WO2012169484A1 - Method for producing laminate structure - Google Patents
Method for producing laminate structure Download PDFInfo
- Publication number
- WO2012169484A1 WO2012169484A1 PCT/JP2012/064428 JP2012064428W WO2012169484A1 WO 2012169484 A1 WO2012169484 A1 WO 2012169484A1 JP 2012064428 W JP2012064428 W JP 2012064428W WO 2012169484 A1 WO2012169484 A1 WO 2012169484A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base material
- electromagnetic wave
- wave treatment
- copolymer
- laminated structure
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
- B32B37/1284—Application of adhesive
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J123/00—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
- C09J123/02—Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
- C09J123/04—Homopolymers or copolymers of ethene
- C09J123/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/02—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/06—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/16—Drying; Softening; Cleaning
- B32B38/164—Drying
- B32B2038/168—Removing solvent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/306—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being water-activatable
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2475/00—Presence of polyurethane
Definitions
- the present invention relates to a method for manufacturing a laminated structure.
- Non-Patent Document 1 describes a method of obtaining a laminated structure in which a base material and a base material are bonded to each other with a water-based adhesive so as to be firmly bonded.
- Various studies have been made on a method for obtaining a laminated structure in which a base material and a base material are bonded to each other with a water-based adhesive and are firmly bonded.
- the present invention includes the following inventions.
- a method for producing a laminated structure in which a first substrate, an adhesive layer, and a second substrate are laminated in this order (A) applying a water-based adhesive to the surface of the first base material, and thermally drying the first base material coated with the water-based adhesive; (B) applying a water-based adhesive to the surface of the second base material, and thermally drying the second base material coated with the water-based adhesive; (C) a step of applying an aqueous adhesive again to the heat-dried surface of at least one of the first base material and the second base material, and thermally drying the obtained base material; (D) including a step of bonding the surface of the first substrate dried with the aqueous adhesive and the surface of the second dried substrate coated with the aqueous adhesive; A method for producing a laminated structure in which at least one heat drying in the above (a) to (c) is an electromagnetic wave treatment.
- [3] (a ′) applying a water-based adhesive to the surface of the first base material, and subjecting the first base material coated with the water-based adhesive to electromagnetic wave treatment, (B ′) applying a water-based adhesive to the surface of the second base material and subjecting the second base material coated with the water-based adhesive to electromagnetic wave treatment; (C ′) a step of applying an aqueous adhesive again to the surface subjected to electromagnetic wave treatment of at least one of the first base material and the second base material, and subjecting the obtained base material to electromagnetic wave treatment; (D ′) including a step of bonding the surface of the first base material subjected to the electromagnetic wave treatment to which the aqueous adhesive is applied and the surface of the second base material subjected to the electromagnetic wave treatment to which the aqueous adhesive is applied [1].
- [4] The method for manufacturing a laminated structure according to any one of [1] to [3], wherein the electromagnetic wave treatment is performed with an electromagnetic wave in a frequency band of 2.45 ⁇ 0.02 GHz.
- [5] The method for producing a laminated structure according to any one of [1] to [4], wherein the laminated structure obtained by bonding the first base material and the second base material is further subjected to electromagnetic wave treatment .
- the bonding step is performed while applying heat, pressure, or both.
- X .m is hydrogen atom or -SO 3 M (M represents an integer of .n 1-3 represents a hydrogen atom, NH 4, or an alkali metal) is an integer of 1 to 100.
- the method for producing a laminated structure according to any one of [1] to [7], wherein the aqueous adhesive includes the following (A), (B), and (C).
- Thermoplastic resin (C) Water [10]
- the surfactant is a surfactant in which X is a hydrogen atom, and X Including two or more types of surfactants in which —SO 3 M is present, or including two or more types of surfactants in which X is a hydrogen atom and surfactants in which X is —SO 3 NH 4 [ The manufacturing method of the laminated structure as described in 8] or [9].
- the thermoplastic resin is (1) a polymer having at least one structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms, (2) a structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms, an ⁇ -olefin having 2 to 20 carbon atoms different from the ⁇ -olefin having 2 to 20 carbon atoms, an ⁇ , ⁇ -unsaturated carboxylic acid ester, ⁇ A copolymer having a structural unit derived from one or more monomers selected from the group consisting of ⁇ -unsaturated carboxylic acid anhydride and vinyl acetate, (3) 1 selected from the group consisting of a structural unit derived from ethylene, an ⁇ -olefin having 3 to 20 carbon atoms, an ⁇ , ⁇ -unsaturated carboxylic acid ester, an ⁇ , ⁇ -unsaturated carboxylic acid anhydride, and vinyl acetate.
- a copolymer having a structural unit derived from a monomer of at least one species (4) Copolymer having a structural unit derived from ethylene and a structural unit derived from one or more monomers selected from the group consisting of ⁇ , ⁇ -unsaturated carboxylic acid esters and ⁇ , ⁇ -unsaturated carboxylic acids Coalescence, (5) Ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer, ethylene-propylene- An ⁇ -olefin copolymer such as 1-butene copolymer or a modified product thereof; or a mixture of two or more of these, (6) Ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene
- thermoplastic resin has a melting point of 60 to 110 ° C.
- aqueous adhesive further contains a polyurethane resin or a water-insoluble polyurethane resin.
- a terpene system wherein the aqueous adhesive is further selected from the group consisting of terpene polymers, terpene phenols, ⁇ -pinene polymers, aromatic modified terpene polymers, ⁇ -pinene polymers, and terpene hydrogenated resins.
- the water-based adhesive is further selected from the group consisting of polyurethane resin, terpene polymer, terpene phenol, ⁇ -pinene polymer, aromatic modified terpene polymer, ⁇ -pinene polymer, and terpene hydrogenated resin.
- the aqueous adhesive further comprises an isocyanate selected from the group consisting of diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI) and oligomers or polymers thereof.
- MDI diphenylmethane diisocyanate
- TDI tolylene diisocyanate
- HDI hexamethylene diisocyanate
- XDI xylene diisocyanate
- the surfactant contains 0.1 to 50 parts by weight, 0.1 to 20 parts by weight, or 0.1 to 10 parts by weight with respect to 100 parts by weight of the total resin constituting the aqueous emulsion.
- the surfactant is a surfactant represented by the formula (A) and a surfactant represented by the formula (B) in a mass ratio of 1 to 99:99 to 1, 5 to 95. : 95-5, 10-90: 90-10, 30: 70-90: 10, 40: 60-90: 10 or 50: 50-90: 10, any one of [8]-[20]
- the manufacturing method of laminated structure as described in any one of.
- thermoplastic resin After polymerization of the thermoplastic resin, after the resin is dispersed in an aqueous medium, an aqueous adhesive obtained by an emulsification method, a forced emulsification method, a self-emulsification method or a phase inversion emulsification method is used [8].
- the method for producing a laminated structure of the present invention is a method for producing a laminated structure in which a first substrate, an adhesive layer, and a second substrate are laminated in this order, (A) applying a water-based adhesive to the surface of the first base material, and thermally drying the first base material coated with the water-based adhesive; (B) applying a water-based adhesive to the surface of the second base material, and thermally drying the second base material coated with the water-based adhesive; (C) a step of applying an aqueous adhesive again to the heat-dried surface of at least one of the first base material and the second base material, and thermally drying the obtained base material; (D) The process of bonding the surface by which the water-based adhesive of the said 1st base material heat-dried and the surface to which the water-based adhesive of the said 2nd base material apply
- first base material and the second base material include films and sheets, structural materials, building materials, automobile parts, electrical / electronic products, packaging materials, clothing, shoes, and the like.
- Specific materials include wood-based materials such as wood, plywood, medium density fiberboard (MDF), particleboard, and fiberboard; cellulosic materials such as cotton cloth, cotton-containing fibers, linen, and rayon; polyethylene (derived from ethylene) Polyolefins having a structural unit as a main component), polypropylene (polyolefin having a structural unit derived from propylene as a main component), polystyrene (polyolefin having a structural unit derived from styrene as a main component), polycarbonate, acrylonitrile -Butadiene-styrene copolymer (ABS resin), (meth) acrylic resin polyester, polyether, polyvinyl chloride, polyurethane, foamed urethane, ethylene / vinyl
- the first base material and the second base material may be a composite material composed of a plurality of materials.
- an inorganic filler such as talc, silica and activated carbon, a kneaded molded product of carbon fiber or the like and a plastic material may be used.
- polyurethane is a polymer crosslinked by a urethane bond, and is usually obtained by reaction of alcohol (—OH) and isocyanate (—NCO).
- the urethane foam is a polyurethane foamed with a volatile solvent such as carbon dioxide or freon produced by a reaction between isocyanate and water used as a crosslinking agent.
- Semi-rigid polyurethane is used for automobile interiors, and hard polyurethane is used for paints.
- the cotton-containing fiber may be 100% cotton fiber, or may be a blended fiber of cotton and other natural fibers and / or chemical fibers.
- Other natural fibers include wool, silk, hemp and the like.
- Chemical fibers include synthetic fibers (for example, polyamide fibers such as polyester and nylon), semi-synthetic fibers (cellulose fibers such as acetate, protein fibers such as promix), regenerated fibers (rayon, cupra, polynosic, etc.) Cellulosic fibers), inorganic fibers (carbon fibers, glass fibers) and the like.
- the first base material and the second base material can take various forms such as a film, a block, a fiber (for example, a woven fabric, a knitted fabric, a non-woven fabric, a knitted fabric, a felt), and a foam.
- the footwear, the insole, the outer bottom, etc. of footwear including men's shoes and women's shoes such as sports shoes, town shoes, business shoes, and industrial work shoes, etc.
- Form and material eg, polyolefin, EVA, nylon, cotton-containing fiber, synthetic leather, etc.
- the surface of the first base material and / or the second base material may be smooth or may have irregularities.
- attachment such as an adhesive agent
- examples of the primer treatment include blast treatment, chemical treatment, degreasing, flame treatment, oxidation treatment, steam treatment, corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, ion treatment, anchor layer formation, and the like.
- the surface of the first substrate and / or the second substrate may be subjected to a primer treatment.
- a water-based adhesive may be applied and dried as a primer treatment.
- the application of the water-based adhesive here can use the above-mentioned method, and drying may use any of the methods described below, but in particular, non-thermal drying such as natural drying or air drying, or usually It is preferable to perform drying using a hot air circulation type oven, infrared ray or far infrared ray heater.
- the aqueous adhesive to be used may be only one kind or two or more kinds of twice treatment. Further, different aqueous adhesives may be used in the first and second substrates, but it is preferable to use the same one.
- the water-based adhesive applied to the first base material and the second base material may not be the same water-based adhesive, but it is preferable to use the same water-based adhesive in consideration of the adhesiveness of both.
- the thickness of the aqueous adhesive to be applied can be appropriately adjusted depending on the composition of the aqueous adhesive to be used, the material and form of the substrate, and the like.
- the thickness after heat drying is about 0.01 to 300 ⁇ m, preferably about 0.01 to 200 ⁇ m, more preferably about 0.2 to 200 ⁇ m.
- Drying may be natural drying, non-thermal drying such as air drying, or drying using a normal hot-air circulating oven, infrared or far-infrared heater, electromagnetic waves (for example, electromagnetic waves having a frequency band of 2.45 ⁇ 0.02 GHz) It can be performed by heat drying such as drying using an irradiation apparatus or a microwave oven.
- the first substrate and the second substrate, or both be subjected to electromagnetic wave treatment.
- the electromagnetic wave treatment the water contained in the aqueous adhesive (as will be described later, the solvent if present) can be removed to form an adhesive layer.
- any method can be used as long as it can irradiate the surface of the first base material coated with the aqueous adhesive or the surface of the second base material coated with the aqueous adhesive.
- an electromagnetic wave device that can emit an electromagnetic wave having a frequency band of 2.45 ⁇ 0.02 GHz, specifically, a microwave oven or the like can be used.
- the output and time of the electromagnetic wave treatment can be appropriately adjusted according to the characteristics of the substrate, the composition of the aqueous adhesive used, and the like.
- the output is in the range of about 1 W to 20 kW, preferably about 100 W to 20 kW, and more preferably about 300 W to 20 kW.
- the time is about 1 second to 1 hour, preferably about 5 seconds to 30 minutes, and more preferably about 5 seconds to 10 minutes.
- the electromagnetic wave treatment may be performed only once or may be performed twice or more. In this case, different frequency bands may be combined. Also, when performing electromagnetic wave treatment on both the first base material and the second base material, different frequency bands may be combined.
- the first substrate or the second substrate is dried by standing (natural drying) instead of the electromagnetic wave treatment or before and after the electromagnetic wave treatment, or by heat drying using a normal hot-air circulating oven, infrared heater, or the like. May be performed.
- the drying temperature and time can be appropriately adjusted according to the characteristics of the substrate, the composition of the aqueous adhesive used, and the like.
- the temperature is about 30 to 150 ° C., preferably about 40 to 85 ° C.
- the time is about 1 second to 1 hour, preferably about 5 seconds to 30 minutes, and more preferably about 5 seconds to 10 minutes.
- step (a) or step (b) may be performed first.
- the adhesive layer after heat drying, in particular electromagnetic wave treatment usually does not contain water (or a solvent if present) as described below, even if it is contained. It is about 3% by weight or less of the total weight of the layer.
- step (c) an aqueous adhesive is applied to the surfaces of the first substrate and the second substrate, and after heat drying, for example, electromagnetic wave treatment (that is, the first time),
- step (c) an aqueous adhesive is applied again to the surface on which at least one of the first base material and the second base material is applied, and the obtained base material is heat-dried.
- electromagnetic wave processing is performed (that is, the second time).
- the application of the aqueous adhesive and the heat drying (for example, electromagnetic wave treatment) again (second time) can be performed in the same manner as the above-described conditions (that is, the first condition).
- the application and heat drying (for example, electromagnetic wave treatment) of the previous (first time) aqueous adhesive and the application and heat drying (for example, electromagnetic wave treatment) of the aqueous adhesive again (for the second time) are not necessarily the same conditions.
- the type of water-based adhesive, coating method, coating thickness, heat drying method and conditions for example, temperature, time, output and time of electromagnetic wave treatment, presence or absence of preheating before and after electromagnetic wave treatment and its The conditions etc. may be changed as appropriate.
- the application and heat drying (for example, electromagnetic wave treatment) of the second aqueous adhesive in the step (c) may be performed only once on at least one of the first base material and the second base material, Furthermore, you may perform 1 time or more of application
- the above-mentioned non-thermal drying for example, standing, natural drying
- heat drying using a normal hot air circulation type oven, an infrared heater or the like may be performed.
- (i-4) is preferable, and more preferably, drying after applying the first (first) aqueous adhesive is performed by electromagnetic wave treatment, and again (second) application of the aqueous adhesive is performed.
- the electromagnetic wave treatment is performed on both surfaces of the first base material and the second base material in the same manner as the application (first time) of the aqueous adhesive and the electromagnetic wave treatment.
- a mechanical operation or manual operation is performed. Any of the methods may be used.
- heat, pressure or both may be applied.
- the heat load may be performed using the above-described normal hot air circulation type oven, infrared heater, microwave oven, or the like.
- the electromagnetic wave treatment is preferably performed again on the obtained laminated structure.
- the electromagnetic wave treatment conditions are the same as described above.
- water-based adhesive used in the method for producing a laminated structure of the present invention contains water as a solvent, an adhesive, a pressure-sensitive adhesive, an adhesive modifier, a heat sealant, a paint, a primer for coating, an ink Any material capable of exhibiting the functions of the binder, the pressure-sensitive adhesive, the emulsion modifier, and the like can be used. Especially, what contains the polymer which has adhesiveness is preferable, and what contains a thermoplastic polymer is preferable.
- polystyrene resin examples include polyolefin resin, acrylic resin (PMMA), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE), and acrylonitrile.
- PMMA acrylic resin
- PVC polyvinyl chloride
- PS polystyrene
- PVAc polyvinyl acetate
- PTFE polytetrafluoroethylene
- ABS resin butadiene styrene resin
- AS resin AS resin
- the polymer contained in the aqueous adhesive is more preferably one containing a polymer having one or more structural units derived from an ⁇ -olefin having 2 to 20 carbon atoms.
- the ⁇ -olefin having 2 to 20 carbon atoms include ethylene (C2), propylene (C3), 1-butene (C4), 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-octene, Nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, vinylcyclohexane, etc.
- Preferred are ethylene, propylene, 1-butene and the like.
- Polymers containing structural units derived from ⁇ -olefins having 2 to 20 carbon atoms include polyethylene (PE), high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), polypropylene (PP), etc.
- Homopolymer or modified product thereof ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer
- An ⁇ -olefin copolymer such as ethylene-propylene-1-butene copolymer or a modified product thereof, a copolymer with a copolymerizable monomer or a modified product thereof; or a mixture of two or more of these. It is preferable.
- the copolymerizable monomer and ⁇ -olefin may be used alone or in combination of two or more.
- the form of the copolymer may be any of random copolymerization, block copolymerization, graft copolymerization, and the like. These may be those having a low molecular weight or a high molecular weight such as peroxide.
- the ⁇ -olefin-based polymer has a total structural unit of 100 mol%, for example, a structural unit derived from propylene: a structural unit derived from 1-butene, preferably 71 to 99 mol%: 1 to 29 mol%. Or a modified product thereof, more preferably 80 to 99 mol%: 1 to 20 mol%, or more preferably 90 to 99 mol%: 1 to 10 mol. % Of copolymers or modified products thereof.
- This copolymer is preferably a copolymer in which substantially no melting peak is observed.
- the fact that a melting peak is not substantially observed means that a crystal melting peak having a crystal melting heat amount of 1 J / g or more is not observed by differential scanning calorimetry (DSC) in a temperature range of ⁇ 100 to 200 ° C.
- a structural unit derived from ethylene a copolymer containing a structural unit derived from propylene, preferably 5 to 20 mol%: 80 to 95 mol%, or a modified product thereof, more preferably 5 to 19 mol%: A copolymer containing 81 to 95 mol% or a modified product thereof, and more preferably a copolymer containing 10 to 19 mol%: 81 to 90 mol% or a modified product thereof.
- This copolymer is preferably a copolymer in which a melting peak is observed.
- a melting peak is observed by a differential scanning calorimetry (DSC) in the temperature range of ⁇ 100 to 200 ° C., a crystal melting peak with a crystal melting heat of 1 J / g or more or a crystal with a crystallization heat of 1 J / g or more. This means that a chemical peak is observed.
- DSC differential scanning calorimetry
- a structural unit derived from ethylene a structural unit derived from propylene: a structural unit derived from 1-butene, preferably a copolymer containing 1 to 99 mol%: 99 to 1 mol%: 99 to 1 mol% or a modification thereof More preferably, it is a copolymer or a modified product thereof containing 5 to 80 mol%: 90 to 2 mol%: 90 to 1 mol%, more preferably 10 to 40 mol%: 85 to 5 mol%: Examples thereof include a copolymer containing 60 to 2 mol% or a modified product thereof. This copolymer is preferably a copolymer in which no melting peak is observed.
- copolymers can be produced using, for example, a known single site catalyst (metallocene, etc., for example, see Japanese Patent Application Laid-Open Nos. 58-19309 and 60-35005). For example, see European Patent Publication No. 12111287).
- propylene-1-butene copolymer or a modified product thereof and the ethylene-propylene copolymer or the modified product thereof are preferably 1 to 99:99 to 1, more preferably 5 to 95 by weight ratio. : 95-5, more preferably 10-90: 90-10 may be used.
- modified products of ⁇ -olefin polymers include modified products of ⁇ , ⁇ -unsaturated carboxylic acids.
- the amount of modification in this case is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.2 to 4 parts by weight with respect to 100 parts by weight of the ⁇ -olefin polymer. It is.
- Examples of ⁇ , ⁇ -unsaturated carboxylic acids include ⁇ , ⁇ -unsaturated carboxylic acids (maleic acid, itaconic acid, citraconic acid, etc.), ⁇ , ⁇ -unsaturated carboxylic acid esters (methyl maleate, methyl itaconate) ), ⁇ , ⁇ -unsaturated carboxylic anhydrides (maleic anhydride, itaconic anhydride, citraconic anhydride, etc.). These ⁇ , ⁇ -unsaturated carboxylic acids may be used in combination. Of these, ⁇ , ⁇ -unsaturated carboxylic acid anhydride is preferable, and maleic anhydride is more preferable.
- Such a modified product is a method in which an ⁇ -olefin polymer is melted and then modified by adding ⁇ , ⁇ -unsaturated carboxylic acid or the like, and the ⁇ -olefin polymer is dissolved in a solvent such as toluene or xylene.
- a solvent such as toluene or xylene.
- the known method include a method in which an ⁇ , ⁇ -unsaturated carboxylic acid is added and modified after dissolution.
- the modified product contains a structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid anhydride, the acid anhydride group may be retained or the ring-opened one may be retained. Both the formed and ring-opened ones may be contained.
- the ⁇ -olefin polymer may be a copolymer of ethylene and one or more ⁇ -olefins having 3 to 20 carbon atoms, a modified product of this copolymer, or a mixture thereof. preferable.
- Examples of the copolymerizable monomer include unsaturated carboxylic acid or anhydride, metal salt of ⁇ , ⁇ -unsaturated carboxylic acid, ⁇ , ⁇ -unsaturated carboxylic acid ester, vinyl ester, vinyl ester saponified product, cyclic olefin, Examples include vinyl aromatic compounds, polyene compounds (such as dienes), (meth) acrylonitrile, halogenated vinyls, and halogenated vinylidenes. You may use these individually or in combination of 2 or more types.
- acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid
- acrylate and methacrylate are collectively referred to as (meth) acrylate.
- Examples of unsaturated carboxylic acids or anhydrides include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, crotonic acid, and unsaturated dicarboxylic acid half esters and half amides. Is mentioned. Of these, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferable, and acrylic acid and maleic anhydride are particularly preferable.
- Examples of the metal salt of ⁇ , ⁇ -unsaturated carboxylic acid include sodium salt and magnesium salt of (meth) acrylic acid.
- Examples of ⁇ , ⁇ -unsaturated carboxylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl acrylate, Examples include esterified products of methacrylic acid and alcohol. Of these, methyl (meth) acrylate and ethyl (meth) acrylate are preferred.
- vinyl esters examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate, vinyl versatate, and the like. Of these, vinyl acetate is preferred.
- vinyl ester saponified product examples include vinyl alcohol obtained by saponifying vinyl ester with a basic compound or the like.
- cyclic olefin examples include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-propylnorbornene, 5,6-dimethylnorbornene, 1-methylnorbornene, 7-methylnorbornene, 5,5,6-trimethylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, 5-ethylidenenorbornene, 5-vinylnorbornene, 1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-ethyl-1,4,5,8-dimethano-1, 2,3,4,4a, 5,8,8a-octahydronaphthalene, 2,3-dimethyl-1,4,5,8-dimethano--but
- vinyl aromatic compound examples include styrene, ⁇ -methylstyrene, p-methylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, fluorostyrene, p-tert-butylstyrene, ethylstyrene, Examples include vinyl naphthalene.
- polyene compounds include linear or branched aliphatic conjugated polyene compounds, alicyclic conjugated polyene compounds, aliphatic non-conjugated polyene compounds, alicyclic non-conjugated polyene compounds, and aromatic non-conjugated polyene compounds. Can be mentioned. These may have a substituent such as an alkoxy group, an aryl group, an aryloxy group, an aralkyl group, and an aralkyloxy group.
- Examples of the aliphatic conjugated polyene compound include 1,3-butadiene, isoprene, 2-ethyl-1,3-butadiene, 2-propyl-1,3-butadiene, 2-isopropyl-1,3-butadiene, 2- Hexyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 2-methyl-1,3- Hexadiene, 2-methyl-1,3-octadiene, 2-methyl-1,3-decadiene, 2,3-dimethyl-1,3-pentadiene, 2,3-dimethyl-1,3-hexadiene, 2,3- Examples thereof include dimethyl-1,3-octadiene and 2,3-dimethyl-1,3-decadiene.
- Examples of the alicyclic conjugated polyene compound include 2-methyl-1,3-cyclopentadiene, 2-methyl-1,3-cyclohexadiene, 2,3-dimethyl-1,3-cyclopentadiene, 2,3- Dimethyl-1,3-cyclohexadiene, 2-chloro-1,3-butadiene, 2,3-dichloro-1,3-butadiene, 1-fluoro-1,3-butadiene, 2-chloro-1,3-pentadiene 2-chloro-1,3-cyclopentadiene, 2-chloro-1,3-cyclohexadiene, and the like.
- Examples of the aliphatic non-conjugated polyene compound include 1,4-hexadiene, 1,5-hexadiene, 1,6-heptadiene, 1,6-octadiene, 1,7-octadiene, 1,8-nonadiene, 1,9 -Decadiene, 1,13-tetradecadiene, 1,5,9-decatriene, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4 -Ethyl-1,4-hexadiene, 3-methyl-1,5-hexadiene, 3,3-dimethyl-1,4-hexadiene, 3,4-dimethyl-1,5-hexadiene, 5-methyl-1,4 -Heptadiene, 5-ethyl-1,4-heptadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 5-ethy
- Examples of the alicyclic nonconjugated polyene compound include vinylcyclohexane, vinylcyclohexene, 5-vinyl-2-norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, and 5-isopropenyl-2-norbornene.
- aromatic non-conjugated polyene compound examples include divinylbenzene and vinylisopropenylbenzene.
- modified product of the copolymer with the copolymerizable monomer examples include a modified product of ⁇ , ⁇ -unsaturated carboxylic acids as described above.
- the modification amount in this case is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.2 to 0.2 parts by weight with respect to 100 parts by weight of the copolymer with the copolymerizable monomer. 4 parts by weight.
- the polymer having at least one structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms is preferably a structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms and the ⁇ -olefin having 2 to 20 carbon atoms.
- ⁇ -olefins having 2 to 20 carbon atoms Derived from one or more monomers selected from the group consisting of ⁇ -olefins having 2 to 20 carbon atoms, ⁇ , ⁇ -unsaturated carboxylic acid esters, ⁇ , ⁇ -unsaturated carboxylic acid anhydrides and vinyl acetate different from A copolymer having a structural unit, more preferably an ethylene-derived structural unit, an ⁇ -olefin having 3 to 20 carbon atoms, an ⁇ , ⁇ -unsaturated carboxylic acid ester, an ⁇ , ⁇ -unsaturated carboxylic acid anhydride.
- Ether and alpha is a copolymer having a structural unit derived from one or more monomers selected from the group consisting of ⁇ - unsaturated carboxylic acid.
- a copolymer of a monomer copolymerizable with ⁇ -olefin specifically, (i) an ethylene-vinyl acetate copolymer, a saponified product or a partially saponified product thereof, or a maleic anhydride-modified product of an ethylene-vinyl acetate copolymer, (ii) an ethylene- (meth) acrylic acid copolymer, (iii) ethylene- (meth) acrylate copolymer such as ethylene-glycidyl (meth) acrylate copolymer, ethylene-methyl (meth) acrylate copolymer, (iv) ethylene-alicyclic ⁇ -olefin copolymers such as ethylene-vinylcyclohexane, (v) ethylene-vinyl acetate- (meth) acrylate copolymers such as ethylene-vinyl acetate copolymer-glycidyl (meth) acrylate
- a polymer having a structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms, particularly a copolymer of the above (i) to (vii) has a melt flow rate of 0.01 to 500 g at 190 ° C. under a load of 2160 g. / 10 minutes is preferable, and 0.01 to 400 g / 10 minutes is more preferable.
- the polymer having a structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms, particularly the copolymer of (i) to (vii) above, preferably has a melting point of 60 to 200 ° C. ° C is more preferable, and 60 to 110 ° C is more preferable. When a polymer having a melting point in this range is used, the permeability or adhesion of the aqueous adhesive to the adherend can be further improved.
- ethylene-vinyl acetate copolymer saponified product or partially saponified product thereof, or maleic anhydride modified product of ethylene-vinyl acetate copolymer, (ii) ethylene- (meth) acrylic Acid copolymer, (iii) ethylene- (meth) acrylate copolymer, (v) ethylene-vinyl acetate- (meth) acrylate copolymer, (vi) ethylene- (meth) acrylate-maleic anhydride copolymer (Vii) ethylene- (meth) acrylate- (meth) acrylate copolymer, more preferably (ia) ethylene-vinyl acetate copolymer, (ii) ethylene- (meth) acrylic acid copolymer, (iii) ethylene- (meth) acrylate copolymer, (v) ethylene-vinyl acetate- (meth) acrylate copolymer
- the content of the polymer can be appropriately adjusted depending on, for example, the type of polymer used, the purpose of use, the performance to be obtained, and the like.
- it is preferably 1 to 60% by weight with respect to the total amount of the water-based adhesive. %, More preferably 3 to 60% by weight, 3 to 50% by weight, still more preferably 5 to 55% by weight.
- Aqueous adhesive used in the present invention may contain other resins other than the polymer having the structural unit derived from ⁇ - olefin having 2 to 20 carbon atoms as described above.
- other resins include polyolefin resins, acrylic resins (PMMA), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE), acrylonitrile butadiene styrene resin (ABS resin), and various ones of such polymers and copolymers and their modified products such as aS resin. These may be used alone or in combination of two or more.
- resin which exhibits the function as an adhesive resin or a tackifier.
- resins include rosins, terpene resins, petroleum resins obtained by polymerizing petroleum fractions having 5 carbon atoms and hydrogenated resins, petroleum resins obtained by polymerizing petroleum fractions having 9 carbon atoms, and Examples thereof include hydrogenated resins, other petroleum resins, coumarone resins, indene resins, polyurethane resins, and the like.
- rosin polymerized rosin, disproportionated rosin, hydrogenated rosin, maleated rosin, fumarized rosin and their glycerin ester, pentaerythritol ester, methyl ester, triethylene glycol ester, phenol modified product and ester thereof Rosins such as fluorides; terpene polymers, terpene phenols, ⁇ -pinene polymers, aromatic modified terpene polymers, ⁇ -pinene polymers, terpene hydrogenated resins, and other terpene resins; C5 petroleum fractions Petroleum resins obtained by polymerizing styrene, petroleum resins obtained by polymerizing petroleum fractions having 9 carbon atoms, and hydrogenated resins thereof; petroleum resins such as maleic acid modified products and fumaric acid modified products; polyisocyanate compounds and polyols described later A compound and, if necessary, a poly Examples thereof include urethane resin.
- Terpene resins and polyurethane resins are preferable.
- Terpene resins are YS Resin PX / PXN, YS Polyster, Mighty Ace, YS Resin TO / TR, Clearon P / M / K (manufactured by Yashara Chemical Co., Ltd.), Tamanoru 803L / 901 (manufactured by Arakawa Chemical Co., Ltd.), Teltac 80 (Japan) Any of those commercially available as Terpen Chemical Co., Ltd.) can be used.
- the polyurethane resin is preferably in the form of an aqueous emulsion in which polyurethane is dispersed in water. That is, the polyurethane may be either water-soluble or water-insoluble, but is preferably water-insoluble.
- the polyurethane resin can be obtained by reacting a polyisocyanate compound and a polyol compound, and if necessary, other compounds. Examples of the reaction include methods such as an acetone method, a prepolymer mixing method, a ketimine method, and a hot melt dispersion method.
- polyisocyanate compound examples include organic polyisocyanate compounds having two or more isocyanate groups in the molecule, which are used for ordinary polyurethane production.
- organic polyisocyanate compounds having two or more isocyanate groups in the molecule, which are used for ordinary polyurethane production.
- polyol compound examples include compounds having two or more hydroxyl groups in the molecule, which are used for the production of ordinary polyurethane.
- polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, trimethylolpropane, glycerin; polyethylene glycol, polypropylene glycol, polytetramethylene ether Polyether polyols such as glycol; adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid Dicarboxylic acids such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-
- Polyester polyols such as polycaprolactone polyol and poly ⁇ -methyl- ⁇ -valerolactone; polybutadiene polyols or hydrogenated products thereof, polycarbonate polyols, polythioether polyols, polyacrylate polyols, etc. .
- the polyurethane resin preferably has a hydrophilic group in the molecule in order to improve dispersion stability in water.
- a polyurethane containing a hydrophilic group in its molecule is called an ionomer structure and has a surface-active ability in itself. Therefore, there exists a tendency which is easy to disperse
- anionic groups such as a sulfonyl group and a carboxyl group are preferable, and a sulfonyl group is more preferable. This is because there is a tendency to further improve the water resistance of an aqueous emulsion obtained by emulsion polymerization of monomers.
- the anionic group is preferably neutralized by a neutralizing agent.
- the neutralizing agent include tertiary amine compounds such as triethylamine and trietalamine; inorganic alkali compounds such as sodium hydroxide; ammonia and the like.
- hydrophilic group In order to introduce a hydrophilic group into the molecule, it is preferable to use the following compounds during the production of polyurethane.
- the compound include a nonionic hydrophilic group such as a structural unit derived from polyethylene glycol in the molecule, and a sulfonyl group, carboxyl group, hydroxyl group, primary amino group (—NH 2 ), secondary amino group ( ⁇ NH) and the like (hereinafter also referred to as “hydrophilic group-containing compound”) having at least one active hydrogen having reactivity with an isocyanate group.
- hydrophilic group-containing compound examples include 3,4-diaminobutanesulfonic acid, 3,6-diamino-2-toluenesulfonic acid, 2,6-diaminobenzenesulfonic acid, and N- (2-aminoethyl) -2.
- a sulfonic acid-containing compound such as aminoethylsulfonic acid; a carboxylic acid-containing compound such as 2,2-dimethylollactic acid, 2,2-dimethylolpropionic acid, and 2,2-dimethylolvaleric acid. You may use these individually or in combination of 2 or more types.
- the polyurethane resin When the polyurethane resin is produced as an aqueous emulsion, it is a compound different from the hydrophilic group-containing compound for the purpose of chain extension, molecular weight adjustment, etc., if necessary, and contains active hydrogen capable of reacting with an isocyanate compound in the molecule.
- a compound to be used may be used in combination. Examples of such compounds include polyvalent amine compounds such as ethylenediamine, 1,4-butanediamine, and 1,6-hexanediamine; tertiary amine-containing polyhydric alcohols such as triethanolamine, methanol, ethanol, and butanol. And monoalcohols.
- polyurethane resin a commercially available polyurethane aqueous emulsion or a commercially available water-soluble urethane resin may be used as it is.
- a polyurethane dispersion or polyurethane aqueous solution in which a polyurethane resin is dispersed or dissolved in water can be mentioned.
- the polyurethane resin content in the polyurethane dispersion may be about 10 to 70% by weight, preferably about 20 to 60% by weight, more preferably about 30 to 60% by weight, and even more preferably about 30 to 55% by weight.
- the polyurethane dispersion may further contain an organic solvent not containing an isocyanate reactive group, for example, ethyl acetate, acetone, methyl ethyl ketone, N-methylpyrrolidone and the like.
- the amount of the organic solvent is not particularly limited, but can be 0.1 to 100 parts by weight with respect to 100 parts by weight of the nonvolatile content in the polyurethane dispersion.
- water-soluble urethane resin for example, manufactured by Sumitomo Bayer Urethane Co., Ltd .; Dispacol U-42, U-53, U-54, U-56, KA-8484, KA-8484, KA-8755, KA-8756 KA-8766, manufactured by DIC Corporation; Hydran HW-111, HW-311, HW-333, HW-350, HW-337, HW-374, AP-20, AP-60LM, AP-80, Sanyo Chemical Manufactured by Kogyo Co., Ltd .; Uprene UXA-306, UXA-307, Permarin UA-150, Permarin UA-200, Permarin UA-300, Permarin UA-310, Eucort UWS-145, Daiichi Kogyo Seiyaku Co., Ltd .; Super Flex 107M, 110, 126, 130, 150, 160, 300, 361, 370, 410, 420,
- the content thereof is preferably 1 to 99% by weight, more preferably 3 to 99% by weight, and still more preferably based on the total amount of the water-based adhesive. 5 to 90% by weight.
- the polymer: other resin (non-volatile content weight ratio) is preferably 5:95 to 95: 5, more preferably 5:95 to 90:10, and still more preferably 10:50 to 80: 20.
- These resins may be emulsions or emulsified together with a polymer having a structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms.
- the aqueous adhesive preferably further contains a surfactant that generally acts as an emulsifier.
- surfactants include cationic, anionic, amphoteric and nonionic surfactants. Among them, anionic or nonionic surfactants are preferable. In particular, those having the structure of the following formula (I) are preferred.
- Surfactants may be used alone or in combination of two or more, but it is preferable to use two or more in combination. Among these, it is more preferable to use two or more kinds of surfactants having the structure of the formula (I).
- X represents a hydrogen atom or —SO 3 M (M is a hydrogen atom, NH 4 or an alkali metal).
- N represents an integer of 1 to 3.
- m represents an integer of 1 to 100.
- X in the formula (I) is a hydrogen atom, —SO 3 M (M is a hydrogen atom, —NH 4 or an alkali metal), that is, sulfuric acid, sulfate (for example, an alkali metal salt such as ammonium salt or sodium), etc.
- a hydrogen atom, —SO 3 H or —SO 3 NH 4 is preferable.
- X is a combination of a hydrogen atom and —SO 3 H, a combination of a hydrogen atom and —SO 3 NH 4 , or a combination of —SO 3 H and —SO 3 NH 4 . Of these, a combination of a hydrogen atom and —SO 3 NH 4 is preferable.
- Latemul AD-25 manufactured by Kao Corporation
- Latemuru E-1000A manufactured by Kao Corporation
- Neugen EA-177 Daniichi Kogyo Seiyaku Co., Ltd.
- the aqueous adhesive may contain a surfactant other than the surfactant represented by the formula (I).
- the anionic surfactants include higher alcohol sulfates, higher alkyl sulfonates, higher carboxylates, alkyl benzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyls. Examples include sulfosuccinate.
- cationic surfactants include alkylammonium salts such as dodecyltrimethylammonium salt and cetyltrimethylammonium salt, alkylpyridium salts such as cetylpyridium salt and decylpyridium salt, oxyalkylenetrialkylammonium salt, dioxyalkylenedialkylammonium salt , Allyl trialkyl ammonium salt, diallyl dialkyl ammonium salt and the like.
- alkylammonium salts such as dodecyltrimethylammonium salt and cetyltrimethylammonium salt
- alkylpyridium salts such as cetylpyridium salt and decylpyridium salt
- oxyalkylenetrialkylammonium salt such as cetylpyridium salt and decylpyridium salt
- dioxyalkylenedialkylammonium salt dioxyalkylenedialkylammonium salt
- Allyl trialkyl ammonium salt diallyl
- Nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene propylene ether, polyoxyethylene alkyl phenyl ether, polyethylene glycol fatty acid esters, ethylene oxide propylene oxide block copolymers, polyoxyethylene fatty acid amides, and ethylene oxide.
- -A compound having a polyoxyethylene structure such as a propylene oxide copolymer or a sorbitan derivative such as a polyoxyethylene sorbitan fatty acid ester.
- amphoteric surfactants include lauryl betaine and lauryl dimethylamine oxide.
- the content of the surfactant is usually 0.1 to 50 parts by weight, preferably 0.1 to 20 parts by weight, and more preferably 0 to 100 parts by weight of the resin constituting the aqueous adhesive. a .1 to 10 parts by weight.
- the aqueous adhesive used in the present invention contains a surfactant other than the surfactant represented by the formula (I)
- the surfactant represented by the formula (I) and the formula (I) The total content of surfactants other than the surfactants represented is usually 0.1 to 50 parts by weight, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. a 20 parts by weight, more preferably 0.1 to 10 parts by weight.
- the weight ratio is preferably 1 to 99:99 to 1, more preferably 5 to 95:95 to 5, more preferably 10 to 90:90 to 10, particularly 30:70 to 90:10, 40:60 to 90:10, 50:50 to 90:10.
- the aqueous adhesive preferably further contains a basic compound.
- a basic compound what can neutralize a carboxyl group is preferable, for example, ammonia, an organic amine compound, a metal hydroxide, etc. are mentioned.
- it is ammonia or an organic amine compound.
- an organic amine compound having a boiling point of 200 ° C. or less can be easily dispersed by ordinary drying, and when forming a coating film using an aqueous adhesive, the water resistance and alkali resistance of the coating film are maintained / It can be improved and is preferable.
- Examples of the organic amine compound include triethylamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, 3-ethoxypropylamine, Examples include 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, 3-methoxypropylamine, monoethanolamine, morpholine, N-methylmorpholine, N-ethylmorpholine and the like. Of these, N, N-dimethylethanolamine and the like are preferable.
- Examples of the metal hydroxide include lithium hydroxide, potassium hydroxide, sodium hydroxide and the like.
- the content thereof is preferably 1 to 30 parts by weight, more preferably 2 to 20 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. Part, more preferably 2 to 10 parts by weight.
- the aqueous adhesive used in the present invention preferably does not contain a solvent, but in some cases, in addition to water, for example, an aromatic hydrocarbon such as toluene and xylene; an aliphatic hydrocarbon such as hexane; Esters such as ethyl acetate and butyl acetate; ketones such as methyl ethyl ketone and methyl isobutyl ketone; alcohols such as methanol, ethanol, n-propanol, isopropyl alcohol, and n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and the like Glycol solvent, methyl cellosolve, cellosolve, butyl cellosolve, dioxane, MTBE (methyl tertiary butyl ether), cellsolve solvent such as butyl carbitol, diethylene glycol monomethyl ether, triethylene glycol Glycol solvents such
- the water-based adhesive used in the present invention usually contains water. Furthermore, phenol stabilizers, phosphite stabilizers, amine stabilizers, amide stabilizers, anti-aging agents, weathering stabilizers, anti-settling agents, as required, without compromising the intended properties of the water-based adhesive.
- Stabilizers antioxidants, heat stabilizers, light stabilizers; thixotropic agents, thickeners, dispersants, antifoaming agents, viscosity modifiers, weathering agents, pigments, pigment dispersants, antistatic agents, Additives such as lubricants, nucleating agents, flame retardants, oil agents, dyes, curing agents, crosslinking agents; transition metal compounds such as titanium oxide (rutile type) and zinc oxide; pigments such as carbon black; glass fibers, carbon fibers, titanium Potassium acid fiber, wollastonite, calcium carbonate, calcium sulfate, talc, glass flake, barium sulfate, clay, kaolin, fine powder silica, mica, calcium silicate, aluminum hydroxide, magnesium hydroxide , Aluminum oxide, magnesium oxide, alumina, inorganic, such as celite, may contain optional components such as organic fillers.
- water As the water contained in the aqueous adhesive used in the present invention, tap water, ion-exchanged water or the like is generally used. In order to further improve the stability of the water-based adhesive, a water-soluble resin such as polyvinyl alcohol, sodium polyacrylate, carboxymethyl cellulose, or hydroxyethyl cellulose may be added.
- the water content is, for example, 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 45% by weight or more, and preferably 45% by weight or more based on the total amount of the aqueous adhesive. It is 85 weight% or less, More preferably, it is 80 weight% or less, More preferably, it is 70 weight% or less.
- Thickeners can be used to adjust the viscosity of the formulation.
- As a thickener manufactured by ADEKA Corporation; Adecanol UH-140S, UH-420, UH-438, UH-450VF, UH-462, UH-472, UH-526, UH-530, UH-540, UH -541VF, UH-550, UH-752, H-756VF, manufactured by San Nopco; SN thickener 920, 922, 924, 926, 929-S, A-801, A-806, A-812, A-813, A -818, 621N, 636, 601, 603, 612, 613, 615, 618, 621N, 630, 634, 636, 4050 and the like.
- the dispersant can be used for improving the wettability of the coated substrate.
- a dispersant manufactured by ADEKA Corporation; Adeka Coal W-193, W-287, W-288, W-304, manufactured by BYK; BYK-333, BYK-345, BYK-346, BYK-347, BYK -348, BYK-349, BYK-378, manufactured by San Nopco; Nopco wet 50, SN wet 366, Nopco 38-C, SN disperse sand 5468, 5034, 5027, 5040, 5020 and the like.
- the curing agent examples include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI), and oligomers or polymers thereof, which are isocyanate curing agents.
- MDI diphenylmethane diisocyanate
- TDI tolylene diisocyanate
- HDI hexamethylene diisocyanate
- XDI xylene diisocyanate
- oligomers or polymers thereof which are isocyanate curing agents.
- Sumika Bayer Urethane Sumidur 44V20, Sumidur N3200, N3300, N3400, N3600, N3900, S-304, S-305, XP-2655, XP-2487, XP-2547 and the like can be mentioned.
- the curing agent is preferably 0.1 to 20 parts by weight, more preferably
- a method for producing an aqueous adhesive a method known in the art, for example, a post-emulsification method (for example, forced emulsification method, self-emulsification method, phase inversion emulsification method) after polymerizing the resin and dispersing the resin in an aqueous medium. Etc.).
- a post-emulsification method for example, forced emulsification method, self-emulsification method, phase inversion emulsification method
- a surfactant, water and / or solvent are added to the reactor, and heated and stirred.
- a resin to be emulsified, and optionally a solvent are added to a kneader, stirring, heating and melting, and a surfactant, water and / or Examples thereof include a method of adding a solvent, heating and stirring, and optionally adding water and / or a solvent before and after this and stirring.
- water is introduced at least once.
- a container preferably sealed and / or sealed
- a heating device capable of being heated
- a stirrer capable of applying a shearing force or the like to the contents.
- Pressure vessel A normal stirrer can be used.
- a pressure vessel include a pressure-resistant autoclave with a stirrer. Stirring may be performed, for example, at normal pressure or reduced pressure.
- the rotational speed of the stirrer can be set at, for example, about 50 to 1000 rpm. If necessary, it is preferable to increase the rotational speed as the dispersion / stirring of the aqueous adhesive proceeds.
- the heating is usually performed at 50 to 200 ° C, preferably 60 to 150 ° C, more preferably 70 to 100 ° C.
- the solvent is preferably distilled off from the obtained dispersion (preferably reduced pressure or pressurized distillation).
- the degree of pressure reduction or pressurization is about ⁇ 0.001 to 1 MPa, preferably about ⁇ 0.001 to 0.5 MPa.
- examples of the kneader include a roll mill, a kneader, an extruder, an ink roll, and a Banbury mixer.
- an extruder or a multi-screw extruder having one or more screws in the casing may be used.
- a resin to be emulsified and a surfactant are mixed, and this is continuously fed from the hopper or feed port of the extruder, and this is heated, melted and kneaded, and further compressed by the extruder.
- Water is supplied from at least one supply port provided in a zone, a metering zone, a deaeration zone, and the like, and after being kneaded with a screw, it is continuously extruded from a die.
- the surfactant is preferably used within a desired range. However, when the surfactant is used in excess, it is optionally excessive from the obtained water-based adhesive.
- the surfactant may be separated and removed. Separation and removal of the surfactant may be performed, for example, by using a centrifuge, a filter having an average pore size smaller than the average particle size of the aqueous adhesive (preferably having an average pore size of 0.05 to 0.5 ⁇ m). And a method using an ultrafiltration membrane).
- the obtained water-based adhesive it is preferable to cool the obtained water-based adhesive.
- the water-based adhesive containing the fine particle of a resin composition is obtained.
- the cooling is not particularly required to be performed at a low temperature, and a method of leaving it at room temperature can be mentioned. Thereby, a fine and homogeneous aqueous adhesive can be obtained without agglomeration of resin or the like during the cooling process.
- the particle size of the dispersoid contained in the aqueous adhesive is usually 10 ⁇ m or less, preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 2 ⁇ m, and still more preferably 0.01 to 1 ⁇ m, based on the number.
- the standing stability is good.
- the particle size based on the number is a particle size corresponding to 50% of the value of the cumulative particle size distribution on the number basis. Unless otherwise specified, it means the value of the median diameter measured on the basis of the number, and the volume-based median diameter means a particle diameter in which the value of the cumulative particle size distribution corresponds to 50% on the volume basis. As long as it means the value of the median diameter measured on the basis of the number. Moreover, you may filter using the filter etc.
- the particle diameters of the dispersoids are preferably approximately the same. As the same degree, for example, it is preferably within ⁇ 50%, more preferably within ⁇ 30% of the particle size of the polymer having a structural unit derived from ⁇ -olefin.
- the peak observed in (ii) was a crystallization peak, and the presence or absence of a crystallization peak with a peak area of 1 J / g or more was confirmed.
- the temperature was increased from ⁇ 100 ° C. to 200 ° C. at a temperature increase rate of 10 ° C./min.
- the peak observed in (iii) was the melting peak of the crystal, and the presence or absence of a melting peak with a peak area of 1 J / g or more was confirmed.
- Melt flow rate (MFR) According to JIS-K-7210, the measurement was performed under the conditions of a load of 2.16 kgf and a temperature of 130 ° C.
- the modified amount of maleic anhydride is obtained by dissolving 1.0 g of a sample in 20 ml of xylene, dropping the sample solution into 300 ml of methanol while stirring to reprecipitate the sample, and then collecting the sample. After vacuum drying (80 ° C., 8 hours), a film having a thickness of 100 ⁇ m was prepared by hot pressing, the infrared absorption spectrum of the obtained film was measured, and the amount of maleic anhydride modification was determined by absorption near 1780 cm ⁇ 1. Was quantified.
- Nonvolatile content It was measured by a measuring method according to JIS K-6828.
- Particle size of aqueous emulsion This is a value measured with a laser diffraction particle size measuring device LA-950V2 manufactured by HORIBA. Unless otherwise specified, the particle diameter is a median diameter value measured on a number basis.
- Example of production of copolymer (B-1-1) 386 parts of vinylcyclohexane (hereinafter sometimes referred to as VCH) and 3640 parts of toluene were charged into a SUS reactor substituted with argon. After raising the temperature to 50 ° C., ethylene was charged while being pressurized at 0.6 MPa.
- VCH vinylcyclohexane
- copolymer (B-1-2) ⁇ Example of production of copolymer (B-1-2)> To 100 parts of the obtained copolymer (B-1-1) copolymer, 0.4 part of maleic anhydride and 0.04 part of 1,3-bis (t-butylperoxyisopropyl) benzene were added. After sufficiently premixed, it was supplied from the supply port of the twin screw extruder and melt kneaded to obtain a copolymer (B-1-2). The temperature of the melt kneading part of the extruder was divided into two stages, the first half and the latter half, and the melt kneading was performed at a temperature setting of 180 ° C. in the first half and 260 ° C. in the second half. Copolymer (B-1-2) had a maleic acid graft amount of 0.2% and an MFR of 180 g / 10 min (190 ° C., load: 2.16 kgf).
- Example of production of copolymer (B-3-1)> A 2 l separable flask reactor was equipped with a stirrer, thermometer, dropping funnel and reflux condenser to reduce the pressure, and the gas in the reactor was replaced with nitrogen. Into this flask, 1 l of dried toluene was introduced as a polymerization solvent. Here, propylene 8 NL / min and 1-butene 0.5 NL / min were continuously fed at normal pressure, and the solvent temperature was 30 ° C.
- TIBA triisobutylaluminum
- dimethylsilyl (2,3,4,5-tetramethylcyclopentadienyl) (3-tert-butyl-) was used as a polymerization catalyst.
- TIBA triisobutylaluminum
- 0.005 mmol of 5-methyl-2-phenoxy) titanium dichloride was added to the reactor.
- 0.025 mmol of triphenylmethyltetrakis (pentafluorophenyl) borate was added to the reactor to initiate polymerization.
- a propylene-1-butene copolymer (B-3-1) having a propylene content of 96 mol% was obtained.
- the obtained polymer had an intrinsic viscosity [ ⁇ ] of 2.1 dl / g and a molecular weight distribution (Mw / Mn) of 2.5.
- Mw / Mn molecular weight distribution
- the obtained dispersion was put into a 2 L eggplant flask, evaporated under reduced pressure using an evaporator, and filtered through a 200 mesh nylon net to obtain an aqueous emulsion containing the polymer (B-1-2) and a surfactant. It was.
- the obtained aqueous emulsion (E-1) had a particle size (number basis) of 0.61 ⁇ m and a non-volatile content concentration of 36%.
- aqueous emulsion was produced in the same manner as ⁇ Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-1) was used as the copolymer.
- the obtained aqueous emulsion (E-2) had a particle size (number basis) of 0.25 ⁇ m and a nonvolatile content concentration of 38%.
- aqueous emulsion was produced in the same manner as in ⁇ Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-2) was used as the copolymer.
- the obtained aqueous emulsion (E-3) had a particle size (number basis) of 0.22 ⁇ m and a nonvolatile content concentration of 39%.
- aqueous emulsion was produced in the same manner as ⁇ Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-3) was used as the copolymer.
- the obtained aqueous emulsion (E-4) had a particle size (number basis) of 0.21 ⁇ m and a non-volatile content concentration of 36%.
- aqueous emulsion An aqueous emulsion was produced in the same manner as ⁇ Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-4) was used as the copolymer.
- the obtained aqueous emulsion (E-5) had a particle size (number basis) of 0.13 ⁇ m and a nonvolatile content concentration of 36%.
- aqueous emulsion was produced in the same manner as in ⁇ Aqueous emulsion production example 1> except that 100 parts of the polymer (B-3-2) was used as the copolymer.
- the obtained aqueous emulsion (E-6) had a particle size (number basis) of 0.33 ⁇ m and a nonvolatile content concentration of 34%.
- aqueous emulsion was produced in the same manner as ⁇ Aqueous emulsion production example 1> except that 50 parts of the polymer (B-2-2) and 50 parts of the polymer (B-3-2) were used as the copolymer.
- the obtained aqueous emulsion (E-7) had a particle size (number basis) of 0.21 ⁇ m and a nonvolatile content concentration of 35%.
- aqueous emulsion was produced in the same manner as in ⁇ Aqueous emulsion production example 1> except that 100 parts of polymer (B-4-1) [BONDINE HX8140 (manufactured by ARKEMA)] was used as the copolymer.
- the obtained aqueous emulsion (E-8) had a particle size (number basis) of 0.09 ⁇ m and a nonvolatile content concentration of 40%.
- aqueous emulsion was produced in the same manner as ⁇ Aqueous emulsion production example 1> except that 100 parts of the polymer (B-4-2) [BONDINE AX8390 (manufactured by ARKEMA)] was used as the copolymer.
- the obtained aqueous emulsion (E-9) had a particle size (on a number basis) of 0.11 ⁇ m and a nonvolatile content concentration of 42%.
- ⁇ Production Example 10 of Aqueous Emulsion> ⁇ Aqueous emulsion except that 67 parts of polymer (B-4-2) and 33 parts of adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) are used instead of 100 parts of polymer (B-1-2).
- An aqueous emulsion (E-10) was produced in the same manner as in Production Example 1>.
- the obtained aqueous emulsion had a particle size (on a number basis) of 0.10 ⁇ m and a nonvolatile content concentration of 41%.
- aqueous emulsion (E-11) was produced in the same manner as in ⁇ Aqueous emulsion production example 1> except that 100 parts of the polymer (B-4-3) [BONDINE HX8290 (manufactured by ARKEMA)] was used as the copolymer. .
- the obtained aqueous emulsion had a particle size (number basis) of 0.18 ⁇ m and a nonvolatile content concentration of 39%.
- ⁇ Production Example 12 of aqueous emulsion> Instead of using 100 parts of the polymer (B-1-2), 50 parts of the polymer (B-4-3) and 50 parts of an adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) are used.
- Emulsion Production Example 1> An aqueous emulsion (E-12) was produced in the same manner. The obtained aqueous emulsion had a particle size (number basis) of 0.20 ⁇ m and a nonvolatile content concentration of 33%.
- aqueous emulsion (as in Aqueous Emulsion Production Example 1) except that 100 parts of the polymer (B-4-4) [BONDINE LX4110 (manufactured by ARKEMA)] was used as the copolymer and the reaction temperature was 90 ° C. E-13) was produced.
- the obtained aqueous emulsion had a particle size (number basis) of 0.08 ⁇ m and a nonvolatile content concentration of 44%.
- ⁇ Production Example 14 of Aqueous Emulsion> instead of 100 parts of the polymer (B-1-2), 75 parts of the polymer (B-4-4) and 25 parts of an adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) were used, and the reaction temperature was 90.
- An aqueous emulsion (E-14) was produced in the same manner as in ⁇ Preparation Example 1 of Aqueous Emulsion> except that the temperature was changed to 0 ° C.
- the obtained aqueous emulsion had a particle size (on a number basis) of 0.20 ⁇ m and a nonvolatile content concentration of 34%.
- EVA ethylene / vinyl acetate
- the particle size of this aqueous emulsion was 1.7 ⁇ m, and the nonvolatile content concentration was 50%.
- An aqueous emulsion (E-28) was formulated by mixing an aqueous emulsion (E-11) with an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) at a nonvolatile content ratio of 67 parts: 33 parts. Manufactured.
- An aqueous emulsion (E-30) was formulated by mixing an aqueous emulsion (E-8) with an aqueous emulsion of terpene phenol (Tamanol E-200NT, Arakawa Chemical Co., Ltd.) in a nonvolatile content ratio of 67 parts: 33 parts. Manufactured.
- An aqueous emulsion (E-32) was prepared by blending an aqueous emulsion (E-31) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) at a nonvolatile content ratio of 67:33. .
- ⁇ Production Example 33 of Aqueous Emulsion> Instead of using 100 parts of the polymer (B-1-2), 50 parts of the propylene / butylene copolymer (B-3-2) and 50 parts of the ethylene / propylene copolymer (B-2-4) were used.
- An aqueous emulsion (E-33) was produced in the same manner as in ⁇ Aqueous emulsion production example 1>.
- the obtained aqueous emulsion (E-33) had a particle size of 0.2 ⁇ m (number basis) and a nonvolatile content of 34%.
- ⁇ Production Example 35 of Aqueous Emulsion> The temperature in the cell of Labo Plast Mill Micro (manufactured by Toyo Seiki) was set to 95 ° C. In this cell, 3.12 g of the copolymer (B-1-2) was sealed and stirred at 300 rpm for 3 minutes. The maximum shear rate at this time was 1173 sec- 1 . Thereafter, 0.46 g of oxyethyleneoxypropylene block copolymer (weight average molecular weight 15500: Pluronic F108: manufactured by Asahi Denka Co., Ltd.) is added as an emulsifier together with 0.21 g of water, and the temperature in the cell is kept at 95 ° C.
- oxyethyleneoxypropylene block copolymer weight average molecular weight 15500: Pluronic F108: manufactured by Asahi Denka Co., Ltd.
- the mixture was kneaded at 300 rpm for 3 minutes (shear rate 1173 sec- 1 ). After kneading, the content was taken out and stirred and dispersed in a container containing warm water of about 70 ° C. to obtain an aqueous emulsion (E-35) having a volume-based median diameter of dispersoid of 0.43 ⁇ m.
- Copolymer U1 Ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE HX8290, manufactured by ARKEMA, melting point: 81 ° C.)
- Copolymer U2 ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE LX4110, manufactured by ARKEMA, melting point: 107 ° C.)
- Copolymer U3 ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE HX8210, manufactured by ARKEMA, melting point: 100 ° C.)
- Surfactant 1 Compound represented by the above formula (A) (Latemul E-1000A, 30% aqueous solution, manufactured by Kao Corporation)
- Surfactant 2 Compound represented by the above formula (B) (Neugen EA-177, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
- aqueous Emulsion An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300)
- An aqueous emulsion (E-39) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 100 parts: 5 parts.
- aqueous Emulsion An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300)
- An aqueous emulsion (E-40) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 200 parts: 10 parts.
- aqueous Emulsion An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300)
- An aqueous emulsion (E-41) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 1600 parts: 41 parts.
- aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300)
- An aqueous emulsion (E-42) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 100 parts: 15 parts.
- aqueous Emulsion An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300)
- An aqueous emulsion (E-43) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 200 parts: 20 parts.
- aqueous emulsion (E-44) was obtained by blending a polyurethane emulsion (SBU, Dispacol U-54) and isocyanate (SBU, Desmodur N3300) at a nonvolatile content ratio of 100 parts: 5 parts. It was.
- SBU polyurethane emulsion
- SBU Desmodur N3300
- Aqueous emulsion (E-36), polyurethane emulsion (manufactured by SBU, Dispacol U-54), and isocyanate (manufactured by SBU, Desmodur N3300) are blended so that the nonvolatile content ratio is 100 parts: 100 parts: 5 parts.
- an aqueous emulsion (E-45) was obtained.
- Aqueous emulsion (E-36), polyurethane emulsion (manufactured by SBU, Dispacol U-54), and isocyanate (manufactured by SBU, Desmodur N3300) are blended so that the nonvolatile content ratio is 100 parts: 200 parts: 10 parts.
- an aqueous emulsion (E-46) was obtained.
- Copolymer P1 C 2 (ethylene) / EVA (ethylene / vinyl acetate copolymer) / MAH (maleic anhydride) copolymer (OREVAC T9314, manufactured by ARKEMA)
- Copolymer P2 C 2 / EVA / MAH copolymer (OREVAC T9318, manufactured by ARKEMA)
- Copolymer Q1 MAH modified-EVA (OREVAC G18211, manufactured by ARKEMA) Copolymer
- R2 EVA part saponification product (Mersen H6410M, manufactured by Tosoh Corporation)
- R3 EVA partly saponified product (Mersen H6820, manufactured by Tosoh Corporation)
- R4 EVA part saponification product (Mersen H6822X, manufactured by Tosoh Corporation)
- Test Examples 15 to 63 all of the water-based emulsions (E-15) to (E-35) are homogeneously dispersed by visual observation, and no aggregation, precipitation, phase separation or the like occurs during long-term storage. Showed good stability. Further, when the aqueous emulsions (E-36) to (E-63) were evaluated for stability for 5 days in the same manner as described above, no aggregation, precipitation, or phase separation was observed. State.
- Example A Evaluation 1 of Adhesiveness of Aqueous Adhesive to M-EVA>
- Table 5 shows Adecanol UH-420 (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each of the water-based emulsions (nonvolatile content ratio) obtained in the production examples of water-based emulsions.
- the stated amount was added, and the mixture was prepared with water so that the non-volatile content of the formulation was 40%, and stirred with a three-one motor to obtain an aqueous adhesive.
- the obtained water-based adhesive of Table 5 was applied to 100% cotton canvas using a glass rod (coating amount: weight after drying about 60 g / m 2 ), and then naturally dried for 20 minutes. It was put in a microwave oven (manufactured by panasonic, NE-EH212, frequency 2.455 GHz), and subjected to electromagnetic wave treatment at 750 W for 30 seconds.
- each water-based adhesive was bonded to a bar coater No. 75 (coil diameter: 75 ⁇ 25 ⁇ m) was applied to M-EVA (ethylene / vinyl acetate copolymer foam) (coating amount: weight after drying about 70 g / m 2 ), and obtained.
- M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 110 seconds.
- each aqueous adhesive was applied to each of cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 40 g / m 2 , M-EVA coating amount: weight after drying about 80 g / m 2 ),
- the obtained cotton canvas and M-EVA were put in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 30 seconds.
- the coated surfaces of cotton canvas and M-EVA water-based adhesive were bonded together and pressure-bonded.
- the cotton / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 110 seconds. Immediately removed from the microwave and crimped by hand.
- Example B Evaluation 2 of Adhesiveness of Aqueous Adhesive to M-EVA>
- Table 6 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant.
- the obtained water-based adhesive B2 was applied to 100% cotton canvas using a glass rod (application amount: weight after drying about 130 g / m 2 ) and air-dried for 20 minutes.
- the resulting canvas was microwaved (Microelectronics company make, 9KW microwave oven, frequency 2.45GHz) It put into electromagnetic waves for 30 seconds at 3000W. Also, water-based adhesive B1 was applied to bar coater No. 75 was used to coated on the M-EVA (coating amount: weight after drying about 30 g / m 2) was placed and the resulting M-EVA microwave was 110 seconds electromagnetic wave treatment at 3000W.
- water-based adhesive B2 was applied to each of cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 60 g / m 2 , M-EVA coating amount: weight after drying about 30 g / m 2 ),
- the obtained cotton canvas and M-EVA were placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 15 seconds. Subsequently, the coated surfaces of cotton canvas and M-EVA water-based adhesive were bonded together and pressure-bonded.
- the cotton / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 3900 W for 120 seconds. Immediately removed from the microwave and crimped by hand.
- the obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 6.
- Example C Evaluation 3 of Adhesiveness of Water-based Adhesive to M-EVA>
- Table 7 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each emulsion (nonvolatile content ratio) obtained in the production example of the aqueous emulsion. (Non-volatile content ratio, unit: parts by weight) and water so that the non-volatile content of the formulation is 40%, and the mixture is stirred with a three-one motor to produce water-based adhesive C1 and water-based adhesive C2.
- ADEKA Adecanol UH-756VF
- Nopco Wet 50 manufactured by San Nopco
- the obtained water-based adhesive C2 shown in Table 7 was applied to 100% cotton canvas using a glass rod (weight application amount after drying: about 130 g / m 2 ), and naturally dried for 20 minutes.
- the canvas was subjected to electromagnetic wave treatment in a microwave oven at 3000 W for 30 seconds.
- each water-based adhesive C1 shown in Table 7 was replaced with a bar coater No. 75 was applied to M-EVA (weight application amount after drying: about 30 g / m 2 ), and the obtained M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 5000 W for 170 seconds.
- a water-based adhesive C2 was applied to each of the obtained cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 70 g / m 2 , M-EVA coating amount: weight after drying about 30 g / m 2 ), These cotton canvases were placed in a hot air oven at 80 ° C. for about 15 minutes, and M-EVA was placed in a hot air oven at 80 ° C. for about 10 minutes, and the coated surfaces of the aqueous adhesive were bonded together while hot.
- the obtained cotton / adhesive layer / M-EVA laminate structure was again put into a hot air dryer, heat-treated at 80 ° C. for 10 minutes, taken out from the dryer, and then pressure-bonded by hand.
- the obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 7.
- Example D Evaluation 4 of adhesion of water-based adhesive to M-EVA>
- Adecanol UH-420 manufactured by ADEKA
- Nopco Wet 50 manufactured by San Nopco
- Table 8 nonvolatile content ratio, unit: parts by weight
- the obtained water-based adhesive D in Table 8 was applied to 100% cotton canvas using a glass rod (coating amount: weight about 130 g / m 2 after drying) and air-dried for 1 hour. Also, the same water-based adhesive D applied to cotton was applied to the bar coater No. 75 was applied to M-EVA (foamed ethylene / vinyl acetate copolymer) (weight applied amount after drying: about 30 g / m 2 ), and the obtained M-EVA was naturally dried for 1 hour.
- M-EVA fuoamed ethylene / vinyl acetate copolymer
- Example F Evaluation 5 of adhesion and heat resistance of water-based adhesive to M-EVA>
- terpene phenol as the adhesive resin 1 was added to the aqueous emulsions (E-36) to (E-38) (nonvolatile content ratio, unit: parts by weight) obtained in the production examples of the aqueous emulsion.
- An aqueous emulsion (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) and an aqueous urethane emulsion (Disco Pearl U-54, manufactured by SBU) as the adhesive resin 2 were blended so that the nonvolatile content ratio was 100: 100: 100.
- Adecanol UH-756VF (manufactured by ADEKA) was added as a thickener
- Nopco Wet 50 (manufactured by San Nopco) was added as a dispersant
- Desmodur N3300 (manufactured by SBU) was added as a crosslinking agent. After preparing with water so that the non-volatile content was 40%, the mixture was stirred with a three-one motor to obtain aqueous adhesives F1 to F10.
- the obtained water-based adhesive (F10) in Table 9-1 was applied to 100% cotton canvas using a glass rod (coating amount: weight after drying: about 130 g / m 2 ), and after natural drying for 20 minutes, The electromagnetic wave treatment was performed at 3000 W for 30 seconds.
- each of the water-based adhesives (F1) to (F9) was given a bar coater No. 75 was applied to M-EVA (ethylene / vinyl acetate copolymer foam) (coating amount: weight after drying: about 30 g / m 2 ), and the obtained M-EVA was heated at 3000 W for 110 seconds. Processed.
- the aqueous adhesive (F10) was applied to cotton canvas and M-EVA using a glass rod (cotton canvas coating amount: weight after drying: about 70 g / m 2, M-EVA coating amount: weight after drying: about 70 g / m m 2 ), and M-EVA was subjected to electromagnetic wave treatment at 3000 W for 15 seconds. Subsequently, the coated surfaces of the cotton canvas and the M-EVA aqueous adhesive were bonded to each other and subjected to electromagnetic wave treatment at 3900 W for 120 seconds. Then, it crimped
- Example H Evaluation 7 for Adhesion of Water-based Adhesive to M-EVA / Synthetic Leather> Table 10 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each emulsion (nonvolatile content ratio) obtained in the aqueous emulsion production example. (Non-volatile content ratio, unit: parts by weight), and prepared with water so that the non-volatile content of the formulation is 40%, and stirred with a three-one motor, water-based adhesive H1 and water-based adhesive H2 Obtained.
- the obtained water-based adhesive H-1 in Table 10 was applied to bar coater No. 75 was applied to M-EVA (weight application amount after drying: about 30 g / m 2 ), and the obtained M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 110 seconds.
- Aqueous adhesives H-1 and H-2 were applied to each of the obtained M-EVA and synthetic leather (the amount of H-2 applied to the synthetic leather: weight after drying: about 30 g / m 2 , applied to M-EVA) H-1 coating amount: weight after drying of about 30 g / m 2 ), the obtained synthetic leather and M-EVA were placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 15 seconds.
- a laminated structure having excellent adhesion can be produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
The objective of the present invention is to produce a laminate structure having superior adhesion. This method for producing a laminate structure that laminates a first base material, an adhesive layer, and a second base material in the given order contains: (a) a step for applying an aqueous adhesive to the surface of the first base material, and thermally drying the first base material to which the aqueous adhesive has been applied; (b) a step for applying an aqueous adhesive to the surface of the second base material, and thermally drying the second base material to which the aqueous adhesive has been applied; (c) a step for re-applying the aqueous adhesive to the thermally dried surface of the first base material and/or second base material, and thermally drying the obtained base material; (d) and a step for pasting together the surface of the thermally dried first base material to which the aqueous adhesive has been applied and the surface of the thermally dried second base material to which the aqueous adhesive has been applied. At least one instance of thermal drying in steps (a) to (c) is an electromagnetic wave processing.
Description
本発明は、積層構造の製造方法に関する。
The present invention relates to a method for manufacturing a laminated structure.
非特許文献1には、基材と基材とを水性接着剤により接着して、強固に接着した積層構造を得る方法が記載されている。
また、基材と基材とを水性接着剤により接着して、強固に接着した積層構造を得る方法について種々の検討がなされている。 Non-Patent Document 1 describes a method of obtaining a laminated structure in which a base material and a base material are bonded to each other with a water-based adhesive so as to be firmly bonded.
Various studies have been made on a method for obtaining a laminated structure in which a base material and a base material are bonded to each other with a water-based adhesive and are firmly bonded.
また、基材と基材とを水性接着剤により接着して、強固に接着した積層構造を得る方法について種々の検討がなされている。 Non-Patent Document 1 describes a method of obtaining a laminated structure in which a base material and a base material are bonded to each other with a water-based adhesive so as to be firmly bonded.
Various studies have been made on a method for obtaining a laminated structure in which a base material and a base material are bonded to each other with a water-based adhesive and are firmly bonded.
基材と基材とを水性接着剤により接着させる場合において、必ずしも満足できる接着性を得ることができない場合があった。
In the case where the base material and the base material are bonded with a water-based adhesive, there are cases where satisfactory adhesiveness cannot always be obtained.
本発明は、以下の発明を含む。
[1]第1の基材、接着層及び第2の基材がこの順に積層された積層構造の製造方法であって、
(a)第1の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第1の基材を熱乾燥する工程、
(b)第2の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第2の基材を熱乾燥する工程、
(c)前記第1の基材及び第2の基材の少なくともいずれか一方の熱乾燥された面に、再度水性接着剤を塗布し、得られた基材を熱乾燥する工程、
(d)前記熱乾燥された第1の基材の水性接着剤が塗布された面及び前記熱乾燥された第2の基材の水性接着剤が塗布された面を貼り合せる工程を含み、
前記(a)~(c)における熱乾燥の少なくとも1回が電磁波処理である積層構造の製造方法。
[2]前記(a)又は(b)における熱乾燥が電磁波処理である[1]に記載の積層構造の製造方法。
[3](a’)第1の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第1の基材を電磁波処理する工程、
(b’)第2の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第2の基材を電磁波処理する工程、
(c’)前記第1の基材及び第2の基材の少なくともいずれか一方の電磁波処理された面に、再度水性接着剤を塗布し、得られた基材を電磁波処理する工程、
(d’)電磁波処理された第1の基材の水性接着剤が塗布された面及び電磁波処理された第2の基材の水性接着剤が塗布された面を貼り合せる工程を含む[1]に記載の積層構造の製造方法。
[4]前記電磁波処理を、2.45±0.02GHzの周波数帯での電磁波によって行なう[1]~[3]のいずれか1つに記載の積層構造の製造方法。
[5]前記第1の基材及び前記第2の基材を貼り合せて得られた積層構造をさらに電磁波処理する[1]~[4]のいずれか1つに記載の積層構造の製造方法。
[6]貼り合せ工程を、熱、圧力又はその双方を負荷しながら行なう[1]~[5]のいずれか1つに記載の積層構造の製造方法。
[7](i-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-4)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(ii-1)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-3)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(iii-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(iii-2)第1の基材(第1回目・電磁波処)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)及び
(iii-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)からなる群から選択される1つの処理を行う[1]~[6]のいずれか1つに記載の積層構造の製造方法。
[8]水性接着剤が、炭素数2~20のα-オレフィン由来の構造単位を1種以上有する重合体を含む熱可塑性樹脂(B)と、式(I)で表される界面活性剤(A)とを含む[1]~[7]のいずれか1つに記載の積層構造の製造方法。
(式中、Xは水素原子又は-SO3M(Mは水素原子、NH4又はアルカリ金属)を示す。nは1~3の整数を表す。mは1~100の整数を表す。)
[9]水性接着剤が、下記(A)、(B)及び(C)を含む[1]~[7]のいずれか1つに記載の積層構造の製造方法。
(A)2種類以上の下記式(I)で表される界面活性剤
(B)熱可塑性樹脂
(C)水
[10]前記界面活性剤が、Xが水素原子である界面活性剤と、Xが-SO3Mである界面活性剤との2種類以上を含むか、Xが水素原子である界面活性剤と、Xが-SO3NH4である界面活性剤との2種類以上を含む[8]又は[9]に記載の積層構造の製造方法。
[11]前記熱可塑性樹脂が、
(1)炭素数2~20のα-オレフィン由来の構造単位を1種類以上有する重合体、
(2)炭素数2~20のα-オレフィン由来の構造単位と、炭素数2~20のα-オレフィンと異なる炭素数2~20のα-オレフィン、α、β-不飽和カルボン酸エステル、α、β-不飽和カルボン酸無水物、酢酸ビニルよりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(3)エチレン由来の構造単位と、炭素数3~20のα-オレフィン、α、β-不飽和カルボン酸エステル及びα、β-不飽和カルボン酸無水物、酢酸ビニルよりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(4)エチレン由来の構造単位と、α、β-不飽和カルボン酸エステル及びα、β-不飽和カルボン酸よりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(5)エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-プロピレン-1-ブテン共重合体等のα-オレフィン系共重合体又はその変性物;あるいはこれらの2種以上の混合物、
(6)エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-プロピレン-1-ブテン共重合体等のα-オレフィン系共重合体又はその無水マレイン酸変性物;あるいはこれらの2種以上の混合物、
(7)α-オレフィンと酢酸ビニルとの共重合体又はその変性物;あるいはこれらの2種以上の混合物、
(8)α-オレフィンと(メタ)アクリレートとα,β-カルボン酸との共重合体又はその変性物;あるいはこれらの2種以上の混合物、及び
(9)α-オレフィンと(メタ)アクリレートと無水マレイン酸との共重合体又はその変性物;あるいはこれらの2種以上の混合物
からなる群から選択される少なくとも1種である[8]~[10]のいずれか1つに記載の積層構造の製造方法。
[12]熱可塑性樹脂が、60~110℃の融点を有する[8]~[11]いずれか1つに記載の積層構造の製造方法。
[13]水性接着剤が、さらに、ポリウレタン樹脂又は非水溶性のポリウレタン樹脂を含有する[8]~[12]のいずれか1つに記載の積層構造の製造方法。
[14]水性接着剤が、さらに、テルペン重合体、テルペンフェノール、β-ピネン重合体、芳香族変性テルペン重合体、α-ピネン重合体、テルペン系水素添加樹脂からなる群から選択されるテルペン系樹脂を含有する[8]~[13]のいずれか1つに記載の積層構造の製造方法。
[15]水性接着剤が、さらに、ポリウレタン樹脂と、テルペン重合体、テルペンフェノール、β-ピネン重合体、芳香族変性テルペン重合体、α-ピネン重合体、テルペン系水素添加樹脂からなる群から選択されるテルペン系樹脂とを含有する[8]~[12]のいずれか1つに記載の積層構造の製造方法。
[16]水性接着剤が、さらに、ポリウレタン樹脂とテルペンフェノールと、又は非水溶性のポリウレタン樹脂とテルペンフェノールとを含有する[8]~[13]のいずれか1つに記載の積層構造の製造方法。
[17]水性接着剤が、さらに、イソシアネートを含有する[8]~[16]のいずれか1つに記載の積層構造の製造方法。
[18]水性接着剤が、さらに、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、キシレンジイソシアネート(XDI)及びこれらのオリゴマー又はポリマーからなる群から選択されるイソシアネートを含有する[8]~[16]のいずれか1つに記載の積層構造の製造方法。
[19]水性接着剤が、さらに、塩基性化合物を含有する[8]~[18]のいずれか1つに記載の積層構造の製造方法。
[20]前記界面活性剤が、水性エマルションを構成する全樹脂100重量部に対して、0.1~50重量部、0.1~20重量部又は0.1~10重量部含む[8]~[19]のいずれか1つに記載の積層構造の製造方法。
[21]前記界面活性剤は、式(A)で表される界面活性剤と式(B)で表される界面活性剤とを、質量比で、1~99:99~1、5~95:95~5、10~90:90~10、30:70~90:10、40:60~90:10又は50:50~90:10で含む[8]~[20]のいずれか1つに記載の積層構造の製造方法。
[22]熱可塑性樹脂の重合の後、該樹脂が水性媒体中に分散させられた後乳化法、強制乳化法、自己乳化法又は転相乳化法によって得られた水性接着剤を用いる[8]~[21]のいずれか1つに記載の積層構造の製造方法。 The present invention includes the following inventions.
[1] A method for producing a laminated structure in which a first substrate, an adhesive layer, and a second substrate are laminated in this order,
(A) applying a water-based adhesive to the surface of the first base material, and thermally drying the first base material coated with the water-based adhesive;
(B) applying a water-based adhesive to the surface of the second base material, and thermally drying the second base material coated with the water-based adhesive;
(C) a step of applying an aqueous adhesive again to the heat-dried surface of at least one of the first base material and the second base material, and thermally drying the obtained base material;
(D) including a step of bonding the surface of the first substrate dried with the aqueous adhesive and the surface of the second dried substrate coated with the aqueous adhesive;
A method for producing a laminated structure in which at least one heat drying in the above (a) to (c) is an electromagnetic wave treatment.
[2] The method for producing a laminated structure according to [1], wherein the heat drying in (a) or (b) is electromagnetic wave treatment.
[3] (a ′) applying a water-based adhesive to the surface of the first base material, and subjecting the first base material coated with the water-based adhesive to electromagnetic wave treatment,
(B ′) applying a water-based adhesive to the surface of the second base material and subjecting the second base material coated with the water-based adhesive to electromagnetic wave treatment;
(C ′) a step of applying an aqueous adhesive again to the surface subjected to electromagnetic wave treatment of at least one of the first base material and the second base material, and subjecting the obtained base material to electromagnetic wave treatment;
(D ′) including a step of bonding the surface of the first base material subjected to the electromagnetic wave treatment to which the aqueous adhesive is applied and the surface of the second base material subjected to the electromagnetic wave treatment to which the aqueous adhesive is applied [1]. The manufacturing method of laminated structure as described in any one of.
[4] The method for manufacturing a laminated structure according to any one of [1] to [3], wherein the electromagnetic wave treatment is performed with an electromagnetic wave in a frequency band of 2.45 ± 0.02 GHz.
[5] The method for producing a laminated structure according to any one of [1] to [4], wherein the laminated structure obtained by bonding the first base material and the second base material is further subjected to electromagnetic wave treatment .
[6] The method for manufacturing a laminated structure according to any one of [1] to [5], wherein the bonding step is performed while applying heat, pressure, or both.
[7] (i-1) a first base material (thermal drying other than the first time / electromagnetic wave treatment), a second base material (thermal drying other than the first time / electromagnetic wave treatment), the first base material or Second base material (second time / electromagnetic wave treatment),
(i-2) 1st base material (1st time and electromagnetic wave treatment), 2nd base material (thermal drying other than 1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-3) 1st base material (heat drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-4) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) processing),
(ii-1) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second, heat drying other than electromagnetic treatment)
(ii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) Heat drying other than processing),
(ii-3) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second time, electromagnetic wave treatment),
(iii-1) 1st base material (thermal drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second, heat drying other than electromagnetic treatment)
(iii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) (Iii-3) the first substrate (thermal drying other than the first electromagnetic wave treatment), the second substrate (first electromagnetic wave treatment), the first substrate or The method for producing a laminated structure according to any one of [1] to [6], wherein one treatment selected from the group consisting of second substrates (second time / electromagnetic wave treatment) is performed.
[8] A thermoplastic adhesive (B) in which the water-based adhesive contains a polymer having at least one structural unit derived from an α-olefin having 2 to 20 carbon atoms, and a surfactant represented by the formula (I) ( A) The manufacturing method of the laminated structure according to any one of [1] to [7].
(In the formula, X .m is hydrogen atom or -SO 3 M (M represents an integer of .n 1-3 represents a hydrogen atom, NH 4, or an alkali metal) is an integer of 1 to 100.)
[9] The method for producing a laminated structure according to any one of [1] to [7], wherein the aqueous adhesive includes the following (A), (B), and (C).
(A) Two or more kinds of surfactants represented by the following formula (I) (B) Thermoplastic resin (C) Water [10] The surfactant is a surfactant in which X is a hydrogen atom, and X Including two or more types of surfactants in which —SO 3 M is present, or including two or more types of surfactants in which X is a hydrogen atom and surfactants in which X is —SO 3 NH 4 [ The manufacturing method of the laminated structure as described in 8] or [9].
[11] The thermoplastic resin is
(1) a polymer having at least one structural unit derived from an α-olefin having 2 to 20 carbon atoms,
(2) a structural unit derived from an α-olefin having 2 to 20 carbon atoms, an α-olefin having 2 to 20 carbon atoms different from the α-olefin having 2 to 20 carbon atoms, an α, β-unsaturated carboxylic acid ester, α A copolymer having a structural unit derived from one or more monomers selected from the group consisting of β-unsaturated carboxylic acid anhydride and vinyl acetate,
(3) 1 selected from the group consisting of a structural unit derived from ethylene, an α-olefin having 3 to 20 carbon atoms, an α, β-unsaturated carboxylic acid ester, an α, β-unsaturated carboxylic acid anhydride, and vinyl acetate. A copolymer having a structural unit derived from a monomer of at least one species,
(4) Copolymer having a structural unit derived from ethylene and a structural unit derived from one or more monomers selected from the group consisting of α, β-unsaturated carboxylic acid esters and α, β-unsaturated carboxylic acids Coalescence,
(5) Ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer, ethylene-propylene- An α-olefin copolymer such as 1-butene copolymer or a modified product thereof; or a mixture of two or more of these,
(6) Ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer, ethylene-propylene- An α-olefin copolymer such as 1-butene copolymer or a maleic anhydride modified product thereof; or a mixture of two or more of these,
(7) a copolymer of α-olefin and vinyl acetate or a modified product thereof; or a mixture of two or more of these,
(8) a copolymer of α-olefin, (meth) acrylate and α, β-carboxylic acid or a modified product thereof; or a mixture of two or more thereof; and (9) α-olefin and (meth) acrylate A laminate structure according to any one of [8] to [10], which is a copolymer with maleic anhydride or a modified product thereof; or at least one selected from the group consisting of a mixture of two or more thereof Manufacturing method.
[12] The method for producing a laminated structure according to any one of [8] to [11], wherein the thermoplastic resin has a melting point of 60 to 110 ° C.
[13] The method for producing a laminated structure according to any one of [8] to [12], wherein the aqueous adhesive further contains a polyurethane resin or a water-insoluble polyurethane resin.
[14] A terpene system wherein the aqueous adhesive is further selected from the group consisting of terpene polymers, terpene phenols, β-pinene polymers, aromatic modified terpene polymers, α-pinene polymers, and terpene hydrogenated resins. The method for producing a laminated structure according to any one of [8] to [13], which contains a resin.
[15] The water-based adhesive is further selected from the group consisting of polyurethane resin, terpene polymer, terpene phenol, β-pinene polymer, aromatic modified terpene polymer, α-pinene polymer, and terpene hydrogenated resin. The method for producing a laminated structure according to any one of [8] to [12], which contains a terpene resin.
[16] The production of the laminated structure according to any one of [8] to [13], wherein the aqueous adhesive further contains a polyurethane resin and terpene phenol, or a water-insoluble polyurethane resin and terpene phenol. Method.
[17] The method for producing a laminated structure according to any one of [8] to [16], wherein the aqueous adhesive further contains an isocyanate.
[18] The aqueous adhesive further comprises an isocyanate selected from the group consisting of diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI) and oligomers or polymers thereof. The method for producing a laminated structure according to any one of [8] to [16].
[19] The method for producing a laminated structure according to any one of [8] to [18], wherein the aqueous adhesive further contains a basic compound.
[20] The surfactant contains 0.1 to 50 parts by weight, 0.1 to 20 parts by weight, or 0.1 to 10 parts by weight with respect to 100 parts by weight of the total resin constituting the aqueous emulsion. [8] The method for producing a laminated structure according to any one of [19] to [19].
[21] The surfactant is a surfactant represented by the formula (A) and a surfactant represented by the formula (B) in a mass ratio of 1 to 99:99 to 1, 5 to 95. : 95-5, 10-90: 90-10, 30: 70-90: 10, 40: 60-90: 10 or 50: 50-90: 10, any one of [8]-[20] The manufacturing method of laminated structure as described in any one of.
[22] After polymerization of the thermoplastic resin, after the resin is dispersed in an aqueous medium, an aqueous adhesive obtained by an emulsification method, a forced emulsification method, a self-emulsification method or a phase inversion emulsification method is used [8]. A method for producing a laminated structure according to any one of [21] to [21].
[1]第1の基材、接着層及び第2の基材がこの順に積層された積層構造の製造方法であって、
(a)第1の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第1の基材を熱乾燥する工程、
(b)第2の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第2の基材を熱乾燥する工程、
(c)前記第1の基材及び第2の基材の少なくともいずれか一方の熱乾燥された面に、再度水性接着剤を塗布し、得られた基材を熱乾燥する工程、
(d)前記熱乾燥された第1の基材の水性接着剤が塗布された面及び前記熱乾燥された第2の基材の水性接着剤が塗布された面を貼り合せる工程を含み、
前記(a)~(c)における熱乾燥の少なくとも1回が電磁波処理である積層構造の製造方法。
[2]前記(a)又は(b)における熱乾燥が電磁波処理である[1]に記載の積層構造の製造方法。
[3](a’)第1の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第1の基材を電磁波処理する工程、
(b’)第2の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第2の基材を電磁波処理する工程、
(c’)前記第1の基材及び第2の基材の少なくともいずれか一方の電磁波処理された面に、再度水性接着剤を塗布し、得られた基材を電磁波処理する工程、
(d’)電磁波処理された第1の基材の水性接着剤が塗布された面及び電磁波処理された第2の基材の水性接着剤が塗布された面を貼り合せる工程を含む[1]に記載の積層構造の製造方法。
[4]前記電磁波処理を、2.45±0.02GHzの周波数帯での電磁波によって行なう[1]~[3]のいずれか1つに記載の積層構造の製造方法。
[5]前記第1の基材及び前記第2の基材を貼り合せて得られた積層構造をさらに電磁波処理する[1]~[4]のいずれか1つに記載の積層構造の製造方法。
[6]貼り合せ工程を、熱、圧力又はその双方を負荷しながら行なう[1]~[5]のいずれか1つに記載の積層構造の製造方法。
[7](i-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-4)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(ii-1)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-3)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(iii-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(iii-2)第1の基材(第1回目・電磁波処)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)及び
(iii-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)からなる群から選択される1つの処理を行う[1]~[6]のいずれか1つに記載の積層構造の製造方法。
[8]水性接着剤が、炭素数2~20のα-オレフィン由来の構造単位を1種以上有する重合体を含む熱可塑性樹脂(B)と、式(I)で表される界面活性剤(A)とを含む[1]~[7]のいずれか1つに記載の積層構造の製造方法。
(式中、Xは水素原子又は-SO3M(Mは水素原子、NH4又はアルカリ金属)を示す。nは1~3の整数を表す。mは1~100の整数を表す。)
[9]水性接着剤が、下記(A)、(B)及び(C)を含む[1]~[7]のいずれか1つに記載の積層構造の製造方法。
(A)2種類以上の下記式(I)で表される界面活性剤
(B)熱可塑性樹脂
(C)水
[10]前記界面活性剤が、Xが水素原子である界面活性剤と、Xが-SO3Mである界面活性剤との2種類以上を含むか、Xが水素原子である界面活性剤と、Xが-SO3NH4である界面活性剤との2種類以上を含む[8]又は[9]に記載の積層構造の製造方法。
[11]前記熱可塑性樹脂が、
(1)炭素数2~20のα-オレフィン由来の構造単位を1種類以上有する重合体、
(2)炭素数2~20のα-オレフィン由来の構造単位と、炭素数2~20のα-オレフィンと異なる炭素数2~20のα-オレフィン、α、β-不飽和カルボン酸エステル、α、β-不飽和カルボン酸無水物、酢酸ビニルよりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(3)エチレン由来の構造単位と、炭素数3~20のα-オレフィン、α、β-不飽和カルボン酸エステル及びα、β-不飽和カルボン酸無水物、酢酸ビニルよりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(4)エチレン由来の構造単位と、α、β-不飽和カルボン酸エステル及びα、β-不飽和カルボン酸よりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(5)エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-プロピレン-1-ブテン共重合体等のα-オレフィン系共重合体又はその変性物;あるいはこれらの2種以上の混合物、
(6)エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-プロピレン-1-ブテン共重合体等のα-オレフィン系共重合体又はその無水マレイン酸変性物;あるいはこれらの2種以上の混合物、
(7)α-オレフィンと酢酸ビニルとの共重合体又はその変性物;あるいはこれらの2種以上の混合物、
(8)α-オレフィンと(メタ)アクリレートとα,β-カルボン酸との共重合体又はその変性物;あるいはこれらの2種以上の混合物、及び
(9)α-オレフィンと(メタ)アクリレートと無水マレイン酸との共重合体又はその変性物;あるいはこれらの2種以上の混合物
からなる群から選択される少なくとも1種である[8]~[10]のいずれか1つに記載の積層構造の製造方法。
[12]熱可塑性樹脂が、60~110℃の融点を有する[8]~[11]いずれか1つに記載の積層構造の製造方法。
[13]水性接着剤が、さらに、ポリウレタン樹脂又は非水溶性のポリウレタン樹脂を含有する[8]~[12]のいずれか1つに記載の積層構造の製造方法。
[14]水性接着剤が、さらに、テルペン重合体、テルペンフェノール、β-ピネン重合体、芳香族変性テルペン重合体、α-ピネン重合体、テルペン系水素添加樹脂からなる群から選択されるテルペン系樹脂を含有する[8]~[13]のいずれか1つに記載の積層構造の製造方法。
[15]水性接着剤が、さらに、ポリウレタン樹脂と、テルペン重合体、テルペンフェノール、β-ピネン重合体、芳香族変性テルペン重合体、α-ピネン重合体、テルペン系水素添加樹脂からなる群から選択されるテルペン系樹脂とを含有する[8]~[12]のいずれか1つに記載の積層構造の製造方法。
[16]水性接着剤が、さらに、ポリウレタン樹脂とテルペンフェノールと、又は非水溶性のポリウレタン樹脂とテルペンフェノールとを含有する[8]~[13]のいずれか1つに記載の積層構造の製造方法。
[17]水性接着剤が、さらに、イソシアネートを含有する[8]~[16]のいずれか1つに記載の積層構造の製造方法。
[18]水性接着剤が、さらに、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、キシレンジイソシアネート(XDI)及びこれらのオリゴマー又はポリマーからなる群から選択されるイソシアネートを含有する[8]~[16]のいずれか1つに記載の積層構造の製造方法。
[19]水性接着剤が、さらに、塩基性化合物を含有する[8]~[18]のいずれか1つに記載の積層構造の製造方法。
[20]前記界面活性剤が、水性エマルションを構成する全樹脂100重量部に対して、0.1~50重量部、0.1~20重量部又は0.1~10重量部含む[8]~[19]のいずれか1つに記載の積層構造の製造方法。
[21]前記界面活性剤は、式(A)で表される界面活性剤と式(B)で表される界面活性剤とを、質量比で、1~99:99~1、5~95:95~5、10~90:90~10、30:70~90:10、40:60~90:10又は50:50~90:10で含む[8]~[20]のいずれか1つに記載の積層構造の製造方法。
[22]熱可塑性樹脂の重合の後、該樹脂が水性媒体中に分散させられた後乳化法、強制乳化法、自己乳化法又は転相乳化法によって得られた水性接着剤を用いる[8]~[21]のいずれか1つに記載の積層構造の製造方法。 The present invention includes the following inventions.
[1] A method for producing a laminated structure in which a first substrate, an adhesive layer, and a second substrate are laminated in this order,
(A) applying a water-based adhesive to the surface of the first base material, and thermally drying the first base material coated with the water-based adhesive;
(B) applying a water-based adhesive to the surface of the second base material, and thermally drying the second base material coated with the water-based adhesive;
(C) a step of applying an aqueous adhesive again to the heat-dried surface of at least one of the first base material and the second base material, and thermally drying the obtained base material;
(D) including a step of bonding the surface of the first substrate dried with the aqueous adhesive and the surface of the second dried substrate coated with the aqueous adhesive;
A method for producing a laminated structure in which at least one heat drying in the above (a) to (c) is an electromagnetic wave treatment.
[2] The method for producing a laminated structure according to [1], wherein the heat drying in (a) or (b) is electromagnetic wave treatment.
[3] (a ′) applying a water-based adhesive to the surface of the first base material, and subjecting the first base material coated with the water-based adhesive to electromagnetic wave treatment,
(B ′) applying a water-based adhesive to the surface of the second base material and subjecting the second base material coated with the water-based adhesive to electromagnetic wave treatment;
(C ′) a step of applying an aqueous adhesive again to the surface subjected to electromagnetic wave treatment of at least one of the first base material and the second base material, and subjecting the obtained base material to electromagnetic wave treatment;
(D ′) including a step of bonding the surface of the first base material subjected to the electromagnetic wave treatment to which the aqueous adhesive is applied and the surface of the second base material subjected to the electromagnetic wave treatment to which the aqueous adhesive is applied [1]. The manufacturing method of laminated structure as described in any one of.
[4] The method for manufacturing a laminated structure according to any one of [1] to [3], wherein the electromagnetic wave treatment is performed with an electromagnetic wave in a frequency band of 2.45 ± 0.02 GHz.
[5] The method for producing a laminated structure according to any one of [1] to [4], wherein the laminated structure obtained by bonding the first base material and the second base material is further subjected to electromagnetic wave treatment .
[6] The method for manufacturing a laminated structure according to any one of [1] to [5], wherein the bonding step is performed while applying heat, pressure, or both.
[7] (i-1) a first base material (thermal drying other than the first time / electromagnetic wave treatment), a second base material (thermal drying other than the first time / electromagnetic wave treatment), the first base material or Second base material (second time / electromagnetic wave treatment),
(i-2) 1st base material (1st time and electromagnetic wave treatment), 2nd base material (thermal drying other than 1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-3) 1st base material (heat drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-4) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) processing),
(ii-1) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second, heat drying other than electromagnetic treatment)
(ii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) Heat drying other than processing),
(ii-3) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second time, electromagnetic wave treatment),
(iii-1) 1st base material (thermal drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second, heat drying other than electromagnetic treatment)
(iii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) (Iii-3) the first substrate (thermal drying other than the first electromagnetic wave treatment), the second substrate (first electromagnetic wave treatment), the first substrate or The method for producing a laminated structure according to any one of [1] to [6], wherein one treatment selected from the group consisting of second substrates (second time / electromagnetic wave treatment) is performed.
[8] A thermoplastic adhesive (B) in which the water-based adhesive contains a polymer having at least one structural unit derived from an α-olefin having 2 to 20 carbon atoms, and a surfactant represented by the formula (I) ( A) The manufacturing method of the laminated structure according to any one of [1] to [7].
(In the formula, X .m is hydrogen atom or -SO 3 M (M represents an integer of .n 1-3 represents a hydrogen atom, NH 4, or an alkali metal) is an integer of 1 to 100.)
[9] The method for producing a laminated structure according to any one of [1] to [7], wherein the aqueous adhesive includes the following (A), (B), and (C).
(A) Two or more kinds of surfactants represented by the following formula (I) (B) Thermoplastic resin (C) Water [10] The surfactant is a surfactant in which X is a hydrogen atom, and X Including two or more types of surfactants in which —SO 3 M is present, or including two or more types of surfactants in which X is a hydrogen atom and surfactants in which X is —SO 3 NH 4 [ The manufacturing method of the laminated structure as described in 8] or [9].
[11] The thermoplastic resin is
(1) a polymer having at least one structural unit derived from an α-olefin having 2 to 20 carbon atoms,
(2) a structural unit derived from an α-olefin having 2 to 20 carbon atoms, an α-olefin having 2 to 20 carbon atoms different from the α-olefin having 2 to 20 carbon atoms, an α, β-unsaturated carboxylic acid ester, α A copolymer having a structural unit derived from one or more monomers selected from the group consisting of β-unsaturated carboxylic acid anhydride and vinyl acetate,
(3) 1 selected from the group consisting of a structural unit derived from ethylene, an α-olefin having 3 to 20 carbon atoms, an α, β-unsaturated carboxylic acid ester, an α, β-unsaturated carboxylic acid anhydride, and vinyl acetate. A copolymer having a structural unit derived from a monomer of at least one species,
(4) Copolymer having a structural unit derived from ethylene and a structural unit derived from one or more monomers selected from the group consisting of α, β-unsaturated carboxylic acid esters and α, β-unsaturated carboxylic acids Coalescence,
(5) Ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer, ethylene-propylene- An α-olefin copolymer such as 1-butene copolymer or a modified product thereof; or a mixture of two or more of these,
(6) Ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer, ethylene-propylene- An α-olefin copolymer such as 1-butene copolymer or a maleic anhydride modified product thereof; or a mixture of two or more of these,
(7) a copolymer of α-olefin and vinyl acetate or a modified product thereof; or a mixture of two or more of these,
(8) a copolymer of α-olefin, (meth) acrylate and α, β-carboxylic acid or a modified product thereof; or a mixture of two or more thereof; and (9) α-olefin and (meth) acrylate A laminate structure according to any one of [8] to [10], which is a copolymer with maleic anhydride or a modified product thereof; or at least one selected from the group consisting of a mixture of two or more thereof Manufacturing method.
[12] The method for producing a laminated structure according to any one of [8] to [11], wherein the thermoplastic resin has a melting point of 60 to 110 ° C.
[13] The method for producing a laminated structure according to any one of [8] to [12], wherein the aqueous adhesive further contains a polyurethane resin or a water-insoluble polyurethane resin.
[14] A terpene system wherein the aqueous adhesive is further selected from the group consisting of terpene polymers, terpene phenols, β-pinene polymers, aromatic modified terpene polymers, α-pinene polymers, and terpene hydrogenated resins. The method for producing a laminated structure according to any one of [8] to [13], which contains a resin.
[15] The water-based adhesive is further selected from the group consisting of polyurethane resin, terpene polymer, terpene phenol, β-pinene polymer, aromatic modified terpene polymer, α-pinene polymer, and terpene hydrogenated resin. The method for producing a laminated structure according to any one of [8] to [12], which contains a terpene resin.
[16] The production of the laminated structure according to any one of [8] to [13], wherein the aqueous adhesive further contains a polyurethane resin and terpene phenol, or a water-insoluble polyurethane resin and terpene phenol. Method.
[17] The method for producing a laminated structure according to any one of [8] to [16], wherein the aqueous adhesive further contains an isocyanate.
[18] The aqueous adhesive further comprises an isocyanate selected from the group consisting of diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI) and oligomers or polymers thereof. The method for producing a laminated structure according to any one of [8] to [16].
[19] The method for producing a laminated structure according to any one of [8] to [18], wherein the aqueous adhesive further contains a basic compound.
[20] The surfactant contains 0.1 to 50 parts by weight, 0.1 to 20 parts by weight, or 0.1 to 10 parts by weight with respect to 100 parts by weight of the total resin constituting the aqueous emulsion. [8] The method for producing a laminated structure according to any one of [19] to [19].
[21] The surfactant is a surfactant represented by the formula (A) and a surfactant represented by the formula (B) in a mass ratio of 1 to 99:99 to 1, 5 to 95. : 95-5, 10-90: 90-10, 30: 70-90: 10, 40: 60-90: 10 or 50: 50-90: 10, any one of [8]-[20] The manufacturing method of laminated structure as described in any one of.
[22] After polymerization of the thermoplastic resin, after the resin is dispersed in an aqueous medium, an aqueous adhesive obtained by an emulsification method, a forced emulsification method, a self-emulsification method or a phase inversion emulsification method is used [8]. A method for producing a laminated structure according to any one of [21] to [21].
本発明によれば、強固に基材と基材とを接着することができる積層構造の製造方法を提供することができる。
According to the present invention, it is possible to provide a method for manufacturing a laminated structure capable of firmly bonding a base material to a base material.
本発明の積層構造の製造方法は、第1の基材、接着層及び第2の基材がこの順に積層された積層構造を製造するための方法であって、
(a)第1の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第1の基材を熱乾燥する工程、
(b)第2の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第2の基材を熱乾燥する工程、
(c)前記第1の基材及び第2の基材の少なくともいずれか一方の熱乾燥された面に、再度水性接着剤を塗布し、得られた基材を熱乾燥する工程、
(d)前記熱乾燥された第1の基材の水性接着剤が塗布された面及び前記熱乾燥された第2の基材の水性接着剤が塗布された面を貼り合せる工程を含む。そして、これらの工程(a)~(c)における熱乾燥の少なくとも1回が電磁波処理である。 The method for producing a laminated structure of the present invention is a method for producing a laminated structure in which a first substrate, an adhesive layer, and a second substrate are laminated in this order,
(A) applying a water-based adhesive to the surface of the first base material, and thermally drying the first base material coated with the water-based adhesive;
(B) applying a water-based adhesive to the surface of the second base material, and thermally drying the second base material coated with the water-based adhesive;
(C) a step of applying an aqueous adhesive again to the heat-dried surface of at least one of the first base material and the second base material, and thermally drying the obtained base material;
(D) The process of bonding the surface by which the water-based adhesive of the said 1st base material heat-dried and the surface to which the water-based adhesive of the said 2nd base material apply | coated was bonded. Then, at least one heat drying in these steps (a) to (c) is an electromagnetic wave treatment.
(a)第1の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第1の基材を熱乾燥する工程、
(b)第2の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第2の基材を熱乾燥する工程、
(c)前記第1の基材及び第2の基材の少なくともいずれか一方の熱乾燥された面に、再度水性接着剤を塗布し、得られた基材を熱乾燥する工程、
(d)前記熱乾燥された第1の基材の水性接着剤が塗布された面及び前記熱乾燥された第2の基材の水性接着剤が塗布された面を貼り合せる工程を含む。そして、これらの工程(a)~(c)における熱乾燥の少なくとも1回が電磁波処理である。 The method for producing a laminated structure of the present invention is a method for producing a laminated structure in which a first substrate, an adhesive layer, and a second substrate are laminated in this order,
(A) applying a water-based adhesive to the surface of the first base material, and thermally drying the first base material coated with the water-based adhesive;
(B) applying a water-based adhesive to the surface of the second base material, and thermally drying the second base material coated with the water-based adhesive;
(C) a step of applying an aqueous adhesive again to the heat-dried surface of at least one of the first base material and the second base material, and thermally drying the obtained base material;
(D) The process of bonding the surface by which the water-based adhesive of the said 1st base material heat-dried and the surface to which the water-based adhesive of the said 2nd base material apply | coated was bonded. Then, at least one heat drying in these steps (a) to (c) is an electromagnetic wave treatment.
〈第1の基材及び第2の基材〉
第1の基材及び第2の基材としては、例えば、フィルム及びシート、構造材料、建築材料、自動車部品、電気・電子製品、包装材料、衣料、靴などが挙げられる。
具体的な材料としては、木材、合板、中密度繊維板(MDF)、パーティクルボード、ファイバーボード等の木質系材料;綿布、綿含有繊維、麻布、レーヨン等のセルロース系材料;ポリエチレン(エチレンに由来する構造単位を主成分とするポリオレフィン)、ポリプロピレン(プロピレンに由来する構造単位を主成分とするポリオレフィン)、ポリスチレン(スチレンに由来する構造単位を主成分とするポリオレフィン)等のポリオレフィン類、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、(メタ)アクリル樹脂ポリエステル、ポリエーテル、ポリ塩化ビニル、ポリウレタン、発泡ウレタン、エチレン・酢酸ビニル共重合体(EVA)、発泡EVA、ナイロン6、ナイロン66等のポリアミド系樹脂又はその発泡体等のプラスチック材料;ポリウレタン系、ポリアミド系及びポリアミノ酸系の合成皮革;ガラス、陶磁器等のセラミック材料;鉄、ステンレス、銅、アルミニウム等の金属材料等が挙げられる。第1の基材及び第2の基材は、複数の材料からなる複合材料であってもよい。また、タルク、シリカ、活性炭などの無機充填剤、炭素繊維等とプラスチック材料との混練成形品であってもよい。 <First base material and second base material>
Examples of the first base material and the second base material include films and sheets, structural materials, building materials, automobile parts, electrical / electronic products, packaging materials, clothing, shoes, and the like.
Specific materials include wood-based materials such as wood, plywood, medium density fiberboard (MDF), particleboard, and fiberboard; cellulosic materials such as cotton cloth, cotton-containing fibers, linen, and rayon; polyethylene (derived from ethylene) Polyolefins having a structural unit as a main component), polypropylene (polyolefin having a structural unit derived from propylene as a main component), polystyrene (polyolefin having a structural unit derived from styrene as a main component), polycarbonate, acrylonitrile -Butadiene-styrene copolymer (ABS resin), (meth) acrylic resin polyester, polyether, polyvinyl chloride, polyurethane, foamed urethane, ethylene / vinyl acetate copolymer (EVA), foamed EVA, nylon 6, nylon 66 Polyamide etc. Resin or plastic material of the foam, and the like; polyurethanes, polyamide and synthetic leather polyamino acid; glass, ceramic material, ceramic or the like; iron, stainless steel, copper, a metal material such as aluminum and the like. The first base material and the second base material may be a composite material composed of a plurality of materials. Further, an inorganic filler such as talc, silica and activated carbon, a kneaded molded product of carbon fiber or the like and a plastic material may be used.
第1の基材及び第2の基材としては、例えば、フィルム及びシート、構造材料、建築材料、自動車部品、電気・電子製品、包装材料、衣料、靴などが挙げられる。
具体的な材料としては、木材、合板、中密度繊維板(MDF)、パーティクルボード、ファイバーボード等の木質系材料;綿布、綿含有繊維、麻布、レーヨン等のセルロース系材料;ポリエチレン(エチレンに由来する構造単位を主成分とするポリオレフィン)、ポリプロピレン(プロピレンに由来する構造単位を主成分とするポリオレフィン)、ポリスチレン(スチレンに由来する構造単位を主成分とするポリオレフィン)等のポリオレフィン類、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、(メタ)アクリル樹脂ポリエステル、ポリエーテル、ポリ塩化ビニル、ポリウレタン、発泡ウレタン、エチレン・酢酸ビニル共重合体(EVA)、発泡EVA、ナイロン6、ナイロン66等のポリアミド系樹脂又はその発泡体等のプラスチック材料;ポリウレタン系、ポリアミド系及びポリアミノ酸系の合成皮革;ガラス、陶磁器等のセラミック材料;鉄、ステンレス、銅、アルミニウム等の金属材料等が挙げられる。第1の基材及び第2の基材は、複数の材料からなる複合材料であってもよい。また、タルク、シリカ、活性炭などの無機充填剤、炭素繊維等とプラスチック材料との混練成形品であってもよい。 <First base material and second base material>
Examples of the first base material and the second base material include films and sheets, structural materials, building materials, automobile parts, electrical / electronic products, packaging materials, clothing, shoes, and the like.
Specific materials include wood-based materials such as wood, plywood, medium density fiberboard (MDF), particleboard, and fiberboard; cellulosic materials such as cotton cloth, cotton-containing fibers, linen, and rayon; polyethylene (derived from ethylene) Polyolefins having a structural unit as a main component), polypropylene (polyolefin having a structural unit derived from propylene as a main component), polystyrene (polyolefin having a structural unit derived from styrene as a main component), polycarbonate, acrylonitrile -Butadiene-styrene copolymer (ABS resin), (meth) acrylic resin polyester, polyether, polyvinyl chloride, polyurethane, foamed urethane, ethylene / vinyl acetate copolymer (EVA), foamed EVA, nylon 6, nylon 66 Polyamide etc. Resin or plastic material of the foam, and the like; polyurethanes, polyamide and synthetic leather polyamino acid; glass, ceramic material, ceramic or the like; iron, stainless steel, copper, a metal material such as aluminum and the like. The first base material and the second base material may be a composite material composed of a plurality of materials. Further, an inorganic filler such as talc, silica and activated carbon, a kneaded molded product of carbon fiber or the like and a plastic material may be used.
ここで、ポリウレタンとは、ウレタン結合によって架橋された高分子であり、通常、アルコール(-OH)とイソシアネート(-NCO)との反応によって得られる。また発泡ウレタンとは、イソシアネートと、架橋剤として用いられる水との反応によって生じる二酸化炭素又はフレオンのような揮発性溶剤によって発泡されたポリウレタンである。自動車の内装用には、半硬質のポリウレタンが用いられ、塗料には硬質のポリウレタンが用いられる。
Here, polyurethane is a polymer crosslinked by a urethane bond, and is usually obtained by reaction of alcohol (—OH) and isocyanate (—NCO). The urethane foam is a polyurethane foamed with a volatile solvent such as carbon dioxide or freon produced by a reaction between isocyanate and water used as a crosslinking agent. Semi-rigid polyurethane is used for automobile interiors, and hard polyurethane is used for paints.
また、綿含有繊維とは、綿100%の繊維であってもよいし、綿と、他の天然繊維及び/又は化学繊維との混紡繊維であってもよい。他の天然繊維としては、羊毛、絹、麻等が挙げられる。化学繊維としては、合成繊維(例えば、ポリエステル系、ナイロン等のポリアミド系繊維)、半合成繊維(アセテート等のセルロース系、プロミックス等のタンパク質系繊維)、再生繊維(レーヨン、キュプラ、ポリノジック等のセルロース系繊維)、無機繊維(炭素繊維、ガラス繊維)などが挙げられる。
Further, the cotton-containing fiber may be 100% cotton fiber, or may be a blended fiber of cotton and other natural fibers and / or chemical fibers. Other natural fibers include wool, silk, hemp and the like. Chemical fibers include synthetic fibers (for example, polyamide fibers such as polyester and nylon), semi-synthetic fibers (cellulose fibers such as acetate, protein fibers such as promix), regenerated fibers (rayon, cupra, polynosic, etc.) Cellulosic fibers), inorganic fibers (carbon fibers, glass fibers) and the like.
第1の基材及び第2の基材は、フィルム、ブロック、繊維(例えば、織物、編物、不織布、メリヤス、フェルト)、発泡体状などの種々の形態を採ることができる。
なかでも、好ましくは、スポーツシューズ類、タウンシューズ、ビジネスシューズ等の紳士靴及び婦人靴、さらに工業用の作業靴等を含む履物における、胛被、中底、外底等を構成する基材の形態及び材料(例えば、ポリオレフィン、EVA、ナイロン、綿含有繊維、合成皮革等)である。
第1の基材及び/又は第2の基材の表面は、平滑であってもよいし、凹凸を有していてもよい。
また、それらの表面に、接着剤等の接着を高めるためのプライマー処理を施してもよい。プライマー処理としては、例えば、ブラスト処理、薬品処理、脱脂、火炎処理、酸化処理、蒸気処理、コロナ放電処理、紫外線照射処理、プラズマ処理、イオン処理、アンカー層の形成などが挙げられる。 The first base material and the second base material can take various forms such as a film, a block, a fiber (for example, a woven fabric, a knitted fabric, a non-woven fabric, a knitted fabric, a felt), and a foam.
Among them, preferably, the footwear, the insole, the outer bottom, etc. of footwear including men's shoes and women's shoes such as sports shoes, town shoes, business shoes, and industrial work shoes, etc. Form and material (eg, polyolefin, EVA, nylon, cotton-containing fiber, synthetic leather, etc.).
The surface of the first base material and / or the second base material may be smooth or may have irregularities.
Moreover, you may give the primer process for improving adhesion | attachment, such as an adhesive agent, to those surfaces. Examples of the primer treatment include blast treatment, chemical treatment, degreasing, flame treatment, oxidation treatment, steam treatment, corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, ion treatment, anchor layer formation, and the like.
なかでも、好ましくは、スポーツシューズ類、タウンシューズ、ビジネスシューズ等の紳士靴及び婦人靴、さらに工業用の作業靴等を含む履物における、胛被、中底、外底等を構成する基材の形態及び材料(例えば、ポリオレフィン、EVA、ナイロン、綿含有繊維、合成皮革等)である。
第1の基材及び/又は第2の基材の表面は、平滑であってもよいし、凹凸を有していてもよい。
また、それらの表面に、接着剤等の接着を高めるためのプライマー処理を施してもよい。プライマー処理としては、例えば、ブラスト処理、薬品処理、脱脂、火炎処理、酸化処理、蒸気処理、コロナ放電処理、紫外線照射処理、プラズマ処理、イオン処理、アンカー層の形成などが挙げられる。 The first base material and the second base material can take various forms such as a film, a block, a fiber (for example, a woven fabric, a knitted fabric, a non-woven fabric, a knitted fabric, a felt), and a foam.
Among them, preferably, the footwear, the insole, the outer bottom, etc. of footwear including men's shoes and women's shoes such as sports shoes, town shoes, business shoes, and industrial work shoes, etc. Form and material (eg, polyolefin, EVA, nylon, cotton-containing fiber, synthetic leather, etc.).
The surface of the first base material and / or the second base material may be smooth or may have irregularities.
Moreover, you may give the primer process for improving adhesion | attachment, such as an adhesive agent, to those surfaces. Examples of the primer treatment include blast treatment, chemical treatment, degreasing, flame treatment, oxidation treatment, steam treatment, corona discharge treatment, ultraviolet irradiation treatment, plasma treatment, ion treatment, anchor layer formation, and the like.
〈工程(a)及び工程(b)〉
第1の基材及び第2の基材の表面への水性接着剤の塗布は、公知の塗布方法のいずれをも利用することができる。例えば、グラビアロールコーティング、リバースロールコーティング、バーコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法、へら塗り法等が挙げられる。 <Process (a) and process (b)>
Any known coating method can be used to apply the aqueous adhesive to the surfaces of the first substrate and the second substrate. Examples include gravure roll coating, reverse roll coating, bar coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating, spatula coating, and the like.
第1の基材及び第2の基材の表面への水性接着剤の塗布は、公知の塗布方法のいずれをも利用することができる。例えば、グラビアロールコーティング、リバースロールコーティング、バーコーティング、ワイヤーバーコーティング、リップコーティング、エアナイフコーティング、カーテンフローコーティング、スプレーコーティング、浸漬コーティング、はけ塗り法、へら塗り法等が挙げられる。 <Process (a) and process (b)>
Any known coating method can be used to apply the aqueous adhesive to the surfaces of the first substrate and the second substrate. Examples include gravure roll coating, reverse roll coating, bar coating, wire bar coating, lip coating, air knife coating, curtain flow coating, spray coating, dip coating, brush coating, spatula coating, and the like.
なお、水性接着剤を塗布する前に、上述したように、第1の基体及び/又は第2の基体の表面にプライマー処理を施してもよい。
特に、綿含有繊維などの水を吸収し得る基材を用いる場合には、プライマー処理として、水性接着剤を塗布し、乾燥する処理を行なってもよい。ここでの水性接着剤の塗布は、上記方法を利用することができ、乾燥は、後述する方法のいずれを利用してもよいが、特に、自然乾燥、風乾等の非熱乾燥、あるいは、通常の熱風循環型のオーブン、赤外線又は遠赤外線ヒーターを用いた乾燥を行うことが好ましい。プライマー処理を行う場合、使用する水性接着剤は、1種のみであってもよいし、2種以上の2回処理でもよい。また、第1及び第2の基材において異なる水性接着剤を使用してもよいが、同じものを用いることが好ましい。 Before applying the aqueous adhesive, as described above, the surface of the first substrate and / or the second substrate may be subjected to a primer treatment.
In particular, when using a substrate that can absorb water, such as cotton-containing fibers, a water-based adhesive may be applied and dried as a primer treatment. The application of the water-based adhesive here can use the above-mentioned method, and drying may use any of the methods described below, but in particular, non-thermal drying such as natural drying or air drying, or usually It is preferable to perform drying using a hot air circulation type oven, infrared ray or far infrared ray heater. When performing the primer treatment, the aqueous adhesive to be used may be only one kind or two or more kinds of twice treatment. Further, different aqueous adhesives may be used in the first and second substrates, but it is preferable to use the same one.
特に、綿含有繊維などの水を吸収し得る基材を用いる場合には、プライマー処理として、水性接着剤を塗布し、乾燥する処理を行なってもよい。ここでの水性接着剤の塗布は、上記方法を利用することができ、乾燥は、後述する方法のいずれを利用してもよいが、特に、自然乾燥、風乾等の非熱乾燥、あるいは、通常の熱風循環型のオーブン、赤外線又は遠赤外線ヒーターを用いた乾燥を行うことが好ましい。プライマー処理を行う場合、使用する水性接着剤は、1種のみであってもよいし、2種以上の2回処理でもよい。また、第1及び第2の基材において異なる水性接着剤を使用してもよいが、同じものを用いることが好ましい。 Before applying the aqueous adhesive, as described above, the surface of the first substrate and / or the second substrate may be subjected to a primer treatment.
In particular, when using a substrate that can absorb water, such as cotton-containing fibers, a water-based adhesive may be applied and dried as a primer treatment. The application of the water-based adhesive here can use the above-mentioned method, and drying may use any of the methods described below, but in particular, non-thermal drying such as natural drying or air drying, or usually It is preferable to perform drying using a hot air circulation type oven, infrared ray or far infrared ray heater. When performing the primer treatment, the aqueous adhesive to be used may be only one kind or two or more kinds of twice treatment. Further, different aqueous adhesives may be used in the first and second substrates, but it is preferable to use the same one.
第1の基材及び第2の基材に塗布する水性接着剤は、同じ水性接着剤でなくてもよいが、両者の接着性を考慮すると、同じ水性接着剤を用いることが好ましい。
塗布する水性接着剤の厚みは、用いる水性接着剤の組成、基材の材料及び形態等によって適宜調整することができる。例えば、熱乾燥(例えば、電磁波処理)後の厚みが、0.01~300μm程度が挙げられ、好ましくは0.01~200μm程度であり、より好ましくは0.2~200μm程度である。 The water-based adhesive applied to the first base material and the second base material may not be the same water-based adhesive, but it is preferable to use the same water-based adhesive in consideration of the adhesiveness of both.
The thickness of the aqueous adhesive to be applied can be appropriately adjusted depending on the composition of the aqueous adhesive to be used, the material and form of the substrate, and the like. For example, the thickness after heat drying (for example, electromagnetic wave treatment) is about 0.01 to 300 μm, preferably about 0.01 to 200 μm, more preferably about 0.2 to 200 μm.
塗布する水性接着剤の厚みは、用いる水性接着剤の組成、基材の材料及び形態等によって適宜調整することができる。例えば、熱乾燥(例えば、電磁波処理)後の厚みが、0.01~300μm程度が挙げられ、好ましくは0.01~200μm程度であり、より好ましくは0.2~200μm程度である。 The water-based adhesive applied to the first base material and the second base material may not be the same water-based adhesive, but it is preferable to use the same water-based adhesive in consideration of the adhesiveness of both.
The thickness of the aqueous adhesive to be applied can be appropriately adjusted depending on the composition of the aqueous adhesive to be used, the material and form of the substrate, and the like. For example, the thickness after heat drying (for example, electromagnetic wave treatment) is about 0.01 to 300 μm, preferably about 0.01 to 200 μm, more preferably about 0.2 to 200 μm.
通常、第1の基材及び第2の基材へ水性接着剤を塗布した後、乾燥を行う。
乾燥は、自然乾燥、風乾等の非熱乾燥、あるいは、通常の熱風循環型のオーブン、赤外線又は遠赤外線ヒーターを用いた乾燥、電磁波(例えば、周波数帯が2.45±0.02GHzの電磁波)照射装置又は電子レンジ等を使用する乾燥等の熱乾燥により行うことができる。本発明の積層構造の製造方法では、この乾燥と後述する工程(c)における水性接着剤塗布時の乾燥とのいずれかにおける少なくとも1回の乾燥を電磁波処理することにより行うことが好ましい。特に、この乾燥において、少なくとも第1の基材又は第2の基材のいずれかを、あるいは両者を電磁波処理することが好ましい。電磁波処理によって、水性接着剤に含有される水(後述するように、存在する場合には溶剤も)を除去して、接着層を形成することができる。 Usually, after apply | coating a water-based adhesive to a 1st base material and a 2nd base material, it dries.
Drying may be natural drying, non-thermal drying such as air drying, or drying using a normal hot-air circulating oven, infrared or far-infrared heater, electromagnetic waves (for example, electromagnetic waves having a frequency band of 2.45 ± 0.02 GHz) It can be performed by heat drying such as drying using an irradiation apparatus or a microwave oven. In the manufacturing method of the laminated structure of this invention, it is preferable to perform at least 1 time of drying in either of this drying and the drying at the time of application | coating of the water-based adhesive in the process (c) mentioned later by performing electromagnetic wave treatment. In particular, in this drying, it is preferable that at least one of the first substrate and the second substrate, or both be subjected to electromagnetic wave treatment. By the electromagnetic wave treatment, the water contained in the aqueous adhesive (as will be described later, the solvent if present) can be removed to form an adhesive layer.
乾燥は、自然乾燥、風乾等の非熱乾燥、あるいは、通常の熱風循環型のオーブン、赤外線又は遠赤外線ヒーターを用いた乾燥、電磁波(例えば、周波数帯が2.45±0.02GHzの電磁波)照射装置又は電子レンジ等を使用する乾燥等の熱乾燥により行うことができる。本発明の積層構造の製造方法では、この乾燥と後述する工程(c)における水性接着剤塗布時の乾燥とのいずれかにおける少なくとも1回の乾燥を電磁波処理することにより行うことが好ましい。特に、この乾燥において、少なくとも第1の基材又は第2の基材のいずれかを、あるいは両者を電磁波処理することが好ましい。電磁波処理によって、水性接着剤に含有される水(後述するように、存在する場合には溶剤も)を除去して、接着層を形成することができる。 Usually, after apply | coating a water-based adhesive to a 1st base material and a 2nd base material, it dries.
Drying may be natural drying, non-thermal drying such as air drying, or drying using a normal hot-air circulating oven, infrared or far-infrared heater, electromagnetic waves (for example, electromagnetic waves having a frequency band of 2.45 ± 0.02 GHz) It can be performed by heat drying such as drying using an irradiation apparatus or a microwave oven. In the manufacturing method of the laminated structure of this invention, it is preferable to perform at least 1 time of drying in either of this drying and the drying at the time of application | coating of the water-based adhesive in the process (c) mentioned later by performing electromagnetic wave treatment. In particular, in this drying, it is preferable that at least one of the first substrate and the second substrate, or both be subjected to electromagnetic wave treatment. By the electromagnetic wave treatment, the water contained in the aqueous adhesive (as will be described later, the solvent if present) can be removed to form an adhesive layer.
電磁波処理は、電磁波を第1の基材の水性接着剤が塗布された表面又は第2の基材の水性接着剤が塗布された表面に照射できる方法であればいかなる方法も利用することができる。代表的には、例えば、周波数帯が2.45±0.02GHzの電磁波を出射し得る電磁波装置、具体的には電子レンジ等を使用して行なうことができる。電磁波処理の出力及び時間は、基材の特性、使用する水性接着剤の組成等に応じて適宜調整することができる。例えば、出力として、1W~20kW程度の範囲のものが挙げられ、好ましくは100W~20kW程度であり、より好ましくは300W~20kW程度である。時間は、1秒~1時間程度が挙げられ、好ましくは5秒~30分間程度であり、より好ましくは5秒~10分間程度である。電磁波処理は、1回のみ行ってもよいし、2回以上行ってもよい。この場合、異なる周波数帯を組み合わせてもよい。また、第1の基材と第2の基材との双方に電磁波処理を行う場合においても、異なる周波数帯を組み合わせてもよい。
For the electromagnetic wave treatment, any method can be used as long as it can irradiate the surface of the first base material coated with the aqueous adhesive or the surface of the second base material coated with the aqueous adhesive. . Typically, for example, an electromagnetic wave device that can emit an electromagnetic wave having a frequency band of 2.45 ± 0.02 GHz, specifically, a microwave oven or the like can be used. The output and time of the electromagnetic wave treatment can be appropriately adjusted according to the characteristics of the substrate, the composition of the aqueous adhesive used, and the like. For example, the output is in the range of about 1 W to 20 kW, preferably about 100 W to 20 kW, and more preferably about 300 W to 20 kW. The time is about 1 second to 1 hour, preferably about 5 seconds to 30 minutes, and more preferably about 5 seconds to 10 minutes. The electromagnetic wave treatment may be performed only once or may be performed twice or more. In this case, different frequency bands may be combined. Also, when performing electromagnetic wave treatment on both the first base material and the second base material, different frequency bands may be combined.
電磁波処理に代えて又は電磁波処理の前後に、放置(自然乾燥)、あるいは、通常の熱風循環型のオーブン、赤外線ヒーター等を使用した熱乾燥によって第1の基材又は第2の基材の乾燥を行なってもよい。この乾燥での温度及び時間は、基材の特性、使用する水性接着剤の組成等に応じて適宜調整することができる。例えば、温度としては、30~150℃程度が挙げられ、好ましくは40~85℃程度である。時間は、1秒~1時間程度が挙げられ、好ましくは5秒~30分間程度であり、より好ましくは5秒~10分間程度である。
The first substrate or the second substrate is dried by standing (natural drying) instead of the electromagnetic wave treatment or before and after the electromagnetic wave treatment, or by heat drying using a normal hot-air circulating oven, infrared heater, or the like. May be performed. The drying temperature and time can be appropriately adjusted according to the characteristics of the substrate, the composition of the aqueous adhesive used, and the like. For example, the temperature is about 30 to 150 ° C., preferably about 40 to 85 ° C. The time is about 1 second to 1 hour, preferably about 5 seconds to 30 minutes, and more preferably about 5 seconds to 10 minutes.
水性接着剤の塗布及び熱乾燥は、第1の基材及び第2の基材のいずれを先に行なってもよい。つまり、工程(a)及び工程(b)のいずれを先に行ってもよい。
熱乾燥、特に、電磁波処理を行なった後の接着層には、通常、水(後述するように、存在する場合には溶剤)が含有されていないか、含有されているとしても、通常、接着層の全重量の3重量%以下程度となる。 Application of the water-based adhesive and heat drying may be performed first on either the first base material or the second base material. That is, either step (a) or step (b) may be performed first.
The adhesive layer after heat drying, in particular electromagnetic wave treatment, usually does not contain water (or a solvent if present) as described below, even if it is contained. It is about 3% by weight or less of the total weight of the layer.
熱乾燥、特に、電磁波処理を行なった後の接着層には、通常、水(後述するように、存在する場合には溶剤)が含有されていないか、含有されているとしても、通常、接着層の全重量の3重量%以下程度となる。 Application of the water-based adhesive and heat drying may be performed first on either the first base material or the second base material. That is, either step (a) or step (b) may be performed first.
The adhesive layer after heat drying, in particular electromagnetic wave treatment, usually does not contain water (or a solvent if present) as described below, even if it is contained. It is about 3% by weight or less of the total weight of the layer.
〈工程(c)〉
工程(a)及び工程(b)において、第1の基材及び第2の基材の表面に水性接着剤を塗布し、熱乾燥、例えば、電磁波処理(つまり、1回目)を行なった後、工程(c)において、第1の基材及び第2の基材の少なくともいずれか一方の水性接着剤が塗布された面に、再度水性接着剤を塗布し、得られた基材を熱乾燥、例えば、電磁波処理する(つまり、2回目)。ここでの再度(2回目)の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)は、上述した条件等(つまり、1回目の条件等)と同様に行なうことができる。ただし、先(1回目)の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)と、再度(2回目)の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)とは、必ずしも同じ条件等を選択する必要はなく、水性接着剤の種類、塗布方法、塗布厚み、熱乾燥の方法及び条件(例えば、温度、時間、電磁波処理の出力及び時間、電磁波処理前後の予備加熱の有無及びその条件等)を適宜変更してもよい。 <Process (c)>
In step (a) and step (b), an aqueous adhesive is applied to the surfaces of the first substrate and the second substrate, and after heat drying, for example, electromagnetic wave treatment (that is, the first time), In the step (c), an aqueous adhesive is applied again to the surface on which at least one of the first base material and the second base material is applied, and the obtained base material is heat-dried. For example, electromagnetic wave processing is performed (that is, the second time). The application of the aqueous adhesive and the heat drying (for example, electromagnetic wave treatment) again (second time) can be performed in the same manner as the above-described conditions (that is, the first condition). However, the application and heat drying (for example, electromagnetic wave treatment) of the previous (first time) aqueous adhesive and the application and heat drying (for example, electromagnetic wave treatment) of the aqueous adhesive again (for the second time) are not necessarily the same conditions. The type of water-based adhesive, coating method, coating thickness, heat drying method and conditions (for example, temperature, time, output and time of electromagnetic wave treatment, presence or absence of preheating before and after electromagnetic wave treatment and its The conditions etc.) may be changed as appropriate.
工程(a)及び工程(b)において、第1の基材及び第2の基材の表面に水性接着剤を塗布し、熱乾燥、例えば、電磁波処理(つまり、1回目)を行なった後、工程(c)において、第1の基材及び第2の基材の少なくともいずれか一方の水性接着剤が塗布された面に、再度水性接着剤を塗布し、得られた基材を熱乾燥、例えば、電磁波処理する(つまり、2回目)。ここでの再度(2回目)の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)は、上述した条件等(つまり、1回目の条件等)と同様に行なうことができる。ただし、先(1回目)の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)と、再度(2回目)の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)とは、必ずしも同じ条件等を選択する必要はなく、水性接着剤の種類、塗布方法、塗布厚み、熱乾燥の方法及び条件(例えば、温度、時間、電磁波処理の出力及び時間、電磁波処理前後の予備加熱の有無及びその条件等)を適宜変更してもよい。 <Process (c)>
In step (a) and step (b), an aqueous adhesive is applied to the surfaces of the first substrate and the second substrate, and after heat drying, for example, electromagnetic wave treatment (that is, the first time), In the step (c), an aqueous adhesive is applied again to the surface on which at least one of the first base material and the second base material is applied, and the obtained base material is heat-dried. For example, electromagnetic wave processing is performed (that is, the second time). The application of the aqueous adhesive and the heat drying (for example, electromagnetic wave treatment) again (second time) can be performed in the same manner as the above-described conditions (that is, the first condition). However, the application and heat drying (for example, electromagnetic wave treatment) of the previous (first time) aqueous adhesive and the application and heat drying (for example, electromagnetic wave treatment) of the aqueous adhesive again (for the second time) are not necessarily the same conditions. The type of water-based adhesive, coating method, coating thickness, heat drying method and conditions (for example, temperature, time, output and time of electromagnetic wave treatment, presence or absence of preheating before and after electromagnetic wave treatment and its The conditions etc.) may be changed as appropriate.
工程(c)での2回目の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)は、第1の基材及び第2の基材の少なくともいずれか一方にのみ1回行なえばよいが、さらに、第1の基材及び第2の基材の少なくともいずれか一方にのみ又は双方に、1回以上の水性接着剤の塗布及び電磁波処理(つまり、3回目以降)を行なってもよい。工程(a)~工程(c)に加えて、さらなる水性接着剤の塗布(3回目以降)を行なう場合、電磁波処理に付さないで、上述した非熱乾燥(例えば、放置、自然乾燥)、あるいは、通常の熱風循環型のオーブン、赤外線ヒーター等使用する熱乾燥を行なってもよい。
The application and heat drying (for example, electromagnetic wave treatment) of the second aqueous adhesive in the step (c) may be performed only once on at least one of the first base material and the second base material, Furthermore, you may perform 1 time or more of application | coating of an aqueous adhesive agent, and electromagnetic wave treatment (namely, 3rd time or later) to at least any one or both of a 1st base material and a 2nd base material. In addition to the steps (a) to (c), in the case of applying a further aqueous adhesive (from the third time on), without applying an electromagnetic wave treatment, the above-mentioned non-thermal drying (for example, standing, natural drying), Alternatively, heat drying using a normal hot air circulation type oven, an infrared heater or the like may be performed.
つまり、本発明の積層構造の製造方法では、
(i-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-4)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(ii-1)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-3)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(iii-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(iii-2)第1の基材(第1回目・電磁波処)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)及び
(iii-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)等の処理を行うことができる。 That is, in the manufacturing method of the laminated structure of the present invention,
(i-1) 1st base material (heat drying other than 1st time and electromagnetic wave treatment), 2nd base material (heat drying other than 1st time and electromagnetic wave treatment), 1st base material, or 2nd Base material (second time, electromagnetic wave treatment),
(i-2) 1st base material (1st time and electromagnetic wave treatment), 2nd base material (thermal drying other than 1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-3) 1st base material (heat drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-4) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) processing),
(ii-1) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second, heat drying other than electromagnetic treatment)
(ii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) Heat drying other than processing),
(ii-3) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second time, electromagnetic wave treatment),
(iii-1) 1st base material (thermal drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second, heat drying other than electromagnetic treatment)
(iii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) (Iii-3) the first substrate (thermal drying other than the first electromagnetic wave treatment), the second substrate (first electromagnetic wave treatment), the first substrate or The second substrate (second time / electromagnetic wave treatment) or the like can be performed.
(i-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-4)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(ii-1)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-3)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(iii-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(iii-2)第1の基材(第1回目・電磁波処)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)及び
(iii-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)等の処理を行うことができる。 That is, in the manufacturing method of the laminated structure of the present invention,
(i-1) 1st base material (heat drying other than 1st time and electromagnetic wave treatment), 2nd base material (heat drying other than 1st time and electromagnetic wave treatment), 1st base material, or 2nd Base material (second time, electromagnetic wave treatment),
(i-2) 1st base material (1st time and electromagnetic wave treatment), 2nd base material (thermal drying other than 1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-3) 1st base material (heat drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-4) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) processing),
(ii-1) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second, heat drying other than electromagnetic treatment)
(ii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) Heat drying other than processing),
(ii-3) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second time, electromagnetic wave treatment),
(iii-1) 1st base material (thermal drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second, heat drying other than electromagnetic treatment)
(iii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) (Iii-3) the first substrate (thermal drying other than the first electromagnetic wave treatment), the second substrate (first electromagnetic wave treatment), the first substrate or The second substrate (second time / electromagnetic wave treatment) or the like can be performed.
なかでも、好ましくは、(i-4)であり、さらに好ましくは、先(1回目)の水性接着剤塗布後の乾燥を電磁波処理で行い、かつ、再度(2回目)の水性接着剤の塗布及び電磁波処理を、第1の基材及び第2の基材の双方の表面に、先(1回目)の水性接着剤の塗布及び電磁波処理と同様に行なうことである。
このような再度の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)を行なうことにより、第1の基材及び第2の基材の表面全体に接着層を十分な厚みで確実に配置することができるため、後述する第1の基材及び第2の基材の貼り合せによって、両者がより強固に接着した積層構造を確実に製造することができる。 Among them, (i-4) is preferable, and more preferably, drying after applying the first (first) aqueous adhesive is performed by electromagnetic wave treatment, and again (second) application of the aqueous adhesive is performed. In addition, the electromagnetic wave treatment is performed on both surfaces of the first base material and the second base material in the same manner as the application (first time) of the aqueous adhesive and the electromagnetic wave treatment.
By performing such application of the aqueous adhesive again and heat drying (for example, electromagnetic wave treatment), the adhesive layer is surely disposed with a sufficient thickness on the entire surfaces of the first base material and the second base material. Therefore, it is possible to reliably manufacture a laminated structure in which the first base material and the second base material, which will be described later, are bonded to each other more firmly.
このような再度の水性接着剤の塗布及び熱乾燥(例えば、電磁波処理)を行なうことにより、第1の基材及び第2の基材の表面全体に接着層を十分な厚みで確実に配置することができるため、後述する第1の基材及び第2の基材の貼り合せによって、両者がより強固に接着した積層構造を確実に製造することができる。 Among them, (i-4) is preferable, and more preferably, drying after applying the first (first) aqueous adhesive is performed by electromagnetic wave treatment, and again (second) application of the aqueous adhesive is performed. In addition, the electromagnetic wave treatment is performed on both surfaces of the first base material and the second base material in the same manner as the application (first time) of the aqueous adhesive and the electromagnetic wave treatment.
By performing such application of the aqueous adhesive again and heat drying (for example, electromagnetic wave treatment), the adhesive layer is surely disposed with a sufficient thickness on the entire surfaces of the first base material and the second base material. Therefore, it is possible to reliably manufacture a laminated structure in which the first base material and the second base material, which will be described later, are bonded to each other more firmly.
〈工程(d)〉
少なくとも1回電磁波処理された、第1基材の水性接着剤が塗布された面及び第2の基材の水性接着剤が塗布された面を貼り合せる方法としては、機械的操作又は手動で行なう方法のいずれでもよい。
貼り合せの際、熱、圧力又はその双方を負荷しながら行なってもよい。熱を負荷する場合には、第1の基材及び第2の基材並びに接着層が変質しない温度範囲とすることが必要であり、好ましくは120℃程度以下、より好ましくは100℃程度以下である。熱の負荷は、上述した通常の熱風循環型のオーブン、赤外線ヒーター、電子レンジ等を用いて行なってもよい。圧力を負荷する場合、100g/cm2程度以上が挙げられ、第1の基材及び第2の基材の形状が変形する圧力未満が挙げられる。熱及び/又は圧力を負荷する場合、その時間は、例えば、1秒~10日間程度が挙げられる。
このような貼り合せを行なった後、得られた積層構造に対して、再度上述した電磁波処理を行うことが好ましい。この場合の電磁波処理の条件等は、上記と同様のものが挙げられる。 <Process (d)>
As a method of bonding the surface of the first base material coated with the aqueous adhesive and the surface of the second base material coated with the aqueous adhesive at least once, a mechanical operation or manual operation is performed. Any of the methods may be used.
When bonding, heat, pressure or both may be applied. In the case of applying heat, it is necessary to set the temperature range in which the first base material, the second base material, and the adhesive layer do not deteriorate, preferably about 120 ° C. or less, more preferably about 100 ° C. or less. is there. The heat load may be performed using the above-described normal hot air circulation type oven, infrared heater, microwave oven, or the like. When applying a pressure, about 100 g / cm < 2 > or more is mentioned, Below the pressure which the shape of a 1st base material and a 2nd base material deform | transforms is mentioned. In the case of applying heat and / or pressure, the time is, for example, about 1 second to 10 days.
After such bonding, the above-described electromagnetic wave treatment is preferably performed again on the obtained laminated structure. In this case, the electromagnetic wave treatment conditions are the same as described above.
少なくとも1回電磁波処理された、第1基材の水性接着剤が塗布された面及び第2の基材の水性接着剤が塗布された面を貼り合せる方法としては、機械的操作又は手動で行なう方法のいずれでもよい。
貼り合せの際、熱、圧力又はその双方を負荷しながら行なってもよい。熱を負荷する場合には、第1の基材及び第2の基材並びに接着層が変質しない温度範囲とすることが必要であり、好ましくは120℃程度以下、より好ましくは100℃程度以下である。熱の負荷は、上述した通常の熱風循環型のオーブン、赤外線ヒーター、電子レンジ等を用いて行なってもよい。圧力を負荷する場合、100g/cm2程度以上が挙げられ、第1の基材及び第2の基材の形状が変形する圧力未満が挙げられる。熱及び/又は圧力を負荷する場合、その時間は、例えば、1秒~10日間程度が挙げられる。
このような貼り合せを行なった後、得られた積層構造に対して、再度上述した電磁波処理を行うことが好ましい。この場合の電磁波処理の条件等は、上記と同様のものが挙げられる。 <Process (d)>
As a method of bonding the surface of the first base material coated with the aqueous adhesive and the surface of the second base material coated with the aqueous adhesive at least once, a mechanical operation or manual operation is performed. Any of the methods may be used.
When bonding, heat, pressure or both may be applied. In the case of applying heat, it is necessary to set the temperature range in which the first base material, the second base material, and the adhesive layer do not deteriorate, preferably about 120 ° C. or less, more preferably about 100 ° C. or less. is there. The heat load may be performed using the above-described normal hot air circulation type oven, infrared heater, microwave oven, or the like. When applying a pressure, about 100 g / cm < 2 > or more is mentioned, Below the pressure which the shape of a 1st base material and a 2nd base material deform | transforms is mentioned. In the case of applying heat and / or pressure, the time is, for example, about 1 second to 10 days.
After such bonding, the above-described electromagnetic wave treatment is preferably performed again on the obtained laminated structure. In this case, the electromagnetic wave treatment conditions are the same as described above.
〈水性接着剤〉
本発明の積層構造の製造方法で用いる水性接着剤は、溶剤として水を含有するものであれば、接着剤、粘着剤、接着剤の改質剤、ヒートシール剤、塗料、塗料用プライマー、インクのバインダー、粘着剤及びエマルションの改質剤等の機能を発揮させ得るどのようなものでも使用することができる。なかでも、接着性を有する重合体を含有するものが好ましく、熱可塑性重合体を含有するものが好ましい。重合体としては、例えば、ポリオレフィン系樹脂、アクリル系樹脂(PMMA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリテトラフルオロエチレン(PTFE)、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、AS樹脂等の重合体及び共重合体並びに変性物等の種々のものが挙げられる。これらは単独で又は2種以上をブレンドしてもよい。 <Water-based adhesive>
If the water-based adhesive used in the method for producing a laminated structure of the present invention contains water as a solvent, an adhesive, a pressure-sensitive adhesive, an adhesive modifier, a heat sealant, a paint, a primer for coating, an ink Any material capable of exhibiting the functions of the binder, the pressure-sensitive adhesive, the emulsion modifier, and the like can be used. Especially, what contains the polymer which has adhesiveness is preferable, and what contains a thermoplastic polymer is preferable. Examples of the polymer include polyolefin resin, acrylic resin (PMMA), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE), and acrylonitrile. Examples thereof include polymers and copolymers such as butadiene styrene resin (ABS resin) and AS resin, and modified products. These may be used alone or in combination of two or more.
本発明の積層構造の製造方法で用いる水性接着剤は、溶剤として水を含有するものであれば、接着剤、粘着剤、接着剤の改質剤、ヒートシール剤、塗料、塗料用プライマー、インクのバインダー、粘着剤及びエマルションの改質剤等の機能を発揮させ得るどのようなものでも使用することができる。なかでも、接着性を有する重合体を含有するものが好ましく、熱可塑性重合体を含有するものが好ましい。重合体としては、例えば、ポリオレフィン系樹脂、アクリル系樹脂(PMMA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリテトラフルオロエチレン(PTFE)、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、AS樹脂等の重合体及び共重合体並びに変性物等の種々のものが挙げられる。これらは単独で又は2種以上をブレンドしてもよい。 <Water-based adhesive>
If the water-based adhesive used in the method for producing a laminated structure of the present invention contains water as a solvent, an adhesive, a pressure-sensitive adhesive, an adhesive modifier, a heat sealant, a paint, a primer for coating, an ink Any material capable of exhibiting the functions of the binder, the pressure-sensitive adhesive, the emulsion modifier, and the like can be used. Especially, what contains the polymer which has adhesiveness is preferable, and what contains a thermoplastic polymer is preferable. Examples of the polymer include polyolefin resin, acrylic resin (PMMA), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE), and acrylonitrile. Examples thereof include polymers and copolymers such as butadiene styrene resin (ABS resin) and AS resin, and modified products. These may be used alone or in combination of two or more.
〈重合体〉
水性接着剤に含有される重合体は、なかでも、炭素数2~20のα-オレフィン由来の構造単位を1種類以上有する重合体を含むものがより好ましい。
炭素数2~20のα-オレフィンとしては、例えば、エチレン(C2)、プロピレン(C3)、1-ブテン(C4)、1-ペンテン、1-ヘキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、ビニルシクロヘキサン等が挙げられる。好ましくは、エチレン、プロピレン、1-ブテン等である。 <Polymer>
Among them, the polymer contained in the aqueous adhesive is more preferably one containing a polymer having one or more structural units derived from an α-olefin having 2 to 20 carbon atoms.
Examples of the α-olefin having 2 to 20 carbon atoms include ethylene (C2), propylene (C3), 1-butene (C4), 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-octene, Nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, vinylcyclohexane, etc. Can be mentioned. Preferred are ethylene, propylene, 1-butene and the like.
水性接着剤に含有される重合体は、なかでも、炭素数2~20のα-オレフィン由来の構造単位を1種類以上有する重合体を含むものがより好ましい。
炭素数2~20のα-オレフィンとしては、例えば、エチレン(C2)、プロピレン(C3)、1-ブテン(C4)、1-ペンテン、1-ヘキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、ビニルシクロヘキサン等が挙げられる。好ましくは、エチレン、プロピレン、1-ブテン等である。 <Polymer>
Among them, the polymer contained in the aqueous adhesive is more preferably one containing a polymer having one or more structural units derived from an α-olefin having 2 to 20 carbon atoms.
Examples of the α-olefin having 2 to 20 carbon atoms include ethylene (C2), propylene (C3), 1-butene (C4), 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-octene, Nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, vinylcyclohexane, etc. Can be mentioned. Preferred are ethylene, propylene, 1-butene and the like.
炭素数2~20のα-オレフィン由来の構造単位を含む重合体は、ポリエチレン(PE)、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、ポリプロピレン(PP)等のホモポリマー又はその変性物;エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-プロピレン-1-ブテン共重合体等のα-オレフィン系共重合体又はその変性物、共重合可能なモノマーとの共重合体又はその変性物;あるいはこれらの2種以上の混合物であることが好ましい。共重合可能なモノマーとの共重合体では、共重合可能なモノマー及びαオレフィンは、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。共重合体の形態は、例えば、ランダム共重合、ブロック共重合、グラフト共重合等のいずれでもよい。これらは過酸化物などで低分子量化、高分子量化したものであってもよい。
Polymers containing structural units derived from α-olefins having 2 to 20 carbon atoms include polyethylene (PE), high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), polypropylene (PP), etc. Homopolymer or modified product thereof; ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer An α-olefin copolymer such as ethylene-propylene-1-butene copolymer or a modified product thereof, a copolymer with a copolymerizable monomer or a modified product thereof; or a mixture of two or more of these. It is preferable. In a copolymer with a copolymerizable monomer, the copolymerizable monomer and α-olefin may be used alone or in combination of two or more. The form of the copolymer may be any of random copolymerization, block copolymerization, graft copolymerization, and the like. These may be those having a low molecular weight or a high molecular weight such as peroxide.
α-オレフィン系の重合体としては、全構造単位を100モル%として、例えば、プロピレン由来の構造単位:1-ブテン由来の構造単位を、好ましくは、71~99モル%:1~29モル%で含有する共重合体又はその変性物、より好ましくは80~99モル%:1~20モル%で含有する共重合体又はその変性物、さらに好ましくは、90~99モル%:1~10モル%で含有する共重合体又はその変性物が挙げられる。この共重合体は、好ましくは、融解ピークが実質的に観測されない共重合体である。融解ピークが実質的に観測されないとは、-100~200℃の温度範囲における示差走査熱量測定(DSC)によって、結晶融解熱量が1J/g以上の結晶融解ピークが観測されないことをいう。
The α-olefin-based polymer has a total structural unit of 100 mol%, for example, a structural unit derived from propylene: a structural unit derived from 1-butene, preferably 71 to 99 mol%: 1 to 29 mol%. Or a modified product thereof, more preferably 80 to 99 mol%: 1 to 20 mol%, or more preferably 90 to 99 mol%: 1 to 10 mol. % Of copolymers or modified products thereof. This copolymer is preferably a copolymer in which substantially no melting peak is observed. The fact that a melting peak is not substantially observed means that a crystal melting peak having a crystal melting heat amount of 1 J / g or more is not observed by differential scanning calorimetry (DSC) in a temperature range of −100 to 200 ° C.
また、エチレン由来の構造単位:プロピレン由来の構造単位を、好ましくは、5~20モル%:80~95モル%で含有する共重合体又はその変性物、より好ましくは、5~19モル%:81~95モル%で含有する共重合体又はその変性物、さらに好ましくは、10~19モル%:81~90モル%で含有する共重合体又はその変性物が挙げられる。この共重合体は、好ましくは、融解ピークが観測される共重合体である。融解ピークが観測されるとは、-100~200℃の温度範囲における示差走査熱量測定(DSC)によって、結晶融解熱量が1J/g以上の結晶融解ピーク又は結晶化熱量が1J/g以上の結晶化ピークが観測されることをいう。
Further, a structural unit derived from ethylene: a copolymer containing a structural unit derived from propylene, preferably 5 to 20 mol%: 80 to 95 mol%, or a modified product thereof, more preferably 5 to 19 mol%: A copolymer containing 81 to 95 mol% or a modified product thereof, and more preferably a copolymer containing 10 to 19 mol%: 81 to 90 mol% or a modified product thereof. This copolymer is preferably a copolymer in which a melting peak is observed. A melting peak is observed by a differential scanning calorimetry (DSC) in the temperature range of −100 to 200 ° C., a crystal melting peak with a crystal melting heat of 1 J / g or more or a crystal with a crystallization heat of 1 J / g or more. This means that a chemical peak is observed.
エチレン由来の構造単位:プロピレン由来の構造単位:1-ブテン由来の構造単位を、好ましくは、1~99モル%:99~1モル%:99~1モル%で含有する共重合体又はその変性物、より好ましくは、5~80モル%:90~2モル%:90~1モル%で含有する共重合体又はその変性物、さらに好ましくは、10~40モル%:85~5モル%:60~2モル%で含有する共重合体又はその変性物が挙げられる。この共重合体は、好ましくは、融解ピークが観測されない共重合体である。
A structural unit derived from ethylene: a structural unit derived from propylene: a structural unit derived from 1-butene, preferably a copolymer containing 1 to 99 mol%: 99 to 1 mol%: 99 to 1 mol% or a modification thereof More preferably, it is a copolymer or a modified product thereof containing 5 to 80 mol%: 90 to 2 mol%: 90 to 1 mol%, more preferably 10 to 40 mol%: 85 to 5 mol%: Examples thereof include a copolymer containing 60 to 2 mol% or a modified product thereof. This copolymer is preferably a copolymer in which no melting peak is observed.
これらの共重合体は、例えば、公知のシングルサイト触媒(メタロセン系等、例えば、特開昭58-19309号公報、特開昭60-35005号公報等参照)を用いて製造することができる(例えば、欧州特許公開第1211287号参照)。
These copolymers can be produced using, for example, a known single site catalyst (metallocene, etc., for example, see Japanese Patent Application Laid-Open Nos. 58-19309 and 60-35005). For example, see European Patent Publication No. 12111287).
また、上述したプロピレン-1-ブテン共重合体又はその変性物とエチレン-プロピレン共重合体又はその変性物とを、重量比で、好ましくは1~99:99~1、より好ましくは5~95:95~5、さらに好ましくは10~90:90~10でブレンドしたものであってもよい。
Further, the above-mentioned propylene-1-butene copolymer or a modified product thereof and the ethylene-propylene copolymer or the modified product thereof are preferably 1 to 99:99 to 1, more preferably 5 to 95 by weight ratio. : 95-5, more preferably 10-90: 90-10 may be used.
α-オレフィン系重合体の変性物としては、例えば、α,β-不飽和カルボン酸類による変性物が挙げられる。この場合の変性量は、α-オレフィンの重合体100重量部に対して、通常、0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.2~4重量部である。
α,β-不飽和カルボン酸類としては、例えば、α,β-不飽和カルボン酸(マレイン酸、イタコン酸、シトラコン酸等)、α,β-不飽和カルボン酸エステル(マレイン酸メチル、イタコン酸メチル、シトラコン酸メチル等)、α,β-不飽和カルボン酸無水物(無水マレイン酸、無水イタコン酸、無水シトラコン酸等)が挙げられる。また、これらのα,β-不飽和カルボン酸類を組み合わせて使用してもよい。なかでも、α,β-不飽和カルボン酸無水物が好ましく、無水マレイン酸がより好ましい。 Examples of the modified products of α-olefin polymers include modified products of α, β-unsaturated carboxylic acids. The amount of modification in this case is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.2 to 4 parts by weight with respect to 100 parts by weight of the α-olefin polymer. It is.
Examples of α, β-unsaturated carboxylic acids include α, β-unsaturated carboxylic acids (maleic acid, itaconic acid, citraconic acid, etc.), α, β-unsaturated carboxylic acid esters (methyl maleate, methyl itaconate) ), Α, β-unsaturated carboxylic anhydrides (maleic anhydride, itaconic anhydride, citraconic anhydride, etc.). These α, β-unsaturated carboxylic acids may be used in combination. Of these, α, β-unsaturated carboxylic acid anhydride is preferable, and maleic anhydride is more preferable.
α,β-不飽和カルボン酸類としては、例えば、α,β-不飽和カルボン酸(マレイン酸、イタコン酸、シトラコン酸等)、α,β-不飽和カルボン酸エステル(マレイン酸メチル、イタコン酸メチル、シトラコン酸メチル等)、α,β-不飽和カルボン酸無水物(無水マレイン酸、無水イタコン酸、無水シトラコン酸等)が挙げられる。また、これらのα,β-不飽和カルボン酸類を組み合わせて使用してもよい。なかでも、α,β-不飽和カルボン酸無水物が好ましく、無水マレイン酸がより好ましい。 Examples of the modified products of α-olefin polymers include modified products of α, β-unsaturated carboxylic acids. The amount of modification in this case is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.2 to 4 parts by weight with respect to 100 parts by weight of the α-olefin polymer. It is.
Examples of α, β-unsaturated carboxylic acids include α, β-unsaturated carboxylic acids (maleic acid, itaconic acid, citraconic acid, etc.), α, β-unsaturated carboxylic acid esters (methyl maleate, methyl itaconate) ), Α, β-unsaturated carboxylic anhydrides (maleic anhydride, itaconic anhydride, citraconic anhydride, etc.). These α, β-unsaturated carboxylic acids may be used in combination. Of these, α, β-unsaturated carboxylic acid anhydride is preferable, and maleic anhydride is more preferable.
このような変性物は、α-オレフィン系重合体を溶融させた後、α,β-不飽和カルボン酸類等を添加して変性させる方法、α-オレフィン系重合体をトルエン、キシレンなどの溶媒に溶解した後、α,β-不飽和カルボン酸類等を添加して変性させる方法などの公知の方法が挙げられる。なお、変性物にα,β-不飽和カルボン酸無水物に由来する構造単位が含まれる場合、酸無水物基が保持されたものであっても、開環したものであってもよく、保持されたものと開環したものとの双方が含有されていてもよい。
Such a modified product is a method in which an α-olefin polymer is melted and then modified by adding α, β-unsaturated carboxylic acid or the like, and the α-olefin polymer is dissolved in a solvent such as toluene or xylene. Examples of the known method include a method in which an α, β-unsaturated carboxylic acid is added and modified after dissolution. When the modified product contains a structural unit derived from an α, β-unsaturated carboxylic acid anhydride, the acid anhydride group may be retained or the ring-opened one may be retained. Both the formed and ring-opened ones may be contained.
なかでも、α-オレフィン系重合体としては、エチレンと、1種類以上の炭素数3~20のα-オレフィンとの共重合体又はこの共重合体の変性物、あるいはこれらの混合物であることが好ましい。
In particular, the α-olefin polymer may be a copolymer of ethylene and one or more α-olefins having 3 to 20 carbon atoms, a modified product of this copolymer, or a mixture thereof. preferable.
共重合可能なモノマーとしては、不飽和カルボン酸又はその無水物、α,β-不飽和カルボン酸の金属塩、α,β-不飽和カルボン酸エステル、ビニルエステル、ビニルエステル鹸化物、環状オレフィン、ビニル芳香族化合物、ポリエン化合物(ジエン類など)、(メタ)アクリロニトリル、ハロゲン化ビニル類、ハロゲン化ビリニデン類等が挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。
なお、本明細書では、アクリル酸とメタクリル酸とを総称して(メタ)アクリル酸、アクリレートとメタクリレートとを総称して(メタ)アクリレートという。 Examples of the copolymerizable monomer include unsaturated carboxylic acid or anhydride, metal salt of α, β-unsaturated carboxylic acid, α, β-unsaturated carboxylic acid ester, vinyl ester, vinyl ester saponified product, cyclic olefin, Examples include vinyl aromatic compounds, polyene compounds (such as dienes), (meth) acrylonitrile, halogenated vinyls, and halogenated vinylidenes. You may use these individually or in combination of 2 or more types.
In this specification, acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid, and acrylate and methacrylate are collectively referred to as (meth) acrylate.
なお、本明細書では、アクリル酸とメタクリル酸とを総称して(メタ)アクリル酸、アクリレートとメタクリレートとを総称して(メタ)アクリレートという。 Examples of the copolymerizable monomer include unsaturated carboxylic acid or anhydride, metal salt of α, β-unsaturated carboxylic acid, α, β-unsaturated carboxylic acid ester, vinyl ester, vinyl ester saponified product, cyclic olefin, Examples include vinyl aromatic compounds, polyene compounds (such as dienes), (meth) acrylonitrile, halogenated vinyls, and halogenated vinylidenes. You may use these individually or in combination of 2 or more types.
In this specification, acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid, and acrylate and methacrylate are collectively referred to as (meth) acrylate.
