WO2012171085A1 - Thermal polymerisation process of oils and fats - Google Patents
Thermal polymerisation process of oils and fats Download PDFInfo
- Publication number
- WO2012171085A1 WO2012171085A1 PCT/BR2012/000186 BR2012000186W WO2012171085A1 WO 2012171085 A1 WO2012171085 A1 WO 2012171085A1 BR 2012000186 W BR2012000186 W BR 2012000186W WO 2012171085 A1 WO2012171085 A1 WO 2012171085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process according
- reaction
- catalyst
- oils
- metal ion
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000008569 process Effects 0.000 title claims abstract description 38
- 235000014593 oils and fats Nutrition 0.000 title description 11
- 239000003054 catalyst Substances 0.000 claims abstract description 98
- 238000006243 chemical reaction Methods 0.000 claims abstract description 84
- 239000003921 oil Substances 0.000 claims abstract description 53
- 235000013311 vegetables Nutrition 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 239000011261 inert gas Substances 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 37
- 239000003925 fat Substances 0.000 claims description 27
- 229910021645 metal ion Inorganic materials 0.000 claims description 24
- 229920000642 polymer Polymers 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 22
- 238000006116 polymerization reaction Methods 0.000 claims description 21
- 230000035484 reaction time Effects 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 150000007942 carboxylates Chemical class 0.000 claims description 17
- 239000011230 binding agent Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- -1 iron (II) carboxylate Chemical class 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 6
- 239000011135 tin Substances 0.000 claims description 6
- 239000003905 agrochemical Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000000314 lubricant Substances 0.000 claims description 5
- 239000004014 plasticizer Substances 0.000 claims description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000007645 offset printing Methods 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 125000005474 octanoate group Chemical group 0.000 claims description 3
- 239000012429 reaction media Substances 0.000 claims description 3
- WBHHMMIMDMUBKC-QJWNTBNXSA-M ricinoleate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC([O-])=O WBHHMMIMDMUBKC-QJWNTBNXSA-M 0.000 claims description 3
- 229940066675 ricinoleate Drugs 0.000 claims description 3
- 235000021122 unsaturated fatty acids Nutrition 0.000 claims description 3
- 150000004670 unsaturated fatty acids Chemical class 0.000 claims description 3
- 239000000969 carrier Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 235000014113 dietary fatty acids Nutrition 0.000 abstract description 8
- 239000000194 fatty acid Substances 0.000 abstract description 8
- 229930195729 fatty acid Natural products 0.000 abstract description 8
- 150000004665 fatty acids Chemical class 0.000 abstract description 8
- 229910052723 transition metal Inorganic materials 0.000 abstract 2
- 150000003624 transition metals Chemical class 0.000 abstract 2
- 235000019198 oils Nutrition 0.000 description 46
- 239000003549 soybean oil Substances 0.000 description 38
- 235000012424 soybean oil Nutrition 0.000 description 38
- 238000012719 thermal polymerization Methods 0.000 description 25
- 235000019197 fats Nutrition 0.000 description 22
- 235000010469 Glycine max Nutrition 0.000 description 17
- 230000009467 reduction Effects 0.000 description 15
- 239000008158 vegetable oil Substances 0.000 description 14
- 239000012159 carrier gas Substances 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 239000000976 ink Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 235000015112 vegetable and seed oil Nutrition 0.000 description 8
- 244000068988 Glycine max Species 0.000 description 7
- 239000010775 animal oil Substances 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000004056 anthraquinones Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000012467 final product Substances 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 238000005698 Diels-Alder reaction Methods 0.000 description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 4
- 235000019482 Palm oil Nutrition 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000002540 palm oil Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 244000020551 Helianthus annuus Species 0.000 description 3
- 235000003222 Helianthus annuus Nutrition 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000002685 polymerization catalyst Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 2
- 235000006008 Brassica napus var napus Nutrition 0.000 description 2
- 240000000385 Brassica napus var. napus Species 0.000 description 2
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- MJYQFWSXKFLTAY-OVEQLNGDSA-N (2r,3r)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol;(2r,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O.C1=C(O)C(OC)=CC(C[C@@H](CO)[C@H](CO)CC=2C=C(OC)C(O)=CC=2)=C1 MJYQFWSXKFLTAY-OVEQLNGDSA-N 0.000 description 1
- CCFAKBRKTKVJPO-UHFFFAOYSA-N 1-anthroic acid Chemical compound C1=CC=C2C=C3C(C(=O)O)=CC=CC3=CC2=C1 CCFAKBRKTKVJPO-UHFFFAOYSA-N 0.000 description 1
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004523 agglutinating effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- HWVKIRQMNIWOLT-UHFFFAOYSA-L cobalt(2+);octanoate Chemical compound [Co+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O HWVKIRQMNIWOLT-UHFFFAOYSA-L 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- LNOZJRCUHSPCDZ-UHFFFAOYSA-L iron(ii) acetate Chemical class [Fe+2].CC([O-])=O.CC([O-])=O LNOZJRCUHSPCDZ-UHFFFAOYSA-L 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 150000002561 ketenes Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010806 kitchen waste Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 125000005481 linolenic acid group Chemical group 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002759 monoacylglycerols Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 1
- DVTHIMLUHWEZOM-UHFFFAOYSA-L nickel(2+);octanoate Chemical compound [Ni+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O DVTHIMLUHWEZOM-UHFFFAOYSA-L 0.000 description 1
- AIYYMMQIMJOTBM-UHFFFAOYSA-L nickel(ii) acetate Chemical compound [Ni+2].CC([O-])=O.CC([O-])=O AIYYMMQIMJOTBM-UHFFFAOYSA-L 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 238000007717 redox polymerization reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09F—NATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
- C09F7/00—Chemical modification of drying oils
- C09F7/06—Chemical modification of drying oils by polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/62—Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
- C08F220/64—Acids; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/06—Printing inks based on fatty oils
Definitions
- the present invention relates to the term / catalytic polymerization of oils and fats of vegetable or animal origin catalyzed by metal ion complex.
- the present invention may further be applied to the production of coatings, plasticizers, lubricants, agrochemicals and paints.
- Polymers can have various industrial uses, such as in the production of coatings, plasticizers, lubricants, agrochemicals and offset printing inks, among others.
- the polymers may be synthetic, derived from petroleum, or of renewable origin, such as from vegetable and animal oils and fats.
- Polymers may be obtained by heat treatment consisting of heating olefins as well as triacylglycerols, diacylglycerols, mono and polyunsaturated monoacylglycerols and free mono- and polyunsaturated fatty acids and phospholipids constituting oils, fats of animal, vegetable or synthetic origin in a certain temperature and for a period of time until the desired viscosity is reached.
- oils or fats may be drying (which polymerize when exposed to air to form a hard elastic film) and semi-drying (which partially polymerize when exposed to air) (SHARMA, V .; KANDU, PP. - the review, Prog. Polym. Sci., v. 31, pp. 983-1008, 2006.).
- the thermal polymerization process occurs by heating these oils at high temperatures, usually in the range of 260 to 340 ° C, for a period to be determined according to the purpose of the material, and may occur in an inert atmosphere or in an open system. The lower the temperature, the longer the reaction time.
- the reaction process as well as the actuation of the catalysts are not well understood in the state of the art. Isomerization processes are suggested followed by reactions Diels-Alder, radical polymerization reactions, cationic reactions, as well as decomposition of the material as reactions likely to occur in the reaction environment.
- Molecular mass grows rapidly, followed by a decrease in monomer concentration, while the number of macromolecules increases, with a low concentration of active species at any time during the reaction.
- Crosslinked polymer systems can be formed whenever the branches link two polymer chains.
- the Diels-Alder addition is the most widely accepted route of this polymerization, which results in chain dimerization and trimerization. Different isomers are formed by the multiple possibilities of addition.
- the fundamental feature is the formation of ring of six atoms and therefore very stable.
- the average working temperature for thermal polymerization is in the range of 260 to 340 ° C, because below this the thermal polymerization process does not occur and above 340 ° C there is thermal cracking of the molecules, forming hydrocarbons, acids. fatty acids, ketones, aldehydes, alcohols, ketenes, acrolein and other undesirable compounds because of their low molecular weight.
- Inks used for the purpose of offset printing can improve their properties such as friction, viscosity and adhesion resistance in various printing applications by replacing the traditionally oil based vehicle with oil based vehicles.
- vegetable or animal oils and fats produced by the thermal polymerization process The compatibility of the renewable material with carbon black is also noted, which makes it suitable for the formulation of black inks (ERHAN S. Z., BAGBY M. JAOCS, v. 68, no. 9, p. 635-638, 1991).
- Another important factor in the material obtained from oils and fats is the extremely light color of the polymer, which allows the addition of pigment in the formulation of colored inks when compared to petroleum-based industry standards.
- US5122188 demonstrates that the use of 5% anthrquinone in reaction in the temperature range of 275 to 340 ° C reduces the time by 10 to 20% for refined soybean oil, which is less than that obtained by the present invention. reaches 88%.
- JP54143410-A discloses the use of pearl, flaxseed, safflower, soybean, cotton, maize, sesame oils and their respective fatty acids in the polymerization process at temperatures in the range 270 to 290 ° C in presence of anthraquinones and phenols (0.01-0.05%) as catalysts and in the presence of redox polymerization initiators. Flexible films were obtained as a coating surface, used as a vehicle for a range of printing inks and for other applications as well. There were no major changes in the physicochemical properties of the final product. US2213935 describes the use of anthraquinones as catalysts for drying or semi drying oils.
- US2230470 proposes less than 0.05% cyclic aromatic compounds containing at least one phenyl and one carboxyl (eg diphenol carboxyl anthracene) as a polymerization catalyst for drying and semi-drying oils in the range 260 to 35 °. C, which can halve the reaction time.
- the reaction time is reduced from 5.5-6 h to approximately 3 h to achieve viscosity. of Z6 (150 P).
- Carboxylate metal ion complexes are mostly non-toxic and are stable at temperatures at which polymerization of oils and fats occurs. Metal ion complexes have not been described in the literature as thermal oil polymerization catalysts.
- GB1499638 discloses the use of nickel octanoate
- (II) being one of three catalysts for a metal complex composition used to accelerate polymerization of olefins such as butadiene.
- US6103834 which relates to the copolymerization (thermal polymerization and oxygen polymerization) of unsaturated vegetable oils, includes cobalt (II) octanoate as a reaction catalyst. To this is also added an initiator of the copolymerization reaction of oil or fatty acid with maleic anhydride in the range 150 to 300 ° C.
- the present invention relates to the thermal polymerization process of vegetable and animal oils and fats catalyzed by metal ion complexes.
- the complexes are non-toxic carboxylates stable at reaction temperatures and reduce the reaction time and therefore the energy required to perform the reaction and the cost of the process.
- a second embodiment of the invention relates to the polymers obtained by the polymerization process of the present invention.
- a second embodiment of the present invention relates to polymers obtained by the process of the present invention.
- a third embodiment of the invention relates to the use of the polymers of the invention in the production of surface coating material such as plasticizers, lubricants, agrochemicals and inks.
- Figure 1 Reactor equipped with stirring and heating system and with inert gas injection.
- Figure 2 Viscosity (cSt) versus reaction time at 30 ⁇ with refined soybean oil using nickel (II) catalyst complexed with palm oil fatty acids at mass percentages of 0.2 ( ⁇ ), 0, 1 (A ), 0.04 ( ⁇ ), 0.001 () and 0.0002% ( ⁇ ).
- Figure 3 Neperian logarithm (In) of viscosity (cSt) versus reaction time at 300 ° C with refined soybean oil using nickel (II) catalyst complexed with palm oil fatty acids at mass percentages of 0.2 ( ⁇ ) 0, 1 ( ⁇ ), 0.04 (A) 0,001 (T) and 0.0002% ( ⁇ 4).
- the object of the present invention is the polymerization process of vegetable or animal oils catalyzed by metal ion complexes.
- the process according to the present invention generates polymers by the steps of:
- metal-based catalyst to the container occurs simultaneously with the addition of oil and / or fat.
- the addition of catalyst to the container may occur after the addition of oil and / or fat.
- Inert gas flow occurs simultaneously with the addition of oil or fat or both to the container and ends after addition of catalyst. Alternatively, inert gas flow occurs throughout the reaction period.
- the reaction according to the invention occurs until the desired viscosity, preferably over a period of 1 to 12 h.
- the catalyst used in the metal-based process of the present invention consists of at least one metal ion complex having as a binder at least one compound selected from the group comprising: carboxylate, acetate, octoate and ricinoleate and other bidentate binders.
- metal-based catalyst consists of metal ion complex.
- Metal ion complex includes but is not limited to the group: metal carboxylate, acetate, octoate and ricinoleate, preferably nickel (II), iron (II) or copper (II).
- Metal complexes include, but are not limited to: nickel (II), iron (II), tin (II), cobalt (II) and copper (II) metal complexes.
- the process according to the invention preferably utilizes iron or nickel carboxylates in catalysing the polymer reaction to be used as carriers for printing inks from refined vegetable oils.
- Binders such as carboxylate, acetate, among others stabilize the metal ion complex and may have their length defined by the hydrocarbon chain length, thus offering the complex solubility and viscosity appropriate to its function.
- carboxylate complexes refer to complexes containing the negatively charged carboxylate binder formed from a substituted carboxylic acid or carboxylic acid; Any variety of carboxylate binders may be present in the carboxylate complex as long as it can be used to accelerate the thermal polymerization reaction of oils and fats.
- the complex may be of commercial product, such as iron (II) octoates, nickel (II) octoates, iron (II) acetates, nickel (II) acetate or may be synthesized by known methods such as the reaction between a metal salt or metal oxide and a binder according to Chavez et al (CH ⁇ VEZ, FA et al. Metal ion complexation by a new, highly sterically hindered, bowl-shaped carboxylate ligand, Chem. Commun., 2001, 11 1- 2.).
- the complex formed can be isolated or produced without the need need for further separation and purification.
- vegetable or animal oils or fats are refined or residual frying vegetable or animal oils or fats containing at least one predominant unsaturated fatty acid in its composition.
- Oils or fats are oils or fats obtained from the conventional refining process so as to result in a product with minimum refined oil quality standards, for example in terms of acidity index, index. peroxides and flash point and which may or may not contain additives such as antioxidants.
- oils or fats are considered to consist of oils or fats obtained from industrial or domestic kitchen waste.
- Container consists of a reaction vessel which may be metallic, glass or other process resistant material containing a high temperature heating system, a gas inlet an inert system, a stirring system, and a carrier outlet for the carrier gas.
- inert gas are non-reactive gases for the thermal polymerization reaction of oils, which belong to, but are not limited to: nitrogen and argon.
- Catalyst is a substance or compound that increases the speed of a reaction without being chemically bound to the final product.
- the catalyst favors the existence of an alternative route, with lower activation energy and therefore shorter time for product generation.
- Thermal oil polymerization reaction takes a long time at high temperatures if no catalyst is added.
- Binders such as carboxylates, are of great importance because they act by stabilizing by electron resonance the complex and the states formed during the reaction process, altering the electronic density of the metal ion.
- Feeders according to the invention are obtained from oils or fats of vegetable or animal origin. Its basic characteristics are the presence of binder, preferably carboxylate, with variable length linear chain, and there may be double bonds. Their size and amount of unsaturation present depend on the origin of the carboxylic acids. When of biological origin, each raw material has varied compositions, for example when obtained from oils and fats of vegetable or animal origin. The basic fatty acid composition present in some oils and fats of vegetable or animal origin are shown in Table 1.
- the catalysts used in the present invention are soluble in the polymeric material and because they are low in mass concentrations, the need for their removal from the final product is considerably reduced, and therefore their quality is improved when considering the use of biodegradable products replacing petroleum derivatives in industrial processes.
- metal ions are complexed with binders obtained from oils or fats of vegetable or animal origin, forming compounds whose basic chemical formula is M 2+ (binder) 2 .
- the catalysts used in the present invention reduce up to 88% of the reaction time for the thermal polymerization process of vegetable or animal oils or fats or, being a viable process for industrial application.
- the viscosity, resistance to movement of a flow at a given temperature is suitable for evaluating the use of a particular paint carrier material. .
- the method makes a colorimetric correlation of viscosity ranges with 18 visual patterns.
- Vehicles are part of the fluid fraction of paint. They act as the carrier and carrier system for the pigment and solidify and fix the pigment to the substrate (EHRAN, S. Z. Printing inks. Chap. 9. In: EHRAN, S. Z. Industrial uses of vegetable oil. AOCS Publishing, 2005).
- the invention also relates to the polymers obtained by the polymerization process of the present invention and the use of the polymers of the invention in, but not limited to: plasticizers, lubricants, agrochemicals, offset printing inks and production vehicles. surface covering materials.
- the reaction system was used to obtain the polymer illustrated in Figure 1, which contains: a 1 L glass container (1) with five mouths, one central and the other on the sides of the flask. In the central mouth is located a mechanical stirrer (2) with stirring rod (3) to keep the reaction with constant movement, in the lateral mouths there is: a cold finger (4) with thermocouple (5) to determine the reaction temperature, a condenser system (6) to facilitate backflow of the material and maintain constant pressure, an inert gas inlet (7), and to the other mouth is a glass cover (8) for sample retention maintained by a blanket. heating (9). Catalyst samples were taken from the reactor with a glass pipette. The molar ratio of triglyceride / catalyst was maintained at 215 moles of residual / refined oil for each mol of catalyst.
- Thermal polymerization of refined soybean oil was performed. 700 g of refined soybean oil was added to a reactor provided with stirring and heating system and injected with inert gas (nitrogen) during sample withdrawal. 0.1% catalyst was then added. The mixture was kept at 300 ° C for 12 h and hourly sample collections for viscosity monitoring by the Gardner-Holdt ASTM D-1545-63 method using Gardner-Holdt Viscometer which measures the time of displacement of the standard bubble in the sample with the standard bubbles in the reference samples. Reactions performed in the presence of Cu 2+ (palm) 2 , Ni 2+ (palm) 2 , Fe 2+ (palm) 2 and Ni 2+ (soy) 2 catalysts demonstrated close catalytic activities. Reducing time by approximately 50% to achieve viscosity between standards analyzed on Gardner Z2-Z3 bubble viscometer.
- Thermal polymerization of residual soybean oil was also performed. 700 g of residual soybean oil previously used in local trade food frying processes were added to a reactor equipped with stirring and heating and injected with inert gas (nitrogen) during aliquot removal. Then 0.1% catalyst was added. The same method of obtaining polymer from residual soybean oil was applied by replacing iron carboxylate catalyst with copper carboxylate and nickel caboxylates at a concentration by weight of 0.1% over the total mass of residual soybean oil.
- Table 3 shows the results of the viscosities obtained during the refined soybean oil polymerization reaction at 300 ° C using Fe 2+ (palm) 2 , Cu 2+ (palm) 2 , Ni 2+ (palm) 2 carboxylates and Ni 2+ (soy) 2 and the reaction without catalyst for a period of twelve hours.
- the reactions were carried out with 500 g of refined soybean oil and residual soybean oil in the presence of 0.1% catalyst, at 300 ° C, under N 2 atmosphere and total reaction time of 180 min. Samples were taken from 1 h and thereafter every half hour and analyzed by a certified Ubbelohde viscometer with Herzog model HVE 38 viscosity cuff at a temperature of 40 ° C to determine viscosity according to ASTM D445 standard.
- carboxylates obtained from com- plex ng palm oil and soybean ions Ni 2+, Co 2+, Cu 2+, Sn 2+ and Fe 2+, represented as follows: Ni 2+ (Palma ) 2 , Co 2+ (palm) 2 , Cu 2+ (palm) 2 , Sn 2+ (palm) 2 , Fe 2+ (palm) 2 , Ni 2+ (soy) 2 , Co + (soy) 2 , Cu 2+ (Soy) 2 , Sn 2+ (Soy) 2 and Fe 2+ (Soy) 2 .
- Tables 5 and 6 show that, under the same reaction conditions, nickel catalysts were the most active in the reaction involving refined soybean oil and also for residual oil (samples 3, 8, 14 and 19) with reduction. up to 54% of the reaction time to achieve viscosity of 115 cSt in this reaction system for Ni 2+ (palm) 2 .
- nickel (Ni 2+ ) with palm oil binder was selected to determine the reaction behavior against different catalyst concentrations ( with 0.2, 0.1, 0.04, 0.001 and 0.0002 mass%) present in the reaction.
- An exponential behavior with a profile above the reaction activity without catalyst was observed, as shown in Figure 2.
- Reaction velocity constants were measured by linearizing the viscosity by using the neperian logitic function (In) in the values of the reaction. viscosity and then analyzed the coefficient of the straight line obtained for each catalyst percentage. The data found were: 0.145; 0.0146; 0.0139; 0.0122 and 0.0113 for mass percentages of 0.2; 0.1; 0.04; 0.001 and 0.0002% respectively, with respect to soybean oil mass.
- This profile is particularly important as it demonstrates the minimum amount of catalyst required for the reaction system, and the non-modification of the reaction rate with concentrations above 0.04% catalyst mass in the total material mass.
- EXAMPLE 5 Thermal polymerization kinetics of refined soybean oil and residual soybean oil using Ni 2+ (palm) 2 catalyst and carrier gas.
- the reactions consisted of reaction with 500 g of refined soybean oil and residual oil in the presence of 0.1% of Ni 2+ catalyst (palm) 2, by which is obtained better result, under a carrier gas (N 2 ) for the removal of volatiles formed during the reaction.
- N 2 carrier gas
- the carrier gas (N 2 ) increases the viscosity of the material due to the removal of low molecular weight molecules, so its study is important.
- the reactions consisted of the reaction with 500 g of refined soybean oil and residual oil, in the presence of 0.1% Ni 2+ (palm) 2 catalyst, as it was the best result, under gas flow. constant drag (N 2 ) to remove volatiles formed during the reaction.
- carrier gas N 2
- N 2 carrier gas
- soybean, corn, sunflower and canola as well as residual oil to evaluate the influence of the Ni 2+ (palm) 2 catalyst with the carrier gas at 300 ° C in different oils.
- Table 9 shows that the system is active using the oils studied, reaching 90% reduction in reaction time using refined soybean oil with the presence of catalyst and carrier gas when compared with the reaction. with refined soybean oil without catalyst and with N 2 atmosphere. Therefore, activity in other vegetable oils rich in unsaturated fatty acids is proven.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Lubricants (AREA)
Abstract
The present invention relates to a thermal polymerisation process of oils of vegetable or animal origin, and of the fatty acids thereof, catalysed by transition metal complexes. The process involves the following steps: oil or fat is fed into the reactor, which is provided with a system for stirring, heating and injecting inert gas; 2. at the same time, inert gas is injected; 0.002 to 0.2% of at least one catalyst based on transition metals is added; the temperature is kept at 260 to 340°C for some time, until the desired viscosity is obtained, and the reaction is interrupted by lowering the temperature.
Description
"PROCESSO DE POLIMERIZAÇÃO TÉRMICA DE ÓLEOS E GORDURAS". "OIL AND FAT THERMAL POLYMERIZATION PROCESS".
CAMPO DA INVENÇÃO FIELD OF INVENTION
A presente invenção refere-se à polimerização termo/catalítica de óleos e gorduras de origem vegetal ou animal catalisada por complexo de íon de metal. A presente invenção pode ainda ser aplicada para a produção de coberturas, plastificantes, lubrificantes, agroquímicos e tintas. The present invention relates to the term / catalytic polymerization of oils and fats of vegetable or animal origin catalyzed by metal ion complex. The present invention may further be applied to the production of coatings, plasticizers, lubricants, agrochemicals and paints.
FUNDAMENTOS DA INVENÇÃO BACKGROUND OF THE INVENTION
Polímeros podem ter diversos usos industriais, tais como na produção de coberturas, plastificantes, lubrificantes, agroquímicos e tintas de impressão para processos offset, entre outros. Polymers can have various industrial uses, such as in the production of coatings, plasticizers, lubricants, agrochemicals and offset printing inks, among others.
Os polímeros podem ser sintéticos, derivados do petróleo, ou de origem renovável, como por exemplo, a partir de óleos e gorduras vegetais e animais. The polymers may be synthetic, derived from petroleum, or of renewable origin, such as from vegetable and animal oils and fats.
Polímeros podem ser obtidos mediante tratamento térmico, que consiste no aquecimento de olefinas, assim como triacilgliceróis, diacilglice- róis, monoacilgliceróis mono e poliinsaturados e ácidos graxos livres mono e poliinsaturados e fosfolipídios constituintes de óleos ou gorduras de origem animal, vegetal ou sintéticos, em uma determinada temperatura e por um período de tempo até que se atinja a viscosidade desejada. Tais óleos ou gorduras podem ser secativos (que polimerizam quando expostos ao ar para formar um filme elástico duro) e semi-secativos (que polimerizam parcialmente quando expostos ao ar) (SHARMA, V.; KANDU, P. P. Addition poly- mers from natural oils - a review. Prog. Polym. Sei., v. 31 , p. 983-1008, 2006.). Polymers may be obtained by heat treatment consisting of heating olefins as well as triacylglycerols, diacylglycerols, mono and polyunsaturated monoacylglycerols and free mono- and polyunsaturated fatty acids and phospholipids constituting oils, fats of animal, vegetable or synthetic origin in a certain temperature and for a period of time until the desired viscosity is reached. Such oils or fats may be drying (which polymerize when exposed to air to form a hard elastic film) and semi-drying (which partially polymerize when exposed to air) (SHARMA, V .; KANDU, PP. - the review, Prog. Polym. Sci., v. 31, pp. 983-1008, 2006.).
O processo de polimerização térmica ocorre mediante o aquecimento a altas temperaturas de tais óleos, usualmente na faixa de 260 a 340°C, por um período a ser determinado de acordo com a finalidade do material, podendo ocorrer com atmosfera inerte ou em sistema aberto. Quanto menor a temperatura, maior o tempo de reação. O processo reacional, assim como a atuação dos catalisadores, não são bem compreendidos no estado da técnica. São sugeridos processos de isomerização seguidas de reações
Diels-Alder, reações radicalares de polimerização, reações catiônicas, assim como decomposições do material como reações passíveis de sucederem no ambiente reacional. A massa molecular cresce rapidamente, seguido de um decréscimo da concentração do monômero, enquanto o número de macro- moléculas aumenta, possuindo uma baixa concentração de espécies ativas em qualquer instante da reação. Podem ser formados sistemas poliméricos com ligações entrecruzadas sempre que as ramificações liguem duas cadeias poliméricas. The thermal polymerization process occurs by heating these oils at high temperatures, usually in the range of 260 to 340 ° C, for a period to be determined according to the purpose of the material, and may occur in an inert atmosphere or in an open system. The lower the temperature, the longer the reaction time. The reaction process as well as the actuation of the catalysts are not well understood in the state of the art. Isomerization processes are suggested followed by reactions Diels-Alder, radical polymerization reactions, cationic reactions, as well as decomposition of the material as reactions likely to occur in the reaction environment. Molecular mass grows rapidly, followed by a decrease in monomer concentration, while the number of macromolecules increases, with a low concentration of active species at any time during the reaction. Crosslinked polymer systems can be formed whenever the branches link two polymer chains.
Admite-se que quando as duplas ligações de olefinas não são conjugadas, ocorre a formação de radicais com a saída de um hidrogénio radicalar na posição alfa duplas ligações, formando uma estrutura em ressonância. It is believed that when the olefin double bonds are not conjugated, radical formation occurs at the exit of a radical hydrogen at the alpha double bonds, forming a resonant structure.
A adição Diels-Alder é a rota mais aceita desta polimerização, que resulta na dimerização e na trimerização da cadeia. Há a formação de diferentes isômeros pelas múltiplas possibilidades de ocorrência da adição. A característica fundamental é a formação de anel de seis átomos e, por isso, muito estáveis. The Diels-Alder addition is the most widely accepted route of this polymerization, which results in chain dimerization and trimerization. Different isomers are formed by the multiple possibilities of addition. The fundamental feature is the formation of ring of six atoms and therefore very stable.
A temperatura média de trabalho para polimerização térmica si- tua-se na faixa de 260 a 340°C, pois abaixo desta o processo de polimeriza- ção térmica não ocorre e acima de 340°C ocorre craqueamento térmico das moléculas, formando hidrocarbonetos, ácidos graxos, cetonas, aldeídos, álcoois, cetenos, acroleína e outros compostos indesejáveis por terem baixo peso molecular. The average working temperature for thermal polymerization is in the range of 260 to 340 ° C, because below this the thermal polymerization process does not occur and above 340 ° C there is thermal cracking of the molecules, forming hydrocarbons, acids. fatty acids, ketones, aldehydes, alcohols, ketenes, acrolein and other undesirable compounds because of their low molecular weight.
O interesse tecnológico na obtenção de polímeros obtidos de de- rivados de óleos ou gorduras insaturados classificados como secativos ou semi secativos advém da possibilidade técnica de substituírem derivados de petróleo. As principais vantagens dessa substituição residem no fato de serem materiais renováveis, de fácil disponibilidade e baixo custo necessário para agregar valor ao produto final. The technological interest in obtaining polymers obtained from derivatives of unsaturated oils or fats classified as drying or semi drying comes from the technical possibility of substituting petroleum derivatives. The main advantages of this replacement lie in the fact that they are renewable, easily available and inexpensive materials needed to add value to the final product.
Uma área industrial que começa a obter resultados substanciais para a mudança na fonte de matéria prima é o setor de tintas, sendo um mercado com vasta opção de produtos a serem gerados e comercializados.
Cada produto obtido possui propriedades químicas e físicas específicas de acordo com a aplicação pretendida. One industrial area that is beginning to achieve substantial results for the change in the source of raw materials is the paint industry, being a market with a vast choice of products to be generated and traded. Each product obtained has specific chemical and physical properties according to the intended application.
As tintas convencionais disponíveis para o consumo possuem materiais derivados do petróleo em todos os seus componentes, sejam veí- culos, pigmentos, aditivos ou solventes. O veículo é uma parte da tinta de grande importância por ser responsável por aglutinar pigmento e aditivo, por constituir grande parte do volume total e por possuir como função principal atribuir propriedades físico-químicas ao produto. Conventional inks available for consumption have petroleum-derived materials in all their components, whether vehicles, pigments, additives or solvents. The vehicle is a part of the paint of great importance because it is responsible for agglutinating pigment and additive, constituting a large part of the total volume and having as its main function to attribute physicochemical properties to the product.
As tintas utilizadas para a finalidade de impressão offset podem melhorar suas propriedades, tais como a resistência ao atrito, à viscosidade e à adesividade em várias aplicações para impressão ao se substituir o veículo tradicionalmente à base de derivado de petróleo por veículos à base de derivados de óleos e gorduras de origem vegetal ou animal produzidos pelo processo de polimerização térmica. Observa-se também a compatibilidade do material renovável ao negro de fumo, que o torna adequado para a formulação de tintas pretas (ERHAN S. Z., BAGBY M. JAOCS, v. 68, n. 9, p. 635-638, 1991). Outro fator importante do material obtido à base de óleos e gorduras é a cor extremamente clara do polímero, que permite a adição de pigmento na formulação de tintas coloridas, quando comparadas com os padrões industriais à base de derivados de petróleo. Inks used for the purpose of offset printing can improve their properties such as friction, viscosity and adhesion resistance in various printing applications by replacing the traditionally oil based vehicle with oil based vehicles. vegetable or animal oils and fats produced by the thermal polymerization process. The compatibility of the renewable material with carbon black is also noted, which makes it suitable for the formulation of black inks (ERHAN S. Z., BAGBY M. JAOCS, v. 68, no. 9, p. 635-638, 1991). Another important factor in the material obtained from oils and fats is the extremely light color of the polymer, which allows the addition of pigment in the formulation of colored inks when compared to petroleum-based industry standards.
A seleção da matéria-prima para a obtenção de polímeros depende de sua composição química, e isto vale também para o uso de óleos ou gorduras. Erhan e Bagby, em 1994 (EHRHAN S. Z., BAGBY M. O. JAOCS, v. 71 , n. 11 , p. 1223-1226. 1994) estudaram o peso molecular, a viscosidade e a cor dos polímeros de uma série de óleos ou gorduras disponíveis comercialmente. O maior aumento de viscosidade ocorreu quando se utilizaram óleo de cártamo, soja, girassol, algodão e canola, respectivamente. Este resultado demonstra que as presenças de resíduos de ácidos lino- léicos e linolênicos nos triglicerídeos favorecem o processo de reação e as- sim o aumento da viscosidade do material. Estes resíduos ácidos possuem em sua estrutura hidrogênios bis-alílicos que, após sua abstração, podem-se favorecer reações radicalares e reações via mecanismo Diels-Alder.
Apesar de se considerar, geralmente, que a polimerização ocorra por um mecanismo Diels-Alder, há várias razões para suspeitar de que a reação possa ser um processo mais complexo. As temperaturas elevadas usadas para espessamento um óleo sugerem que o mecanismo não é sim- pies. Além disso, as decomposições devido a processos relacionados ao craqueamento acompanham a polimerização térmica e as elevadas energias de ativação globais para o espessamento de óleos não conjugados indica esta complexidade. Estudos relacionados com a tentativa de se determinar os mecanismos químicos e o efeito da cinética da reação de polimerização térmica de óleos secantes foram descritos por Sims desde 1957 (SIMS, R. P. JAOCS, v. 34, p. 466-469, 1957). Selecting the raw material for obtaining polymers depends on their chemical composition, and this also applies to the use of oils or fats. Erhan and Bagby, 1994 (EHRHAN SZ, BAGBY MO JAOCS, v. 71, no. 11, pp. 1223-1226. 1994) studied the molecular weight, viscosity and color of polymers from a range of available oils or fats. commercially. The highest viscosity increase occurred when using safflower oil, soybean, sunflower, cotton and canola, respectively. This result demonstrates that the presence of linoleic and linolenic acid residues in triglycerides favors the reaction process and thus increases the viscosity of the material. These acidic residues have in their structure bis-allyl hydrogens which, after their abstraction, can favor radical reactions and reactions via Diels-Alder mechanism. Although polymerization is generally considered to occur by a Diels-Alder mechanism, there are several reasons to suspect that the reaction may be a more complex process. The elevated temperatures used for thickening an oil suggest that the mechanism is not simple. In addition, decompositions due to cracking processes accompany thermal polymerization and the high overall activation energies for thickening of unconjugated oils indicates this complexity. Studies related to the attempt to determine the chemical mechanisms and kinetics effect of the thermal polymerization reaction of drying oils have been described by Sims since 1957 (SIMS, RP JAOCS, v. 34, p. 466-469, 1957).
Existem vários estudos relacionados ao uso de catalisadores para favorecer o processo de polimerização do material, obtendo reduções de tempo consideráveis. De acordo com Erhan e Bagby em 1994 (ERHAN S. Z., BAGBY M. O. JAOCS, v. 71 , n. 11 , p. 1223-1226, 1994), quando usados catalisadores orgânicos (antraquinonas) foi obtida uma redução de tempo de 25 a 50 % e a possibilidade de redução de 25°C a 30°C na temperatura necessária para atingir a viscosidade Y na escala Gardner-Holdt com relação às reações sem o uso de catalisador com o mesmo sistema reacional. There are several studies related to the use of catalysts to favor the material polymerization process, obtaining considerable time reductions. According to Erhan and Bagby in 1994 (ERHAN SZ, BAGBY MO JAOCS, v. 71, no. 11, p. 1223-1226, 1994), when using organic catalysts (anthraquinones) a time reduction of 25 to 50 was obtained. % and the possibility of reducing from 25 ° C to 30 ° C the temperature required to achieve Gardner-Holdt Y viscosity with respect to reactions without the use of catalyst with the same reaction system.
O documento US5122188 demonstra que o uso de 5 % de an- traquinona em reação realizada na faixa de temperatura de 275 a 340°C reduz o tempo em 10 a 20 % para óleo de soja refinado, redução inferior àquela obtida pela presente invenção, que chega a 88 %. US5122188 demonstrates that the use of 5% anthrquinone in reaction in the temperature range of 275 to 340 ° C reduces the time by 10 to 20% for refined soybean oil, which is less than that obtained by the present invention. reaches 88%.
O documento JP54143410-A revela a utilização dos óleos de pe- rila, linhaça, cártamo, soja, algodão, milho, gergelim, entre outros, e seus respectivos ácidos graxos no processo de polimerização a temperaturas na faixa de 270 a 290°C na presença antraquinonas e fenóis (0,01-0,05 %) como catalisadores e na presença de iniciadores de polimerização redox. Obti- veram-se filmes flexíveis como superfície de revestimento, utilizados como veículo para uma série de tintas para impressão e também para outras aplicações. Não houve grandes modificações nas propriedades físico-químicas do produto final.
O documento US2213935 descreve o uso de antraquinonas como catalisadores de óleos secativos ou semi secativos. Com o uso de 0,5 % de antraquinonas em óleo de soja refinado, a 307°C, reduz-se o tempo de reação para atingir a viscosidade Z5 (método Gardner-Holdt) de 10 h 15 min para 6 h, isto é, houve redução do tempo em aproximadamente 40 % naquelas condições de reação. JP54143410-A discloses the use of pearl, flaxseed, safflower, soybean, cotton, maize, sesame oils and their respective fatty acids in the polymerization process at temperatures in the range 270 to 290 ° C in presence of anthraquinones and phenols (0.01-0.05%) as catalysts and in the presence of redox polymerization initiators. Flexible films were obtained as a coating surface, used as a vehicle for a range of printing inks and for other applications as well. There were no major changes in the physicochemical properties of the final product. US2213935 describes the use of anthraquinones as catalysts for drying or semi drying oils. By using 0.5% anthraquinones in refined soybean oil at 307 ° C, the reaction time to reach Z5 viscosity (Gardner-Holdt method) is reduced from 10 h 15 min to 6 h, ie , time was reduced by approximately 40% under those reaction conditions.
Em US2669573 foi proposto o uso de 0,05 a 3 % de antronas como catalisadores de polimerização de óleos secantes e semi-secantes, na faixa de temperatura de 260 a 329°C até atingir a viscosidade desejada. Por exemplo, 0,2 % de catalisador 9-antrona em óleo de soja para a reação realizada a 301 , 7°C obtem-se uma redução do tempo de 6,17 h para a reação sem catalisador para um tempo de 4 h utilizando o catalisador mencionado, proporcionando uma redução de 35 % no tempo para se atingir a viscosidade Z2 (método Gardner-Holdt). In US2669573 it was proposed to use 0.05 to 3% anthrones as polymerization catalysts of drying and semi-drying oils, in the temperature range 260 to 329 ° C until reaching the desired viscosity. For example, 0.2% 9-anthrone catalyst in soybean oil for the reaction performed at 301.7 ° C gives a time reduction of 6.17 h for the reaction without catalyst to a time of 4 h using mentioned catalyst, providing a 35% reduction in time to reach Z2 viscosity (Gardner-Holdt method).
O documento US2230470 propõe menos de 0,05 % de compostos cíclicos aromáticos contendo pelo menos uma fenila e uma carboxila (ex.: difenol-carboxilantraceno) como catalisador de polimerização de óleos secantes e semi-secantes, na faixa de 260 a 3 5°C, podendo reduzir em aproximadamente à metade o tempo de reação. Por exemplo, para polimeri- zação de óleo de linhaça a 304,4°C, utilizando-se 0,03 % do catalisador, reduz-se o tempo de reação de 5,5-6 h para aproximadamente 3 h para atingir a viscosidade de Z6 (150 P). US2230470 proposes less than 0.05% cyclic aromatic compounds containing at least one phenyl and one carboxyl (eg diphenol carboxyl anthracene) as a polymerization catalyst for drying and semi-drying oils in the range 260 to 35 °. C, which can halve the reaction time. For example, for polymerization of flaxseed oil at 304.4 ° C using 0.03% of catalyst, the reaction time is reduced from 5.5-6 h to approximately 3 h to achieve viscosity. of Z6 (150 P).
Lozada et al., em 2009 (LOZADA, Z. et al. Journal Applied Poly- mer Science, v. 112, p. 2127-2135, 2009), demonstraram a aplicabilidade dos polímeros obtidos por polimerização térmica para se aumentar o peso molecular do material e que posteriormente seria submetido a reações envolvendo a formação de hidroxilas no material formado. Quando a polimerização é combinada com as etapas de reação para adição de álcool e redução por ácido, pode-se sintetizar polióis adequados para aplicações de ure- tano. Esta forma de se obter polióis com alta relação de massa por hidroxila demonstrou ser uma das formas que requerem menor custo na obtenção do produto final. Neste estudo foram comparados polímeros de óleo de soja
refinado utilizando 2,5 % de antraquinona como catalisador com polímeros formados sem catalisador, ambos a 330°C. Foi observado que os polímeros obtidos com a presença de catalisador obtiveram uma redução do índice de iodo superior àqueles obtidos na reação sem o catalisador e também um aumento superior ao se analisar a viscosidade final do material. Lozada et al., In 2009 (LOZADA, Z. et al. Journal Applied Polymer Science, v. 112, p. 2127-2135, 2009), demonstrated the applicability of polymers obtained by thermal polymerization to increase molecular weight. material that would later be subjected to reactions involving the formation of hydroxyls in the material formed. When the polymerization is combined with the reaction steps for alcohol addition and acid reduction, suitable polyols for urethane applications can be synthesized. This way of obtaining high mass ratio by hydroxyl polyols has proved to be one of the least costly ways to obtain the final product. In this study we compared soybean oil polymers refined using 2.5% anthraquinone as catalyst with polymers formed without catalyst, both at 330 ° C. It was observed that the polymers obtained with the catalyst had a higher iodine index reduction than those obtained in the reaction without the catalyst and also a higher increase when analyzing the final viscosity of the material.
Complexos de íon de metal com carboxilatos são em sua maior parte não tóxicos e são estáveis nas temperaturas nas quais ocorre polimerização de óleos e gorduras. Os complexos de íons de metais não foram descritos na literatura como catalisadores de polimerização térmica de óleos. Carboxylate metal ion complexes are mostly non-toxic and are stable at temperatures at which polymerization of oils and fats occurs. Metal ion complexes have not been described in the literature as thermal oil polymerization catalysts.
O documento GB1499638 revela o uso de octanoato de níquel GB1499638 discloses the use of nickel octanoate
(II) sendo um entre três catalisadores de uma composição de complexos de metais utilizados para acelerar a polimerização de olefinas tais como o buta- dieno. (II) being one of three catalysts for a metal complex composition used to accelerate polymerization of olefins such as butadiene.
Em US3 70907, na polimerização de olefinas (butadieno), o naf- tenato de zinco (II) e níquel (II) é um entre três catalisadores de uma composição. In US 3 70907, in the polymerization of olefins (butadiene), zinc (II) and nickel (II) naphthenate is one of three catalysts of a composition.
O documento US6103834, que se refere à co-polimerização (polimerização térmica e polimerização com oxigénio) de óleos vegetais insaturados, inclui o octanoato de cobalto (II) como catalisador da reação. Nesta adiciona-se, também, um iniciador da reação de co-polimerização de óleo ou ácido graxo com anidrido maléico na faixa de 150 a 300°C. US6103834, which relates to the copolymerization (thermal polymerization and oxygen polymerization) of unsaturated vegetable oils, includes cobalt (II) octanoate as a reaction catalyst. To this is also added an initiator of the copolymerization reaction of oil or fatty acid with maleic anhydride in the range 150 to 300 ° C.
Os documentos citados refletem o estado da técnica anterior à presente invenção, em que a catálise da reação de polimerização térmica de compostos orgânicos era realizada mediante a adição de compostos orgâni- cos os quais, ainda que adicionados em baixas concentrações, tinham sempre necessária sua difícil retirada após a reação a fim de se eliminar a toxicidade do material final. Na presente invenção, além de se obter redução de até 88 % no tempo de reação de polimerização de óleos de origem vegetal ou animal, a remoção do catalisador é desnecessária, pois este é derivado dos próprios triacilgliceróis oriundos de óleos ou gorduras de origem vegetal ou animal e se encontrar em baixas porcentagens em massa. A presente invenção proporciona maior eficiência de processo e menor liberação de re-
siduos ao meio ambiente em todo o processo para a geração de um produto com viscosidade e cor (EHRHAN S. Z., BAGBY M. O. JAOCS, v. 71 , n. 11 , p. 1223-1226. 1994) adequadas para diversas aplicações industriais. The documents cited reflect the state of the art prior to the present invention, wherein catalysis of the thermal polymerization reaction of organic compounds was performed by the addition of organic compounds which, although added at low concentrations, had always required their difficult removed after the reaction to eliminate toxicity of the final material. In the present invention, in addition to achieving up to 88% reduction in the polymerization reaction time of oils of vegetable or animal origin, removal of the catalyst is unnecessary as it is derived from the triacylglycerols themselves derived from oils or fats of vegetable origin or animal and find itself in low mass percentages. The present invention provides higher process efficiency and lower release of environmentally friendly throughout the process for the generation of a product with color and viscosity (EHRHAN SZ, BAGBY MO JAOCS, v. 71, no. 11, pp. 1223-1226. 1994) suitable for various industrial applications.
SUMÁRIO DA INVENÇÃO SUMMARY OF THE INVENTION
A presente invenção se refere ao processo de polimerização térmica de óleos e gorduras de origem vegetal ou animal catalisada por complexos de íons de metal. Os complexos são carboxilatos não tóxicos e estáveis nas temperaturas reacionais e reduzem o tempo de reação e, por conseguinte, a energia necessária para a realização da mesma e o custo do processo. The present invention relates to the thermal polymerization process of vegetable and animal oils and fats catalyzed by metal ion complexes. The complexes are non-toxic carboxylates stable at reaction temperatures and reduce the reaction time and therefore the energy required to perform the reaction and the cost of the process.
Uma primeira concretização da invenção diz respeito a um processo de polimerização térmica de óleos, caracterizado por compreender as seguintes etapas: A first embodiment of the invention relates to a thermal oil polymerization process comprising the following steps:
i) adição de óleo e/ou gordura a um reator munido de sistema de agitação e de aquecimento; (i) adding oil and / or fat to a reactor fitted with a stirring and heating system;
ii) injeção simultânea de gás inerte; ii) simultaneous injection of inert gas;
iii) adição de qualquer porcentagem em massa de catalisador a base de complexo de íon de metal; iii) adding any mass percent of metal ion complex catalyst;
iv) manutenção da temperatura entre 37°C e 500°C, por um tempo até a obtenção da viscosidade desejada iv) maintaining the temperature between 37 ° C and 500 ° C for a time until the desired viscosity is achieved.
v) interrupção da reação por meio da redução da temperatura do meio reacional para temperatura de 25°C ou menor. Uma segunda concretização da invenção diz respeito aos polímeros obtidos pelo processo de polimerização da presente invenção. v) stopping the reaction by reducing the temperature of the reaction medium to a temperature of 25 ° C or lower. A second embodiment of the invention relates to the polymers obtained by the polymerization process of the present invention.
Uma segunda concretização da presente invenção diz respeito ao polímeros obtidos pelo processo da presente invenção. A second embodiment of the present invention relates to polymers obtained by the process of the present invention.
Uma terceira concretização da invenção diz respeito ao uso dos polímeros da invenção na produção de material para recobrimento de superfícies, como plastificantes, lubrificantes, agroquímicos e tintas. A third embodiment of the invention relates to the use of the polymers of the invention in the production of surface coating material such as plasticizers, lubricants, agrochemicals and inks.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Reator munido de sistema de agitação e de aquecimento e com injeção de gás inerte.
Figura 2: Viscosidade (cSt) versus tempo da reação a 30ΌΧ com óleo de soja refinado utilizando catalisador de níquel (II) complexado em ácidos graxos de óleo de palma nas porcentagens em massa de 0,2 (·), 0, 1 ( A), 0,04 (▼), 0,001 ( ) e 0,0002 % (►). Figure 1: Reactor equipped with stirring and heating system and with inert gas injection. Figure 2: Viscosity (cSt) versus reaction time at 30ΌΧ with refined soybean oil using nickel (II) catalyst complexed with palm oil fatty acids at mass percentages of 0.2 (·), 0, 1 (A ), 0.04 (▼), 0.001 () and 0.0002% (►).
Figura 3: Logaritmo neperiano (In) da viscosidade (cSt) versus tempo da reação a 300°C com óleo de soja refinado utilizando catalisador de níquel (II) complexado em ácidos graxos de óleo de palma nas porcentagens em massa de 0,2 (♦), 0, 1 (·), 0,04 ( A ), 0,001 (T) e 0,0002% ( <4). Figure 3: Neperian logarithm (In) of viscosity (cSt) versus reaction time at 300 ° C with refined soybean oil using nickel (II) catalyst complexed with palm oil fatty acids at mass percentages of 0.2 ( ♦) 0, 1 (·), 0.04 (A) 0,001 (T) and 0.0002% (<4).
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
O objeto da presente invenção é o processo de polimerização de óleos de origem vegetal ou animal catalisado por complexos de íons de metal. The object of the present invention is the polymerization process of vegetable or animal oils catalyzed by metal ion complexes.
O processo de acordo com a presente invenção gera polímeros mediante as etapas de: The process according to the present invention generates polymers by the steps of:
i) adição de óleo e/ou gorduras a um reator munido de sistema de agitação e de aquecimento; (i) adding oil and / or fats to a reactor fitted with a stirring and heating system;
ii) injeção simultânea de gás inerte; ii) simultaneous injection of inert gas;
iii) adição de qualquer porcentagem em massa de catalisador a base de complexo de íon de metal; iii) adding any mass percent of metal ion complex catalyst;
iv) manutenção da temperatura entre 37°C e 500°C, por um tempo até a obtenção da viscosidade desejada iv) maintaining the temperature between 37 ° C and 500 ° C for a time until the desired viscosity is achieved.
vi) interrupção da reação por meio da redução da temperatura do meio reacional para temperatura de 25°C ou menor. vi) stopping the reaction by reducing the temperature of the reaction medium to 25 ° C or below.
A adição de catalisador à base de metal ao contentor ocorre simultaneamente à adição de óleo e/ou gordura. Alternativamente, a adição de catalisador ao contentor pode ocorrer após a adição de óleo e/ou gordura. The addition of metal-based catalyst to the container occurs simultaneously with the addition of oil and / or fat. Alternatively, the addition of catalyst to the container may occur after the addition of oil and / or fat.
