WO2012169768A2 - Multi-layered conductive nano particles and manufacturing method therefor - Google Patents

Multi-layered conductive nano particles and manufacturing method therefor Download PDF

Info

Publication number
WO2012169768A2
WO2012169768A2 PCT/KR2012/004437 KR2012004437W WO2012169768A2 WO 2012169768 A2 WO2012169768 A2 WO 2012169768A2 KR 2012004437 W KR2012004437 W KR 2012004437W WO 2012169768 A2 WO2012169768 A2 WO 2012169768A2
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive nanoparticles
core
emulsion
shell
Prior art date
Application number
PCT/KR2012/004437
Other languages
French (fr)
Korean (ko)
Other versions
WO2012169768A9 (en
WO2012169768A3 (en
Inventor
김중현
김병욱
이선종
Original Assignee
주식회사 한국엔티켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국엔티켐 filed Critical 주식회사 한국엔티켐
Priority to CN201280028291.4A priority Critical patent/CN103608284B/en
Publication of WO2012169768A2 publication Critical patent/WO2012169768A2/en
Publication of WO2012169768A9 publication Critical patent/WO2012169768A9/en
Publication of WO2012169768A3 publication Critical patent/WO2012169768A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a conductive nanoparticles having a multi-layer structure and a method for manufacturing the same, particularly in the conductive nano-particles having a multi-layer structure comprising a core and one or more layers, light emission and acting as a shell to the conductive polymer particles serving as a core and
  • the present invention relates to a conductive nanoparticle having a multilayer structure coated with one or more conductive polymers and a method of manufacturing the same.
  • nanoparticles are materials that fall between the molecular and bulk states, and have new electromagnetic and optical properties that differ from those of the bulk state.
  • bulk particles are multidomain, while nanoparticles are single domain.
  • the electrically conductive polymer nanoparticles have the same electrical properties as metals but have the characteristics of light and elastic polymers, and thus have various uses such as conductive paints, electromagnetic wave shielding coatings, polymer additives, metal catalyst carriers, protein carriers, and sensor materials. Do.
  • the conductive polymer is brittle, crystallized, and hardly dispersed in an organic solution or an aqueous solution.
  • the surface of the hydrophobic polystyrene ball is chemically modified by the introduction of sulfonic acid groups, and the polypyrrole and polyaniline, which are conductive polymers, are coated to form a core-.
  • Research into shell conducting balls is known (Yang Yang, et al., Materials Chemistry and Physics 92 (2005) 164-171.).
  • the above research has a big problem in that the polystyrene has a size of 2 ⁇ m and is used as an electromagnetic shielding paint.
  • Poly (3,4-alkylenedioxythiophene) is commercially available in the form of a dispersion in aqueous solution and no exact molecular weight distribution has been reported (Eur. Patent 440957, 1991., Eur. Patent 553671, 1993., US Patent 5,792,558, 1996). At this time, the oxidant used is left in excess in the form of ions, and removes and commercializes unnecessary ions through the ion exchange resin.
  • Korean Patent Application Nos. 10-2007-0009718 and 10-2008-0031828 disclose core-shell-type nanoparticles prepared by polymerizing vinyl, acrylic, or styrene polymers to form a core, and forming a shell around the core. It is disclosed that the technique for producing, but the situation is lacking conductivity.
  • the present invention has been made to solve the above-described problems, the conductive nanoparticles of a multi-layer structure comprising a core and one or more shells having high conductivity and excellent luminescence, processability, dispersibility, elasticity and elasticity, and a method of manufacturing the same.
  • the purpose is to provide.
  • the present invention can significantly shorten the process for manufacturing the core and one or more layers of shells, which is advantageous in time and economically, and forms a variety of multi-functional polymers, thereby stably forming the conductive nano
  • An object of the present invention is to provide a method for producing particles and conductive nanoparticles having a multilayer structure prepared by the method.
  • the present invention also provides an electronic material, an optical material, a printing material, a film, a conductive paint, an electromagnetic shielding coating agent, a polymer additive, a metal catalyst carrier, a protein carrier, a sensor material, and the like, which include the conductive nanoparticles.
  • an electronic material an optical material, a printing material, a film, a conductive paint, an electromagnetic shielding coating agent, a polymer additive, a metal catalyst carrier, a protein carrier, a sensor material, and the like, which include the conductive nanoparticles.
  • the present invention to achieve the above object
  • conductive nanoparticles of a multilayer structure comprising a core and one or more layers of shells
  • the present invention provides a conductive nanoparticle having a multilayer structure in which at least one layer of light emitting and conductive polymers serving as shells is coated on conductive polymer particles serving as cores.
  • It provides a method for producing a conductive nanoparticles of a multi-layer structure comprising a.
  • the present invention is an electronic material, an optical material, a printing material, a film, a conductive paint, an electromagnetic shielding coating agent, a polymer additive, a metal catalyst carrier, a protein carrier, a sensor material, etc., comprising the conductive nanoparticles of the multilayer structure.
  • a conductive nanoparticle having a high conductivity and a multi-layered structure comprising a core and one or more layers of shells having excellent luminescence, processability, dispersibility, elasticity and elasticity, and a method of manufacturing the same.
  • the method of manufacturing a shell having more than one layer can be drastically shortened, which is advantageous in terms of time and economics, and in the method of producing a multi-layered conductive nanoparticle and stably forming a multifunctional polymer, It is possible to provide a conductive nanoparticles of a multi-layer structure manufactured by.
  • FIG. 1 is a schematic diagram showing conductive nanoparticles of a core-shell structure according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the conductive nanoparticles of the core-shell shell-secondary shell structure according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the conductive nanoparticles of the core-shell structure according to Example 1 of the present invention.
  • Figure 4 is a schematic diagram showing the conductive nanoparticles of the core-shell shell secondary shell structure according to Example 3 of the present invention.
  • Example 5 is a TEM-image of conductive nanoparticles having a core-shell structure according to Example 1 of the present invention.
  • Multi-layered conductive nanoparticles of the present invention is a multi-layered conductive nanoparticles comprising a core and at least one layer of shell, wherein the light emitting and conductive polymers acting as a shell is coated on the conductive polymer particles acting as a core Multi-layered conductive nanoparticles.
  • the multi-layered conductive nanoparticles of the present invention preferably have a particle size of 30-1000 nm, preferably at least one layer of 10-100 nm shell coated on a 10-100 nm core.
  • the conductive nanoparticles of the multi-layered structure are all composed of a conductive polymer material constituting the core and shell.
  • the core may be polypyrrole, polyfuran or polythiophene
  • the shell coated on the outside of the core may be made of a material selected from the group consisting of polypyrrole, polyfuran and polythiophene.
  • the shell may be composed of one layer as shown in FIG. 1, or may be composed of two or more layers as shown in FIG. 2.
  • the shell consists of 1-3 layers.
  • the conductive nanoparticles having a multilayer structure of the present invention include polypyrrole (core) -polythiophene (shell), polythiophene (core) -polyfuran (shell), polyfuran (core) -polypyrrole (shell), polypyrrole (Core) -polyfuran (primary shell) -polythiophene (secondary shell), polythiophene (core) -polypyrrole (primary shell) -polythiophene (secondary shell), polypyrrole (core) -poly Thiophene (primary shell) -polythiophene (secondary shell) and the like can be configured in various ways, in particular, the core is preferably polypyrrole, the shell is preferably composed of polythiophene in the outermost. In this case, the conductivity is high, and the light emitting property, workability, dispersibility, elasticity and elasticity are excellent.
  • the conductive nanoparticles of the multi-layer structure is A) preparing a conductive polymer core; And B) coating a conductive polymer constituting at least one layer of the shell structure on the conductive polymer core.
  • Step A) may use a known polymerization method, preferably a) a thiophene, pyrrole or furan monomer in an aqueous solvent; Compounds selected from the group consisting of HCl, HF, HBr and HI; Stabilizer; And mixing the first oxidant to prepare an emulsion. And b) mixing the second oxidant into the emulsion of step a) and stirring to prepare conductive particles in an emulsion state.
  • a known polymerization method preferably a) a thiophene, pyrrole or furan monomer in an aqueous solvent; Compounds selected from the group consisting of HCl, HF, HBr and HI; Stabilizer; And mixing the first oxidant to prepare an emulsion.
  • b) mixing the second oxidant into the emulsion of step a) and stirring to prepare conductive particles in an emulsion state a known polymerization method, preferably a)
  • the core may be represented by the following formula (1).
  • X represents sulfur, nitrogen, oxygen, phosphorus, silicon, or arsenic
  • R 1 and R 2 are each independently hydrogen, halogen, hydroxy, C1-C10 alkyl, alkoxy, carbonyl
  • 3 to 8 may be alkylene, alkenylene, alkenyloxy, alkenyldioxy, alkynyloxy, alkynyldioxy in the membered alicyclic or aromatic ring structure, which may be nitrogen, sulfur in addition to hydrogen, carbon, oxygen atoms And atoms such as phosphorus, selenium, and silicon.
  • the starting material thiophene, pyrrole or furan monomer is a starting material prepared from polythiophene, polypyrrole and polyfuran through a polymerization reaction, and any thiophene, pyrrole and furan commonly used in the art may be used.
  • the thiophene, pyrrole or furan substituted with at least one or more substituents selected from alkyl ethoxy, carboxyl sulfone groups or these may be represented by the following Chemical Formula 2, for example.
  • the compound selected from the group consisting of HCl, HF, HBr and HI makes the reaction solution acid (pH 1-6) and at the same time acts as a dopant (dopant), especially HCl is preferred.
  • etc. can be produced a conductive polymer core significantly improved electrical conductivity and processability compared to the conventional polymer.
  • the amount of the compound such as HCl is preferably used in 1 to 100 mole ratio (mole ratio) of the monomer. In the case where the molar ratio is less than 1, the progress of the reaction is delayed, the yield is low, and the electrical conductivity of the reaction product is low. When the molar ratio is more than 100, the acid value of the product is high, which makes it difficult to neutralize and wash the production cost. This increase is somewhat problematic for commercial use.
  • the solvent is a mixture of one or two or more selected from the group consisting of C 6 -C 20 aliphatic and aromatic hydrocarbons, halogen-containing hydrocarbons, ketones, ethers, C 2 -C 20 alcohols, sulfoxides, amides, and water It can also be used.
  • C 6 -C 20 aliphatic and aromatic hydrocarbons include alkanes hexane, heptane, octane, nonane, decane, and alkylbenzenes benzene, toluene, xylene, cumene, mesitylene, Phenol, cresol, and the like
  • halogen-containing hydrocarbons include carbon tetrachloride, chloroform, dichloromethane, dichloroethane, dibromoethane, trichloroethane, tribromoethane, and halobenzenes such as dichlorobenzene and chlorobenzene
  • ketones include acetone.
  • ethers are diethyl ether, tetrahydro hulan (THF), dipropyl ether, dibutyl ether, methyl butyl ether , Diphenyl ether, dioxane, diglyme, diethylene glycol, ethylene glycol (EG), and C2-C20 alcohols and sulfoxides are dimethylsulfoxide (DMSO).
  • Amide series include N, N-dimethylformamide (NMF), N-methylacetamide (NMAA), N, N-dimethylacetamide (DMA), N-methylpropionamide (NMPA) and N Methylpyrrolidinone (NMP).
  • NMF N, N-dimethylformamide
  • NMAA N-methylacetamide
  • DMA N, N-dimethylacetamide
  • NMPA N-methylpropionamide
  • NMP N Methylpyrrolidinone
  • the solvent is used in an amount of 1,000 to 3,000 parts by weight based on 100 parts by weight of the monomer, water having a temperature range of 0-180 °C and C 2 -C 20 alcohols, DMSO, DMF, NMP, ether, Polar solvents such as ethylene glycol and the like are suitable.
  • the stabilizer is mixed with the pyrrole and furan or derivatives thereof to impart the stability of the particles, any stabilizer (stabilizer) commonly used in the art to achieve this purpose may be used.
  • any stabilizer (stabilizer) commonly used in the art to achieve this purpose may be used.
  • the amount of the stabilizer used is preferably 0.01 to 2,000 parts by weight based on 100 parts by weight of the monomer. If the content is less than 0.01 parts by weight, the micelle formation concentration does not function as a stabilizer, so it is not possible to induce the polymerization of the chain-type nanoparticles, and the aggregation of the particles occurs. The amount of c) may be so excessive that formation of the chained nanoparticles may be difficult.
  • the first oxidant when the first oxidant is reduced by oxidizing the thiophene, pyrrole or furan monomer, the first oxidant is to oxidize the reduced second oxidant again so that the second oxidant has an oxidizing power.
  • an oxidizing agent having a relatively higher oxidizing power than the second oxidizing agent is preferable.
  • peroxides [H 2 O 2 , (NH 4 ) 2 S 2 O 8 , O 2 ] or oxygen acids [HMnO 4 , HNO 3 , HClO 4 ], halogens [F 2 , Cl 2 , Br 2 ] or mixtures thereof.
  • the amount of the first oxidizing agent added is preferably 0.01 to 10 mole ratio of the monomer. If the content of the first oxidant is less than 0.01 molar ratio, the reaction for reducing the second oxidant may not occur well, and thus the degree of polymerization of the chain-type nanoparticles may be lowered. Can be.
  • the second oxidizing agent is for oxidizing the monomer, and any oxidizing agent capable of achieving this purpose may be used, but preferably, a metal oxide such as FeCl 3 , Fe (SO 4 ) 2 ⁇ 6H 2 O Iron (III) complexes, iron (II) complexes or mixtures thereof, and the like may be used, and the amount of use thereof may be 0.001 to 5 mole ratio with respect to the monomer.
  • the amount of the second oxidant is less than 0.001 mole ratio of the monomer, the polymerization rate is very slow. If the amount of the second oxidant is more than 5 mole ratio, the rate of polymerization and the electrical conductivity are increased, but the physical properties of the produced conductive polymer are decreased.
  • the second oxidant may be directly incorporated into a mixture of starting materials for polymerization, for example, a monomer, a compound such as HCl, a stabilizer, a first oxidant, and a solvent, but preferably deionized water. (Deionized water, DI Water) and / or mixed in a mixture of the starting materials in a state dissolved in an organic solvent.
  • a monomer for example, a monomer, a compound such as HCl, a stabilizer, a first oxidant, and a solvent, but preferably deionized water. (Deionized water, DI Water) and / or mixed in a mixture of the starting materials in a state dissolved in an organic solvent.
  • DI Water DI Water
  • the reaction temperature of the polymer polymerization reaction is preferably 0-180 ° C., or the temperature at which the solvent is used, and is stirred for 6 to 24 hours at a temperature of 0 to 180 ° C. to conduct conductive water dispersibility through the emulsion oxidation polymerization step.
  • Nanoparticles can be prepared.
  • the present invention comprises i) 0.01 to 2,000 parts by weight of a stabilizer relative to 100 parts by weight of a substituted or unsubstituted thiophene, pyrrole or furan monomer and 0.01 to 10 mole ratio of the first oxidizing agent of the monomer.
  • Emulsion preparation step of mixing an acidic aqueous solution of pH 1 to 6 by adding HCl having a temperature range of 0 to 180 °C of 1,000 to 2,000 parts by weight of ii) the second oxidizing agent in the emulsion of step i) 0.001
  • a seed emulsion preparation step of mixing at a molar ratio of about 5.0 to 5.0 and then stirring at 0 to 180 ° C.
  • the conductive water-dispersible nanoparticles may be prepared including an emulsion oxidation polymerization step.
  • the manufacturing of the core of step A) may further include a drying step of c).
  • the drying of step c) is a step of drying the conductive particles in an emulsion state and may be dried at room temperature-70 ° C.
  • step B) coating the conductive polymer constituting the shell structure of at least one layer on the conductive polymer core of the present invention is to form a shell with a conductive polymer to form at least one layer on the conductive polymer core prepared in step A)
  • Known methods of forming can be used, preferably a) a conductive core in an aqueous solvent; Thiophene, pyrrole or furan monomers; Compounds selected from the group consisting of HCl, HF, HBr and HI; Stabilizer; And mixing the first oxidant to prepare an emulsion.
  • step b) mixing the second oxidant into the emulsion of step a) and stirring to form conductive particles in an emulsion state, thereby forming a shell of one layer.
  • conductive nanoparticles having a plurality of layers in two layers or steps may be manufactured.
  • the shell consists of 1-3 layers.
  • the amount of the compound stabilizer, the first oxidant, the second oxidant and the like selected from the group consisting of HCl, HF, HBr and HI in forming the shell is based on the monomers of the shell to be polymerized. It can be used according to the quantity used at the time of manufacture.
  • step of forming the shell of step B) c) may further comprise a drying step.
  • the drying of step c) is a step of drying the conductive particles in an emulsion state and may be dried at room temperature-70 ° C.
  • the present invention provides an article comprising the conductive nanoparticles of the multi-layered structure, the conductive nanoparticles of the multi-layered structure prepared by the present invention has good processability and excellent conductivity, so electronic materials, optical materials, printing materials It can be used in the film, energy conversion and energy storage material, antistatic material, charge control material, electrically conductive layer material, pattern manufacturing material, printing ink material and the like.
  • the electronic material, the film, the toner and / or ink as the printing material according to the present invention mean an electronic material, toner and / or ink including the conductive nanoparticles of the multilayer structure manufactured by the present invention.
  • any product that is conventional in the art, including its configuration, will correspond to the electronic materials, toners and / or inks according to the present invention, and preferred electronic materials include photovoltaic cells, capacitors (used as an electrolyte) and PCBs ( printed circuit board)
  • Photovoltaic cells capacitors (used as an electrolyte) and PCBs ( printed circuit board)
  • PCBs printed circuit board
  • Substrate coating agent conventional metal plating can minimize environmental pollution
  • antistatic agent to prevent static electricity generated on the surface of plastic, polymer, etc. through coating, etc.
  • the mixture was then mixed with 0.3 g of an aqueous 30% by weight aqueous hydrogen peroxide solution as a first oxidant and 7 mg of ferric sulfate [Fe 2 (SO 4 ) 3 ] as a second oxidant to 5 g of deionized water.
  • a mixed solution containing a second oxidizing agent and the seed emulsion mixture was stirred for 12 hours at a temperature of 25 °C to prepare a polythiophene particles in an emulsion state.
  • the polythiophene particles in the emulsion state prepared above were dried in a range of room temperature to 70 ° C. to prepare polythiophene particles.
  • the conversion rate of the polythiophene emulsion was 99%, and the average polythiophene particle size was 70 nm, and the sheet resistance was measured by using a bar coating method (# 7 bar) to make a conductive film. 10 5.0 ohm / sq. Was obtained.
  • emulsion In the polythiophene emulsion prepared above, 0.5 g of 3,4-ethylenedioxythiophene, a monomer to form a shell, and 7.9 g of 37 wt% aqueous hydrochloric acid solution were mixed and reacted at a temperature of 25 ° C. for about 30 minutes to prepare an emulsion.
  • the emulsion is a polythiophene nanoparticle dispersion containing 3,4-ethylenedioxythiophene monomers.
  • the mixture was then mixed with 0.3 g of an aqueous 30% by weight aqueous hydrogen peroxide solution as a first oxidant and 7 mg of ferric sulfate [Fe 2 (SO 4 ) 3 ] as a second oxidant to 5 g of deionized water.
  • a mixed solution containing a second oxidizing agent and the seed emulsion mixture was stirred for 12 hours at a temperature of 25 °C to polymerize the poly (3.4-ethylenedioxythiophene) shell in the emulsion state.
  • the conversion of poly (3,4-ethylenedioxythiophene) was 99%.
  • the prepared conductive particles of the polythiophene / poly (3.4-ethylenedioxythiophene) core / shell structure in the emulsion state were dried at a temperature ranging from room temperature to 70 ° C. to polythiophene / poly (3.4-ethylenedioxythiophene).
  • Conductive particles having a core / shell structure were prepared.
  • the polythiophene / poly (3.4-ethylenedioxythiophene) particle size was 80 nm on average and the shell thickness was 10 nm.
  • the conductive film was prepared by the bar coating method (Bar coating method, # 7 bar) and the sheet resistance was measured to obtain 10 5.0 ohm / sq.
  • the conductive film was prepared by the bar coating method. 5.0 ohm / sq. Was obtained.
  • Example 2 In the same manner as in Example 1, 69 g of a 18% by weight polystyrene sulfonic acid solution as a stabilizer was used, and 7 mg of ferric sulfate, a second oxidant, was mixed with 5 g of deionized water as an initiator. After preparing a mixed solution containing the mixture was mixed with the emulsion and reacted for about 30 minutes at a temperature of 25 °C to prepare a seed emulsion.
  • the seed emulsion mixture was then stirred for 12 hours at a temperature of 25 ° C. in a closed reactor to prepare polypyrrole particles in emulsion state.
  • the conversion rate of the polypyrrole emulsion was 96%, and the average polypyrrole particle size was 50 nm, and the surface resistance was measured by using a bar coating method (# 7 bar) to measure the sheet resistance of 10 6.0 ohm / got sq.
  • the polypyrrole emulsion prepared above was mixed with 0.5 g of thiophene, a monomer for forming a shell, and reacted at a temperature of 25 ° C. for about 30 minutes to prepare an emulsion.
  • the emulsion is a polypyrrole nanoparticle dispersion containing thiophene monomers.
  • the mixture was then mixed with 0.3 g of an aqueous 30% by weight aqueous hydrogen peroxide solution as a first oxidant and 7 mg of ferric sulfate [Fe 2 (SO 4 ) 3 ] as a second oxidant to 5 g of deionized water.
  • a mixed solution containing a second oxidant and the seed emulsion mixture was stirred for 12 hours at a temperature of 25 °C to polymerize the poly thiophene shell in the emulsion state.
  • the polythiophene conversion was 99%.
  • the conductive particles of the polypyrrole / polythiophene (core / shell) structure prepared in the emulsion state were dried at a temperature ranging from room temperature to 70 ° C., thereby preparing the conductive particles having a polypyrrole / polythiophene (core / shell) structure.
  • the average particle size of polypyrrole / polythiophene was 70 nm, which was 10 5.0 ohm / sq.
  • a bar coating method # 7 bar
  • the polypyrrole / polythiophene emulsion prepared in Example 2 was mixed with 0.5 g of 3,4-ethylenedioxythiophene, which is a monomer to form the outermost shell of the multilayer structure, and 7.9 g of 37% by weight aqueous hydrochloric acid solution at a temperature of 25 ° C.
  • the reaction was prepared by reacting for about 30 minutes at.
  • the emulsion is a polypyrrole / polythiophene nanoparticle dispersion containing 3,4-ethylenedioxythiophene monomers.
  • the mixture was then mixed with 0.3 g of an aqueous 30% by weight aqueous hydrogen peroxide solution as a first oxidant and 7 mg of ferric sulfate [Fe 2 (SO 4 ) 3 ] as a second oxidant to 5 g of deionized water.
  • a mixed solution containing a second oxidizing agent and the seed emulsion mixture was stirred for 12 hours at a temperature of 25 °C to polymerize the poly (3.4-ethylenedioxythiophene) shell in the emulsion state.
  • the conversion of poly (3,4-ethylenedioxythiophene) was 99%.
  • the conductive particles of the polypyrrole / polythiophene / poly (3.4-ethylenedioxythiophene) multilayer structure prepared in the above emulsion state were dried at a temperature ranging from room temperature to 70 ° C. to polypyrrole / polythiophene / poly (3.4-ethylenedioxane.
  • Citofene) conductive particles having a core / shell1 / shell2 structure were prepared.
  • the polypyrrole / polythiophene / poly (3.4-ethylenedioxythiophene) particle size was 80 nm on average and the shell thickness was 10 nm.
  • This bar coating method (Bar coating method, # 7 bar ) as a result of making the sheet resistance of conductive films measuring 10 5.0 ohm / sq. Was obtained.
  • a conductive nanoparticle having a high conductivity and a multi-layered structure comprising a core and one or more layers of shells having excellent luminescence, processability, dispersibility, elasticity and elasticity, and a method of manufacturing the same.
  • the method of manufacturing a shell having more than one layer can be drastically shortened, which is advantageous in terms of time and economics, and in the method of producing a multi-layered conductive nanoparticle and stably forming a multifunctional polymer, It is possible to provide a conductive nanoparticles of a multi-layer structure manufactured by.

Abstract

The present invention relates to multi-layered, conductive nano particles and a manufacturing method therefor, and more specifically, to a multilayer structure, conductive nano particle comprising a core and more than one shell layer. The multi-layered, conductive nano particle is coated with more than one layer of light-emitting and conductive polymer which functions as a shell for the conductive polymer particle that, in turn, functions as a core, and the invention relates to a manufacturing method for the same. The multi-layered, conductive nano particles of the present invention demonstrate high electrical conductivity, the duration for the manufacturing process of the core and more than one shell layer is dramatically reduced, economic advantageous are demonstrated, and luminance, processability, dispersibility, elasticity and stretchability are all excellent.

Description

다층구조의 전도성 나노입자 및 이의 제조방법Conductive nanoparticles of multi-layer structure and method of manufacturing same
본 발명은 다층구조의 전도성 나노입자 및 이의 제조방법에 관한 것으로, 특히 코어 및 1층 이상의 쉘을 포함하는 다층구조의 전도성 나노입자에 있어서, 코어로 작용하는 전도성 고분자 입자에 쉘로 작용하는 빛 발광 및 전도성 고분자가 1층 이상 코팅된 다층구조의 전도성 나노입자 및 그 제조방법에 관한 것이다. The present invention relates to a conductive nanoparticles having a multi-layer structure and a method for manufacturing the same, particularly in the conductive nano-particles having a multi-layer structure comprising a core and one or more layers, light emission and acting as a shell to the conductive polymer particles serving as a core and The present invention relates to a conductive nanoparticle having a multilayer structure coated with one or more conductive polymers and a method of manufacturing the same.
일반적으로, 나노 입자는 분자 상태와 벌크 상태의 중간 크기에 해당하는 물질로서, 벌크 상태와 다른 새로운 전자기적, 광학적 성질을 갖는다. 특히, 벌크 입자는 다자구(multidomain)이나 나노 입자는 단자구(single domain)이다. 이러한, 나노 입자의 특성에 인해 나노 크기에서 분자를 설계하여 다양한 용도로 사용하고 있다. 그중 전기 전도성 고분자 나노 입자는 금속과 같은 전기적 성질을 가지고 있으면서도 가볍고 탄성적인 고분자의 특성을 갖추고 있어, 전도성 페인트, 전자파 차폐용 코팅제, 고분자 첨가제, 금속촉매 담체, 단백질 담체, 센서 재료 등 그 용도가 다양하다. 그러나 전도성 고분자는 부서지기 쉽고, 결정화되고, 유기용액 또는 수용액에 잘 분산되지 않는 문제점이 있다. In general, nanoparticles are materials that fall between the molecular and bulk states, and have new electromagnetic and optical properties that differ from those of the bulk state. In particular, bulk particles are multidomain, while nanoparticles are single domain. Due to the characteristics of the nanoparticles, molecules have been designed at a nano size and used for various purposes. Among them, the electrically conductive polymer nanoparticles have the same electrical properties as metals but have the characteristics of light and elastic polymers, and thus have various uses such as conductive paints, electromagnetic wave shielding coatings, polymer additives, metal catalyst carriers, protein carriers, and sensor materials. Do. However, there is a problem that the conductive polymer is brittle, crystallized, and hardly dispersed in an organic solution or an aqueous solution.
이와 같은 문제점 해결을 위한 것으로 나노크기의 폴리스티렌 볼, 일명 '라텍스볼'을 주형제로 사용하여 폴리피롤을 코팅하여 코어-쉘 전도성 고분자 볼을 제조하는 방법이 보고되어 있다(Sun-Hee Cho, et. al., Colloids and Surfaces A: Physicochem. Eng. Aspects 255 (2005) 79-83.; Claire Mangeney et al., Langmuir 22 (2006) 10163-10169.). 그러나, 상기 연구는 소수적 성질을 갖은 폴리스티렌에 친수성기를 갖은 폴리피롤을 코팅하기 위하여 반드시 계면활성제가 필요하다. 이때, 코어 볼과 계면활성제의 비는 매우 중요한 변수 중의 하나이고 이를 결정하기는 매우 어려운 실정이다.In order to solve this problem, a method of preparing a core-shell conductive polymer ball by coating polypyrrole using a nano-sized polystyrene ball, a so-called 'latex ball' as a template has been reported (Sun-Hee Cho, et. Al. Colloids and Surfaces A: Physicochem. Eng. Aspects 255 (2005) 79-83 .; Claire Mangeney et al., Langmuir 22 (2006) 10163-10169.). However, the study requires a surfactant to coat polypyrrole with hydrophilic groups on polystyrene with hydrophobic properties. At this time, the ratio of the core ball and the surfactant is one of the very important parameters and it is very difficult to determine this.
또한, 계면활성제를 사용하지 않고 폴리피롤 및 폴리아닐린을 폴리스티렌 표면에 코팅하기 위하여, 소수적 성질을 갖은 폴리스티렌 볼의 표면을 술폰산기의 도입으로 화학적으로 개질하고, 전도성 고분자인 폴리피롤 및 폴리아닐린을 코팅하여 코어-쉘 전도성 볼을 제조한 연구가 알려져 있다(Yang Yang, et al., Materials Chemistry and Physics 92 (2005) 164-171.). 그러나, 상기 연구는 폴리스티렌의 크기가 2 ㎛ 크기로 전자파 차폐 페인트로 이용하기는 큰 문제점을 가지고 있다.In addition, in order to coat polypyrrole and polyaniline on the surface of polystyrene without using a surfactant, the surface of the hydrophobic polystyrene ball is chemically modified by the introduction of sulfonic acid groups, and the polypyrrole and polyaniline, which are conductive polymers, are coated to form a core-. Research into shell conducting balls is known (Yang Yang, et al., Materials Chemistry and Physics 92 (2005) 164-171.). However, the above research has a big problem in that the polystyrene has a size of 2 μm and is used as an electromagnetic shielding paint.
또한, 서로 뭉치지 않고 구형을 유지하며 균일한 크기로 형성될 수 있는 에멀젼 중합의 나노 크기 전기 전도성 고분자 입자의 제조방법(한국 특허등록 제711,958호, 한국 특허등록 제0919272호)에 관한 기술이 알려져 있다. 그러나, 상기 전도성 고분자는 충격에 약하여 잘 깨어지는 문제점이 남아 있다.In addition, a technique for preparing nano-sized electrically conductive polymer particles of emulsion polymerization (Korean Patent Registration No. 711,958 and Korean Patent Registration No. 0919272) that can be formed in a uniform size without maintaining a spherical shape, is known. . However, the conductive polymer is weak to shock and remains a problem of breaking well.
또한, 화학적 산화 고분자 반응을 유기용매와 수용액 상에서 수행하는 2가지의 제조방법이 개발되었다. 유기용매 중에서 3,4-알킬렌디옥시티오펜과 산화제를 사용해서 제조하면 분말형태로 전도성 고분자인 폴리(3,4-알킬렌디옥시티오펜)가 얻어진다. 반면에, 수용액 중에서는 3,4-알킬렌디옥시티오펜, 산화제, 그리고 계면활성제 등을 사용하여 콜로이드형의 전도성 고분자 수용액 형태로 얻을 수 있으며, 독일 바이엘에서 바이트론 피(Baytron P)라는 상품명으로 폴리(3,4-알킬렌디옥시티오펜)를 수용액에 분산된 형태로 시판하고 있으며 정확한 분자량 분포는 보고되지 않았다(Eur. Patent 440957, 1991., Eur. Patent 553671, 1993., US Patent 5,792,558, 1996). 이때 사용된 산화제는 이온형태로 과량이 남아 있게 되므로 이온교환수지를 통해서 불필요한 이온들을 제거하고 상품화한다.In addition, two production methods have been developed in which the chemical oxidation polymer reaction is carried out in an organic solvent and an aqueous solution. When produced using 3,4-alkylenedioxythiophene and an oxidizing agent in an organic solvent, poly (3,4-alkylenedioxythiophene), which is a conductive polymer in powder form, is obtained. On the other hand, in the aqueous solution, it can be obtained in the form of a colloidal conductive polymer aqueous solution using 3,4-alkylenedioxythiophene, an oxidizing agent and a surfactant. Poly (3,4-alkylenedioxythiophene) is commercially available in the form of a dispersion in aqueous solution and no exact molecular weight distribution has been reported (Eur. Patent 440957, 1991., Eur. Patent 553671, 1993., US Patent 5,792,558, 1996). At this time, the oxidant used is left in excess in the form of ions, and removes and commercializes unnecessary ions through the ion exchange resin.
또한, 니켈 금속 촉매를 사용해서 출발물질인 단량체 2,5-디크로로-3,4-에틸렌디옥시티오펜으로부터 폴리(3,4-에틸렌디옥시티오펜)를 제조하는 방법도 보고된바 있다(Polymer, 2001, 42, 7229., Polymer, 2002, 43, 711.). 이때 얻어진 고분자는 도판트(dopant)가 없어서 전기 전도도가 없으므로 다시 도핑과정을 거쳐서 전도성을 부여하여 폴리(3,4-에틸렌디옥시티오펜)를 제조한다. 이 반응은 니켈 촉매가 할로겐 원소를 떼어 내면서 진행되는 아릴-아릴 축합 반응을 응용한 것이다. 그러나, 고가의 bis(1,5-cyclooctadiene)-nickel(0), Ni(cod)2 그리고 2,2'-bipyridyl의 혼합 니켈촉매를 사용해야하며, 또한 도핑이라는 추가 반응 공정을 거쳐야 전도성 고분자 기능을 갖게 되므로 산업적 사용에는 부적합한 실정이다.In addition, a method of preparing poly (3,4-ethylenedioxythiophene) from monomer 2,5-dichloro-3,4-ethylenedioxythiophene as a starting material using a nickel metal catalyst has also been reported ( Polymer, 2001, 42, 7229., Polymer, 2002, 43, 711.). In this case, the obtained polymer does not have a dopant (dopant), so there is no electrical conductivity, thereby giving a conductivity through the doping process to prepare poly (3,4-ethylenedioxythiophene). This reaction is an application of the aryl-aryl condensation reaction that proceeds while the nickel catalyst removes the halogen element. However, a mixed nickel catalyst of expensive bis (1,5-cyclooctadiene) -nickel (0), Ni (cod) 2, and 2,2'-bipyridyl must be used. It is not suitable for industrial use.
또한 대한민국 특허출원 제10-2007-0009718호 및 제10-2008-0031828호에는 비닐계, 아크릴계 또는 스티렌계 고분자를 중합하여 코어를 제조하고, 코어 외곽에 쉘을 형성한 코어-쉘 형태의 나노입자를 제조하는 기술이 개시되어 있으나, 전도성이 부족한 실정이다.In addition, Korean Patent Application Nos. 10-2007-0009718 and 10-2008-0031828 disclose core-shell-type nanoparticles prepared by polymerizing vinyl, acrylic, or styrene polymers to form a core, and forming a shell around the core. It is disclosed that the technique for producing, but the situation is lacking conductivity.
본 발명은 전술한 문제점을 해결하기 위하여 도출된 것으로서, 전도성이 크고, 또한 발광성, 가공성, 분산성, 탄력성 및 신축성이 우수한 코어 및 1층 이상의 쉘을 포함하는 다층구조의 전도성 나노입자 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above-described problems, the conductive nanoparticles of a multi-layer structure comprising a core and one or more shells having high conductivity and excellent luminescence, processability, dispersibility, elasticity and elasticity, and a method of manufacturing the same. The purpose is to provide.
또한 본 발명은 코어 및 1층 이상의 쉘을 제조하는 공정을 획기적으로 단축할 수 있어 시간적, 경제적으로 유리하며, 다층구조의 기능성 고분자를 다양하게 형성하고, 그에 따라 안정적으로 형성되는 다층구조의 전도성 나노입자 제조방법 및 상기 방법에 의하여 제조된 다층구조의 전도성 나노입자를 제공하는 것을 목적으로 한다.In addition, the present invention can significantly shorten the process for manufacturing the core and one or more layers of shells, which is advantageous in time and economically, and forms a variety of multi-functional polymers, thereby stably forming the conductive nano An object of the present invention is to provide a method for producing particles and conductive nanoparticles having a multilayer structure prepared by the method.
또한 본 발명은 상기 전도성 나노입자를 포함하는 것을 특징으로 하는 전자재료, 광학재료, 인쇄재료, 필름, 전도성 페인트, 전자파 차폐용 코팅제, 고분자 첨가제, 금속촉매 담체, 단백질 담체, 센서 재료 등을 제공하는 것을 목적으로 한다.The present invention also provides an electronic material, an optical material, a printing material, a film, a conductive paint, an electromagnetic shielding coating agent, a polymer additive, a metal catalyst carrier, a protein carrier, a sensor material, and the like, which include the conductive nanoparticles. For the purpose of
상기 목적을 달성하기 위하여 본 발명은 The present invention to achieve the above object
코어 및 1층 이상의 쉘을 포함하는 다층구조의 전도성 나노입자에 있어서, In the conductive nanoparticles of a multilayer structure comprising a core and one or more layers of shells,
코어로 작용하는 전도성 고분자 입자에 쉘로 작용하는 빛 발광 및 전도성 고분자가 1층 이상 코팅된 다층구조의 전도성 나노입자를 제공한다.The present invention provides a conductive nanoparticle having a multilayer structure in which at least one layer of light emitting and conductive polymers serving as shells is coated on conductive polymer particles serving as cores.
또한 본 발명은 In addition, the present invention
A) 전도성 고분자 코어를 제조하는 단계; 및A) preparing a conductive polymer core; And
B) 상기 전도성 고분자 코어에 1층 이상의 쉘 구조를 구성하는 전도성 고분자를 코팅하는 단계;B) coating a conductive polymer constituting at least one layer of the shell structure on the conductive polymer core;
를 포함하는 다층구조의 전도성 나노입자의 제조방법을 제공한다.It provides a method for producing a conductive nanoparticles of a multi-layer structure comprising a.
또한 본 발명은 상기 다층구조의 전도성 나노입자를 포함하는 것을 특징으로 하는 전자재료, 광학재료, 인쇄재료, 필름, 전도성 페인트, 전자파 차폐용 코팅제, 고분자 첨가제, 금속촉매 담체, 단백질 담체, 센서 재료 등을 제공한다.In addition, the present invention is an electronic material, an optical material, a printing material, a film, a conductive paint, an electromagnetic shielding coating agent, a polymer additive, a metal catalyst carrier, a protein carrier, a sensor material, etc., comprising the conductive nanoparticles of the multilayer structure. To provide.
본 발명에 따르면 전도성이 크고, 또한 발광성, 가공성, 분산성, 탄력성 및 신축성이 우수한 코어 및 1층 이상의 쉘을 포함하는 다층구조의 전도성 나노입자 및 그 제조방법을 제공할 수 있으며, 또한 코어 및 1층 이상의 쉘을 제조하는 공정을 획기적으로 단축할 수 있어 시간적, 경제적으로 유리하며, 다층구조의 기능성 고분자를 다양하게 형성하고, 그에 따라 안정적으로 형성되는 다층구조의 전도성 나노입자 제조방법 및 상기 방법에 의하여 제조된 다층구조의 전도성 나노입자를 제공할 수 있다.According to the present invention, it is possible to provide a conductive nanoparticle having a high conductivity and a multi-layered structure comprising a core and one or more layers of shells having excellent luminescence, processability, dispersibility, elasticity and elasticity, and a method of manufacturing the same. The method of manufacturing a shell having more than one layer can be drastically shortened, which is advantageous in terms of time and economics, and in the method of producing a multi-layered conductive nanoparticle and stably forming a multifunctional polymer, It is possible to provide a conductive nanoparticles of a multi-layer structure manufactured by.
도 1은 본 발명의 일실시예에 따른 코어-쉘 구조의 전도성 나노입자를 나타낸 모식도.1 is a schematic diagram showing conductive nanoparticles of a core-shell structure according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 코어-1차쉘-2차쉘 구조의 전도성 나노입자를 나타낸 모식도.Figure 2 is a schematic diagram showing the conductive nanoparticles of the core-shell shell-secondary shell structure according to an embodiment of the present invention.
도 3은 본 발명의 실시예 1에 따른 코어-쉘 구조의 전도성 나노입자를 나타낸 모식도.Figure 3 is a schematic diagram showing the conductive nanoparticles of the core-shell structure according to Example 1 of the present invention.
도 4는 본 발명의 실시예 3에 따른 코어-1차쉘-2차쉘 구조의 전도성 나노입자를 나타낸 모식도.Figure 4 is a schematic diagram showing the conductive nanoparticles of the core-shell shell secondary shell structure according to Example 3 of the present invention.
도 5는 본 발명의 실시예 1에 따른 코어-쉘 구조의 전도성 나노입자의 TEM-image이다.5 is a TEM-image of conductive nanoparticles having a core-shell structure according to Example 1 of the present invention.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 다층구조의 전도성 나노입자는 코어 및 1층 이상의 쉘을 포함하는 다층구조의 전도성 나노입자에 있어서, 코어로 작용하는 전도성 고분자 입자에 쉘로 작용하는 빛 발광 및 전도성 고분자가 1층 이상 코팅된 다층구조의 전도성 나노입자이다.Multi-layered conductive nanoparticles of the present invention is a multi-layered conductive nanoparticles comprising a core and at least one layer of shell, wherein the light emitting and conductive polymers acting as a shell is coated on the conductive polymer particles acting as a core Multi-layered conductive nanoparticles.
본 발명의 상기 다층구조의 전도성 나노입자는 입자의 크기가 30-1000 nm인 것이 좋으며, 바람직하게는 10-100 nm의 코어에 10-100 nm의 쉘이 1층 이상 코팅된 것이 좋다.The multi-layered conductive nanoparticles of the present invention preferably have a particle size of 30-1000 nm, preferably at least one layer of 10-100 nm shell coated on a 10-100 nm core.
또한 상기 다층구조의 전도성 나노입자는 코어 및 쉘을 구성하는 물질이 모두 전도성 고분자로 구성된다. 구체적으로 코어는 폴리피롤, 폴리퓨란 또는 폴리티오펜일 수 있으며, 코어의 외부에 코팅되는 쉘은 폴리피롤, 폴리퓨란 및 폴리티오펜으로 이루어지는 군으로부터 선택되는 물질로 구성될 수 있다. 상기 쉘은 도 1과 같이 1층으로 구성될 수도 있으며, 도 2와 같이 2층 이상 구성될 수도 있다. 바람직하기로는 상기 쉘은 1-3개의 층으로 구성되는 것이 좋다.In addition, the conductive nanoparticles of the multi-layered structure are all composed of a conductive polymer material constituting the core and shell. Specifically, the core may be polypyrrole, polyfuran or polythiophene, and the shell coated on the outside of the core may be made of a material selected from the group consisting of polypyrrole, polyfuran and polythiophene. The shell may be composed of one layer as shown in FIG. 1, or may be composed of two or more layers as shown in FIG. 2. Preferably the shell consists of 1-3 layers.
본 발명의 다층구조의 전도성 나노입자의 구체적인 예로는 폴리피롤(코어)-폴리티오펜(쉘), 폴리티오펜(코어)-폴리퓨란(쉘), 폴리퓨란(코어)-폴리피롤(쉘), 폴리피롤(코어)-폴리퓨란(1차 쉘)-폴리티오펜(2차 쉘), 폴리티오펜(코어)-폴리피롤(1차 쉘)-폴리티오펜(2차 쉘), 폴리피롤(코어)-폴리티오펜(1차 쉘)-폴리티오펜(2차 쉘) 등 다양하게 구성될 수 있으며, 특히 상기 코어는 폴리피롤인 것이 좋으며, 쉘은 최외각에 폴리티오펜으로 구성된 것이 좋다. 이 경우 전도성이 크고, 또한 발광성, 가공성, 분산성, 탄력성 및 신축성이 우수하다.Specific examples of the conductive nanoparticles having a multilayer structure of the present invention include polypyrrole (core) -polythiophene (shell), polythiophene (core) -polyfuran (shell), polyfuran (core) -polypyrrole (shell), polypyrrole (Core) -polyfuran (primary shell) -polythiophene (secondary shell), polythiophene (core) -polypyrrole (primary shell) -polythiophene (secondary shell), polypyrrole (core) -poly Thiophene (primary shell) -polythiophene (secondary shell) and the like can be configured in various ways, in particular, the core is preferably polypyrrole, the shell is preferably composed of polythiophene in the outermost. In this case, the conductivity is high, and the light emitting property, workability, dispersibility, elasticity and elasticity are excellent.
상기 다층구조의 전도성 나노입자는 A) 전도성 고분자 코어를 제조하는 단계; 및 B) 상기 전도성 고분자 코어에 1층 이상의 쉘 구조를 구성하는 전도성 고분자를 코팅하는 단계;를 포함하여 제조될 수 있다.The conductive nanoparticles of the multi-layer structure is A) preparing a conductive polymer core; And B) coating a conductive polymer constituting at least one layer of the shell structure on the conductive polymer core.
상기 A) 단계는 공지의 중합법을 이용할 수도 있으며, 바람직하게는 a) 수성 용매에 티오펜, 피롤 또는 퓨란 단량체; HCl, HF, HBr 및 HI로 이루어지는 군으로부터 선택되는 화합물; 안정화제; 및 제1산화제를 혼합하여 에멀젼을 제조하는 단계; 및 b) 상기 a)단계의 에멀젼에 제2산화제를 혼합하고 교반하여 에멀젼 상태의 전도성 입자를 제조하는 단계를 포함하여 제조될 수 있다.Step A) may use a known polymerization method, preferably a) a thiophene, pyrrole or furan monomer in an aqueous solvent; Compounds selected from the group consisting of HCl, HF, HBr and HI; Stabilizer; And mixing the first oxidant to prepare an emulsion. And b) mixing the second oxidant into the emulsion of step a) and stirring to prepare conductive particles in an emulsion state.
본 발명에서 상기 코어는 하기 화학식 1로 표시될 수 있다.In the present invention, the core may be represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2012004437-appb-I000001
Figure PCTKR2012004437-appb-I000001
상기 화학식 1에서 X는 황, 질소, 산소, 인, 실리콘, 또는 비소를 나타내며, R1과 R2 는 각각 독립적으로 수소, 할로겐, 히드록시, C1-C10의 알킬, 알콕시, 카르보닐, 3 내지 8 멤버드(membered) 알리시클릭 또는 아로마틱링 구조의 알킬렌, 알케닐렌, 알케닐옥시, 알케닐디옥시, 알키닐옥시, 알키닐디옥시일 수 있으며, 이들은 수소, 탄소, 산소 원자 외에 질소, 황, 인, 셀레늄, 실리콘 등의 원자를 함유할 수 있다.In Formula 1, X represents sulfur, nitrogen, oxygen, phosphorus, silicon, or arsenic, and R 1 and R 2 are each independently hydrogen, halogen, hydroxy, C1-C10 alkyl, alkoxy, carbonyl, 3 to 8 may be alkylene, alkenylene, alkenyloxy, alkenyldioxy, alkynyloxy, alkynyldioxy in the membered alicyclic or aromatic ring structure, which may be nitrogen, sulfur in addition to hydrogen, carbon, oxygen atoms And atoms such as phosphorus, selenium, and silicon.
상기 출발 물질인 티오펜, 피롤 또는 퓨란 단량체는 중합반응을 통해 폴리티오펜, 폴리피롤 및 폴리퓨란으로 제조되는 출발물질로서, 당업계에서 통상적으로 사용되는 티오펜, 피롤 및 퓨란이라면 어떠한 것을 사용하여도 무방하며, 일예로 하기 화학식 2로 표시될 수 있으며, 바람직하게는 알킬 에톡시, 카르복실기 술폰기 또는 이들로부터 선택되는 적어도 하나 이상의 치환기로 치환된 티오펜, 피롤 또는 퓨란인 것이 좋다.The starting material thiophene, pyrrole or furan monomer is a starting material prepared from polythiophene, polypyrrole and polyfuran through a polymerization reaction, and any thiophene, pyrrole and furan commonly used in the art may be used. For example, the thiophene, pyrrole or furan substituted with at least one or more substituents selected from alkyl ethoxy, carboxyl sulfone groups or these may be represented by the following Chemical Formula 2, for example.
[화학식 2][Formula 2]
Figure PCTKR2012004437-appb-I000002
Figure PCTKR2012004437-appb-I000002
상기 화학식 2에서 X, R1, R2는 상기에서 정의한 바와 같다.In Formula 2, X, R 1 , R 2 are as defined above.
