WO2012171482A1 - 用于移动终端的多频天线 - Google Patents

用于移动终端的多频天线 Download PDF

Info

Publication number
WO2012171482A1
WO2012171482A1 PCT/CN2012/077008 CN2012077008W WO2012171482A1 WO 2012171482 A1 WO2012171482 A1 WO 2012171482A1 CN 2012077008 W CN2012077008 W CN 2012077008W WO 2012171482 A1 WO2012171482 A1 WO 2012171482A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
frequency
loop
antenna
low frequency
Prior art date
Application number
PCT/CN2012/077008
Other languages
English (en)
French (fr)
Inventor
孙劲
何其娟
尹海杰
泽拉图米洛舍维奇
Original Assignee
上海安费诺永亿通讯电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海安费诺永亿通讯电子有限公司 filed Critical 上海安费诺永亿通讯电子有限公司
Publication of WO2012171482A1 publication Critical patent/WO2012171482A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/265Open ring dipoles; Circular dipoles

Definitions

  • the present invention relates to a built-in antenna, and more particularly to a multi-frequency antenna for a mobile terminal. Background technique
  • FIG. 1 shows the doubly-fed monopole antenna, where A and B are the feed points.
  • Figure 2 shows a dual-loop antenna. The large loop is inductively coupled, the small loop is capacitively coupled, and C and D are feed and ground points, respectively. According to different sizes and forms of mobile terminals, different antenna forms are adopted to meet the technical specifications of different frequency bands.
  • the radiation efficiency of an antenna is one of the most important indicators for measuring an antenna. Radiation efficiency is measured in three situations: free space, close to the human head, and close to the human head.
  • the above-mentioned head-hand radiation efficiency refers to the efficiency in the case where the hand-held handpiece is close to the human head. That is to improve the head hand radiation efficiency of the antenna, while improving the free space efficiency of the antenna, the head and hand loss is minimized, which ultimately improves the head hand radiation efficiency of the antenna.
  • Monopoles, inverted F-type antennas (IFA) usually require a certain headroom on the ground on the PCB. The antenna is placed as far as possible from the clearing end of the ground to achieve sufficient bandwidth.
  • the double loop antenna has the smallest head loss performance.
  • a multi-frequency antenna for a mobile terminal includes a loop antenna portion, a monopole antenna portion, a high and low frequency common feed branch, a high and low frequency common ground branch, a feed branch, and a ground branch.
  • the loop antenna portion resonates with the low frequency communication frequency to transmit and receive the low frequency communication electromagnetic wave signal, and the loop antenna portion is a loop with an opening.
  • the monopole antenna portion resonates with the high frequency communication frequency to transmit and receive a high frequency communication electromagnetic wave signal, and the monopole antenna portion is placed in the loop and connected to both ends of the opening.
  • a high and low frequency common feed branch is connected to one end of the opening.
  • a high and low frequency common ground branch is connected to the other end of the opening.
  • a feed branch connects the high and low frequency common feed branches.
  • a grounding branch connects the high and low frequency common grounding branches.
  • the distance between the feed branch and the ground branch is 10 mm to 35 mm.
  • the loop antenna portion includes multiple branches or slots for adjusting coupling between different resonances.
  • the loop antenna portion includes a multilayer structure or vias for adjusting coupling between different resonances.
  • the single-stage sub-antenna portion is coupled or coupled to the loop antenna portion for adjusting coupling between different resonances.
  • the single-stage sub-antenna portion has multiple branches located in the ring antenna portion or between the ring antenna portion and the ground plate.
  • the loop antenna portion includes a low frequency loop body, a first low frequency loop branch, and a second low frequency loop branch; the two sides of the low frequency loop body are respectively connected to the first low frequency loop a branch and the second low frequency loop branch, the low frequency loop body, the first low frequency loop branch and the second low frequency loop branch forming the loop, and the first low frequency loop branch And an end of the second low frequency loop branch corresponds to both ends of the opening.
  • the monopole antenna portion includes a first high frequency branch and a second high frequency branch, and the first high frequency branch and the second high frequency branch are both placed in the loop And connected to an end of the first low frequency loop branch and an end of the second low frequency loop branch, respectively.
  • the high and low frequency common feed branches are connected to the ends of the first low frequency loop branches; the high and low frequency common ground branches are connected to the ends of the second low frequency loop branches.
  • the first low frequency loop branch and the second low frequency loop branch are both It has multiple bending structures.
  • the low frequency loop body has a multiple bending structure.
  • the first high frequency branch and the second high frequency branch have a multiple bending structure.
  • the multi-frequency antenna is mirror symmetrical.
  • the present invention employs a new form of antenna that combines a monopole antenna and a loop antenna.
  • the antenna takes the longest-sized loop as the low-frequency resonator, and the high-frequency resonance is generated by the monopole resonator arm placed in the low-frequency loop.
  • This kind of structure greatly improves the small energy loss and the high head hand radiation efficiency when the user is close to the human hand, thereby improving the communication quality of the mobile phone and prolonging the life of the mobile phone battery.
  • the entity of the multi-frequency antenna of the present invention is partially above the ground, rather than being placed away from the ground as in the conventional antenna, thereby reducing the size of the antenna in the width direction. Ultimately, the head hand efficiency of the antenna is improved.
  • 1 is a schematic structural view of a doubly-fed monopole antenna
  • FIG. 2 is a schematic structural view of a double loop antenna
  • FIG. 3 is a schematic structural diagram of a multi-frequency antenna for a mobile terminal according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of a monopole antenna portion according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic structural diagram of a loop antenna portion according to Embodiment 1 of the present invention.
  • FIG. 6 is an exploded structural view of a mobile phone incorporating an antenna according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing a return loss of a multi-frequency antenna for a mobile terminal according to Embodiment 1 of the present invention
  • FIG. 8 is a current distribution diagram of a resonance frequency fl according to Embodiment 1 of the present invention.
  • Figure 9 is a current distribution diagram of a resonance frequency f3 according to Embodiment 1 of the present invention.
  • Figure 10 is a current distribution diagram of a resonance frequency f2 according to Embodiment 1 of the present invention.
  • FIG. 11 is a comparison diagram of total radiation efficiency of an antenna with a leading hand according to Embodiment 1 of the present invention.
  • FIG. 12 is a schematic structural diagram of a multi-frequency antenna for a mobile terminal according to Embodiment 2 of the present invention
  • FIG. Figure 13 is a first embodiment of the present invention
  • Figure 14 is a diagram of Embodiment 4 of the present invention.
  • Figure 15 is a first embodiment of the present invention
  • Figure 16 is a diagram of Embodiment 6 of the present invention.
  • Figure 17 is a diagram of Embodiment 7 of the present invention.
  • Figure 19 is a view of the ninth embodiment of the present invention.
  • Figure 20 is a ninth embodiment of the present invention - Figure 21 is a ii of embodiment 10 of the present invention
  • Figure 22 is a ii of embodiment 10 of the present invention
  • Figure 23 is a ii of embodiment 10 of the present invention
  • Figure 24 is a XI of Embodiment 11 of the present invention.
  • Figure 26 is a ii of the eleventh embodiment of the present invention
  • Figure 27 is a ii of the eleventh embodiment of the present invention
  • FIG. 28 is a schematic structural diagram of a multi-frequency antenna for a mobile terminal according to Embodiment 12 of the present invention.
  • FIG. 29 is a schematic structural diagram of a multi-frequency antenna for a mobile terminal according to Embodiment 13 of the present invention.
  • FIG. 31 is a schematic structural diagram of a multi-frequency antenna for a mobile terminal according to Embodiment 15 of the present invention.
  • FIG. 32 is a schematic diagram of Embodiment 16 of the present invention.
  • FIG. 33 is a schematic structural diagram of a multi-frequency antenna for a mobile terminal according to Embodiment 17 of the present invention.
  • FIG. 34 is a schematic diagram of Embodiment 18 of the present invention. Schematic diagram of a multi-frequency antenna for a mobile terminal
  • 35 is a schematic structural diagram of a multi-frequency antenna for a mobile terminal according to Embodiment 19 of the present invention.
  • a multi-frequency antenna for a mobile terminal includes a loop antenna portion, a monopole antenna portion, a feed branch, and a ground branch.
  • the loop antenna portion resonates with the low frequency communication frequency to transmit and receive low frequency communication electromagnetic wave signals.
  • the monopole antenna portion resonates with the high frequency communication frequency to transmit and receive the high frequency communication electromagnetic wave signal.
  • the loop antenna portion is a loop with an opening, and the monopole antenna portion is placed in the loop. And connected to both ends of the opening of the loop.
  • the feed branch is connected to one end of the opening, and the ground branch is connected to the other end of the opening.
  • the multi-frequency antenna may be mirror symmetrical. In other embodiments, the multi-frequency antenna may have a degree of asymmetry.
  • a multi-frequency antenna 100 for a mobile terminal includes: a loop antenna portion that resonates with a low-frequency communication frequency to transmit and receive a low-frequency communication electromagnetic wave signal; and a monopole antenna portion that resonates with a high-frequency communication frequency. And send and receive high frequency communication electromagnetic wave signals.
  • the loop antenna portion is a loop with an opening in which the monopole antenna portion is placed and connected to both ends of the loop of the loop.
  • the frequency range of the low frequency is from 824 Mhz to 960 Mhz
  • the frequency range of the high frequency is from 1710 Mhz to 2170 Mhz.
  • the loop antenna portion includes a low frequency loop body 102, a first low frequency loop branch 104, and a second low frequency loop branch 103.
  • the two sides of the low frequency loop body 102 are connected to the first low frequency loop branch 104 and the second low frequency loop branch 103, respectively.
  • the low frequency loop body 102, the first low frequency loop branch 104 and the second low frequency loop branch 103 form a loop with an opening, and the ends of the first low frequency loop branch 104 and the second low frequency loop branch 103 Corresponding to both ends of the opening.
  • the monopole antenna portion includes a first high frequency branch 106 and a second high frequency branch 107, and the first high frequency branch 106 and the second high frequency branch 107 are placed in a loop formed by the loop antenna portion, and respectively respectively
  • the end of the low frequency loop branch 104 is connected to the end of the second low frequency loop branch 103.
  • the present invention also includes a high and low frequency common ground branch 108, a high and low frequency common feed branch 109, a ground branch 105, and a feed branch 101.
  • the high and low frequency common ground branch 108 is connected to the ground branch 105, and the high and low frequency common feed branch 109 is connected to the feed branch 101.
  • the high and low frequency common ground branch 108 is coupled to the end of the first low frequency loop branch 104, and the high and low frequency common feed ground branch 109 is coupled to the end of the second low frequency loop branch 103.
  • the low frequency loop body 102 can be above the ground.
  • the distance between the first high frequency branch 106 and the low frequency loop body 102 is dl.
  • the distance between the first high frequency branch 106 and the first low frequency loop branch 104 is d2.
  • the pitch of the second high frequency branch 107 and the low frequency loop body 102 is d4.
  • the pitch of the second high frequency branch 107 and the second low frequency loop branch 103 is d5.
  • Low frequency loop body 102, first low frequency loop branch 104 And the total length of the second low frequency loop branch 103 is L1.
  • the lengths of the first high frequency branch 106 and the second high frequency branch 107 are each L2.
  • the lengths of the high and low frequency common ground branches 108 and the high and low frequency common feed branches 109 are respectively L3.
  • the multi-frequency antenna of the present invention can receive electromagnetic wave signals of a plurality of frequency segments.
  • the resonant length of the low frequency is mainly determined by L1+L3
  • the resonant frequency of the high frequency is mainly determined by L2, dl, and d2.
  • the distance between the feed branch 101 and the ground branch 105 is d3, and d3 is adjusted to match the impedance of the high frequency band.
  • 4 and 5 are structural exploded views of the antenna of the present invention.
  • 4 is a schematic structural view of a monopole antenna portion according to Embodiment 1 of the present invention, which corresponds to a basic monopole antenna, mainly controlling high frequency resonance, A is a feeding point, and B is a grounding point.
  • Fig. 5 is a schematic structural view of a loop antenna portion according to Embodiment 1 of the present invention, which corresponds to a basic loop antenna, mainly controlling low frequency resonance, A is a feed point, and B is a ground point.
  • FIG. 6 shows a case where a multi-frequency antenna is built in a mobile phone terminal according to an embodiment of the present invention. It can be understood that the multi-frequency antenna can also be built in other communication terminals, which is merely an example and is not limited.
  • Figure 6 shows a metal casing 200 in an embodiment of the invention having six ground pins 201, a ground plate 202 and an antenna headspace 203.
  • the width of the multi-frequency antenna of the embodiment is greater than the width of the clearance area 203. Therefore, after the multi-frequency antenna of the embodiment is built in the metal casing 200 of the mobile phone, the lower part of the low-frequency loop main body 102 corresponds to a part of the grounding plate 202. That is, the entity of the antenna is partially above the ground, instead of being placed at an end away from the ground as the conventional antenna, thereby reducing the size of the antenna in the width direction, and ultimately improving the head hand efficiency of the antenna.
  • the antenna of the embodiment of the present invention has a height of 5 mm and is formed by bending the first low frequency loop branch 103 and the second low frequency loop branch 104. This embodiment focuses on the clearance area, and the embodiment in which there is no clearance area is described in detail in Embodiments 15 to 19.
  • the low frequency resonant ring produces a resonant frequency f0.
  • the adjustment of dl, d2, d3, d4, and d5 in the embodiment can cause three modes of differential mode, common mode, and mixed differential mode to be generated by high frequency resonance.
  • the differential mode frequency is fl
  • the common mode frequency is ⁇
  • the mixed differential mode frequency is f2
  • dl, d2, d3, d4, d5 the coupling degree of the mixed differential mode f2 with the differential mode and the common mode, that is, the bandwidth of
  • VSWR3 1 bandwidth can cover GSM850 and GSM900, for high frequency differential mode, common mode, mixed mode resonant frequency fl, f2, and f3 VSWR3: 1 Bandwidth can cover DCS, PCS, and UMTS.
  • the resonant frequency f0 is generated. As shown in Fig. 7, the resonant wavelength is 1/2 wavelength. It mainly depends on the total length of the first frequency loop branch 103, the second low frequency loop branch 104 and the low frequency loop body 102.
  • the current distribution of the resonant frequency f0 is very simple and will not be described in detail here.
  • FIG. 7 is a current distribution diagram of antenna 100 and ground 202.
  • Point F is the feed point and is connected to the feeder 101.
  • Point G is the grounding point and is connected to the grounding wire 105.
  • the solid arrows indicate the current distribution on the antenna 100, and the hollow arrows indicate the current distribution on the ground plate 202 and the area adjacent to the antenna.
  • the size of the arrow indicates the intensity of the current, and the direction of the arrow is the direction of current flow.
  • I-null which is represented by a solid dot in Fig. 8.
  • the strongest point of the current is at the center of the low frequency loop body 102, and its current is I - max.
  • a coupling current I-couple exists on the first high frequency branch 106 and the second high frequency branch 107, indicating that the first high frequency branch 106 and the second high frequency branch 107 are fine tuned to fine tune the resonant frequency fl.
  • the currents at points F and G are inverted, that is, one side flows in and the other side flows out.
  • a current distribution having such a phase difference of 180 degrees is a differential mode resonance.
  • a particular point of an embodiment of the invention is the distribution of ground currents adjacent to the antenna, as indicated by the open arrows.
  • the ground current I-ground adjacent to the antenna flows parallel to the antenna into the feed point F and flows out of the ground point G, still parallel to the antenna and in the same direction as before the inflow.
  • the magnitude of the ground current adjacent to the antenna is almost the same as the amplitude of the current on the antenna. It is worth noting that the current directions described above are at the same time, that is, the same phase of the excitation source, such as phase 1, and at another time, the phase of the excitation source becomes phase 2, and the above current distribution may vary, but separated by one. After the cycle, it will return to phase 1. This period is 2 ⁇ , which is 360 degrees.
  • the resonance wavelength is twice the wavelength provided by the antenna 100 and the ground plate 202.
  • the current distribution is shown in Figure 10. It can also be seen from the doubling of the number of current zeros that the resonant wavelength changes.
  • There are three current extreme points on the antenna 100 which are respectively located on the first frequency loop branch 103, the second low frequency loop branch 104 and the low frequency loop body 102.
  • the feed point F and the ground point G have a phase distribution with the first high frequency resonance frequency fl.
  • a special point of the second high-frequency resonance frequency ⁇ is that the distribution of the ground current adjacent to the antenna is completely different from the differential mode of the first high-frequency resonance frequency fl.
  • the ground current adjacent to the antenna flows only from the ground point G to the feed point F, and the current amplitude is almost the same as the current limit on the antenna.
  • Feed point F and ground point The distance d3 of G has a direct influence on the second high frequency resonance frequency f2.
  • such current distribution greatly reduces the dependence of the second high frequency resonant frequency f2 on the length of the ground 202, etc., which contributes to the antenna exhibiting better efficiency on the head hand model.
  • the distance d3 between the feed point F and the ground point G is preferably about 1/3 of the width of the ground plate 202.
  • the d3 is 20mm.
  • the optimal d3 is not necessarily optimal.
  • the acceptable range for d3 is 10mm to 35mm.
  • the resonance wavelength is one and a half wavelengths. From the current distribution of the feed point F and the ground point G, it belongs to the common mode resonance. The current of the feed point F and the ground point G are in the same direction, as shown in Fig. 9. The three current zeros are distributed almost evenly on the antenna 100. The ground current of the adjacent antenna flows parallel to the antenna to the feeding point F and the grounding point G, and almost no current exists in the middle of the feeding point F and the grounding point G.
  • Figure 1 1 shows a comparison of the efficiency of the antenna with the head.
  • the left and right two sets of lines above are the comparison results of antenna efficiency in three cases of free space, for reference only.
  • the left and right sets of lines below are the result of comparing the antenna efficiencies in the three cases.
  • the straight line plus triangle symbol indicates the leading result 301 of the present invention.
  • the straight circled circle symbol indicates the monopole antenna leading result 302, and the single straight line indicates the double loop antenna leading result 303.
  • the line of the triangular symbol is higher than the other two lines, which indicates that the antenna of the embodiment of the present invention is more efficient than the monopole in the low frequency band.
  • the efficiency of the antenna with the head of the antenna and the efficiency of the antenna of the double-loop antenna with the head are high.
  • the line of the triangular symbol is higher than the other two lines, which indicates that the antenna of the embodiment of the present invention is higher in efficiency than the monopole in the high frequency band.
  • the efficiency of the antenna of the sub-antenna headed hand and the antenna of the double-loop antenna headed hand are high.
  • the result of the present invention is significantly higher than that of the monopole antenna, the antenna efficiency of the headed hand of the double loop antenna, and reaches -6dB-7dB.
  • Example 2 differs from Embodiment 1 in that: the first low frequency loop branch 104 and the second low frequency loop branch 103 each have a multiple bent structure.
  • the grounding branch 105 and the feeding branch 101 are not shown in the drawing, but actually, the two exist, and the connection relationship with other parts is the same as that of the first embodiment, which will be described here.
  • this embodiment differs from the embodiment 2 in that the low frequency loop main body 102 has a multi-folded structure. Further, for convenience of explanation, the grounding branch 105 and the feeding branch 101 are not shown in the drawing, but actually, both exist, and the connection relationship with other parts is the same as that of the embodiment 1, which will be described here.
  • the first embodiment differs from the first embodiment in that: the first high frequency branch 106 and the second high frequency branch 107 have a bent structure corresponding to the low frequency loop main body 102.
  • the manner in which the two are coupled to the low frequency loop body 102 is formed by a broken line.
  • the grounding branch 105 and the feeding branch 101 are not shown in the drawing, but actually, both exist, and the connection relationship with other parts is the same as that of the embodiment 1, which will be described here.
  • this embodiment differs from the embodiment 1 in that the branch 1 10 connects the first high frequency branch 106 and the low frequency loop body 102 to form an inductive effect.
  • the coupling capacitance effect between the original first high frequency branch 106 and the low frequency loop body 102 still exists.
  • the low frequency loop body 102 is internally introduced into the slot 13 1.
  • the introduction of the slot 13 1 reduces the coupling capacitance between the first high frequency branch 106 and the low frequency loop body 102.
  • the inductance effect introduced by the branch 1 10 and the coupling capacitance effect between the first high frequency branch 106 and the low frequency loop body 102 form a parallel resonance effect, further adjusting the second high frequency resonance frequency f2 and the third high frequency resonance frequency f3 Coupling.
  • grounding branch 105 and the feeding branch 101 are not shown in the drawing, but in fact, both exist, and the connection relationship with other parts is the same as that in Embodiment 1, in fact, the grounding branch 105 and the feeding Since the branch 101 is symmetrically located on the wide side of the ground plate 202, it can be interchanged, and is hereby described.
  • this embodiment differs from Embodiment 1 in that: the first high frequency branch 106 and the low frequency loop body 102 correspond to a multi-branch structure.
  • the grounding branch 105 and the feeding branch 101 are not shown in the figure, but actually, the two exist, and the connection relationship with other parts is the same as the embodiment. 1.
  • the grounding branch 105 and the feeding branch 101 are symmetrically located on the wide side of the ground plate 202, so they can be interchanged.
  • this embodiment differs from the embodiment 1 in that the first high frequency branch 106 and the second high frequency branch 107 correspond to a multi-branch structure.
  • the second high frequency branch 107 has a two-layer structure, and the two layers are connected by via holes.
  • the grounding branch 105 and the feeding branch 101 are not shown in the drawing, but in fact, both exist, and the connection relationship with other parts is the same as that in Embodiment 1, in fact, the grounding branch 105 and the feeding Since the branches 101 are symmetrically located on the wide sides of the ground plate 202, they can be interchanged, and will be described here.
  • the first embodiment differs from the first embodiment in that: the first high frequency branch 106 and the second high frequency branch 107 correspond to the low frequency loop body 102 in a multi-branch structure.
  • the difference from Embodiment 6 is that the directions of the additional branches are different, and the portions for adjusting the coupling are different.
  • the first high frequency branch 106, the second high frequency branch 107 and the low frequency loop body 102 may be 3D in nature, and may have a chamfered bend or the like conformal to the antenna support.
  • grounding branch 105 and the feeding branch 101 are not shown in the drawing, but in fact, both exist, and the connection relationship with other parts is the same as that in Embodiment 1, in fact, the grounding branch 105 and the feeding Since the branch 101 is symmetrically located on the wide side of the ground plate 202, it can be interchanged, and is hereby described.
  • this embodiment differs from the embodiment 1 in that the clearance area 203 is not regular.
  • the first high frequency branch 106 has a multi-branch structure corresponding to the low frequency loop body 102.
  • the first high frequency branch 106 and the low frequency loop body 102 are directly connected to form an inductive effect, as in the fifth embodiment.
  • the grounding branch 105 and the feeding branch 101 are not shown in the drawing, but in fact, both exist, and the connection relationship with other parts is the same as that in Embodiment 1, in fact, the grounding branch 105 and the feeding The branches 101 are interchangeable because they are symmetrically located on the wide sides of the ground plate 202, and are hereby described.
  • this embodiment differs from the first embodiment in that the first high frequency branch 106 and the second high frequency branch 107 are short and almost negligible, and branches 120 and 121 are additionally added. Branches 120 and 121 enhance the coupling between antenna 100 and ground plane 202 while also providing impedance matching.
  • the current distribution of each resonance frequency is not greatly different from the viewpoint of current distribution.
  • Fig. 21 is a current distribution of the first high frequency resonance frequency f0.
  • Fig. 23 is a current distribution of the second high frequency resonance frequency f2.
  • Fig. 22 is a current distribution of the third high frequency resonance frequency f3. The zero point and the extreme point of the current are the same as in the first embodiment.
  • the current distribution of the antenna and the ground adjacent to the antenna is also the same as in Embodiment 1.
  • the bandwidth of the high frequency band of this embodiment is better than that of the first embodiment.
  • the grounding branch 105 and the feeding branch 101 are not shown in the drawing, but in fact, both exist, and the connection relationship with other parts is the same as that in Embodiment 1, in fact, the grounding branch 105 and the feeding Since the branch 101 is symmetrically located on the wide side of the ground plate 202, it can be interchanged, and is hereby described.
  • this embodiment differs from the embodiment 1 in that branches 120 and 121 are added.
  • This embodiment is a combination of Embodiment 1 and Embodiment 10.
  • Fig. 25 is a current distribution of the first high frequency resonance frequency f0.
  • Fig. 27 is a current distribution of the second high frequency resonance frequency f2.
  • Fig. 26 is a current distribution of the third high frequency resonance frequency ⁇ .
  • the zero point and the extreme point of the current are the same as in the first embodiment.
  • the current distribution of the antenna and the ground of the adjacent antenna is also the same as in the first embodiment.
  • This embodiment can further optimize the bandwidth of the high frequency band and make the low frequency resonance f0 consistent with the embodiment 1.
  • grounding branch 105 and the feeding branch 101 are not shown in the drawing, but in fact, both exist, and the connection relationship with other parts is the same as that in Embodiment 1, in fact, the grounding branch 105 and the feeding The branches 101 are interchangeable because they are symmetrically located on the wide sides of the ground plate 202, and are hereby described.
  • the difference between the embodiment and the embodiment 1 and the embodiment 10 is that the grounding branch 105 and the feeding branch 101 are no longer symmetrically located on the wide side of the grounding plate 202, but the distance between the grounding branch 105 and the feeding branch 101 D3 still satisfies the definition requirements of Embodiment 1.
  • the grounding branch 105 and the feeding branch 101 are not shown in the drawing, but in fact, both exist, and the connection relationship with other parts is the same as that in Embodiment 1, in fact, the grounding branch 105 and the feeding The branches 101 are interchangeable even if they are asymmetrically located on the wide sides of the ground plate 202. If the clearance area is present, the ground branch 105 and the feed branch 101 connect the feed point F and the ground point 0. If the clearance area does not exist, branch 108 and branch 109 connect feed point F and ground point G, as explained here.
  • the present embodiment is different from the embodiment 12 in that the antenna 100 has a multi-branch structure.
  • the first high frequency branch 106 and the second high frequency branch 107 are the same as the first embodiment; the branch 120 and the branch 121 are the same as the embodiment 10; the multi-branch structure of the low frequency loop main body 102 is similar to that of the embodiment 6. .
  • the connection relationship of the other portions is the same as that of the embodiment 12, and is hereby described.
  • this embodiment differs from the embodiment 12 in that the first high frequency branch 106 has a two-layer structure, and the second high frequency branch 107 is directly connected to the low frequency loop main body 102 to provide an inductance effect as in the fifth embodiment. Further, for convenience of explanation, the connection relationship of the other portions is the same as that of the embodiment 12, which will be described here.
  • the difference between this embodiment and the embodiment 1 is that the feed branch 101 and the ground branch 105 are located in a plane perpendicular to the ground plate 202.
  • the high frequency first branch 106, the high frequency second branch 107 is connected to the feed branch 101, the ground branch 105, respectively.
  • the monopole branches 108, 109 are close to each other with a spacing of d6.
  • Branches 103, 104 connect branches 106, 107 to low frequency loop body 102.
  • the high frequency first branch branch 106 and the distance to the low frequency loop body 102 are dl; the high frequency first branch branch 106 and the low frequency branch 104 are spaced apart by d2.
  • the distance between the feed point and the ground point is d3.
  • the distance between the high frequency branch 107 and the low frequency loop body 102 is d4.
  • the spacing between the high frequency second branch branch 107 and the branch 104 is d5.
  • the spacing between branches 108 and 109 is d6.
  • the main low frequency loop has a bent line structure. This variation applies to the case of no clearance and has good performance.
  • the difference between this embodiment and the embodiment 1 is that the feed branch 101 and the ground branch 105 are located in a plane perpendicular to the ground plane.
  • Branch 108 and branch 109 are located at the upper end of antenna 100.
  • the low frequency loop body 102 extends downwardly in the middle perpendicular to the ground plane.
  • Other dimensions and connection relationships are the same as in Variation 1. This variation is applicable to the case of no clearance and has better performance.
  • the difference between this embodiment and the embodiment 15 is that the high frequency branch can be separately adjusted, so that a long branch 107 and a short branch 106 (in this example, the length is 0), the branch 104 and The distance connecting the branches of the branch 6 is d2.
  • the pitch d5 is the same as the definition of the variation 15, and the low-frequency loop body 102 and the branch 104 each have a prominent branch.
  • Ml here denotes a speaker, and may also be M2 in Fig. 35, indicating a micro USB connector.
  • Ml and M2 can appear below the antenna, but do not degrade the performance of the antenna, which further improves the structural integration of the antenna.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种用于移动终端的多频天线,该多频天线结构包括:环天线部分,与低频通讯频率谐振而收发低频通讯电磁波讯号;单极子天线部分,与高频通讯频率谐振而收发高频通讯电磁波讯号。环天线部分为一带有开口的环路,单极子天线部分置于该环路中,并与该环路的开口两端连接。与现有技术相比,本发明在用户在手握手机靠近人头的情况下具有小的能量损耗,高的头手辐射效率,从而提高了手机通讯的质量,延长了手机电池的寿命。

Description

用于移动终端的多频天线 技术领域
本发明涉及一种内置天线, 特别涉及一种用于移动终端的多频天线。 背景技术
移动终端的内置天线的研究和开发经过近十年的发展已经到了比较成熟 的阶段. 几种比较典型的天线形式包括, 单极子天线 (monopole) 倒置 F型天 线 (IFA) , 双环天线 (dual loop ) , 以及平面倒置 F型天线 (PIFA) 。 图 1 所示为双馈的单极天线, A, B分别为馈电点。 图 2所示为双环天线, 大环为 感性耦合, 小环为容性耦合, C, D分别为馈电点和接地点。 根据移动终端的 不同尺寸和形式, 采取不同的天线形式, 以达到不同的频段的技术指标要求。 对内置天线的一个重要的技术指标要求就是, 达到尽可能高的天线的头手辐射 效率。 天线的辐射效率是衡量天线的最重要的指标之一。 辐射效率要在三种情 况下作测量: 自由空间, 靠近人头, 手握靠近人头。 上述头手辐射效率就是指 手握手机靠近人头的情况下的效率。 也就是要提高天线的头手辐射效率, 在提 高天线自由空间效率的同时, 尽可能减小头和手带来的损耗, 即最终提高了天 线的头手辐射效率。 单极子天线 (monopole) , 倒置 F型天线 (IFA) 通常要 求 PCB板上的地 (ground) 具有一定的净空, 天线尽可能的置于远离地的净空 一端, 从而达到足够的带宽。 在上述几种天线形式中, 双环天线具有最小的头 手损表现。
上述几种天线形式均存在用户在手握手机靠近人头的情况下, 头和手对天 线的能量损耗大, 造成头手辐射效率低, 天线辐射能量降低, 从而影响了手机 的通讯质量; 并因为能量的过分损耗, 缩短了手机电池的寿命。 发明内容
为了克服现有技术的缺陷, 本发明提出一种用于移动终端的多频天线, 其 在用户在手握手机靠近人头的情况下具有小的能量损耗, 高的头手辐射效率, 从而提高了手机通讯的质量, 延长了手机电池的寿命。 本发明所提出的一种用于移动终端的多频天线包括环天线部分、 单极子天 线部分、 高低频公共馈电分支、 高低频公共接地分支、馈电分支以及接地分支。 环天线部分与低频通讯频率谐振而收发低频通讯电磁波讯号, 所述环天线部分 为一带有开口的环路。 单极子天线部分与高频通讯频率谐振而收发高频通讯电 磁波讯号, 所述单极子天线部分置于所述环路中, 并与所述开口的两端连接。 高低频公共馈电分支连接于所述开口的一端。 高低频公共接地分支连接于所述 开口的另一端。 馈电分支连接所述高低频公共馈电分支。 接地分支连接所述高 低频公共接地分支。
根据本发明一实施例, 所述馈电分支和所述接地分支之间的距离为 10mm 到 35mm。
根据本发明一实施例, 所述环天线部分包括多重分支或开槽, 用于调节不 同谐振之间的耦合。
根据本发明一实施例, 所述环天线部分包括多层结构或过孔, 用于调节不 同谐振之间的耦合。
根据本发明一实施例, 所述单级子天线部分与所述环天线部分连接或耦 合, 用于调节不同谐振之间的耦合。
根据本发明一实施例, 所述单级子天线部分具有多重分支, 位于所述环天 线部分中或者所述环天线部分和所述接地板之间。
根据本发明一实施例, 所述环天线部分包括低频环路主体、 第一低频环路 分支和第二低频环路分支; 所述低频环路主体的两侧分别连接所述第一低频环 路分支及所述第二低频环路分支, 所述低频环路主体、 所述第一低频环路分支 和所述第二低频环路分支构成所述环路, 且所述第一低频环路分支和所述第二 低频环路分支的末端对应所述开口的两端。
根据本发明一实施例, 所述单极子天线部分包括第一高频分支和第二高频 分支, 所述第一高频分支和所述第二高频分支均置于所述环路中, 且分别与所 述第一低频环路分支的末端和所述第二低频环路分支的末端连接。
根据本发明一实施例, 所述高低频公共馈电分支连接所述第一低频环路分 支的末端; 所述高低频公共接地分支连接所述第二低频环路分支的末端。
根据本发明一实施例, 所述第一低频环路分支和所述第二低频环路分支均 呈多重弯折结构。
根据本发明一实施例, 所述低频环路主体呈多重弯折结构。
根据本发明一实施例, 所述第一高频分支、 所述第二高频分支呈多重弯折 结构。
根据本发明一实施例, 所述多频天线呈镜像对称。
与现有技术相比, 本发明的有益效果如下:
第一, 本发明采用了一种新的天线形式, 它混合了单极子天线和环天线。 天线采取最长尺寸的环路作为低频谐振体, 用置于低频环中的单极子谐振臂产 生高频谐振。 该种结构大大提高了在用户在手握手机靠近人头的情况下具有小 的能量损耗, 高的头手辐射效率, 从而提高了手机通讯的质量, 延长了手机电 池的寿命。
第二, 本发明的多频天线的实体有部分在地的上方, 而不是如同传统的天 线置于远离于地的一端, 从而减小了天线在宽度方向的尺寸。 最终提高了天线 的头手效率。 附图概述
本发明的特征、 性能由以下的实施例及其附图进一步描述。
图 1为双馈的单极子天线结构示意图;
图 2为双环天线的结构示意图;
图 3为本发明实施例 1的用于移动终端的多频天线的结构示意图; 图 4为本发明实施例 1的单极子天线部结构示意图;
图 5为本发明实施例 1的环天线部结构示意图;
图 6为内置本发明实施例 1的天线的手机的分解结构图;
图 7为本发明实施例 1的用于移动终端的多频天线的回波损耗图; 图 8为本发明实施例 1的谐振频率 fl的电流分布图;
图 9为本发明实施例 1的谐振频率 f3的电流分布图;
图 10为本发明实施例 1的谐振频率 f2的电流分布图;
图 11为本发明实施例 1的带头手的天线总辐射效率比较图;
图 12为本发明实施例 2的一种用于移动终端的多频天线的结构示意图; 图 13为本发明实施例 3的一
图 14为本发明实施例 4的一
图 15为本发明实施例 5的一
图 16为本发明实施例 6的一
图 17为本发明实施例 7的一
图 18为本发明实施例 8的一
图 19为本发明实施例 9的一
图 20为本发明实施例 10的- 图 21为本发明实施例 10的 ii
图 22为本发明实施例 10的 ii
图 23为本发明实施例 10的 ii
图 24为本发明实施例 11的- 图 25为本发明实施例 11的 ii
图 26为本发明实施例 11的 ii
图 27为本发明实施例 11的 ii
图 28为本发明实施例 12的- -种用于移动终端的多频天线的结构示意图 图 29为本发明实施例 13的- -种用于移动终端的多频天线的结构示意图 图 30为本发明实施例 14的- -种用于移动终端的多频天线的结构示意图 图 31为本发明实施例 15的- -种用于移动终端的多频天线的结构示意图 图 32为本发明实施例 16的- -种用于移动终端的多频天线的结构示意图 图 33为本发明实施例 17的- -种用于移动终端的多频天线的结构示意图 图 34为本发明实施例 18的- -种用于移动终端的多频天线的结构示意图
35为本发明实施例 19的— -种用于移动终端的多频天线的结构示意图 具体实施方式
根据本发明的构思, 一种用于移动终端的多频天线, 包括环天线部分、 单 极子天线部分、 馈电分支和接地分支。 环天线部分与低频通讯频率谐振而收发 低频通讯电磁波讯号。 单极子天线部分与高频通讯频率谐振而收发高频通讯电 磁波讯号。 环天线部分为一带有开口的环路, 单极子天线部分置于该环路中, 并与该环路的开口两端连接。 馈电分支连接于开口的一端, 接地分支连接于开 口的另一端。
在本发明的一实施例中, 多频天线可以呈镜像对称。 在其他实施例中, 多 频天线可以有一定程度的不对称。
下方结合附图和具体实施例对本发明做进一步的描述
实施例 1
如图 3至图 5所示,一种用于移动终端的多频天线 100包括:环天线部分, 与低频通讯频率谐振而收发低频通讯电磁波讯号; 单极子天线部分, 与高频通 讯频率谐振而收发高频通讯电磁波讯号。 环天线部分为一带有开口的环路, 单 极子天线部分置于该环路中, 并与该环路的开口两端连接。 在本发明的实施例 中, 低频的频率范围是从 824Mhz 到 960Mhz, 高频的频率范围是从 1710 Mhz 到 2170 Mhz。
在本实施例中,环天线部分包括低频环路主体 102、第一低频环路分支 104 和第二低频环路分支 103。 低频环路主体 102的两侧分别连接第一低频环路分 支 104及第二低频环路分支 103。 这样, 低频环路主体 102、 第一低频环路分 支 104和第二低频环路分支 103构成一个带有开口的环路, 且第一低频环路分 支 104和第二低频环路分支 103的末端对应该开口的两端。
单极子天线部分包括第一高频分支 106和第二高频分支 107, 第一高频分 支 106和第二高频分支 107置于上述环天线部分形成的环路中, 且分别与第一 低频环路分支 104的末端和第二低频环路分支 103的末端连接。
