharp Corp Device for predicting amount of power generation, device for transmitting amount of power generation, device for measuring solar irradiation, and method for predicting amount of power generation
JP2006185367A (en) * 2004-12-28 2006-07-13 Sharp Corp Photovoltaic power generator installation support system and program
JP2007249693A (en) * 2006-03-16 2007-09-27 Takenaka Komuten Co Ltd Solar battery installation evaluation device, solar battery installation evaluation program and solar battery installation evaluation calculation method
US20100217724A1 (en) * 2009-02-20 2010-08-26 Sunpower Corporation Automated solar collector installation design including version management

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108486A (en) * 1996-09-26 1998-04-24 Kansai Electric Power Co Inc:The Power generation predicting method for solar power generation system
JP2004047875A (en) * 2002-07-15 2004-02-12 Sharp Corp Device for predicting amount of power generation, device for transmitting amount of power generation, device for measuring solar irradiation, and method for predicting amount of power generation
JP2006185367A (en) * 2004-12-28 2006-07-13 Sharp Corp Photovoltaic power generator installation support system and program
JP2007249693A (en) * 2006-03-16 2007-09-27 Takenaka Komuten Co Ltd Solar battery installation evaluation device, solar battery installation evaluation program and solar battery installation evaluation calculation method
US20100217724A1 (en) * 2009-02-20 2010-08-26 Sunpower Corporation Automated solar collector installation design including version management

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122503A1 (en) * 2014-02-14 2015-08-20 日本発條株式会社 Reflective sheet for concentrating solar cell device or for solar thermal power generation device and reflective member for concentrating solar cell device or for solar thermal power generation device

Also Published As

Publication number Publication date
JP2014160687A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
Kylili et al. Investigation of building integrated photovoltaics potential in achieving the zero energy building target
US20120035887A1 (en) Shading analysis software
CN104126271B (en) Device of solar generating
Munaaim et al. Potential of fibre optic daylighting systems in tropical Malaysia
WO2012173115A1 (en) Solar power generation device configuration extraction apparatus, solar power generation device configuration extraction method, solar power generation device configuration extraction program, and solar power generation device configuration assessment system
US10666187B2 (en) Less than maximum effective solar design
US20220028016A1 (en) Photovoltaic system installation
Kanyarusoke et al. Re-mapping sub-Sahara Africa for equipment selection to photo electrify energy poor homes
Smiles et al. Next steps in the footprint project: A feasibility study of installing solar panels on Bath Abbey
Shanks et al. Conjugate refractive–reflective homogeniser in a 500× Cassegrain concentrator: design and limits
Mathiesen et al. The role of Photovoltaics towards 100% Renewable energy systems: Based on international market developments and Danish analysis
Toledo et al. Design parameters for solar light pipes in the Brazilian context
Mathiesen et al. The role of Photovoltaics towards 100% Renewable energy systems
Byrne et al. Feasibility Study of City-Scale Solar Power Plants Using Public Buildings: Case Studies of Newark and Wilmington Delaware with Early Investigations of Bifacial Solar Modules and Dual Orientation Racking as Tools for City-Scale Solar Development
Freier et al. Annual prediction output of an RADTIRC-PV module
Byrne et al. Feasibility of city-scale solar power plants using public buildings: case studies of newark and wilmington Delaware with early investigations of bifacial solar modules and dual orientation racking as tools for city-scale solar development
Lockertsen The Performance and Potential for PV systems at Northern Latitudes
Burkhardt et al. How Much Do Local Regulations Matter?
CN114022217A (en) Distributed photovoltaic power generation investment income calculation method, device, equipment and medium
KR101200043B1 (en) Apparatus for condensing sunlight and panel for condensing sunlight having the same
Nweke Developing a conceptual framework for adopting renewable energy in the domestic urban environment in the UK
Hosein et al. Feasibility analysis of solar water heaters for residential use in Trinidad and Tobago
Soares et al. Design Study and Potential Implementation of Photovoltaic Noise Barriers for Sustainable Highways
Sulyok Innovation and economics of distributed photovoltaic electricity generation in brazil/Inovação e economia da geração distribuída de eletricidade fotovoltaica no Brasil
Saad Experimental Investigation of Semi-Transparent Tracking-Integrated CPV Modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP