WO2012169781A2 - Apparatus for asymmetric processing, method for asymmetric processing, and processed material manufactured using same - Google Patents

Apparatus for asymmetric processing, method for asymmetric processing, and processed material manufactured using same Download PDF

Info

Publication number
WO2012169781A2
WO2012169781A2 PCT/KR2012/004469 KR2012004469W WO2012169781A2 WO 2012169781 A2 WO2012169781 A2 WO 2012169781A2 KR 2012004469 W KR2012004469 W KR 2012004469W WO 2012169781 A2 WO2012169781 A2 WO 2012169781A2
Authority
WO
WIPO (PCT)
Prior art keywords
roll
rolling
rolled material
extruded
rolled
Prior art date
Application number
PCT/KR2012/004469
Other languages
French (fr)
Korean (ko)
Other versions
WO2012169781A3 (en
Inventor
정효태
최병학
김동민
Original Assignee
강릉원주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강릉원주대학교 산학협력단 filed Critical 강릉원주대학교 산학협력단
Publication of WO2012169781A2 publication Critical patent/WO2012169781A2/en
Publication of WO2012169781A3 publication Critical patent/WO2012169781A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/06Making sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/08Dies or mandrels with section variable during extruding, e.g. for making tapered work; Controlling variation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/02Roll dimensions
    • B21B2267/06Roll diameter
    • B21B2267/065Top and bottom roll have different diameters; Asymmetrical rolling

Definitions

  • the present invention relates to a method for processing a material, and more particularly, to an asymmetric processing apparatus and processing method for improving material properties such as formability of a processed product by controlling the texture of a workpiece.
  • a rolling or extrusion process is generally performed.
  • the volume of the base material changes in the processing, the microstructure inside the base material also changes accordingly.
  • material properties such as formability, such as the mechanical properties of the material.
  • the metal material has an inherent slip system according to its crystal structure, and the moldability of the metal material can vary depending on whether or not the slip system is operated. Whether such a slip system works is largely related to the texture of the metal material.
  • the present invention has been made to solve the above-described problems, to provide a processing apparatus and a processing method capable of controlling the aggregate structure, and to provide a processing material in which the aggregate structure is controlled by such an apparatus and method. .
  • the foregoing problem has been presented by way of example, and the scope of the present invention is not limited by this problem.
  • the extruded material is manufactured by extruding the extruded material by pushing the extruded material through a die having an extrusion hole having an asymmetrical shape with respect to the plate surface direction of the extruded material and inducing shear deformation therein in the thickness direction of the extruded material.
  • the extruded material is rolled by pushing the rolled material between the first and second rolls having different diameters while inducing shear deformation force on the rolled material.
  • the extrusion hole of the die includes a tapered portion whose width is varied along the extrusion direction of the extruded material, the tapered portion has an asymmetrical shape with respect to the plate surface direction of the extruded material It may be arranged to have.
  • the manufacturing of the rolled material may include shearing applied to any one of the first and second surfaces of the rolled material by the first roll by controlling rotational angular velocities of the first and second rolls differently from each other.
  • the rolled material can be rolled by controlling the deformation force and the shear deformation force applied to any one of the first and second surfaces by the second roll to be different from each other.
  • the manufacturing of the rolled material may be performed by rolling the rolled material while maintaining the rotational linear velocity of the first roll and the second roll.
  • the manufacturing of the rolled material may include setting the first roll to apply the shear deformation force to the first surface and the second roll to apply the shear deformation force to the second surface, thereby continuously performing the rolled material two or more times. Rolling may be included.
  • the manufacturing of the rolled material may include rolling the rolled material at least once by changing a surface to which shear strain is applied from the first and second rolls of the rolled material.
  • the manufacturing of the rolled material may include rolling the rolled material two or more times by setting the rolling direction of the rolled material to be the same.
  • the manufacturing of the rolled material may include rolling the rolled material at least once by changing a rolling direction of the rolled material.
  • the manufacturing of the rolled material may be performed by coupling a third roll having a larger diameter than the first roll to the first roll on the opposite side of the second roll to support the first roll. .
  • an asymmetric processing method is provided. And a tapered portion whose width varies along the extrusion direction of the plate-shaped extrudable material, wherein the tapered portion has an asymmetrical shape with respect to the plate surface direction of the extruded material and the thickness direction of the extruded material. While being spaced apart from the tapered portion and pushed through a die including a first inner surface and a second inner surface facing the first and second surfaces of the extrudate respectively, inducing shear deformation therein in the thickness direction of the extrudate; Extruded material is prepared by extrusion. By using the extruded material as a rolled material, the rolled material is rolled by using one or more work rolls in which a pair of rolling rolls having different diameters rotating at the same rotational linear speed is used.
  • the manufacturing of the rolled material may be performed by combining a reinforcement roll supporting a rolling roll having a smaller diameter in the work roll to an opposite side of the rolling roll having a relatively larger diameter in the work roll. .
  • the first inner surface and the second inner surface of the die may be arranged to have different inclinations along the extrusion direction to be asymmetric with respect to the plate surface direction of the plate shape.
  • the cross section of the extrusion hole has a rectangular shape, and the die includes a third inner surface and a fourth inner surface spaced apart from the tapered portion along the width direction of the plate shape, and the third inner surface and the fourth inner surface are the extrusion. It can be arranged symmetrically along the direction.
  • a workpiece manufactured using at least one of the asymmetric processing methods described above.
  • an asymmetric processing apparatus including a rectangular extrusion hole for extruding the extruded material into a sheet shape, wherein the entry hole includes a tapered portion whose width varies along an extrusion direction of the extruded material, and the tapered portion is the sheet material.
  • An asymmetrical extruder having an asymmetrical shape with respect to the plate direction of the shape is provided.
  • a first roll contacting the first surface of the rolled material by using the extruded material extruded from the asymmetric extruder as a rolled material;
  • a second roll having a larger diameter than the first roll and in contact with a second face that is opposite the first face;
  • a power providing unit for supplying power to the first roll and the second roll so that the ratio of the rotational angular velocities of the first roll and the second roll can be adjusted.
  • the power supply unit may include a first motor and a second motor driving the first roll and the second roll, respectively; And a controller capable of controlling rotational angular velocities of the first motor and the second motor.
  • the asymmetric rolling mill the first gear connected to the first roll; And a second gear connected to the second roll and coupled with a different gear ratio from the first gear, wherein the power providing unit may include a motor providing a driving force to the first or second gear.
  • the asymmetric rolling mill may further comprise a third roll having a larger diameter than the first roll and coupled to support the first roll on the opposite side of the second roll.
  • asymmetric processing method and the asymmetric processing apparatus When using the asymmetric processing method and the asymmetric processing apparatus according to an embodiment of the present invention, it is possible to manufacture a processed material greatly improved material properties such as moldability compared to the prior art. Particularly, in the case of extrusion-rolling a metal material having poor moldability at room temperature, such as a magnesium alloy, according to an embodiment of the present invention, as the slip system is disposed so that shear deformation can occur well at room temperature, excellent room temperature formability which has not been obtained conventionally is obtained. Can have.
  • FIG. 1 is a schematic cross-sectional view of an asymmetric processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an asymmetric processing apparatus according to another embodiment of the present invention.
  • 3A and 3B are front and perspective views of a rolling mill of an asymmetric processing apparatus according to an embodiment of the present invention.
  • 4A and 4B are front and perspective views of a rolling mill of an asymmetric processing apparatus according to another embodiment of the present invention.
  • FIG. 5 is a front view of a rolling mill of an asymmetric processing apparatus according to another embodiment of the present invention.
  • FIG. 6 illustrates a slip system of magnesium having a hexagonal close-packed (HCP) structure.
  • FIG. 7 shows an aspect of a dense packed hexagonal tablet arranged inside the rolled material or the extruded material.
  • FIG. 8 shows the poles of the A, B, C, and D crystals of FIG.
  • Figure 9 illustrates the (0001) pole figure of the AZ31 alloy rolled by the rolling process of the asymmetric processing method according to an embodiment of the present invention.
  • Figure 13 shows a rolling process of the asymmetric processing method according to another embodiment of the present invention.
  • FIG. 14 shows the (0001) pole figure of the AZ31 alloy rolled by the rolling process shown in FIG.
  • FIG. 16 shows the (0001) pole figure of the AZ31 alloy rolled by the rolling process shown in FIG. 15.
  • 17 is a schematic cross-sectional view showing an extruder of an asymmetric processing apparatus according to an embodiment of the present invention.
  • FIG. 18 is a partially cut away perspective view showing a die of the extruder of FIG. 17.
  • FIG. 19 is a plan view of the dice of FIG. 18.
  • FIG. 20 is a partially cut perspective view showing a die included in an extruder of an asymmetric processing apparatus according to another embodiment of the present invention.
  • 21 is a cross-sectional view of the dice of FIG. 20.
  • Figure 23 is a (0001) pole figure in the -Z axis direction of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
  • 25 is a true stress-strain graph of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
  • 26 is a true stress-strain graph of the AZ31 sheet according to the comparative example.
  • FIG. 27 is a graph showing the r-value according to the angle with respect to the tensile axis of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
  • Asymmetric processing apparatus and asymmetric processing method provided through the present invention can be applied to any base material that can be applied to improve the material properties, such as formability, the following examples are intended to illustrate the technical spirit of the present invention.
  • the texture may represent a state in which the respective crystalline grains of the polycrystalline material are aligned in a constant direction.
  • the texture may be referred to as a texture or texture, and its scope is not limited by its name.
  • the texture of the material is used in a relative concept rather than an absolute concept. That is, the fact that a material has a texture in a certain direction means that a large part of the grains of the material have a texture in that direction, and that all the grains of the material have a texture in that direction. It does not mean.
  • the pole figure may represent a picture in the form of a stereoscopic projection showing the direction of distribution of the crystallographic lattice planes in the analysis of crystal orientation or texture of the material.
  • the pole figure can be shown using X-ray diffraction (XRD) analysis.
  • the rolled material means the object to be rolled and the rolled material means the object to be rolled is changed to the desired shape.
  • the material to be extruded means an object to be extruded
  • the extruded material means an object to which the material to be extruded is changed into a desired shape.
  • the workpiece refers to a material produced by processing the base material by extrusion, rolling, casting, forging, drawing or a combination thereof, in the present invention may be an extruded or rolled material according to the final processing process.
  • FIG. 1 is a schematic cross-sectional view of an asymmetric processing apparatus according to an embodiment of the present invention.
  • the asymmetric processing apparatus may include an asymmetric extruder 200 and an asymmetric rolling mill 100.
  • the asymmetrical rolling mill 100 may be coupled to the rear end of the asymmetrical extruder 200. Accordingly, the extruded material 250 is processed into the extruded material 260 via the asymmetrical extruder 200, and the extruded material 260 is used as the rolled material 104 to the rolled material 120 via the asymmetrical rolling mill 100. Can be prepared.
  • the rolled material 120 thus manufactured may be primarily processed while passing through the asymmetrical extruder 200, and then may be secondaryly deformed while passing through the asymmetrical rolling mill 100. For example, in the case of sheet processing, it can be processed first into a plate of a predetermined thickness in the asymmetric extruder 200, and then into a plate of a thinner final thickness in the asymmetric mill 100.
  • the asymmetric extruder 200 may include a die 230 including a rectangular, for example, rectangular extrusion hole 235 for extruding the extrudate 250 into the plate-like extruding material 260.
  • the extrusion hole 235 includes a tapered portion 234 whose width varies along the extrusion direction of the extruded material 250, and the tapered portion 234 is asymmetrical with respect to the extrusion direction, for example, the plate direction of the plate shape. It may have a shape.
  • the asymmetric rolling mill 100 may include a first roll 101 and a second roll 102. The first roll 101 is in contact with the first face 104a of the rolled material 104, and the second roll 102 has a larger diameter than the first roll and is the opposite side of the first face 104a. It may be in contact with the second surface 104b.
  • the extruded material 250 may be extruded using the asymmetric extruder 200 to produce an extruded material 260, and the extruded material 260 may be used as the rolled material 104.
  • This extruding step pushes the extrudate 250 through the die 230 having an extrusion hole 235 having an asymmetrical shape with respect to the extrusion direction of the extrudate 250, for example, the plate surface direction, thereby extruding the extrudate 250. It can be carried out while inducing shear deformation in the thickness direction of the inside.
  • the rolled material 120 can be formed by rolling the rolled material 104 using the asymmetric rolling mill 100.
  • This asymmetrical rolling step can be carried out continuously following the asymmetrical extrusion step using the extruded material 260 as the rolled material 104.
  • the rolled material 104 may be pushed between the first roll 101 and the second roll 102 having different diameters to induce shear deformation force on the rolled material 104.
  • the asymmetrical extrusion step and the asymmetrical rolling step may not be performed continuously, it may be performed intermittently.
  • the extruded material 260 can be cut into a predetermined size and used as the rolled material 104.
  • the rolling mill 100 and the extruder 200 may be provided as separate systems from each other. In this case, after extruding in the extruder 200 to produce an extruded material 260, it is cut to move to a predetermined size to move and then rolled in the rolling mill 100 can be produced a rolled material (120).
  • the workpiece for example, the extruded material 250 is asymmetrically processed in the asymmetric extruder 200 primarily to make the texture-controlled extruded material 260, which is again asymmetrical rolling mill 100
  • asymmetrical processing in the second texture-controlled rolling material 120 can be produced as a final processing material. According to this, since the texture of the final workpiece is controlled over the secondary, workability can be greatly improved. An effect of the texture control through the asymmetrical extruder 200 and the asymmetrical rolling mill 100 on the processability improvement will be described later with reference to FIGS. 3 to 27.
  • FIG. 2 is a schematic cross-sectional view of an asymmetric processing apparatus according to another embodiment of the present invention.
  • the asymmetrical machining apparatus according to this embodiment is a modification of some order in the asymmetrical machining apparatus of FIG. 1, and thus duplicated description is omitted in both embodiments.
  • the asymmetric extruder 200 may be disposed after the asymmetrical rolling mill 100.
  • the cutter 300 may be disposed between the rolling mill 100 and the extruder 200.
  • the extruding material (exposed to the container 210 coupled to the rear end of the die 230 of the extruder 200) 250).
  • the extrudate 250 is compressed by the stem 220 sealing the inner hole 215 of the container 210 to extrude the material 260 through the die 230 having the extrusion hole 235 having an asymmetric shape. It can be prepared as.
  • the rolling mill 100 and the extruder 200 may be provided as a separate system from each other.
  • the extruded material 260 may be manufactured by moving the extruded material 120 rolled by the rolling mill 100 and extruding the extruder 200.
  • FIG. 3 (a) and 3 (b) is shown a rolling mill of the asymmetric processing apparatus according to an embodiment of the present invention.
  • Figure 3 (a) is a front view of the rolling mill 100 of the processing apparatus according to an embodiment of the present invention
  • Figure 3 (b) is a rolling roll 101, 102 of the rolling device of Figure 3 (a)
  • only a part of the material to be rolled 104 is a perspective view.
  • asymmetrical rolling of different diameters of the first roll 101 and the second roll 102 A device, specifically, having a larger diameter than the first roll 101, the first roll 101 in contact with the first face 104a of the rolled material 104, and having the first surface 104a of the rolled material 104.
  • the second roll 102 in contact with the second surface 104b, which is the opposite side of the surface, and the rotational angular velocity of the first roll 101 and the second roll 102 can be adjusted differently from each other.
  • the first and second rolls 101 and 102 which are working rolls for rolling, are set as upper and lower rolls, respectively. It may be set in a different form.
  • the surface which contacts the 1st roll 101 which is an upper roll among the surfaces of the to-be-rolled material 104 rolled by the rolling apparatus 100 of FIG. 1 is the 1st surface 104a and the 2nd roll which is a lower roll.
  • the surface which contacts 102 is defined as the 2nd surface 104b. Accordingly, when rolling the rolled material 104 of FIG. 1 upside down, the first roll 101 comes into contact with the second surface 104b of the rolled material 104, and the second roll 102 is rolled material 104. It is in contact with the first surface (104a) of.
  • the first and second rolls 101 are formed between the frames 111 that are formed to be spaced apart in parallel on the pedestal 110 and fixed by fastening members 112 such as screws.
  • the power supply 105 includes a first motor 106 and a second motor 107 which drive the first roll 101 and the second roll 102, respectively. It may include a motor control unit 108 that can control the rotational angular velocity of the first motor 106 and the second motor 107.
  • the first motor 106 and the second motor 107 transmit rotational power to the first roll 101 and the second roll 102 through the connecting member 109.
  • the motor controller 108 may control the rotational angular velocities of the first roll 101 and the second roll 102 connected thereto by controlling the rotational angular velocities of the first motor 106 and the second motor 107.
  • the control can control the rotational linear velocity, which is defined as the diameter of the roll multiplied by the rotational angular velocity.
  • the motor control unit 108 maintains the rotational linear velocity of the first roll 101 and the second roll 102 and is the rolled material disposed between the first roll 101 and the second roll 102. 104) can be controlled to roll. That is, by controlling the ratio of the angular velocities of the first roll 101 and the second roll 102 to be equal to the ratio of the reciprocal of the diameters of the first roll 101 and the second roll 102, the first roll 101 and the second roll 102 are controlled.
  • the linear velocity of the roll 102 can be kept the same.
  • Figure 4 (a) and 4 (b) has a larger diameter than the first roll 101 and the opposite side of the second roll 102 It may further include a third roll 103 coupled to the first roll 101 to be disposed to support the first roll 101.
  • the first roll 101 and the second roll 102 may be a working roll for directly contacting the surface of the rolled material 104 to apply shear deformation force
  • the third roll 103 may be
  • the first roll 101 may be a backup roll to balance the external force applied from the second roll 102 having a larger diameter during the rolling process.
  • the power supply unit 105 may include a first motor 106 driving the first roll 101 or the third roll 103, a second motor 107 driving the second roll 102, and the first motor. It may include a motor control unit 108 that can control the rotational angular speed of the motor 106 and the second motor 107.
  • the first motor 106 is connected to the third roller 103 and transmits a driving force as shown in FIG. 4 (a), and the first motor 106 is coupled to be in contact with the rotation of the third roller 103.
  • the roll 101 is rotated together by friction.
  • the first motor 106 is connected to the first roll 101 to rotate the first roll 101, it is also possible to rotate the third roll 103 by friction in the same principle as above.
  • the power provided from the power supply may be transmitted to the work roll through the gear.
  • the first gear 114 connected to the first roll 101 or the third roll 103 and And a second gear 115 connected to the second roll 102 and coupled with the first gear 114 with a different gear ratio
  • the power supply 105 includes the first gear 114 or the second gear. It may include a motor 113 for transmitting a driving force to the gear 115.
  • the power of the motor 113 is configured to be transmitted to the second gear 115 through the drive gear 116.
  • the rolling mill of the present embodiment is not limited thereto, and the motor 113 is provided without the drive gear 116. It also includes a power directly connected to the first gear 114 or the second gear 115.
  • FIG. 5 shows a rolling machine with a third roll 103 as a reinforcing roll, the same as described above even when only the first roll 101 and the second roll 102 are provided without the third roll 103.
  • the first gear 114 can be connected to the first roll 101 and the second gear 115 can be connected to the second roll 102 in a manner.
  • first gear 114 or second gear 115 may be in the form of a variable gear that can variably change one or more gear ratios.
  • first gear 114 or the second gear 115 may be used. It may further include a gear control unit 117 connected to the gear 115.
  • the gear ratio of the first gear 114 and the second gear 115 in consideration of the diameter of the first roll 101 and the second roll 102.
  • the rotational linear speed of both rolls can be controlled.
  • the power generated from the motor 113 may be transmitted so that the first roll 101 and the second roll 102 have the same rotational linear velocity according to the gear ratio set as described above.
  • the gear ratio is adjusted according to the diameter of the first roll 101 or the second roll 102 mounted by the gear control unit 117. By varying the control, it is possible to equally control the rotational linear speeds of the first roll 101 and the second roll 102.
  • FIGS. 3 to 5 illustrate a work roll in which a first roll 101 and a second roll 102 having a difference in diameter form a pair
  • the present invention is not limited thereto. It also includes the case where a plurality of rolls are formed in close proximity. Therefore, the rolling process of the processing method described as all embodiments of the present invention may include a method of rolling the rolled material using at least one working roll of a pair of rolling rolls having different diameters from each other.
  • the rolled material to be rolled by the asymmetrical rolling device may include magnesium or magnesium alloy having a hexagonal close-packed (HCP) structure.
  • HCP hexagonal close-packed
  • Recently magnesium being studied as a next-generation light-weight member has a very good nasal help non-elastic coefficient lighter than aluminum a density of 1.74g / cm 3 as the density of 7.90g / cm 3 or of iron, 2.7g / cm 3.
  • it has excellent absorption ability against vibration, shock, electromagnetic waves, etc., and has excellent electric and thermal conductivity, so it is applied to the electronics industry such as mobile phones and laptops as well as lightweight materials such as automobiles and aircrafts.
  • magnesium having such a densely packed hexagonal crystal structure does not develop a slip system for molding, resulting in poor moldability at room temperature. That is, as shown in FIG. 6, the deformation mechanism of magnesium is mainly based on a base plane slip system of ⁇ 0001 ⁇ ⁇ 1120> and a ⁇ 1010 ⁇ ⁇ 1120> prismatic slip system. ), ⁇ 1011 ⁇ ⁇ 1120> pyramidal slip systems and the like are known to act.
  • the critical resolved shear stress values for changing mechanisms other than the base slip system at room temperature are very large compared to the critical resolved shear stress of the base slip system, the placement of the base slip system in the specimen is dependent on the room temperature formability. It will have a significant impact.
  • the base slip system is disposed parallel to the rolled surface of the rolled material 104 (that is, perpendicular to the ND of FIG. 7) or the base slip system in the horizontal axis direction TD as shown in FIG. 7B.
  • the moldability at room temperature becomes poor. This is because the peripheral surface direction (ie, ND, RD, and TD in FIG. 7) and the base surface slip system are perpendicular or horizontal to each other when the rolled magnesium is formed, making it difficult to operate the base surface slip system by external stress.
  • the arrangement direction and distribution of the base slip system in such a material can be confirmed by the (0001) pole figure of FIG. 8, in which the arrangements A, B, C, The pole arrangement on the (0001) pole figure according to D is shown.
  • the rolled material 104 including the first surface 104a and the second surface 104b is formed of the first roll 101 and the second roll ( The first surface 104a of the material to be rolled 104 by the first roll 101 and disposed between the plurality of rolls 102 and the rotational angular velocities of the first roll 101 and the second roll 102 are adjusted differently from each other.
  • any one of the second surface 104b for example, any other of the first surface 104a and the second surface 104b by the shearing force applied to the first surface 104a and the second roll 102.
  • the rolled material 104 may be rolled by controlling the shear deformation forces applied to the second surface 104b to be different from each other.
  • the to-be-rolled material 104 can be rolled, keeping the rotational linear velocity of the 1st roll 101 and the 2nd roll 102 the same.
  • the material to be rolled 104 may include an alloy name AZ31 as a magnesium alloy, hereinafter, AZ31 alloy is illustrated as a material to be rolled.
  • the rolling process of the asymmetrical processing method includes a method of rolling the same rolled material over a plurality of times. Such a plurality of times rolling method may be carried out to prevent a problem appearing when the sudden reduction amount is applied by sequentially applying the reduction amount adjusted to an appropriate level to the rolled material.
  • the plurality of times means that the rolled material rolled by the work roll is put into the same work roll again, or the rolled material passes through the work rolls provided in plurality, so that the total number of rolls of the rolled material becomes two or more times.
  • the rolled material to be rolled into the work roll includes both continuous and intermittent cases.
  • each rolling operation constituting a plurality of times may be referred to as a "pass".
  • FIG. 9 shows a pole figure when rolling the AZ31 alloy five times while controlling the first roll 101 and the second roll 102 to have the same rotational linear velocity using the rolling mill illustrated in FIG. 4. It is. At this time, the reduction ratio of the AZ31 alloy was 75%, and the rolling temperature was 300 °C. Rolling five times is applied in the same rolling direction, the first surface 104a and the second surface 104b of the AZ31 to be rolled in contact with the first roll 101 and the second roll 102 to apply the shear strain force, respectively.
  • 9 is a pole figure of the first surface 104a subjected to the shear deformation force by the first roll 101, and the upper view is the shear deformation force by the second roll 102. It is the (0001) pole figure of the received second surface 104b.
  • the crystallographic direction of the base surface that is, the (0001) plane of the (0001) plane on the (0001) pole figure is clearly off the center It can be seen that.
  • the rotational angle (ie, the off-center angle) of the base pole at the first surface 104a subjected to the shear deformation by the first roll 101 was about 15 degrees, and the shear deformation by the second roll 102. It was about 6 degrees in the 2nd surface 104b which received.
  • FIGS. 10-12 show the pole figure after rolling magnesium alloy AZ31 using the conventional rolling apparatus which has a working roll with the same diameter.
  • the pole figure of FIG. 10 has a reduction ratio of 75%, and the first and second surfaces of the AZ31 alloy, which is the rolled material, are in contact with the first roll and the second roll, respectively, while maintaining the rolling temperature at 300 ° C. (0001)
  • the pole figure after rolling over a plurality of times after setting to apply is the result.
  • FIG. 10 (a) shows the rolling amount per rolling being 10% and rolled 12 times
  • FIG. 10 (b) shows the rolling reduction 6 times with a rolling reduction of 20% per roll
  • FIG. 10 (a) to Figure 10 (c) it can be seen that in all conditions the poles have a maximum pole strength of 10 or more and all are centered.
  • poles of the base surface also have a maximum pole strength of 12 or more and are all gathered at the center.
  • Figure 12 (a) to Figure 12 (c) is a conventional roll roll while maintaining the rotational linear speed of any one of the work roll having the same diameter larger than the rotational linear speed of any other roll
  • the (0001) pole figure of the AZ31 alloy rolled by the two-speed rolling method of is shown.
  • the ratio of the rotational linear velocity of both rolls having different rotational linear speeds was maintained at 3: 1 and the rolling temperature was 200 ° C., and the reduction amounts were 70%, 30%, respectively in FIGS. 15%.
  • 12 (a) to 12 (c) are bottom views of the surface subjected to shear deformation by a rapidly rotating roll, and the top view of the surface subjected to shear deformation by a slowly rotating roll ( 0001) pole figure.
  • the AZ31 alloy rolled by the rolling process of the asymmetric processing method according to an embodiment of the present invention is superior in the crystallographic direction of the base surface compared to the AZ31 alloy rolled using a rolling roll having the same diameter as in Comparative Example It can be seen that they are arranged in a direction that can have sex.
  • the application of the asymmetric shear deformation force due to the difference in diameter of the two rolls is performed during the process in which both rolls have the same rotational linear velocity. Sliding the rolled material did not occur even in asymmetrical rolling, and there was no problem of warping or surface roughening of the rolled material as in two-speed rolling.
  • the rotational angular velocity of the first roll 101 and the second roll 102 is the difference of the rotational linear speed defined by Equation 1 below Can be controlled to be 10% or less.
  • the rolling process of the asymmetric processing method consisting of a plurality of times
  • the number of times to change the surface subjected to the shear deformation force from the first roll 101 and the second roll 102 of the material to be rolled includes a method of rolling the rolled material two or more times, including at least once.
  • the rolling direction is the same, and in the first pass of rolling, the first surface 104a of the rolled material 104 is formed on the first roll 101 and the second roll 102.
  • the rolled material 104 is placed and rolled so that the second surface 104b is in contact with each other, and then the first surface 104a of the same rolled material 104 is in contact with the second roll 102 and is
  • the second pass of rolling can be performed by turning over the to-be-rolled material 104 so that the two surfaces 104b may contact the first roll 103.
  • a plurality of passes of two or more passes may be performed in a batch type in the same rolling roll, or may be performed in a plurality of different rolling rolls in charge of each pass.
  • the shear strain applied asymmetrically is alternately applied to the first surface 104a and the second surface 104b and rolled accordingly. It is possible to obtain the effect that the shear strain applied to each side of the first pass and the second pass of the averaged to a certain level.
  • the number of rolling may be performed two or more times according to the desired rolling reduction, and if the first and second surfaces of the rolled material are rolled alternately up and down with each other, the number or alternating cycle is limited. There is no
  • FIG. 14 shows the pole figure in the case where rolling of the AZ31 alloy, which is a rolled material, is carried out once in a rolling temperature of 300 ° C. in alternating rolling surfaces up and down to perform a total of five passes of rolling (75% reduction ratio). It is. It can be seen that the rotation angle of the base surface is about 17 degrees, which is significantly higher than the pole figure shown in FIGS. 10 to 12.
  • the rolling process of the asymmetrical processing method includes all methods of rolling over a plurality of times while varying the rolling direction.
  • rolling of the rolled material 104 such that the A direction of the rolled material 104 is first introduced between the first roll 101 and the second roll 102.
  • the first surface 104a and the second surface 104b of the same rolled material 104 are continuously maintained in the same manner as in the first pass, and then only 180 degrees of the direction to be introduced into both rolling rolls is changed. It is a method of setting so that the B direction of the extending
  • FIG. 16 shows the pole figure in the case of performing rolling (pass rate of reduction 75%) in a total of 5 passes by rolling the AZ31 alloy, which is a rolled material, at a rolling temperature of 300 ° C. in a cycle of 180 degrees in a single cycle.
  • . 16 is a pole figure of a first surface 104a subjected to shear deformation force by the first roll 101, and an upper view is a second surface subjected to shear deformation force by the second roll 102 This is the (0001) pole figure of (104b).
  • the rotation angle was about 5 degrees at the first surface 104a sheared by the first roll 101, and the second surface sheared by the second roll 102. It was about 17 degrees at 104b. From this it can be seen that the rotation angle is significantly higher than the poles shown in Figures 10 to 13.
  • the rolled material is not only re-injected after being physically separated from the work roll of the rolling apparatus, but also the rolled material is worked. It also includes a case in which the work rolls are placed again between the work rolls as the rotation direction of the work rolls is reversed while still being disposed between the rolls.
  • the rolling mill and the rolling process using the asymmetric processing apparatus described above can be applied to any material that controls the texture of the rolled material in addition to the magnesium or the magnesium alloy from above.
  • a metal material with a dense packed hexagonal crystal structure containing titanium (Ti) or a titanium alloy is used as a rolled material, or the crystallographic direction of a metal material or a rolled material including aluminum or an aluminum alloy affects the magnetic properties.
  • Fe-Si alloys can also be included in the rolled material.
  • FIG. 17 is a schematic cross-sectional view showing an extruder of an asymmetric processing apparatus according to an embodiment of the present invention.
  • FIG. 18 is a partially cut away perspective view showing a die of the extruder of FIG. 17.
  • 19 is a plan view of the dice of FIG. 18.
  • a container 210 for charging the extruded material 250 may be provided.
  • the extruded material 250 may be charged into the inner hole 215 in the container 210 in the form of a billet.
  • the extrudate 250 may be loaded into the inner hole 215 in the container 210 in the form of powder or green compact.
  • the container 210 may have an inner hole 215 and an outer shape having various shapes to accommodate the extruded material 250. Therefore, the shape of the extrudate 250 and the container 210 may be variously modified, and does not limit the scope of this embodiment.
  • the stem 220 may be disposed in the container 210 to compress the extruded material 250 into the container 210.
  • the shape of the stem 220 can be tailored to the shape of the inner hole 215 of the container 210.
  • the appearance of the stem 220 may not match the shape of the inner hole 215, in which case a portion of the extrudate 150 may remain uncompressed in the container 210.
  • Stem 220 may be referred to as a ram or compressor, and the scope of this embodiment is not limited by its terminology and shape.
  • the die 230 may be coupled to the front end of the container 210 opposite the stem 220.
  • the stem 220, the container 210, and the dice 230 may be coupled in a row, for example, arranged in the X-axis direction of FIG. 17.
  • This X-axis direction may be the extrusion direction of the extrudate 250.
  • the stem 220, the container 210, and the dice 230 may not be arranged in a line, in which case the extrusion direction may be primarily determined based on the dice 230.
  • the die 230 may have an extrusion hole 235 that defines the extrusion shape of the extrudate 150.
  • the extruded material 150 may be converted into a plate-shaped extruded material 160 while passing through the extrusion hole 235 in the die 230.
  • the XY plane is the plate surface direction of the extruded material 160
  • the Z axis direction is the thickness direction of the extruded material 160
  • the X axis direction is the longitudinal direction of the extruded material 160
  • the Y axis direction is It may be the width direction of the extruded material 160.
  • the extrusion hole 235 may include a tapered portion 234 having a variable width and a fixed portion 232 having a constant width.
  • the extrudate 250 compressed by the stem 220 may be substantially varied in width and shape as it passes through the tapered portion 234 and then extruded into the shape of the extrudate 260 while passing through the fixing portion 232. have.
  • the tapered portion 234 of the extrusion hole 235 may have an asymmetrical shape with respect to the extrusion direction (X-axis direction) in order to control the texture of the extrusion material 260 as described below.
  • the extrusion hole 235 may have a rectangular cross-sectional shape with respect to the YZ plane.
  • the die 230 defines an extrusion hole 235 and has a first inner surface 242 and a second inner surface 244 opposite to the first and second surfaces of the extrudate 250 and the left and right sides of the extrudate ( And a third inner surface 246 and a fourth inner surface 248 opposite to each other.
  • the first inner surface 242 and the second inner surfaces 244 are spaced apart along the thickness direction (Z-axis direction) of the extruded material 250 or the extruded material 260, and the third inner surface 246 and the fourth inner surface ( 248 may be spaced apart from each other in the width direction (Y-axis direction) of the extruded material 250 or the extruded material 260.
  • the first inner surface 242 and the second inner surface 244 may define a plate surface of the extruded material 260.
  • the first inner surface 242 and the second inner surface 244 may be asymmetrically disposed with respect to the plate direction (XY plane) of the extruded material 260 to effectively induce shear deformation in the extruded material 260.
  • the first inner surface 242 and the second inner surface 244 may extend at different inclinations.
  • the first inner surface 242 may have a predetermined slope with respect to the extrusion direction (X-axis direction), and the second inner surface 244 may be parallel to the extrusion direction (X-axis direction).
  • the extruded material 250 may be subjected to a large shear deformation by varying its deformation angle between the first inner surface 242 and the second inner surface 244.
  • the shear deformation between the first inner surface 142 and the second inner surface 244 can be rather straightforward because the second inner surface 244 is parallel to the extrusion direction, and thus can be easily controlled.
  • Such shear deformation may greatly affect the texture deformation of the plate material of the extruded material 260. The change in the texture may have a great influence on the moldability of the extruded material 260 as described later.
  • the third inner surface 246 and the fourth inner surface 248 may define sides of the extruded material 260.
  • the third inner surface 246 and the fourth inner surface 248 may not significantly affect the texture of the extruded material 260. Accordingly, the third inner surface 246 and the fourth inner surface 248 may be symmetrically disposed, for example, parallel to the thickness direction (Z-axis direction) of the extruded material 260. In a modified example of this embodiment, the third inner surface 246 and the fourth inner surface 248 may be arranged asymmetrically.
  • the extruding material 250 may be charged into the container 210. Subsequently, the extrudate 250 in the container 210 may be compressed using the stem 220. Subsequently, the extruded material 250 may be pushed out through the die 230 to form an extruded material 260 having a plate shape. As described above, since the die 230 has extrusion holes 235 having an asymmetrical shape with respect to the extrusion direction, the extruded material 250 can be extruded while inducing shear deformation in the extruded material 250. Extrusion process of this asymmetric processing method can be understood in more detail with reference to the description of the extruder of FIGS. 17 to 19 above.
  • the texture of the extrudate 260 can be controlled. Accordingly, the texture of the extruded material 260 may be different from that of the extruded material 250. Therefore, in the case of the extruded material 250 having poor moldability under ordinary extrusion conditions, the moldability of the extruded material 260 may be improved by extruding the aggregated structure.
  • the charging step of the extrusion material 250 and the compression step of the extrusion material 250 may be variously modified or omitted.
  • the extruded material 250 may be charged directly into the die 230 and compressed in the die 230.
  • the charging step, the compression step and the extrusion step of the extrudate 250 may be referred to as a series of extrusion steps without being distinguished from each other.
  • the extruded material 260 manufactured according to the extrusion process of the above-described asymmetric processing method may be repeatedly subjected to the above asymmetric extrusion process or more rough rolling process in order to make the thickness thereof thinner.
  • FIG. 20 is a partially cut perspective view showing a die 230a included in an extruder of an asymmetric processing apparatus according to another embodiment of the present invention.
  • FIG. 21 is a cross-sectional view of the dice 230a of FIG. 20.
  • the die 230a according to this embodiment corresponds to a modification of some configurations in the die 230 of FIGS. 17 to 19, and thus, redundant descriptions of the two embodiments are omitted.
  • the extrusion hole 235 may still have an asymmetrical shape with respect to the extrusion direction (X-axis direction).
  • the first inner surface 242 and the second inner surface 244a defining the tapered portion 234a may have different angles of inclination relative to the extrusion direction (X-axis direction).
  • the first inner surface 244a is not parallel to the extrusion direction and may extend at an angle different from that of the first inner surface 242.
  • the inclination of the first inner surface 242 and the second inner surface 244a is exemplarily illustrated, and may be variously modified within a range in which the first inner surface 242 and the second inner surface 244a have different inclinations. .
  • the tapered portion 234a of the extrusion hole 235 may still have an asymmetrical shape with respect to the extrusion direction.
  • the tapered portion 234a of the extrusion hole 235 may have an asymmetrical shape with respect to the plate direction (XY plane) of the extrusion material (260 of FIG. 17).
  • the material to be extruded may still undergo shear deformation because its deformation angle is different between the first inner surface 242 and the second inner surface 244a.
  • the shear deformation may be somewhat complicated. Such shear deformation may affect the texture deformation of the extruded material (260 of FIG. 17).
  • the extrusion process using the die 230a of FIGS. 20 and 21 may be understood from the above description, and further may be understood with reference to the description of the extrusion method using the die 230 of FIGS. 18 and 19. .
  • the extruded material (250 of FIG. 17) to which the aforementioned asymmetric extruder and asymmetrical extrusion process are applied may include various materials.
  • the extrudate 250 may include various metals having a texture or a metal alloy thereof.
  • Such metals or metal alloys may have a variety of crystal structures, such as hexagonal closed-packed (HCP), face centered cubic (FCC), body centered cubic (BCC) structure, etc. Can have Since the crystal structure is as described above, detailed description is omitted to avoid duplication.
  • FIG 22 is a (0001) pole figure in the + Z axis direction of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
  • Figure 23 is a (0001) pole figure in the -Z axis direction of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
  • 24 is a (0001) pole figure of the AZ31 sheet according to the comparative example.
  • the AZ31 plate asymmetrically extruded according to the embodiment of the present invention has a crystallographic direction of the base surface, that is, the (0001) plane, clearly deviated from the center on the (0001) pole figure.
  • the arrangement on the (0001) pole figure of the asymmetrically extruded AZ31 sheet is similar to the fourth specimen D of FIGS. 7 and 8.
  • asymmetrically extruded AZ31 sheet material is arranged so that its base surface slip system maintains a constant angle with the peripheral direction, showing excellent formability.
  • 25 is a true stress-strain graph of the AZ31 sheet extruded by the extrusion process of the asymmetric extrusion-rolling composite method according to an embodiment of the present invention.
  • 26 is a true stress-strain graph of the AZ31 sheet according to the comparative example.
  • the asymmetrically extruded AZ31 sheet according to the embodiment of the present invention it can be seen that a high elongation of 35% or more.
  • the AZ31 plate according to the comparative example it can be seen that the low elongation of 15 ⁇ 20%. Therefore, it can be seen that the elongation of the AZ31 sheet can be greatly improved by using the asymmetric extrusion method. This improvement in elongation can lead to improved formability of the AZ31 sheet.
  • FIG. 27 is a graph showing the r-value according to the angle with respect to the tensile axis of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
  • the asymmetrically extruded AZ31 sheet has not high anisotropy according to the tensile angle and has a high r-value of steel level.
  • the AZ31 plate asymmetrically extruded according to the embodiments of the present invention has a significantly different texture than the AZ31 plate according to the comparative example, it can be seen that exhibits high elongation and excellent formability.
  • metal or metal alloy having the above-described HCP structure may be applied on a similar principle to metals or metal alloys having other structures, such as BCC structures, FCC structures, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Extrusion Of Metal (AREA)

Abstract

The present invention aims to provide an apparatus for asymmetric processing and a method for asymmetric processing using same for enhancing material properties, such as moldability, by controlling the texture of a base material. According to one aspect of the present invention, an extruded material is pushed through a dice having asymmetric extrusion holes with respect to a flat surface direction of the extruded material, so that the extruded material is extruded by inducing shearing deformation on the inside of the extruded material in the widthwise direction thereof, thereby forming the extruded material. Using the extruded material as a rolled material, a rolled material is pushed through between first rolls and second rolls having different diameters, so that the rolled material is rolled by inducing shearing deformation on the rolled material force, thereby forming the rolled material.

Description

비대칭 가공장치, 비대칭 가공방법 및 이를 이용하여 제조된 가공재Asymmetrical processing apparatus, asymmetrical processing method and processed materials manufactured using the same
본 발명은 재료의 가공방법에 관한 것으로서, 특히 피가공재의 집합조직을 제어함으로써 가공산물의 성형성 등의 재료물성을 향상시키는 비대칭 가공장치 및 가공방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a material, and more particularly, to an asymmetric processing apparatus and processing method for improving material properties such as formability of a processed product by controlling the texture of a workpiece.
금속부재를 일정한 규격을 가진 판재 등의 형태로 가공하기 위하여 일반적으로 압연 또는 압출공정이 행해지게 된다. 상기 가공과정에서 모재의 부피변화에 따라 모재 내부의 미세조직도 이에 수반하여 변화되게 된다. 재료의 집합조직은 그 재료의 기계적 특성과 같은 재료물성, 예컨대 성형성에 큰 영향을 미치는 것으로 알려져 있다. 통상적으로, 금속 재료는 그 결정 구조에 따라서 고유의 슬립계를 갖고 있고, 이 금속 재료의 성형성은 이 슬립계의 작용 여부에 따라서 달라질 수 있다. 이러한 슬립계의 작용 여부는 그 금속 재료의 집합조직(texture)과 크게 관련된다.In order to process the metal member in the form of a plate or the like having a predetermined standard, a rolling or extrusion process is generally performed. As the volume of the base material changes in the processing, the microstructure inside the base material also changes accordingly. It is known that the texture of a material has a great influence on material properties, such as formability, such as the mechanical properties of the material. Usually, the metal material has an inherent slip system according to its crystal structure, and the moldability of the metal material can vary depending on whether or not the slip system is operated. Whether such a slip system works is largely related to the texture of the metal material.
하지만, 통상적인 대칭적인 압출방법 또는 압연방법에 의하면, 모재의 집합조직을 제어하여 그 성형성을 향상시키기 어렵다.However, according to the conventional symmetrical extrusion method or rolling method, it is difficult to control the texture of the base metal to improve its formability.
이에, 본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 집합조직을 제어할 수 있는 가공장치 및 가공방법을 제공하고, 이러한 장치 및 방법에 의해서 집합조직이 제어된 가공재의 제공을 목적으로 한다. 전술한 과제는 예시적으로 제시되었고, 본 발명의 범위가 이러한 과제에 의해서 제한되는 것은 아니다.Accordingly, the present invention has been made to solve the above-described problems, to provide a processing apparatus and a processing method capable of controlling the aggregate structure, and to provide a processing material in which the aggregate structure is controlled by such an apparatus and method. . The foregoing problem has been presented by way of example, and the scope of the present invention is not limited by this problem.
본 발명의 일 관점에 따른 비대칭 가공방법이 제공된다. 피압출재의 판면 방향을 기준으로 비대칭적 형상의 압출 구멍을 갖는 다이스를 통해서 상기 피압출재를 밀어내어 상기 피압출재의 두께 방향으로 내부에 전단변형을 유도하면서 상기 피압출재를 압출하여 압출재를 제조한다. 상기 압출재를 피압연재로 하여, 상기 피압연재를 서로 다른 직경을 갖는 제 1 롤 및 제 2 롤의 사이로 밀어내어 상기 피압연재에 전단변형력을 유도하면서 상기 피압연재를 압연하여 압연재를 제조한다.An asymmetric processing method according to one aspect of the present invention is provided. The extruded material is manufactured by extruding the extruded material by pushing the extruded material through a die having an extrusion hole having an asymmetrical shape with respect to the plate surface direction of the extruded material and inducing shear deformation therein in the thickness direction of the extruded material. Using the extruded material as a rolled material, the rolled material is rolled by pushing the rolled material between the first and second rolls having different diameters while inducing shear deformation force on the rolled material.
상기 압출재를 제조하는 단계에서, 상기 다이스의 압출 구멍은 상기 피압출재의 압출 방향을 따라서 그 폭이 가변되는 테이퍼 부분을 포함하고, 상기 테이퍼 부분은 상기 피압출재의 판면 방향을 기준으로 비대칭적인 형상을 갖도록 배치될 수 있다.In the step of manufacturing the extruded material, the extrusion hole of the die includes a tapered portion whose width is varied along the extrusion direction of the extruded material, the tapered portion has an asymmetrical shape with respect to the plate surface direction of the extruded material It may be arranged to have.
상기 압연재를 제조하는 단계는 상기 제 1 롤 및 제 2 롤의 회전각속도를 서로 상이하게 조절하여 상기 제 1 롤에 의해 상기 피압연재의 상기 제 1 면 및 제 2 면 중 어느 하나에 인가되는 전단변형력과 상기 제 2 롤에 의해 상기 제 1 면 및 제 2 면 중 다른 어느 하나에 인가되는 전단변형력이 서로 상이하도록 제어하여 피압연재를 압연할 수 있다.The manufacturing of the rolled material may include shearing applied to any one of the first and second surfaces of the rolled material by the first roll by controlling rotational angular velocities of the first and second rolls differently from each other. The rolled material can be rolled by controlling the deformation force and the shear deformation force applied to any one of the first and second surfaces by the second roll to be different from each other.
상기 압연재를 제조하는 단계는, 상기 제 1 롤 및 제 2 롤의 회전선속도를 동일하게 유지하면서 상기 피압연재를 압연하여 수행할 수 있다. The manufacturing of the rolled material may be performed by rolling the rolled material while maintaining the rotational linear velocity of the first roll and the second roll.
상기 압연재를 제조하는 단계는, 상기 제 1 롤이 상기 제 1 면에 전단변형력을 인가하고 상기 제 2 롤이 상기 제 2 면에 전단변형력을 인가하도록 설정하여 연속하여 2 회 이상 상기 피압연재를 압연하는 단계를 포함할 수 있다.The manufacturing of the rolled material may include setting the first roll to apply the shear deformation force to the first surface and the second roll to apply the shear deformation force to the second surface, thereby continuously performing the rolled material two or more times. Rolling may be included.
상기 압연재를 제조하는 단계는, 상기 피압연재의 상기 제 1 롤 및 제 2 롤로부터 전단변형력을 인가받는 면을 바꾸어 적어도 1회 상기 피압연재를 압연하는 단계를 포함할 수 있다.The manufacturing of the rolled material may include rolling the rolled material at least once by changing a surface to which shear strain is applied from the first and second rolls of the rolled material.
상기 압연재를 제조하는 단계는, 상기 피압연재의 압연방향을 동일하게 설정하여 2 회 이상 상기 피압연재를 압연하는 단계를 포함할 수 있다.The manufacturing of the rolled material may include rolling the rolled material two or more times by setting the rolling direction of the rolled material to be the same.
상기 압연재를 제조하는 단계는, 상기 피압연재의 압연방향을 다르게 하여 적어도 1회 상기 피압연재를 압연하는 단계를 포함할 수 있다.The manufacturing of the rolled material may include rolling the rolled material at least once by changing a rolling direction of the rolled material.
상기 압연재를 제조하는 단계는, 상기 제 1 롤에 비해 더 큰 직경을 가지는 제 3 롤을 상기 제 2 롤의 반대편에서 상기 제 1 롤에 결합시켜 상기 제 1 롤을 지지하게 하여 수행할 수 있다.The manufacturing of the rolled material may be performed by coupling a third roll having a larger diameter than the first roll to the first roll on the opposite side of the second roll to support the first roll. .
본 발명의 다른 관점에 따른 비대칭 가공방법이 제공된다. 판재 형상의 피압출재의 압출 방향을 따라서 그 폭이 가변되는 테이퍼 부분을 포함하고 상기 테이퍼 부분은 상기 피압출재의 판면 방향을 기준으로 비대칭적 형상을 갖는 압출 구멍 및 상기 피압출재의 두께 방향을 따라서 상기 테이퍼 부분에 이격 배치되며 상기 피압출재의 제 1 면 및 제 2 면과 각각 대향하는 제 1 내면 및 제 2 내면을 포함하는 다이스를 통해서 밀어내어 상기 피압출재의 두께 방향으로 내부에 전단변형을 유도하면서 압출하여 압출재를 제조한다. 상기 압출재를 피압연재로 하여, 동일한 회전선속도로 회전하는 서로 상이한 직경을 가지는 압연롤이 한 쌍을 이루는 하나 이상의 작업롤을 이용하여 상기 피압연재를 압연하여 압연재를 제조한다.According to another aspect of the present invention, an asymmetric processing method is provided. And a tapered portion whose width varies along the extrusion direction of the plate-shaped extrudable material, wherein the tapered portion has an asymmetrical shape with respect to the plate surface direction of the extruded material and the thickness direction of the extruded material. While being spaced apart from the tapered portion and pushed through a die including a first inner surface and a second inner surface facing the first and second surfaces of the extrudate respectively, inducing shear deformation therein in the thickness direction of the extrudate; Extruded material is prepared by extrusion. By using the extruded material as a rolled material, the rolled material is rolled by using one or more work rolls in which a pair of rolling rolls having different diameters rotating at the same rotational linear speed is used.
상기 압연재를 제조하는 단계는 상기 작업롤 중 상대적으로 더 큰 직경을 가지는 압연롤의 반대편에 상기 작업롤 중 직경이 상대적으로 작은 직경을 가지는 압연롤을 지지하는 보강롤을 결합시켜 수행할 수 있다.The manufacturing of the rolled material may be performed by combining a reinforcement roll supporting a rolling roll having a smaller diameter in the work roll to an opposite side of the rolling roll having a relatively larger diameter in the work roll. .
상기 압출재를 제조하는 단계에서, 상기 다이스의 제 1 내면 및 제 2 내면은 상기 판재 형상의 판면 방향을 기준으로 비대칭이 되도록 상기 압출 방향을 따라서 서로 다른 기울기를 갖도록 배치될 수 있다.In the manufacturing of the extruded material, the first inner surface and the second inner surface of the die may be arranged to have different inclinations along the extrusion direction to be asymmetric with respect to the plate surface direction of the plate shape.
상기 압출 구멍의 단면은 직사각 형상이고, 상기 다이스는 상기 판재 형상의 폭 방향을 따라서 상기 테이퍼 부분에 이격 배치된 제 3 내면 및 제 4 내면을 포함하고, 상기 제 3 내면 및 제 4 내면은 상기 압출 방향을 따라서 대칭적으로 배치될 수 있다.The cross section of the extrusion hole has a rectangular shape, and the die includes a third inner surface and a fourth inner surface spaced apart from the tapered portion along the width direction of the plate shape, and the third inner surface and the fourth inner surface are the extrusion. It can be arranged symmetrically along the direction.
본 발명의 또 다른 관점에 따르면, 전술한 비대칭 가공방법 중 적어도 어느 하나를 이용하여 제조한 가공재가 제공된다.According to still another aspect of the present invention, there is provided a workpiece manufactured using at least one of the asymmetric processing methods described above.
본 발명의 또 다른 관점에 따른 비대칭 가공장치가 제공된다. 피압출재를 판재 형상으로 압출하기 위한 직사각형상의 압출 구멍을 포함하는 다이스를 포함하고, 상기 입출 구멍은 상기 피압출재의 압출 방향을 따라서 그 폭이 가변되는 테이퍼 부분을 포함하며, 상기 테이퍼 부분은 상기 판재 형상의 판면 방향을 기준으로 비대칭적인 형상을 갖는 비대칭 압출기가 제공된다. 상기 비대칭 압출기로부터 압출된 압출재를 피압연재로 하여, 상기 피압연재의 제 1 면에 접촉되는 제 1 롤; 제 1 롤에 비해 더 큰 직경을 가지며 제 1 면의 반대면인 제 2 면에 접촉되는 제 2 롤; 및 제 1 롤 및 제 2 롤의 회전각속도의 비가 조절될 수 있도록 제 1 롤 및 제 2 롤에 동력을 공급하는 동력제공부;를 포함하는 비대칭 압연기가 제공된다. According to another aspect of the present invention, an asymmetric processing apparatus is provided. A die including a rectangular extrusion hole for extruding the extruded material into a sheet shape, wherein the entry hole includes a tapered portion whose width varies along an extrusion direction of the extruded material, and the tapered portion is the sheet material. An asymmetrical extruder having an asymmetrical shape with respect to the plate direction of the shape is provided. A first roll contacting the first surface of the rolled material by using the extruded material extruded from the asymmetric extruder as a rolled material; A second roll having a larger diameter than the first roll and in contact with a second face that is opposite the first face; And a power providing unit for supplying power to the first roll and the second roll so that the ratio of the rotational angular velocities of the first roll and the second roll can be adjusted.
상기 동력제공부는, 상기 제 1 롤 및 제 2 롤을 각각 구동시키는 제 1 모터 및 제 2 모터; 및 상기 제 1 모터 및 제 2 모터의 회전각속도를 제어할 수 있는 제어부를 포함할 수 있다.The power supply unit may include a first motor and a second motor driving the first roll and the second roll, respectively; And a controller capable of controlling rotational angular velocities of the first motor and the second motor.
상기 비대칭 압연기는, 상기 제 1 롤에 연결되는 제 1 기어; 및 상기 제 2 롤에 연결되며 상기 제 1 기어와 서로 다른 기어비로 결합되는 제 2 기어;를 포함하고, 상기 동력제공부는 상기 제 1 또는 제 2 기어에 구동력을 제공하는 모터를 포함할 수 있다.The asymmetric rolling mill, the first gear connected to the first roll; And a second gear connected to the second roll and coupled with a different gear ratio from the first gear, wherein the power providing unit may include a motor providing a driving force to the first or second gear.
상기 비대칭 압연기는 상기 제 1 롤에 비해 더 큰 직경을 가지며 상기 제 2 롤의 반대편에서 상기 제 1 롤을 지지하도록 결합되는 제 3 롤을 더 포함할 수 있다.The asymmetric rolling mill may further comprise a third roll having a larger diameter than the first roll and coupled to support the first roll on the opposite side of the second roll.
상기 제 1 롤 또는 제 3 롤에 연결되는 제 1 기어; 및 상기 제 2 롤에 연결되며, 상기 제 1 기어와 서로 다른 기어비를 가지고 결합되는 제 2 기어;를 포함하고, 상기 동력제공부는 상기 제 1 기어 또는 제 2 기어에 구동력을 전달하는 모터;를 포함할 수 있다.A first gear connected to the first roll or third roll; And a second gear connected to the second roll and coupled with the first gear with a different gear ratio, wherein the power providing unit includes a motor for transmitting a driving force to the first gear or the second gear. can do.
본 발명의 실시예를 따르는 비대칭 가공방법 및 비대칭 가공장치에 의할 시, 종래에 비해 성형성 등의 재료물성이 크게 향상된 가공재를 제조할 수 있다. 특히 마그네슘 합금과 같이 상온의 성형성이 열악한 금속재료를 본 발명의 실시예에 의해 압출-압연하는 경우, 상온에서도 전단변형이 잘 일어날 수 있도록 슬립계가 배치됨에 따라 종래에 얻지 못했던 우수한 상온 성형성을 가질 수 있다.When using the asymmetric processing method and the asymmetric processing apparatus according to an embodiment of the present invention, it is possible to manufacture a processed material greatly improved material properties such as moldability compared to the prior art. Particularly, in the case of extrusion-rolling a metal material having poor moldability at room temperature, such as a magnesium alloy, according to an embodiment of the present invention, as the slip system is disposed so that shear deformation can occur well at room temperature, excellent room temperature formability which has not been obtained conventionally is obtained. Can have.
본 발명의 효과는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other effects that are not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 일 실시예에 따른 비대칭 가공장치의 개략 단면도이다.1 is a schematic cross-sectional view of an asymmetric processing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 비대칭 가공장치의 개략 단면도이다.2 is a schematic cross-sectional view of an asymmetric processing apparatus according to another embodiment of the present invention.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 비대칭 가공장치의 압연기의 정면도 및 사시도이다. 3A and 3B are front and perspective views of a rolling mill of an asymmetric processing apparatus according to an embodiment of the present invention.
도 4a 및 도 4b는 본 발명의 다른 실시예에 따른 비대칭 가공장치의 압연기의 정면도 및 사시도 이다. 4A and 4B are front and perspective views of a rolling mill of an asymmetric processing apparatus according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 비대칭 가공장치의 압연기의 정면도이다. 5 is a front view of a rolling mill of an asymmetric processing apparatus according to another embodiment of the present invention.
도 6은 조밀충진육방정(hexagonal close-packed, HCP) 구조를 가지는 마그네슘의 슬립계를 도시한 것이다. FIG. 6 illustrates a slip system of magnesium having a hexagonal close-packed (HCP) structure.
도 7은 피압연재 또는 피압출재 내부에 배열되는 조밀충진육방정의 양상을 도시한 것이다. 7 shows an aspect of a dense packed hexagonal tablet arranged inside the rolled material or the extruded material.
도 8은 조밀충진육방정의 (0001) 극점도 내에 도 7의 A, B, C, D 결정의 극점을 도시한 것이다. FIG. 8 shows the poles of the A, B, C, and D crystals of FIG.
도 9는 본 발명의 일 실시예에 따른 비대칭 가공방법의 압연공정으로 압연된 AZ31 합금의 (0001) 극점도를 도시한 것이다. Figure 9 illustrates the (0001) pole figure of the AZ31 alloy rolled by the rolling process of the asymmetric processing method according to an embodiment of the present invention.
도 10 내지 도 12는 비교예에 따른 압연공정으로 압연된 AZ31 합금의 (0001) 극점도를 도시한 것이다. 10 to 12 show the (0001) pole figure of the AZ31 alloy rolled by the rolling process according to the comparative example.
도 13은 본 발명의 본 발명의 다른 실시예에 따른 비대칭 가공방법의 압연공정을 도시한 것이다. Figure 13 shows a rolling process of the asymmetric processing method according to another embodiment of the present invention.
도 14는 도 13에 도시된 압연공정에 의해 압연된 AZ31 합금의 (0001) 극점도를 도시한 것이다. FIG. 14 shows the (0001) pole figure of the AZ31 alloy rolled by the rolling process shown in FIG.
도 15는 본 발명의 본 발명의 또 다른 실시예에 따른 비대칭 가공방법의 압연공정을 도시한 것이다. 15 shows a rolling process of the asymmetric processing method according to another embodiment of the present invention.
도 16은 도 15에 도시된 압연공정에 의해 압연된 AZ31 합금의 (0001) 극점도를 도시한 것이다. FIG. 16 shows the (0001) pole figure of the AZ31 alloy rolled by the rolling process shown in FIG. 15.
도 17은 본 발명의 일 실시예에 따른 비대칭 가공장치의 압출기를 보여주는 개략적인 단면도이다.17 is a schematic cross-sectional view showing an extruder of an asymmetric processing apparatus according to an embodiment of the present invention.
도 18은 도 17의 압출기의 다이스를 보여주는 부분 절단된 사시도이다.FIG. 18 is a partially cut away perspective view showing a die of the extruder of FIG. 17.
도 19는 도 18의 다이스의 평면도이다.19 is a plan view of the dice of FIG. 18.
도 20은 본 발명의 다른 실시예에 따른 비대칭 가공장치의 압출기에 포함된 다이스를 보여주는 부분 절단된 사시도이다.20 is a partially cut perspective view showing a die included in an extruder of an asymmetric processing apparatus according to another embodiment of the present invention.
도 21은 도 20의 다이스의 단면도이다.21 is a cross-sectional view of the dice of FIG. 20.
도 22는 본 발명의 일 실시예에 따른 비대칭 가공방법의 압출공정에 의해 압출된 AZ31 판재의 +Z축 방향에서의 (0001) 극점도이다.22 is a (0001) pole figure in the + Z axis direction of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
도 23은 본 발명의 일 실시예에 따른 비대칭 가공방법의 압출공정에 의해 압출된 AZ31 판재의 -Z축 방향에서의 (0001) 극점도이다.Figure 23 is a (0001) pole figure in the -Z axis direction of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
도 24는 비교예에 따른 AZ31 판재의 (0001) 극점도이다.24 is a (0001) pole figure of the AZ31 sheet according to the comparative example.
도 25는 본 발명의 일 실시예에 따른 비대칭 가공방법의 압출공정에 의해 압출된 AZ31 판재의 진응력-진변형률 그래프이고;25 is a true stress-strain graph of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention;
도 26은 비교예에 따른 AZ31 판재의 진응력-진변형률 그래프이고;26 is a true stress-strain graph of the AZ31 sheet according to the comparative example;