또한 상기 HCl, HF, HBr 및 HI로 이루어지는 군으로부터 선택되는 화합물은 반응용액을 산성(pH 1-6)으로 만드는 동시에 도펀트(dopant)로 작용을 하며, 특히 HCl이 바람직하다. 상기 HCㅣ 등의 사용으로 인하여 본 발명에 의하여 제조되는 전도성 코어는 전기전도도 및 가공성이 종래의 고분자에 비하여 현저히 향상된 전도성 고분자 코어가 제조될 수 있다. 상기 HCl 등의 화합물의 사용량은 단량체의 1 내지 100 몰비(mole ratio)로 사용하는 것이 바람직하다. 상기에서 몰비가 1 미만인 경우는 반응의 진행이 지연되어 수율이 낮고, 반응 생성물의 전기 전도도가 낮아지게 되며, 몰비가 100을 초과할 경우에는 생성물의 산가가 높아서 중화, 세척하는데 어려움이 있으므로 제조비용이 증가하여 상업적으로 이용하는데 다소 문제가 있다.In addition, the compound selected from the group consisting of HCl, HF, HBr and HI makes the reaction solution acid (pH 1-6) and at the same time acts as a dopant (dopant), especially HCl is preferred. The conductive core prepared according to the present invention due to the use of the HC | etc. can be produced a conductive polymer core significantly improved electrical conductivity and processability compared to the conventional polymer. The amount of the compound such as HCl is preferably used in 1 to 100 mole ratio (mole ratio) of the monomer. In the case where the molar ratio is less than 1, the progress of the reaction is delayed, the yield is low, and the electrical conductivity of the reaction product is low. When the molar ratio is more than 100, the acid value of the product is high, which makes it difficult to neutralize and wash the production cost. This increase is somewhat problematic for commercial use.
또한 상기 용매는 C6-C20의 지방족 및 방향족 탄화수소류, 할로겐 함유 탄화수소류, 케톤, 에테르, C2-C20의 알콜, 술폭시드, 아미드, 및 물로 이루어지는 군으로부터 선택된 하나 또는 2 이상을 혼합하여 사용할 수도 있다. 좀 더 구체적으로 C6-C20의 지방족 및 방향족 탄화수소류는 알칸류인 헥산, 헵탄, 옥탄, 노난, 데칸, 그리고 알킬벤젠류인 벤젠, 토루엔, 크실렌, 큐멘(cumene), 메지틸렌(mesitylene), 페놀, 크레졸 등이며, 할로겐 함유 탄화수소류는 사염화탄소, 클로로포름, 디클로로메탄, 디클로로에탄, 디브로모에탄, 트리클로로에탄, 트리브로모에탄, 그리고 할로벤젠류인 디클로로벤젠, 클로로벤젠 등 이며, 케톤류에는 아세톤, 프로파논, 부타논, 펜타논, 헥사논, 헵타논, 옥타논, 아세토페논 등이며, 에테르류는 디에틸에테르, 테트라히드로휴란(THF), 디프로필에테르, 디브틸에테르, 메틸부틸에테르, 디페닐에테르, 디옥산(dioxane), 디그림(diglyme), 디에틸렌 글리콜(diethylene glycol), 에틸렌 글리콜(EG) 등이며, C2-C20의 알콜, 술폭시드 계열은 디메틸술폭시드(dimethylsulfoxide: DMSO), 아미드 계열은 N,N-디메틸포름아미드(N,N-dimethylformamide: DMF), N-메틸아세트아미드(NMAA), N,N-디메틸아세트아미드(DMA), N-메틸프로피온아미드(NMPA), N-메틸피롤리디논(Nmethylpyrrolidinone:NMP)이다.In addition, the solvent is a mixture of one or two or more selected from the group consisting of C 6 -C 20 aliphatic and aromatic hydrocarbons, halogen-containing hydrocarbons, ketones, ethers, C 2 -C 20 alcohols, sulfoxides, amides, and water It can also be used. More specifically, C 6 -C 20 aliphatic and aromatic hydrocarbons include alkanes hexane, heptane, octane, nonane, decane, and alkylbenzenes benzene, toluene, xylene, cumene, mesitylene, Phenol, cresol, and the like, and halogen-containing hydrocarbons include carbon tetrachloride, chloroform, dichloromethane, dichloroethane, dibromoethane, trichloroethane, tribromoethane, and halobenzenes such as dichlorobenzene and chlorobenzene, and ketones include acetone. , Propanone, butanone, pentanone, hexanon, heptanone, octanon, acetophenone and the like, and ethers are diethyl ether, tetrahydro hulan (THF), dipropyl ether, dibutyl ether, methyl butyl ether , Diphenyl ether, dioxane, diglyme, diethylene glycol, ethylene glycol (EG), and C2-C20 alcohols and sulfoxides are dimethylsulfoxide (DMSO). ), Amide series include N, N-dimethylformamide (NMF), N-methylacetamide (NMAA), N, N-dimethylacetamide (DMA), N-methylpropionamide (NMPA) and N Methylpyrrolidinone (NMP).
바람직하기로는 상기 용매는 상기 단량체 100 중량부에 대하여 1,000-3,000 중량부의 함량을 사용하며, 0-180 ℃의 온도범위를 갖는 물 및 C2-C20의 알콜류, DMSO, DMF, NMP, 에테르, 에틸렌 글리콜(Ethylene glycol) 등과 같은 극성 용매류가 적합하다.Preferably the solvent is used in an amount of 1,000 to 3,000 parts by weight based on 100 parts by weight of the monomer, water having a temperature range of 0-180 ℃ and C 2 -C 20 alcohols, DMSO, DMF, NMP, ether, Polar solvents such as ethylene glycol and the like are suitable.
또한 상기 안정제(Stabilizer)는 상기 피롤 및 퓨란 또는 이의 유도체와 함께 혼합되어 입자의 안정성을 부여하기 위한 것으로서, 이러한 목적을 달성하기 위해 당업계에서 통상적으로 사용되는 안정제(Stabilizer)라면 어떠한 것을 사용하여도 무방하지만, 상기 안정제로는 폴리스티렌술폰산[poly(4-styrene sulfonic acid)], 폴리아크릴산[poly(acrylic acid)], 폴리메타크릴산[poly(methacrylic acid)] 폴리말레인산[poly(maleic acid)], 폴리비닐술폰산[poly(vinyl sulfonic acid)], 도데실트라이메틸암모늄 브로마이드[dodecyl trimethyl ammonium bromide], 세틸트라이메탈아모늄브로마이드[cetyl trimethlammonium bromide], 다이도데실다이메틸암모늄브로마이드[didodcyl dimethl ammonium bromide], 스판80[Span 80], 트윈20 [Tween 20, polyoxyethylene(20) sorbitanmonolaurate], 플루오루카타노익산[Perfluorooctnoic acid], 세틸피리이늄클로라이드[cetylpyridinium chloride], 벤칼코늄클로라이드[benzalkonium chloride], 벤제토늄클로라이드[Benzethonium chloride]등을 단독 또는 2종 이상 사용할 수 있다. 가장 이상적인 안정제(Stabilizer)로는 폴리스티렌 술폰산이 적합하다.In addition, the stabilizer (Stabilizer) is mixed with the pyrrole and furan or derivatives thereof to impart the stability of the particles, any stabilizer (stabilizer) commonly used in the art to achieve this purpose may be used. As the stabilizer, poly (4-styrene sulfonic acid), poly (acrylic acid), poly (methacrylic acid) polymaleic acid, poly (maleic acid) Poly (vinyl sulfonic acid), dodecyl trimethyl ammonium bromide, cetyl trimethlammonium bromide, dododecyl dimethyl ammonium bromide bromide], Span 80, Tween 20, polyoxyethylene (20) sorbitanmonolaurate, Perfluorooctnoic acid, cetylpyridinium chlor Cetylpyridinium chloride, benzalkonium chloride and benzethonium chloride may be used alone or in combination of two or more thereof. As the most ideal stabilizer, polystyrene sulfonic acid is suitable.
상기 안정제(Stabilizer)의 사용량은 상기 단량체 100 중량부에 대하여 0.01 내지 2,000 중량부인 것이 바람직하다. 상기 함량이 0.01 중량부 미만이면 마이셀 형성농도가 되지못해 안정제(Stabilizer)로서 작용하지 못하므로 사슬형 나노입자의 중합을 유도할 수 없고 입자들이 뭉치는 현상이 일어나고, 2,000 중량부를 초과하면 안정제(Stabilizer)의 양이 너무 과량이 되어 상기 사슬형 나노입자의 형성이 어려울 수 있다. The amount of the stabilizer used is preferably 0.01 to 2,000 parts by weight based on 100 parts by weight of the monomer. If the content is less than 0.01 parts by weight, the micelle formation concentration does not function as a stabilizer, so it is not possible to induce the polymerization of the chain-type nanoparticles, and the aggregation of the particles occurs. The amount of c) may be so excessive that formation of the chained nanoparticles may be difficult.
또한, 상기 제1산화제는 상기 제2산화제가 티오펜, 피롤 또는 퓨란 단량체를 산화시켜 환원될 경우, 환원된 제2산화제를 다시 산화시켜 제2산화제가 산화력을 갖도록 하기 위한 것으로서, 이러한 목적을 달성할 수 있는 것이라면 어떠한 것을 사용하여도 무방하지만, 바람직하게는 제2산화제보다 상대적으로 높은 산화력을 갖는 산화제가 좋은 바, 바람직하기로는 과산화류[H2O2, (NH4)2S2O8, O2] 또는 산소산류[HMnO4, HNO3, HClO4], 할로겐류[F2, Cl2, Br2] 또는 이들의 혼합물을 사용하는 것이 좋다. In addition, when the first oxidant is reduced by oxidizing the thiophene, pyrrole or furan monomer, the first oxidant is to oxidize the reduced second oxidant again so that the second oxidant has an oxidizing power. As long as it can be used, any one may be used, but an oxidizing agent having a relatively higher oxidizing power than the second oxidizing agent is preferable. Preferably, peroxides [H 2 O 2 , (NH 4 ) 2 S 2 O 8 , O 2 ] or oxygen acids [HMnO 4 , HNO 3 , HClO 4 ], halogens [F 2 , Cl 2 , Br 2 ] or mixtures thereof.
상기 제1산화제의 첨가량은 단량체의 0.01 내지 10 몰비(mole ratio)인 것이 바람직하다. 상기 제1산화제의 함량이 0.01 몰비 미만이면 제2산화제를 환원시키는 반응이 잘 일어나지 못해 사슬형 나노입자의 중합도가 낮아지고, 10 몰비를 초과하면 오히려 중합도가 떨어지는 현상이 일어날 수 있어 물성특성의 저하될 수 있다. The amount of the first oxidizing agent added is preferably 0.01 to 10 mole ratio of the monomer. If the content of the first oxidant is less than 0.01 molar ratio, the reaction for reducing the second oxidant may not occur well, and thus the degree of polymerization of the chain-type nanoparticles may be lowered. Can be.
또한 상기 제2산화제는 단량체를 산화시키기 위한 것으로서, 이러한 목적을 달성할 수 있는 산화제라면 어떠한 것을 사용하여도 무방하지만, 바람직하게는 금속산화물, 예컨대 FeCl3, Fe(SO4)2ㆍ6H2O 등의 철(Ⅲ)착화물, 또는 철(Ⅱ)착화물 또는 이들의 혼합물 등이 좋고, 그 사용량은 상기 단량체 대비 0.001 내지 5 몰비(mole ratio)를 사용하는 것이 좋다. 본 발명에서 제2산화제의 사용량이 단량체 대비 0.001 몰비 이하이면 중합반응 속도가 매우 느려지고, 그 사용량이 5 몰비 이상이면 중합반응속도와 전기 전도도는 증가하지만 제조되는 전도성 고분자의 물성이 감소한다. In addition, the second oxidizing agent is for oxidizing the monomer, and any oxidizing agent capable of achieving this purpose may be used, but preferably, a metal oxide such as FeCl 3 , Fe (SO 4 ) 2 ㆍ 6H 2 O Iron (III) complexes, iron (II) complexes or mixtures thereof, and the like may be used, and the amount of use thereof may be 0.001 to 5 mole ratio with respect to the monomer. In the present invention, if the amount of the second oxidant is less than 0.001 mole ratio of the monomer, the polymerization rate is very slow. If the amount of the second oxidant is more than 5 mole ratio, the rate of polymerization and the electrical conductivity are increased, but the physical properties of the produced conductive polymer are decreased.
본 발명에서 제2산화제는 중합반응을 위한 출발물질의 혼합물, 예를 들면 단량체, HCl 등의 화합물, 안정제(Stabilizer), 제1산화제 및 용매의 혼합물에 직접 혼입될 수 있지만, 바람직하게는 탈이온수(Deionized water, DI Water) 및/또는 유기용매에 용해된 상태로 상기 출발물질의 혼합물로 혼합되는 것이 좋다. In the present invention, the second oxidant may be directly incorporated into a mixture of starting materials for polymerization, for example, a monomer, a compound such as HCl, a stabilizer, a first oxidant, and a solvent, but preferably deionized water. (Deionized water, DI Water) and / or mixed in a mixture of the starting materials in a state dissolved in an organic solvent.
또한 본 발명에서 고분자 중합반응의 반응온도는 0-180 ℃, 또는 사용되는 용매의 끊는 온도인 것이 좋으며, 0 내지 180 ℃의 온도에서 6 내지 24시간 동안 교반하여 에멀젼 산화중합단계를 통하여 전도성 수분산성 나노입자를 제조할 수 있다.In addition, in the present invention, the reaction temperature of the polymer polymerization reaction is preferably 0-180 ° C., or the temperature at which the solvent is used, and is stirred for 6 to 24 hours at a temperature of 0 to 180 ° C. to conduct conductive water dispersibility through the emulsion oxidation polymerization step. Nanoparticles can be prepared.
더욱 바람직하기로 본 발명은 i) 치환되거나 치환되지 않은 티오펜, 피롤 또는 퓨란 단량체 100 중량부 대비 0.01 내지 2,000 중량부의 안정제와 상기 단량체의 0.01 내지 10 몰비(mole ratio)의 제1산화제를 상기 단량체의 1,000 내지 2,000 중량부의 0 내지 180 ℃의 온도범위를 갖는 HCl를 투입하여 pH 1 내지 6의 산성수용액에 혼합하는 에멀젼 제조단계, ii) 상기 단계 i)의 에멀젼에 제2산화제를 상기 단량체 대비 0.001 내지 5.0 몰비(mole ratio)로 혼합한 뒤 0 내지 180 ℃에서 10 내지 30분 동안 교반하는 시드 에멀젼 제조단계, iii) 상기 단계 ii)의 시드 에멀젼을 0 내지 180℃의 온도에서 6 내지 24시간 동안 교반하여 에멀젼 산화중합단계를 포함하여 전도성 수분산성 나노입자를 제조할 수 있다.More preferably, the present invention comprises i) 0.01 to 2,000 parts by weight of a stabilizer relative to 100 parts by weight of a substituted or unsubstituted thiophene, pyrrole or furan monomer and 0.01 to 10 mole ratio of the first oxidizing agent of the monomer. Emulsion preparation step of mixing an acidic aqueous solution of pH 1 to 6 by adding HCl having a temperature range of 0 to 180 ℃ of 1,000 to 2,000 parts by weight of ii) the second oxidizing agent in the emulsion of step i) 0.001 A seed emulsion preparation step of mixing at a molar ratio of about 5.0 to 5.0 and then stirring at 0 to 180 ° C. for 10 to 30 minutes, iii) the seed emulsion of step ii) at a temperature of 0 to 180 ° C. for 6 to 24 hours. By stirring, the conductive water-dispersible nanoparticles may be prepared including an emulsion oxidation polymerization step.
또한 상기 A) 단계의 코어 제조시 c)의 건조단계를 더욱 포함할 수 있다. 상기 c) 단계의 건조는 에멀젼 상태의 전도성 입자를 건조하는 단계로서 상온-70 ℃에서 건조할 수 있다.In addition, the manufacturing of the core of step A) may further include a drying step of c). The drying of step c) is a step of drying the conductive particles in an emulsion state and may be dried at room temperature-70 ° C.
본 발명의 B) 상기 전도성 고분자 코어에 1층 이상의 쉘 구조를 구성하는 전도성 고분자를 코팅하는 단계는 상기 A) 단계에서 제조된 전도성 고분자 코어에 1층 이상의 쉘을 형성하는 단계로 전도성 고분자로 쉘을 형성하는 공지의 방법이 사용될 수 있으며, 바람직하기로는 a) 수성 용매에 전도성 코어; 티오펜, 피롤 또는 퓨란 단량체; HCl, HF, HBr 및 HI로 이루어지는 군으로부터 선택되는 화합물; 안정화제; 및 제1산화제를 혼합하여 에멀젼을 제조하는 단계; 및 b) 상기 a)단계의 에멀젼에 제2산화제를 혼합하고 교반하여 에멀젼 상태의 전도성 입자를 제조하는 단계를 포함하여 1층의 쉘을 형성할 수 있다. 또한 2층 이상의 쉘을 형성하고자 하는 경우에는 상기 1층 형성시 사용된 전도성 코어를 대신하여 쉘이 형성된 입자를 사용하면 2층 또는 단계적으로 복수의 층을 갖는 전도성 나노입자를 제조할 수 있다. 바람직하기로는 상기 쉘은 1-3개의 층으로 구성되는 것이 좋다. 상기 쉘의 형성시 HCl, HF, HBr 및 HI로 이루어지는 군으로부터 선택되는 화합물안정화제, 제1산화제, 및 제2산화제 등의 사용량은 중합시키고자 하는 쉘의 단량체를 기준으로 하여 본 발명의 상기 코어 제조시 사용하는 양에 준하여 사용할 수 있다. B) coating the conductive polymer constituting the shell structure of at least one layer on the conductive polymer core of the present invention is to form a shell with a conductive polymer to form at least one layer on the conductive polymer core prepared in step A) Known methods of forming can be used, preferably a) a conductive core in an aqueous solvent; Thiophene, pyrrole or furan monomers; Compounds selected from the group consisting of HCl, HF, HBr and HI; Stabilizer; And mixing the first oxidant to prepare an emulsion. And b) mixing the second oxidant into the emulsion of step a) and stirring to form conductive particles in an emulsion state, thereby forming a shell of one layer. In addition, in the case of forming a shell having two or more layers, when the shell is formed in place of the conductive core used in forming the first layer, conductive nanoparticles having a plurality of layers in two layers or steps may be manufactured. Preferably the shell consists of 1-3 layers. The amount of the compound stabilizer, the first oxidant, the second oxidant and the like selected from the group consisting of HCl, HF, HBr and HI in forming the shell is based on the monomers of the shell to be polymerized. It can be used according to the quantity used at the time of manufacture.
또한 상기 B) 단계의 쉘의 형성 c)의 건조단계를 더욱 포함할 수 있다. 상기 c) 단계의 건조는 에멀젼 상태의 전도성 입자를 건조하는 단계로서 상온-70 ℃에서 건조할 수 있다.In addition, the step of forming the shell of step B) c) may further comprise a drying step. The drying of step c) is a step of drying the conductive particles in an emulsion state and may be dried at room temperature-70 ° C.
또한 본 발명은 상기 다층구조의 전도성 나노입자를 포함하는 물품을 제공하는 바, 본 발명에 의하여 제조된 다층구조의 전도성 나노입자는 가공성이 좋고, 우수한 전도성을 나타내므로 전자재료, 광학재료, 인쇄재료, 필름 등에 사용될 수 있고, 에너지변환 및 에너지저장 소재, 대전방지 소재, 전하조절 소재, 전기전도성층 소재, 패턴제조 소재, 프린팅 잉크 소재 등에도 적용될 수 있다. 또한, 본 발명에 따른 전자재료, 필름, 인쇄재료인 토너 및/또는 잉크 등은 본 발명에 의하여 제조된 다층구조의 전도성 나노입자를 포함하는 전자재료, 토너 및/또는 잉크를 의미하는 것으로서, 이러한 구성을 포함하는 당업계의 통상적인 제품이라면 어떠한 제품도 본 발명에 따른 전자재료, 토너 및/또는 잉크에 해당될 것이며, 바람직한 전자재료로는 광전압 전지, 콘덴서(전해질 대용으로 사용함)와 PCB(printed circuit board)기판 코팅제(기존의 금속 도금 대체로 환경오염을 최소화할 수 있음) 및/또는 대전방지제(코팅 등을 통해서 플라스틱, 고분자 등의 표면에서 발생되는 정전기 발생을 방지함)가 있다.In another aspect, the present invention provides an article comprising the conductive nanoparticles of the multi-layered structure, the conductive nanoparticles of the multi-layered structure prepared by the present invention has good processability and excellent conductivity, so electronic materials, optical materials, printing materials It can be used in the film, energy conversion and energy storage material, antistatic material, charge control material, electrically conductive layer material, pattern manufacturing material, printing ink material and the like. In addition, the electronic material, the film, the toner and / or ink as the printing material according to the present invention mean an electronic material, toner and / or ink including the conductive nanoparticles of the multilayer structure manufactured by the present invention. Any product that is conventional in the art, including its configuration, will correspond to the electronic materials, toners and / or inks according to the present invention, and preferred electronic materials include photovoltaic cells, capacitors (used as an electrolyte) and PCBs ( printed circuit board) Substrate coating agent (conventional metal plating can minimize environmental pollution) and / or antistatic agent (to prevent static electricity generated on the surface of plastic, polymer, etc. through coating, etc.).
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.
[실시예 1]Example 1
증류수를 양이온 및 음이온 교환수지로 순차적으로 통과시켜 제조한 25 ℃의 탈이온수 89 g과 37 중량%의 염산수용액 7.9 g, 안정제(Stabilizer)인 18 중량%의 폴리스티렌술폰산 수용액 6.9 g을 혼입시킨 뒤 교반하여 안정제(Stabilizer)를 완전히 용해시켰다. 그 다음, 단량체인 티오펜 0.5 g을 혼합하여 25 ℃의 온도에서 약 30분 동안 반응시켜 에멀젼를 제조하였다.89 g of deionized water at 25 ° C., 7.9 g of 37 wt% aqueous hydrochloric acid solution, and 6.9 g of 18 wt% polystyrene sulfonic acid solution as a stabilizer were mixed after distilled water was sequentially passed through a cation and an anion exchange resin, followed by stirring. Stabilizer was completely dissolved. Then, 0.5 g of thiophene as a monomer was mixed and reacted at a temperature of 25 ° C. for about 30 minutes to prepare an emulsion.
그 다음, 닫힌(closed) 반응기에서 상기 혼합물에 제1산화제로서 30 중량% 과산화수소 수용액 0.3 g과 개시제로서 제2산화제인 황산제이철[Fe2(SO4)3] 7 mg을 탈이온수 5 g에 혼합하여 제2산화제를 포함하는 혼합용액을 제조한 뒤 상기 시드 에멀젼 혼합물을 25 ℃의 온도로 12시간 동안 교반하여 에멀젼 상태의 폴리티오펜 입자를 제조하였다. In a closed reactor, the mixture was then mixed with 0.3 g of an aqueous 30% by weight aqueous hydrogen peroxide solution as a first oxidant and 7 mg of ferric sulfate [Fe 2 (SO 4 ) 3 ] as a second oxidant to 5 g of deionized water. To prepare a mixed solution containing a second oxidizing agent and the seed emulsion mixture was stirred for 12 hours at a temperature of 25 ℃ to prepare a polythiophene particles in an emulsion state.
그 다음 상기 제조된 에멀젼 상태의 폴리티오펜 입자를 상온 내지 70 ℃의 범위로 건조시켜 폴리티오펜 입자를 제조하였다.Then, the polythiophene particles in the emulsion state prepared above were dried in a range of room temperature to 70 ° C. to prepare polythiophene particles.
그 결과, 폴리티오펜 에멀젼의 전환율은 99%였고, 제조된 폴리티오펜 입자크기는 평균 70 nm이었으며, 이를 바코팅법(Bar coating method, #7 bar)으로 전도성필름을 만들어서 면저항을 측정한 결과 105.0 ohm/sq.을 얻었다.As a result, the conversion rate of the polythiophene emulsion was 99%, and the average polythiophene particle size was 70 nm, and the sheet resistance was measured by using a bar coating method (# 7 bar) to make a conductive film. 10 5.0 ohm / sq. Was obtained.
또한 제조된 폴리티오펜 에멀젼 10 g에 NMP, DMSO, Ethylene glycol을 0.1-10 g을 용해하여 바코팅법으로 전도성 필름을 제조한 결과 면저항값이 100 내지 105.0 ohm/sq.를 얻었다.In addition, 0.1-10 g of NMP, DMSO, and Ethylene glycol were dissolved in 10 g of the polythiophene emulsion, and a conductive film was prepared by the bar coating method to obtain a sheet resistance of 100 to 10 5.0 ohm / sq.
상기 제조된 폴리 티오펜 에멀젼에 쉘을 이룰 단량체인 3,4-에틸렌디옥시티오펜 0.5 g과 37 중량%의 염산수용액 7.9 g을 혼합하여 25 ℃의 온도에서 약 30분 동안 반응시켜 에멀젼를 제조하였다. 상기 에멀젼은 3,4-에틸렌디옥시티오펜 단량체가 함유된 폴리 티오펜 나노입자 분산액이다. In the polythiophene emulsion prepared above, 0.5 g of 3,4-ethylenedioxythiophene, a monomer to form a shell, and 7.9 g of 37 wt% aqueous hydrochloric acid solution were mixed and reacted at a temperature of 25 ° C. for about 30 minutes to prepare an emulsion. The emulsion is a polythiophene nanoparticle dispersion containing 3,4-ethylenedioxythiophene monomers.
그 다음, 닫힌(closed) 반응기에서 상기 혼합물에 제1산화제로서 30 중량% 과산화수소 수용액 0.3 g과 개시제로서 제2산화제인 황산제이철[Fe2(SO4)3] 7 mg을 탈이온수 5 g에 혼합하여 제2산화제를 포함하는 혼합용액을 제조한 뒤 상기 시드 에멀젼 혼합물을 25 ℃의 온도로 12시간 동안 교반하여 에멀젼 상태의 폴리(3.4-에틸렌디옥시티오펜) 쉘을 중합하였다. 그 결과 폴리(3,4-에틸렌디옥시티오펜)의 전환율은 99%였다.In a closed reactor, the mixture was then mixed with 0.3 g of an aqueous 30% by weight aqueous hydrogen peroxide solution as a first oxidant and 7 mg of ferric sulfate [Fe 2 (SO 4 ) 3 ] as a second oxidant to 5 g of deionized water. After preparing a mixed solution containing a second oxidizing agent and the seed emulsion mixture was stirred for 12 hours at a temperature of 25 ℃ to polymerize the poly (3.4-ethylenedioxythiophene) shell in the emulsion state. As a result, the conversion of poly (3,4-ethylenedioxythiophene) was 99%.
그 다음 상기 제조된 에멀젼 상태의 폴리티오펜/폴리(3.4-에틸렌디옥시티오펜) 코어/쉘 구조의 전도성 입자를 상온 내지 70 ℃의 범위로 건조시켜 폴리티오펜/폴리(3.4-에틸렌디옥시티오펜) 코어/쉘 구조의 전도성 입자를 제조하였다.Then, the prepared conductive particles of the polythiophene / poly (3.4-ethylenedioxythiophene) core / shell structure in the emulsion state were dried at a temperature ranging from room temperature to 70 ° C. to polythiophene / poly (3.4-ethylenedioxythiophene). ) Conductive particles having a core / shell structure were prepared.
그 결과, 폴리티오펜/폴리(3.4-에틸렌디옥시티오펜) 입자크기는 평균 80 nm이었으며, 쉘 두께는 10 nm 이었다. 이를 바코팅법(Bar coating method, #7 bar)으로 전도성필름을 만들어서 면저항을 측정한 결과 105.0 ohm/sq.을 얻었다.As a result, the polythiophene / poly (3.4-ethylenedioxythiophene) particle size was 80 nm on average and the shell thickness was 10 nm. The conductive film was prepared by the bar coating method (Bar coating method, # 7 bar) and the sheet resistance was measured to obtain 10 5.0 ohm / sq.
또한 제조된 폴리티오펜/폴리(3.4-에틸렌디옥시티오펜) 에멀젼 10 g에 NMP, DMSO, Ethylene glycol을 0.1-10 g을 용해하여 바코팅법으로 전도성 필름을 제조한 결과 면저항값이 100 내지 105.0 ohm/sq.를 얻었다.In addition, as a result of dissolving 0.1-10 g of NMP, DMSO, and Ethylene glycol in 10 g of the polythiophene / poly (3.4-ethylenedioxythiophene) emulsion prepared, the conductive film was prepared by the bar coating method. 5.0 ohm / sq. Was obtained.
[실시예 2] Example 2
실시예 1과 동일한 방법으로 실시하되, 안정제(Stabilizer)인 18 중량%의 폴리스티렌술폰산 용액을 69 g 사용하였으며, 개시제로서 제2산화제인 황산제이철 7 mg을 탈이온수 5 g에 혼합하여 제2산화제를 포함하는 혼합용액을 제조한 뒤 이를 상기 에멀젼에 혼합한 뒤 25 ℃의 온도에서 약 30분 동안 반응시켜 시드 에멀젼를 제조하였다.In the same manner as in Example 1, 69 g of a 18% by weight polystyrene sulfonic acid solution as a stabilizer was used, and 7 mg of ferric sulfate, a second oxidant, was mixed with 5 g of deionized water as an initiator. After preparing a mixed solution containing the mixture was mixed with the emulsion and reacted for about 30 minutes at a temperature of 25 ℃ to prepare a seed emulsion.
그 다음, 닫힌(closed) 반응기에서 시드 에멀젼 혼합물을 25 ℃의 온도로 12시간 동안 교반하여 에멀젼 상태의 폴리피롤 입자를 제조하였다. The seed emulsion mixture was then stirred for 12 hours at a temperature of 25 ° C. in a closed reactor to prepare polypyrrole particles in emulsion state.
그 결과, 폴리피롤 에멀젼의 전환율은 96%였고, 제조된 폴리피롤 입자크기는 평균 50 nm 이었으며, 이를 바코팅법(Bar coating method, #7 bar)으로 전도성필름을 만들어서 면저항을 측정한 결과 106.0 ohm/sq.을 얻었다. As a result, the conversion rate of the polypyrrole emulsion was 96%, and the average polypyrrole particle size was 50 nm, and the surface resistance was measured by using a bar coating method (# 7 bar) to measure the sheet resistance of 10 6.0 ohm / got sq.
또한 제조된 폴리 피롤 에멀젼 10 g에 NMP, DMSO, Ethylene glycol을 0.1-10 g을 용해하여 바코팅법으로 전도성 필름을 제조한 결과 면저항값이 100 내지 106.0 ohm/sq.를 얻었다.In addition, 0.1-10 g of NMP, DMSO, and Ethylene glycol were dissolved in 10 g of the polypyrrole emulsion thus prepared, and a conductive film was prepared by the bar coating method to obtain a sheet resistance of 100 to 10 6.0 ohm / sq.
상기 제조된 폴리 피롤 에멀젼에 쉘을 이룰 단량체인 티오펜 0.5 g을 혼합하여 25 ℃의 온도에서 약 30분 동안 반응시켜 에멀젼를 제조하였다. 상기 에멀젼은 티오펜 단량체가 함유된 폴리 피롤 나노입자 분산액이다. The polypyrrole emulsion prepared above was mixed with 0.5 g of thiophene, a monomer for forming a shell, and reacted at a temperature of 25 ° C. for about 30 minutes to prepare an emulsion. The emulsion is a polypyrrole nanoparticle dispersion containing thiophene monomers.
그 다음, 닫힌(closed) 반응기에서 상기 혼합물에 제1산화제로서 30 중량% 과산화수소 수용액 0.3 g과 개시제로서 제2산화제인 황산제이철[Fe2(SO4)3] 7 mg을 탈이온수 5 g에 혼합하여 제2산화제를 포함하는 혼합용액을 제조한 뒤 상기 시드 에멀젼 혼합물을 25 ℃의 온도로 12시간 동안 교반하여 에멀젼 상태의 폴리 티오펜 쉘을 중합하였다. 그 결과 폴리 티오펜의 전환율은 99%였다.In a closed reactor, the mixture was then mixed with 0.3 g of an aqueous 30% by weight aqueous hydrogen peroxide solution as a first oxidant and 7 mg of ferric sulfate [Fe 2 (SO 4 ) 3 ] as a second oxidant to 5 g of deionized water. After preparing a mixed solution containing a second oxidant and the seed emulsion mixture was stirred for 12 hours at a temperature of 25 ℃ to polymerize the poly thiophene shell in the emulsion state. As a result, the polythiophene conversion was 99%.
그 다음 상기 제조된 에멀젼 상태의 폴리피롤/폴리티오펜 (코어/쉘) 구조의 전도성 입자를 상온 내지 70 ℃의 범위로 건조시켜 폴리피롤/폴리티오펜 (코어/쉘) 구조의 전도성 입자를 제조하였다.Then, the conductive particles of the polypyrrole / polythiophene (core / shell) structure prepared in the emulsion state were dried at a temperature ranging from room temperature to 70 ° C., thereby preparing the conductive particles having a polypyrrole / polythiophene (core / shell) structure.
그 결과, 폴리피롤/폴리티오펜 입자크기는 평균 70 nm이었으며, 이를 바코팅법(Bar coating method, #7 bar)으로 전도성필름을 만들어서 면저항을 측정한 결과 105.0 ohm/sq.을 얻었다.As a result, the average particle size of polypyrrole / polythiophene was 70 nm, which was 10 5.0 ohm / sq. As a result of measuring a sheet resistance using a bar coating method (# 7 bar).
또한 제조된 폴리피롤/폴리티오펜 에멀젼 10g에 NMP, DMSO, Ethylene glycol을 0.1-10 g을 용해하여 바코팅법으로 전도성 필름을 제조한 결과 면저항값이 100 내지 105.0 ohm/sq.를 얻었다. 상기 제조된 폴리피롤/폴리티오펜 (코어/쉘) 입자는 붉은색 영역의 발광 특성을 가졌다.In addition, 0.1-10 g of NMP, DMSO, and Ethylene glycol were dissolved in 10 g of the polypyrrole / polythiophene emulsion prepared to prepare a conductive film by a bar coating method, thereby obtaining a sheet resistance value of 100 to 10 5.0 ohm / sq. The polypyrrole / polythiophene (core / shell) particles prepared above had luminescent properties in the red region.
[실시예 3] Example 3
상기 실시예 2에서 제조된 폴리피롤/폴리티오펜 에멀젼에 다층구조의 최외곽 쉘을 이룰 단량체인 3,4-에틸렌디옥시티오펜 0.5 g과 37 중량%의 염산수용액 7.9 g을 혼합하여 25 ℃의 온도에서 약 30분 동안 반응시켜 에멀젼를 제조하였다. 상기 에멀젼은 3,4-에틸렌디옥시티오펜 단량체가 함유된 폴리피롤/폴리티오펜 나노입자 분산액이다. The polypyrrole / polythiophene emulsion prepared in Example 2 was mixed with 0.5 g of 3,4-ethylenedioxythiophene, which is a monomer to form the outermost shell of the multilayer structure, and 7.9 g of 37% by weight aqueous hydrochloric acid solution at a temperature of 25 ° C. The reaction was prepared by reacting for about 30 minutes at. The emulsion is a polypyrrole / polythiophene nanoparticle dispersion containing 3,4-ethylenedioxythiophene monomers.
그 다음, 닫힌(closed) 반응기에서 상기 혼합물에 제1산화제로서 30 중량% 과산화수소 수용액 0.3 g과 개시제로서 제2산화제인 황산제이철[Fe2(SO4)3] 7 mg을 탈이온수 5 g에 혼합하여 제2산화제를 포함하는 혼합용액을 제조한 뒤 상기 시드 에멀젼 혼합물을 25 ℃의 온도로 12시간 동안 교반하여 에멀젼 상태의 폴리(3.4-에틸렌디옥시티오펜) 쉘을 중합하였다. 그 결과 폴리(3,4-에틸렌디옥시티오펜)의 전환율은 99%였다.In a closed reactor, the mixture was then mixed with 0.3 g of an aqueous 30% by weight aqueous hydrogen peroxide solution as a first oxidant and 7 mg of ferric sulfate [Fe 2 (SO 4 ) 3 ] as a second oxidant to 5 g of deionized water. After preparing a mixed solution containing a second oxidizing agent and the seed emulsion mixture was stirred for 12 hours at a temperature of 25 ℃ to polymerize the poly (3.4-ethylenedioxythiophene) shell in the emulsion state. As a result, the conversion of poly (3,4-ethylenedioxythiophene) was 99%.
그 다음 상기 제조된 에멀젼 상태의 폴리피롤/폴리티오펜/폴리(3.4-에틸렌디옥시티오펜) 다층 구조의 전도성 입자를 상온 내지 70 ℃의 범위로 건조시켜 폴리피롤/폴리티오펜/폴리(3.4-에틸렌디옥시티오펜) 코어/쉘1/쉘2 구조의 전도성 입자를 제조하였다.Then, the conductive particles of the polypyrrole / polythiophene / poly (3.4-ethylenedioxythiophene) multilayer structure prepared in the above emulsion state were dried at a temperature ranging from room temperature to 70 ° C. to polypyrrole / polythiophene / poly (3.4-ethylenedioxane. Citofene) conductive particles having a core / shell1 / shell2 structure were prepared.
그 결과, 폴리피롤/폴리티오펜/폴리(3.4-에틸렌디옥시티오펜) 입자크기는 평균 80 nm이었으며, 쉘 두께는 10 nm이었다. 이를 바코팅법(Bar coating method, #7 bar)으로 전도성필름을 만들어서 면저항을 측정한 결과 105.0 ohm/sq.을 얻었다.As a result, the polypyrrole / polythiophene / poly (3.4-ethylenedioxythiophene) particle size was 80 nm on average and the shell thickness was 10 nm. This bar coating method (Bar coating method, # 7 bar ) as a result of making the sheet resistance of conductive films measuring 10 5.0 ohm / sq. Was obtained.
또한 제조된 폴리피롤/폴리티오펜/폴리(3.4-에틸렌디옥시티오펜) 에멀젼 10g에 NMP, DMSO, Ethylene glycol을 0.1-10 g을 용해하여 바코팅법으로 전도성 필름을 제조한 결과 면저항값이 100 내지 105.0 ohm/sq.를 얻었다.In addition, 0.1-10 g of NMP, DMSO, and Ethylene glycol was dissolved in 10 g of the polypyrrole / polythiophene / poly (3.4-ethylenedioxythiophene) emulsion prepared to prepare a conductive film by a bar coating method. 10 5.0 ohm / sq. Was obtained.
이상에서 설명한 바와 같이, 본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. As described above, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. Therefore, the embodiments described above are to be understood as illustrative and not restrictive in all aspects. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present invention.
본 발명에 따르면 전도성이 크고, 또한 발광성, 가공성, 분산성, 탄력성 및 신축성이 우수한 코어 및 1층 이상의 쉘을 포함하는 다층구조의 전도성 나노입자 및 그 제조방법을 제공할 수 있으며, 또한 코어 및 1층 이상의 쉘을 제조하는 공정을 획기적으로 단축할 수 있어 시간적, 경제적으로 유리하며, 다층구조의 기능성 고분자를 다양하게 형성하고, 그에 따라 안정적으로 형성되는 다층구조의 전도성 나노입자 제조방법 및 상기 방법에 의하여 제조된 다층구조의 전도성 나노입자를 제공할 수 있다.According to the present invention, it is possible to provide a conductive nanoparticle having a high conductivity and a multi-layered structure comprising a core and one or more layers of shells having excellent luminescence, processability, dispersibility, elasticity and elasticity, and a method of manufacturing the same. The method of manufacturing a shell having more than one layer can be drastically shortened, which is advantageous in terms of time and economics, and in the method of producing a multi-layered conductive nanoparticle and stably forming a multifunctional polymer, It is possible to provide a conductive nanoparticles of a multi-layer structure manufactured by.

Claims (21)

  1. 코어 및 1층 이상의 쉘을 포함하는 다층구조의 전도성 나노입자에 있어서, In the conductive nanoparticles of a multilayer structure comprising a core and one or more layers of shells,
    코어로 작용하는 전도성 고분자 입자에 쉘로 작용하는 빛 발광 및 전도성 고분자가 1층 이상 코팅된 다층구조의 전도성 나노입자.Multi-layered conductive nanoparticles coated with one or more layers of light emitting and conductive polymers acting as shells on conductive polymer particles serving as cores.
  2. 제1항에 있어서,The method of claim 1,
    상기 입자는 입자 크기가 10-1000 nm인 것을 특징으로 하는 다층구조 형태의 전도성 나노입자.The particles are multi-layered conductive nanoparticles, characterized in that the particle size of 10-1000 nm.
  3. 제1항에 있어서,The method of claim 1,
    상기 코어는 크기가 10-100 nm인 것을 특징으로 하는 다층구조 형태의 전도성 나노입자.The core is a conductive nanoparticles of a multi-layered form, characterized in that the size of 10-100 nm.
  4. 제1항에 있어서,The method of claim 1,
    상기 쉘은 코어의 외곽에 두께가 10-100 nm인 층이 1-3개 형성된 것을 특징으로 하는 다층구조 형태의 전도성 나노입자.The shell has a multi-layered conductive nanoparticles, characterized in that 1-3 is formed in the outer layer of the core having a thickness of 10-100 nm.
  5. 제1항에 있어서,The method of claim 1,
    상기 코어는 폴리피롤로 형성된 것을 특징으로 하는 다층구조 형태의 전도성 나노입자.The core is a conductive nanoparticles of a multi-layered form, characterized in that formed of polypyrrole.
  6. 제1항에 있어서,The method of claim 1,
    상기 쉘의 최외각은 폴리티오펜으로 형성된 것을 특징으로 하는 다층구조 형태의 전도성 나노입자.Conductive nanoparticles of a multilayer structure characterized in that the outermost shell is formed of polythiophene.
  7. A) 전도성 고분자 코어를 제조하는 단계; 및A) preparing a conductive polymer core; And
    B) 상기 전도성 고분자 코어에 1층 이상의 쉘 구조를 구성하는 전도성 고분자를 코팅하는 단계;B) coating a conductive polymer constituting at least one layer of the shell structure on the conductive polymer core;
    를 포함하는 다층구조의 전도성 나노입자의 제조방법.Method for producing a conductive nanoparticles of a multi-layer structure comprising a.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 A 단계는 a) 수성 용매에 티오펜, 피롤 또는 퓨란 단량체; HCl, HF, HBr 및 HI로 이루어지는 군으로부터 선택되는 화합물; 안정화제; 및 제1산화제를 혼합하여 에멀젼을 제조하는 단계; 및 b) 상기 a)단계의 에멀젼에 제2산화제를 혼합하고 교반하여 에멀젼 상태의 전도성 입자를 제조하는 단계를 포함하는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.Step A is a) thiophene, pyrrole or furan monomer in an aqueous solvent; Compounds selected from the group consisting of HCl, HF, HBr and HI; Stabilizer; And mixing the first oxidant to prepare an emulsion. And b) mixing and stirring a second oxidizing agent in the emulsion of step a) to prepare conductive particles in an emulsion state.
  9. 제8항에 있어서,The method of claim 8,
    상기 a)단계에서 HCl를 사용하는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.Method for producing a conductive nanoparticles of a multi-layer structure, characterized in that using the HCl in step a).
  10. 제8항에 있어서,The method of claim 8,
    상기 a)단계에서 HCl, HF, HBr 및 HI로 이루어지는 군으로부터 선택되는 화합물은 상기 단량체의 1-100 몰비(mole ratio)로 투입되는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.The compound selected from the group consisting of HCl, HF, HBr and HI in the step a) is a method for producing a conductive nanoparticles of a multi-layer structure, characterized in that the input of 1-100 mole ratio (mole ratio) of the monomer.
  11. 제8항에 있어서,The method of claim 8,
    상기 a)단계에서 안정화제는 사용되는 단량체 100 중량부에 대하여 0.01-2000 중량부를 투입하는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.The stabilizing agent in step a) is a method for producing a conductive nanoparticles of a multi-layer structure, characterized in that 0.01 to 2000 parts by weight based on 100 parts by weight of the monomer used.
  12. 제8항에 있어서,The method of claim 8,
    상기 a)단계에서 제1산화제는 상기 단량체의 0.01 내지 10 몰비(mole ratio)로 투입되는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.The first oxidizing agent in step a) is a method for producing a conductive nanoparticles having a multi-layer structure, characterized in that the input of 0.01 to 10 mole ratio (mole ratio) of the monomer.
  13. 제8항에 있어서,The method of claim 8,
    상기 b)단계에서 제2산화제는 상기 단량체의 0.001 내지 5.0 몰비(mole ratiod)로 투입되는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.The second oxidizing agent in step b) is a method of producing a conductive nanoparticles of a multi-layer structure, characterized in that the input of 0.001 to 5.0 mole ratio (mole ratiod) of the monomer.
  14. 제8항에 있어서,The method of claim 8,
    상기 제1산화제는 H2O2, (NH4)2S2O8, HMnO4, HNO3, HClO4, F2, Cl2, 및 Br2로 이루어지는 군으로부터 1종 이상 선택되는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.The first oxidant is selected from the group consisting of H 2 O 2 , (NH 4 ) 2 S 2 O 8 , HMnO 4 , HNO 3 , HClO 4 , F 2 , Cl 2 , and Br 2 Method for producing a conductive nanoparticles of a multi-layer structure.
  15. 제8항에 있어서,The method of claim 8,
    상기 제2산화제는 FeCl3, Fe(SO4)2ㆍ6H2O, 및 철(Ⅱ)착화물로 이루어지는 군으로부터 1종 이상 선택되는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.The second oxidizing agent is selected from the group consisting of FeCl 3 , Fe (SO 4 ) 2 .6H 2 O, and iron (II) complexes.
  16. 제7항에 있어서,The method of claim 7, wherein
    상기 B)단계는 a) 수성 용매에 상기 A)단계에서 제조된 전도성 코어; 티오펜, 피롤 또는 퓨란 단량체; HCl, HF, HBr 및 HI로 이루어지는 군으로부터 선택되는 화합물; 안정화제; 및 제1산화제를 혼합하여 에멀젼을 제조하는 단계; 및 b) 상기 a)단계의 에멀젼에 제2산화제를 혼합하고 교반하여 에멀젼 상태의 전도성 입자를 제조하는 단계를 포함를 포함하여 형성된 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.The step B) is a) a conductive core prepared in step A) in an aqueous solvent; Thiophene, pyrrole or furan monomers; Compounds selected from the group consisting of HCl, HF, HBr and HI; Stabilizer; And mixing the first oxidant to prepare an emulsion. And b) mixing and stirring a second oxidant in the emulsion of step a) to prepare conductive particles in an emulsion state.
  17. 제7항에 있어서,The method of claim 7, wherein
    상기 A)단계 또는 B)단계는 건조단계를 더욱 포함하는 것을 특징으로 하는 다층구조의 전도성 나노입자의 제조방법.Step A) or step B) is a method for producing a conductive nanoparticles of a multi-layer structure, characterized in that it further comprises a drying step.
  18. 제1항 기재의 다층구조의 전도성 나노입자를 포함하는 전자재료.An electronic material comprising the conductive nanoparticles of the multilayer structure of claim 1.
  19. 제1항 기재의 다층구조의 전도성 나노입자를 포함하는 광학재료.An optical material comprising the conductive nanoparticles of the multilayer structure of claim 1.
  20. 제1항 기재의 다층구조의 전도성 나노입자를 포함하는 인쇄 재료.A printing material comprising the conductive nanoparticles of the multilayer structure of claim 1.
  21. 제1항 기재의 다층구조의 전도성 나노입자를 포함하는 필름.A film comprising the conductive nanoparticles of the multilayer structure of claim 1.
PCT/KR2012/004437 2011-06-07 2012-06-05 Multi-layered conductive nano particles and manufacturing method therefor WO2012169768A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280028291.4A CN103608284B (en) 2011-06-07 2012-06-05 The conductive nanometer particle of multiple structure and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110054543A KR101890308B1 (en) 2011-06-07 2011-06-07 Multi-layered conductive nano particles and preparation method of the same
KR10-2011-0054543 2011-06-07