O fluxo de gás inerte ocorre simultaneamente à adição de óleo ou gordura ou de ambos ao contentor e termina após a adição ç|e catalisa- dor. Alternativamente, o fluxo de gás inerte ocorre durante todo o período de reação. Inert gas flow occurs simultaneously with the addition of oil or fat or both to the container and ends after addition of catalyst. Alternatively, inert gas flow occurs throughout the reaction period.
A reação de acordo com a invenção ocorre até a obtenção da
viscosidade desejada, preferencialmente durante o período de 1 a 12 h.The reaction according to the invention occurs until the desired viscosity, preferably over a period of 1 to 12 h.
O catalisador utilizado no processo da presente invenção à base de metais consiste de pelo menos um complexo de íon de metal que tem como ligante pelo menos um composto selecionado do grupo que compre- ende: carboxilato, acetato, octoato e ricinoleato e outros ligantes bidentados The catalyst used in the metal-based process of the present invention consists of at least one metal ion complex having as a binder at least one compound selected from the group comprising: carboxylate, acetate, octoate and ricinoleate and other bidentate binders.
Considera-se, para efeito desta invenção, que "catalisador à base de metais" consistir de complexo de íon de metal. For the purpose of this invention, it is considered that "metal-based catalyst" consists of metal ion complex.
"Complexo de íon de metal" compreende, mas não está limitado ao grupo: carboxilato, acetato, octoato e ricinoleato de metais, preferencial- mente níquel (II), ferro (II) ou cobre (II). "Metal ion complex" includes but is not limited to the group: metal carboxylate, acetate, octoate and ricinoleate, preferably nickel (II), iron (II) or copper (II).
Complexos de metais incluem, mas não estão limitados a: complexos metálicos de níquel (II), ferro (II), estanho (II), cobalto (II) e cobre (II). O processo de acordo com a invenção utiliza, preferencialmente, carboxila- tos de ferro ou de níquel na catálise da reação de obtenção de polímeros a serem utilizados como veículos para tintas de impressão a partir de óleos vegetais refinados. Metal complexes include, but are not limited to: nickel (II), iron (II), tin (II), cobalt (II) and copper (II) metal complexes. The process according to the invention preferably utilizes iron or nickel carboxylates in catalysing the polymer reaction to be used as carriers for printing inks from refined vegetable oils.
Os ligantes, tais como carboxilato, acetato, entre outros estabilizam o complexo de íon de metal e podem ter seu comprimento definido pelo comprimento da cadeia hidrocarbônica, assim oferecendo ao complexo so- lubilidade e viscosidade adequadas à sua função. Por exemplo, complexos de carboxilato se referem a complexos contendo o ligante carboxilato carregado negativamente, formado a partir de um ácido carboxílico ou ácido car- boxílico substituído; qualquer variedade de ligantes carboxilatos pode estar presente no complexo carboxilato desde que possa ser utilizado para acele- rar a reação de polimerização térmica de óleos e gorduras. Binders such as carboxylate, acetate, among others stabilize the metal ion complex and may have their length defined by the hydrocarbon chain length, thus offering the complex solubility and viscosity appropriate to its function. For example, carboxylate complexes refer to complexes containing the negatively charged carboxylate binder formed from a substituted carboxylic acid or carboxylic acid; Any variety of carboxylate binders may be present in the carboxylate complex as long as it can be used to accelerate the thermal polymerization reaction of oils and fats.
O complexo pode ser de produto comercial, como os octoatos de ferro (II), octoatos de níquel (II), acetatos de ferro (II), acetato de níquel (II) ou pode ser sintetizado por métodos conhecidos, tais como a reação entre um sal de metal ou óxido de metal e um ligante de acordo com Chávez et al (CHÁVEZ, F. A. et al. Metal ion complexation by a new, highly sterically hindered, bowl-shaped carboxylate ligand, Chem. Commun., 2001 , 1 1 1- 2.). O complexo formado pode ser isolado ou produzido insitu, sem a ne-
cessidade de posterior separação e purificação. The complex may be of commercial product, such as iron (II) octoates, nickel (II) octoates, iron (II) acetates, nickel (II) acetate or may be synthesized by known methods such as the reaction between a metal salt or metal oxide and a binder according to Chavez et al (CHÁVEZ, FA et al. Metal ion complexation by a new, highly sterically hindered, bowl-shaped carboxylate ligand, Chem. Commun., 2001, 11 1- 2.). The complex formed can be isolated or produced without the need need for further separation and purification.
Para efeito desta invenção "óleos ou gorduras de origem vegetal ou animal" são óleos ou gorduras vegetais ou de origem animal refinados ou residuais de fritura, contendo pelo menos um ácido graxo insaturado predo- minante em sua composição. For the purpose of this invention "vegetable or animal oils or fats" are refined or residual frying vegetable or animal oils or fats containing at least one predominant unsaturated fatty acid in its composition.
"Óleos ou gorduras refinados", de acordo com a invenção, são óleos ou gorduras obtidos do processo de refino convencional, de modo a resultar num produto com padrões mínimos de qualidade de óleo refinado, por exemplo, em termos de índice de acidez, índice de peróxidos e ponto de fulgor e que podem ou não conter aditivos, tais como antioxidantes. "Refined oils or fats" according to the invention are oils or fats obtained from the conventional refining process so as to result in a product with minimum refined oil quality standards, for example in terms of acidity index, index. peroxides and flash point and which may or may not contain additives such as antioxidants.
Considera-se, para efeito desta invenção, "óleos ou gorduras residuais" consistindo de óleos ou gorduras obtidos de rejeitos de cozinha industrial ou doméstica. For the purpose of this invention, "waste oils or fats" are considered to consist of oils or fats obtained from industrial or domestic kitchen waste.
"Contentor", de acordo com a invenção, é constituído de um re- cipiente em que ocorre a reação, podendo ser metálico, de vidro ou de outro material resistente ao processo que contém um sistema de aquecimento a altas temperaturas, uma entrada de gás inerte, um sistema de agitação, e um local para a saída do gás de arraste. "Container" according to the invention consists of a reaction vessel which may be metallic, glass or other process resistant material containing a high temperature heating system, a gas inlet an inert system, a stirring system, and a carrier outlet for the carrier gas.
Para efeito desta invenção, "gás inerte" são gases não reativos para a reação de polimerização térmica de óleos, que pertencem ao grupo, mas não se limitam a: nitrogénio e argônio. For the purpose of this invention, "inert gas" are non-reactive gases for the thermal polymerization reaction of oils, which belong to, but are not limited to: nitrogen and argon.
"Catalisador" é substância ou composto que aumenta a velocidade de uma reação sem ficar quimicamente ligado ao produto final. O catalisador favorece a existência de uma rota alternativa, com menor energia de ativação e, por conseguinte, menor tempo para a geração do produto. A reação de polimerização térmica de óleos demanda longo tempo a elevadas temperaturas, caso não seja adicionado nenhum catalisador. "Catalyst" is a substance or compound that increases the speed of a reaction without being chemically bound to the final product. The catalyst favors the existence of an alternative route, with lower activation energy and therefore shorter time for product generation. Thermal oil polymerization reaction takes a long time at high temperatures if no catalyst is added.
Os ligantes, tais como os carboxilatos, são de grande importância, pois atuam estabilizando por meio de ressonância eletrônica o complexo e os estados formados durante o processo reacional, alterando a densidade eletrônica do íon do metal. Binders, such as carboxylates, are of great importance because they act by stabilizing by electron resonance the complex and the states formed during the reaction process, altering the electronic density of the metal ion.
Os complexos de íons de metais utilizados na síntese dos catali-
sadores de acordo com a invenção são obtidos de óleos ou gorduras de origem vegetal ou animal. Possui como características básicas a presença de ligante, preferencialmente, carboxílato, com cadeia linear de tamanho variável, podendo haver duplas ligações. O seu tamanho e a quantidade de insa- turações presentes dependem da origem dos ácidos carboxiiicos. Quando de origem biológica, cada matéria-prima possui composições variadas, por exemplo, quando obtidos de óleos e gorduras de origem vegetal ou animal. A composição básica em ácidos graxos presentes em alguns óleos e gorduras de origem vegetal ou animal encontram-se na Tabela 1. The metal ion complexes used in the synthesis of catalysts Feeders according to the invention are obtained from oils or fats of vegetable or animal origin. Its basic characteristics are the presence of binder, preferably carboxylate, with variable length linear chain, and there may be double bonds. Their size and amount of unsaturation present depend on the origin of the carboxylic acids. When of biological origin, each raw material has varied compositions, for example when obtained from oils and fats of vegetable or animal origin. The basic fatty acid composition present in some oils and fats of vegetable or animal origin are shown in Table 1.
Pelo fato de os catalisadores utilizados na presente invenção serem solúveis no material polimérico e por estarem com baixas concentrações em massa, diminui-se consideravelmente a necessidade de sua retirada do produto final, e por consequência, melhora a sua qualidade quando se pensa no uso de produtos biodegradáveis substituindo derivados de petróleo em processos industriais. Because the catalysts used in the present invention are soluble in the polymeric material and because they are low in mass concentrations, the need for their removal from the final product is considerably reduced, and therefore their quality is improved when considering the use of biodegradable products replacing petroleum derivatives in industrial processes.
Na formação dos catalisadores de acordo com a invenção íons de metal são complexados com ligantes obtidos dos óleos ou gorduras de origem vegetal ou animal, formando compostos cuja fórmula química básica é M2+(ligante)2.
In forming the catalysts according to the invention metal ions are complexed with binders obtained from oils or fats of vegetable or animal origin, forming compounds whose basic chemical formula is M 2+ (binder) 2 .
TABELA 1 : Porcentagem de resíduos de ácidos carboxílicos presentes nos principais óleos e gordura. TABLE 1: Percentage of carboxylic acid residues present in major oils and fats.
1 : SZPIZ, R. R.;et al. Transesterificação de óleos vegetais para fins combustíveis. Rio de Janeiro: EMBRAPA-CTAA, 1984. 21 p. (Boletim de Pesquisa, 8). 2: ABREU, F. R. et al. Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols. J. Mol. Catai. Catai. A: Chem. v. 209, p. 29, 2004. 3: Produção de combustíveis líquidos a partir de óleos vegetais. Ministério da indústria e do Comércio, Secretaria de Tecnologia Industrial: Brasília, 1985. : OVEREEM, A. et al. Seed oils rich in linolenic acid as renewable feedstock for environment-friendly crosslinkers in powder coatings. Industrial Crops and Products, v. 10, p.157-165, 1999. 5: HAAS, M. J. et al. Energy & Fuels, v. 15, p. 1207, 2001. 6: 0'BRIEN, R. D.; FARR, W. E.; P. J.; Introduction to Fats and Oils Technology, 2a ed. AOCS Press, 2000.
1: SZPIZ, RR, et al. Transesterification of vegetable oils for fuel purposes. Rio de Janeiro: EMBRAPA-CTAA, 1984. 21 p. (Research Bulletin, 8). 2 : ABREU, FR et al. Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols. J. Mol. Catai. Catai. A: Chem. v. 209, p. 29, 2004. 3 : Production of liquid fuels from vegetable oils. Ministry of Industry and Commerce, Secretariat of Industrial Technology: Brasilia, 1985.: OVEREEM, A. et al. Seed oils rich in linolenic acid as renewable feedstock for environment-friendly crosslinkers in powder coatings. Industrial Crops and Products, v. 10, p.157-165, 1999. 5 : HAAS, MJ et al. Energy & Fuels, v. 15, p. 1207, 2001. 6 : O'BRIEN, RD; FARR, WE; PJ; Introduction to Fats and Oils Technology, 2nd ed. AOCS Press, 2000.
Os catalisadores utilizados na presente invenção reduzem em até 88 % do tempo reacional para o processo de polimerização térmica de óleos ou gorduras de origem vegetal ou animal ou, sendo um processo viável para a aplicação industrial. The catalysts used in the present invention reduce up to 88% of the reaction time for the thermal polymerization process of vegetable or animal oils or fats or, being a viable process for industrial application.
A viscosidade, resistência ao movimento de um fluxo em determinada temperatura, medida pelo método Gardner-Holdt (ASTM D1725 - 04 Standard Test Method for Viscosity of Resin Solutions), é adequada para avaliação do uso de determinado material a ser utilizado como veículo de tintas. O método faz uma correlação colorimétrica de faixas de viscosidade com 18 padrões visuais. The viscosity, resistance to movement of a flow at a given temperature, as measured by the Gardner-Holdt method (ASTM D1725 - 04 Standard Test Method for Viscosity of Resin Solutions), is suitable for evaluating the use of a particular paint carrier material. . The method makes a colorimetric correlation of viscosity ranges with 18 visual patterns.
Veículos fazem parte da fração fluida da tinta. Agem como o sistema carreador e transportador para o pigmento e se solidificam e fixam o pigmento ao substrato (EHRAN, S. Z. Printing inks. Chap. 9. In: EHRAN, S. Z. Industrial uses of vegetable oil. AOCS Publishing, 2005). Vehicles are part of the fluid fraction of paint. They act as the carrier and carrier system for the pigment and solidify and fix the pigment to the substrate (EHRAN, S. Z. Printing inks. Chap. 9. In: EHRAN, S. Z. Industrial uses of vegetable oil. AOCS Publishing, 2005).
A invenção também diz respeito aos polímeros obtidos pelo processo de polimerização da presente invenção e ao uso dos polímeros da invenção em, mas não se limitando, a: plastificantes, lubrificantes, agroquí- micos, veículos de tintas de impressão para processos offset e na produção de materiais de recobrimento de superfícies. The invention also relates to the polymers obtained by the polymerization process of the present invention and the use of the polymers of the invention in, but not limited to: plasticizers, lubricants, agrochemicals, offset printing inks and production vehicles. surface covering materials.
Os exemplos abaixo são colocados de forma a ilustrar e elucidar melhor a invenção e não podem ser tidos como forma de limitar a presente invenção. The examples below are set forth to further illustrate and elucidate the invention and may not be construed as limiting the present invention.
EXEMPLOSEXAMPLES
EXEMPLO 1 - Obtenção de catalisador por saponificação. EXAMPLE 1 - Obtaining catalyst by saponification.
Para obtenção do catalisador foi utilizado 0,02 mol de ácido gra- xo de soja refinado, de massa molar média de 277,28 g/mol (5,54 g), e 0,025 mol de NaOH (1 ,0 g). A mistura reagiu por 3 h, sob aquecimento em banho maria de água (aproximadamente 70 °C) e agitação magnética. Foi adicionado à mistura 0,01 mol de cloreto do metal a ser sintetizado, conforme Ta- bela 2, deixado reagir por mais 2 h, nas mesmas condições, a proporção de carboxilato:ferro foi de 2:1. O pH foi mantido próximo a 8 utilizando HCl 0,1 M e NaOH 0,1 M. O material foi seco em estufa a aproximadamente 1 10°C,
posteriormente adicionou-se hexano para a solubilização do complexo e a separação de impurezas e resíduos de reagentes. As fases foram separadas por centrifugação por aproximadamente 5 min. O solvente foi retirado utilizando evaporador rotativo, restando somente o catalisador purificado. To obtain the catalyst, 0.02 mol of refined soybean fatty acid, with an average molar mass of 277.28 g / mol (5.54 g), and 0.025 mol of NaOH (1.0 g) were used. The mixture was reacted for 3 h under heating in a water bath (approximately 70 ° C) and magnetic stirring. To the mixture was added 0.01 mol of chloride of the metal to be synthesized according to Table 2, allowed to react for a further 2 h under the same conditions, the carboxylate: iron ratio was 2: 1. The pH was kept close to 8 using 0.1 M HCl and 0.1 M NaOH. The material was oven dried at approximately 110 ° C. Hexane was then added for complex solubilization and separation of impurities and reagent residues. The phases were separated by centrifugation for approximately 5 min. The solvent was removed using rotary evaporator, leaving only the purified catalyst.
TABELA 2: Massa de 0,01 mol dos cloretos utilizados na síntese dos catalisadores. TABLE 2: 0.01 mol mass of chlorides used in catalyst synthesis.
EXEMPLO 2 - Polimerização térmica de óleo de soja refinado e óleo de soja residual. EXAMPLE 2 - Thermal polymerization of refined soybean oil and residual soybean oil.
Foi utilizado o sistema reacional para se obter o polímero ilustra- do na Figura 1 , que contém: um contentor de vidro (1) de capacidade de 1 L, com cinco bocas, uma central e as demais nas laterais do balão. Na boca central se localiza um agitador mecânico (2) com haste de agitação (3) para manter a reação com movimentação constante, nas bocas laterais há: um dedo frio (4) com termopar (5) para se determinar a temperatura da reação, um sistema com condensador (6) para facilitar o refluxo do material e manter a pressão constante, uma entrada de gás inerte (7), e à outra boca se localiza uma tampa de vidro (8) para a retirada de amostra mantida por manta de aquecimento (9). As amostras de catalisador foram retiradas do reator com uma pipeta de vidro. A relação molar de triglicerídeo/catalisador foi mantida em 215 mols de óleo residual/refinado para cada mol de catalisador. The reaction system was used to obtain the polymer illustrated in Figure 1, which contains: a 1 L glass container (1) with five mouths, one central and the other on the sides of the flask. In the central mouth is located a mechanical stirrer (2) with stirring rod (3) to keep the reaction with constant movement, in the lateral mouths there is: a cold finger (4) with thermocouple (5) to determine the reaction temperature, a condenser system (6) to facilitate backflow of the material and maintain constant pressure, an inert gas inlet (7), and to the other mouth is a glass cover (8) for sample retention maintained by a blanket. heating (9). Catalyst samples were taken from the reactor with a glass pipette. The molar ratio of triglyceride / catalyst was maintained at 215 moles of residual / refined oil for each mol of catalyst.
Realizou-se a polimerização térmica de óleo de soja refinado. Adicionaram-se 700 g de óleo de soja refinado a um reator munido de sistema de agitação e de aquecimento e com injeção de gás inerte (nitrogénio) durante a retirada da amostra. Adicionou-se em seguida 0,1 % de catalisa- dor. A mistura foi mantida a 300°C, durante o período de 12 h, sendo feitas
coletas de amostras a cada hora para acompanhamento da viscosidade pelo método Gardner-Holdt ASTM D-1545-63 utilizando viscosímetro Gardner- Holdt que se mede o tempo do deslocamento da bolha padrão na amostra com as bolhas padrões nas amostras de referência. As reações realizadas na presença dos catalisadores Cu2+(palma)2, Ni2+(palma)2, Fe2+(palma)2 e Ni2+(soja)2 demonstraram atividades catalíticas próximas. Reduzindo o tempo em aproximadamente 50 % para se atingir a viscosidade entre os padrões analisados em viscosímetro de bolha Gardner Z2-Z3. Thermal polymerization of refined soybean oil was performed. 700 g of refined soybean oil was added to a reactor provided with stirring and heating system and injected with inert gas (nitrogen) during sample withdrawal. 0.1% catalyst was then added. The mixture was kept at 300 ° C for 12 h and hourly sample collections for viscosity monitoring by the Gardner-Holdt ASTM D-1545-63 method using Gardner-Holdt Viscometer which measures the time of displacement of the standard bubble in the sample with the standard bubbles in the reference samples. Reactions performed in the presence of Cu 2+ (palm) 2 , Ni 2+ (palm) 2 , Fe 2+ (palm) 2 and Ni 2+ (soy) 2 catalysts demonstrated close catalytic activities. Reducing time by approximately 50% to achieve viscosity between standards analyzed on Gardner Z2-Z3 bubble viscometer.
Realizou-se também a polimerização térmica de óleo de soja re- sidual. Adicionaram-se 700 g de óleo de soja residual, utilizado previamente em processos de fritura de alimentos em comércios locais, a um reator munido de sistema de agitação e de aquecimento e com injeção de gás inerte (nitrogénio) durante a retirada da alíquota. Adicionou-se, em seguida, 0,1 % de catalisador. O mesmo método de obtenção de polímero a partir de óleo de soja residual foi aplicado substituindo-se catalisador carboxilato de ferro por carboxilato de cobre e caboxilatos de níquel na concentração 0,1 % em massa sobre a massa total de óleo de soja residual. Thermal polymerization of residual soybean oil was also performed. 700 g of residual soybean oil previously used in local trade food frying processes were added to a reactor equipped with stirring and heating and injected with inert gas (nitrogen) during aliquot removal. Then 0.1% catalyst was added. The same method of obtaining polymer from residual soybean oil was applied by replacing iron carboxylate catalyst with copper carboxylate and nickel caboxylates at a concentration by weight of 0.1% over the total mass of residual soybean oil.
A Tabela 3 mostra os resultados das viscosidades obtidas durante a reação de polimerização de óleo de soja refinado a 300°C utilizando os carboxilatos de Fe2+(palma)2, Cu2+(palma)2, Ni2+(palma)2 e Ni2+(soja)2 e a reação sem catalisador por um período de doze horas. Table 3 shows the results of the viscosities obtained during the refined soybean oil polymerization reaction at 300 ° C using Fe 2+ (palm) 2 , Cu 2+ (palm) 2 , Ni 2+ (palm) 2 carboxylates and Ni 2+ (soy) 2 and the reaction without catalyst for a period of twelve hours.
Nas reações contendo óleo residual (Tabela 4), o uso do catalisador de Ni2+(Palma)2 apresentou maior rendimento com relação à reação sem catalisador. Obtendo uma redução de tempo em aproximadamente 33 % para se atingir uma viscosidade entre os padrões de viscosidade Gardner Z-Z1 , os catalisadores de Fe2+(palma)2 e Ni2+(Soja)2 atingiram uma redução de tempo quando comparado a reação sem catalisador de aproximadamente 25 %.
TABELA 3: Viscosidade das reações de polimerização térmica a 300°C de óleo de soja refinado analisada com padrões Gardner Holdt.In reactions containing residual oil (Table 4), the use of Ni 2+ (Palma) 2 catalyst showed higher yield compared to the reaction without catalyst. Achieving a time reduction of approximately 33% to achieve a viscosity between Gardner Z-Z1 viscosity standards, the Fe 2+ (palm) 2 and Ni 2+ (soy) 2 catalysts achieved a time reduction when compared to reaction without catalyst approximately 25%. TABLE 3: Viscosity of thermal polymerization reactions at 300 ° C of refined soybean oil analyzed with Gardner Holdt standards.
□- Sem Catalisador, 0-Ni2+(soja)2, ·- Cu2+(palma)2, A-Ni2+(palma)2 e n-Fe2+(palma)2.
□ - Without Catalyst, 0-Ni 2+ (soy) 2 , · - Cu 2+ (palm) 2 , A-Ni 2+ (palm) 2 and n-Fe 2+ (palm) 2 .
TABELA 4: Viscosidade das reações de polimerização térmica a 300°C de óleo de soja residual analisada com padrões Gardner Holdt.TABLE 4: Viscosity of thermal polymerization reactions at 300 ° C of residual soybean oil analyzed with Gardner Holdt standards.
□- Sem Catalisador, 0-Ni2+(soja)2, ·- Cu2+(palma)2, A-Ni2+(palma)2 e n-Fe2+(palma)2.
□ - Without Catalyst, 0-Ni 2+ (soy) 2 , · - Cu 2+ (palm) 2 , A-Ni 2+ (palm) 2 and n-Fe 2+ (palm) 2 .
EXEMPLO 3 - Cinética de polimerização térmica de óleo de soja refinado e óleo de soja residual. EXAMPLE 3 - Thermal polymerization kinetics of refined soybean oil and residual soybean oil.
Avaliou-se o aumento da viscosidade cinemática nas amostras submetidas à reação de polimerização térmica. The increase of kinematic viscosity in samples submitted to thermal polymerization reaction was evaluated.
As reações foram realizadas com 500 g do óleo de soja refinado e óleo de soja residual na presença de 0,1 % de catalisador, na temperatura de 300°C, em atmosfera de N2 e com tempo total de reação de 180 min. As amostras foram retiradas a partir de 1 h e posteriormente de meia em meia hora, sendo analisadas por viscosímetro de Ubbelohde certificado, com ba- nho de viscosidade Herzog modelo HVE 38 à temperatura de 40°C para a determinação de viscosidade, de acordo com a norma ASTM D445. The reactions were carried out with 500 g of refined soybean oil and residual soybean oil in the presence of 0.1% catalyst, at 300 ° C, under N 2 atmosphere and total reaction time of 180 min. Samples were taken from 1 h and thereafter every half hour and analyzed by a certified Ubbelohde viscometer with Herzog model HVE 38 viscosity cuff at a temperature of 40 ° C to determine viscosity according to ASTM D445 standard.
Foram utilizados dez catalisadores: carboxilatos obtidos da com- plexação de óleo de palma e de soja com os íons: Ni2+, Co2+, Cu2+, Sn2+ e Fe2+, assim representados: Ni2+(Palma)2, Co2+(Palma)2, Cu2+(Palma)2, Sn2+ (Pal- ma)2, Fe2+(Palma)2, Ni2+(Soja)2, Co +(Soja)2, Cu2+(Soja)2, Sn2+(Soja)2 e Fe2+ (Soja)2. Ten catalysts were used: carboxylates obtained from com- plex ng palm oil and soybean ions: Ni 2+, Co 2+, Cu 2+, Sn 2+ and Fe 2+, represented as follows: Ni 2+ (Palma ) 2 , Co 2+ (palm) 2 , Cu 2+ (palm) 2 , Sn 2+ (palm) 2 , Fe 2+ (palm) 2 , Ni 2+ (soy) 2 , Co + (soy) 2 , Cu 2+ (Soy) 2 , Sn 2+ (Soy) 2 and Fe 2+ (Soy) 2 .
Com os dados obtidos, foi observado um comportamento do aumento de viscosidade próximo ao logaritmo nepteriano. Para se saber a velocidade de aumento da viscosidade com relação ao tempo foi obtido o logaritmo neperiano (In) das viscosidades e relacionado com os repectivos tempos de reação. Deste modo foi feita a linearização da viscosidade com o tempo que gerou um reta por meio da qual calcularam-se as constantes aparentes do aumento da viscosidade cinemática. Por conseguinte, determinou- se a atividade dos catalisadores e a das mudanças reacionais propostas. With the obtained data, a behavior of viscosity increase close to the nepterian logarithm was observed. In order to know the speed of viscosity increase in relation to time, the neperian logarithm (In) of viscosities was obtained and related to the respective reaction times. In this way the viscosity linearization was made with the time that generated a line through which the apparent constants of the kinematic viscosity increase were calculated. Therefore, the activity of the catalysts and the proposed reaction changes were determined.
Observa-se nas Tabelas 5 e 6 que, sob as mesmas condições reacionais, os catalisadores de níquel foram os mais ativos na reação envolvendo o óleo de soja refinado e também para o óleo residual (amostras 3, 8, 14 e 19) com redução de até 54 % do tempo reacional para se atingir viscosidade de 115 cSt neste sistema reacional para o Ni2+(palma)2. Tables 5 and 6 show that, under the same reaction conditions, nickel catalysts were the most active in the reaction involving refined soybean oil and also for residual oil (samples 3, 8, 14 and 19) with reduction. up to 54% of the reaction time to achieve viscosity of 115 cSt in this reaction system for Ni 2+ (palm) 2 .
TABELA 5: Constantes aparentes de velocidades obtidas para reações sem catalisador e com catalisador. Relação entre a constante aparente obtida com catalisador com relação à constante aparente da reação
sem catalisador. TABLE 5: Apparent velocity constants obtained for reactions without catalyst and catalyst. Relationship between apparent constant obtained with catalyst and apparent reaction constant without catalyst.
a Viscosidade final: 114 cSt. Final viscosity: 114 cSt.
TABELA 6: Constantes aparentes de velocidades obtidas para reações sem catalisador e com catalisador na polimerização de óleo de soja residual. Relação entre a constante aparente obtida com catalisador com relação à constante aparente da reação sem catalisador. Redução de tempo reacional com relação à viscosidade obtida em 180 min na reação sem catalisador. TABLE 6: Apparent velocity constants obtained for reactions without catalyst and catalyst in polymerization of residual soybean oil. Relationship between apparent constant obtained with catalyst and apparent constant of reaction without catalyst. Reduction of reaction time with respect to viscosity obtained by 180 min in reaction without catalyst.
a Viscosidade final: 195 cSt. Final Viscosity: 195 cSt.
EXEMPLO 4 - Polimerização térmica de óleo de soja refinado
óleo de soja residual utilizando variação da massa do catalisador de Ni2+(palma)2. EXAMPLE 4 - Thermal Polymerization of Refined Soybean Oil residual soybean oil using Ni 2+ catalyst mass change (palm) 2 .
Com o intuito de se observar o comportamento da variação de massa de catalisador de Ni2+(palma)2 com relação ao tempo de reação, rea- lizou-se a polimerização de 500 g de óleo de soja refinado durante 3 h à temperatura de 300°C com atmosfera de nitrogénio In order to observe the behavior of Ni 2+ (palm) 2 catalyst mass variation in relation to the reaction time, 500 g of refined soybean oil was polymerized for 3 h at room temperature. 300 ° C with nitrogen atmosphere
Após a obtenção dos resultados de atividade dos catalisadores carboxilato de ferro, cobalto, estanho e níquel, e cobre selecionou-se níquel (Ni2+) com ligante de óleo de palma para se determinar o comportamento da reação frente a diferentes concentrações de catalisador (com 0,2; 0,1 ; 0,04; 0,001 e 0,0002 % em massa) presente na reação. Observou-se um comportamento exponencial com perfil acima da atividade da reação sem catalisador, podendo ser observado na Figura 2. As constantes de velocidade da reação foram medidas linearizando-se a viscosidade pelo uso da função lo- garitmo neperiano (In) nos valores da viscosidade e posteriormente analisado o coeficiente da reta obtida para cada porcentagem de catalisador. Os dados encontrados foram: 0,145; 0,0146; 0,0139; 0,0122 e 0,0113 para as porcentagens em massa de 0,2; 0,1 ; 0,04; 0,001 e 0,0002 % respectivamente, com relação à massa de óleo de soja. After obtaining the activity results of the iron, cobalt, tin and nickel and copper carboxylate catalysts, nickel (Ni 2+ ) with palm oil binder was selected to determine the reaction behavior against different catalyst concentrations ( with 0.2, 0.1, 0.04, 0.001 and 0.0002 mass%) present in the reaction. An exponential behavior with a profile above the reaction activity without catalyst was observed, as shown in Figure 2. Reaction velocity constants were measured by linearizing the viscosity by using the neperian logitic function (In) in the values of the reaction. viscosity and then analyzed the coefficient of the straight line obtained for each catalyst percentage. The data found were: 0.145; 0.0146; 0.0139; 0.0122 and 0.0113 for mass percentages of 0.2; 0.1; 0.04; 0.001 and 0.0002% respectively, with respect to soybean oil mass.
TABELA 7: Constantes aparentes de velocidades obtidas para reações com diferentes concentrações em massa de catalisador com relação à massa total. TABLE 7: Apparent velocity constants obtained for reactions with different catalyst mass concentrations with respect to total mass.
*Comparativo com a viscosidade de 114 cSt obtida na terceira hora da reação a 300°C, com atmosfera de N2 sem a presença de catalisador. * Comparative with the 114 cSt viscosity obtained in the third hour of the reaction at 300 ° C, with N 2 atmosphere without the presence of catalyst.
Os resultados demonstram que nas concentrações de 0,2; a 0,04 praticamente não houve alteração na atividade do catalisador, demons-
irando que a atividade passa a não ser influenciada com o acréscimo de catalisadores. Para as concentrações de 0,001 e 0,0002 % houve considerável atividade porém com menores resultados quando comparado com as rea- ções com maior quantidade de catalisador, este perfil é resultado da diminui- ção dos sítios ativos para o processo reacional. The results demonstrate that at concentrations of 0.2; at 0.04 there was practically no change in catalyst activity, showing however, the activity is not influenced by the addition of catalysts. For the concentrations of 0.001 and 0.0002% there was considerable activity but with lower results when compared to the reactions with the largest amount of catalyst, this profile is a result of the decrease of the active sites for the reaction process.
Pode-se concluir que o aumento da concentração acima de 0,04 % em massa de catalisador no sistema pouco interferem no aumento da velocidade do processo de polimerização. It can be concluded that the increase of the concentration above 0.04% by mass of catalyst in the system little interferes with the increase of the polymerization process speed.
Este perfil é particularmente importante por demonstrar a quanti- dade mínima de catalisador necessária ao sistema reacional, e a não modificação da velocidade de reação com concentrações acima de 0,04 % de massa de catalisador na massa total do material. This profile is particularly important as it demonstrates the minimum amount of catalyst required for the reaction system, and the non-modification of the reaction rate with concentrations above 0.04% catalyst mass in the total material mass.
EXEMPLO 5 - Cinética de polimerização térmica de óleo de soja refinado e óleo de soja residual utilizando catalisador de Ni2+(palma)2 e gás de arraste. EXAMPLE 5 - Thermal polymerization kinetics of refined soybean oil and residual soybean oil using Ni 2+ (palm) 2 catalyst and carrier gas.
As reações consistiram da reação com 500 g de óleo de soja refinado e óleo residual, na presença de 0,1 % de catalisador de Ni2+(palma)2, por ser o que obteve melhor resultado, sob um gás de arraste (N2) para a retirada dos voláteis formados durante a reação. The reactions consisted of reaction with 500 g of refined soybean oil and residual oil in the presence of 0.1% of Ni 2+ catalyst (palm) 2, by which is obtained better result, under a carrier gas (N 2 ) for the removal of volatiles formed during the reaction.
Diferentemente das demais reações, o gás de arraste (N2) aumenta a viscosidade do material devido à retirada de moléculas de baixo peso molecular, sendo assim importante o seu estudo. Unlike other reactions, the carrier gas (N 2 ) increases the viscosity of the material due to the removal of low molecular weight molecules, so its study is important.
Utilizando óleo de soja refinado e catalisador, foi observado assim um aumento considerável na viscosidade, chegando a aproximadamente 16.000 cSt após 2,5 h de reação. As amostras obtidas utilizando gás de arraste foram analisadas utilizando o viscosímetro de bolha Gardner, entretanto, somente a amostra coletada após 1 ,5 h encontrava-se na faixa de análise (X-Y), obtendo redução de 76 % quando comparado com a reação sem catalisador. Using refined soybean oil and catalyst, a considerable increase in viscosity was observed, reaching approximately 16,000 cSt after 2.5 h of reaction. The samples obtained using carrier gas were analyzed using the Gardner bubble viscometer, however, only the sample collected after 1.5 h was in the analysis range (XY), obtaining a 76% reduction when compared to the reaction without catalyst. .
Ao testar o gás de arraste utilizando catalisador de Ni2+(palma)2 e óleo de soja residual, obteve-se uma viscosidade entre os padrões Z-Z1 para a alíquota de 1 ,5 h, reduzindo em 88 % o tempo de reação.
EXEMPLO 6 - Polimerização térmica de óleo de soja refinado com catalisador de Ni2+(palma)2 utilizando variação da temperatura reacio- nal. By testing the carrier gas using Ni 2+ (palm) 2 catalyst and residual soybean oil, a viscosity between Z-Z1 standards for the 1.5 h aliquot was obtained, reducing the reaction time by 88%. . EXAMPLE 6 - Thermal polymerization of refined soybean oil with Ni 2+ (palm) 2 catalyst using reaction temperature variation.
As reações consistiram da reação com 500 g de óleo de soja re- finado e óleo residual, na presença de 0,1 % de catalisador de Ni2+(palma)2, por ser o que obteve melhor resultado, sob fluxo de gás de arraste (N2) constante para a retirada dos voláteis formados durante a reação. The reactions consisted of the reaction with 500 g of refined soybean oil and residual oil, in the presence of 0.1% Ni 2+ (palm) 2 catalyst, as it was the best result, under gas flow. constant drag (N 2 ) to remove volatiles formed during the reaction.
Diferentemente das reações com atmosfera de nitrogénio, o gás de arraste (N2) aumenta a viscosidade do material devido à retirada de mo- léculas de baixo peso molecular, sendo assim importante o seu estudo. Unlike nitrogen atmosphere reactions, carrier gas (N 2 ) increases the viscosity of the material due to the removal of low molecular weight molecules, so its study is important.
Para se obter a atividade do catalisador com gás de arraste (N2), foram analisadas as reações nas temperaturas de 280, 300 e 310°C. As constantes de viscosidade e a redução do tempo de reação podem ser observadas na TABELA 8. To obtain the carrier gas catalyst activity (N 2 ), the reactions at 280, 300 and 310 ° C were analyzed. Viscosity constants and reduction of reaction time can be observed in TABLE 8.
É observada uma redução do tempo com o uso do gás de arraste e catalisador a medida que se aumenta a temperatura, chegando reduzir em até 90 % do tempo reacional a 310°C. A reduction in time is observed with the use of carrier gas and catalyst as the temperature rises, reducing by up to 90% of reaction time at 310 ° C.
TABELA 8: Constante aparente da viscosidade cinemática das reações sem catalisador e com Ni2+(Palma)2 nas temperaturas de 280°C, 300°C e 310°C. TABLE 8: Apparent constant of kinematic viscosity of reactions without catalyst and with Ni 2+ (Palma) 2 at temperatures of 280 ° C, 300 ° C and 310 ° C.
* Tempo de 180 min, 500 g de óleo refinado de soja, atmosfera de N2; ** Tempo de 180 min, 500 g de óleo refinado de soja, gás de arraste; ***Viscosidade de 51 ,6 cSt; **** Viscosidade de 68,1 cSt. * 180 min time, 500 g refined soybean oil, N 2 atmosphere; ** 180 min time, 500 g refined soybean oil, carrier gas; * ** Viscosity of 51.6 cSt; * *** Viscosity of 68.1 cSt.
*****Viscosidade de 556 cSt. ** * ** Viscosity of 556 cSt.
EXEMPLO 7 - Polimerização térmica de diferentes óleos com catalisador de Ni2+(palma)2. EXAMPLE 7 - Thermal polymerization of different oils with Ni 2+ catalyst (palm) 2 .
Foram escolhidos quatro óleos refinados, sendo eles o óleo de
soja, milho, girassol e canola, assim como o óleo residual para se avaliar a influência do catalisador de Ni2+(palma)2 com o gás de arraste a temperatura de 300°C em diferentes óleos. Four refined oils were chosen. soybean, corn, sunflower and canola, as well as residual oil to evaluate the influence of the Ni 2+ (palm) 2 catalyst with the carrier gas at 300 ° C in different oils.
Observa-se na Tabela 9 que o sistema é ativo utilizando os ó- leos estudados, chegando a resultados de 90 % de redução de tempo rea- cional utilizando óleo de soja refinado com a presença de catalisador e gás de arraste quando comparado com a reação padrão com óleo de soja refinado sem a presença de catalisador e com atmosfera de N2. Portanto, é comprovada a atividade em outros óleos vegetais ricos em ácidos graxos insaturados. Table 9 shows that the system is active using the oils studied, reaching 90% reduction in reaction time using refined soybean oil with the presence of catalyst and carrier gas when compared with the reaction. with refined soybean oil without catalyst and with N 2 atmosphere. Therefore, activity in other vegetable oils rich in unsaturated fatty acids is proven.
TABELA 9: Constante aparente da viscosidade cinemática das reações com Ni (palma)2 com os óleos de soja, residual, milho girassol e canola. TABLE 9: Apparent constant of kinematic viscosity of Ni (palm) 2 reactions with soybean, residual, sunflower and canola oils.
* Tempo de 180 min, 500 g de óleo, atmosfera de N2, 0,1 % de catalisador. **Comparação com a reação padrão de óleo de soja refinado com atmosfera de N2 a 300°C para se atingir a viscosidade de 113 cSt
* 180 min time, 500 g oil, N 2 atmosphere, 0.1% catalyst. ** Comparison with standard N 2 atmosphere refined soybean reaction at 300 ° C to achieve a viscosity of 113 cSt
Claims
1. Processo de polimerização de óleos ou gorduras de origem vegetal ou animal caracterizado por compreender as etapas de: 1. Polymerization process of oils or fats of vegetable or animal origin comprising the steps of:
i) adição de óleo e/ou gorduras a um reator munido de sistema de agitação e de aquecimento; (i) adding oil and / or fats to a reactor fitted with a stirring and heating system;
ii) injeção simultânea de gás inerte; ii) simultaneous injection of inert gas;
iii) adição de qualquer porcentagem em massa de catalisador a base de complexo de íon de metal; iii) adding any mass percent of metal ion complex catalyst;
iv) manutenção da temperatura entre 37°C e 500°C, por um tempo até a obtenção da viscosidade desejada iv) maintaining the temperature between 37 ° C and 500 ° C for a time until the desired viscosity is achieved.
v) interrupção da reação por meio da redução da temperatura do meio reacional para temperatura de 25°C ou menor. v) stopping the reaction by reducing the temperature of the reaction medium to a temperature of 25 ° C or lower.
2. Processo de acordo com a reivindicação 1 , caracterizado pela a adição de 0,04 a 0,2 % de pelo menos um catalisador à base de metal. Process according to Claim 1, characterized in that the 0.04 to 0.2% addition of at least one metal-based catalyst is added.
3. Processo de acordo com a reivindicação 2, caracterizado por dito catalisador à base de metais consistir de pelo menos um complexo de íon de metal que tem como ligante pelo menos um composto selecionado do grupo que compreende: carboxilato, acetato, octoato e ricinoleato e outros ligantes bidentados Process according to Claim 2, characterized in that said metal-based catalyst consists of at least one metal ion complex having as a binder at least one compound selected from the group comprising: carboxylate, acetate, octoate and ricinoleate and other bidentate binders
4. Processo de acordo com a reivindicação 3, caracterizado por dito pelo menos um complexo de íon de metal ter como ligante carboxilato obtido a partir de óleo ou gordura de origem vegetal ou animal. Process according to Claim 3, characterized in that at least one metal ion complex has a carboxylate binder obtained from oil or fat of vegetable or animal origin.
5. Processo de acordo com a reivindicação 1 , caracterizado pela temperatura preferencial entre 280 a 330°C. Process according to Claim 1, characterized in that the preferred temperature is between 280 and 330 ° C.
6. Processo de acordo com a reivindicação 3, caracterizado por dito pelo menos um complexo de íon de metal ser selecionado do grupo que consiste de: ferro, níquel, cobalto, estanho, titânio, cobre e alumínio. Process according to Claim 3, characterized in that at least one metal ion complex is selected from the group consisting of: iron, nickel, cobalt, tin, titanium, copper and aluminum.
7. Processo de acordo com a reivindicação 6, caracterizado por dito complexo de íon de metal consistir de carboxilato de ferro (II). Process according to Claim 6, characterized in that said metal ion complex consists of iron (II) carboxylate.
8. Processo de acordo com a reivindicação 6, caracterizado por dito complexo de íon de metal consistir de carboxilato de estanho(ll). Process according to Claim 6, characterized in that said metal ion complex consists of tin carboxylate (11).
9. Processo de acordo com a reivindicação 6, caracterizado por dito complexo de íon de metal consistir de carboxilato de níquel (II). Process according to Claim 6, characterized in that said metal ion complex consisting of nickel (II) carboxylate.
10. Processo de acordo com a reivindicação 6, caracterizado por dito complexo de íon de metal consistir de carboxilato de cobalto (II). Process according to Claim 6, characterized in that said metal ion complex consists of cobalt (II) carboxylate.
11. Processo de acordo com a reivindicação 6, caracterizado por dito complexo de íon de metal consistir de carboxilato de cobre (II). Process according to claim 6, characterized in that said metal ion complex consists of copper (II) carboxylate.
12. Processo de acordo com a reivindicação 1 , caracterizado por óleos ou gorduras de origem vegetal ou animal conterem pelo menos um ácido graxo insaturado predominante em sua composição. Process according to claim 1, characterized in that oils or fats of vegetable or animal origin contain at least one unsaturated fatty acid predominant in its composition.
13. Processo de acordo com a reivindicação 1 , caracterizado por ditos óleos ou gorduras de origem vegetal ou animal serem refinados ou residuais. Process according to Claim 1, characterized in that said oils or fats of vegetable or animal origin are refined or residual.
14. Processo de acordo com a reivindicação 1 , caracterizado por dito tempo até a obtenção da viscosidade desejada consistir num período de até 2 h de reação Process according to Claim 1, characterized in that said time until the desired viscosity is obtained is up to 2 h reaction time.
15. Processo de acordo com a reivindicação 1 , caracterizado por dito gás inerte ser injetado durante todo o tempo de reação. Process according to Claim 1, characterized in that said inert gas is injected throughout the reaction time.
16. Polímeros caracterizados por serem obtidos a partir do processo de qualquer uma das reivindicações 1 a 15. Polymers characterized in that they are obtained from the process of any one of claims 1 to 15.
17. Uso dos polímeros da reivindicação 16 caracterizado pelo fa- to de ser em plastificantes, lubrificantes, agroquímicos, veículos de tintas de impressão para processos offset e na produção de materiais de recobrimen- to de superfícies. Use of the polymers of claim 16 characterized in that they are in plasticizers, lubricants, agrochemicals, offset printing ink carriers and in the production of surface coating materials.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI1103265-0 | 2011-06-17 | ||
BRPI1103265-0A BRPI1103265B1 (en) | 2011-06-17 | 2011-06-17 | thermal polymerization process of oils and fats |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012171085A1 true WO2012171085A1 (en) | 2012-12-20 |
Family
ID=47356444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2012/000186 WO2012171085A1 (en) | 2011-06-17 | 2012-06-15 | Thermal polymerisation process of oils and fats |
Country Status (2)
Country | Link |
---|---|
BR (1) | BRPI1103265B1 (en) |
WO (1) | WO2012171085A1 (en) |
-
2011
- 2011-06-17 BR BRPI1103265-0A patent/BRPI1103265B1/en active IP Right Grant
-
2012
- 2012-06-15 WO PCT/BR2012/000186 patent/WO2012171085A1/en active Application Filing
Non-Patent Citations (7)
Title |
---|
BLAYO A. ET AL.: "Chemical and Rheological Characterization of Some Vegetals Oils Derivatives Commonly Used in Printing Inks", INDUSTRIAL CROPS AND PRODUCTS, vol. 14, 2001, pages 155 - 167 * |
CORDEIRO S. C. ET AL.: "Catalisadores Heterogeneos para a Produção de Monoésteres Graxos (Biodiesel)", QUIM. NOVA, vol. 34, no. 3, 2011, pages 477 - 486 * |
GUNER F. S.: "Anchovy Oil Thermal Polymerization Kinetics", JAOCS, vol. 74, no. 12, 1997, pages 1525 - 1529 * |
MELO, V. M.: "Tese de Mestrado sobre Estudo da Polimerização termica de Oleos e Gorduras - Universidade de Brasilia", PUBLICAÇÃO, 29 March 2012 (2012-03-29) * |
SHARMA V. ET AL.: "Addition Polymer from Natural Oils - A Review", PROG. POLYM. SCI., vol. 31, 2006, pages 983 - 1008 * |
SIMS R. P. A.: "Possible Mechanisms in Thermal Polymerization of Vegetable Oils. II. Polymer Formation", JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 34, no. 9, 1957, pages 466 - 469 * |
WANG C. ET AL.: "Studies of Thermal Polymerization of Vegetable Oils with a Differential Scanning Calorimeter", JAOCS, vol. 76, no. 10, 1999, pages 1211 - 1216 * |
Also Published As
Publication number | Publication date |
---|---|
BRPI1103265A2 (en) | 2013-02-05 |
BRPI1103265B1 (en) | 2020-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bharath et al. | Catalytic hydrodeoxygenation of biomass-derived pyrolysis oil over alloyed bimetallic Ni3Fe nanocatalyst for high-grade biofuel production | |
Boruah et al. | Preparation and characterization of Jatropha curcas oil based alkyd resin suitable for surface coating | |
Devi et al. | Evaluation of the effectiveness of potato peel extract as a natural antioxidant on biodiesel oxidation stability | |
Bora et al. | Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil-based alkyd resin | |
Deka et al. | Bio-based hyperbranched polyurethanes for surface coating applications | |
BR112014032139B1 (en) | COMPOSITION OF METATIZED NATURAL OIL, AS WELL AS ITS USE IN FORMULATION AND METHOD OF PRODUCTION | |
Ong et al. | Tailoring base catalyzed synthesis of palm oil based alkyd resin through CuO nanoparticles | |
WO2009000435A1 (en) | Process for the manufacture of saturated fatty acid esters in the presence of a homogeneous complex of a group viii metal and a sulfonated phosphite | |
JP5595417B2 (en) | Cobalt-based catalytic desiccant for polymer coatings | |
Ifijen et al. | Correlative studies on the properties of rubber seed and soybean oil-based alkyd resins and their blends | |
Odetoye et al. | Preparation and evaluation of Jatropha curcas Linneaus seed oil alkyd resins | |
Ghumman et al. | Synthesis and characterization of sustainable inverse vulcanized copolymers from non‐edible oil | |
Bakare et al. | Polyesters from renewable resources: preparation and characterization | |
De Silva et al. | Effect of karawila (Momordica charantia) seed oil on synthesizing the alkyd resins based on soya bean (Glycine max) oil | |
CN107635958B (en) | Polyol esters of metathesized fatty acids and uses thereof | |
Wong et al. | Spectroscopic Analysis of Epoxidised Jatropha Oil (EJO) and Acrylated Epoxidised Jatropha Oil (AEJO). | |
CN104327198A (en) | Maleic acid [beta]-cyclodextrin ester and preparation method thereof | |
CN105523923A (en) | Method of producing estolide using linking agent | |
WO2012171085A1 (en) | Thermal polymerisation process of oils and fats | |
Aigbodion et al. | Synthesis, characterisation and evaluation of heated rubber seed oil and rubber seed oil-modified alkyd resins as binders in surface coatings | |
Mello et al. | New metal catalysts active for thermal polymerization of vegetable oils | |
CN105358603B (en) | Similar PE polyester | |
Bora et al. | Alkyds from red silk-cotton (Bombax ceiba) seed oil and investigation on their microbial degradation | |
KR20170048520A (en) | Polyester polyols and use thereof in powder coatings | |
Yang et al. | Conjugation of soybean oil and it’s free-radical copolymerization with acrylonitrile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12800623 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12800623 Country of ref document: EP Kind code of ref document: A1 |