도 27은 본 발명의 일 실시예에 따른 비대칭 가공방법의 압출공정에 의해 압출된 AZ31 판재의 인장축에 대한 각도에 따른 r-값을 보여주는 그래프이다. 27 is a graph showing the r-value according to the angle with respect to the tensile axis of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다. 아울러 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면에서 구성 요소들은 설명의 편의를 위하여 그 크기가 과장 또는 축소될 수 있다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. In addition, in describing the present invention, when it is determined that the detailed description of the related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, only this embodiment to make the disclosure of the present invention complete, the scope of the invention to those skilled in the art It is provided for complete information. In the drawings, the components may be exaggerated or reduced in size for convenience of description.
본 발명을 통해 제공되는 비대칭 가공장치 및 비대칭 가공방법은 성형성 등의 재료물성을 향상시키기 위하여 적용될 수 있는 어떠한 모재에도 적용될 수 있으며, 이하의 실시예는 이러한 본 발명의 기술적 사상을 예시하는 것이다. Asymmetric processing apparatus and asymmetric processing method provided through the present invention can be applied to any base material that can be applied to improve the material properties, such as formability, the following examples are intended to illustrate the technical spirit of the present invention.
본 발명의 실시예들에서, 집합조직(texture)은 다결정 재료의 각 결정립들(crystalline grains)이 일정한 방향으로 정렬된 상태를 나타낼 수 있다. 본 발명의 실시예들에서, 집합조직은 텍스처 또는 텍스쳐로 불릴 수도 있고, 그 명칭에 의해서 그 범위가 제한되지 않는다. 본 발명의 실시예들에서, 재료가 갖는 집합조직은 절대적인 개념보다는 상대적인 개념으로 사용된다. 즉, 한 재료가 소정 방향의 집합조직을 갖는다는 것은 그 재료의 상당부분의 결정립들이 그 방향의 집합조직을 갖는다는 것을 의미할 뿐, 그 재료의 모든 결정립들이 그 방향의 집합조직을 갖는다는 것을 의미하지는 않는다.In embodiments of the invention, the texture may represent a state in which the respective crystalline grains of the polycrystalline material are aligned in a constant direction. In embodiments of the invention, the texture may be referred to as a texture or texture, and its scope is not limited by its name. In the embodiments of the present invention, the texture of the material is used in a relative concept rather than an absolute concept. That is, the fact that a material has a texture in a certain direction means that a large part of the grains of the material have a texture in that direction, and that all the grains of the material have a texture in that direction. It does not mean.
본 발명의 실시예들에서, 극점도(pole figure)는 재료의 결정방위 또는 집합조직의 분석에 있어서 결정학적 격자 면들의 분포 방향을 보여주는 평사투영(stereographic projection) 형태의 그림을 나타낼 수 있다. 극점도는 X-선 회절(X-ray diffraction; XRD) 분석을 이용하여 도시할 수 있다.In embodiments of the present invention, the pole figure may represent a picture in the form of a stereoscopic projection showing the direction of distribution of the crystallographic lattice planes in the analysis of crystal orientation or texture of the material. The pole figure can be shown using X-ray diffraction (XRD) analysis.
본 발명의 실시예들에서, 피압연재는 압연이 수행되는 대상을 의미하며 압연재는 피압연재가 압연이 완료되어 목적하는 형상으로 변경된 대상을 의미한다. 마찬가지로 피압출재는 압출이 수행되는 대상을 의미하며 압출재는 피압연재가 압출이 완료되어 목적하는 형상으로 변경된 대상을 의미한다. 한편, 가공재는 모재를 압출, 압연, 주조, 단조, 인발 또는 이들의 복합방법에 의해 가공하여 제조된 재료를 의미하며, 본 발명에서는 최종 가공공정에 따라 압출재 또는 압연재가 될 수 있다.In the embodiments of the present invention, the rolled material means the object to be rolled and the rolled material means the object to be rolled is changed to the desired shape. Similarly, the material to be extruded means an object to be extruded, and the extruded material means an object to which the material to be extruded is changed into a desired shape. On the other hand, the workpiece refers to a material produced by processing the base material by extrusion, rolling, casting, forging, drawing or a combination thereof, in the present invention may be an extruded or rolled material according to the final processing process.
도 1은 본 발명의 일 실시예에 따른 비대칭 가공장치의 개략 단면도이다.1 is a schematic cross-sectional view of an asymmetric processing apparatus according to an embodiment of the present invention.
도 1을 참조하면, 비대칭 가공장치는 비대칭 압출기(200)와 비대칭 압연기(100)를 포함할 수 있다. 비대칭 압연기(100)는 비대칭 압출기(200) 후단에 결합될 수 있다. 이에 따라, 피압출재(250)는 비대칭 압출기(200)를 거쳐서 압출재(260)로 가공되고, 압출재(260)가 피압연재(104)로 이용되어 비대칭 압연기(100)를 거쳐서 압연재(120)로 제조될 수 있다. 이렇게 제조된 압연재(120)는 비대칭 압출기(200)를 거치면서 1차적으로 가공되고, 이어서 비대칭 압연기(100)를 거치면서 2차적으로 변형될 수 있다. 예컨대, 판재 가공의 경우, 비대칭 압출기(200)에서 1차적으로 소정 두께의 판재로 가공되고, 이어서 비대칭 압연기(100)에서 더 얇은 최종 두께의 판재로 가공될 수 있다.Referring to FIG. 1, the asymmetric processing apparatus may include an asymmetric extruder 200 and an asymmetric rolling mill 100. The asymmetrical rolling mill 100 may be coupled to the rear end of the asymmetrical extruder 200. Accordingly, the extruded material 250 is processed into the extruded material 260 via the asymmetrical extruder 200, and the extruded material 260 is used as the rolled material 104 to the rolled material 120 via the asymmetrical rolling mill 100. Can be prepared. The rolled material 120 thus manufactured may be primarily processed while passing through the asymmetrical extruder 200, and then may be secondaryly deformed while passing through the asymmetrical rolling mill 100. For example, in the case of sheet processing, it can be processed first into a plate of a predetermined thickness in the asymmetric extruder 200, and then into a plate of a thinner final thickness in the asymmetric mill 100.
비대칭 압출기(200)는 피압출재(250)를 판재 형상의 압출재(260)로 압출하기 위한 사각형상, 예컨대 직사각형상의 압출 구멍(235)을 포함하는 다이스(230)를 포함할 수 있다. 압출 구멍(235)은 피압출재(250)의 압출 방향을 따라서 그 폭이 가변되는 테이퍼 부분(234)을 포함하며, 테이퍼 부분(234)은 압출 방향, 예컨대 판재 형상의 판면 방향을 기준으로 비대칭적인 형상을 가질 수 있다. 비대칭 압연기(100)는 제 1 롤(101) 및 제 2 롤(102)를 포함할 수 있다. 제 1 롤(101)은 피압연재(104)의 제 1 면(104a)에 접촉되고, 제 2 롤(102)은 제 1 롤에 비해 더 큰 직경을 가지며 제 1 면(104a)의 반대면인 제 2 면(104b)에 접촉될 수 있다.The asymmetric extruder 200 may include a die 230 including a rectangular, for example, rectangular extrusion hole 235 for extruding the extrudate 250 into the plate-like extruding material 260. The extrusion hole 235 includes a tapered portion 234 whose width varies along the extrusion direction of the extruded material 250, and the tapered portion 234 is asymmetrical with respect to the extrusion direction, for example, the plate direction of the plate shape. It may have a shape. The asymmetric rolling mill 100 may include a first roll 101 and a second roll 102. The first roll 101 is in contact with the first face 104a of the rolled material 104, and the second roll 102 has a larger diameter than the first roll and is the opposite side of the first face 104a. It may be in contact with the second surface 104b.
이러한 비대칭 가공장치를 이용하면, 비대칭 압출기(200)를 이용하여 피압출재(250)를 압출하여 압출재(260)를 제조하고, 이러한 압출재(260)를 피압연재(104)로 이용할 수 있다. 이러한 압출 단계는, 피압출재(250)의 압출 방향, 예컨대 판면 방향을 기준으로 비대칭적 형상의 압출 구멍(235)을 갖는 다이스(230)를 통해서 피압출재(250)를 밀어내어 피압출재(250)의 두께 방향으로 내부에 전단변형을 유도하면서 수행할 수 있다.Using such an asymmetric processing apparatus, the extruded material 250 may be extruded using the asymmetric extruder 200 to produce an extruded material 260, and the extruded material 260 may be used as the rolled material 104. This extruding step pushes the extrudate 250 through the die 230 having an extrusion hole 235 having an asymmetrical shape with respect to the extrusion direction of the extrudate 250, for example, the plate surface direction, thereby extruding the extrudate 250. It can be carried out while inducing shear deformation in the thickness direction of the inside.
이어서, 피압연재(104)를 비대칭 압연기(100)를 이용하여 압연함으로써 압연재(120)를 형성할 수 있다. 이러한 비대칭 압연 단계는, 압출재(260)를 피압연재(104)로 하여 비대칭 압출단계에 이어서 연속적으로 수행할 수 있다. 예를 들어, 피압연재(104)를 서로 다른 직경을 갖는 제 1 롤(101) 및 제 2 롤(102)의 사이로 밀어내어 피압연재(104)에 전단변형력을 유도하면서 수행할 수 있다. Next, the rolled material 120 can be formed by rolling the rolled material 104 using the asymmetric rolling mill 100. This asymmetrical rolling step can be carried out continuously following the asymmetrical extrusion step using the extruded material 260 as the rolled material 104. For example, the rolled material 104 may be pushed between the first roll 101 and the second roll 102 having different diameters to induce shear deformation force on the rolled material 104.
한편, 도 1에 도시된 바와는 달리, 비대칭 압출 단계와 비대칭 압연단계는 연속적으로 수행되지 않고, 단속적으로 수행될 수도 있다. 이 경우, 압출재(260)를 소정 크기로 절단하여, 피압연재(104)로 사용할 수 있다. 나아가, 압연기(100)와 압출기(200)는 서로 별도의 시스템으로 제공될 수 있다. 이 경우, 압출기(200)에서 압출하여 압출재(260)를 제조한 후, 이를 소정 크기로 절단하여 이동한 후 압연기(100)에서 압연하여 압연재(120)를 제조할 수 있다.On the other hand, unlike shown in Figure 1, the asymmetrical extrusion step and the asymmetrical rolling step may not be performed continuously, it may be performed intermittently. In this case, the extruded material 260 can be cut into a predetermined size and used as the rolled material 104. Furthermore, the rolling mill 100 and the extruder 200 may be provided as separate systems from each other. In this case, after extruding in the extruder 200 to produce an extruded material 260, it is cut to move to a predetermined size to move and then rolled in the rolling mill 100 can be produced a rolled material (120).
전술한 실시예에 따르면, 피가공재, 예컨대 피압출재(250)를 1차적으로 비대칭 압출기(200)에서 비대칭 가공하여 1차적으로 텍스쳐가 제어된 압출재(260)를 만들고, 다시 이를 비대칭 압연기(100)에서 비대칭 가공하여 2차적으로 텍스쳐가 제어된 압연재(120)를 최종적인 가공재로 제조할 수 있다. 이에 따르면, 최종적인 가공재는 2차에 걸쳐서 텍스쳐가 제어되기 때문에, 가공성이 크게 향상될 수 있다. 비대칭 압출기(200) 및 비대칭 압연기(100)를 통한 텍스쳐 제어가 가공성 향상에 미치는 효과에 대해서는 도 3 내지 도 27을 참조하여, 후술한다.According to the above-described embodiment, the workpiece, for example, the extruded material 250 is asymmetrically processed in the asymmetric extruder 200 primarily to make the texture-controlled extruded material 260, which is again asymmetrical rolling mill 100 By asymmetrical processing in the second texture-controlled rolling material 120 can be produced as a final processing material. According to this, since the texture of the final workpiece is controlled over the secondary, workability can be greatly improved. An effect of the texture control through the asymmetrical extruder 200 and the asymmetrical rolling mill 100 on the processability improvement will be described later with reference to FIGS. 3 to 27.
도 2는 본 발명의 다른 실시예에 따른 비대칭 가공장치의 개략 단면도이다. 이 실시예에 따른 비대칭 가공장치는 도 1의 비대칭 가공장치에서 일부 순서를 변형한 것이고, 따라서 두 실시예들에서 중복된 설명은 생략된다.2 is a schematic cross-sectional view of an asymmetric processing apparatus according to another embodiment of the present invention. The asymmetrical machining apparatus according to this embodiment is a modification of some order in the asymmetrical machining apparatus of FIG. 1, and thus duplicated description is omitted in both embodiments.
도 2를 참조하면, 비대칭 압출기(200)는 비대칭 압연기(100) 후단에 배치될 수 있다. 절단기(300)는 압연기(100)와 압출기(200) 사이에 배치될 수 있다. 이에 따르면, 압연공정에 의해 생성된 압연재(120)가 절단기(300)에 의해 적당한 크기로 절단된 후, 압출기(200)의 다이스(230)의 후단에 결합된 컨테이너(210)에 피압출재(250)로 장입될 수 있다. 이어서, 피압출재(250)는 컨테이너(210)의 내부 구멍(215)을 밀봉하는 스템(220)에 의해 압축됨으로써 비대칭적인 형상의 압출 구멍(235)을 갖는 상기 다이스(230)통해 압출재(260)로 제조될 수 있다.Referring to FIG. 2, the asymmetric extruder 200 may be disposed after the asymmetrical rolling mill 100. The cutter 300 may be disposed between the rolling mill 100 and the extruder 200. According to this, after the rolled material 120 produced by the rolling process is cut to a suitable size by the cutter 300, the extruding material (exposed to the container 210 coupled to the rear end of the die 230 of the extruder 200) 250). Subsequently, the extrudate 250 is compressed by the stem 220 sealing the inner hole 215 of the container 210 to extrude the material 260 through the die 230 having the extrusion hole 235 having an asymmetric shape. It can be prepared as.
한편, 압연기(100)와 압출기(200)는 서로 별도의 시스템으로 제공될 수도 있다. 이 경우, 압연기(100)에서 압연된 압출재(120)를 이동하여, 압출기(200)에서 압출하여 압출재(260)를 제조할 수 있다.On the other hand, the rolling mill 100 and the extruder 200 may be provided as a separate system from each other. In this case, the extruded material 260 may be manufactured by moving the extruded material 120 rolled by the rolling mill 100 and extruding the extruder 200.
이하에서 본 발명의 실시예들에 사용되는 가공장치를 압연기 및 압출기로 나누어서 설명하고, 이를 이용한 압연방법 및 압출방법에 대해서 보다 상세히 설명한다.Hereinafter, the processing apparatus used in the embodiments of the present invention will be described by dividing into a rolling mill and an extruder, and a rolling method and an extrusion method using the same will be described in more detail.
도 3(a) 및 도 3(b)에는 본 발명의 일 실시예에 따른 비대칭 가공장치의 압연기가 도시되어 있다. 구체적으로, 도 3(a)는 본 발명의 일 실시예에 따른 가공장치의 압연기(100)의 정면도이고, 도 3(b)는 도 3(a)의 압연장치 중 압연롤(101, 102) 및 피압연재(104) 부분만을 따로 도시한 사시도이다. 3 (a) and 3 (b) is shown a rolling mill of the asymmetric processing apparatus according to an embodiment of the present invention. Specifically, Figure 3 (a) is a front view of the rolling mill 100 of the processing apparatus according to an embodiment of the present invention, Figure 3 (b) is a rolling roll 101, 102 of the rolling device of Figure 3 (a) And only a part of the material to be rolled 104 is a perspective view.
도 3(a) 및 도 3(b)에 도시되어 있듯이, 본 발명의 일 실시예에 따른 압연장치(100)는 제 1 롤(101) 및 제 2 롤(102)의 직경이 서로 상이한 비대칭 압연장치이며, 구체적으로 피압연재(104)의 제 1 면(104a)에 접촉되는 제 1 롤(101), 제 1 롤(101)에 비해 더 큰 직경을 가지며 피압연재(104) 제 1 면(104a)의 반대면인 제 2 면(104b)에 접촉되는 제 2 롤(102) 및 이러한 제 1 롤(101) 및 제 2 롤(102)의 회전각속도가 서로 상이하게 조절될 수 있도록 제 1 롤(101) 및 제 2 롤(102)에 동력을 공급하는 동력제공부(105)를 포함한다.As shown in Figure 3 (a) and 3 (b), in the rolling apparatus 100 according to an embodiment of the present invention asymmetrical rolling of different diameters of the first roll 101 and the second roll 102 A device, specifically, having a larger diameter than the first roll 101, the first roll 101 in contact with the first face 104a of the rolled material 104, and having the first surface 104a of the rolled material 104. The second roll 102 in contact with the second surface 104b, which is the opposite side of the surface, and the rotational angular velocity of the first roll 101 and the second roll 102 can be adjusted differently from each other. 101 and a power providing unit 105 for supplying power to the second roll (102).
도 3(a) 및 도 3(b)에는 압연을 수행하는 작업롤(working roll)인 제 1 롤(101) 및 제 2 롤(102)이 각각 상부롤 및 하부롤로 설정되어 있으나 이는 예시적인 것이며, 이와 다른 형태로 설정되어도 무방하다. 또한 설명의 편의상 도 1의 압연장치(100)에 의해 최초 압연되는 피압연재(104)의 면 중 상부롤인 제 1 롤(101)에 접촉하는 면을 제 1 면(104a), 하부롤인 제 2 롤(102)에 접촉하는 면을 제 2 면(104b)으로 정의한다. 따라서 도 1의 피압연재(104)를 뒤집어 압연하는 경우, 제 1 롤(101)은 피압연재(104)의 제 2 면(104b)과 접하게 되고, 제 2 롤(102)은 피압연재(104)의 제 1 면(104a)과 접하게 된다.3 (a) and 3 (b), the first and second rolls 101 and 102, which are working rolls for rolling, are set as upper and lower rolls, respectively. It may be set in a different form. In addition, for convenience of description, the surface which contacts the 1st roll 101 which is an upper roll among the surfaces of the to-be-rolled material 104 rolled by the rolling apparatus 100 of FIG. 1 is the 1st surface 104a and the 2nd roll which is a lower roll. The surface which contacts 102 is defined as the 2nd surface 104b. Accordingly, when rolling the rolled material 104 of FIG. 1 upside down, the first roll 101 comes into contact with the second surface 104b of the rolled material 104, and the second roll 102 is rolled material 104. It is in contact with the first surface (104a) of.
이러한 제 1 및 제 2 롤(101)은 받침대(110) 위에 평행하게 이격되게 형성되고 나사 등과 같은 체결부재(112)에 의해 고정된 프레임(111) 사이에 장착된다. 동력제공부(105)는 도 3(a)에 도시된 바와 같이, 제 1 롤(101) 및 제 2 롤(102)을 각각 구동시키는 제 1 모터(106) 및 제 2 모터(107)와 이러한 제 1 모터 (106) 및 제 2 모터(107)의 회전각속도를 제어할 수 있는 모터제어부(108)를 포함할 수 있다. 제 1 모터(106) 및 제 2 모터(107)는 연결부재(109)를 통해 회전동력을 제 1 롤(101) 및 제 2 롤(102)에 전달한다. The first and second rolls 101 are formed between the frames 111 that are formed to be spaced apart in parallel on the pedestal 110 and fixed by fastening members 112 such as screws. As shown in FIG. 3 (a), the power supply 105 includes a first motor 106 and a second motor 107 which drive the first roll 101 and the second roll 102, respectively. It may include a motor control unit 108 that can control the rotational angular velocity of the first motor 106 and the second motor 107. The first motor 106 and the second motor 107 transmit rotational power to the first roll 101 and the second roll 102 through the connecting member 109.
모터제어부(108)는 제 1 모터(106) 및 제 2 모터(107)의 회전각속도를 제어함으로써 이에 연결된 제 1 롤(101) 및 제 2 롤(102)의 회전각속도를 제어할 수 있으며, 이러한 제어를 통해 롤의 직경에 회전각속도를 곱한 값으로 정의되는 회전선속도를 제어할 수 있다. 이러한 회전선속도의 제어를 통해 제 1 롤(101)이 피압연재(104)의 제 1 면(104a)에 인가하는 전단변형력과 제 2 롤(102)이 피압연재(104)의 제 2 면(104b)에 인가하는 전단변형력이 서로 상이하도록 제어할 수 있다.The motor controller 108 may control the rotational angular velocities of the first roll 101 and the second roll 102 connected thereto by controlling the rotational angular velocities of the first motor 106 and the second motor 107. The control can control the rotational linear velocity, which is defined as the diameter of the roll multiplied by the rotational angular velocity. Through the control of the rotational linear speed, the shear deformation force applied by the first roll 101 to the first surface 104a of the rolled material 104 and the second roll 102 of the rolled material 104 The shear deformation force applied to 104b) can be controlled to be different from each other.
일례로서 모터제어부(108)는 제 1 롤(101) 및 제 2 롤(102)의 회전선속도를 동일하게 유지하며 제 1 롤(101) 및 제 2 롤(102) 사이에 배치된 피압연재(104)를 압연하도록 제어할 수 있다. 즉 제 1 롤(101) 및 제 2 롤(102)의 각속도의 비가 제 1 롤(101) 및 제 2 롤(102) 직경의 역수의 비와 동일하도록 제어함으로써 제 1 롤(101) 및 제 2 롤(102)의 선속도를 동일하게 유지할 수 있다. 여기서의 "동일"의 의미는 완전 동일 뿐만 아니라 작업자가 양 롤의 각속도를 동일하게 할 의도로 제어부의 신호를 제어했음에도 기계장치의 특성상 불가피하게 내포하고 있는 오차에 기인한 공정 마진 내에서의 동일성까지 포함하는 실질적 의미의 동일성으로 파악하여야 할 것이다. 이러한 제 1 롤(101) 및 제 2 롤(102)의 회전선속도의 "동일"은 이하에서도 같은 의미로 적용된다. As an example, the motor control unit 108 maintains the rotational linear velocity of the first roll 101 and the second roll 102 and is the rolled material disposed between the first roll 101 and the second roll 102. 104) can be controlled to roll. That is, by controlling the ratio of the angular velocities of the first roll 101 and the second roll 102 to be equal to the ratio of the reciprocal of the diameters of the first roll 101 and the second roll 102, the first roll 101 and the second roll 102 are controlled. The linear velocity of the roll 102 can be kept the same. The term "same" here means not only the same thing, but also the identity within the process margin due to the error inevitably inherent in the characteristics of the machine, even though the operator controls the signal of the controller with the intention of equalizing the angular velocity of both rolls. It should be seen as the identity of the actual meaning it includes. The same " same " of the rotational linear velocities of the first roll 101 and the second roll 102 is also applied in the following sense.
한편, 본 발명에 따른 다른 실시예로서 도 4(a) 및 도 4(b)에 도시된 것과 같이, 제 1 롤(101)에 비해 더 큰 직경을 가지며 제 2 롤(102)의 반대편에서 상기 제 1 롤(101)에 결합되어 상기 제 1 롤(101)을 지지하도록 배치되는 제 3 롤(103)을 더 포함할 수 있다. 이때 제 1 롤(101) 및 제 2 롤(102)은 피압연재(104)의 표면에 접촉하여 직접 전단변형력을 인가하는 작업롤(working roll)이 될 수 있으며, 제 3 롤(103)은 제 1 롤(101)이 압연과정에서 더 큰 직경을 가지는 제 2 롤(102)로부터 가해지는 외력에 대해 균형을 유지하게 하는 보강롤(backup roll)이 될 수 있다. On the other hand, as another embodiment according to the present invention, as shown in Figure 4 (a) and 4 (b), has a larger diameter than the first roll 101 and the opposite side of the second roll 102 It may further include a third roll 103 coupled to the first roll 101 to be disposed to support the first roll 101. In this case, the first roll 101 and the second roll 102 may be a working roll for directly contacting the surface of the rolled material 104 to apply shear deformation force, and the third roll 103 may be The first roll 101 may be a backup roll to balance the external force applied from the second roll 102 having a larger diameter during the rolling process.
동력제공부(105)는 제 1 롤(101) 또는 제 3 롤(103)을 구동시키는 제 1 모터(106), 제 제 2 롤(102)를 구동시키는 제 2 모터(107) 및 상기 제 1 모터 (106)와 제 2 모터(107)의 회전각속도를 제어할 수 있는 모터제어부(108)를 포함할 수 있다. The power supply unit 105 may include a first motor 106 driving the first roll 101 or the third roll 103, a second motor 107 driving the second roll 102, and the first motor. It may include a motor control unit 108 that can control the rotational angular speed of the motor 106 and the second motor 107.
일례로서 제 1 모터(106)는 도 4(a)에 도시된 것과 같이 제 3 롤러(103)에 연결되어 구동력을 전달하며, 제 3 롤러(103)이 회전함에 따라 이에 접하도록 결합된 제 1 롤(101)은 마찰에 의해 같이 회전하게 된다. 도시하지는 않았으나, 제 1 모터(106)는 제 1 롤(101)에 연결되어 제 1 롤(101)을 회전시키고 위와 같은 원리로 마찰에 의해 제 3 롤(103)이 회전하는 것도 가능하다. As an example, the first motor 106 is connected to the third roller 103 and transmits a driving force as shown in FIG. 4 (a), and the first motor 106 is coupled to be in contact with the rotation of the third roller 103. The roll 101 is rotated together by friction. Although not shown, the first motor 106 is connected to the first roll 101 to rotate the first roll 101, it is also possible to rotate the third roll 103 by friction in the same principle as above.
한편 본 발명을 따르는 또 다른 실시예의 경우, 동력제공부로부터 제공되는 동력은 기어를 통해 작업롤에 전달될 수 있다. 일례로서 도 5에 도시된 바와 같이, 제 1 롤(101) 내지 제 3 롤(103)로 구성된 압연기에서는 제 1 롤(101) 또는 제 3 롤(103)에 연결되는 제 1 기어(114)와 제 2 롤(102)에 연결되며 제 1 기어(114)와 서로 다른 기어비를 가지고 결합되는 제 2 기어(115)를 포함하고, 상기 동력제공부(105)는 제 1 기어(114) 또는 제 2 기어(115)에 구동력을 전달하는 모터(113)를 포함할 수 있다. Meanwhile, in another embodiment according to the present invention, the power provided from the power supply may be transmitted to the work roll through the gear. As an example, as shown in FIG. 5, in the rolling mill composed of the first roll 101 to the third roll 103, the first gear 114 connected to the first roll 101 or the third roll 103 and And a second gear 115 connected to the second roll 102 and coupled with the first gear 114 with a different gear ratio, wherein the power supply 105 includes the first gear 114 or the second gear. It may include a motor 113 for transmitting a driving force to the gear 115.
도 5에는 모터(113)의 동력이 구동기어(116)를 통해 제 2 기어(115)에 전달되도록 구성되어 있으나, 본 실시예의 압연기는 이에 한정하지 않고 모터(113)가 구동기어(116) 없이 직접 제 1 기어(114) 또는 제 2 기어(115)에 연결되어 동력을 전달하는 것도 포함한다. In FIG. 5, the power of the motor 113 is configured to be transmitted to the second gear 115 through the drive gear 116. However, the rolling mill of the present embodiment is not limited thereto, and the motor 113 is provided without the drive gear 116. It also includes a power directly connected to the first gear 114 or the second gear 115.
또한, 도 5에는 보강롤인 제 3 롤(103)이 있는 압연기에 대해서 도시하였으나, 제 3 롤(103)없이 제 1 롤(101) 및 제 2 롤(102)만 구비된 경우에도 상술한 것과 같은 방식으로 제 1 기어(114)가 제 1 롤(101)에 연결되고 제 2 기어(115)가 제 2 롤(102)에 연결될 수 있다. In addition, although FIG. 5 shows a rolling machine with a third roll 103 as a reinforcing roll, the same as described above even when only the first roll 101 and the second roll 102 are provided without the third roll 103. The first gear 114 can be connected to the first roll 101 and the second gear 115 can be connected to the second roll 102 in a manner.
한편, 상술한 제 1 기어(114) 또는 제 2 기어(115)는 하나 이상의 기어비를 가변적으로 변화시킬 수 있는 가변기어의 형태일 수 있으며, 기어비를 제어하기 위하여 제 1 기어(114) 또는 제 2 기어(115)와 연결되는 기어제어부(117)를 더 포함할 수 있다. Meanwhile, the above-described first gear 114 or second gear 115 may be in the form of a variable gear that can variably change one or more gear ratios. In order to control the gear ratio, the first gear 114 or the second gear 115 may be used. It may further include a gear control unit 117 connected to the gear 115.
이러한 본 실시예에 따른 가공장치의 압연기의 경우, 제 1 롤(101) 및 제 2 롤(102)의 직경을 감안하여 제 1 기어(114) 및 제 제 2 기어(115)의 기어비를 조절함으로써 양 롤의 회전선속도를 제어할 수 있다. 일례로서, 모터(113)로부터 발생한 동력은 이와 같이 설정된 기어비에 따라 제 1 롤(101) 및 제 2 롤(102)이 동일한 회전선속도를 갖도록 전달될 수 있다. 또한 제 1 기어(114) 및 제 2 기어(115)가 가변기어로 구성되는 경우에는 기어제어부(117)에 의해 장착되는 제 1 롤(101) 또는 제 2 롤(102)의 직경에 따라 기어비를 가변적으로 제어하여 제 1 롤(101) 및 제 2 롤(102)의 회전선속도를 동일하게 제어할 수 있다. In the case of the rolling mill of the processing apparatus according to this embodiment, by adjusting the gear ratio of the first gear 114 and the second gear 115 in consideration of the diameter of the first roll 101 and the second roll 102. The rotational linear speed of both rolls can be controlled. As an example, the power generated from the motor 113 may be transmitted so that the first roll 101 and the second roll 102 have the same rotational linear velocity according to the gear ratio set as described above. In addition, when the first gear 114 and the second gear 115 is composed of a variable gear, the gear ratio is adjusted according to the diameter of the first roll 101 or the second roll 102 mounted by the gear control unit 117. By varying the control, it is possible to equally control the rotational linear speeds of the first roll 101 and the second roll 102.
한편, 도 3 내지 도 5에는 직경의 차이가 있는 제 1 롤(101)과 제 2 롤(102)이 1 쌍을 이루는 하나의 작업롤에 대해서 도시되어 있으나, 본 발명은 이에 한정하지 않고 이러한 작업롤이 근접하여 복수개로 형성된 경우도 포함한다. 따라서 본 발명의 모든 실시예로서 기술되는 가공방법의 압연공정은 서로 상이한 직경을 가지는 압연롤이 1 쌍을 이루는 적어도 하나 이상의 작업롤을 이용하여 피압연재를 압연하는 방법을 포함할 수 있다. Meanwhile, although FIGS. 3 to 5 illustrate a work roll in which a first roll 101 and a second roll 102 having a difference in diameter form a pair, the present invention is not limited thereto. It also includes the case where a plurality of rolls are formed in close proximity. Therefore, the rolling process of the processing method described as all embodiments of the present invention may include a method of rolling the rolled material using at least one working roll of a pair of rolling rolls having different diameters from each other.
이러한 비대칭 압연장치에 의해 압연이 수행되는 피압연재는 조밀충진육방정(hexagonal close-packed, HCP) 구조를 가지는 마그네슘 또는 마그네슘 합금을 포함할 수 있다. 최근 차세대 경량화 부재로 연구되고 있는 마그네슘은 밀도가 1.74g/cm3로서 밀도가 7.90g/cm3인 철이나, 2.7g/cm3인 알루미늄에 비해 가벼우면서도 매우 우수한 비강도와 비탄성계수를 가진다. 또한 진동, 충격, 전자파 등에 대한 흡수능력이 탁월하고 전기 및 열전도도가 우수하므로 자동차, 항공기 등의 경량화 소재 뿐만 아니라 휴대용 전화기, 노트북 등의 전자산업 분야에도 응용되고 있다. The rolled material to be rolled by the asymmetrical rolling device may include magnesium or magnesium alloy having a hexagonal close-packed (HCP) structure. Recently magnesium being studied as a next-generation light-weight member has a very good nasal help non-elastic coefficient lighter than aluminum a density of 1.74g / cm 3 as the density of 7.90g / cm 3 or of iron, 2.7g / cm 3. In addition, it has excellent absorption ability against vibration, shock, electromagnetic waves, etc., and has excellent electric and thermal conductivity, so it is applied to the electronics industry such as mobile phones and laptops as well as lightweight materials such as automobiles and aircrafts.
그러나, 이러한 조밀충진육방정 결정구조를 가지는 마그네슘은 성형을 위한 슬립계가 발달하지 않아 상온에서의 성형성이 떨어진다. 즉, 마그네슘의 변형기구는 도 6에 도시된 것과 같이, 성형시 주로{0001}<1120>의 기저면 슬립계(basal plane slip system)와 {1010}<1120> 프리스마틱 슬리계(prismatic slip system), {1011}<1120> 피라미달 슬립계(piramidal slip system) 등이 작용하는 것으로 알려져 있다. 그러나 상온에서 기저면 슬립계 이외의 변경기구에 대한 임계분해전단응력(critical resolved shear stress)값은 기저면 슬립계의 임계분해전단응력에 비해 매우 크기 때문에 기저면 슬립계의 시편 내에서의 배치가 상온 성형성에 중요한 영향을 끼치게 된다. However, magnesium having such a densely packed hexagonal crystal structure does not develop a slip system for molding, resulting in poor moldability at room temperature. That is, as shown in FIG. 6, the deformation mechanism of magnesium is mainly based on a base plane slip system of {0001} <1120> and a {1010} <1120> prismatic slip system. ), {1011} <1120> pyramidal slip systems and the like are known to act. However, since the critical resolved shear stress values for changing mechanisms other than the base slip system at room temperature are very large compared to the critical resolved shear stress of the base slip system, the placement of the base slip system in the specimen is dependent on the room temperature formability. It will have a significant impact.
도 7의 A와 같이 기저면 슬립계가 피압연재(104)의 압연면과 평행하게 배치되는 경우(즉, 도 7의 ND와 수직한 경우) 또는 도 7의 B와 같이 기저면 슬립계가 횡축방향(TD)와 수직하게 배치되거나 도 7의 C와 같이 기저면 슬립계가 압연방향(RD)에 수직하게 배치되는 경우에는 상온에서의 성형성이 열악하게 된다. 이는 압연된 마그네슘의 성형시 주변형 방향(즉, 도 7의 ND, RD 및 TD)과 기저면 슬립계가 서로 수직하거나 수평을 이루게 되어 외부응력에 의해 기저면 슬립계의 작동이 어려워지기 때문이다. As shown in FIG. 7A, the base slip system is disposed parallel to the rolled surface of the rolled material 104 (that is, perpendicular to the ND of FIG. 7) or the base slip system in the horizontal axis direction TD as shown in FIG. 7B. When the base surface slip system is arranged perpendicular to the rolling direction RD as shown in FIG. 7C or vertically, the moldability at room temperature becomes poor. This is because the peripheral surface direction (ie, ND, RD, and TD in FIG. 7) and the base surface slip system are perpendicular or horizontal to each other when the rolled magnesium is formed, making it difficult to operate the base surface slip system by external stress.
반면, 기저면 슬립계가 도 7의 D와 같이 재료의 변형이 용이하도록 주변형 방향에 대해 일정각도로 기울어져 배치되는 경우에는 우수한 상온 성형성을 나타나게 된다. On the other hand, when the base surface slip system is inclined at a predetermined angle with respect to the peripheral direction to facilitate deformation of the material as shown in FIG. 7D, excellent room temperature formability is exhibited.
이러한 재료 내에서의 기저면 슬립계의 배열방향과 분포는 도 8의 (0001) 극점도(pole figure)을 통해 확인할 수 있는바, 도 8에는 도 7에 표시된 결정의 배열방식 A, B, C, D에 따른 (0001) 극점도 상에서의 극점 배치가 도시되어 있다.The arrangement direction and distribution of the base slip system in such a material can be confirmed by the (0001) pole figure of FIG. 8, in which the arrangements A, B, C, The pole arrangement on the (0001) pole figure according to D is shown.
도 3 내지 도 5에 에 도시된 본 발명의 일 실시예들을 따르는 비대칭 가공장치의 압연기를 이용하여 압연을 실시하는 경우 이러한 마그네슘 또는 마그네슘 합금의 결정의 배열이 성형성이 유리하도록 배치될 수 있다. 구체적으로 본 발명의 일 실시예에 따른 비대칭 가공방법의 압연공정은 제 1 면(104a) 및 제 2 면(104b)을 포함하는 피압연재(104)를 제 1 롤(101) 및 제 2 롤(102) 사이에 배치하고, 제 1 롤(101) 및 제 2 롤(102)의 회전각속도를 서로 상이하게 조절하여 제 1 롤(101)에 의해 피압연재(104)의 제 1 면(104a) 및 제 2 면(104b) 중 어느 하나, 일례로서 제 1 면(104a)에 인가되는 전단변형력과 상기 제 2 롤(102)에 의해 상기 제 1 면(104a) 및 제 2 면(104b) 중 다른 어느 하나, 일례로서 제 2 면(104b)에 인가되는 전단변형력이 서로 상이하도록 제어하여 피압연재(104)를 압연할 수 있다. When rolling is performed using a rolling mill of the asymmetric processing apparatus according to one embodiment of the present invention shown in Figures 3 to 5, such an arrangement of crystals of magnesium or magnesium alloy may be arranged to favor formability. Specifically, in the rolling process of the asymmetric processing method according to an embodiment of the present invention, the rolled material 104 including the first surface 104a and the second surface 104b is formed of the first roll 101 and the second roll ( The first surface 104a of the material to be rolled 104 by the first roll 101 and disposed between the plurality of rolls 102 and the rotational angular velocities of the first roll 101 and the second roll 102 are adjusted differently from each other. Any one of the second surface 104b, for example, any other of the first surface 104a and the second surface 104b by the shearing force applied to the first surface 104a and the second roll 102. For example, the rolled material 104 may be rolled by controlling the shear deformation forces applied to the second surface 104b to be different from each other.
이때 일례로서 제 1 롤(101) 및 제 2 롤(102)의 회전선속도를 동일하게 유지하면서 피압연재(104)를 압연할 수 있다. 또한 피압연재(104)는 마그네슘 합금으로서 합금명 AZ31을 포함할 수 있으며, 이하에서는 피압연재로 AZ31 합금을 예시하도록 한다.At this time, as an example, the to-be-rolled material 104 can be rolled, keeping the rotational linear velocity of the 1st roll 101 and the 2nd roll 102 the same. In addition, the material to be rolled 104 may include an alloy name AZ31 as a magnesium alloy, hereinafter, AZ31 alloy is illustrated as a material to be rolled.
한편 본 발명의 또 다른 실시예에 따른 비대칭 가공방법의 압연공정은 동일한 피압연재를 복수의 횟수에 걸쳐 압연하는 방법을 포함한다. 이러한 복수의 횟수에 걸친 압연방법은 피압연재에 적정수준으로 조절된 압하량을 순차적으로 인가함으로써 급격한 압하량을 인가하였을 경우에 나타나는 문제점을 방지하기 위해 실시될 수 있다. Meanwhile, the rolling process of the asymmetrical processing method according to another embodiment of the present invention includes a method of rolling the same rolled material over a plurality of times. Such a plurality of times rolling method may be carried out to prevent a problem appearing when the sudden reduction amount is applied by sequentially applying the reduction amount adjusted to an appropriate level to the rolled material.
이때 복수의 횟수는 작업롤에 의해 압연된 피압연재를 다시 동일한 작업롤로 투입하거나 복수개로 구비된 작업롤을 피압연재가 통과함으로써 피압연재의 총 압연횟수가 2회 이상이 되는 것을 의미하는 것으로서, 이때 압연된 피압연재가 상기 작업롤로 투입되는 과정이 연속적인 경우와 단속적인 경우를 모두 포함한다. In this case, the plurality of times means that the rolled material rolled by the work roll is put into the same work roll again, or the rolled material passes through the work rolls provided in plurality, so that the total number of rolls of the rolled material becomes two or more times. The rolled material to be rolled into the work roll includes both continuous and intermittent cases.
또한 복수의 횟수는 피압연재가 상기 압연장치의 작업롤로부터 물리적으로 이탈된 후 다시 투입되는 것 뿐 만아니라 피압연재가 작업롤 사이에 여전히 배치된 상태에서 작업롤의 회전방향이 반대로 됨에 따라 다시 작업롤 사이로 투입되는 경우도 포함한다. 이때 경우에 따라 복수의 횟수를 구성하는 각 회당 압연수행을 "패스(pass)"라고 명명할 수 있다.In addition, the plurality of times is not only re-inserted after the rolled material is physically separated from the work roll of the rolling apparatus, but also reworked as the direction of rotation of the work roll is reversed while the rolled material is still disposed between the work rolls. It also includes the case where it is thrown in between rolls. In this case, each rolling operation constituting a plurality of times may be referred to as a "pass".
도 9에는 도 4에 예시된 압연기를 이용하여 제 1 롤(101) 및 제 2 롤(102)이 동일한 회전선속도 가지도록 제어면서 AZ31 합금을 5회 압연한 경우의 (0001) 극점도가 도시되어 있다. 이때 AZ31 합금의 압하율은 75% 였고, 압연온도는 300℃였다. 5회에 걸친 압연은 동일한 압연방향으로 피압연재인 AZ31의 제 1 면(104a) 및 제 2 면(104b)이 각각 제 1 롤(101) 및 제 2 롤(102)에 접촉되어 전단변형력을 인가받도록 설정된 것이었다, 도 9의 하부도면은 제 1 롤(101)에 의해 전단변형력을 받은 제 1 면(104a)의 (0001) 극점도이며, 상부도면은 제 2 롤(102)에 의해 전단변형력을 받은 제 2 면(104b)의 (0001) 극점도이다. FIG. 9 shows a pole figure when rolling the AZ31 alloy five times while controlling the first roll 101 and the second roll 102 to have the same rotational linear velocity using the rolling mill illustrated in FIG. 4. It is. At this time, the reduction ratio of the AZ31 alloy was 75%, and the rolling temperature was 300 ℃. Rolling five times is applied in the same rolling direction, the first surface 104a and the second surface 104b of the AZ31 to be rolled in contact with the first roll 101 and the second roll 102 to apply the shear strain force, respectively. 9 is a pole figure of the first surface 104a subjected to the shear deformation force by the first roll 101, and the upper view is the shear deformation force by the second roll 102. It is the (0001) pole figure of the received second surface 104b.
도 9에 도시된 바와 같이, 본 발명의 일 실시예에 따른 비대칭 가공방법의 압연공정의 경우 (0001) 극점도 상에서 조밀충진육방정의 기저면, 즉 (0001)면의 결정방향이 중심에 확연하게 벗어나 있음을 알 수 있다. 구체적으로 제 1 롤(101)에 의해 전단변형을 받은 제 1 면(104a)에서 기저면 극점의 회전각도(즉, 중심에서 벗어난 각도)는 약 15도 이었으며, 제 2 롤(102)에 의해 전단변형을 받은 제 2 면(104b)에서는 약 6도였다. As shown in Figure 9, in the rolling process of the asymmetric processing method according to an embodiment of the present invention the crystallographic direction of the base surface, that is, the (0001) plane of the (0001) plane on the (0001) pole figure is clearly off the center It can be seen that. Specifically, the rotational angle (ie, the off-center angle) of the base pole at the first surface 104a subjected to the shear deformation by the first roll 101 was about 15 degrees, and the shear deformation by the second roll 102. It was about 6 degrees in the 2nd surface 104b which received.
비교예로서 도 10 내지 도 12에는 작업롤이 동일한 직경을 가지는 종래의 압연장치를 이용하여 마그네슘 합금 AZ31을 압연한 후의 극점도를 도시하였다. As a comparative example, FIGS. 10-12 show the pole figure after rolling magnesium alloy AZ31 using the conventional rolling apparatus which has a working roll with the same diameter.
도 10의 극점도는 압하율을 75%로 하고, 압연온도를 300℃로 유지하면서 피압연재인 AZ31 합금의 제 1 면 및 제 2 면이 각각 제 1 롤 및 제 2 롤에 접촉되어 전단변형력을 인가받도록 설정한 후 복수의 횟수에 걸쳐 압연한 후의 (0001) 극점도 결과이다. 구체적으로 도 10(a)는 압연 1회당 압하량을 10%로 하여 12번 압연한 후, 도 10(b)는 압연 1회당 압하량을 20%로 하여 6번 압연한 후, 도 10(c)는 압연 1회당 압하량을 30%로 하여 4번 압연한 후의 극점도를 나타낸 것이다. 도 10(a) 내지 도 10(c)에 도시된 바와 같이, 모든 조건에서 극점은 10 이상의 최대 극강도를 가지며 모두 중심에 모여 있음을 알 수 있다. The pole figure of FIG. 10 has a reduction ratio of 75%, and the first and second surfaces of the AZ31 alloy, which is the rolled material, are in contact with the first roll and the second roll, respectively, while maintaining the rolling temperature at 300 ° C. (0001) The pole figure after rolling over a plurality of times after setting to apply is the result. Specifically, FIG. 10 (a) shows the rolling amount per rolling being 10% and rolled 12 times, and FIG. 10 (b) shows the rolling reduction 6 times with a rolling reduction of 20% per roll, and then FIG. 10 (c). ) Shows the pole figure after rolling 4 times with 30% reduction of rolling per roll. As shown in Figure 10 (a) to Figure 10 (c), it can be seen that in all conditions the poles have a maximum pole strength of 10 or more and all are centered.
또 다른 비교예인 도 11(a) 내지 도 11(c)의 극점도는 압연온도를 200℃로 유지하면서 압연을 수행한 AZ31 합금으로부터 얻은 것으로서 압하량이 각각 50%, 30%, 15% 였다. 도 11(a) 내지 도 11(c)에 도시된 바와 같이, 역시 기저면의 극점은 12 이상의 최대 극강도를 가지며 모두 중심에 모여 있음을 알 수 있다. 11 (a) to 11 (c), which are other comparative examples, were obtained from the AZ31 alloy which was rolled while maintaining the rolling temperature at 200 ° C., and the rolling reductions were 50%, 30%, and 15%, respectively. As shown in Figure 11 (a) to Figure 11 (c), it can be seen that the poles of the base surface also have a maximum pole strength of 12 or more and are all gathered at the center.
이러한 결과로부터, 제 1 롤 및 제 2 롤의 크기가 동일한 종래의 압연장치로 압연을 수행한 경우 압하량 또는 압연온도를 변화시키더라도 기저면의 극점이 중심에 모이게 되며, 따라서 발명의 일 실시예에 의해 압연된 AZ31 합금의 집합조직은 종래의 동일한 직경을 가지는 압연롤을 이용하여 압연한 AZ31 합금에 비해 성형성이 현저하게 향상되는 방향으로 배열됨을 알 수 있다. From these results, when the rolling is performed by a conventional rolling apparatus having the same size of the first roll and the second roll, the poles of the base surface are collected at the center even if the rolling reduction or the rolling temperature is changed. It can be seen that the aggregate structure of the AZ31 alloy rolled by the present invention is arranged in a direction in which formability is remarkably improved compared to the AZ31 alloy rolled using a conventional rolling roll having the same diameter.
한편, 도 12(a) 내지 도 12(c)에는 동일한 직경을 가지는 작업롤 중 어느 하나의 롤의 회전선속도를 다른 어느 하나의 롤의 회전선속도에 비해 더 크게 유지하며 압연을 수행하는 종래의 이주속 압연방법에 의해 압연된 AZ31 합금의 (0001) 극점도가 도시되어 있다. 이때 상이한 회전선속도를 가지는 양롤의 회전선속도의 비는 3:1로 유지되었고 압연온도는 200℃ 였으며, 압하량은 도 12(a) 내지 도 12(c)에서 각각 70%, 30%, 15% 였다. 도 12(a) 내지 도 12(c)의 하부도면은 빠르게 회전한 롤에 의해 전단변형을 받은 면의 (0001) 극점도이며, 상부도면은 느리게 회전한 롤에 의해 전단변형을 받은 면의 (0001) 극점도이다. On the other hand, Figure 12 (a) to Figure 12 (c) is a conventional roll roll while maintaining the rotational linear speed of any one of the work roll having the same diameter larger than the rotational linear speed of any other roll The (0001) pole figure of the AZ31 alloy rolled by the two-speed rolling method of is shown. At this time, the ratio of the rotational linear velocity of both rolls having different rotational linear speeds was maintained at 3: 1 and the rolling temperature was 200 ° C., and the reduction amounts were 70%, 30%, respectively in FIGS. 15%. 12 (a) to 12 (c) are bottom views of the surface subjected to shear deformation by a rapidly rotating roll, and the top view of the surface subjected to shear deformation by a slowly rotating roll ( 0001) pole figure.
이러한 이주속 압연을 수행한 경우에도 압하량 및 양 롤의 회전선속도 차이에 관계없이, 도 9와 비교할 때 결정의 방위가 중심쪽에 모여 있으며, 도 9에 도시된 것과 같이 기저면의 극점이 현저하게 중심으로부터 이동한 결과는 나타나지 않음을 알 수 있다. Even when such two-speed rolling is performed, the orientations of the crystals are gathered toward the center, as shown in FIG. 9, regardless of the rolling reduction and the rotational linear velocity difference between the two rolls. It can be seen that the result of moving from the center does not appear.
이로부터 본 발명의 일 실시예에 따른 비대칭 가공방법의 압연공정에 의해 압연된 AZ31 합금은 비교예와 같이 동일한 직경을 가진 압연롤을 이용하여 압연한 AZ31 합금에 비해 기저면의 결정방향이 월등히 우수한 성형성을 가질 수 있는 방향으로 배열되는 것을 알 수 있다. From this, the AZ31 alloy rolled by the rolling process of the asymmetric processing method according to an embodiment of the present invention is superior in the crystallographic direction of the base surface compared to the AZ31 alloy rolled using a rolling roll having the same diameter as in Comparative Example It can be seen that they are arranged in a direction that can have sex.
또한 동일한 직경을 가진 작업롤 이용한 이주속 압연의 경우에는 양 롤의 회전선속도 차이에 의해 압연 중 피압연재의 미끄러짐 현상에 의해 실제 압연롤로부터 피압연재에 전단변형력이 인가되지 않은 경우가 발생되며, 압연롤을 빠져나오는 피압연재가 휘거나 또는 표면이 거칠어지는 문제점이 있다. In addition, in the case of two-speed rolling using a work roll having the same diameter, the shear deformation force is not applied to the rolled material from the actual rolling roll due to the sliding phenomenon of the rolled material during rolling due to the difference in the rotational linear speed of both rolls. There is a problem that the rolled material exiting the rolling roll is bent or the surface is rough.
이에 반해, 본 발명의 일 실시예에 따르는 비대칭 가공방법의 압연공정에 의할 경우에는 양 롤의 직경 차이에 기인한 비대칭 전단변형력의 인가가 양 롤이 동일한 회전선속도를 가지는 과정 중에 이루어짐에 따라 비대칭 압연임에도 피압연재가 미끄러지는 현상이 발생되지 않았으며, 이주속 압연에서과 같은 피압연재의 휨 현상이나 표면이 거칠어지는 문제가 발생되지 않았다. In contrast, in the rolling process of the asymmetric processing method according to an embodiment of the present invention, the application of the asymmetric shear deformation force due to the difference in diameter of the two rolls is performed during the process in which both rolls have the same rotational linear velocity. Sliding the rolled material did not occur even in asymmetrical rolling, and there was no problem of warping or surface roughening of the rolled material as in two-speed rolling.
한편, 본 발명의 다른 실시예에 따른 비대칭 가공방법의 압연공정에 의할 경우, 제 1 롤(101) 및 제 2 롤(102)의 회전각속도는 아래 수학식 1로 정의되는 회전선속도의 차이가 10% 이하가 되도록 제어할 수 있다. On the other hand, according to the rolling process of the asymmetric processing method according to another embodiment of the present invention, the rotational angular velocity of the first roll 101 and the second roll 102 is the difference of the rotational linear speed defined by Equation 1 below Can be controlled to be 10% or less.
수학식 1 :
Figure PCTKR2012004469-appb-I000001
Equation 1:
Figure PCTKR2012004469-appb-I000001
Figure PCTKR2012004469-appb-I000002
: 제 1 롤의 회전선속도
Figure PCTKR2012004469-appb-I000002
: Rotational linear velocity of the first roll
Figure PCTKR2012004469-appb-I000003
: 제 2 롤의 회전선속도
Figure PCTKR2012004469-appb-I000003
: Rotational linear velocity of the second roll
이때 서로 다른 직경을 가지는 제 1 롤(101) 및 제 2 롤(102)의 위 수학식으로 정의되는 회전선속도의 차이가 10% 보다 큰 경우 양 압연롤을 빠져나오는 피압연재가 응력 불균형 등으로 휘는 등의 문제점이 발생할 수 있다.At this time, when the difference in the rotational linear velocity defined by the above equation of the first roll 101 and the second roll 102 having different diameters is greater than 10%, the rolled material exiting the rolling rolls may be unbalanced. Problems such as bending may occur.
한편, 복수의 횟수로 구성된 비대칭 가공방법의 압연공정의 일 실시예로서, 피압연재(104)의 제 1 롤(101) 및 제 2 롤(102)로부터 전단변형력을 인가받는 면을 바꾸어 압연하는 횟수를 적어도 1회 포함하여 2회 이상 피압연재를 압연하는 방법을 포함한다.On the other hand, as an embodiment of the rolling process of the asymmetric processing method consisting of a plurality of times, the number of times to change the surface subjected to the shear deformation force from the first roll 101 and the second roll 102 of the material to be rolled (104) It includes a method of rolling the rolled material two or more times, including at least once.
예를 들어 도 13에 도시된 바와 같이, 압연방향을 동일하게 하고, 압연의 제 1 패스 시에는 제 1 롤(101)과 제 2 롤(102)에 피압연재(104)의 제 1 면(104a) 및 제 2 면(104b)이 각각 접촉되도록 피압연재(104)를 배치시켜 압연한 후, 연속하여 동일 피압연재(104)의 제 1 면(104a)이 제 2 롤(102)에 접촉되고 제 2 면(104b)이 제 1 롤(103)에 접촉되도록 피압연재(104)를 뒤집어서 압연의 제 2 패스를 실시할 수 있다. 이때 2 패스 이상의 복수의 패스는 동일한 압연롤에서 일괄형(batch type)으로 수행될 수 있고, 혹은 각 패스를 담당하는 서로 다른 복수의 압연롤에서 각각 수행될 수 있다. For example, as shown in FIG. 13, the rolling direction is the same, and in the first pass of rolling, the first surface 104a of the rolled material 104 is formed on the first roll 101 and the second roll 102. ) And the rolled material 104 is placed and rolled so that the second surface 104b is in contact with each other, and then the first surface 104a of the same rolled material 104 is in contact with the second roll 102 and is The second pass of rolling can be performed by turning over the to-be-rolled material 104 so that the two surfaces 104b may contact the first roll 103. In this case, a plurality of passes of two or more passes may be performed in a batch type in the same rolling roll, or may be performed in a plurality of different rolling rolls in charge of each pass.
이 경우 제 1 롤(101) 및 제 2 롤(102)의 직경 차이로 인해 비대칭적으로 인가되는 전단변형력이 서로 교번하여 제 1 면(104a) 및 제 2 면(104b)면에 인가됨에 따라 압연의 제 1 패스 및 제 2 패스 중 각 면에 인가된 전단변형력이 일정 수준으로 평균화 되는 효과를 얻을 수 있다. 압연의 횟수는 목적하는 압하량에 따라 2회 이상 실시할 수 있으며, 이때 서로 피압연재의 제 1 면 및 제 2 면이 상하로 서로 교번되어 압연되는 단계가 포함되어 있다면 그 횟수나 교번 주기는 제한이 없다. In this case, due to the difference in diameter between the first roll 101 and the second roll 102, the shear strain applied asymmetrically is alternately applied to the first surface 104a and the second surface 104b and rolled accordingly. It is possible to obtain the effect that the shear strain applied to each side of the first pass and the second pass of the averaged to a certain level. The number of rolling may be performed two or more times according to the desired rolling reduction, and if the first and second surfaces of the rolled material are rolled alternately up and down with each other, the number or alternating cycle is limited. There is no
도 14에는 피압연재인 AZ31 합금을 300℃의 압연온도에서 1회를 주기로 압연면을 상하로 교번하여 총 5 패스의 압연(압하율이 75%)을 수행한 경우의 (0001) 극점도가 도시되어 있다. 기저면의 회전각도는 약 17도로서 도 10 내지 도 12에 도시된 극점도에 비해 월등하게 높은 값을 가짐을 알 수 있다. FIG. 14 shows the pole figure in the case where rolling of the AZ31 alloy, which is a rolled material, is carried out once in a rolling temperature of 300 ° C. in alternating rolling surfaces up and down to perform a total of five passes of rolling (75% reduction ratio). It is. It can be seen that the rotation angle of the base surface is about 17 degrees, which is significantly higher than the pole figure shown in FIGS. 10 to 12.
한편 본 발명의 또 다른 실시예에 따른 비대칭 가공방법의 압연공정은 압연방향을 서로 다르게 하면서 복수의 횟수에 걸쳐 압연하는 방법을 모두 포함하다. 예를 들어 도 15에 도시되어 있듯이, 압연의 제 1 패스시에는 제 1 롤(101) 및 제 2 롤(102) 사이로 피압연재(104)의 A 방향이 먼저 투입되도록 피압연재(104)의 압연방향을 설정한 후 연속해서 동일 피압연재(104)의 제 1 면(104a) 및 제 2 면(104b)은 제 1 패스때와 동일하게 유지한 후 양 압연롤로 투입되는 방향만 180도 변경시켜 피압연재(104)의 B 방향이 먼저 투입되도록 설정하는 방법이다.Meanwhile, the rolling process of the asymmetrical processing method according to another embodiment of the present invention includes all methods of rolling over a plurality of times while varying the rolling direction. For example, as shown in FIG. 15, in the first pass of rolling, rolling of the rolled material 104 such that the A direction of the rolled material 104 is first introduced between the first roll 101 and the second roll 102. After setting the direction, the first surface 104a and the second surface 104b of the same rolled material 104 are continuously maintained in the same manner as in the first pass, and then only 180 degrees of the direction to be introduced into both rolling rolls is changed. It is a method of setting so that the B direction of the extending | stretching material 104 may input first.
도 16에는 피압연재인 AZ31 합금을 300℃의 압연온도에서 1회 주기로 압연방향을 180도 교번하여 총 5 패스의 압연(압하율 75%)을 수행한 경우의 (0001) 극점도가 도시되어 있다. 도 16의 하부도면은 제 1 롤(101)에 의해 전단변형력을 받은 제 1 면(104a)의 (0001) 극점도이며, 상부도면은 제 2 롤(102)에 의해 전단변형력을 받은 제 2 면(104b)의 (0001) 극점도이다. 도 16에 도시된 바와 같이, 제 1 롤(101)에 의해 전단변형을 받은 제 1 면(104a)에서 회전각도는 약 5도 이었으며, 제 2 롤(102)에 의해 전단변형을 받은 제 2 면(104b)에서는 약 17도 였다. 이로부터 도 10 내지 13에 도시된 극점도에 비해 월등히 높은 회전각도를 보임을 알 수 있었다. FIG. 16 shows the pole figure in the case of performing rolling (pass rate of reduction 75%) in a total of 5 passes by rolling the AZ31 alloy, which is a rolled material, at a rolling temperature of 300 ° C. in a cycle of 180 degrees in a single cycle. . 16 is a pole figure of a first surface 104a subjected to shear deformation force by the first roll 101, and an upper view is a second surface subjected to shear deformation force by the second roll 102 This is the (0001) pole figure of (104b). As shown in FIG. 16, the rotation angle was about 5 degrees at the first surface 104a sheared by the first roll 101, and the second surface sheared by the second roll 102. It was about 17 degrees at 104b. From this it can be seen that the rotation angle is significantly higher than the poles shown in Figures 10 to 13.
압연방향을 서로 다르게 하면서 복수의 횟수에 걸쳐 압연하는 방법을 또 다른 예로서 도 15와 같이 피압연재가 상기 압연장치의 작업롤로부터 물리적으로 이탈된 후 다시 투입되는 것 뿐 만아니라, 피압연재가 작업롤 사이에 여전히 배치된 상태에서 작업롤의 회전방향이 반대로 됨에 따라 다시 작업롤 사이로 투입되는 경우도 포함한다. As another example of the method of rolling a plurality of times with different rolling directions, as shown in FIG. 15, the rolled material is not only re-injected after being physically separated from the work roll of the rolling apparatus, but also the rolled material is worked. It also includes a case in which the work rolls are placed again between the work rolls as the rotation direction of the work rolls is reversed while still being disposed between the rolls.
상술한 비대칭 가공장치의 압연기 및 이를 이용한 압연공정은 위에서 마그네슘 또는 마그네슘 합금 이외에도 압연재의 집합조직을 제어하는 어떠한 재료에도 적용할 수 있음을 물론이다. 예를들어, 티타늄(Ti) 또는 티타늄 합금을 포함하는 조밀충진육방정 결정구조를 가진 금속재료를 피압연재로 하거나 알루미늄, 알루미늄 합금을 포함하는 금속재료 또는 압연재의 결정방향이 자기적 성질에 영향을 주는 Fe-Si 합금도 피압연재에 포함될 수 있다. The rolling mill and the rolling process using the asymmetric processing apparatus described above can be applied to any material that controls the texture of the rolled material in addition to the magnesium or the magnesium alloy from above. For example, a metal material with a dense packed hexagonal crystal structure containing titanium (Ti) or a titanium alloy is used as a rolled material, or the crystallographic direction of a metal material or a rolled material including aluminum or an aluminum alloy affects the magnetic properties. Fe-Si alloys can also be included in the rolled material.
이하, 본 발명의 일 측면에 따른 가공장치의 압출기를 첨부되는 도면을 이용하여 보다 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings an extruder of a processing apparatus according to an aspect of the present invention will be described in more detail.
도 17은 본 발명의 일 실시예에 따른 비대칭 가공장치의 압출기를 보여주는 개략적인 단면도이다. 도 18은 도 17의 압출기의 다이스를 보여주는 부분 절단된 사시도이다. 도 19는 도 18의 다이스의 평면도이다.17 is a schematic cross-sectional view showing an extruder of an asymmetric processing apparatus according to an embodiment of the present invention. FIG. 18 is a partially cut away perspective view showing a die of the extruder of FIG. 17. 19 is a plan view of the dice of FIG. 18.
도 17을 참조하면, 피압출재(250)를 장입하기 위한 컨테이너(210)가 제공될 수 있다. 예를 들어, 피압출재(250)는 빌릿(billet) 형태로 컨테이너(210) 내의 내부 구멍(215) 내에 장입될 수 있다. 다른 예로, 피압출재(250)는 분말 형태 또는 압분체 형태로 컨테이너(210) 내의 내부 구멍(215) 내에 장입될 수도 있다. 컨테이너(210)는 피압출재(250)를 수용할 수 있도록 다양한 형상의 내부 구멍(215) 및 외형을 가질 수 있다. 따라서 피압출재(250) 및 컨테이너(210)의 형상은 다양하게 변형될 수 있고, 이 실시예의 범위를 제한하지 않는다.Referring to FIG. 17, a container 210 for charging the extruded material 250 may be provided. For example, the extruded material 250 may be charged into the inner hole 215 in the container 210 in the form of a billet. As another example, the extrudate 250 may be loaded into the inner hole 215 in the container 210 in the form of powder or green compact. The container 210 may have an inner hole 215 and an outer shape having various shapes to accommodate the extruded material 250. Therefore, the shape of the extrudate 250 and the container 210 may be variously modified, and does not limit the scope of this embodiment.
스템(stem, 220)은 피압출재(250)를 컨테이너(210) 내로 밀어 넣어 압축시킬 수 있도록 컨테이너(210) 내에 배치될 수 있다. 예를 들어, 피압출재(250)의 효과적인 압축을 위해서, 스템(220)의 외형은 컨테이너(210)의 내부 구멍(215)의 형상에 맞추어질 수 있다. 다른 예로, 스템(220)의 외형은 내부 구멍(215)의 형상과 일치하지 않을 수 있고, 이 경우 피압출재(150)의 일부분이 컨테이너(210) 내에서 압축되지 않고 잔류할 수 있다. 스템(220)은 램(ram) 또는 압축기와 같이 불릴 수도 있고, 그 용어 및 형상에 의해서 이 실시예의 범위가 제한되지 않는다.The stem 220 may be disposed in the container 210 to compress the extruded material 250 into the container 210. For example, for effective compression of the extrudate 250, the shape of the stem 220 can be tailored to the shape of the inner hole 215 of the container 210. As another example, the appearance of the stem 220 may not match the shape of the inner hole 215, in which case a portion of the extrudate 150 may remain uncompressed in the container 210. Stem 220 may be referred to as a ram or compressor, and the scope of this embodiment is not limited by its terminology and shape.
다이스(230)는 스템(220) 반대편의 컨테이너(210)의 전단에 결합될 수 있다. 예를 들어, 스템(220), 컨테이너(210) 및 다이스(230)는 일렬로, 예컨대 도 17의 X축 방향으로 배열되어 결합될 수 있다. 이러한 X축 방향이 피압출재(250)의 압출 방향이 될 수 있다. 이 실시예의 변형된 예에서, 스템(220), 컨테이너(210) 및 다이스(230)가 일렬로 배열되지 않을 수도 있고, 이 경우 압출 방향은 주로 다이스(230)를 기준으로 결정될 수 있다.The die 230 may be coupled to the front end of the container 210 opposite the stem 220. For example, the stem 220, the container 210, and the dice 230 may be coupled in a row, for example, arranged in the X-axis direction of FIG. 17. This X-axis direction may be the extrusion direction of the extrudate 250. In a modified example of this embodiment, the stem 220, the container 210, and the dice 230 may not be arranged in a line, in which case the extrusion direction may be primarily determined based on the dice 230.
다이스(230)는 피압출재(150)의 압출 형상을 한정하는 압출 구멍(235)을 가질 수 있다. 피압출재(150)는 다이스(230) 내의 압출 구멍(235)을 통과하면서 판재 형상의 압출재(160)로 변환될 수 있다. 예컨대, 도 17에서 XY 평면은 압출재(160)의 판면 방향이 되고, Z축 방향은 압출재(160)의 두께 방향이 되고, X축 방향은 압출재(160)의 길이 방향이 되고, Y축 방향은 압출재(160)의 폭 방향이 될 수 있다.The die 230 may have an extrusion hole 235 that defines the extrusion shape of the extrudate 150. The extruded material 150 may be converted into a plate-shaped extruded material 160 while passing through the extrusion hole 235 in the die 230. For example, in FIG. 17, the XY plane is the plate surface direction of the extruded material 160, the Z axis direction is the thickness direction of the extruded material 160, the X axis direction is the longitudinal direction of the extruded material 160, and the Y axis direction is It may be the width direction of the extruded material 160.
압출 구멍(235)은 그 폭이 가변되는 테이퍼 부분(234)과 그 폭이 일정한 고정 부분(232)을 포함할 수 있다. 스템(220)에 의해서 압축된 피압출재(250)는 테이퍼 부분(234)을 통과하면서 그 폭과 형상이 실질적으로 가변되고 이어서 고정 부분(232)을 통과하면서 압출재(260)의 형상으로 압출될 수 있다. 압출 구멍(235)의 테이퍼 부분(234)은 후술하는 바와 같이 압출재(260)의 집합조직을 제어하기 위해서 압출 방향(X축 방향)을 기준으로 비대칭적인 형상을 가질 수 있다. The extrusion hole 235 may include a tapered portion 234 having a variable width and a fixed portion 232 having a constant width. The extrudate 250 compressed by the stem 220 may be substantially varied in width and shape as it passes through the tapered portion 234 and then extruded into the shape of the extrudate 260 while passing through the fixing portion 232. have. The tapered portion 234 of the extrusion hole 235 may have an asymmetrical shape with respect to the extrusion direction (X-axis direction) in order to control the texture of the extrusion material 260 as described below.
도 18 및 도 19를 더 참조하면, 판재 형상의 압출을 위해서, 압출 구멍(235)은 YZ 평면을 기준으로 직사각 단면 형상을 가질 수 있다. 다이스(230)는 압출 구멍(235)을 한정하고 피압출재(250)의 제 1 면 및 제 2 면에 각각 대향하는 제 1 내면(242) 및 제 2 내면(244)과 피압출재의 좌우측면(미도시)에 대향하는 제 3 내면(246) 및 제 4 내면(248)을 포함할 수 있다. 제 1 내면(242) 및 제 2 내면들(244)은 피압출재(250) 또는 압출재(260)의 두께 방향(Z축 방향)을 따라서 이격 배치되고, 제 3 내면(246) 및 제 4 내면(248)은 피압출재(250) 또는 압출재(260)의 폭 방향(Y축 방향)으로 이격 배치될 수 있다.18 and 19, in order to extrude the plate shape, the extrusion hole 235 may have a rectangular cross-sectional shape with respect to the YZ plane. The die 230 defines an extrusion hole 235 and has a first inner surface 242 and a second inner surface 244 opposite to the first and second surfaces of the extrudate 250 and the left and right sides of the extrudate ( And a third inner surface 246 and a fourth inner surface 248 opposite to each other. The first inner surface 242 and the second inner surfaces 244 are spaced apart along the thickness direction (Z-axis direction) of the extruded material 250 or the extruded material 260, and the third inner surface 246 and the fourth inner surface ( 248 may be spaced apart from each other in the width direction (Y-axis direction) of the extruded material 250 or the extruded material 260.
제 1 내면(242) 및 제 2 내면(244)은 압출재(260)의 판면을 한정할 수 있다. 제 1 내면(242) 및 제 2 내면(244)은 압출재(260) 내에 전단변형을 효과적으로 유도하기 위해서 압출재(260)의 판면 방향(XY 평면)을 기준으로 비대칭적으로 배치될 수 있다. 예컨대, 제 1 내면(242) 및 제 2 내면(244)은 서로 다른 기울기로 신장될 수 있다. 예를 들어, 제 1 내면(242)은 압출 방향(X축 방향)에 대해서 소정의 기울기를 갖고, 제 2 내면(244)은 압출 방향(X축 방향)과 평행할 수 있다.The first inner surface 242 and the second inner surface 244 may define a plate surface of the extruded material 260. The first inner surface 242 and the second inner surface 244 may be asymmetrically disposed with respect to the plate direction (XY plane) of the extruded material 260 to effectively induce shear deformation in the extruded material 260. For example, the first inner surface 242 and the second inner surface 244 may extend at different inclinations. For example, the first inner surface 242 may have a predetermined slope with respect to the extrusion direction (X-axis direction), and the second inner surface 244 may be parallel to the extrusion direction (X-axis direction).
이에 따르면, 피압출재(250)는 제 1 내면(242) 및 제 2 내면(244) 사이에서 그 변형각도가 달라져 큰 전단변형을 받을 수 있다. 이 실시예에서, 제 2 내면(244)이 압출 방향과 평행하기 때문에 제 1 내면(142) 및 제 2 내면(244) 사이에서 전단변형은 다소 직선적일 수 있고, 따라서 그 제어가 용이할 수 있다. 이러한 전단변형은 압출재(260)의 판면 방향의 집합조직 변형에 큰 영향을 줄 수 있다. 이러한 집합조직의 변화는 후술하는 바와 같이 압출재(260)의 성형성에 큰 영향을 미칠 수 있다.Accordingly, the extruded material 250 may be subjected to a large shear deformation by varying its deformation angle between the first inner surface 242 and the second inner surface 244. In this embodiment, the shear deformation between the first inner surface 142 and the second inner surface 244 can be rather straightforward because the second inner surface 244 is parallel to the extrusion direction, and thus can be easily controlled. . Such shear deformation may greatly affect the texture deformation of the plate material of the extruded material 260. The change in the texture may have a great influence on the moldability of the extruded material 260 as described later.
제 3 내면(246) 및 제 4 내면(248)은 압출재(260)의 측면을 한정할 수 있다. 압출재(260)가 판재 형상을 갖는 경우, 제 3 내면(246) 및 제 4 내면(248)은 압출재(260)의 집합조직에 큰 영향을 미치지 않을 수 있다. 이에 따라, 제 3 내면(246) 및 제 4 내면(248)은 대칭적으로 배치될 수 있고, 예컨대 압출재(260)의 두께 방향(Z축 방향)에 평행할 수 있다. 이 실시예의 변형된 예에서, 제 3 내면(246) 및 제 4 내면(248)은 비대칭적으로 배치될 수도 있다.The third inner surface 246 and the fourth inner surface 248 may define sides of the extruded material 260. When the extruded material 260 has a plate shape, the third inner surface 246 and the fourth inner surface 248 may not significantly affect the texture of the extruded material 260. Accordingly, the third inner surface 246 and the fourth inner surface 248 may be symmetrically disposed, for example, parallel to the thickness direction (Z-axis direction) of the extruded material 260. In a modified example of this embodiment, the third inner surface 246 and the fourth inner surface 248 may be arranged asymmetrically.
이하에서는 본 발명의 일 실시예에 따른 비대칭 가공방법의 압출공정을 설명한다. 이 실시예에 따른 비대칭 가공방법의 압출공정은 예시적으로 도 17 내지 도 19의 압출기를 참조하여 설명할 수 있다. Hereinafter will be described an extrusion process of the asymmetric processing method according to an embodiment of the present invention. Extrusion process of the asymmetric processing method according to this embodiment can be described with reference to the extruder of Figs.
도 17 내지 도 19를 참조하면, 컨테이너(210) 내에 피압출재(250)를 장입할 수 있다. 이어서, 스템(220)을 이용하여 컨테이너(210) 내의 피압출재(250)를 압축할 수 있다. 이어서, 다이스(230)를 통해서 피압출재(250)를 밀어내어 판재 형상의 압출재(260)를 형성할 수 있다. 전술한 바와 같이, 다이스(230)가 압출 방향에 대해서 비대칭적인 형상의 압출 구멍(235)을 갖기 때문에, 피압출재(250)에 전단변형을 유도하면서 피압출재(250)를 압출할 수 있다. 이러한 비대칭 가공방법의 압출공정은 위 도 17 내지 도 19의 압출기에 대한 설명을 참조하여 더욱 상세하게 이해될 수 있다.17 to 19, the extruding material 250 may be charged into the container 210. Subsequently, the extrudate 250 in the container 210 may be compressed using the stem 220. Subsequently, the extruded material 250 may be pushed out through the die 230 to form an extruded material 260 having a plate shape. As described above, since the die 230 has extrusion holes 235 having an asymmetrical shape with respect to the extrusion direction, the extruded material 250 can be extruded while inducing shear deformation in the extruded material 250. Extrusion process of this asymmetric processing method can be understood in more detail with reference to the description of the extruder of FIGS. 17 to 19 above.
위와 같이, 피압출재(250)에 전단변형을 유도함으로써 압출재(260)의 집합조직이 제어될 수 있다. 이에 따라, 압출재(260)의 집합조직은 피압출재(250)의 집합조직과 달라질 수 있다. 따라서 통상적인 압출조건에서 성형성이 나쁜 피압출재(250)의 경우, 그 집합조직을 변형하여 압출함으로써 압출재(260)의 성형성이 개선될 수 있다.As described above, by inducing shear deformation in the extrudate 250, the texture of the extrudate 260 can be controlled. Accordingly, the texture of the extruded material 260 may be different from that of the extruded material 250. Therefore, in the case of the extruded material 250 having poor moldability under ordinary extrusion conditions, the moldability of the extruded material 260 may be improved by extruding the aggregated structure.
본 발명의 다른 실시예에 따른 비대칭 가공방법의 압출공정에 따르면, 피압출재(250)의 장입 단계 및 피압출재(250)의 압축 단계는 다양하게 변형되거나 또는 생략될 수 있다. 예를 들어, 피압출재(250)가 다이스(230) 내로 바로 장입되어 다이스(230) 내에서 압축될 수 있다. 다른 예로, 피압출재(250)의 장입 단계, 압축 단계 및 압출 단계가 서로 구분되지 않고 일련의 압출 단계로 지칭될 수도 있다.According to the extrusion process of the asymmetric processing method according to another embodiment of the present invention, the charging step of the extrusion material 250 and the compression step of the extrusion material 250 may be variously modified or omitted. For example, the extruded material 250 may be charged directly into the die 230 and compressed in the die 230. As another example, the charging step, the compression step and the extrusion step of the extrudate 250 may be referred to as a series of extrusion steps without being distinguished from each other.
전술한 실시예들에 따른 비대칭 가공방법의 압출공정은 도 17 내지 도 19의 비대칭 가공장치의 압출기를 참조하여 설명되었지만, 그 범위가 이러한 장치 구조에 제한되지 않는다. The extrusion process of the asymmetrical processing method according to the above embodiments has been described with reference to the extruder of the asymmetrical processing apparatus of FIGS. 17 to 19, but the range is not limited to this apparatus structure.
한편, 전술한 비대칭 가공방법의 압출공정에 따라 제조된 압출재(260)는 이후 그 두께를 더 얇게 하기 위해서 위 비대칭 압출공정을 반복적으로 거치거나 또는 압연 절차를 더 거칠 수도 있다.On the other hand, the extruded material 260 manufactured according to the extrusion process of the above-described asymmetric processing method may be repeatedly subjected to the above asymmetric extrusion process or more rough rolling process in order to make the thickness thereof thinner.
도 20은 본 발명의 다른 실시예에 따른 비대칭 가공장치의 압출기에 포함되는 다이스(230a)를 보여주는 부분 절단된 사시도이다. 도 21은 도 20의 다이스(230a)의 단면도이다. 이 실시예에 따른 다이스(230a)는 도 17 내지 도 19의 다이스(230)에서 일부 구성을 변형한 것에 해당하고, 따라서 두 실시예들에서 중복된 설명은 생략된다.20 is a partially cut perspective view showing a die 230a included in an extruder of an asymmetric processing apparatus according to another embodiment of the present invention. FIG. 21 is a cross-sectional view of the dice 230a of FIG. 20. The die 230a according to this embodiment corresponds to a modification of some configurations in the die 230 of FIGS. 17 to 19, and thus, redundant descriptions of the two embodiments are omitted.
도 20 및 도 21을 참조하면, 압출 구멍(235)은 여전히 압출 방향(X축 방향)에 대해서 비대칭적인 형상을 가질 수 있다. 이 실시예에서, 테이퍼 부분(234a)을 한정하는 제 1 내면(242) 및 제 2 내면(244a)은 압출 방향(X축 방향)을 기준으로 서로 다른 각도의 기울기를 가질 수 있다. 제 1 내면(244a)은 압출 방향과 평행하지 않고, 제 1 내면(242)과 다른 각도의 기울기로 신장될 수 있다. 제 1 내면(242) 및 제 2 내면(244a)의 기울기는 예시적으로 도시되었고, 제 1 내면(242) 및 제 2 내면(244a)이 서로 다른 기울기를 갖는 범위 내에서 다양하게 변형될 수 있다.20 and 21, the extrusion hole 235 may still have an asymmetrical shape with respect to the extrusion direction (X-axis direction). In this embodiment, the first inner surface 242 and the second inner surface 244a defining the tapered portion 234a may have different angles of inclination relative to the extrusion direction (X-axis direction). The first inner surface 244a is not parallel to the extrusion direction and may extend at an angle different from that of the first inner surface 242. The inclination of the first inner surface 242 and the second inner surface 244a is exemplarily illustrated, and may be variously modified within a range in which the first inner surface 242 and the second inner surface 244a have different inclinations. .
이에 따르면, 압출 구멍(235)의 테이퍼 부분(234a)은 여전히 압출 방향을 기준으로 비대칭적인 형상을 가질 수 있다. 특히, 압출 구멍(235)의 테이퍼 부분(234a)은 압출재(도 17의 260)의 판면 방향(XY 평면)을 기준으로 비대칭적인 형상을 가질 수 있다. According to this, the tapered portion 234a of the extrusion hole 235 may still have an asymmetrical shape with respect to the extrusion direction. In particular, the tapered portion 234a of the extrusion hole 235 may have an asymmetrical shape with respect to the plate direction (XY plane) of the extrusion material (260 of FIG. 17).
이에 따라, 피압출재(도 17의 250)는 제 1 내면(242) 및 제 2 내면(244a) 사이에서 그 변형각도가 달라져 전단변형을 여전히 받을 수 있다. 다만, 제 1 내면(242) 및 제 2 내면(244a)이 모두 압출 방향에 대해서 기울어져 있다는 점에서, 그 전단변형이 다소 복잡해질 수 있다. 이러한 전단변형은 압출재(도 17의 260)의 집합조직 변형에 영향을 줄 수 있다.Accordingly, the material to be extruded (250 of FIG. 17) may still undergo shear deformation because its deformation angle is different between the first inner surface 242 and the second inner surface 244a. However, since the first inner surface 242 and the second inner surface 244a are both inclined with respect to the extrusion direction, the shear deformation may be somewhat complicated. Such shear deformation may affect the texture deformation of the extruded material (260 of FIG. 17).
도 20 및 도 21의 다이스(230a)를 이용한 압출공정은 전술한 설명으로부터 이해될 수 있고, 나아가 도 18 및 도 19의 다이스(230)를 이용한 압출방법에 대한 설명을 더 참조하여 이해될 수 있다.The extrusion process using the die 230a of FIGS. 20 and 21 may be understood from the above description, and further may be understood with reference to the description of the extrusion method using the die 230 of FIGS. 18 and 19. .
전술한 비대칭 압출기 및 비대칭 압출공정이 적용되는 피압출재(도 17의 250)는 다양한 재료를 포함할 수 있다. 예를 들어, 피압출재(250)는 집합조직을 갖는 다양한 금속 또는 그 금속 합금을 포함할 수 있다. 이러한 금속 또는 금속 합금은 다양한 결정 구조를 가질 수 있으며, 예컨대 조밀충진육방정(hexagonal closed-packed; HCP), 면심입방정(face centered cubic; FCC), 체심입방정(body centered cubic;BCC) 구조 등을 가질 수 있다. 상기 결정구조는 상술한 바와 같으므로, 중복을 피하기 위해 상세한 설명은 생략한다.The extruded material (250 of FIG. 17) to which the aforementioned asymmetric extruder and asymmetrical extrusion process are applied may include various materials. For example, the extrudate 250 may include various metals having a texture or a metal alloy thereof. Such metals or metal alloys may have a variety of crystal structures, such as hexagonal closed-packed (HCP), face centered cubic (FCC), body centered cubic (BCC) structure, etc. Can have Since the crystal structure is as described above, detailed description is omitted to avoid duplication.
도 22는 본 발명의 일 실시예에 따른 비대칭 가공방법의 압출공정에 의해 압출된 AZ31 판재의 +Z축 방향에서의 (0001) 극점도이다. 도 23은 본 발명의 일 실시예에 따른 비대칭 가공방법의 압출공정에 의해 압출된 AZ31 판재의 -Z축 방향에서의 (0001) 극점도이다. 도 24는 비교예에 따른 AZ31 판재의 (0001) 극점도이다.22 is a (0001) pole figure in the + Z axis direction of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention. Figure 23 is a (0001) pole figure in the -Z axis direction of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention. 24 is a (0001) pole figure of the AZ31 sheet according to the comparative example.
도 22 및 도 23을 참조하면, 본 발명의 실시예에 따라서 비대칭 압출된 AZ31 판재는 (0001) 극점도 상에서 기저면, 즉 (0001) 면의 결정방향이 중심에서 확연히 벗어나 있음을 알 수 있다. 비대칭 압출된 AZ31 판재의 (0001) 극점도 상의 배치는 도 7 및 도 8의 제 4 시편(D)과 유사하다. 따라서 비대칭 압출된 AZ31 판재는 그 기저면 슬립계가 주변형 방향과 일정각도를 유지하도록 배치되어 우수한 성형성을 나타낸다.22 and 23, it can be seen that the AZ31 plate asymmetrically extruded according to the embodiment of the present invention has a crystallographic direction of the base surface, that is, the (0001) plane, clearly deviated from the center on the (0001) pole figure. The arrangement on the (0001) pole figure of the asymmetrically extruded AZ31 sheet is similar to the fourth specimen D of FIGS. 7 and 8. Thus, asymmetrically extruded AZ31 sheet material is arranged so that its base surface slip system maintains a constant angle with the peripheral direction, showing excellent formability.
반면, 도 24에 도시된 바와 같이, 대칭 압연 또는 대칭 압출된 비교예에 따른 AZ31 판재는 (0001) 극점도 상에서 기저면의 결정방향이 중심에 배치되어 있음을 알 수 있다. 이러한 배치는 도 7 및 도 8의 제 1 시편(A)과 유사하고, 따라서 비교예에 따른 AZ31 판재는 우수한 성형성을 기대하기 어렵다.On the other hand, as shown in Figure 24, it can be seen that the AZ31 plate according to the comparative example of the symmetrically rolled or symmetrically extruded, the crystal direction of the base surface is disposed in the center on the (0001) pole figure. This arrangement is similar to the first specimen A of FIGS. 7 and 8, so that the AZ31 sheet according to the comparative example is difficult to expect excellent formability.
도 25는 본 발명의 일 실시예에 따른 비대칭 압출-압연 복합방법의 압출공정에 의해 압출된 AZ31 판재의 진응력-진변형률 그래프이다. 도 26은 비교예에 따른 AZ31 판재의 진응력-진변형률 그래프이다.25 is a true stress-strain graph of the AZ31 sheet extruded by the extrusion process of the asymmetric extrusion-rolling composite method according to an embodiment of the present invention. 26 is a true stress-strain graph of the AZ31 sheet according to the comparative example.
도 25를 참조하면, 본 발명의 실시예에 따라서 비대칭 압출된 AZ31 판재의 경우 35% 이상의 높은 연신율을 보임을 알 수 있다. 반면, 도 26에 도시된 바와 같이, 비교예에 따른 AZ31 판재의 경우 15~20%의 낮은 연신율을 보임을 알 수 있다. 따라서 비대칭 압출방법을 이용하여 AZ31 판재의 연신율을 크게 향상시킬 수 있음을 알 수 있다. 이러한 연신율을 향상은 AZ31 판재의 성형성 향상으로 이어질 수 있다.Referring to FIG. 25, in the case of the asymmetrically extruded AZ31 sheet according to the embodiment of the present invention, it can be seen that a high elongation of 35% or more. On the other hand, as shown in Figure 26, the AZ31 plate according to the comparative example it can be seen that the low elongation of 15 ~ 20%. Therefore, it can be seen that the elongation of the AZ31 sheet can be greatly improved by using the asymmetric extrusion method. This improvement in elongation can lead to improved formability of the AZ31 sheet.
도 27은 본 발명의 일 실시예에 따른 비대칭 가공방법의 압출공정에 의해 압출된 AZ31 판재의 인장축에 대한 각도에 따른 r-값을 보여주는 그래프이다.27 is a graph showing the r-value according to the angle with respect to the tensile axis of the AZ31 sheet extruded by the extrusion process of the asymmetric processing method according to an embodiment of the present invention.
도 27을 참조하면, 비대칭 압출된 AZ31 판재는 인장각도에 따른 이방성이 크지 않으며 철강 수준의 높은 r-값을 갖는 것을 알 수 있다.Referring to FIG. 27, it can be seen that the asymmetrically extruded AZ31 sheet has not high anisotropy according to the tensile angle and has a high r-value of steel level.
전술한 바에 따르면, 본 발명의 실시예들에 따라 비대칭 압출된 AZ31 판재는 비교예에 따른 AZ31 판재와 현저히 다른 집합조직을 갖게 되고, 이에 따라서 높은 연신율 및 우수한 성형성을 나타냄을 알 수 있다.As described above, the AZ31 plate asymmetrically extruded according to the embodiments of the present invention has a significantly different texture than the AZ31 plate according to the comparative example, it can be seen that exhibits high elongation and excellent formability.
전술한 HCP 구조를 갖는 금속 또는 금속 합금에 대한 설명은 다른 구조, 예컨대 BCC 구조, FCC 구조 등을 갖는 금속 또는 금속 합금에 대해서도 유사한 원리로 적용될 수 있다.The description of the metal or metal alloy having the above-described HCP structure may be applied on a similar principle to metals or metal alloys having other structures, such as BCC structures, FCC structures, and the like.
이상 언급한 실시예는 본 발명을 한정하는 것이 아니라 예증하는 것이며, 이 분야의 당업자라면 첨부한 청구항에 의해 정의된 본 발명의 범위로부터 벗어나는 일 없이, 많은 다른 실시예를 설계할 수 있다. 이러한 본 발명의 기술이 당업자에 의하여 용이하게 변형 실시될 가능성이 자명하며, 이러한 변형된 실시예들은 본 발명의 특허청구범위에 기재된 기술사상에 포함된다고 하여야 할 것이다.The above-mentioned embodiments are illustrative rather than limiting on the present invention, and those skilled in the art can design many other embodiments without departing from the scope of the present invention as defined by the appended claims. It is apparent that such techniques of the present invention can be easily modified by those skilled in the art, and these modified embodiments will be included in the technical spirit described in the claims of the present invention.