本发明还包括高低频公共接地分支 108、 高低频公共馈电分支 109、 接地 分支 105和馈电分支 101。 高低频公共接地分支 108连接接地分支 105, 高低 频公共馈电分支 109连接馈电分支 101。 高低频公共接地分支 108连接第一低 频环路分支 104的末端, 高低频公共馈电接地分支 109连接第二低频环路分支 103的末端。
低频环路主体 102可以在地 (ground)上面。 第一高频分支 106和低频环路 主体 102的间距为 dl。 第一高频分支 106和第一低频环路分支 104的间距为 d2。 第二高频分支 107和低频环路主体 102的间距为 d4。 第二高频分支 107和 第二低频环路分支 103的间距为 d5。低频环路主体 102、第一低频环路分支 104 以及第二低频环路分支 103的总长度为 Ll。 第一高频分支 106、 第二高频分支 107的长度均分别为 L2。 高低频公共接地分支 108、 高低频公共馈电分支 109 的长度均分别为 L3。
本发明的多频天线能接受多个频率段的电磁波讯号。 其中, 低频的谐振长 度主要由 L1+L3决定, 高频的谐振频率主要由 L2, dl, d2三者综合决定。
馈电分支 101和接地分支 105之间的距离为 d3, 调节 d3来匹配高频段的 阻抗。
图 4和图 5给出了本发明天线的结构分解图。 图 4是本发明实施例 1的单 极子天线部的结构示意图, 其对应的是基本的单极天线, 主要控制高频谐振, A为馈电点, B为接地点。 图 5是本发明实施例 1环天线部的结构示意图, 其 对应的是基本的环天线, 主要控制低频谐振, A为馈电点, B为接地点。
图 6所示为本发明实施例的多频天线内置于手机终端的情况。 可以理解, 多频天线也可内置在别的通讯终端里, 这里仅为举例, 不作为限定。 图 6给出 了本发明实施例中的金属外壳 200, 金属外壳具有 6个接地引脚 201, 接地板 202和天线净空区 203。
本实施例的多频天线的宽度大于净空区 203的宽度, 故在本实施例的多频 天线内置于手机的金属外壳 200内后, 低频环路主体 102下方会对应着接地板 202的一部分, 即天线的实体有部分在地面的上方, 而不是如同传统的天线置 于远离于地的一端, 从而减小了天线在宽度方向的尺寸, 最终提高了天线的头 手效率。
本发明实施例的天线高度 5mm, 由第一低频环路分支 103, 第二低频环路 分支 104弯折形成。 本实施例侧重存在净空区, 对于不存在净空区的实施例在 实施例 15到 19中有详细说明。
根据本发明的实施例, 低频谐振环产生谐振频率 f0。 如图 7所示, 实施例 中调节 dl,d2,d3,d4,d5可使高频谐振产生差模、 共模、 混合差模三种模式。 其 中, 差模频率为 fl, 共模频率为 β, 混合差模频率为 f2, 三者满足 fl<fi<f2。 同时, 通过调节 dl,d2,d3,d4,d5, 可调节混合差模 f2与差模和共模的耦合程度, 即 |f2-fl|与 |f2-f3|的带宽。对于低频谐振 f0, VSWR3 : 1带宽能够覆盖 GSM850 和 GSM900,对于高频的差模、共模、混合模产生的谐振频率 fl,f2,和 f3的 VSWR3 : 1 带宽能够覆盖 DCS , PCS , 和 UMTS。
对于低频谐振环产生谐振频率 f0, 如图 7所示, 谐振波长为 1/2波长。 主 要取决于第一频环路分支 103, 第二低频环路分支 104和低频环路主体 102的 总长度。 谐振频率 f0的电流分布很简单, 这里不作详述。
对于第一高频谐振频率 fl, 如图 7所示, 谐振波长为一个波长。 图 8是天 线 100和地 202的电流分布图。 点 F为馈电点, 并与馈电线 101相连。 点 G为 接地点, 并与接地线 105相连。 实心的箭头表示天线 100上的电流分布, 空心 箭头表示接地板 202与天线邻近区域上的电流分布。 箭头的大小表示电流的强 度, 箭头的方向即电流的流动方向。 对于一个波长的谐振, 天线 100上存在两 处电流零点, 其电流为 I— null, 图 8中由实心的圆点表示。 电流的最强处位于 低频环路主体 102的中心位置, 其电流为 I— max。 第一高频分支 106和第二高 频分支 107上存在有耦合电流 I— couple, 表明微调第一高频分支 106和第二高 频分支 107, 可以微调谐振频率 fl。 点 F和点 G的电流是反相的, 即一边流进, 另一边流出。 具有这样相位差值为 180度的电流分布即是差模谐振。 本发明实 施例的特殊点在于邻近天线的地电流的分布, 如空心箭头所示。 邻近天线的地 电流 I— ground于天线平行地流进馈电点 F, 并从接地点 G流出, 依然平行于天 线并与流入前时同方向。 邻近天线的地电流的幅度, 箭头的大小表示, 同天线 上的电流幅度几乎一样。 值得注意的是, 以上所述的电流方向是同一时刻的, 即激励源的同一相位, 比如相位 1, 另一时刻, 激励源的相位变为相位 2, 以 上的电流分布可能变化, 但相隔一个周期后, 又会回到相位 1。这个周期为 2π, 即 360度。
对于第二高频谐振频率 f2, 如图 7所示, 谐振波长为由天线 100和接地板 202共同提供的 2倍波长。 我们称作混合差模谐振, 电流分布如图 10所示。 从 电流零点数量上翻倍也可以看出, 谐振波长的变化。 天线 100上有三处电流极 强点, 分别位于第一频环路分支 103, 第二低频环路分支 104和低频环路主体 102上。馈电点 F和接地点 G有着和第一高频谐振频率 fl的相位分布。第二高 频谐振频率 Ω的特殊点在于邻近天线的地电流的分布完全不同于第一高频谐 振频率 fl的差模。 第二高频谐振频率 f2中, 邻近天线的地电流仅仅从接地点 G流向馈电点 F, 电流幅度几乎和天线上的电流极值一样。 馈电点 F与接地点 G的距离 d3与第二高频谐振频率 f2有直接的影响。 同时, 这样的电流分布使 得第二高频谐振频率 f2对地 202的长度等依赖程度大大地减弱,这样的性质有 助于天线在头手模上表现出更好的效率。
根据实验以及以上电流分布的分析, 馈电点 F与接地点 G的距离 d3优选 位置大约为接地板 202宽度的 1/3。比如,常规 PCB宽度 60mm,则 d3为 20mm。 实际上手机往往存在很多其它零件, PCB上地电流的平衡很容易被破坏, 所以 最优的 d3不一定最优。 实际上, d3的可接受合理范围为 10mm 到 35mm。
对于第三高频谐振频率 β, 如图 7所示, 谐振波长为一个半波长。 从馈电 点 F和接地点 G的电流分布来看, 属于共模谐振。 馈电点 F和接地点 G的电 流同向, 如图 9所示。 三处电流零点几乎平均分布于天线 100上。 邻近天线的 地电流平行与天线分别流向馈电点 F和接地点 G, 几乎没有电流在馈电点 F和 接地点 G中间区域存在。
图 1 1给出了带头手的天线的效率的比较图。 本发明实施例自由空间和带 头手结果 301, 单极子天线自由空间和带头手结果 302, 以及双环天线自由空 间和带头手结果 303。 其中, 位于上方的左右两组线是三种情况自由空间下的 天线效率的比较结果, 仅供参考。 位于下方的左右两组线是三种情况带头手情 况下的天线效率的比较结果。 直线加三角形符号表示本发明带头手结果 301。 直线加圆圈符号表示单极子天线带头手结果 302, 单直线表示双环天线带头手 结果 303。
下面我们就位于下方的左右两组线进行说明:
从左下方的一组线可以看出, 在低频 824Mhz到 960Mhz的频段, 三角符 号的线要高于其他两条线, 说明本发明实施例在低频段带头手的天线的效率要 比单极子天线带头手的天线的效率以及双环天线带头手的天线的效率要高。
从右下方的一组线可以看出, 在高频 1710Mhz到 2710Mhz的频段, 三角 符号的线要高于其他两条线, 说明本发明实施例在高频段带头手的天线的效率 要比单极子天线带头手的天线的效率以及双环天线带头手的天线的效率要高。 且本发明结果和单极子天线, 双环天线的带头手的天线效率相比, 高频的效率 有明显提高, 达到 -6dB— 7dB。
实施例 2 如图 12, 本实施例与实施例 1不同之处在于: 第一低频环路分支 104和第 二低频环路分支 103均呈多重弯折结构。 另, 为了方便说明, 图中没有画出接 地分支 105和馈电分支 101, 但实际上, 二者是存在的, 和其它部分的连接关 系同实施例 1, 特此说明。
实施例 3
如图 13, 本实施例与实施例 2不同之处在于: 低频环路主体 102呈多重弯 折结构。 另, 为了方便说明, 图中没有画出接地分支 105和馈电分支 101, 但 实际上, 二者是存在的, 和其它部分的连接关系同实施例 1, 特此说明。
实施例 4
如图 14, 本实施例与实施例 1不同之处在于: 第一高频分支 106、 第二高 频分支 107与低频环路主体 102对应呈弯折结构。 该二者与低频环路主体 102 的耦合方式由折线构成。 另, 为了方便说明, 图中没有画出接地分支 105和馈 电分支 101, 但实际上, 二者是存在的, 和其它部分的连接关系同实施例 1, 特此说明。