不飽和カルボン酸又はその無水物としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸、さらに、不飽和ジカルボン酸のハーフエステル、ハーフアミド等が挙げられる。なかでもアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸が好ましく、特にアクリル酸、無水マレイン酸が好ましい。
α,β-不飽和カルボン酸の金属塩としては、(メタ)アクリル酸のナトリウム塩、マグネシウム塩が挙げられる。
α,β-不飽和カルボン酸エステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-ヒドロキシエチルアクリレート、さらに、メタクリル酸とアルコールとのエステル化物等が挙げられる。なかでも、メチル(メタ)アクリレート、エチル(メタ)アクリレートが好ましい。 Examples of unsaturated carboxylic acids or anhydrides include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, crotonic acid, and unsaturated dicarboxylic acid half esters and half amides. Is mentioned. Of these, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferable, and acrylic acid and maleic anhydride are particularly preferable.
Examples of the metal salt of α, β-unsaturated carboxylic acid include sodium salt and magnesium salt of (meth) acrylic acid.
Examples of α, β-unsaturated carboxylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl acrylate, Examples include esterified products of methacrylic acid and alcohol. Of these, methyl (meth) acrylate and ethyl (meth) acrylate are preferred.
α,β-不飽和カルボン酸の金属塩としては、(メタ)アクリル酸のナトリウム塩、マグネシウム塩が挙げられる。
α,β-不飽和カルボン酸エステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-ヒドロキシエチルアクリレート、さらに、メタクリル酸とアルコールとのエステル化物等が挙げられる。なかでも、メチル(メタ)アクリレート、エチル(メタ)アクリレートが好ましい。 Examples of unsaturated carboxylic acids or anhydrides include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, crotonic acid, and unsaturated dicarboxylic acid half esters and half amides. Is mentioned. Of these, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferable, and acrylic acid and maleic anhydride are particularly preferable.
Examples of the metal salt of α, β-unsaturated carboxylic acid include sodium salt and magnesium salt of (meth) acrylic acid.
Examples of α, β-unsaturated carboxylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, glycidyl (meth) acrylate, 2-hydroxyethyl acrylate, Examples include esterified products of methacrylic acid and alcohol. Of these, methyl (meth) acrylate and ethyl (meth) acrylate are preferred.
ビニルエステルとしては、ぎ酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル等が挙げられる。なかでも、酢酸ビニルが好ましい。
ビニルエステル鹸化物としては、ビニルエステルを塩基性化合物等でケン化して得られるビニルアルコール等が挙げられる。 Examples of vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate, vinyl versatate, and the like. Of these, vinyl acetate is preferred.
Examples of the vinyl ester saponified product include vinyl alcohol obtained by saponifying vinyl ester with a basic compound or the like.
ビニルエステル鹸化物としては、ビニルエステルを塩基性化合物等でケン化して得られるビニルアルコール等が挙げられる。 Examples of vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate, vinyl versatate, and the like. Of these, vinyl acetate is preferred.
Examples of the vinyl ester saponified product include vinyl alcohol obtained by saponifying vinyl ester with a basic compound or the like.
環状オレフィンとしては、例えば、ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-プロピルノルボルネン、5,6-ジメチルノルボルネン、1-メチルノルボルネン、7-メチルノルボルネン、5,5,6-トリメチルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、5-エチリデンノルボルネン、5-ビニルノルボルネン、1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-メチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-エチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2,3-ジメチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-ヘキシル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-エチリデン-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-フルオロ-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、1,5-ジメチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-シクロへキシル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2,3-ジクロロ-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、2-イソブチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン、1,2-ジヒドロジシクロペンタジエン、5-クロロノルボルネン、5,5-ジクロロノルボルネン、5-フルオロノルボルネン、5,5,6-トリフルオロ-6-トリフルオロメチルノルボルネン、5-クロロメチルノルボルネン、5-メトキシノルボルネン、5,6-ジカルボキシルノルボルネンアンハイドレート、5-ジメチルアミノノルボルネン、5-シアノノルボルネン、シクロペンテン、3-メチルシクロペンテン、4-メチルシクロペンテン、3,4-ジメチルシクロペンテン、3,5-ジメチルシクロペンテン、3-クロロシクロペンテン、シクロへキセン、3-メチルシクロへキセン、4-メチルシクロヘキセン、3,4-ジメチルシクロヘキセン、3-クロロシクロヘキセン、シクロへプテン、ビニルシクロヘキサン等が挙げられる。
Examples of the cyclic olefin include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-propylnorbornene, 5,6-dimethylnorbornene, 1-methylnorbornene, 7-methylnorbornene, 5,5,6-trimethylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, 5-ethylidenenorbornene, 5-vinylnorbornene, 1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-ethyl-1,4,5,8-dimethano-1, 2,3,4,4a, 5,8,8a-octahydronaphthalene, 2,3-dimethyl-1,4,5,8-dimethano- , 2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-hexyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octa Hydronaphthalene, 2-ethylidene-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2-fluoro-1,4,5,8-dimethano -1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 1,5-dimethyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8 , 8a-octahydronaphthalene, 2-cyclohexyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 2,3-dichloro-1 , 4,5,8-Dimethano-1,2,3,4,4a, 5,8,8a-octahydrona Talen, 2-isobutyl-1,4,5,8-dimethano-1,2,3,4,4a, 5,8,8a-octahydronaphthalene, 1,2-dihydrodicyclopentadiene, 5-chloronorbornene, 5,5-dichloronorbornene, 5-fluoronorbornene, 5,5,6-trifluoro-6-trifluoromethylnorbornene, 5-chloromethylnorbornene, 5-methoxynorbornene, 5,6-dicarboxylnorbornene anhydrate, 5-dimethylaminonorbornene, 5-cyanonorbornene, cyclopentene, 3-methylcyclopentene, 4-methylcyclopentene, 3,4-dimethylcyclopentene, 3,5-dimethylcyclopentene, 3-chlorocyclopentene, cyclohexene, 3-methylcyclohex Xene, 4-methyl Chlohexene, 3,4-dimethylcyclohexene, 3-chlorocyclohexene, cycloheptene, vinylcyclohexane and the like can be mentioned.
ビニル芳香族化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン、p-tert-ブチルスチレン、エチルスチレン、ビニルナフタレン等が挙げられる。
Examples of the vinyl aromatic compound include styrene, α-methylstyrene, p-methylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, fluorostyrene, p-tert-butylstyrene, ethylstyrene, Examples include vinyl naphthalene.
ポリエン化合物としては、例えば、直鎖状又は分岐状の脂肪族共役ポリエン化合物、脂環式共役ポリエン化合物、脂肪族非共役ポリエン化合物、脂環式非共役ポリエン化合物、芳香族非共役ポリエン化合物等が挙げられる。これらは、アルコキシ基、アリール基、アリールオキシ基、アラルキル基、アラルキルオキシ基等の置換基を有していてもよい。
Examples of polyene compounds include linear or branched aliphatic conjugated polyene compounds, alicyclic conjugated polyene compounds, aliphatic non-conjugated polyene compounds, alicyclic non-conjugated polyene compounds, and aromatic non-conjugated polyene compounds. Can be mentioned. These may have a substituent such as an alkoxy group, an aryl group, an aryloxy group, an aralkyl group, and an aralkyloxy group.
脂肪族共役ポリエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2-エチル-1,3-ブタジエン、2-プロピル-1,3-ブタジエン、2-イソプロピル-1,3-ブタジエン、2-ヘキシル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、2-メチル-1,3-ヘキサジエン、2-メチル-1,3-オクタジエン、2-メチル-1,3-デカジエン、2,3-ジメチル-1,3-ペンタジエン、2,3-ジメチル-1,3-ヘキサジエン、2,3-ジメチル-1,3-オクタジエン、2,3-ジメチル-1,3-デカジエン等が挙げられる。
Examples of the aliphatic conjugated polyene compound include 1,3-butadiene, isoprene, 2-ethyl-1,3-butadiene, 2-propyl-1,3-butadiene, 2-isopropyl-1,3-butadiene, 2- Hexyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 2-methyl-1,3- Hexadiene, 2-methyl-1,3-octadiene, 2-methyl-1,3-decadiene, 2,3-dimethyl-1,3-pentadiene, 2,3-dimethyl-1,3-hexadiene, 2,3- Examples thereof include dimethyl-1,3-octadiene and 2,3-dimethyl-1,3-decadiene.
脂環式共役ポリエン化合物としては、例えば、2-メチル-1,3-シクロペンタジエン、2-メチル-1,3-シクロヘキサジエン、2,3-ジメチル-1,3-シクロペンタジエン、2,3-ジメチル-1,3-シクロヘキサジエン、2-クロロ-1,3-ブタジエン、2,3-ジクロロ-1,3-ブタジエン、1-フルオロ-1,3-ブタジエン、2-クロロ-1,3-ペンタジエン、2-クロロ-1,3-シクロペンタジエン、2-クロロ-1,3-シクロヘキサジエン等が挙げられる。
Examples of the alicyclic conjugated polyene compound include 2-methyl-1,3-cyclopentadiene, 2-methyl-1,3-cyclohexadiene, 2,3-dimethyl-1,3-cyclopentadiene, 2,3- Dimethyl-1,3-cyclohexadiene, 2-chloro-1,3-butadiene, 2,3-dichloro-1,3-butadiene, 1-fluoro-1,3-butadiene, 2-chloro-1,3-pentadiene 2-chloro-1,3-cyclopentadiene, 2-chloro-1,3-cyclohexadiene, and the like.
脂肪族非共役ポリエン化合物としては、例えば、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、1,6-オクタジエン、1,7-オクタジエン、1,8-ノナジエン、1,9-デカジエン、1,13-テトラデカジエン、1,5,9-デカトリエン、3-メチル-1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4-エチル-1,4-ヘキサジエン、3-メチル-1,5-ヘキサジエン、3,3-ジメチル-1,4-ヘキサジエン、3,4-ジメチル-1,5-ヘキサジエン、5-メチル-1,4-ヘプタジエン、5-エチル-1,4-ヘプタジエン、5-メチル-1,5-ヘプタジエン、6-メチル-1,5-ヘプタジエン、5-エチル-1,5-ヘプタジエン、3-メチル-1,6-ヘプタジエン、4-メチル-1,6-ヘプタジエン、4,4-ジメチル-1,6-ヘプタジエン、4-エチル-1,6-ヘプタジエン、4-メチル-1,4-オクタジエン、5-メチル-1,4-オクタジエン、4-エチル-1,4-オクタジエン、5-エチル-1,4-オクタジエン、5-メチル-1,5-オクタジエン、6-メチル-1,5-オクタジエン、5-エチル-1,5-オクタジエン、6-エチル-1,5-オクタジエン、6-メチル-1,6-オクタジエン、7-メチル-1,6-オクタジエン、6-エチル-1,6-オクタジエン、6-プロピル-1,6-オクタジエン、6-ブチル-1,6-オクタジエン、4-メチル-1,4-ノナジエン、5-メチル-1,4-ノナジエン、4-エチル-1,4-ノナジエン、5-エチル-1,4-ノナジエン、5-メチル-1,5-ノナジエン、6-メチル-1,5-ノナジエン、5-エチル-1,5-ノナジエン、6-エチル-1,5-ノナジエン、6-メチル-1,6-ノナジエン、7-メチル-1,6-ノナジエン、6-エチル-1,6-ノナジエン、7-エチル-1,6-ノナジエン、7-メチル-1,7-ノナジエン、8-メチル-1,7-ノナジエン、7-エチル-1,7-ノナジエン、5-メチル-1,4-デカジエン、5-エチル-1,4-デカジエン、5-メチル-1,5-デカジエン、6-メチル-1,5-デカジエン、5-エチル-1,5-デカジエン、6-エチル-1,5-デカジエン、6-メチル-1,6-デカジエン、6-エチル-1,6-デカジエン、7-メチル-1,6-デカジエン、7-エチル-1,6-デカジエン、7-メチル-1,7-デカジエン、8-メチル-1,7-デカジエン、7-エチル-1,7-デカジエン、8-エチル-1,7-デカジエン、8-メチル-1,8-デカジエン、9-メチル-1,8-デカジエン、8-エチル-1,8-デカジエン、6-メチル-1,6-ウンデカジエン、9-メチル-1,8-ウンデカジエン、6,10-ジメチル-1,5,9-ウンデカトリエン、5,9-ジメチル-1,4,8-デカトリエン、4-エチリデン-8-メチル-1,7-ノナジエン、13-エチル-9-メチル-1,9,12-ペンタデカトリエン、5,9,13-トリメチル-1,4,8,12-テトラデカジエン、8,14,16-トリメチル-1,7,14-ヘキサデカトリエン、4-エチリデン-12-メチル-1,11-ペンタデカジエン等が挙げられる。
Examples of the aliphatic non-conjugated polyene compound include 1,4-hexadiene, 1,5-hexadiene, 1,6-heptadiene, 1,6-octadiene, 1,7-octadiene, 1,8-nonadiene, 1,9 -Decadiene, 1,13-tetradecadiene, 1,5,9-decatriene, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4 -Ethyl-1,4-hexadiene, 3-methyl-1,5-hexadiene, 3,3-dimethyl-1,4-hexadiene, 3,4-dimethyl-1,5-hexadiene, 5-methyl-1,4 -Heptadiene, 5-ethyl-1,4-heptadiene, 5-methyl-1,5-heptadiene, 6-methyl-1,5-heptadiene, 5-ethyl-1,5-heptadiene 3-methyl-1,6-heptadiene, 4-methyl-1,6-heptadiene, 4,4-dimethyl-1,6-heptadiene, 4-ethyl-1,6-heptadiene, 4-methyl-1,4 -Octadiene, 5-methyl-1,4-octadiene, 4-ethyl-1,4-octadiene, 5-ethyl-1,4-octadiene, 5-methyl-1,5-octadiene, 6-methyl-1,5 -Octadiene, 5-ethyl-1,5-octadiene, 6-ethyl-1,5-octadiene, 6-methyl-1,6-octadiene, 7-methyl-1,6-octadiene, 6-ethyl-1,6 -Octadiene, 6-propyl-1,6-octadiene, 6-butyl-1,6-octadiene, 4-methyl-1,4-nonadiene, 5-methyl-1,4-nonadiene, 4-ethyl- , 4-nonadiene, 5-ethyl-1,4-nonadiene, 5-methyl-1,5-nonadiene, 6-methyl-1,5-nonadiene, 5-ethyl-1,5-nonadiene, 6-ethyl-1 , 5-nonadiene, 6-methyl-1,6-nonadiene, 7-methyl-1,6-nonadiene, 6-ethyl-1,6-nonadiene, 7-ethyl-1,6-nonadiene, 7-methyl-1 , 7-nonadiene, 8-methyl-1,7-nonadiene, 7-ethyl-1,7-nonadiene, 5-methyl-1,4-decadiene, 5-ethyl-1,4-decadiene, 5-methyl-1 , 5-decadiene, 6-methyl-1,5-decadiene, 5-ethyl-1,5-decadiene, 6-ethyl-1,5-decadiene, 6-methyl-1,6-decadiene, 6-ethyl-1 , 6-Decadien, 7-methyl 1,6-decadiene, 7-ethyl-1,6-decadiene, 7-methyl-1,7-decadiene, 8-methyl-1,7-decadiene, 7-ethyl-1,7-decadiene, 8- Ethyl-1,7-decadiene, 8-methyl-1,8-decadiene, 9-methyl-1,8-decadiene, 8-ethyl-1,8-decadiene, 6-methyl-1,6-undecadiene, 9- Methyl-1,8-undecadiene, 6,10-dimethyl-1,5,9-undecatriene, 5,9-dimethyl-1,4,8-decatriene, 4-ethylidene-8-methyl-1,7- Nonadiene, 13-ethyl-9-methyl-1,9,12-pentadecatriene, 5,9,13-trimethyl-1,4,8,12-tetradecadiene, 8,14,16-trimethyl-1, 7,14-Hexade Triene, 4-ethylidene-12-methyl-1,11-penta decadiene, and the like.
脂環式非共役ポリエン化合物としては、例えば、ビニルシクロヘキサン、ビニルシクロヘキセン、5-ビニル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロペニル-2-ノルボルネン、シクロヘキサジエン、ジシクロペンタジエン、シクロオクタジエン、2,5-ノルボルナジエン、2-メチル-2,5-ノルボルナジエン、2-エチル-2,5-ノルボルナジエン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、1,4-ジビニルシクロヘキサン、1,3-ジビニルシクロヘキサン、1,3-ジビニルシクロペンタン、1,5-ジビニルシクロオクタン、1-アリル-4-ビニルシクロヘキサン、1,4-ジアリルシクロヘキサン、1-アリル-5-ビニルシクロオクタン、1,5-ジアリルシクロオクタン、1-アリル-4-イソプロペニルシクロヘキサン、1-イソプロペニル-4-ビニルシクロヘキサン、1-イソプロペニル-3-ビニルシクロペンタン、メチルテトラヒドロインデン等が挙げられる。
Examples of the alicyclic nonconjugated polyene compound include vinylcyclohexane, vinylcyclohexene, 5-vinyl-2-norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, and 5-isopropenyl-2-norbornene. Cyclohexadiene, dicyclopentadiene, cyclooctadiene, 2,5-norbornadiene, 2-methyl-2,5-norbornadiene, 2-ethyl-2,5-norbornadiene, 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene, 1,4-divinylcyclohexane, 1,3-divinylcyclohexane, 1,3-divinylcyclopentane, 1 , 5-Divinylcyclo Tan, 1-allyl-4-vinylcyclohexane, 1,4-diallylcyclohexane, 1-allyl-5-vinylcyclooctane, 1,5-diallylcyclooctane, 1-allyl-4-isopropenylcyclohexane, 1-isopropenyl Examples include -4-vinylcyclohexane, 1-isopropenyl-3-vinylcyclopentane, and methyltetrahydroindene.
芳香族非共役ポリエン化合物としては、例えば、ジビニルベンゼン、ビニルイソプロペニルベンゼン等が挙げられる。
Examples of the aromatic non-conjugated polyene compound include divinylbenzene and vinylisopropenylbenzene.
共重合可能なモノマーとの共重合体の変性物としては、上述したように、例えば、α,β-不飽和カルボン酸類による変性物等が挙げられる。この場合の変性量は、共重合可能モノマーとの共重合体100重量部に対して、通常、0.1~10重量部、好ましくは0.2~5重量部、より好ましくは0.2~4重量部である。
Examples of the modified product of the copolymer with the copolymerizable monomer include a modified product of α, β-unsaturated carboxylic acids as described above. The modification amount in this case is usually 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, more preferably 0.2 to 0.2 parts by weight with respect to 100 parts by weight of the copolymer with the copolymerizable monomer. 4 parts by weight.
炭素数2~20のα-オレフィン由来の構造単位を1種類以上有する重合体は、好ましくは、炭素数2~20のα-オレフィン由来の構造単位と、この炭素数2~20のα-オレフィンと異なる炭素数2~20のα-オレフィン、α,β-不飽和カルボン酸エステル、α,β-不飽和カルボン酸無水物及び酢酸ビニルよりなる群から選ばれる1種以上のモノマーを由来とする構造単位を有する共重合体であり、より好ましくは、エチレン由来の構造単位と、炭素数3~20のα-オレフィン、α,β-不飽和カルボン酸エステル、α,β-不飽和カルボン酸無水物及び酢酸ビニルよりなる群から選ばれる1種以上のモノマーを由来とする構造単位を有する共重合体であり、さらに好ましくは、エチレン由来の構造単位と、α,β-不飽和カルボン酸エステル及びα,β-不飽和カルボン酸よりなる群から選ばれる1種以上のモノマーを由来とする構造単位を有する共重合体である。
The polymer having at least one structural unit derived from an α-olefin having 2 to 20 carbon atoms is preferably a structural unit derived from an α-olefin having 2 to 20 carbon atoms and the α-olefin having 2 to 20 carbon atoms. Derived from one or more monomers selected from the group consisting of α-olefins having 2 to 20 carbon atoms, α, β-unsaturated carboxylic acid esters, α, β-unsaturated carboxylic acid anhydrides and vinyl acetate different from A copolymer having a structural unit, more preferably an ethylene-derived structural unit, an α-olefin having 3 to 20 carbon atoms, an α, β-unsaturated carboxylic acid ester, an α, β-unsaturated carboxylic acid anhydride. And a copolymer having a structural unit derived from one or more monomers selected from the group consisting of vinyl acetate, and more preferably a structural unit derived from ethylene and an α, β-unsaturated carboxylic acid ester. Ether and alpha, is a copolymer having a structural unit derived from one or more monomers selected from the group consisting of β- unsaturated carboxylic acid.
α-オレフィンと共重合可能なモノマーとの共重合体としては、具体的には、
(i) エチレン-酢酸ビニル共重合体、その鹸化物又は部分けん化物あるいはエチレン-酢酸ビニル共重合体の無水マレイン酸変性物、
(ii) エチレン-(メタ)アクリル酸共重合体、
(iii) エチレン-グリシジル(メタ)アクリレート共重合体、エチレン-メチル(メタ)アクリレート共重合体などのエチレン-(メタ)アクリレート共重合体、
(iv) エチレン-ビニルシクロヘキサンなどのエチレン-脂環式α-オレフィン共重合体、
(v) エチレン-酢酸ビニル共重合体-グリシジル(メタ)アクリレート、エチレン-酢酸ビニル共重合体-メチル(メタ)アクリレートなどのエチレン-酢酸ビニル-(メタ)アクリレート共重合体、
(vi) エチレン-エチル(メタ)アクリレート-無水マレイン酸共重合体などのエチレン-(メタ)アクリレート-無水マレイン酸、
(vii) エチレン-グリシジル(メタ)アクリレート-メチル(メタ)アクリレート共重合体などのエチレン-(メタ)アクリレート-(メタ)アクリレート共重合体、
(viii) これらの金属塩の共重合体、および
(ix) 2種以上のこれら共重合体のブレンド等が挙げられる。 As a copolymer of a monomer copolymerizable with α-olefin, specifically,
(i) an ethylene-vinyl acetate copolymer, a saponified product or a partially saponified product thereof, or a maleic anhydride-modified product of an ethylene-vinyl acetate copolymer,
(ii) an ethylene- (meth) acrylic acid copolymer,
(iii) ethylene- (meth) acrylate copolymer such as ethylene-glycidyl (meth) acrylate copolymer, ethylene-methyl (meth) acrylate copolymer,
(iv) ethylene-alicyclic α-olefin copolymers such as ethylene-vinylcyclohexane,
(v) ethylene-vinyl acetate- (meth) acrylate copolymers such as ethylene-vinyl acetate copolymer-glycidyl (meth) acrylate, ethylene-vinyl acetate copolymer-methyl (meth) acrylate,
(vi) ethylene- (meth) acrylate-maleic anhydride such as ethylene-ethyl (meth) acrylate-maleic anhydride copolymer,
(vii) ethylene- (meth) acrylate- (meth) acrylate copolymers such as ethylene-glycidyl (meth) acrylate-methyl (meth) acrylate copolymer,
(viii) copolymers of these metal salts, and (ix) blends of two or more of these copolymers.
(i) エチレン-酢酸ビニル共重合体、その鹸化物又は部分けん化物あるいはエチレン-酢酸ビニル共重合体の無水マレイン酸変性物、
(ii) エチレン-(メタ)アクリル酸共重合体、
(iii) エチレン-グリシジル(メタ)アクリレート共重合体、エチレン-メチル(メタ)アクリレート共重合体などのエチレン-(メタ)アクリレート共重合体、
(iv) エチレン-ビニルシクロヘキサンなどのエチレン-脂環式α-オレフィン共重合体、
(v) エチレン-酢酸ビニル共重合体-グリシジル(メタ)アクリレート、エチレン-酢酸ビニル共重合体-メチル(メタ)アクリレートなどのエチレン-酢酸ビニル-(メタ)アクリレート共重合体、
(vi) エチレン-エチル(メタ)アクリレート-無水マレイン酸共重合体などのエチレン-(メタ)アクリレート-無水マレイン酸、
(vii) エチレン-グリシジル(メタ)アクリレート-メチル(メタ)アクリレート共重合体などのエチレン-(メタ)アクリレート-(メタ)アクリレート共重合体、
(viii) これらの金属塩の共重合体、および
(ix) 2種以上のこれら共重合体のブレンド等が挙げられる。 As a copolymer of a monomer copolymerizable with α-olefin, specifically,
(i) an ethylene-vinyl acetate copolymer, a saponified product or a partially saponified product thereof, or a maleic anhydride-modified product of an ethylene-vinyl acetate copolymer,
(ii) an ethylene- (meth) acrylic acid copolymer,
(iii) ethylene- (meth) acrylate copolymer such as ethylene-glycidyl (meth) acrylate copolymer, ethylene-methyl (meth) acrylate copolymer,
(iv) ethylene-alicyclic α-olefin copolymers such as ethylene-vinylcyclohexane,
(v) ethylene-vinyl acetate- (meth) acrylate copolymers such as ethylene-vinyl acetate copolymer-glycidyl (meth) acrylate, ethylene-vinyl acetate copolymer-methyl (meth) acrylate,
(vi) ethylene- (meth) acrylate-maleic anhydride such as ethylene-ethyl (meth) acrylate-maleic anhydride copolymer,
(vii) ethylene- (meth) acrylate- (meth) acrylate copolymers such as ethylene-glycidyl (meth) acrylate-methyl (meth) acrylate copolymer,
(viii) copolymers of these metal salts, and (ix) blends of two or more of these copolymers.
炭素数2~20のα-オレフィン由来の構造単位を有する重合体、特に、上記(i)~(vii)の共重合体は、190℃、2160g荷重におけるメルトフローレートが、0.01~500g/10分であるものが好ましく、より好ましくは0.01~400g/10分である。
炭素数2~20のα-オレフィン由来の構造単位を有する重合体、特に、上記(i)~(vii)の共重合体は、融点が、60~200℃であるものが好ましく、60~120℃がより好ましく、60~110℃がさらに好ましい。この範囲の融点を有する重合体を用いる場合には、水性接着剤の被着体への浸透性又は密着性をより向上させることができる。 A polymer having a structural unit derived from an α-olefin having 2 to 20 carbon atoms, particularly a copolymer of the above (i) to (vii) has a melt flow rate of 0.01 to 500 g at 190 ° C. under a load of 2160 g. / 10 minutes is preferable, and 0.01 to 400 g / 10 minutes is more preferable.
The polymer having a structural unit derived from an α-olefin having 2 to 20 carbon atoms, particularly the copolymer of (i) to (vii) above, preferably has a melting point of 60 to 200 ° C. ° C is more preferable, and 60 to 110 ° C is more preferable. When a polymer having a melting point in this range is used, the permeability or adhesion of the aqueous adhesive to the adherend can be further improved.
炭素数2~20のα-オレフィン由来の構造単位を有する重合体、特に、上記(i)~(vii)の共重合体は、融点が、60~200℃であるものが好ましく、60~120℃がより好ましく、60~110℃がさらに好ましい。この範囲の融点を有する重合体を用いる場合には、水性接着剤の被着体への浸透性又は密着性をより向上させることができる。 A polymer having a structural unit derived from an α-olefin having 2 to 20 carbon atoms, particularly a copolymer of the above (i) to (vii) has a melt flow rate of 0.01 to 500 g at 190 ° C. under a load of 2160 g. / 10 minutes is preferable, and 0.01 to 400 g / 10 minutes is more preferable.
The polymer having a structural unit derived from an α-olefin having 2 to 20 carbon atoms, particularly the copolymer of (i) to (vii) above, preferably has a melting point of 60 to 200 ° C. ° C is more preferable, and 60 to 110 ° C is more preferable. When a polymer having a melting point in this range is used, the permeability or adhesion of the aqueous adhesive to the adherend can be further improved.
具体的には、好ましくは、(i) エチレン-酢酸ビニル共重合体、その鹸化物又は部分けん化物あるいはエチレン-酢酸ビニル共重合体の無水マレイン酸変性物、(ii) エチレン-(メタ)アクリル酸共重合体、(iii) エチレン-(メタ)アクリレート共重合体、(v) エチレン-酢酸ビニル-(メタ)アクリレート共重合体、(vi) エチレン-(メタ)アクリレート-無水マレイン酸共重合体、(vii) エチレン-(メタ)アクリレート-(メタ)アクリレート共重合体であり、より好ましくは、(ia) エチレン-酢酸ビニル共重合体、(ii) エチレン-(メタ)アクリル酸共重合体、(iii) エチレン-(メタ)アクリレート共重合体、(v) エチレン-酢酸ビニル-(メタ)アクリレート共重合体、(vi) エチレン-(メタ)アクリレート-無水マレイン酸共重合体である。これらのうち、特に、炭素数2~20のα-オレフィン(より好ましくは、エチレン)由来の構造単位を含有共重合体が好ましい。
Specifically, preferably, (i) ethylene-vinyl acetate copolymer, saponified product or partially saponified product thereof, or maleic anhydride modified product of ethylene-vinyl acetate copolymer, (ii) ethylene- (meth) acrylic Acid copolymer, (iii) ethylene- (meth) acrylate copolymer, (v) ethylene-vinyl acetate- (meth) acrylate copolymer, (vi) ethylene- (meth) acrylate-maleic anhydride copolymer (Vii) ethylene- (meth) acrylate- (meth) acrylate copolymer, more preferably (ia) ethylene-vinyl acetate copolymer, (ii) ethylene- (meth) acrylic acid copolymer, (iii) ethylene- (meth) acrylate copolymer, (v) ethylene-vinyl acetate- (meth) acrylate copolymer, (vi) ethylene- (meth) acrylate-maleic anhydride copolymer It is a body. Among these, a copolymer containing a structural unit derived from an α-olefin having 2 to 20 carbon atoms (more preferably, ethylene) is particularly preferable.
水性接着剤において、重合体の含有量は、例えば、用いる重合体の種類、使用目的、得ようとする性能等により適宜調整することができる。例えば、水性接着剤の安定性を維持し、粘性を適度に保ち及び/又は良好な塗膜形成能、接着性を発現させる観点から、水性接着剤の全量に対して、好ましくは1~60重量%であり、より好ましくは3~60重量%、3~50重量%であり、さらに好ましくは5~55重量%である。
In the aqueous adhesive, the content of the polymer can be appropriately adjusted depending on, for example, the type of polymer used, the purpose of use, the performance to be obtained, and the like. For example, from the viewpoint of maintaining the stability of the water-based adhesive and maintaining the viscosity moderately and / or developing good coating film forming ability and adhesion, it is preferably 1 to 60% by weight with respect to the total amount of the water-based adhesive. %, More preferably 3 to 60% by weight, 3 to 50% by weight, still more preferably 5 to 55% by weight.
〈その他の樹脂〉
本発明で使用される水性接着剤は、上述した炭素数2~20のα-オレフィン由来の構造単位を有する重合体以外のその他の樹脂を含有していてもよい。
その他の樹脂としては、例えば、ポリオレフィン系樹脂、アクリル系樹脂(PMMA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリテトラフルオロエチレン(PTFE)、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、AS樹脂等の重合体及び共重合体並びにそれらの変性物等の種々のものが挙げられる。これらは単独で又は2種以上をブレンドしてもよい。
また、粘着樹脂又は粘着付与剤としての機能を発揮する樹脂を使用してもよい。
このような樹脂としては、例えば、ロジン類、テルペン系樹脂、炭素数5の石油留分を重合した石油系樹脂及びこの水素添加樹脂、炭素数9の石油留分を重合した石油系樹脂及びこの水素添加樹脂、その他の石油系樹脂、クマロン樹脂並びにインデン樹脂、ポリウレタン樹脂等が挙げられる。 <Other resins>
Aqueous adhesive used in the present invention may contain other resins other than the polymer having the structural unit derived from α- olefin having 2 to 20 carbon atoms as described above.
Examples of other resins include polyolefin resins, acrylic resins (PMMA), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE), acrylonitrile butadiene styrene resin (ABS resin), and various ones of such polymers and copolymers and their modified products such as aS resin. These may be used alone or in combination of two or more.
Moreover, you may use resin which exhibits the function as an adhesive resin or a tackifier.
Examples of such resins include rosins, terpene resins, petroleum resins obtained by polymerizing petroleum fractions having 5 carbon atoms and hydrogenated resins, petroleum resins obtained by polymerizing petroleum fractions having 9 carbon atoms, and Examples thereof include hydrogenated resins, other petroleum resins, coumarone resins, indene resins, polyurethane resins, and the like.
本発明で使用される水性接着剤は、上述した炭素数2~20のα-オレフィン由来の構造単位を有する重合体以外のその他の樹脂を含有していてもよい。
その他の樹脂としては、例えば、ポリオレフィン系樹脂、アクリル系樹脂(PMMA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリテトラフルオロエチレン(PTFE)、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、AS樹脂等の重合体及び共重合体並びにそれらの変性物等の種々のものが挙げられる。これらは単独で又は2種以上をブレンドしてもよい。
また、粘着樹脂又は粘着付与剤としての機能を発揮する樹脂を使用してもよい。
このような樹脂としては、例えば、ロジン類、テルペン系樹脂、炭素数5の石油留分を重合した石油系樹脂及びこの水素添加樹脂、炭素数9の石油留分を重合した石油系樹脂及びこの水素添加樹脂、その他の石油系樹脂、クマロン樹脂並びにインデン樹脂、ポリウレタン樹脂等が挙げられる。 <Other resins>
Aqueous adhesive used in the present invention may contain other resins other than the polymer having the structural unit derived from α- olefin having 2 to 20 carbon atoms as described above.
Examples of other resins include polyolefin resins, acrylic resins (PMMA), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE), acrylonitrile butadiene styrene resin (ABS resin), and various ones of such polymers and copolymers and their modified products such as aS resin. These may be used alone or in combination of two or more.
Moreover, you may use resin which exhibits the function as an adhesive resin or a tackifier.
Examples of such resins include rosins, terpene resins, petroleum resins obtained by polymerizing petroleum fractions having 5 carbon atoms and hydrogenated resins, petroleum resins obtained by polymerizing petroleum fractions having 9 carbon atoms, and Examples thereof include hydrogenated resins, other petroleum resins, coumarone resins, indene resins, polyurethane resins, and the like.
具体的には、ロジン、重合ロジン、不均化ロジン、水添ロジン、マレイン化ロジン、フマル化ロジン及びこれらのグリセリンエステル、ペンタエリスリトールエステル、メチルエステル、トリエチレングリコールエステル、フェノール変性物およびそのエステル化物などのロジン類;テルペン重合体、テルペンフェノール、β-ピネン重合体、芳香族変性テルペン重合体、α-ピネン重合体、テルペン系水素添加樹脂などのテルペン系樹脂;炭素数5の石油留分を重合した石油系樹脂、炭素数9の石油留分を重合した石油系樹脂及びおよびこれらの水素添加樹脂;マレイン酸変性物並びにフマル酸変性物などの石油系樹脂;後述するポリイソシアネート化合物とポリオール化合物、さらに必要に応じて他の化合物とを反応させて得られるポリウレタン樹脂などが挙げられる。
Specifically, rosin, polymerized rosin, disproportionated rosin, hydrogenated rosin, maleated rosin, fumarized rosin and their glycerin ester, pentaerythritol ester, methyl ester, triethylene glycol ester, phenol modified product and ester thereof Rosins such as fluorides; terpene polymers, terpene phenols, β-pinene polymers, aromatic modified terpene polymers, α-pinene polymers, terpene hydrogenated resins, and other terpene resins; C5 petroleum fractions Petroleum resins obtained by polymerizing styrene, petroleum resins obtained by polymerizing petroleum fractions having 9 carbon atoms, and hydrogenated resins thereof; petroleum resins such as maleic acid modified products and fumaric acid modified products; polyisocyanate compounds and polyols described later A compound and, if necessary, a poly Examples thereof include urethane resin.
なかでも、好ましくは、テルペン系樹脂、ポリウレタン樹脂である。テルペン系樹脂は、YSレジンPX/PXN、YSポリスター、マイティエース、YSレジンTO/TR、クリアロンP/M/K(ヤスハラケミカル社製)、タマノル803L/901(荒川化学社製)、テルタック80(日本テルペン化学社製)等として市販されているもののいずれをも使用することができる。
Among these, terpene resins and polyurethane resins are preferable. Terpene resins are YS Resin PX / PXN, YS Polyster, Mighty Ace, YS Resin TO / TR, Clearon P / M / K (manufactured by Yashara Chemical Co., Ltd.), Tamanoru 803L / 901 (manufactured by Arakawa Chemical Co., Ltd.), Teltac 80 (Japan) Any of those commercially available as Terpen Chemical Co., Ltd.) can be used.
ポリウレタン樹脂は、ポリウレタンが水中に分散された水性エマルションの形態のものが好ましい。つまり、ポリウレタンとしては、水溶性又は非水溶性のいずれでもよいが、非水溶性のものが好ましい。
通常、ポリウレタン樹脂は、ポリイソシアネート化合物とポリオール化合物、さらに必要に応じて他の化合物とを反応させて得ることができる。反応は、例えば、アセトン法、プレポリマーミキシング法、ケチミン法、ホットメルトディスパージョン法等の方法などが挙げられる。 The polyurethane resin is preferably in the form of an aqueous emulsion in which polyurethane is dispersed in water. That is, the polyurethane may be either water-soluble or water-insoluble, but is preferably water-insoluble.
Usually, the polyurethane resin can be obtained by reacting a polyisocyanate compound and a polyol compound, and if necessary, other compounds. Examples of the reaction include methods such as an acetone method, a prepolymer mixing method, a ketimine method, and a hot melt dispersion method.
通常、ポリウレタン樹脂は、ポリイソシアネート化合物とポリオール化合物、さらに必要に応じて他の化合物とを反応させて得ることができる。反応は、例えば、アセトン法、プレポリマーミキシング法、ケチミン法、ホットメルトディスパージョン法等の方法などが挙げられる。 The polyurethane resin is preferably in the form of an aqueous emulsion in which polyurethane is dispersed in water. That is, the polyurethane may be either water-soluble or water-insoluble, but is preferably water-insoluble.
Usually, the polyurethane resin can be obtained by reacting a polyisocyanate compound and a polyol compound, and if necessary, other compounds. Examples of the reaction include methods such as an acetone method, a prepolymer mixing method, a ketimine method, and a hot melt dispersion method.
ポリイソシアネート化合物としては、通常のポリウレタンの製造に使用される、分子内にイソシアネート基を2個以上有する有機ポリイソシアネート化合物が挙げられる。例えば、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキシル-2,4-ジイソシアネート、メチルシクロヘキシル-2,6-ジイソシアネート、キシリレンジイソシアネート(XDI)、1,3-ビス(イソシアネート)メチルシクロヘキサン、テトラメチルキシリレンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート類;2,4-トルイレンジイソシアネート(TDI)、2,6-トルイレンジイソシアネート(TDI)、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、1,5’-ナフテンジイソシアネート、トリジンジイソシアネート、ジフェニルメチルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、1,3-フェニレンジイソシアネート等の芳香族ジイソシアネート類;リジンエステルトリイソシアネート、トリフェニルメタントリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-イソシアネート-4,4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリメチロールプロパンとトルイレンジイソシアネートとのアダクト体、トリメチロールプロパンと1,6-ヘキサメチレンジイソシアネートとのアダクト体等のトリイソシアネート類などが挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。
Examples of the polyisocyanate compound include organic polyisocyanate compounds having two or more isocyanate groups in the molecule, which are used for ordinary polyurethane production. For example, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, dicyclohexylmethane 4,4'-diisocyanate, methylcyclohexyl-2,4-diisocyanate, methylcyclohexyl-2,6-diisocyanate, xylylene diisocyanate (XDI), 1,3-bis (isocyanate) methylcyclohexane, tetramethylxylylene diisocyanate, trans Aliphatic diisocyanates such as cyclohexane-1,4-diisocyanate and lysine diisocyanate; 2,4-toluylene diisocyanate (TDI), 2,6-to Irene diisocyanate (TDI), diphenylmethane-4,4′-diisocyanate (MDI), 1,5′-naphthene diisocyanate, tolidine diisocyanate, diphenylmethylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 4,4′-dibenzyl diisocyanate, 1, Aromatic diisocyanates such as 3-phenylene diisocyanate; lysine ester triisocyanate, triphenylmethane triisocyanate, 1,6,11-undecane triisocyanate, 1,8-isocyanate-4,4-isocyanate methyloctane, 1,3, Adducts of 6-hexamethylene triisocyanate, bicycloheptane triisocyanate, trimethylolpropane and toluylene diisocyanate And triisocyanates adducts such of trimethylol propane and 1,6-hexamethylene diisocyanate. You may use these individually or in combination of 2 or more types.