Claims (20)

  1. 피압출재의 판면 방향을 기준으로 비대칭적 형상의 압출 구멍을 갖는 다이스를 통해서 상기 피압출재를 밀어내어 상기 피압출재의 두께 방향으로 내부에 전단변형을 유도하면서 상기 피압출재를 압출하여 압출재를 제조하는 단계; 및Manufacturing an extruded material by extruding the extruded material by pushing the extruded material through a die having an extrusion hole having an asymmetrical shape with respect to the plate surface direction of the extruded material to induce shear deformation in the thickness direction of the extruded material; ; And
    상기 압출재를 피압연재로 하여, 상기 피압연재를 서로 다른 직경을 갖는 제 1 롤 및 제 2 롤의 사이로 밀어내어 상기 피압연재에 전단변형력을 유도하면서 상기 피압연재를 압연하여 압연재를 제조하는 단계를 포함하는, 비대칭 가공방법.Using the extruded material as a rolled material, pushing the rolled material between the first and second rolls having different diameters and rolling the rolled material while inducing shear deformation force on the rolled material to produce a rolled material; Asymmetric processing method which includes.
  2. 제 1 항에 있어서, 상기 압출재를 제조하는 단계에서, 상기 다이스의 압출 구멍은 상기 피압출재의 압출 방향을 따라서 그 폭이 가변되는 테이퍼 부분을 포함하고, 상기 테이퍼 부분은 상기 피압출재의 판면 방향을 기준으로 비대칭적인 형상을 갖도록 배치되는, 비대칭 가공방법.The method of claim 1, wherein in the step of manufacturing the extruded material, the extrusion hole of the die comprises a tapered portion whose width is varied along the extrusion direction of the extruding material, the tapered portion is directed to the plate surface direction of the extruded material Asymmetric processing method, arranged to have an asymmetrical shape as a reference.
  3. 제 1 항에 있어서, 상기 압연재를 제조하는 단계는,The method of claim 1, wherein the manufacturing of the rolled material
    상기 제 1 롤 및 제 2 롤의 회전각속도를 서로 상이하게 조절하여 상기 제 1 롤에 의해 상기 피압연재의 상기 제 1 면 및 제 2 면 중 어느 하나에 인가되는 전단변형력과 상기 제 2 롤에 의해 상기 제 1 면 및 제 2 면 중 다른 어느 하나에 인가되는 전단변형력이 서로 상이하도록 제어하여 상기 피압연재를 압연하는 단계를 포함하는, 비대칭 가공방법.The rotational angular velocities of the first roll and the second roll are adjusted differently from each other, so that the shear deformation force applied to any one of the first and second surfaces of the rolled material by the first roll and the second roll. Rolling the rolled material by controlling the shear strain applied to any one of the first and second surfaces to be different from each other, asymmetric processing method.
  4. 제 3 항에 있어서, 상기 압연재를 제조하는 단계는, 상기 제 1 롤 및 제 2 롤의 회전선속도를 동일하게 유지하면서 상기 피압연재를 압연하여 수행하는, 비대칭 가공방법.The method of claim 3, wherein the manufacturing of the rolled material is performed by rolling the rolled material while maintaining the rotational linear velocities of the first and second rolls.
  5. 제 3 항에 있어서, 상기 압연재를 제조하는 단계는, 상기 제 1 롤 및 제 2 롤의 회전선속도 차이에 관한 수학식 1로 정의되는 회전선속도의 차이가 10% 이하인, 비대칭 가공방법.4. The method of claim 3, wherein the manufacturing of the rolled material comprises a difference in rotational linear velocity defined by Equation 1 regarding a difference in rotational linear velocity of the first roll and the second roll. 10.
    수학식 1 :
    Figure PCTKR2012004469-appb-I000004
    Equation 1:
    Figure PCTKR2012004469-appb-I000004
    Figure PCTKR2012004469-appb-I000005
    : 제 1 롤의 회전선속도
    Figure PCTKR2012004469-appb-I000005
    : Rotational linear velocity of the first roll
    Figure PCTKR2012004469-appb-I000006
    : 제 2 롤의 회전선속도
    Figure PCTKR2012004469-appb-I000006
    : Rotational linear velocity of the second roll
  6. 제 3 항에 있어서, 상기 압연재를 제조하는 단계는, 상기 제 1 롤이 상기 제 1 면에 전단변형력을 인가하고 상기 제 2 롤이 상기 제 2 면에 전단변형력을 인가하도록 설정하여 연속하여 2 회 이상 상기 피압연재를 압연하는 단계를 포함하는, 비대칭 가공방법.The method of claim 3, wherein the manufacturing of the rolled material comprises: setting the first roll to apply the shear strain force to the first face and the second roll to apply the shear strain force to the second face. Rolling the rolled material more than once, the asymmetric processing method.
  7. 제 1 항에 있어서, 상기 압연재를 제조하는 단계는, 상기 피압연재의 상기 제 1 롤 및 제 2 롤로부터 전단변형력을 인가받는 면을 바꾸어 적어도 1회 상기 피압연재를 압연하는 단계를 포함하는, 비대칭 가공방법.The method of claim 1, wherein the manufacturing of the rolled material includes rolling the rolled material at least once by changing a surface to which shear strain is applied from the first and second rolls of the rolled material. Asymmetric processing method.
  8. 제 1 항에 있어서, 상기 압연재를 제조하는 단계는, 상기 피압연재의 압연방향을 동일하게 설정하여 2 회 이상 상기 피압연재를 압연하는 단계를 포함하는, 비대칭 가공방법.The method of claim 1, wherein the manufacturing of the rolled material comprises rolling the rolled material two or more times by setting the same rolling direction of the rolled material.
  9. 제 1 항에 있어서, 상기 압연재를 제조하는 단계는, 상기 피압연재의 압연방향을 다르게 하여 적어도 1회 상기 피압연재를 압연하는 단계를 포함하는, 비대칭 가공방법. The method of claim 1, wherein the manufacturing of the rolled material comprises rolling the rolled material at least once by changing a rolling direction of the rolled material.
  10. 제 1 항에 있어서, 상기 압연재를 제조하는 단계는, 상기 제 1 롤에 비해 더 큰 직경을 가지는 제 3 롤을 상기 제 2 롤의 반대편에서 상기 제 1 롤에 결합시켜 상기 제 1 롤을 지지하게 하여 수행하는, 비대칭 가공방법. The method of claim 1, wherein the manufacturing of the rolled material supports the first roll by joining a third roll having a larger diameter than the first roll to the first roll on the opposite side of the second roll. Asymmetric processing method performed by letting.
  11. 판재 형상의 피압출재의 압출 방향을 따라서 그 폭이 가변되는 테이퍼 부분을 포함하고 상기 테이퍼 부분은 피압출재의 판면 방향을 기준으로 비대칭적 형상을 갖는 압출 구멍 및 상기 피압출재의 두께 방향을 따라서 상기 테이퍼 부분에 이격 배치되며 상기 피압출재의 제 1 면 및 제 2 면과 각각 대향하는 제 1 내면 및 제 2 내면을 포함하는 다이스를 통해서 밀어내어 상기 피압출재의 두께 방향으로 내부에 전단변형을 유도하면서 압출하여 압출재를 제조하는 단계; 및And a tapered portion whose width varies along the extrusion direction of the plate-shaped extruded material, wherein the tapered portion has an asymmetrical shape with respect to the plate surface direction of the extruded material and the taper along the thickness direction of the extruded material. Extruded through a die disposed spaced apart from the die and including a first inner surface and a second inner surface facing the first and second surfaces of the extruded material to induce shear deformation therein in the thickness direction of the extruded material. Preparing an extrudate; And
    상기 압출재를 피압연재로 하여, 동일한 회전선속도로 회전하는 서로 상이한 직경을 가지는 압연롤이 한 쌍을 이루는 하나 이상의 작업롤을 이용하여 상기 피압연재를 압연하여 압연재를 제조하는 단계를 포함하는 비대칭 가공방법.Rolling the rolled material using one or more work rolls having a pair of rolling rolls having different diameters rotating at the same rotational linear speed using the extruded material as a rolled material to produce a rolled material Processing method.
  12. 제 11 항에 있어서, 상기 압연재를 제조하는 단계는 상기 작업롤 중 상대적으로 더 큰 직경을 가지는 압연롤의 반대편에 상기 작업롤 중 직경이 상대적으로 작은 직경을 가지는 압연롤을 지지하는 보강롤을 결합시켜 수행하는, 비대칭 가공방법.12. The method of claim 11, wherein the manufacturing of the rolling material comprises a reinforcing roll for supporting a rolling roll having a smaller diameter in the work roll on the opposite side of the rolling roll having a relatively larger diameter in the work roll. Asymmetric processing method performed by combining.
  13. 제 11 항에 있어서, 상기 압출재를 제조하는 단계에서, 상기 다이스의 제 1 내면 및 제 2 내면은 상기 판재 형상의 판면 방향을 기준으로 비대칭이 되도록 상기 압출 방향을 따라서 서로 다른 기울기를 갖도록 배치된, 비대칭 가공방법.The method of claim 11, wherein in the step of manufacturing the extruded material, the first inner surface and the second inner surface of the die is arranged to have different inclinations along the extrusion direction to be asymmetric with respect to the plate surface direction of the plate shape, Asymmetric processing method.
  14. 제 13 항에 있어서, 상기 압출 구멍의 단면은 직사각 형상이고, 상기 다이스는 상기 판재 형상의 폭 방향을 따라서 상기 테이퍼 부분에 이격 배치된 제 3 내면 및 제 4 내면을 포함하고, 상기 제 3 내면 및 제 4 내면은 상기 압출 방향을 따라서 대칭적으로 배치된, 비대칭 가공방법.The cross section of the extrusion hole has a rectangular shape, and the die includes a third inner surface and a fourth inner surface spaced apart from the tapered portion along the width direction of the plate shape, and the third inner surface and And a fourth inner surface symmetrically disposed along the extrusion direction.
  15. 제 1 항 내지 제 14 항 중 어느 하나의 항의 비대칭 가공방법을 이용하여 제조한 가공재.A workpiece manufactured by using the asymmetrical processing method of any one of claims 1 to 14.
  16. 피압출재를 판재 형상으로 압출하기 위한 직사각형상의 압출 구멍을 포함하는 다이스를 포함하고, 상기 압출 구멍은 상기 피압출재의 압출 방향을 따라서 그 폭이 가변되는 테이퍼 부분을 포함하며, 상기 테이퍼 부분은 상기 판재 형상의 판면 방향을 기준으로 비대칭적인 형상을 갖는 비대칭 압출기; 및A die including a rectangular extrusion hole for extruding the material to be extruded into a sheet shape, the extrusion hole including a tapered portion whose width varies along an extrusion direction of the extruded material, the tapered portion being the sheet material An asymmetrical extruder having an asymmetrical shape relative to the plate surface direction of the shape; And
    상기 비대칭 압출기로부터 압출된 압출재를 피압연재로 하여, 상기 피압연재의 제 1 면에 접촉되는 제 1 롤; 제 1 롤에 비해 더 큰 직경을 가지며 제 1 면의 반대면인 제 2 면에 접촉되는 제 2 롤; 및 제 1 롤 및 제 2 롤의 회전각속도의 비가 조절될 수 있도록 제 1 롤 및 제 2 롤에 동력을 공급하는 동력제공부;를 포함하는 비대칭 압연기를 포함하는, 비대칭 가공장치.A first roll contacting the first surface of the rolled material by using the extruded material extruded from the asymmetric extruder as a rolled material; A second roll having a larger diameter than the first roll and in contact with a second face that is opposite the first face; And a power providing unit for supplying power to the first and second rolls so that the ratio of the rotational angular velocities of the first and second rolls can be adjusted.
  17. 제 16 항에 있어서, 상기 동력제공부는The method of claim 16, wherein the power supply unit
    상기 제 1 롤 및 제 2 롤을 각각 구동시키는 제 1 모터 및 제 2 모터; 및A first motor and a second motor driving the first roll and the second roll, respectively; And
    상기 제 1 모터 및 제 2 모터의 회전각속도를 제어할 수 있는 제어부;A controller capable of controlling rotational angular velocities of the first motor and the second motor;
    를 포함하는, 비대칭 가공장치.Asymmetric processing apparatus comprising a.
  18. 제 16 항에 있어서, 상기 비대칭 압연기는,The method of claim 16, wherein the asymmetrical rolling mill,
    상기 제 1 롤에 연결되는 제 1 기어; 및 A first gear connected to the first roll; And
    상기 제 2 롤에 연결되며 상기 제 1 기어와 서로 다른 기어비로 결합되는 제 2 기어;를 포함하고,And a second gear connected to the second roll and coupled to the first gear at a different gear ratio.
    상기 동력제공부는 상기 제 1 또는 제 2 기어에 구동력을 제공하는 모터;를 포함하는, 비대칭 가공장치.The power supply unit; asymmetric processing device including; a motor for providing a driving force to the first or second gear.
  19. 제 16 항에 있어서, 상기 비대칭 압연기는 상기 제 1 롤에 비해 더 큰 직경을 가지며 상기 제 2 롤의 반대편에서 상기 제 1 롤을 지지하도록 결합되는 제 3 롤을 더 포함하는, 비대칭 가공장치.17. The apparatus of claim 16, wherein the asymmetrical rolling mill further comprises a third roll having a larger diameter than the first roll and coupled to support the first roll opposite the second roll.
  20. 제 19 항에 있어서, 상기 제 1 롤 또는 제 3 롤에 연결되는 제 1 기어; 및 상기 제 2 롤에 연결되며, 상기 제 1 기어와 서로 다른 기어비를 가지고 결합되는 제 2 기어;를 포함하고,20. The apparatus of claim 19, further comprising: a first gear connected to the first roll or third roll; And a second gear connected to the second roll and coupled with the first gear with a different gear ratio.
    상기 동력제공부는 상기 제 1 기어 또는 제 2 기어에 구동력을 전달하는 모터;를 포함하는, 비대칭 가공장치.The power supply unit; a motor for transmitting a driving force to the first gear or the second gear; including, asymmetric processing device.
PCT/KR2012/004469 2011-06-07 2012-06-07 Apparatus for asymmetric processing, method for asymmetric processing, and processed material manufactured using same WO2012169781A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110054550A KR101274504B1 (en) 2011-06-07 2011-06-07 Asymmetric processing apparatus, asymmetric processing method and materials processed using the apparatus or the method
KR10-2011-0054550 2011-06-07