实施例 5
如图 15, 本实施例与实施例 1不同之处在于: 分支 1 10连接第一高频分支 106和低频环路主体 102, 形成电感效应。 原有的第一高频分支 106和低频环 路主体 102之间的耦合电容效应仍然存在。低频环路主体 102内部引入槽 13 1, 槽 13 1的引入减小了第一高频分支 106和低频环路主体 102之间的耦合电容。 分支 1 10引入的电感效应和第一高频分支 106和低频环路主体 102之间的耦合 电容效应形成了并联谐振效应,进一步调节了第二高频谐振频率 f2和第三高频 谐振频率 f3的耦合。 另, 为了方便说明, 图中没有画出接地分支 105和馈电分 支 101, 但实际上, 二者是存在的, 和其它部分的连接关系同实施例 1, 实际 上, 接地分支 105和馈电分支 101由于对称位于接地板 202宽边, 所以可以互 换, 特此说明。
实施例 6
如图 16, 本实施例与实施例 1不同之处在于: 第一高频分支 106与低频环 路主体 102对应呈多分支结构。另, 为了方便说明, 图中没有画出接地分支 105 和馈电分支 101, 但实际上, 二者是存在的, 和其它部分的连接关系同实施例 1, 实际上, 接地分支 105和馈电分支 101由于对称位于接地板 202的宽边, 所以可以互换, 特此说明。
实施例 7
如图 17, 本实施例与实施例 1不同之处在于: 第一高频分支 106、 第二高 频分支 107对应呈多分支结构。 其中, 第二高频分支 107呈双层结构, 两层之 间通过过孔连接。 另, 为了方便说明, 图中没有画出接地分支 105和馈电分支 101, 但实际上, 二者是存在的, 和其它部分的连接关系同实施例 1, 实际上, 接地分支 105和馈电分支 101由于对称位于接地板 202的宽边,所以可以互换, 特此说明。
实施例 8
如图 18, 本实施例与实施例 1不同之处在于: 第一高频分支 106、 第二高 频分支 107与低频环路主体 102对应呈多分支结构。 与实施例 6不同的是额外 分支的方向不同, 调节耦合的部分不同。 为使天线结构更紧凑, 第一高频分支 106、 第二高频分支 107与低频环路主体 102可以是 3D的性质, 可以存在倒角 弯折等与天线支撑体共形。 另, 为了方便说明, 图中没有画出接地分支 105和 馈电分支 101, 但实际上, 二者是存在的, 和其它部分的连接关系同实施例 1, 实际上, 接地分支 105和馈电分支 101由于对称位于接地板 202宽边, 所以可 以互换, 特此说明。
实施例 9
如图 19, 本实施例与实施例 1不同之处在于: 净空区 203不是规则的。 第 一高频分支 106与低频环路主体 102对应呈多分支结构。 第一高频分支 106和 低频环路主体 102直接相连, 形成电感效应, 同实施例 5。 另, 为了方便说明, 图中没有画出接地分支 105和馈电分支 101, 但实际上, 二者是存在的, 和其 它部分的连接关系同实施例 1, 实际上, 接地分支 105和馈电分支 101由于对 称位于接地板 202的宽边, 所以可以互换, 特此说明。
实施例 10
如图 20, 本实施例与实施例 1不同之处在于: 第一高频分支 106、 第二高 频分支 107很短, 几乎可以忽略, 另外增加了分支 120和 121。分支 120和 121 增强了天线 100和接地板 202之间的耦合, 同时也起到阻抗匹配的作用。 本实 施例尽管与实施例 1不同, 但从电流分布来看, 各谐振频率的电流分布没有大 的差别。 图 21是第一高频谐振频率 f0的电流分布。 图 23是第二高频谐振频率 f2的电流分布。 图 22是第三高频谐振频率 f3的电流分布。 电流的零点和极值 点和实施例 1相同。 天线和邻近天线的地的电流分布也和实施例 1一样。 本实 施例高频频段的带宽与实施例 1好。 另, 为了方便说明, 图中没有画出接地分 支 105和馈电分支 101, 但实际上, 二者是存在的, 和其它部分的连接关系同 实施例 1, 实际上, 接地分支 105和馈电分支 101由于对称位于接地板 202宽 边, 所以可以互换, 特此说明。
实施例 11
如图 24, 本实施例与实施例 1不同之处在于: 增加了分支 120和 121。 本 实施例是实施例 1和实施例 10的综合体。图 25是第一高频谐振频率 f0的电流 分布。 图 27是第二高频谐振频率 f2的电流分布。 图 26是第三高频谐振频率 β 的电流分布。 电流的零点和极值点和实施例 1相同。 天线和邻近天线的地的电 流分布也和实施例 1一样。 本实施例能进一步优化高频频段的带宽并使低频谐 振 f0与实施例 1保持一致。 另, 为了方便说明, 图中没有画出接地分支 105和 馈电分支 101, 但实际上, 二者是存在的, 和其它部分的连接关系同实施例 1, 实际上, 接地分支 105和馈电分支 101由于对称位于接地板 202的宽边, 所以 可以互换, 特此说明。
实施例 12
如图 28, 本实施例与实施例 1和实施例 10不同之处在于: 接地分支 105 和馈电分支 101不再对称位于接地板 202的宽边, 但接地分支 105和馈电分支 101的距离 d3仍然满足实施例 1的定义要求。 另, 为了方便说明, 图中没有画 出接地分支 105和馈电分支 101, 但实际上, 二者是存在的, 和其它部分的连 接关系同实施例 1, 实际上, 接地分支 105和馈电分支 101即使不对称位于接 地板 202的宽边, 仍然可以互换。 如果净空区存在, 接地分支 105和馈电分支 101连接馈电点 F和接地点 0。 如果净空区不存在, 分支 108和分支 109连接 馈电点 F和接地点 G, 特此说明。
实施例 13
如图 29, 本实施例与实施例 12不同之处在于: 天线 100为多分支结构。 另, 为了方便说明, 第一高频分支 106和第二高频分支 107与实施例 1相同; 分支 120和分支 121与实施例 10相同; 低频环路主体 102的多分支结构和实 施例 6类似。 其它部分的连接关系同实施例 12, 特此说明。
实施例 14
如图 30, 本实施例与实施例 12不同之处在于: 第一高频分支 106为双层 结构, 第二高频分支 107与低频环路主体 102直接相连, 提供电感效应如同实 施例 5。 另, 为了方便说明, 其它部分的连接关系同实施例 12, 特此说明。
实施例 15
如图 31, 本实施例和实施例 1的区别在于: 馈电分支 101和接地分支 105 位于垂直于接地板 202的平面内。 高频第一分支 106, 高频第二分支 107分别 连接馈电分支 101, 接地分支 105。 单极子分支 108,109相互靠近, 间距为 d6。 分支 103, 104连接分支 106,107到低频环路主体 102上。高频第一分支分支 106 和到低频环路主体 102的距离为 dl ; 高频第一分支分支 106和低频分支 104的 间距为 d2。 馈电点和接地点的距离为 d3。 高频分支 107和低频环路主体 102 的间距为 d4。 高频第二分支分支 107和分支 104的间距为 d5。 分支 108和 109 的间距为 d6。 主低频环路具有弯折线结构。 本变化例适用在无净空的情况, 具 有较好的性能。
实施例 16
如图 32, 本实施例和实施例 1的区别在于: 馈电分支 101和接地分支 105 位于垂直于地平面的平面内。 分支 108和分支 109位于天线 100的上端。 低频 环路主体 102在中部垂直于地平面向下延伸。 其他尺寸和连接关系与变化例 1 相同。 本变化例适用在无净空的情况, 具有较好的性能。
实施例 17
如图 33, 本实施例和实施例 15的区别在于, 高频分支可以单独调节, 于 是出现了一个长的分支 107和一个短的分支 106 (在本例中的长度为 0 ) , 分 支 104和连接分支 6的分支的距离为 d2。 间距 d5和变化例 15的定义相同, 低 频环路主体 102和分支 104各有突出的分支出现。
实施例 18
如图 34, 本实施例和实施例 15的区别在于, 部分 Ml加在天线下面: 位 于接地板 202的短边中间。 Ml在这里表示喇叭, 也可以为图 35中的 M2, 表 示微型 USB接头。 其他尺寸以及其支节的连接和变化例 15的定义相同。 Ml 和 M2可以出现在天线的下面, 但并不太降低天线的性能, 这样进一步提高了 天线的结构上的集成度。
本发明优选实施例只是用于帮助阐述本发明。 优选实施例并没有详尽叙述 所有的细节, 也不限制该发明仅为所述的具体实施方式。 显然, 根据本说明书 的内容, 可作很多的修改和变化。 本说明书选取并具体描述这些实施例, 是为 了更好地解释本发明的原理和实际应用, 从而使所属技术领域技术人员能很好 地利用本发明。 本发明仅受权利要求书及其全部范围和等效物的限制。