ポリオール化合物としては、通常のポリウレタンの製造に使用される、分子内に水酸基を2個以上有する化合物が挙げられる。例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、トリメチロールプロパン、グリセリン等の多価アルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリエーテルポリオール類;アジピン酸、セバシン酸、イタコン酸、無水マレイン酸、テレフタル酸、イソフタル酸、フマル酸、コハク酸、シュウ酸、マロン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸等のジカルボン酸類と、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、1,3-プロパンジオール、トリプロピレングリコール、トリメチロールプロパン、グリセリン等のポリオール化合物とから得られるポリエステルポリオール類;ポリカプロラクトンポリオール、ポリβ-メチル-δ-バレロラクトン等のポリラクトン系ポリエステルポリオール類;ポリブタジエンポリオール又はその水添物、ポリカーボネートポリオール、ポリチオエーテルポリオール、ポリアクリル酸エステルポリオールなどが挙げられる。
Examples of the polyol compound include compounds having two or more hydroxyl groups in the molecule, which are used for the production of ordinary polyurethane. For example, polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, trimethylolpropane, glycerin; polyethylene glycol, polypropylene glycol, polytetramethylene ether Polyether polyols such as glycol; adipic acid, sebacic acid, itaconic acid, maleic anhydride, terephthalic acid, isophthalic acid, fumaric acid, succinic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid Dicarboxylic acids such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,2-propanedio 1,3-propanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 1,3-propanediol, tripropylene glycol, trimethylolpropane, glycerin and other polyol compounds. Polyester polyols such as polycaprolactone polyol and poly β-methyl-δ-valerolactone; polybutadiene polyols or hydrogenated products thereof, polycarbonate polyols, polythioether polyols, polyacrylate polyols, etc. .
ポリウレタン樹脂は、水中での分散安定性を向上させるために、分子内に親水基を有することが好ましい。親水基を分子内に含むポリウレタンは、アイオノマー構造と呼ばれ、それ自体に界面活性能力を有する。よって、水中に分散しやすい傾向があり、ポリウレタンの水性エマルションにさらにモノマーを乳化重合して得られる水性エマルションの耐水性を向上させる傾向がある。
The polyurethane resin preferably has a hydrophilic group in the molecule in order to improve dispersion stability in water. A polyurethane containing a hydrophilic group in its molecule is called an ionomer structure and has a surface-active ability in itself. Therefore, there exists a tendency which is easy to disperse | distribute in water, and there exists a tendency which improves the water resistance of the aqueous emulsion obtained by emulsion-polymerizing a monomer further to the polyurethane aqueous emulsion.
親水性基としては、スルホニル基、カルボキシル基などのアニオン性基が好ましく、スルホニル基がより好ましい。モノマーを乳化重合して得られる水性エマルションの耐水性を一層向上させる傾向があるからである。
アニオン性基は、通常、中和剤によって中和されるのが好ましい。
中和剤としては、トリエチルアミン、トリエタールアミン等の3級アミン化合物;水酸化ナトリウム等の無機アルカリ化合物;アンモニアなどが挙げられる。 As the hydrophilic group, anionic groups such as a sulfonyl group and a carboxyl group are preferable, and a sulfonyl group is more preferable. This is because there is a tendency to further improve the water resistance of an aqueous emulsion obtained by emulsion polymerization of monomers.
In general, the anionic group is preferably neutralized by a neutralizing agent.
Examples of the neutralizing agent include tertiary amine compounds such as triethylamine and trietalamine; inorganic alkali compounds such as sodium hydroxide; ammonia and the like.
アニオン性基は、通常、中和剤によって中和されるのが好ましい。
中和剤としては、トリエチルアミン、トリエタールアミン等の3級アミン化合物;水酸化ナトリウム等の無機アルカリ化合物;アンモニアなどが挙げられる。 As the hydrophilic group, anionic groups such as a sulfonyl group and a carboxyl group are preferable, and a sulfonyl group is more preferable. This is because there is a tendency to further improve the water resistance of an aqueous emulsion obtained by emulsion polymerization of monomers.
In general, the anionic group is preferably neutralized by a neutralizing agent.
Examples of the neutralizing agent include tertiary amine compounds such as triethylamine and trietalamine; inorganic alkali compounds such as sodium hydroxide; ammonia and the like.
分子内に親水基を導入するために、ポリウレタンの製造時に、以下の化合物を使用することが好ましい。化合物としては、例えば、分子内にポリエチレングリコールに由来する構造単位等のノニオン性親水基を有し、かつ、スルホニル基、カルボキシル基、水酸基、一級アミノ基(-NH2)、二級アミノ基(=NH)等の、イソシアネート基と反応性を有する活性水素を1個以上有する化合物(以下、「親水性基含有化合物」という場合がある)等が挙げられる。
In order to introduce a hydrophilic group into the molecule, it is preferable to use the following compounds during the production of polyurethane. Examples of the compound include a nonionic hydrophilic group such as a structural unit derived from polyethylene glycol in the molecule, and a sulfonyl group, carboxyl group, hydroxyl group, primary amino group (—NH 2 ), secondary amino group ( ═NH) and the like (hereinafter also referred to as “hydrophilic group-containing compound”) having at least one active hydrogen having reactivity with an isocyanate group.
親水性基含有化合物としては、例えば、3,4-ジアミノブタンスルホン酸、3,6-ジアミノ-2-トルエンスルホン酸、2,6-ジアミノベンゼンスルホン酸、N-(2-アミノエチル)-2-アミノエチルスルホン酸等のスルホン酸含有化合物;2,2-ジメチロール乳酸、2,2-ジメチロールプロピオン酸、2,2-ジメチロール吉草酸等のカルボン酸含有化合物等が挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。
Examples of the hydrophilic group-containing compound include 3,4-diaminobutanesulfonic acid, 3,6-diamino-2-toluenesulfonic acid, 2,6-diaminobenzenesulfonic acid, and N- (2-aminoethyl) -2. A sulfonic acid-containing compound such as aminoethylsulfonic acid; a carboxylic acid-containing compound such as 2,2-dimethylollactic acid, 2,2-dimethylolpropionic acid, and 2,2-dimethylolvaleric acid. You may use these individually or in combination of 2 or more types.
ポリウレタン樹脂を水性エマルションとして製造する場合、必要に応じて鎖延長、分子量調節等を目的として、親水性基含有化合物とは異なる化合物であって、分子内にイソシアネート化合物と反応し得る活性水素を含有する化合物を併用してもよい。このような化合物としては、例えば、エチレンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン等の多価アミン化合物;トリエタノールアミン等の三級アミン含有多価アルコール類メタノール、エタノール、ブタノール等のモノアルコール類などが挙げられる。
When the polyurethane resin is produced as an aqueous emulsion, it is a compound different from the hydrophilic group-containing compound for the purpose of chain extension, molecular weight adjustment, etc., if necessary, and contains active hydrogen capable of reacting with an isocyanate compound in the molecule. A compound to be used may be used in combination. Examples of such compounds include polyvalent amine compounds such as ethylenediamine, 1,4-butanediamine, and 1,6-hexanediamine; tertiary amine-containing polyhydric alcohols such as triethanolamine, methanol, ethanol, and butanol. And monoalcohols.
ポリウレタン樹脂としては、市販のポリウレタン水性エマルション、市販の水溶性ウレタン樹脂をそのまま用いてもよい。
例えば、ポリウレタン樹脂を水に分散または溶解させた、ポリウレタン分散液(またはポリウレタン水溶液)が挙げられる。ポリウレタン分散液におけるポリウレタン樹脂の含有量は、約10~70重量%が挙げられ、約20~60重量%が好ましく、約30~60重量%がより好ましく、約30~55重量%がさらに好ましい。
ポリウレタン分散液は、さらにイソシアネート反応基を含有しない有機溶剤、例えば、酢酸エチル、アセトン、メチルエチルケトン、N-メチルピロリドン等を含有してもよい。有機溶剤の量は特に限定されるものではないが、ポリウレタン分散液中の不揮発分100重量部に対して0.1~100重量部とすることができる。 As the polyurethane resin, a commercially available polyurethane aqueous emulsion or a commercially available water-soluble urethane resin may be used as it is.
For example, a polyurethane dispersion (or polyurethane aqueous solution) in which a polyurethane resin is dispersed or dissolved in water can be mentioned. The polyurethane resin content in the polyurethane dispersion may be about 10 to 70% by weight, preferably about 20 to 60% by weight, more preferably about 30 to 60% by weight, and even more preferably about 30 to 55% by weight.
The polyurethane dispersion may further contain an organic solvent not containing an isocyanate reactive group, for example, ethyl acetate, acetone, methyl ethyl ketone, N-methylpyrrolidone and the like. The amount of the organic solvent is not particularly limited, but can be 0.1 to 100 parts by weight with respect to 100 parts by weight of the nonvolatile content in the polyurethane dispersion.
例えば、ポリウレタン樹脂を水に分散または溶解させた、ポリウレタン分散液(またはポリウレタン水溶液)が挙げられる。ポリウレタン分散液におけるポリウレタン樹脂の含有量は、約10~70重量%が挙げられ、約20~60重量%が好ましく、約30~60重量%がより好ましく、約30~55重量%がさらに好ましい。
ポリウレタン分散液は、さらにイソシアネート反応基を含有しない有機溶剤、例えば、酢酸エチル、アセトン、メチルエチルケトン、N-メチルピロリドン等を含有してもよい。有機溶剤の量は特に限定されるものではないが、ポリウレタン分散液中の不揮発分100重量部に対して0.1~100重量部とすることができる。 As the polyurethane resin, a commercially available polyurethane aqueous emulsion or a commercially available water-soluble urethane resin may be used as it is.
For example, a polyurethane dispersion (or polyurethane aqueous solution) in which a polyurethane resin is dispersed or dissolved in water can be mentioned. The polyurethane resin content in the polyurethane dispersion may be about 10 to 70% by weight, preferably about 20 to 60% by weight, more preferably about 30 to 60% by weight, and even more preferably about 30 to 55% by weight.
The polyurethane dispersion may further contain an organic solvent not containing an isocyanate reactive group, for example, ethyl acetate, acetone, methyl ethyl ketone, N-methylpyrrolidone and the like. The amount of the organic solvent is not particularly limited, but can be 0.1 to 100 parts by weight with respect to 100 parts by weight of the nonvolatile content in the polyurethane dispersion.
水溶性ウレタン樹脂としては、例えば、住友バイエルウレタン(株)製;ディスパコールU-42、U-53、U-54、U-56、KA-8481、KA-8584、KA-8755、KA-8756、KA-8766、DIC(株)製;ハイドランHW-111、HW-311、HW-333、HW-350、HW-337、HW-374、AP-20、AP-60LM、AP-80、三洋化成工業(株)製;ユープレンUXA-306、UXA-307、パーマリンUA-150、パーマリンUA-200、パーマリンUA-300、パーマリンUA-310、ユーコートUWS-145、第一工業製薬(株)製;スーパーフレックス107M、110、126、130、150、160、300、361、370、410、420、460、700、750、820、ADEKA社製;アデカボンタイターHUX-401、HUX-420A、HUX-380、HUX-561、HUX-210、HUX-822、HUX-895、HUX-830等が挙げられる。
As the water-soluble urethane resin, for example, manufactured by Sumitomo Bayer Urethane Co., Ltd .; Dispacol U-42, U-53, U-54, U-56, KA-8484, KA-8484, KA-8755, KA-8756 KA-8766, manufactured by DIC Corporation; Hydran HW-111, HW-311, HW-333, HW-350, HW-337, HW-374, AP-20, AP-60LM, AP-80, Sanyo Chemical Manufactured by Kogyo Co., Ltd .; Uprene UXA-306, UXA-307, Permarin UA-150, Permarin UA-200, Permarin UA-300, Permarin UA-310, Eucort UWS-145, Daiichi Kogyo Seiyaku Co., Ltd .; Super Flex 107M, 110, 126, 130, 150, 160, 300, 361, 370, 410, 420, 60, 700, 750, 820, manufactured by ADEKA; Adekabon titer HUX-401, HUX-420A, HUX-380, HUX-561, HUX-210, HUX-822, HUX-895, HUX-830, etc. .
水性接着剤がその他の樹脂を含有する場合、その含有量は、水性接着剤の全量に対して、好ましくは1~99重量%であり、より好ましくは3~99重量%であり、さらに好ましくは5~90重量%である。
また、重合体:その他の樹脂(不揮発分重量比)は、好ましくは5:95~95:5であり、より好ましくは5:95~90:10であり、さらに好ましくは10:50~80:20である。
これらの樹脂は、エマルションであってもよいし、炭素数2~20のα-オレフィン由来の構造単位を有する重合体と一緒に乳化してもよい。 When the water-based adhesive contains other resins, the content thereof is preferably 1 to 99% by weight, more preferably 3 to 99% by weight, and still more preferably based on the total amount of the water-based adhesive. 5 to 90% by weight.
The polymer: other resin (non-volatile content weight ratio) is preferably 5:95 to 95: 5, more preferably 5:95 to 90:10, and still more preferably 10:50 to 80: 20.
These resins may be emulsions or emulsified together with a polymer having a structural unit derived from an α-olefin having 2 to 20 carbon atoms.
また、重合体:その他の樹脂(不揮発分重量比)は、好ましくは5:95~95:5であり、より好ましくは5:95~90:10であり、さらに好ましくは10:50~80:20である。
これらの樹脂は、エマルションであってもよいし、炭素数2~20のα-オレフィン由来の構造単位を有する重合体と一緒に乳化してもよい。 When the water-based adhesive contains other resins, the content thereof is preferably 1 to 99% by weight, more preferably 3 to 99% by weight, and still more preferably based on the total amount of the water-based adhesive. 5 to 90% by weight.
The polymer: other resin (non-volatile content weight ratio) is preferably 5:95 to 95: 5, more preferably 5:95 to 90:10, and still more preferably 10:50 to 80: 20.
These resins may be emulsions or emulsified together with a polymer having a structural unit derived from an α-olefin having 2 to 20 carbon atoms.
〈界面活性剤〉
水性接着剤は、一般に乳化剤として作用する界面活性剤がさらに含まれていることが好ましい。そのような界面活性剤としては、カチオン性、アニオン性、両性及びノニオン性の界面活性剤が挙げられ、なかでも好ましくは、アニオン性又はノニオン性の界面活性剤である。特に、以下の式(I)の構造を有するものが好ましい。界面活性剤は、単独で又は2種以上を組み合わせて用いてもよいが、2種類以上を併用することが好ましい。なかでも、式(I)の構造を有する界面活性剤を、2種類以上併用することがより好ましい。 <Surfactant>
The aqueous adhesive preferably further contains a surfactant that generally acts as an emulsifier. Examples of such surfactants include cationic, anionic, amphoteric and nonionic surfactants. Among them, anionic or nonionic surfactants are preferable. In particular, those having the structure of the following formula (I) are preferred. Surfactants may be used alone or in combination of two or more, but it is preferable to use two or more in combination. Among these, it is more preferable to use two or more kinds of surfactants having the structure of the formula (I).
水性接着剤は、一般に乳化剤として作用する界面活性剤がさらに含まれていることが好ましい。そのような界面活性剤としては、カチオン性、アニオン性、両性及びノニオン性の界面活性剤が挙げられ、なかでも好ましくは、アニオン性又はノニオン性の界面活性剤である。特に、以下の式(I)の構造を有するものが好ましい。界面活性剤は、単独で又は2種以上を組み合わせて用いてもよいが、2種類以上を併用することが好ましい。なかでも、式(I)の構造を有する界面活性剤を、2種類以上併用することがより好ましい。 <Surfactant>
The aqueous adhesive preferably further contains a surfactant that generally acts as an emulsifier. Examples of such surfactants include cationic, anionic, amphoteric and nonionic surfactants. Among them, anionic or nonionic surfactants are preferable. In particular, those having the structure of the following formula (I) are preferred. Surfactants may be used alone or in combination of two or more, but it is preferable to use two or more in combination. Among these, it is more preferable to use two or more kinds of surfactants having the structure of the formula (I).
(式中、Xは水素原子又は-SO3M(Mは水素原子、NH4又はアルカリ金属)を示す。nは1~3の整数を表す。mは1~100の整数を表す。)
式(I)におけるXは、水素原子、-SO3M(Mは水素原子、-NH4又はアルカリ金属)、つまり、硫酸、硫酸塩(例えば、アンモニウム塩、ナトリウム等のアルカリ金属塩等)等が挙げられるが、なかでも、好ましくは、水素原子、-SO3H又は-SO3NH4である。
2種類以上の界面活性剤の組み合わせとしては、Xが同じでn及び/又はmが異なるものを組み合わせてもよいが、n及び/又mが同じ又は異なって、Xが異なるものを組み合わせることが好ましい。具体的には、Xが水素原子と-SO3Hとの組み合わせ、水素原子と-SO3NH4との組み合わせ、-SO3Hと-SO3NH4との組み合わせが挙げられる。なかでも、水素原子と-SO3NH4との組み合わせが好ましい。
(In the formula, X represents a hydrogen atom or —SO 3 M (M is a hydrogen atom, NH 4 or an alkali metal). N represents an integer of 1 to 3. m represents an integer of 1 to 100.)
X in the formula (I) is a hydrogen atom, —SO 3 M (M is a hydrogen atom, —NH 4 or an alkali metal), that is, sulfuric acid, sulfate (for example, an alkali metal salt such as ammonium salt or sodium), etc. Among them, a hydrogen atom, —SO 3 H or —SO 3 NH 4 is preferable.
As a combination of two or more kinds of surfactants, those having the same X and different n and / or m may be combined, but those having the same or different n and / or m and different X may be combined. preferable. Specifically, X is a combination of a hydrogen atom and —SO 3 H, a combination of a hydrogen atom and —SO 3 NH 4 , or a combination of —SO 3 H and —SO 3 NH 4 . Of these, a combination of a hydrogen atom and —SO 3 NH 4 is preferable.
式(I)で表される界面活性剤としては、ラテムルAD-25(花王株式会社製)、下記式(A)で表されるラテムルE-1000A(花王株式会社製)、下記式(B)で表されるノイゲンEA-177(第一工業製薬株式会社製)等が挙げられる。
As the surfactant represented by the formula (I), Latemul AD-25 (manufactured by Kao Corporation), Latemuru E-1000A (manufactured by Kao Corporation) represented by the following formula (A), the following formula (B) And Neugen EA-177 (Daiichi Kogyo Seiyaku Co., Ltd.) represented by
As the surfactant represented by the formula (I), Latemul AD-25 (manufactured by Kao Corporation), Latemuru E-1000A (manufactured by Kao Corporation) represented by the following formula (A), the following formula (B) And Neugen EA-177 (Daiichi Kogyo Seiyaku Co., Ltd.) represented by
水性接着剤には、式(I)で表される界面活性剤以外の界面活性剤が含有されていてもよい。
例えば、アニオン性界面活性剤としては、高級アルコールの硫酸エステル塩、高級アルキルスルホン酸塩、高級カルボン酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルサルフェート塩、ポリオキシエチレンアルキルフェニルエーテルサルフェート塩、ビニルスルホサクシネート等が挙げられる。
カチオン性界面活性剤としては、ドデシルトリメチルアンモニウム塩及びセチルトリメチルアンモニウム塩等のアルキルアンモニウム塩、セチルピリジウム塩及びデシルピリジウム塩等のアルキルピリジウム塩、オキシアルキレントリアルキルアンモニウム塩、ジオキシアルキレンジアルキルアンモニウム塩、アリルトリアルキルアンモニウム塩、ジアリルジアルキルアンモニウム塩等が挙げられる。
ノニオン性界面活性剤としては、ポリオキシエチレンプロピレンエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、エチレンオキサイドプロピレンオキサイドブロック共重合体、ポリオキシエチレン脂肪酸アミド、エチレンオキサイド-プロピレンオキサイド共重合体などのポリオキシエチレン構造を有する化合物やポリオキシエチレンソルビタン脂肪酸エステルなどのソルビタン誘導体等が挙げられる。
両性界面活性剤としては、ラウリルベタイン、ラウリルジメチルアミンオキサイド等が挙げられる。 The aqueous adhesive may contain a surfactant other than the surfactant represented by the formula (I).
For example, the anionic surfactants include higher alcohol sulfates, higher alkyl sulfonates, higher carboxylates, alkyl benzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyls. Examples include sulfosuccinate.
Examples of cationic surfactants include alkylammonium salts such as dodecyltrimethylammonium salt and cetyltrimethylammonium salt, alkylpyridium salts such as cetylpyridium salt and decylpyridium salt, oxyalkylenetrialkylammonium salt, dioxyalkylenedialkylammonium salt , Allyl trialkyl ammonium salt, diallyl dialkyl ammonium salt and the like.
Nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene propylene ether, polyoxyethylene alkyl phenyl ether, polyethylene glycol fatty acid esters, ethylene oxide propylene oxide block copolymers, polyoxyethylene fatty acid amides, and ethylene oxide. -A compound having a polyoxyethylene structure such as a propylene oxide copolymer or a sorbitan derivative such as a polyoxyethylene sorbitan fatty acid ester.
Examples of amphoteric surfactants include lauryl betaine and lauryl dimethylamine oxide.
例えば、アニオン性界面活性剤としては、高級アルコールの硫酸エステル塩、高級アルキルスルホン酸塩、高級カルボン酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルサルフェート塩、ポリオキシエチレンアルキルフェニルエーテルサルフェート塩、ビニルスルホサクシネート等が挙げられる。
カチオン性界面活性剤としては、ドデシルトリメチルアンモニウム塩及びセチルトリメチルアンモニウム塩等のアルキルアンモニウム塩、セチルピリジウム塩及びデシルピリジウム塩等のアルキルピリジウム塩、オキシアルキレントリアルキルアンモニウム塩、ジオキシアルキレンジアルキルアンモニウム塩、アリルトリアルキルアンモニウム塩、ジアリルジアルキルアンモニウム塩等が挙げられる。
ノニオン性界面活性剤としては、ポリオキシエチレンプロピレンエーテル等のポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、エチレンオキサイドプロピレンオキサイドブロック共重合体、ポリオキシエチレン脂肪酸アミド、エチレンオキサイド-プロピレンオキサイド共重合体などのポリオキシエチレン構造を有する化合物やポリオキシエチレンソルビタン脂肪酸エステルなどのソルビタン誘導体等が挙げられる。
両性界面活性剤としては、ラウリルベタイン、ラウリルジメチルアミンオキサイド等が挙げられる。 The aqueous adhesive may contain a surfactant other than the surfactant represented by the formula (I).
For example, the anionic surfactants include higher alcohol sulfates, higher alkyl sulfonates, higher carboxylates, alkyl benzene sulfonates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, vinyls. Examples include sulfosuccinate.
Examples of cationic surfactants include alkylammonium salts such as dodecyltrimethylammonium salt and cetyltrimethylammonium salt, alkylpyridium salts such as cetylpyridium salt and decylpyridium salt, oxyalkylenetrialkylammonium salt, dioxyalkylenedialkylammonium salt , Allyl trialkyl ammonium salt, diallyl dialkyl ammonium salt and the like.
Nonionic surfactants include polyoxyethylene alkyl ethers such as polyoxyethylene propylene ether, polyoxyethylene alkyl phenyl ether, polyethylene glycol fatty acid esters, ethylene oxide propylene oxide block copolymers, polyoxyethylene fatty acid amides, and ethylene oxide. -A compound having a polyoxyethylene structure such as a propylene oxide copolymer or a sorbitan derivative such as a polyoxyethylene sorbitan fatty acid ester.
Examples of amphoteric surfactants include lauryl betaine and lauryl dimethylamine oxide.
界面活性剤の含有量は、通常、水性接着剤を構成する樹脂100重量部に対して、0.1~50重量部であり、好ましくは0.1~20重量部であり、より好ましくは0.1~10重量部である。
本発明で使用する水性接着剤が、式(I)で表される界面活性剤以外の界面活性剤を含有する場合には、式(I)で表される界面活性剤と式(I)で表される界面活性剤以外の界面活性剤との合計含有量は、通常、水性接着剤を構成する樹脂100重量部に対して、0.1~50重量部であり、好ましくは0.1~20重量部であり、より好ましくは0.1~10重量部である。
式(A)で表される界面活性剤と式(B)で表される界面活性剤とを併用する場合には、重量比で、好ましくは1~99:99~1、より好ましくは5~95:95~5、さらに好ましくは10~90:90~10であり、特に、30:70~90:10、40:60~90:10、50:50~90:10が挙げられる。 The content of the surfactant is usually 0.1 to 50 parts by weight, preferably 0.1 to 20 parts by weight, and more preferably 0 to 100 parts by weight of the resin constituting the aqueous adhesive. a .1 to 10 parts by weight.
When the aqueous adhesive used in the present invention contains a surfactant other than the surfactant represented by the formula (I), the surfactant represented by the formula (I) and the formula (I) The total content of surfactants other than the surfactants represented is usually 0.1 to 50 parts by weight, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. a 20 parts by weight, more preferably 0.1 to 10 parts by weight.
When the surfactant represented by the formula (A) and the surfactant represented by the formula (B) are used in combination, the weight ratio is preferably 1 to 99:99 to 1, more preferably 5 to 95:95 to 5, more preferably 10 to 90:90 to 10, particularly 30:70 to 90:10, 40:60 to 90:10, 50:50 to 90:10.
本発明で使用する水性接着剤が、式(I)で表される界面活性剤以外の界面活性剤を含有する場合には、式(I)で表される界面活性剤と式(I)で表される界面活性剤以外の界面活性剤との合計含有量は、通常、水性接着剤を構成する樹脂100重量部に対して、0.1~50重量部であり、好ましくは0.1~20重量部であり、より好ましくは0.1~10重量部である。
式(A)で表される界面活性剤と式(B)で表される界面活性剤とを併用する場合には、重量比で、好ましくは1~99:99~1、より好ましくは5~95:95~5、さらに好ましくは10~90:90~10であり、特に、30:70~90:10、40:60~90:10、50:50~90:10が挙げられる。 The content of the surfactant is usually 0.1 to 50 parts by weight, preferably 0.1 to 20 parts by weight, and more preferably 0 to 100 parts by weight of the resin constituting the aqueous adhesive. a .1 to 10 parts by weight.
When the aqueous adhesive used in the present invention contains a surfactant other than the surfactant represented by the formula (I), the surfactant represented by the formula (I) and the formula (I) The total content of surfactants other than the surfactants represented is usually 0.1 to 50 parts by weight, preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. a 20 parts by weight, more preferably 0.1 to 10 parts by weight.
When the surfactant represented by the formula (A) and the surfactant represented by the formula (B) are used in combination, the weight ratio is preferably 1 to 99:99 to 1, more preferably 5 to 95:95 to 5, more preferably 10 to 90:90 to 10, particularly 30:70 to 90:10, 40:60 to 90:10, 50:50 to 90:10.
〈塩基性化合物〉
水性接着剤は、さらに、塩基性化合物を含有していることが好ましい。
塩基性化合物としては、カルボキシル基を中和できるものが好ましく、例えば、アンモニア、有機アミン化合物、金属水酸化物等が挙げられる。好ましくは、アンモニア又は有機アミン化合物である。特に、沸点が200℃以下の有機アミン化合物は、通常の乾燥によって容易に飛散させることができ、水性接着剤を用いて塗膜を形成する場合に、塗膜の耐水性、耐アルカリ性を維持/向上させることができ、好ましい。
有機アミン化合物としては、例えば、トリエチルアミン、N,N-ジメチルエタノールアミン、アミノエタノールアミン、N-メチル-N,N-ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3-エトキシプロピルアミン、3-ジエチルアミノプロピルアミン、sec-ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、3-メトキシプロピルアミン、モノエタノールアミン、モルホリン、N-メチルモルホリン、N-エチルモルホリン等が挙げられる。なかでも、好ましくは、N,N-ジメチルエタノールアミン等である。
金属水酸化物としては、水酸化リチウム、水酸化カリウム、水酸化ナトリウム等が挙げられる。 <Basic compound>
The aqueous adhesive preferably further contains a basic compound.
As a basic compound, what can neutralize a carboxyl group is preferable, for example, ammonia, an organic amine compound, a metal hydroxide, etc. are mentioned. Preferably, it is ammonia or an organic amine compound. In particular, an organic amine compound having a boiling point of 200 ° C. or less can be easily dispersed by ordinary drying, and when forming a coating film using an aqueous adhesive, the water resistance and alkali resistance of the coating film are maintained / It can be improved and is preferable.
Examples of the organic amine compound include triethylamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, 3-ethoxypropylamine, Examples include 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, 3-methoxypropylamine, monoethanolamine, morpholine, N-methylmorpholine, N-ethylmorpholine and the like. Of these, N, N-dimethylethanolamine and the like are preferable.
Examples of the metal hydroxide include lithium hydroxide, potassium hydroxide, sodium hydroxide and the like.
水性接着剤は、さらに、塩基性化合物を含有していることが好ましい。
塩基性化合物としては、カルボキシル基を中和できるものが好ましく、例えば、アンモニア、有機アミン化合物、金属水酸化物等が挙げられる。好ましくは、アンモニア又は有機アミン化合物である。特に、沸点が200℃以下の有機アミン化合物は、通常の乾燥によって容易に飛散させることができ、水性接着剤を用いて塗膜を形成する場合に、塗膜の耐水性、耐アルカリ性を維持/向上させることができ、好ましい。
有機アミン化合物としては、例えば、トリエチルアミン、N,N-ジメチルエタノールアミン、アミノエタノールアミン、N-メチル-N,N-ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3-エトキシプロピルアミン、3-ジエチルアミノプロピルアミン、sec-ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、3-メトキシプロピルアミン、モノエタノールアミン、モルホリン、N-メチルモルホリン、N-エチルモルホリン等が挙げられる。なかでも、好ましくは、N,N-ジメチルエタノールアミン等である。
金属水酸化物としては、水酸化リチウム、水酸化カリウム、水酸化ナトリウム等が挙げられる。 <Basic compound>
The aqueous adhesive preferably further contains a basic compound.
As a basic compound, what can neutralize a carboxyl group is preferable, for example, ammonia, an organic amine compound, a metal hydroxide, etc. are mentioned. Preferably, it is ammonia or an organic amine compound. In particular, an organic amine compound having a boiling point of 200 ° C. or less can be easily dispersed by ordinary drying, and when forming a coating film using an aqueous adhesive, the water resistance and alkali resistance of the coating film are maintained / It can be improved and is preferable.
Examples of the organic amine compound include triethylamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, 3-ethoxypropylamine, Examples include 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, 3-methoxypropylamine, monoethanolamine, morpholine, N-methylmorpholine, N-ethylmorpholine and the like. Of these, N, N-dimethylethanolamine and the like are preferable.
Examples of the metal hydroxide include lithium hydroxide, potassium hydroxide, sodium hydroxide and the like.
水性接着剤が塩基性化合物を含有する場合、その含有量は、好ましくは、水性接着剤を構成する樹脂100重量部に対して、1~30重量部であり、より好ましくは、2~20重量部であり、さらに好ましくは2~10重量部である。
When the aqueous adhesive contains a basic compound, the content thereof is preferably 1 to 30 parts by weight, more preferably 2 to 20 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. Part, more preferably 2 to 10 parts by weight.
〈溶剤〉
本発明で使用される水性接着剤は、溶剤を含有しないものが好ましいが、場合により、水に加えて、さらに、例えば、トルエン、キシレン等の芳香族炭化水素;ヘキサン等の脂肪族炭化水素;酢酸エチル、酢酸ブチル等のエステル;メチルエチルケトン、メチルイソブチルケトン等のケトン;メタノ-ル、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール等のアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール等のグリコール系溶媒、メチルセロソルブ、セロソルブ、ブチルセロソルブ、ジオキサン、MTBE(メチルターシャリーブチルエーテル)、ブチルカルビトール等のセルソルブ系溶媒、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル,3-メトキシ-3-メチル-1-ブタノール等のグリコール系溶媒、エチレングリコールモノメチルエーテルアセテート、PMA(プロピレングリコールモノメチルエーテルアセテート)、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル系溶媒;等の有機溶剤を含有していてもよい。これらは単独で又は2種以上を組み合わせて用いてもよい。
本発明で使用する水性接着剤が溶剤を含有する場合、その含有量は、水性接着剤を構成する樹脂100重量部に対して、通常、0.01~30重量部、好ましくは0.01~10重量部である。 <solvent>
The aqueous adhesive used in the present invention preferably does not contain a solvent, but in some cases, in addition to water, for example, an aromatic hydrocarbon such as toluene and xylene; an aliphatic hydrocarbon such as hexane; Esters such as ethyl acetate and butyl acetate; ketones such as methyl ethyl ketone and methyl isobutyl ketone; alcohols such as methanol, ethanol, n-propanol, isopropyl alcohol, and n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and the like Glycol solvent, methyl cellosolve, cellosolve, butyl cellosolve, dioxane, MTBE (methyl tertiary butyl ether), cellsolve solvent such as butyl carbitol, diethylene glycol monomethyl ether, triethylene glycol Glycol solvents such as coal monomethyl ether, propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol monomethyl ether acetate, PMA (propylene glycol monomethyl ether acetate), diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether An organic solvent such as a glycol ester solvent such as acetate; You may use these individually or in combination of 2 or more types.
When the aqueous adhesive used in the present invention contains a solvent, the content thereof is usually 0.01 to 30 parts by weight, preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. 10 parts by weight.
本発明で使用される水性接着剤は、溶剤を含有しないものが好ましいが、場合により、水に加えて、さらに、例えば、トルエン、キシレン等の芳香族炭化水素;ヘキサン等の脂肪族炭化水素;酢酸エチル、酢酸ブチル等のエステル;メチルエチルケトン、メチルイソブチルケトン等のケトン;メタノ-ル、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール等のアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール等のグリコール系溶媒、メチルセロソルブ、セロソルブ、ブチルセロソルブ、ジオキサン、MTBE(メチルターシャリーブチルエーテル)、ブチルカルビトール等のセルソルブ系溶媒、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル,3-メトキシ-3-メチル-1-ブタノール等のグリコール系溶媒、エチレングリコールモノメチルエーテルアセテート、PMA(プロピレングリコールモノメチルエーテルアセテート)、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル系溶媒;等の有機溶剤を含有していてもよい。これらは単独で又は2種以上を組み合わせて用いてもよい。
本発明で使用する水性接着剤が溶剤を含有する場合、その含有量は、水性接着剤を構成する樹脂100重量部に対して、通常、0.01~30重量部、好ましくは0.01~10重量部である。 <solvent>
The aqueous adhesive used in the present invention preferably does not contain a solvent, but in some cases, in addition to water, for example, an aromatic hydrocarbon such as toluene and xylene; an aliphatic hydrocarbon such as hexane; Esters such as ethyl acetate and butyl acetate; ketones such as methyl ethyl ketone and methyl isobutyl ketone; alcohols such as methanol, ethanol, n-propanol, isopropyl alcohol, and n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, and the like Glycol solvent, methyl cellosolve, cellosolve, butyl cellosolve, dioxane, MTBE (methyl tertiary butyl ether), cellsolve solvent such as butyl carbitol, diethylene glycol monomethyl ether, triethylene glycol Glycol solvents such as coal monomethyl ether, propylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, ethylene glycol monomethyl ether acetate, PMA (propylene glycol monomethyl ether acetate), diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether An organic solvent such as a glycol ester solvent such as acetate; You may use these individually or in combination of 2 or more types.
When the aqueous adhesive used in the present invention contains a solvent, the content thereof is usually 0.01 to 30 parts by weight, preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. 10 parts by weight.
〈その他の成分〉
本発明で使用する水性接着剤には、通常、水が含まれる。さらに、水性接着剤の意図する特性を損なわない範囲で必要に応じて、フェノール系安定剤、フォスファイト系安定剤、アミン系安定剤、アミド系安定剤、老化防止剤、耐候安定剤、沈降防止剤、酸化防止剤、熱安定剤、光安定剤などの安定剤;揺変剤、増粘剤、分散剤、消泡剤、粘度調整剤、耐候剤、顔料、顔料分散剤、帯電防止剤、滑剤、核剤、難燃剤、油剤、染料、硬化剤、架橋剤などの添加剤;酸化チタン(ルチル型)、酸化亜鉛などの遷移金属化合物、カーボンブラック等の顔料;ガラス繊維、炭素繊維、チタン酸カリウム繊維、ウオラストナイト、炭酸カルシウム、硫酸カルシウム、タルク、ガラスフレーク、硫酸バリウム、クレー、カオリン、微粉末シリカ、マイカ、珪酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、酸化アルミニウム、酸化マグネシウム、アルミナ、セライトなどの無機、有機の充填剤等の任意成分を含有していてもよい。 <Other ingredients>
The water-based adhesive used in the present invention usually contains water. Furthermore, phenol stabilizers, phosphite stabilizers, amine stabilizers, amide stabilizers, anti-aging agents, weathering stabilizers, anti-settling agents, as required, without compromising the intended properties of the water-based adhesive. Stabilizers, antioxidants, heat stabilizers, light stabilizers; thixotropic agents, thickeners, dispersants, antifoaming agents, viscosity modifiers, weathering agents, pigments, pigment dispersants, antistatic agents, Additives such as lubricants, nucleating agents, flame retardants, oil agents, dyes, curing agents, crosslinking agents; transition metal compounds such as titanium oxide (rutile type) and zinc oxide; pigments such as carbon black; glass fibers, carbon fibers, titanium Potassium acid fiber, wollastonite, calcium carbonate, calcium sulfate, talc, glass flake, barium sulfate, clay, kaolin, fine powder silica, mica, calcium silicate, aluminum hydroxide, magnesium hydroxide , Aluminum oxide, magnesium oxide, alumina, inorganic, such as celite, may contain optional components such as organic fillers.
本発明で使用する水性接着剤には、通常、水が含まれる。さらに、水性接着剤の意図する特性を損なわない範囲で必要に応じて、フェノール系安定剤、フォスファイト系安定剤、アミン系安定剤、アミド系安定剤、老化防止剤、耐候安定剤、沈降防止剤、酸化防止剤、熱安定剤、光安定剤などの安定剤;揺変剤、増粘剤、分散剤、消泡剤、粘度調整剤、耐候剤、顔料、顔料分散剤、帯電防止剤、滑剤、核剤、難燃剤、油剤、染料、硬化剤、架橋剤などの添加剤;酸化チタン(ルチル型)、酸化亜鉛などの遷移金属化合物、カーボンブラック等の顔料;ガラス繊維、炭素繊維、チタン酸カリウム繊維、ウオラストナイト、炭酸カルシウム、硫酸カルシウム、タルク、ガラスフレーク、硫酸バリウム、クレー、カオリン、微粉末シリカ、マイカ、珪酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、酸化アルミニウム、酸化マグネシウム、アルミナ、セライトなどの無機、有機の充填剤等の任意成分を含有していてもよい。 <Other ingredients>
The water-based adhesive used in the present invention usually contains water. Furthermore, phenol stabilizers, phosphite stabilizers, amine stabilizers, amide stabilizers, anti-aging agents, weathering stabilizers, anti-settling agents, as required, without compromising the intended properties of the water-based adhesive. Stabilizers, antioxidants, heat stabilizers, light stabilizers; thixotropic agents, thickeners, dispersants, antifoaming agents, viscosity modifiers, weathering agents, pigments, pigment dispersants, antistatic agents, Additives such as lubricants, nucleating agents, flame retardants, oil agents, dyes, curing agents, crosslinking agents; transition metal compounds such as titanium oxide (rutile type) and zinc oxide; pigments such as carbon black; glass fibers, carbon fibers, titanium Potassium acid fiber, wollastonite, calcium carbonate, calcium sulfate, talc, glass flake, barium sulfate, clay, kaolin, fine powder silica, mica, calcium silicate, aluminum hydroxide, magnesium hydroxide , Aluminum oxide, magnesium oxide, alumina, inorganic, such as celite, may contain optional components such as organic fillers.