Publications (3)

Publication Number Publication Date
WO2012169768A2 true WO2012169768A2 (en) 2012-12-13
WO2012169768A9 WO2012169768A9 (en) 2013-02-14
WO2012169768A3 WO2012169768A3 (en) 2013-04-04

Family

ID=47296579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004437 WO2012169768A2 (en) 2011-06-07 2012-06-05 Multi-layered conductive nano particles and manufacturing method therefor

Country Status (4)

Country Link
KR (1) KR101890308B1 (en)
CN (1) CN103608284B (en)
TW (1) TW201307189A (en)
WO (1) WO2012169768A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221853A1 (en) * 2019-05-02 2020-11-05 Universite De Pau Et Des Pays De L'adour Stretchable conductive nanocomposite particles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105131901A (en) * 2015-07-15 2015-12-09 哈尔滨工业大学 Homogeneous core-shell composite material PPy @ PANI and preparation method thereof
KR102463420B1 (en) 2017-11-02 2022-11-03 현대자동차주식회사 Method for manufacturing electrode in polymer electrolyte fuel cell and electrode using the same
CN112126375B (en) * 2020-09-23 2022-07-08 惠科股份有限公司 Conductive particle, preparation method thereof, adhesive and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013404A (en) * 1998-10-09 2000-01-11 Xerox Corporation Toner composition and processes thereof
KR20050097581A (en) * 2004-04-01 2005-10-10 주식회사 디피아이 솔루션스 Composition for coating organic electrode and method of manufacturing organic electrode having excellent transparency using the composition
KR100684913B1 (en) * 2005-10-06 2007-02-20 연세대학교 산학협력단 Preparation method of polythiophene nanoparticles and derivatives thereof by oxidation polymerization of thiophene emulsion in aqueous phase
KR20070095553A (en) * 2006-03-21 2007-10-01 삼성전자주식회사 Conductive transparent material, manufacturing method of the same and display device having the same
KR20080071635A (en) * 2007-01-31 2008-08-05 연세대학교 산학협력단 Core shell nanoparticles and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050523B1 (en) * 2008-04-04 2011-07-20 주식회사 제이앤드제이 캐미칼 Method for preparing core-shell structured nanoparticles comprising vinyl or acrylic polymer core and conductive polymer shell
KR101003531B1 (en) * 2008-07-03 2010-12-28 주식회사 제이앤드제이 캐미칼 Nanoparticles comprising polythiophene or its derivatives enclosed by conductive polymers and method for preparing the same
KR20110050136A (en) * 2009-11-06 2011-05-13 서울대학교산학협력단 Electrorheological fluids using silica/polyaniline core/shell nanospheres and fabrication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013404A (en) * 1998-10-09 2000-01-11 Xerox Corporation Toner composition and processes thereof
KR20050097581A (en) * 2004-04-01 2005-10-10 주식회사 디피아이 솔루션스 Composition for coating organic electrode and method of manufacturing organic electrode having excellent transparency using the composition
KR100684913B1 (en) * 2005-10-06 2007-02-20 연세대학교 산학협력단 Preparation method of polythiophene nanoparticles and derivatives thereof by oxidation polymerization of thiophene emulsion in aqueous phase
KR20070095553A (en) * 2006-03-21 2007-10-01 삼성전자주식회사 Conductive transparent material, manufacturing method of the same and display device having the same
KR20080071635A (en) * 2007-01-31 2008-08-05 연세대학교 산학협력단 Core shell nanoparticles and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221853A1 (en) * 2019-05-02 2020-11-05 Universite De Pau Et Des Pays De L'adour Stretchable conductive nanocomposite particles
FR3095651A1 (en) * 2019-05-02 2020-11-06 Université de Pau et des Pays de l’Adour Stretchable conductive nanocomposite particles
US11810688B2 (en) 2019-05-02 2023-11-07 Universite De Pau Et Des Pays De L'adour Stretchable conductive nanocomposite particles

Also Published As

Publication number Publication date
WO2012169768A9 (en) 2013-02-14
KR20120135691A (en) 2012-12-17
KR101890308B1 (en) 2018-08-21
WO2012169768A3 (en) 2013-04-04
CN103608284A (en) 2014-02-26
CN103608284B (en) 2016-09-21
TW201307189A (en) 2013-02-16

Similar Documents

Publication Publication Date Title
Jeon et al. A facile and rapid synthesis of unsubstituted polythiophene with high electrical conductivity using binary organic solvents
US7105237B2 (en) Substituted thieno[3,4-B]thiophene polymers, method of making, and use thereof
TWI300419B (en) Process for the preparation of neutral polyethylenedioxythiophene, and corresponding polyethlenedioxythiophenes
KR100362018B1 (en) Soluble aniline conductive polymer
WO2012169768A2 (en) Multi-layered conductive nano particles and manufacturing method therefor
EP0461182A1 (en) Thermally stable forms of electrically conductive polyaniline.
KR20060051904A (en) Substituted thienothiophene monomers and conducting polymers
WO2011071295A2 (en) Carbon nanotube/polymer ionic liquid composite, and carbon nanotube/conductive polymer composite prepared using same
CA2300009A1 (en) Polyaniline-containing solution and method for preparing the same
WO2010005271A2 (en) Organic solvent-dispersible conductive polymer and method for manufacture thereof
Dey Sadhu et al. Preparation and characterization of polyaniline‐and polythiophene‐based copolymer and its nanocomposite suitable for electro‐optical devices
JP6040615B2 (en) Thiophene compound, water-soluble conductive polymer and aqueous solution thereof, and production method thereof
KR101050523B1 (en) Method for preparing core-shell structured nanoparticles comprising vinyl or acrylic polymer core and conductive polymer shell
CN108148469B (en) Preparation method of water-based UV conductive ink
KR100869572B1 (en) Core Shell Nanoparticles and Preparation Method Thereof
JP2011252055A (en) Method for producing organic solvent-based conductive polymer dispersion and application thereof
WO2010041876A2 (en) Method of preparing organic solvent dispersion solution for conductive polymer using ionic polymer liquid and conductive polymer prepared thereby
KR100374719B1 (en) Method for Preparation of the Soluble Poly(3,4-ethylenedioxythiophene) Powder
WO2012169767A2 (en) Method for manufacturing conductive water-dispersible nano particles
KR101306634B1 (en) Composition containing PEDOT:Dextran Copolymer and Its Manufacturing Method
JP2012092265A (en) Thienothiophene copolymer composition
JP2006182958A (en) Conductive particulate and method for producing the same
KR101000496B1 (en) Method of manufacturing nanoparticles of poly3,4-ethylenedioxythiophene
KR101152287B1 (en) Orgarnic-Inorganic Light-Emitting Complex
WO2011081481A2 (en) Conductive polymer composition containing fluorine compound, dispersible in organic solvent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797383

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797383

Country of ref document: EP

Kind code of ref document: A2