Claims

权 利 要 求
1. 一种用于移动终端的多频天线, 该多频天线包括:
环天线部分, 与低频通讯频率谐振而收发低频通讯电磁波讯号, 所述环天 线部分为一带有开口的环路;
单极子天线部分, 与高频通讯频率谐振而收发高频通讯电磁波讯号, 所述 单极子天线部分置于所述环路中, 并与所述开口的两端连接;
高低频公共馈电分支, 连接于所述开口的一端
高低频公共接地分支, 连接于所述开口的另一端;
馈电分支, 连接所述高低频公共馈电分支; 以及
接地分支, 连接所述高低频公共接地分支。
2. 根据权利要求 1所述的用于移动终端的多频天线, 其特征在于, 所述馈 电分支和所述接地分支之间的距离为 10mm到 35mm。
3.根据权利要求 1所述的用于移动终端的多频天线, 其特征在于, 所述环 天线部分包括多重分支或开槽, 用于调节不同谐振之间的耦合。
4.根据权利要求 1所述的用于移动终端的多频天线, 其特征在于, 所述环 天线部分包括多层结构或过孔, 用于调节不同谐振之间的耦合。
5.根据权利要求 1所述的用于移动终端的多频天线, 其特征在于, 所述单 级子天线部分与所述环天线部分连接或耦合, 用于调节不同谐振之间的耦合。
6.根据权利要求 1所述的用于移动终端的多频天线, 其特征在于, 所述单 级子天线部分具有多重分支, 位于所述环天线部分中或者所述环天线部分和所 述接地板之间。
7.根据权利要求 1所述的用于移动终端的多频天线, 其特征在于, 所述环 天线部分包括低频环路主体、 第一低频环路分支和第二低频环路分支; 所述低频环路主体的两侧分别连接所述第一低频环路分支及所述第二低 频环路分支, 所述低频环路主体、 所述第一低频环路分支和所述第二低频环路 分支构成所述环路, 且所述第一低频环路分支和所述第二低频环路分支的末端 对应所述开口的两端。
8.根据权利要求 7所述的用于移动终端的多频天线, 其特征在于, 所述单 极子天线部分包括第一高频分支和第二高频分支, 所述第一高频分支和所述第 二高频分支均置于所述环路中, 且分别与所述第一低频环路分支的末端和所述 第二低频环路分支的末端连接。
9.根据权利要求 7所述的用于移动终端的多频天线, 其特征在于, 所述高 低频公共馈电分支连接所述第一低频环路分支的末端; 所述高低频公共接地分 支连接所述第二低频环路分支的末端。
10.根据权利要求 7所述的用于移动终端的多频天线, 其特征在于, 所述第 一低频环路分支和所述第二低频环路分支均呈多重弯折结构。
11.根据权利要求 7所述的用于移动终端的多频天线, 其特征在于, 所述低 频环路主体呈多重弯折结构。
12.根据权利要求 8所述的用于移动终端的多频天线, 其特征在于, 所述第 一高频分支、 所述第二高频分支呈多重弯折结构。
13.根据权利要求 1所述的用于移动终端的多频天线, 其特征在于, 所述多 频天线呈镜像对称。
PCT/CN2012/077008 2011-06-16 2012-06-15 用于移动终端的多频天线 WO2012171482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110161304.2 2011-06-16
CN201110161304.2A CN102299406B (zh) 2011-06-16 2011-06-16 一种用于移动终端的多频天线

Publications (1)

Publication Number Publication Date
WO2012171482A1 true WO2012171482A1 (zh) 2012-12-20

Family

ID=45359668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077008 WO2012171482A1 (zh) 2011-06-16 2012-06-15 用于移动终端的多频天线

Country Status (2)

Country Link
CN (1) CN102299406B (zh)
WO (1) WO2012171482A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299406B (zh) * 2011-06-16 2014-09-24 上海安费诺永亿通讯电子有限公司 一种用于移动终端的多频天线
CN102544774B (zh) * 2012-02-23 2014-05-07 上海安费诺永亿通讯电子有限公司 一种多模谐振天线系统
JP5886710B2 (ja) * 2012-08-02 2016-03-16 株式会社東海理化電機製作所 アンテナ
CN103840252A (zh) * 2012-11-26 2014-06-04 联想(北京)有限公司 天线装置和用于形成天线装置的方法
CN104167594B (zh) * 2013-05-20 2018-09-25 深圳富泰宏精密工业有限公司 宽频天线及应用该宽频天线的无线通信装置
CN104577338B (zh) * 2013-10-09 2019-06-18 深圳富泰宏精密工业有限公司 天线组件及具有该天线组件的无线通信装置
CN104716431B (zh) * 2013-12-17 2018-01-05 展讯通信(上海)有限公司 一种多频天线
TWI565134B (zh) * 2014-04-18 2017-01-01 川益科技股份有限公司 通訊裝置及其天線
CN105024715B (zh) * 2014-04-24 2017-08-18 川益科技股份有限公司 通讯装置及其天线
CN107369889B (zh) * 2017-08-04 2021-04-13 苏州优尼赛信息科技有限公司 紧凑型双频段线极化单极子天线
CN107508035A (zh) * 2017-08-08 2017-12-22 惠州硕贝德无线科技股份有限公司 一种改善手机人头手数据的天线方案
CN108963428B (zh) * 2018-06-13 2020-08-21 瑞声精密制造科技(常州)有限公司 天线系统及移动终端
CN109742511B (zh) * 2018-12-14 2021-01-26 惠州Tcl移动通信有限公司 一种移动通讯终端及其天线结构
CN112448140B (zh) * 2019-08-30 2022-03-01 北京小米移动软件有限公司 天线模组及终端
CN112751159B (zh) * 2019-10-31 2022-06-10 华为终端有限公司 电子设备
CN113540758B (zh) * 2020-04-22 2022-10-25 华为技术有限公司 天线单元和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672732A1 (en) * 2004-12-16 2006-06-21 Research In Motion Limited Low profile full wavelength meander type antenna
US20100103064A1 (en) * 2008-10-23 2010-04-29 Symbol Technologies, Inc. Parasitic dipole assisted wlan antenna
CN101739587A (zh) * 2008-11-04 2010-06-16 富士通株式会社 射频识别标签和天线
CN102025027A (zh) * 2009-09-15 2011-04-20 旭丽电子(广州)有限公司 双回路天线及多频多天线模块
CN102299406A (zh) * 2011-06-16 2011-12-28 上海安费诺永亿通讯电子有限公司 一种用于移动终端的多频天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672732A1 (en) * 2004-12-16 2006-06-21 Research In Motion Limited Low profile full wavelength meander type antenna
US20100103064A1 (en) * 2008-10-23 2010-04-29 Symbol Technologies, Inc. Parasitic dipole assisted wlan antenna
CN101739587A (zh) * 2008-11-04 2010-06-16 富士通株式会社 射频识别标签和天线
CN102025027A (zh) * 2009-09-15 2011-04-20 旭丽电子(广州)有限公司 双回路天线及多频多天线模块
CN102299406A (zh) * 2011-06-16 2011-12-28 上海安费诺永亿通讯电子有限公司 一种用于移动终端的多频天线

Also Published As

Publication number Publication date
CN102299406B (zh) 2014-09-24
CN102299406A (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2012171482A1 (zh) 用于移动终端的多频天线
US9948003B2 (en) Loop antenna for mobile handset and other applications
JP3864127B2 (ja) デュアルフィーディングポートを有するマルチバンドチップアンテナ及びこれを用いる移動通信装置
US7425924B2 (en) Multi-frequency antenna with dual loops
JP3828106B2 (ja) 移動通信端末機の内蔵型アンテナ
CN102709687B (zh) 天线装置
US8203489B2 (en) Dual-band antenna
US20100201581A1 (en) Dual-band planar inverted-f antenna
TWI393291B (zh) 一種單極槽孔天線
US8947315B2 (en) Multiband antenna and mounting structure for multiband antenna
CN104134859B (zh) 一种宽带高效率高方向性电小天线
JP2004518364A (ja) Pifaアンテナ配置
JP2001007639A (ja) アンテナ装置およびそれを用いた通信装置
JP2005510927A (ja) デュアルバンドアンテナ装置
TW201624840A (zh) 多頻天線及具有該多頻天線的無線通訊裝置
TW201123610A (en) Mobile communication device
JP2005079968A (ja) アンテナ装置
TW201236272A (en) Mobile communication device and antenna structure thereof
TW201104960A (en) Shorted monopole antenna
CN102396110A (zh) 具有端点短路的辐射体的使用耦合匹配的宽带天线
CN1386312A (zh) 天线装置及使用该天线装置的无线通信机
TW201442346A (zh) 多頻天線
TWI411171B (zh) 一種多頻單路徑單極天線
JP4013814B2 (ja) アンテナ構造およびそれを備えた通信機
CN101931118A (zh) 多频单路径单极天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800928

Country of ref document: EP

Kind code of ref document: A1