Publications (2)

Publication Number Publication Date
WO2012169781A2 true WO2012169781A2 (en) 2012-12-13
WO2012169781A3 WO2012169781A3 (en) 2013-03-07

Family

ID=47296587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004469 WO2012169781A2 (en) 2011-06-07 2012-06-07 Apparatus for asymmetric processing, method for asymmetric processing, and processed material manufactured using same

Country Status (2)

Country Link
KR (1) KR101274504B1 (en)
WO (1) WO2012169781A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570480A (en) * 2020-11-27 2021-03-30 吉林大学 Method for weakening texture of ATX magnesium alloy plate by adopting asymmetric extrusion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105750330B (en) * 2016-03-31 2018-10-12 云南昆钢新型复合材料开发有限公司 A method of with asymmetric stainless steel composite billet hot rolling production stainless steel clad plate volume

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095734A (en) * 1990-12-14 1992-03-17 William L. Bonnell Company, Inc. Extrusion die and method for extruding aluminum
JP2001276904A (en) * 2000-03-29 2001-10-09 Kawasaki Heavy Ind Ltd Sheet metal rolling method and rolling mill
KR20040100525A (en) * 2003-05-23 2004-12-02 현대자동차주식회사 Method for forming aluminum alloy sheet using texture control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095734A (en) * 1990-12-14 1992-03-17 William L. Bonnell Company, Inc. Extrusion die and method for extruding aluminum
JP2001276904A (en) * 2000-03-29 2001-10-09 Kawasaki Heavy Ind Ltd Sheet metal rolling method and rolling mill
KR20040100525A (en) * 2003-05-23 2004-12-02 현대자동차주식회사 Method for forming aluminum alloy sheet using texture control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI, YEONG GYU ET AL. JOURNAL OF THE KOREAN SOCIETY FOR TECHNOLOGY OF PLASTICITY vol. 12, no. 3, 30 April 2003, pages 244 - 250 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570480A (en) * 2020-11-27 2021-03-30 吉林大学 Method for weakening texture of ATX magnesium alloy plate by adopting asymmetric extrusion

Also Published As

Publication number Publication date
WO2012169781A3 (en) 2013-03-07
KR101274504B1 (en) 2013-06-13
KR20120135695A (en) 2012-12-17

Similar Documents

Publication Publication Date Title
WO2012134012A1 (en) Asymmetric rolling machine, asymmetric rolling method, and rolled material prepared using same
WO2011115402A2 (en) Asymmetric rolling device, asymmetric rolling method and rolled material manufactured using same
WO2011145860A2 (en) Asymmetric extruding method, extruded material manufactured according to same, asymmetric extruding dice, and asymmetric extruding device
WO2012169782A2 (en) Method for asymmetric extruding, extruded material extruded using same, device for asymmetric extruding, and apparatus for asymmetric extruding
WO2010074438A9 (en) Dies for shear drawing
US5850755A (en) Method and apparatus for intensive plastic deformation of flat billets
WO2012169781A2 (en) Apparatus for asymmetric processing, method for asymmetric processing, and processed material manufactured using same
CN1561268A (en) Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
WO2014069303A1 (en) Cu-Be ALLOY AND METHOD FOR PRODUCING SAME
WO2022147922A1 (en) Gradient nano-structure metal material and preparation method therefor
Zhang et al. Influence of anisotropy of the magnesium alloy AZ31 sheets on warm negative incremental forming
WO2020067704A1 (en) Magnesium alloy sheet and manufacturing method therefor
CA2758719C (en) Oxide-dispersion-strengthened platinum material and method for producing the same
WO2013119054A1 (en) Apparatus and method for extrusion
WO2020196982A1 (en) Method for manufacturing aluminum-based clad frame member, and aluminum-based clad frame member manufactured using same
WO2018079945A1 (en) Method for producing hot-stamped aluminum case and hot-stamped aluminum case produced by method
WO2013119057A1 (en) Method for extrusion using asymmetric material to be extruded
Kurzydlowski et al. Effect of severe plastic deformation on the microstructure and mechanical properties of Al and Cu
WO2013105699A1 (en) Manufacturing method of titanium alloy with high-strength and high-formability and its titanium alloy
JP2004027321A (en) Magnesium alloy forming material, and method and apparatus for producing the same
KR101316724B1 (en) Asymmetric rolling apparatus, asymmetric rolling method and rolled materials fabricated by using the same
KR20020039910A (en) Strip Forming Device via Continuous Shear Deformation Combined with Strip Casting
CN115161528B (en) Preparation method of Mg-RE-based high-temperature-resistant high-performance magnesium alloy
Wang et al. Preparation of AZ31 magnesium alloy strips using vertical twin-roll caster
CN107282915A (en) The semisolid printing forming method of aluminium base ply-metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797454

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797454

Country of ref document: EP

Kind code of ref document: A2