(水)
本発明で使用する水性接着剤に含まれる水は、一般に、水道水、イオン交換水等が用いられる。また、水性接着剤の安定性をより高めるために、ポリビニルアルコール、ポリアクリル酸ナトリウム、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどの水溶性樹脂を添加してもよい。
水の含有量は、例えば、水性接着剤の全量に対して20重量%以上、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは45重量%以上であり、また、好ましくは85重量%以下、より好ましくは80重量%以下、さらに好ましくは70重量%以下である。 (water)
As the water contained in the aqueous adhesive used in the present invention, tap water, ion-exchanged water or the like is generally used. In order to further improve the stability of the water-based adhesive, a water-soluble resin such as polyvinyl alcohol, sodium polyacrylate, carboxymethyl cellulose, or hydroxyethyl cellulose may be added.
The water content is, for example, 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 45% by weight or more, and preferably 45% by weight or more based on the total amount of the aqueous adhesive. It is 85 weight% or less, More preferably, it is 80 weight% or less, More preferably, it is 70 weight% or less.
本発明で使用する水性接着剤に含まれる水は、一般に、水道水、イオン交換水等が用いられる。また、水性接着剤の安定性をより高めるために、ポリビニルアルコール、ポリアクリル酸ナトリウム、カルボキシメチルセルロース、ヒドロキシエチルセルロースなどの水溶性樹脂を添加してもよい。
水の含有量は、例えば、水性接着剤の全量に対して20重量%以上、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは45重量%以上であり、また、好ましくは85重量%以下、より好ましくは80重量%以下、さらに好ましくは70重量%以下である。 (water)
As the water contained in the aqueous adhesive used in the present invention, tap water, ion-exchanged water or the like is generally used. In order to further improve the stability of the water-based adhesive, a water-soluble resin such as polyvinyl alcohol, sodium polyacrylate, carboxymethyl cellulose, or hydroxyethyl cellulose may be added.
The water content is, for example, 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 45% by weight or more, and preferably 45% by weight or more based on the total amount of the aqueous adhesive. It is 85 weight% or less, More preferably, it is 80 weight% or less, More preferably, it is 70 weight% or less.
(増粘剤)
増粘剤は、配合物の粘性調整のために使用することができる。増粘剤としてはADEKA(株)社製;アデカノールUH-140S、UH-420、UH-438、UH-450VF、UH-462、UH-472、UH-526、UH-530、UH-540、UH-541VF、UH-550、UH-752、H-756VF、サンノプコ社製;SNシックナー920、922、924、926、929-S、A-801、A-806、A-812、A-813、A-818、621N、636、601、603、612、613、615、618、621N、630、634、636、4050等が挙げられる。 (Thickener)
Thickeners can be used to adjust the viscosity of the formulation. As a thickener, manufactured by ADEKA Corporation; Adecanol UH-140S, UH-420, UH-438, UH-450VF, UH-462, UH-472, UH-526, UH-530, UH-540, UH -541VF, UH-550, UH-752, H-756VF, manufactured by San Nopco; SN thickener 920, 922, 924, 926, 929-S, A-801, A-806, A-812, A-813, A -818, 621N, 636, 601, 603, 612, 613, 615, 618, 621N, 630, 634, 636, 4050 and the like.
増粘剤は、配合物の粘性調整のために使用することができる。増粘剤としてはADEKA(株)社製;アデカノールUH-140S、UH-420、UH-438、UH-450VF、UH-462、UH-472、UH-526、UH-530、UH-540、UH-541VF、UH-550、UH-752、H-756VF、サンノプコ社製;SNシックナー920、922、924、926、929-S、A-801、A-806、A-812、A-813、A-818、621N、636、601、603、612、613、615、618、621N、630、634、636、4050等が挙げられる。 (Thickener)
Thickeners can be used to adjust the viscosity of the formulation. As a thickener, manufactured by ADEKA Corporation; Adecanol UH-140S, UH-420, UH-438, UH-450VF, UH-462, UH-472, UH-526, UH-530, UH-540, UH -541VF, UH-550, UH-752, H-756VF, manufactured by San Nopco; SN thickener 920, 922, 924, 926, 929-S, A-801, A-806, A-812, A-813, A -818, 621N, 636, 601, 603, 612, 613, 615, 618, 621N, 630, 634, 636, 4050 and the like.
(分散剤)
分散剤は、塗工基材の濡れ性改善のために使用することができる。分散剤としては、ADEKA(株)社製;アデカコールW-193、W-287、W-288、W-304、BYK社製;BYK-333、BYK-345、BYK-346、BYK-347、BYK-348、BYK-349、BYK-378、サンノプコ社製;ノプコウェット50、SNウェット366、ノプコ38-C、SNディスパーサンド5468、5034、5027、5040、5020等が挙げられる。 (Dispersant)
The dispersant can be used for improving the wettability of the coated substrate. As a dispersant, manufactured by ADEKA Corporation; Adeka Coal W-193, W-287, W-288, W-304, manufactured by BYK; BYK-333, BYK-345, BYK-346, BYK-347, BYK -348, BYK-349, BYK-378, manufactured by San Nopco; Nopco wet 50, SN wet 366, Nopco 38-C, SN disperse sand 5468, 5034, 5027, 5040, 5020 and the like.
分散剤は、塗工基材の濡れ性改善のために使用することができる。分散剤としては、ADEKA(株)社製;アデカコールW-193、W-287、W-288、W-304、BYK社製;BYK-333、BYK-345、BYK-346、BYK-347、BYK-348、BYK-349、BYK-378、サンノプコ社製;ノプコウェット50、SNウェット366、ノプコ38-C、SNディスパーサンド5468、5034、5027、5040、5020等が挙げられる。 (Dispersant)
The dispersant can be used for improving the wettability of the coated substrate. As a dispersant, manufactured by ADEKA Corporation; Adeka Coal W-193, W-287, W-288, W-304, manufactured by BYK; BYK-333, BYK-345, BYK-346, BYK-347, BYK -348, BYK-349, BYK-378, manufactured by San Nopco; Nopco wet 50, SN wet 366, Nopco 38-C, SN disperse sand 5468, 5034, 5027, 5040, 5020 and the like.
(硬化剤)
硬化剤としては、例えば、イソシアネート系の硬化剤であるジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、キシレンジイソシアネート(XDI)及びこれらのオリゴマー又はポリマーが挙げられる。具体的には、住化バイエルウレタン製のスミジュール44V20、スミジュールN3200、N3300、N3400、N3600、N3900、S-304、S-305、XP-2655、XP-2487、XP-2547等が挙げられる。
硬化剤は、水性接着剤を構成する樹脂100重量部に対して0.1~20重量部が好ましく、0.1~10重量部がより好ましい。硬化剤は、有機溶剤に溶解して添加してもよい。 (Curing agent)
Examples of the curing agent include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI), and oligomers or polymers thereof, which are isocyanate curing agents. Specifically, Sumika Bayer Urethane Sumidur 44V20, Sumidur N3200, N3300, N3400, N3600, N3900, S-304, S-305, XP-2655, XP-2487, XP-2547 and the like can be mentioned. .
The curing agent is preferably 0.1 to 20 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. The curing agent may be added after being dissolved in an organic solvent.
硬化剤としては、例えば、イソシアネート系の硬化剤であるジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、キシレンジイソシアネート(XDI)及びこれらのオリゴマー又はポリマーが挙げられる。具体的には、住化バイエルウレタン製のスミジュール44V20、スミジュールN3200、N3300、N3400、N3600、N3900、S-304、S-305、XP-2655、XP-2487、XP-2547等が挙げられる。
硬化剤は、水性接着剤を構成する樹脂100重量部に対して0.1~20重量部が好ましく、0.1~10重量部がより好ましい。硬化剤は、有機溶剤に溶解して添加してもよい。 (Curing agent)
Examples of the curing agent include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI), and oligomers or polymers thereof, which are isocyanate curing agents. Specifically, Sumika Bayer Urethane Sumidur 44V20, Sumidur N3200, N3300, N3400, N3600, N3900, S-304, S-305, XP-2655, XP-2487, XP-2547 and the like can be mentioned. .
The curing agent is preferably 0.1 to 20 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the resin constituting the aqueous adhesive. The curing agent may be added after being dissolved in an organic solvent.
<水性接着剤の製造方法>
水性接着剤の製造方法としては、当該分野で公知の方法、例えば、樹脂を重合した後にその樹脂を水性媒体中に分散させる後乳化法(例えば、強制乳化法、自己乳化法、転相乳化法など)等が挙げられる。
具体的には、(1)反応器に、乳化する樹脂及び溶剤を投入し、攪拌、加熱溶解し、これに界面活性剤、水及び/又は溶剤を投入し、加熱及び攪拌し、この前後にさらに任意に水及び/又は溶剤を投入して攪拌する方法、(2)混練機に、乳化する樹脂、任意に溶剤を投入し、攪拌、加熱溶融し、これに界面活性剤、水及び/又は溶剤を投入し、加熱及び攪拌し、この前後にさらに任意に水及び/又は溶剤を投入して攪拌する方法等が挙げられる。ただし、(1)及び(2)の方法のいずれにおいても、少なくとも1回水が投入される。 <Method for producing water-based adhesive>
As a method for producing an aqueous adhesive, a method known in the art, for example, a post-emulsification method (for example, forced emulsification method, self-emulsification method, phase inversion emulsification method) after polymerizing the resin and dispersing the resin in an aqueous medium. Etc.).
Specifically, (1) A resin and a solvent to be emulsified are charged into a reactor, stirred and heated to dissolve, and a surfactant, water and / or solvent are added to the reactor, and heated and stirred. Further, a method of adding water and / or a solvent arbitrarily and stirring, (2) A resin to be emulsified, and optionally a solvent are added to a kneader, stirring, heating and melting, and a surfactant, water and / or Examples thereof include a method of adding a solvent, heating and stirring, and optionally adding water and / or a solvent before and after this and stirring. However, in any of the methods (1) and (2), water is introduced at least once.
水性接着剤の製造方法としては、当該分野で公知の方法、例えば、樹脂を重合した後にその樹脂を水性媒体中に分散させる後乳化法(例えば、強制乳化法、自己乳化法、転相乳化法など)等が挙げられる。
具体的には、(1)反応器に、乳化する樹脂及び溶剤を投入し、攪拌、加熱溶解し、これに界面活性剤、水及び/又は溶剤を投入し、加熱及び攪拌し、この前後にさらに任意に水及び/又は溶剤を投入して攪拌する方法、(2)混練機に、乳化する樹脂、任意に溶剤を投入し、攪拌、加熱溶融し、これに界面活性剤、水及び/又は溶剤を投入し、加熱及び攪拌し、この前後にさらに任意に水及び/又は溶剤を投入して攪拌する方法等が挙げられる。ただし、(1)及び(2)の方法のいずれにおいても、少なくとも1回水が投入される。 <Method for producing water-based adhesive>
As a method for producing an aqueous adhesive, a method known in the art, for example, a post-emulsification method (for example, forced emulsification method, self-emulsification method, phase inversion emulsification method) after polymerizing the resin and dispersing the resin in an aqueous medium. Etc.).
Specifically, (1) A resin and a solvent to be emulsified are charged into a reactor, stirred and heated to dissolve, and a surfactant, water and / or solvent are added to the reactor, and heated and stirred. Further, a method of adding water and / or a solvent arbitrarily and stirring, (2) A resin to be emulsified, and optionally a solvent are added to a kneader, stirring, heating and melting, and a surfactant, water and / or Examples thereof include a method of adding a solvent, heating and stirring, and optionally adding water and / or a solvent before and after this and stirring. However, in any of the methods (1) and (2), water is introduced at least once.
上述した(1)の製造方法において、反応器としては、加熱可能な加熱装置と、内容物に対して剪断力等を与えることができる撹拌機とを備えた容器(好ましくは、密閉及び/又は耐圧容器)が用いられる。
撹拌機は、通常のものを用いることができる。このような耐圧容器としては、例えば、撹拌機付耐圧オートクレーブ等が挙げられる。攪拌は、例えば、常圧又は減圧のいずれで行なってもよい。また、撹拌機の回転数は、例えば、50~1000rpm程度の回転数で行なうことができる。必要に応じて、水性接着剤の分散/攪拌が進むにつれて、回転数を上げることが好ましい。
加熱は、通常、50~200℃、好ましくは60~150℃、さらに好ましくは70~100℃で行う。
攪拌した後、得られた分散体から溶剤留去(好ましくは、減圧又は加圧留去)することが好ましい。ここでの留去の方法は、当該分野で公知の方法を利用することができる。減圧又は加圧の程度は、±0.001~1MPa程度が挙げられ、±0.001~0.5MPa程度が好ましい。 In the production method of (1) described above, as the reactor, a container (preferably sealed and / or sealed) provided with a heating device capable of being heated and a stirrer capable of applying a shearing force or the like to the contents. Pressure vessel) is used.
A normal stirrer can be used. Examples of such a pressure vessel include a pressure-resistant autoclave with a stirrer. Stirring may be performed, for example, at normal pressure or reduced pressure. Further, the rotational speed of the stirrer can be set at, for example, about 50 to 1000 rpm. If necessary, it is preferable to increase the rotational speed as the dispersion / stirring of the aqueous adhesive proceeds.
The heating is usually performed at 50 to 200 ° C, preferably 60 to 150 ° C, more preferably 70 to 100 ° C.
After stirring, the solvent is preferably distilled off from the obtained dispersion (preferably reduced pressure or pressurized distillation). As the distillation method here, a method known in the art can be used. The degree of pressure reduction or pressurization is about ± 0.001 to 1 MPa, preferably about ± 0.001 to 0.5 MPa.
撹拌機は、通常のものを用いることができる。このような耐圧容器としては、例えば、撹拌機付耐圧オートクレーブ等が挙げられる。攪拌は、例えば、常圧又は減圧のいずれで行なってもよい。また、撹拌機の回転数は、例えば、50~1000rpm程度の回転数で行なうことができる。必要に応じて、水性接着剤の分散/攪拌が進むにつれて、回転数を上げることが好ましい。
加熱は、通常、50~200℃、好ましくは60~150℃、さらに好ましくは70~100℃で行う。
攪拌した後、得られた分散体から溶剤留去(好ましくは、減圧又は加圧留去)することが好ましい。ここでの留去の方法は、当該分野で公知の方法を利用することができる。減圧又は加圧の程度は、±0.001~1MPa程度が挙げられ、±0.001~0.5MPa程度が好ましい。 In the production method of (1) described above, as the reactor, a container (preferably sealed and / or sealed) provided with a heating device capable of being heated and a stirrer capable of applying a shearing force or the like to the contents. Pressure vessel) is used.
A normal stirrer can be used. Examples of such a pressure vessel include a pressure-resistant autoclave with a stirrer. Stirring may be performed, for example, at normal pressure or reduced pressure. Further, the rotational speed of the stirrer can be set at, for example, about 50 to 1000 rpm. If necessary, it is preferable to increase the rotational speed as the dispersion / stirring of the aqueous adhesive proceeds.
The heating is usually performed at 50 to 200 ° C, preferably 60 to 150 ° C, more preferably 70 to 100 ° C.
After stirring, the solvent is preferably distilled off from the obtained dispersion (preferably reduced pressure or pressurized distillation). As the distillation method here, a method known in the art can be used. The degree of pressure reduction or pressurization is about ± 0.001 to 1 MPa, preferably about ± 0.001 to 0.5 MPa.
上述した(2)の製造方法において、混練器としては、例えば、ロールミル、ニーダー、押出機、インクロール、バンバリーミキサー等が挙げられる。特に、スクリューを1本又は2本以上ケーシング内に有する押出機又は多軸押出機を用いてもよい。
In the production method (2) described above, examples of the kneader include a roll mill, a kneader, an extruder, an ink roll, and a Banbury mixer. In particular, an extruder or a multi-screw extruder having one or more screws in the casing may be used.
押出機を用いて乳化する方法としては、乳化する樹脂、界面活性剤を混合し、これを押出機のホッパー又は供給口より連続的に供給し、これを加熱溶融混練し、さらに押出機の圧縮ゾーン、計量ゾーン及び脱気ゾーン等に設けられた少なくとも1つの供給口より、水を供給し、スクリューで混練した後、ダイから連続的に押出す。
As a method for emulsification using an extruder, a resin to be emulsified and a surfactant are mixed, and this is continuously fed from the hopper or feed port of the extruder, and this is heated, melted and kneaded, and further compressed by the extruder. Water is supplied from at least one supply port provided in a zone, a metering zone, a deaeration zone, and the like, and after being kneaded with a screw, it is continuously extruded from a die.
なお、水性接着剤の製造過程において、上記以外の成分、その他の樹脂、消泡剤、粘度調整剤等の上述したその他の成分を、任意の時点で適宜添加することが好ましい。
また、水性接着剤の製造工程において、界面活性剤は、所望の範囲内で使用することが好ましいが、界面活性剤を過剰に用いた場合には、任意に、得られた水性接着剤から過剰の界面活性剤を分離除去してもよい。界面活性剤の分離除去は、例えば、遠心分離機、平均細孔径が水性接着剤の平均粒子径よりも小さい細孔を有する濾過フィルター(好ましくは、0.05~0.5μmの平均細孔径を有する精密濾過膜)または限外濾過膜などを用いる方法が挙げられる。
さらに、得られた水性接着剤は、冷却することが好ましい。これにより、樹脂組成物の微細な粒子を含む水性接着剤が得られる。冷却は、特に低温にする必要はなく、常温に放置する方法が挙げられる。これにより、冷却過程で樹脂等が凝集することなく、微細で均質な水性接着剤を得ることができる。 In addition, it is preferable to add suitably other components mentioned above, such as components other than the above, other resin, an antifoamer, a viscosity modifier, in the manufacture process of an aqueous adhesive.
Further, in the production process of the water-based adhesive, the surfactant is preferably used within a desired range. However, when the surfactant is used in excess, it is optionally excessive from the obtained water-based adhesive. The surfactant may be separated and removed. Separation and removal of the surfactant may be performed, for example, by using a centrifuge, a filter having an average pore size smaller than the average particle size of the aqueous adhesive (preferably having an average pore size of 0.05 to 0.5 μm). And a method using an ultrafiltration membrane).
Furthermore, it is preferable to cool the obtained water-based adhesive. Thereby, the water-based adhesive containing the fine particle of a resin composition is obtained. The cooling is not particularly required to be performed at a low temperature, and a method of leaving it at room temperature can be mentioned. Thereby, a fine and homogeneous aqueous adhesive can be obtained without agglomeration of resin or the like during the cooling process.
また、水性接着剤の製造工程において、界面活性剤は、所望の範囲内で使用することが好ましいが、界面活性剤を過剰に用いた場合には、任意に、得られた水性接着剤から過剰の界面活性剤を分離除去してもよい。界面活性剤の分離除去は、例えば、遠心分離機、平均細孔径が水性接着剤の平均粒子径よりも小さい細孔を有する濾過フィルター(好ましくは、0.05~0.5μmの平均細孔径を有する精密濾過膜)または限外濾過膜などを用いる方法が挙げられる。
さらに、得られた水性接着剤は、冷却することが好ましい。これにより、樹脂組成物の微細な粒子を含む水性接着剤が得られる。冷却は、特に低温にする必要はなく、常温に放置する方法が挙げられる。これにより、冷却過程で樹脂等が凝集することなく、微細で均質な水性接着剤を得ることができる。 In addition, it is preferable to add suitably other components mentioned above, such as components other than the above, other resin, an antifoamer, a viscosity modifier, in the manufacture process of an aqueous adhesive.
Further, in the production process of the water-based adhesive, the surfactant is preferably used within a desired range. However, when the surfactant is used in excess, it is optionally excessive from the obtained water-based adhesive. The surfactant may be separated and removed. Separation and removal of the surfactant may be performed, for example, by using a centrifuge, a filter having an average pore size smaller than the average particle size of the aqueous adhesive (preferably having an average pore size of 0.05 to 0.5 μm). And a method using an ultrafiltration membrane).
Furthermore, it is preferable to cool the obtained water-based adhesive. Thereby, the water-based adhesive containing the fine particle of a resin composition is obtained. The cooling is not particularly required to be performed at a low temperature, and a method of leaving it at room temperature can be mentioned. Thereby, a fine and homogeneous aqueous adhesive can be obtained without agglomeration of resin or the like during the cooling process.
水性接着剤に含まれる分散質の粒径は、個数基準で、通常10μm以下であり、好ましくは0.01~10μm、より好ましくは0.01~2μm、さらに好ましくは0.01~1μmであり、静置安定性が良好である。
ここで個数基準の粒径とは、個数基準で積算粒子径分布の値が50%に相当する粒子径である。特に断りがない限りは個数基準で測定したメジアン径の値を意味し、体積基準メジアン径とは、体積基準で積算粒子径分布の値が50%に相当する粒子径を意味する特に断りがない限りは個数基準で測定したメジアン径の値を意味する。
また、必要に応じて、例えば、種々の孔径を有するフィルター等を用いてろ過等してもよい。
複数種類の分散質が水性接着剤に含まれる場合(例えば、α-オレフィン由来の構造単位を有する重合体及びポリウレタン樹脂など)、各分散質の粒径は、同程度であることが好ましい。同程度としては、例えば、α-オレフィン由来の構造単位を有する重合体の粒径の±50%以内が好ましく、±30%以内がより好ましい。 The particle size of the dispersoid contained in the aqueous adhesive is usually 10 μm or less, preferably 0.01 to 10 μm, more preferably 0.01 to 2 μm, and still more preferably 0.01 to 1 μm, based on the number. The standing stability is good.
Here, the particle size based on the number is a particle size corresponding to 50% of the value of the cumulative particle size distribution on the number basis. Unless otherwise specified, it means the value of the median diameter measured on the basis of the number, and the volume-based median diameter means a particle diameter in which the value of the cumulative particle size distribution corresponds to 50% on the volume basis. As long as it means the value of the median diameter measured on the basis of the number.
Moreover, you may filter using the filter etc. which have various hole diameters as needed, for example.
When a plurality of types of dispersoids are contained in the aqueous adhesive (for example, a polymer having a structural unit derived from α-olefin and a polyurethane resin), the particle diameters of the dispersoids are preferably approximately the same. As the same degree, for example, it is preferably within ± 50%, more preferably within ± 30% of the particle size of the polymer having a structural unit derived from α-olefin.
ここで個数基準の粒径とは、個数基準で積算粒子径分布の値が50%に相当する粒子径である。特に断りがない限りは個数基準で測定したメジアン径の値を意味し、体積基準メジアン径とは、体積基準で積算粒子径分布の値が50%に相当する粒子径を意味する特に断りがない限りは個数基準で測定したメジアン径の値を意味する。
また、必要に応じて、例えば、種々の孔径を有するフィルター等を用いてろ過等してもよい。
複数種類の分散質が水性接着剤に含まれる場合(例えば、α-オレフィン由来の構造単位を有する重合体及びポリウレタン樹脂など)、各分散質の粒径は、同程度であることが好ましい。同程度としては、例えば、α-オレフィン由来の構造単位を有する重合体の粒径の±50%以内が好ましく、±30%以内がより好ましい。 The particle size of the dispersoid contained in the aqueous adhesive is usually 10 μm or less, preferably 0.01 to 10 μm, more preferably 0.01 to 2 μm, and still more preferably 0.01 to 1 μm, based on the number. The standing stability is good.
Here, the particle size based on the number is a particle size corresponding to 50% of the value of the cumulative particle size distribution on the number basis. Unless otherwise specified, it means the value of the median diameter measured on the basis of the number, and the volume-based median diameter means a particle diameter in which the value of the cumulative particle size distribution corresponds to 50% on the volume basis. As long as it means the value of the median diameter measured on the basis of the number.
Moreover, you may filter using the filter etc. which have various hole diameters as needed, for example.
When a plurality of types of dispersoids are contained in the aqueous adhesive (for example, a polymer having a structural unit derived from α-olefin and a polyurethane resin), the particle diameters of the dispersoids are preferably approximately the same. As the same degree, for example, it is preferably within ± 50%, more preferably within ± 30% of the particle size of the polymer having a structural unit derived from α-olefin.
以下に実施例を示して、本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。例中の部及び%は、特に断らないかぎり重量基準を意味する。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Parts and% in the examples mean weight basis unless otherwise specified.
以下の実施例において、物性測定は以下の方法で行った。
(1)重合体の構造単位含有率
核磁気共鳴装置(Bruker社製 商品名AC-250)を用いて、下記条件にて測定した1H-NMRスペクトル、13C-NMRスペクトルの測定結果に基づき算出した。具体的には、13C-NMRスペクトルにおいて、プロピレンに由来する構造単位のメチル炭素のスペクトル強度と1-ブテンに由来する構造単位のメチル炭素のスペクトル強度との比からプロピレンに由来する構造単位と1-ブテンに由来する構造単位の組成比を算出し、次に、1H-NMRスペクトルにおいて、メチン単位とメチレン単位由来の水素のスペクトル強度とメチル単位由来の水素のスペクトル強度との比から、エチレンに由来する構造単位とプロピレンに由来する構造単位と1-ブテンに由来する構造単位との組成比を算出した。
13C-NMR(Hデカップリング)
13C周波数:150.9MHz
パルス幅:6.00μ秒
パルス繰り返し時間:4.0秒
積算回数:256回
測定温度:137℃
溶媒:オルトジクロロベンゼン-d4(濃度 約20%) In the following examples, physical properties were measured by the following method.
(1) Content of structural unit of polymer Based on measurement results of 1 H-NMR spectrum and 13 C-NMR spectrum measured under the following conditions using a nuclear magnetic resonance apparatus (trade name AC-250 manufactured by Bruker). Calculated. Specifically, in the 13 C-NMR spectrum, from the ratio of the spectral intensity of methyl carbon of the structural unit derived from propylene to the spectral intensity of methyl carbon of the structural unit derived from 1-butene, the structural unit derived from propylene The composition ratio of the structural unit derived from 1-butene was calculated. Then, in the 1 H-NMR spectrum, from the ratio of the spectral intensity of hydrogen derived from the methine unit and the methylene unit and the spectral intensity of hydrogen derived from the methyl unit, The composition ratio of the structural unit derived from ethylene, the structural unit derived from propylene, and the structural unit derived from 1-butene was calculated.
13 C-NMR (H decoupling)
13 C frequency: 150.9 MHz
Pulse width: 6.00 μs Pulse repetition time: 4.0 seconds Integration count: 256 times Measurement temperature: 137 ° C.
Solvent: orthodichlorobenzene-d4 (concentration approximately 20%)
(1)重合体の構造単位含有率
核磁気共鳴装置(Bruker社製 商品名AC-250)を用いて、下記条件にて測定した1H-NMRスペクトル、13C-NMRスペクトルの測定結果に基づき算出した。具体的には、13C-NMRスペクトルにおいて、プロピレンに由来する構造単位のメチル炭素のスペクトル強度と1-ブテンに由来する構造単位のメチル炭素のスペクトル強度との比からプロピレンに由来する構造単位と1-ブテンに由来する構造単位の組成比を算出し、次に、1H-NMRスペクトルにおいて、メチン単位とメチレン単位由来の水素のスペクトル強度とメチル単位由来の水素のスペクトル強度との比から、エチレンに由来する構造単位とプロピレンに由来する構造単位と1-ブテンに由来する構造単位との組成比を算出した。
13C-NMR(Hデカップリング)
13C周波数:150.9MHz
パルス幅:6.00μ秒
パルス繰り返し時間:4.0秒
積算回数:256回
測定温度:137℃
溶媒:オルトジクロロベンゼン-d4(濃度 約20%) In the following examples, physical properties were measured by the following method.
(1) Content of structural unit of polymer Based on measurement results of 1 H-NMR spectrum and 13 C-NMR spectrum measured under the following conditions using a nuclear magnetic resonance apparatus (trade name AC-250 manufactured by Bruker). Calculated. Specifically, in the 13 C-NMR spectrum, from the ratio of the spectral intensity of methyl carbon of the structural unit derived from propylene to the spectral intensity of methyl carbon of the structural unit derived from 1-butene, the structural unit derived from propylene The composition ratio of the structural unit derived from 1-butene was calculated. Then, in the 1 H-NMR spectrum, from the ratio of the spectral intensity of hydrogen derived from the methine unit and the methylene unit and the spectral intensity of hydrogen derived from the methyl unit, The composition ratio of the structural unit derived from ethylene, the structural unit derived from propylene, and the structural unit derived from 1-butene was calculated.
13 C-NMR (H decoupling)
13 C frequency: 150.9 MHz
Pulse width: 6.00 μs Pulse repetition time: 4.0 seconds Integration count: 256 times Measurement temperature: 137 ° C.
Solvent: orthodichlorobenzene-d4 (concentration approximately 20%)
(2)極限粘度[η]
135℃において、ウベローデ粘度計を用いて行った。テトラリン単位体積あたりの重合体の濃度cが、0.6、1.0、1.5mg/mlである重合体のテトラリン溶液を調整し、135℃における極限粘度を測定した。それぞれの濃度で3回繰り返し測定し、得られた3回の値の平均値をその濃度での比粘度(ηsp)とし、ηsp/cのcをゼロ外挿した値を極限粘度[η]として求めた。 (2) Intrinsic viscosity [η]
At 135 ° C., an Ubbelohde viscometer was used. A polymer tetralin solution having a polymer concentration c per unit volume of tetralin of 0.6, 1.0, and 1.5 mg / ml was prepared, and the intrinsic viscosity at 135 ° C. was measured. The measurement was repeated three times at each concentration. The average value of the three values obtained was defined as the specific viscosity (ηsp) at that concentration, and the value obtained by extrapolating c of ηsp / c to zero was defined as the intrinsic viscosity [η]. Asked.
135℃において、ウベローデ粘度計を用いて行った。テトラリン単位体積あたりの重合体の濃度cが、0.6、1.0、1.5mg/mlである重合体のテトラリン溶液を調整し、135℃における極限粘度を測定した。それぞれの濃度で3回繰り返し測定し、得られた3回の値の平均値をその濃度での比粘度(ηsp)とし、ηsp/cのcをゼロ外挿した値を極限粘度[η]として求めた。 (2) Intrinsic viscosity [η]
At 135 ° C., an Ubbelohde viscometer was used. A polymer tetralin solution having a polymer concentration c per unit volume of tetralin of 0.6, 1.0, and 1.5 mg / ml was prepared, and the intrinsic viscosity at 135 ° C. was measured. The measurement was repeated three times at each concentration. The average value of the three values obtained was defined as the specific viscosity (ηsp) at that concentration, and the value obtained by extrapolating c of ηsp / c to zero was defined as the intrinsic viscosity [η]. Asked.
(3)分子量分布
ゲルパーミエイションクロマトグラフ(GPC)法によって、下記の条件で測定を行った。
装置:東ソー社製 HLC-8121GPC/HT
カラム:東ソー社製 TSKgel GMHHR-H(S)HT 4本
温度:145℃
溶媒:o-ジクロロベンゼン
溶出溶媒流速:1.0ml/分
試料濃度:1mg/ml
測定注入量:300μl
分子量標準物質:標準ポリスチレン
検出器:示差屈折 (3) by the molecular weight distribution gel permeation chromatograph (GPC) method was measured under the following conditions.
Equipment: Tosoh HLC-8121GPC / HT
Column: manufactured by Tosoh Corporation TSKgel GMH HR -H (S) HT 4 this temperature: 145 ℃
Solvent: o-dichlorobenzene Elution solvent flow rate: 1.0 ml / min Sample concentration: 1 mg / ml
Measurement injection volume: 300 μl
Molecular weight standard: Standard polystyrene Detector: Differential refraction
ゲルパーミエイションクロマトグラフ(GPC)法によって、下記の条件で測定を行った。
装置:東ソー社製 HLC-8121GPC/HT
カラム:東ソー社製 TSKgel GMHHR-H(S)HT 4本
温度:145℃
溶媒:o-ジクロロベンゼン
溶出溶媒流速:1.0ml/分
試料濃度:1mg/ml
測定注入量:300μl
分子量標準物質:標準ポリスチレン
検出器:示差屈折 (3) by the molecular weight distribution gel permeation chromatograph (GPC) method was measured under the following conditions.
Equipment: Tosoh HLC-8121GPC / HT
Column: manufactured by Tosoh Corporation TSKgel GMH HR -H (S) HT 4 this temperature: 145 ℃
Solvent: o-dichlorobenzene Elution solvent flow rate: 1.0 ml / min Sample concentration: 1 mg / ml
Measurement injection volume: 300 μl
Molecular weight standard: Standard polystyrene Detector: Differential refraction
(4)結晶融解ピーク及び結晶化ピーク
示差走査熱量計(セイコー電子工業社製DSC220C:入力補償DSC)を用い以下の条件で測定した。
(i)試料約5mgを室温から30℃/分の昇温速度で200℃まで昇温し、昇温完了後、5分間保持した。
(ii)次いで、200℃から10℃/分の降温速度で-100℃まで降温し、降温完了後、5分間、保持した。この(ii)で観察されるピークが結晶化ピークであり、ピーク面積が1J/g以上の結晶化ピークの有無を確認した。
(iii)続いて、-100℃から10℃/分の昇温速度で200℃まで昇温した。この(iii)で観察されるピークが結晶の融解ピークであり、ピーク面積が1J/g以上の融解ピークの有無を確認した。 (4) Crystal melting peak and crystallization peak Using a differential scanning calorimeter (DSC220C manufactured by Seiko Denshi Kogyo Co., Ltd .: input compensation DSC), measurement was performed under the following conditions.
(I) About 5 mg of the sample was heated from room temperature to 200 ° C. at a rate of temperature increase of 30 ° C./min, and held for 5 minutes after completion of the temperature increase.
(Ii) Next, the temperature was decreased from 200 ° C. to −100 ° C. at a rate of temperature decrease of 10 ° C./min, and held for 5 minutes after the temperature decrease was completed. The peak observed in (ii) was a crystallization peak, and the presence or absence of a crystallization peak with a peak area of 1 J / g or more was confirmed.
(Iii) Subsequently, the temperature was increased from −100 ° C. to 200 ° C. at a temperature increase rate of 10 ° C./min. The peak observed in (iii) was the melting peak of the crystal, and the presence or absence of a melting peak with a peak area of 1 J / g or more was confirmed.
示差走査熱量計(セイコー電子工業社製DSC220C:入力補償DSC)を用い以下の条件で測定した。
(i)試料約5mgを室温から30℃/分の昇温速度で200℃まで昇温し、昇温完了後、5分間保持した。
(ii)次いで、200℃から10℃/分の降温速度で-100℃まで降温し、降温完了後、5分間、保持した。この(ii)で観察されるピークが結晶化ピークであり、ピーク面積が1J/g以上の結晶化ピークの有無を確認した。
(iii)続いて、-100℃から10℃/分の昇温速度で200℃まで昇温した。この(iii)で観察されるピークが結晶の融解ピークであり、ピーク面積が1J/g以上の融解ピークの有無を確認した。 (4) Crystal melting peak and crystallization peak Using a differential scanning calorimeter (DSC220C manufactured by Seiko Denshi Kogyo Co., Ltd .: input compensation DSC), measurement was performed under the following conditions.
(I) About 5 mg of the sample was heated from room temperature to 200 ° C. at a rate of temperature increase of 30 ° C./min, and held for 5 minutes after completion of the temperature increase.
(Ii) Next, the temperature was decreased from 200 ° C. to −100 ° C. at a rate of temperature decrease of 10 ° C./min, and held for 5 minutes after the temperature decrease was completed. The peak observed in (ii) was a crystallization peak, and the presence or absence of a crystallization peak with a peak area of 1 J / g or more was confirmed.
(Iii) Subsequently, the temperature was increased from −100 ° C. to 200 ° C. at a temperature increase rate of 10 ° C./min. The peak observed in (iii) was the melting peak of the crystal, and the presence or absence of a melting peak with a peak area of 1 J / g or more was confirmed.
(5)メルトフローレート(MFR)
JIS-K-7210に従い、荷重2.16kgf、温度130℃の条件で測定を行った。 (5) Melt flow rate (MFR)
According to JIS-K-7210, the measurement was performed under the conditions of a load of 2.16 kgf and a temperature of 130 ° C.
JIS-K-7210に従い、荷重2.16kgf、温度130℃の条件で測定を行った。 (5) Melt flow rate (MFR)
According to JIS-K-7210, the measurement was performed under the conditions of a load of 2.16 kgf and a temperature of 130 ° C.
(6)変性量
無水マレイン酸の変性量は、サンプル1.0gをキシレン20mlに溶解させ、サンプルの溶液をメタノール300mlに攪拌しながら滴下してサンプルを再沈殿させて回収したのち、回収したサンプルを真空乾燥した後(80℃、8時間)、熱プレスにより厚さ100μmのフィルムを作製し、得られたフィルムの赤外吸収スペクトルを測定し、1780cm-1付近の吸収より無水マレイン酸変性量を定量した。 (6) Modified amount The modified amount of maleic anhydride is obtained by dissolving 1.0 g of a sample in 20 ml of xylene, dropping the sample solution into 300 ml of methanol while stirring to reprecipitate the sample, and then collecting the sample. After vacuum drying (80 ° C., 8 hours), a film having a thickness of 100 μm was prepared by hot pressing, the infrared absorption spectrum of the obtained film was measured, and the amount of maleic anhydride modification was determined by absorption near 1780 cm −1. Was quantified.
無水マレイン酸の変性量は、サンプル1.0gをキシレン20mlに溶解させ、サンプルの溶液をメタノール300mlに攪拌しながら滴下してサンプルを再沈殿させて回収したのち、回収したサンプルを真空乾燥した後(80℃、8時間)、熱プレスにより厚さ100μmのフィルムを作製し、得られたフィルムの赤外吸収スペクトルを測定し、1780cm-1付近の吸収より無水マレイン酸変性量を定量した。 (6) Modified amount The modified amount of maleic anhydride is obtained by dissolving 1.0 g of a sample in 20 ml of xylene, dropping the sample solution into 300 ml of methanol while stirring to reprecipitate the sample, and then collecting the sample. After vacuum drying (80 ° C., 8 hours), a film having a thickness of 100 μm was prepared by hot pressing, the infrared absorption spectrum of the obtained film was measured, and the amount of maleic anhydride modification was determined by absorption near 1780 cm −1. Was quantified.
(7)不揮発分
JIS K-6828に準じた測定方法で行った。 (7) Nonvolatile content It was measured by a measuring method according to JIS K-6828.
JIS K-6828に準じた測定方法で行った。 (7) Nonvolatile content It was measured by a measuring method according to JIS K-6828.
(8)水性エマルションの粒子径
HORIBA製作所製、レーザー回折粒子径測定装置LA-950V2で測定した値である。特に断りがない限り、粒子径は、個数基準で測定したメジアン径の値である。 (8) Particle size of aqueous emulsion This is a value measured with a laser diffraction particle size measuring device LA-950V2 manufactured by HORIBA. Unless otherwise specified, the particle diameter is a median diameter value measured on a number basis.
HORIBA製作所製、レーザー回折粒子径測定装置LA-950V2で測定した値である。特に断りがない限り、粒子径は、個数基準で測定したメジアン径の値である。 (8) Particle size of aqueous emulsion This is a value measured with a laser diffraction particle size measuring device LA-950V2 manufactured by HORIBA. Unless otherwise specified, the particle diameter is a median diameter value measured on a number basis.
<共重合体(B-1-1)の製造例>
アルゴンで置換したSUS製リアクター中にビニルシクロへキサン(以下、VCHと記載する場合がある)386部とトルエン3640部を投入した。50℃に昇温後、エチレンを0.6MPaで加圧しながら仕込んだ。トリイソブチルアルミニウム(TIBA)のトルエン溶液[東ソー・アクゾ(株)製TIBA濃度 20%]10部を仕込み、つづいてジエチルシリル(テトラメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド 0.001部を脱水トルエン 87部に溶解したものと、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート 0.03部を脱水トルエン 122部に溶解したものを投入し2時間攪拌した。得られた反応液をアセトン 約10000部中に投じ、沈殿した白色固体を濾取した。該固体をアセトンで洗浄後、減圧乾燥した結果、共重合体(B-1-1)300部を得た。該共重合体の[η]は0.48dl/gで、Mnは15,600、分子量分布(Mw/Mn)は2.0、融点(Tm)は57℃、ガラス転移点(Tg)は-28℃、共重合体におけるVCH単位の含有率は13モル%であった。 <Example of production of copolymer (B-1-1)>
386 parts of vinylcyclohexane (hereinafter sometimes referred to as VCH) and 3640 parts of toluene were charged into a SUS reactor substituted with argon. After raising the temperature to 50 ° C., ethylene was charged while being pressurized at 0.6 MPa. 10 parts of a toluene solution of triisobutylaluminum (TIBA) [TIBA concentration 20% manufactured by Tosoh Akzo Co., Ltd.] was charged, followed by diethylsilyl (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl- 2-phenoxy) titanium dichloride 0.001 part dissolved in 87 parts dehydrated toluene and dimethylanilinium tetrakis (pentafluorophenyl) borate 0.03 part dissolved in 122 parts dehydrated toluene were added and stirred for 2 hours. did. The obtained reaction solution was poured into about 10,000 parts of acetone, and the precipitated white solid was collected by filtration. The solid was washed with acetone and then dried under reduced pressure. As a result, 300 parts of copolymer (B-1-1) was obtained. [Η] of the copolymer is 0.48 dl / g, Mn is 15,600, molecular weight distribution (Mw / Mn) is 2.0, melting point (Tm) is 57 ° C., glass transition point (Tg) is − At 28 ° C., the content of VCH units in the copolymer was 13 mol%.
アルゴンで置換したSUS製リアクター中にビニルシクロへキサン(以下、VCHと記載する場合がある)386部とトルエン3640部を投入した。50℃に昇温後、エチレンを0.6MPaで加圧しながら仕込んだ。トリイソブチルアルミニウム(TIBA)のトルエン溶液[東ソー・アクゾ(株)製TIBA濃度 20%]10部を仕込み、つづいてジエチルシリル(テトラメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド 0.001部を脱水トルエン 87部に溶解したものと、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート 0.03部を脱水トルエン 122部に溶解したものを投入し2時間攪拌した。得られた反応液をアセトン 約10000部中に投じ、沈殿した白色固体を濾取した。該固体をアセトンで洗浄後、減圧乾燥した結果、共重合体(B-1-1)300部を得た。該共重合体の[η]は0.48dl/gで、Mnは15,600、分子量分布(Mw/Mn)は2.0、融点(Tm)は57℃、ガラス転移点(Tg)は-28℃、共重合体におけるVCH単位の含有率は13モル%であった。 <Example of production of copolymer (B-1-1)>
386 parts of vinylcyclohexane (hereinafter sometimes referred to as VCH) and 3640 parts of toluene were charged into a SUS reactor substituted with argon. After raising the temperature to 50 ° C., ethylene was charged while being pressurized at 0.6 MPa. 10 parts of a toluene solution of triisobutylaluminum (TIBA) [TIBA concentration 20% manufactured by Tosoh Akzo Co., Ltd.] was charged, followed by diethylsilyl (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl- 2-phenoxy) titanium dichloride 0.001 part dissolved in 87 parts dehydrated toluene and dimethylanilinium tetrakis (pentafluorophenyl) borate 0.03 part dissolved in 122 parts dehydrated toluene were added and stirred for 2 hours. did. The obtained reaction solution was poured into about 10,000 parts of acetone, and the precipitated white solid was collected by filtration. The solid was washed with acetone and then dried under reduced pressure. As a result, 300 parts of copolymer (B-1-1) was obtained. [Η] of the copolymer is 0.48 dl / g, Mn is 15,600, molecular weight distribution (Mw / Mn) is 2.0, melting point (Tm) is 57 ° C., glass transition point (Tg) is − At 28 ° C., the content of VCH units in the copolymer was 13 mol%.
<共重合体(B-1-2)の製造例>
得られた共重合体(B-1-1)共重合体100部に、無水マレイン酸0.4部、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン0.04部を添加して十分に予備混合後に二軸押出機の供給口より供給して溶融混練を行い、共重合体(B-1-2)を得た。なお、押出機の溶融混練を行う部分の温度は、溶融混練を前半と後半の二段階に分け、前半は180℃、後半は260℃と温度設定にして溶融混練を行った。共重合体(B-1-2)のマレイン酸グラフト量は0.2%、MFRは180g/10分(190℃、荷重:2.16kgf)であった。 <Example of production of copolymer (B-1-2)>
To 100 parts of the obtained copolymer (B-1-1) copolymer, 0.4 part of maleic anhydride and 0.04 part of 1,3-bis (t-butylperoxyisopropyl) benzene were added. After sufficiently premixed, it was supplied from the supply port of the twin screw extruder and melt kneaded to obtain a copolymer (B-1-2). The temperature of the melt kneading part of the extruder was divided into two stages, the first half and the latter half, and the melt kneading was performed at a temperature setting of 180 ° C. in the first half and 260 ° C. in the second half. Copolymer (B-1-2) had a maleic acid graft amount of 0.2% and an MFR of 180 g / 10 min (190 ° C., load: 2.16 kgf).
得られた共重合体(B-1-1)共重合体100部に、無水マレイン酸0.4部、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン0.04部を添加して十分に予備混合後に二軸押出機の供給口より供給して溶融混練を行い、共重合体(B-1-2)を得た。なお、押出機の溶融混練を行う部分の温度は、溶融混練を前半と後半の二段階に分け、前半は180℃、後半は260℃と温度設定にして溶融混練を行った。共重合体(B-1-2)のマレイン酸グラフト量は0.2%、MFRは180g/10分(190℃、荷重:2.16kgf)であった。 <Example of production of copolymer (B-1-2)>
To 100 parts of the obtained copolymer (B-1-1) copolymer, 0.4 part of maleic anhydride and 0.04 part of 1,3-bis (t-butylperoxyisopropyl) benzene were added. After sufficiently premixed, it was supplied from the supply port of the twin screw extruder and melt kneaded to obtain a copolymer (B-1-2). The temperature of the melt kneading part of the extruder was divided into two stages, the first half and the latter half, and the melt kneading was performed at a temperature setting of 180 ° C. in the first half and 260 ° C. in the second half. Copolymer (B-1-2) had a maleic acid graft amount of 0.2% and an MFR of 180 g / 10 min (190 ° C., load: 2.16 kgf).
<共重合体(B-2-2)の製造例>
容量1lのセパラブルフラスコ反応器に、攪袢器、温度計、滴下ロート、還流冷却管をつけて、反応器内の気体を窒素で置換した。ここに溶媒としてキシレン600部、重合体(B-2-1)[エチレン・プロピレン共重合体(クラリアントジャパン株式会社製LICOCENE PP1602、エチレン:プロピレン=15mol%:85mol%)]100部、無水マレイン酸50部、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン(スミライザーGP、住友化学製)1部を入れ140℃に加熱、撹拌し、溶液を得た後、ジ-tertブチルパーオキサイド2部を添加し、5時間同温度で攪拌を続けて反応を行った。なお、加熱はオイルバスを用いた。反応終了後、内容物を室温まで下げ、アセトン1000部に投じ、沈殿した白色固体を濾取した。該固体をアセトンで洗浄後、減圧乾燥した結果、無水マレイン酸で変性された重合体(B-2-2)を得た。得られた重合体のMwは45362、Mnは23354、分子量分布(Mw/Mn)は1.9、マレイン酸変性量は0.93%であった。
また重合体(B-2-1)は、-100~200℃の温度範囲に、結晶融解熱量が1J/g以上の結晶融解ピーク及び結晶化熱量が1J/g以上の結晶化ピークが観測された。 <Example of production of copolymer (B-2-2)>
A 1 L separable flask reactor was equipped with a stirrer, thermometer, dropping funnel and reflux condenser, and the gas in the reactor was replaced with nitrogen. Here, 600 parts of xylene as a solvent, 100 parts of polymer (B-2-1) [ethylene / propylene copolymer (LICOCENE PP1602, manufactured by Clariant Japan KK, ethylene: propylene = 15 mol%: 85 mol%)], maleic anhydride 50 parts 2,4,8,10-tetra-tert-butyl-6- [3- (3-methyl-4-hydroxy-5-tert-butylphenyl) propoxy] dibenzo [d, f] [1,3 , 2] 1 part of dioxaphosphepine (Sumilyzer GP, manufactured by Sumitomo Chemical Co., Ltd.) was added and heated to 140 ° C. and stirred to obtain a solution. Then, 2 parts of di-tertbutyl peroxide was added, and the same temperature was maintained for 5 hours. The reaction was continued with stirring. An oil bath was used for heating. After completion of the reaction, the content was lowered to room temperature, poured into 1000 parts of acetone, and the precipitated white solid was collected by filtration. The solid was washed with acetone and then dried under reduced pressure. As a result, a polymer (B-2-2) modified with maleic anhydride was obtained. The obtained polymer had Mw of 45362, Mn of 23354, molecular weight distribution (Mw / Mn) of 1.9, and maleic acid modification amount of 0.93%.
In the polymer (B-2-1), a crystal melting peak with a heat of crystal fusion of 1 J / g or more and a crystallization peak with a heat of crystallization of 1 J / g or more were observed in the temperature range of −100 to 200 ° C. It was.
容量1lのセパラブルフラスコ反応器に、攪袢器、温度計、滴下ロート、還流冷却管をつけて、反応器内の気体を窒素で置換した。ここに溶媒としてキシレン600部、重合体(B-2-1)[エチレン・プロピレン共重合体(クラリアントジャパン株式会社製LICOCENE PP1602、エチレン:プロピレン=15mol%:85mol%)]100部、無水マレイン酸50部、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン(スミライザーGP、住友化学製)1部を入れ140℃に加熱、撹拌し、溶液を得た後、ジ-tertブチルパーオキサイド2部を添加し、5時間同温度で攪拌を続けて反応を行った。なお、加熱はオイルバスを用いた。反応終了後、内容物を室温まで下げ、アセトン1000部に投じ、沈殿した白色固体を濾取した。該固体をアセトンで洗浄後、減圧乾燥した結果、無水マレイン酸で変性された重合体(B-2-2)を得た。得られた重合体のMwは45362、Mnは23354、分子量分布(Mw/Mn)は1.9、マレイン酸変性量は0.93%であった。
また重合体(B-2-1)は、-100~200℃の温度範囲に、結晶融解熱量が1J/g以上の結晶融解ピーク及び結晶化熱量が1J/g以上の結晶化ピークが観測された。 <Example of production of copolymer (B-2-2)>
A 1 L separable flask reactor was equipped with a stirrer, thermometer, dropping funnel and reflux condenser, and the gas in the reactor was replaced with nitrogen. Here, 600 parts of xylene as a solvent, 100 parts of polymer (B-2-1) [ethylene / propylene copolymer (LICOCENE PP1602, manufactured by Clariant Japan KK, ethylene: propylene = 15 mol%: 85 mol%)], maleic anhydride 50 parts 2,4,8,10-tetra-tert-butyl-6- [3- (3-methyl-4-hydroxy-5-tert-butylphenyl) propoxy] dibenzo [d, f] [1,3 , 2] 1 part of dioxaphosphepine (Sumilyzer GP, manufactured by Sumitomo Chemical Co., Ltd.) was added and heated to 140 ° C. and stirred to obtain a solution. Then, 2 parts of di-tertbutyl peroxide was added, and the same temperature was maintained for 5 hours. The reaction was continued with stirring. An oil bath was used for heating. After completion of the reaction, the content was lowered to room temperature, poured into 1000 parts of acetone, and the precipitated white solid was collected by filtration. The solid was washed with acetone and then dried under reduced pressure. As a result, a polymer (B-2-2) modified with maleic anhydride was obtained. The obtained polymer had Mw of 45362, Mn of 23354, molecular weight distribution (Mw / Mn) of 1.9, and maleic acid modification amount of 0.93%.
In the polymer (B-2-1), a crystal melting peak with a heat of crystal fusion of 1 J / g or more and a crystallization peak with a heat of crystallization of 1 J / g or more were observed in the temperature range of −100 to 200 ° C. It was.
<共重合体(B-2-4)の製造例>
重合体(B-2-3)[エチレン・プロピレン共重合体(クラリアントジャパン株式会社製LICOCENE PP2602、エチレン:プロピレン=13mol%:87mol%)]を用いる以外は、重合体(B-2-2)の製造例と同様にして、無水マレイン酸で変性された重合体(B-2-4)を得た。得られた重合体のMwは55115、Mnは25836、分子量分布(Mw/Mn)は2.2、マレイン酸変性量は0.84%であった。
また重合体(B-2-3)は、-100~200℃の温度範囲に、結晶融解熱量が1J/g以上の結晶融解ピーク及び結晶化熱量が1J/g以上の結晶化ピークが観測された。 <Example of production of copolymer (B-2-4)>
Polymer (B-2-2) except that polymer (B-2-3) [ethylene / propylene copolymer (LICOCENE PP2602, manufactured by Clariant Japan KK, ethylene: propylene = 13 mol%: 87 mol%)] is used. In the same manner as in the above production example, a polymer (B-2-4) modified with maleic anhydride was obtained. Mw of the obtained polymer was 55115, Mn was 25836, molecular weight distribution (Mw / Mn) was 2.2, and maleic acid modification amount was 0.84%.
In the polymer (B-2-3), a crystal melting peak with a heat of crystal fusion of 1 J / g or more and a crystallization peak with a heat of crystallization of 1 J / g or more were observed in the temperature range of −100 to 200 ° C. It was.
重合体(B-2-3)[エチレン・プロピレン共重合体(クラリアントジャパン株式会社製LICOCENE PP2602、エチレン:プロピレン=13mol%:87mol%)]を用いる以外は、重合体(B-2-2)の製造例と同様にして、無水マレイン酸で変性された重合体(B-2-4)を得た。得られた重合体のMwは55115、Mnは25836、分子量分布(Mw/Mn)は2.2、マレイン酸変性量は0.84%であった。
また重合体(B-2-3)は、-100~200℃の温度範囲に、結晶融解熱量が1J/g以上の結晶融解ピーク及び結晶化熱量が1J/g以上の結晶化ピークが観測された。 <Example of production of copolymer (B-2-4)>
Polymer (B-2-2) except that polymer (B-2-3) [ethylene / propylene copolymer (LICOCENE PP2602, manufactured by Clariant Japan KK, ethylene: propylene = 13 mol%: 87 mol%)] is used. In the same manner as in the above production example, a polymer (B-2-4) modified with maleic anhydride was obtained. Mw of the obtained polymer was 55115, Mn was 25836, molecular weight distribution (Mw / Mn) was 2.2, and maleic acid modification amount was 0.84%.
In the polymer (B-2-3), a crystal melting peak with a heat of crystal fusion of 1 J / g or more and a crystallization peak with a heat of crystallization of 1 J / g or more were observed in the temperature range of −100 to 200 ° C. It was.
<共重合体(B-3-1)の製造例>
容量2lのセパラブルフラスコ反応器に、攪袢器、温度計、滴下ロート、還流冷却管をつけて減圧にし、反応器内の気体を窒素で置換した。このフラスコに乾燥したトルエン1lを重合溶媒として導入した。ここにプロピレン8NL/min、1-ブテン0.5NL/minを常圧にて連続フィードし、溶媒温度を30℃とした。トリイソブチルアルミニウム(以後TIBAという場合がある)1.25mmolを反応器に添加した後、重合触媒としてジメチルシリル(2,3,4,5-テトラメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド0.005mmolを反応器に添加した。その15秒後にトリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート0.025mmolを反応器に添加し、重合を開始した。30分間の重合の結果、プロピレン含有量が96mol%のプロピレン-1-ブテン共重合体(B-3-1)155.8gが得られた。得られた重合体の極限粘度[η]は2.1dl/gで、分子量分布(Mw/Mn)は2.5であった。また-100~200℃の温度範囲に、結晶融解熱量が1J/g以上の結晶融解ピーク及び結晶化熱量が1J/g以上の結晶化ピークのいずれもが観測されなかった。 <Example of production of copolymer (B-3-1)>
A 2 l separable flask reactor was equipped with a stirrer, thermometer, dropping funnel and reflux condenser to reduce the pressure, and the gas in the reactor was replaced with nitrogen. Into this flask, 1 l of dried toluene was introduced as a polymerization solvent. Here, propylene 8 NL / min and 1-butene 0.5 NL / min were continuously fed at normal pressure, and the solvent temperature was 30 ° C. After adding 1.25 mmol of triisobutylaluminum (hereinafter sometimes referred to as TIBA) to the reactor, dimethylsilyl (2,3,4,5-tetramethylcyclopentadienyl) (3-tert-butyl-) was used as a polymerization catalyst. 0.005 mmol of 5-methyl-2-phenoxy) titanium dichloride was added to the reactor. 15 seconds later, 0.025 mmol of triphenylmethyltetrakis (pentafluorophenyl) borate was added to the reactor to initiate polymerization. As a result of the polymerization for 30 minutes, 155.8 g of a propylene-1-butene copolymer (B-3-1) having a propylene content of 96 mol% was obtained. The obtained polymer had an intrinsic viscosity [η] of 2.1 dl / g and a molecular weight distribution (Mw / Mn) of 2.5. In addition, neither a crystal melting peak with a heat of crystal fusion of 1 J / g or more nor a crystallization peak with a heat of crystallization of 1 J / g or more was observed in the temperature range of −100 to 200 ° C.
容量2lのセパラブルフラスコ反応器に、攪袢器、温度計、滴下ロート、還流冷却管をつけて減圧にし、反応器内の気体を窒素で置換した。このフラスコに乾燥したトルエン1lを重合溶媒として導入した。ここにプロピレン8NL/min、1-ブテン0.5NL/minを常圧にて連続フィードし、溶媒温度を30℃とした。トリイソブチルアルミニウム(以後TIBAという場合がある)1.25mmolを反応器に添加した後、重合触媒としてジメチルシリル(2,3,4,5-テトラメチルシクロペンタジエニル)(3-tert-ブチル-5-メチル-2-フェノキシ)チタニウムジクロライド0.005mmolを反応器に添加した。その15秒後にトリフェニルメチルテトラキス(ペンタフルオロフェニル)ボレート0.025mmolを反応器に添加し、重合を開始した。30分間の重合の結果、プロピレン含有量が96mol%のプロピレン-1-ブテン共重合体(B-3-1)155.8gが得られた。得られた重合体の極限粘度[η]は2.1dl/gで、分子量分布(Mw/Mn)は2.5であった。また-100~200℃の温度範囲に、結晶融解熱量が1J/g以上の結晶融解ピーク及び結晶化熱量が1J/g以上の結晶化ピークのいずれもが観測されなかった。 <Example of production of copolymer (B-3-1)>
A 2 l separable flask reactor was equipped with a stirrer, thermometer, dropping funnel and reflux condenser to reduce the pressure, and the gas in the reactor was replaced with nitrogen. Into this flask, 1 l of dried toluene was introduced as a polymerization solvent. Here, propylene 8 NL / min and 1-butene 0.5 NL / min were continuously fed at normal pressure, and the solvent temperature was 30 ° C. After adding 1.25 mmol of triisobutylaluminum (hereinafter sometimes referred to as TIBA) to the reactor, dimethylsilyl (2,3,4,5-tetramethylcyclopentadienyl) (3-tert-butyl-) was used as a polymerization catalyst. 0.005 mmol of 5-methyl-2-phenoxy) titanium dichloride was added to the reactor. 15 seconds later, 0.025 mmol of triphenylmethyltetrakis (pentafluorophenyl) borate was added to the reactor to initiate polymerization. As a result of the polymerization for 30 minutes, 155.8 g of a propylene-1-butene copolymer (B-3-1) having a propylene content of 96 mol% was obtained. The obtained polymer had an intrinsic viscosity [η] of 2.1 dl / g and a molecular weight distribution (Mw / Mn) of 2.5. In addition, neither a crystal melting peak with a heat of crystal fusion of 1 J / g or more nor a crystallization peak with a heat of crystallization of 1 J / g or more was observed in the temperature range of −100 to 200 ° C.
<共重合体(B-3-2)の製造例>
重合体(B-3-1)を用いる以外は、重合体(B-2-2)の製造例と同様にして、無水マレイン酸で変性された重合体(B-3-2)を得た。得られた重合体のMwは49043、Mnは14267、分子量分布(Mw/Mn)は3.4、マレイン酸変性量は1.79%であった。 <Example of production of copolymer (B-3-2)>
A polymer (B-3-2) modified with maleic anhydride was obtained in the same manner as in the production example of the polymer (B-2-2) except that the polymer (B-3-1) was used. . Mw of the obtained polymer was 49043, Mn was 14267, molecular weight distribution (Mw / Mn) was 3.4, and maleic acid modification amount was 1.79%.
重合体(B-3-1)を用いる以外は、重合体(B-2-2)の製造例と同様にして、無水マレイン酸で変性された重合体(B-3-2)を得た。得られた重合体のMwは49043、Mnは14267、分子量分布(Mw/Mn)は3.4、マレイン酸変性量は1.79%であった。 <Example of production of copolymer (B-3-2)>
A polymer (B-3-2) modified with maleic anhydride was obtained in the same manner as in the production example of the polymer (B-2-2) except that the polymer (B-3-1) was used. . Mw of the obtained polymer was 49043, Mn was 14267, molecular weight distribution (Mw / Mn) was 3.4, and maleic acid modification amount was 1.79%.
<水性エマルションの製造例1>
攪拌機、温度計、還流冷却管を備えた容器2lのセパラブルフラスコ反応容器に、溶媒としてトルエン200部、共重合体として重合体(B-1-2)100部を入れ、80℃にて攪拌、溶解した。次いで、界面活性剤として、ラテムルE-1000A(30%水溶液、花王株式会社製)17部、ノイゲンEA-177(第一工業製薬株式会社製)5部、イソプロパノール5部の混合液を10分間かけて滴下した。さらに5分間攪拌後、ジメチルエタノールアミン5部を投入し、さらに5分間攪拌した。
次いで、攪拌装置をTKロボミクス(株式会社PRIMIX製)に変更し、本反応混合物をディスパー翼にて攪拌しながら、イソプロパノール100部、イオン交換水100部の混合液を30分間かけて滴下した。反応混合物に流動性が認められた時点で、攪拌羽根をホモミキサーに変更し、さらに攪拌しながらイオン交換水300部を滴下し、乳白色の分散体を得た。
得られた分散体を2Lナスフラスコに投入し、エバポレーターにて減圧留去を行い、200メッシュナイロン網にて濾過し、重合体(B-1-2)及び界面活性剤を含む水性エマルションを得た。得られた水性エマルション(E-1)の粒径(個数基準)は0.61μm、不揮発分濃度は36%であった。 <Production Example 1 of Aqueous Emulsion>
In a 2 l separable flask reaction vessel equipped with a stirrer, thermometer and reflux condenser, 200 parts of toluene as a solvent and 100 parts of a polymer (B-1-2) as a copolymer were stirred at 80 ° C. Dissolved. Next, as a surfactant, a mixed solution of 17 parts of Latemuru E-1000A (30% aqueous solution, manufactured by Kao Corporation), 5 parts of Neugen EA-177 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 5 parts of isopropanol is applied for 10 minutes. And dripped. After further stirring for 5 minutes, 5 parts of dimethylethanolamine was added, and the mixture was further stirred for 5 minutes.
Subsequently, the stirring apparatus was changed to TK Robotics (manufactured by PRIMIX Co., Ltd.), and a mixture of 100 parts of isopropanol and 100 parts of ion-exchanged water was added dropwise over 30 minutes while stirring the reaction mixture with a disper blade. When fluidity was recognized in the reaction mixture, the stirring blade was changed to a homomixer, and 300 parts of ion-exchanged water was added dropwise while stirring to obtain a milky white dispersion.
The obtained dispersion was put into a 2 L eggplant flask, evaporated under reduced pressure using an evaporator, and filtered through a 200 mesh nylon net to obtain an aqueous emulsion containing the polymer (B-1-2) and a surfactant. It was. The obtained aqueous emulsion (E-1) had a particle size (number basis) of 0.61 μm and a non-volatile content concentration of 36%.
攪拌機、温度計、還流冷却管を備えた容器2lのセパラブルフラスコ反応容器に、溶媒としてトルエン200部、共重合体として重合体(B-1-2)100部を入れ、80℃にて攪拌、溶解した。次いで、界面活性剤として、ラテムルE-1000A(30%水溶液、花王株式会社製)17部、ノイゲンEA-177(第一工業製薬株式会社製)5部、イソプロパノール5部の混合液を10分間かけて滴下した。さらに5分間攪拌後、ジメチルエタノールアミン5部を投入し、さらに5分間攪拌した。
次いで、攪拌装置をTKロボミクス(株式会社PRIMIX製)に変更し、本反応混合物をディスパー翼にて攪拌しながら、イソプロパノール100部、イオン交換水100部の混合液を30分間かけて滴下した。反応混合物に流動性が認められた時点で、攪拌羽根をホモミキサーに変更し、さらに攪拌しながらイオン交換水300部を滴下し、乳白色の分散体を得た。
得られた分散体を2Lナスフラスコに投入し、エバポレーターにて減圧留去を行い、200メッシュナイロン網にて濾過し、重合体(B-1-2)及び界面活性剤を含む水性エマルションを得た。得られた水性エマルション(E-1)の粒径(個数基準)は0.61μm、不揮発分濃度は36%であった。 <Production Example 1 of Aqueous Emulsion>
In a 2 l separable flask reaction vessel equipped with a stirrer, thermometer and reflux condenser, 200 parts of toluene as a solvent and 100 parts of a polymer (B-1-2) as a copolymer were stirred at 80 ° C. Dissolved. Next, as a surfactant, a mixed solution of 17 parts of Latemuru E-1000A (30% aqueous solution, manufactured by Kao Corporation), 5 parts of Neugen EA-177 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 5 parts of isopropanol is applied for 10 minutes. And dripped. After further stirring for 5 minutes, 5 parts of dimethylethanolamine was added, and the mixture was further stirred for 5 minutes.
Subsequently, the stirring apparatus was changed to TK Robotics (manufactured by PRIMIX Co., Ltd.), and a mixture of 100 parts of isopropanol and 100 parts of ion-exchanged water was added dropwise over 30 minutes while stirring the reaction mixture with a disper blade. When fluidity was recognized in the reaction mixture, the stirring blade was changed to a homomixer, and 300 parts of ion-exchanged water was added dropwise while stirring to obtain a milky white dispersion.
The obtained dispersion was put into a 2 L eggplant flask, evaporated under reduced pressure using an evaporator, and filtered through a 200 mesh nylon net to obtain an aqueous emulsion containing the polymer (B-1-2) and a surfactant. It was. The obtained aqueous emulsion (E-1) had a particle size (number basis) of 0.61 μm and a non-volatile content concentration of 36%.
<水性エマルションの製造例2>
共重合体として重合体(B-2-1)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-2)の粒径(個数基準)は0.25μm、不揮発分濃度は38%であった。 <Production Example 2 of aqueous emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-1) was used as the copolymer. The obtained aqueous emulsion (E-2) had a particle size (number basis) of 0.25 μm and a nonvolatile content concentration of 38%.
共重合体として重合体(B-2-1)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-2)の粒径(個数基準)は0.25μm、不揮発分濃度は38%であった。 <Production Example 2 of aqueous emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-1) was used as the copolymer. The obtained aqueous emulsion (E-2) had a particle size (number basis) of 0.25 μm and a nonvolatile content concentration of 38%.
<水性エマルションの製造例3>
共重合体として重合体(B-2-2)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-3)の粒径(個数基準)は0.22μm、不揮発分濃度は39%であった。 <Production Example 3 of aqueous emulsion>
An aqueous emulsion was produced in the same manner as in <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-2) was used as the copolymer. The obtained aqueous emulsion (E-3) had a particle size (number basis) of 0.22 μm and a nonvolatile content concentration of 39%.
共重合体として重合体(B-2-2)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-3)の粒径(個数基準)は0.22μm、不揮発分濃度は39%であった。 <Production Example 3 of aqueous emulsion>
An aqueous emulsion was produced in the same manner as in <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-2) was used as the copolymer. The obtained aqueous emulsion (E-3) had a particle size (number basis) of 0.22 μm and a nonvolatile content concentration of 39%.
<水性エマルションの製造例4>
共重合体として重合体(B-2-3)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-4)の粒径(個数基準)は0.21μm、不揮発分濃度は36%であった。 <Production Example 4 of Aqueous Emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-3) was used as the copolymer. The obtained aqueous emulsion (E-4) had a particle size (number basis) of 0.21 μm and a non-volatile content concentration of 36%.
共重合体として重合体(B-2-3)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-4)の粒径(個数基準)は0.21μm、不揮発分濃度は36%であった。 <Production Example 4 of Aqueous Emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-3) was used as the copolymer. The obtained aqueous emulsion (E-4) had a particle size (number basis) of 0.21 μm and a non-volatile content concentration of 36%.
<水性エマルションの製造例5>
共重合体として重合体(B-2-4)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-5)の粒径(個数基準)は0.13μm、不揮発分濃度は36%であった。 <Production Example 5 of aqueous emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-4) was used as the copolymer. The obtained aqueous emulsion (E-5) had a particle size (number basis) of 0.13 μm and a nonvolatile content concentration of 36%.
共重合体として重合体(B-2-4)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-5)の粒径(個数基準)は0.13μm、不揮発分濃度は36%であった。 <Production Example 5 of aqueous emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-2-4) was used as the copolymer. The obtained aqueous emulsion (E-5) had a particle size (number basis) of 0.13 μm and a nonvolatile content concentration of 36%.
<水性エマルションの製造例6>
共重合体として重合体(B-3-2)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-6)の粒径(個数基準)は0.33μm、不揮発分濃度は34%であった。 <Production Example 6 of Aqueous Emulsion>
An aqueous emulsion was produced in the same manner as in <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-3-2) was used as the copolymer. The obtained aqueous emulsion (E-6) had a particle size (number basis) of 0.33 μm and a nonvolatile content concentration of 34%.
共重合体として重合体(B-3-2)100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-6)の粒径(個数基準)は0.33μm、不揮発分濃度は34%であった。 <Production Example 6 of Aqueous Emulsion>
An aqueous emulsion was produced in the same manner as in <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-3-2) was used as the copolymer. The obtained aqueous emulsion (E-6) had a particle size (number basis) of 0.33 μm and a nonvolatile content concentration of 34%.
<水性エマルションの製造例7>
共重合体として重合体(B-2-2)50部、重合体(B-3-2)50部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-7)の粒径(個数基準)は0.21μm、不揮発分濃度は35%であった。 <Production Example 7 of Aqueous Emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 50 parts of the polymer (B-2-2) and 50 parts of the polymer (B-3-2) were used as the copolymer. The obtained aqueous emulsion (E-7) had a particle size (number basis) of 0.21 μm and a nonvolatile content concentration of 35%.
共重合体として重合体(B-2-2)50部、重合体(B-3-2)50部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-7)の粒径(個数基準)は0.21μm、不揮発分濃度は35%であった。 <Production Example 7 of Aqueous Emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 50 parts of the polymer (B-2-2) and 50 parts of the polymer (B-3-2) were used as the copolymer. The obtained aqueous emulsion (E-7) had a particle size (number basis) of 0.21 μm and a nonvolatile content concentration of 35%.
<水性エマルションの製造例8>
共重合体として重合体(B-4-1)[BONDINE HX8140(ARKEMA社製)]100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-8)の粒径(個数基準)は0.09μm、不揮発分濃度は40%であった。 <Production Example 8 of Aqueous Emulsion>
An aqueous emulsion was produced in the same manner as in <Aqueous emulsion production example 1> except that 100 parts of polymer (B-4-1) [BONDINE HX8140 (manufactured by ARKEMA)] was used as the copolymer. The obtained aqueous emulsion (E-8) had a particle size (number basis) of 0.09 μm and a nonvolatile content concentration of 40%.
共重合体として重合体(B-4-1)[BONDINE HX8140(ARKEMA社製)]100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-8)の粒径(個数基準)は0.09μm、不揮発分濃度は40%であった。 <Production Example 8 of Aqueous Emulsion>
An aqueous emulsion was produced in the same manner as in <Aqueous emulsion production example 1> except that 100 parts of polymer (B-4-1) [BONDINE HX8140 (manufactured by ARKEMA)] was used as the copolymer. The obtained aqueous emulsion (E-8) had a particle size (number basis) of 0.09 μm and a nonvolatile content concentration of 40%.
<水性エマルションの製造例9>
共重合体として重合体(B-4-2)[BONDINE AX8390(ARKEMA社製)]100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-9)の粒径(個数基準)は0.11μm、不揮発分濃度は42%であった。 <Production Example 9 of aqueous emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-4-2) [BONDINE AX8390 (manufactured by ARKEMA)] was used as the copolymer. The obtained aqueous emulsion (E-9) had a particle size (on a number basis) of 0.11 μm and a nonvolatile content concentration of 42%.
共重合体として重合体(B-4-2)[BONDINE AX8390(ARKEMA社製)]100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルションを製造した。得られた水性エマルション(E-9)の粒径(個数基準)は0.11μm、不揮発分濃度は42%であった。 <Production Example 9 of aqueous emulsion>
An aqueous emulsion was produced in the same manner as <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-4-2) [BONDINE AX8390 (manufactured by ARKEMA)] was used as the copolymer. The obtained aqueous emulsion (E-9) had a particle size (on a number basis) of 0.11 μm and a nonvolatile content concentration of 42%.
<水性エマルションの製造例10>
重合体(B-1-2)100部に代えて、重合体(B-4-2)67部、粘着樹脂(テルペンフェノール、タマノル803L、荒川化学社製)33部を用いる以外は<水性エマルションの製造例1>と同様に水性エマルション(E-10)を製造した。得られた水性エマルションの粒径(個数基準)は0.10μm、不揮発分濃度は41%であった。 <Production Example 10 of Aqueous Emulsion>
<Aqueous emulsion except that 67 parts of polymer (B-4-2) and 33 parts of adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) are used instead of 100 parts of polymer (B-1-2). An aqueous emulsion (E-10) was produced in the same manner as in Production Example 1>. The obtained aqueous emulsion had a particle size (on a number basis) of 0.10 μm and a nonvolatile content concentration of 41%.
重合体(B-1-2)100部に代えて、重合体(B-4-2)67部、粘着樹脂(テルペンフェノール、タマノル803L、荒川化学社製)33部を用いる以外は<水性エマルションの製造例1>と同様に水性エマルション(E-10)を製造した。得られた水性エマルションの粒径(個数基準)は0.10μm、不揮発分濃度は41%であった。 <Production Example 10 of Aqueous Emulsion>
<Aqueous emulsion except that 67 parts of polymer (B-4-2) and 33 parts of adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) are used instead of 100 parts of polymer (B-1-2). An aqueous emulsion (E-10) was produced in the same manner as in Production Example 1>. The obtained aqueous emulsion had a particle size (on a number basis) of 0.10 μm and a nonvolatile content concentration of 41%.
<水性エマルションの製造例11>
共重合体として重合体(B-4-3)[BONDINE HX8290(ARKEMA社製)]100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルション(E-11)を製造した。得られた水性エマルションの粒径(個数基準)は0.18μm、不揮発分濃度は39%であった。 <Production Example 11 of Aqueous Emulsion>
An aqueous emulsion (E-11) was produced in the same manner as in <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-4-3) [BONDINE HX8290 (manufactured by ARKEMA)] was used as the copolymer. . The obtained aqueous emulsion had a particle size (number basis) of 0.18 μm and a nonvolatile content concentration of 39%.
共重合体として重合体(B-4-3)[BONDINE HX8290(ARKEMA社製)]100部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルション(E-11)を製造した。得られた水性エマルションの粒径(個数基準)は0.18μm、不揮発分濃度は39%であった。 <Production Example 11 of Aqueous Emulsion>
An aqueous emulsion (E-11) was produced in the same manner as in <Aqueous emulsion production example 1> except that 100 parts of the polymer (B-4-3) [BONDINE HX8290 (manufactured by ARKEMA)] was used as the copolymer. . The obtained aqueous emulsion had a particle size (number basis) of 0.18 μm and a nonvolatile content concentration of 39%.
<水性エマルションの製造例12>
重合体(B-1-2)100部に代えて、重合体(B-4-3)50部、粘着樹脂(テルペンフェノール、タマノル803L、荒川化学社製)50部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルション(E-12)を製造した。得られた水性エマルションの粒径(個数基準)は0.20μm、不揮発分濃度は33%であった。 <Production Example 12 of aqueous emulsion>
Instead of using 100 parts of the polymer (B-1-2), 50 parts of the polymer (B-4-3) and 50 parts of an adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) are used. Emulsion Production Example 1> An aqueous emulsion (E-12) was produced in the same manner. The obtained aqueous emulsion had a particle size (number basis) of 0.20 μm and a nonvolatile content concentration of 33%.
重合体(B-1-2)100部に代えて、重合体(B-4-3)50部、粘着樹脂(テルペンフェノール、タマノル803L、荒川化学社製)50部を用いる以外は、<水性エマルションの製造例1>と同様に水性エマルション(E-12)を製造した。得られた水性エマルションの粒径(個数基準)は0.20μm、不揮発分濃度は33%であった。 <Production Example 12 of aqueous emulsion>
Instead of using 100 parts of the polymer (B-1-2), 50 parts of the polymer (B-4-3) and 50 parts of an adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) are used. Emulsion Production Example 1> An aqueous emulsion (E-12) was produced in the same manner. The obtained aqueous emulsion had a particle size (number basis) of 0.20 μm and a nonvolatile content concentration of 33%.
<水性エマルションの製造例13>
共重合体として重合体(B-4-4)[BONDINE LX4110(ARKEMA社製)]100部用い、反応温度を90℃とする以外は、<水性エマルションの製造例1>と同様に水性エマルション(E-13)を製造した。得られた水性エマルションの粒径(個数基準)は0.08μm、不揮発分濃度は44%であった。 <Production Example 13 of aqueous emulsion>
An aqueous emulsion (as in Aqueous Emulsion Production Example 1) except that 100 parts of the polymer (B-4-4) [BONDINE LX4110 (manufactured by ARKEMA)] was used as the copolymer and the reaction temperature was 90 ° C. E-13) was produced. The obtained aqueous emulsion had a particle size (number basis) of 0.08 μm and a nonvolatile content concentration of 44%.
共重合体として重合体(B-4-4)[BONDINE LX4110(ARKEMA社製)]100部用い、反応温度を90℃とする以外は、<水性エマルションの製造例1>と同様に水性エマルション(E-13)を製造した。得られた水性エマルションの粒径(個数基準)は0.08μm、不揮発分濃度は44%であった。 <Production Example 13 of aqueous emulsion>
An aqueous emulsion (as in Aqueous Emulsion Production Example 1) except that 100 parts of the polymer (B-4-4) [BONDINE LX4110 (manufactured by ARKEMA)] was used as the copolymer and the reaction temperature was 90 ° C. E-13) was produced. The obtained aqueous emulsion had a particle size (number basis) of 0.08 μm and a nonvolatile content concentration of 44%.
<水性エマルションの製造例14>
重合体(B-1-2)100部に代えて、重合体(B-4-4)75部、粘着樹脂(テルペンフェノール、タマノル803L、荒川化学社製)25部を用い、反応温度を90℃とする以外は、<水性エマルションの製造例1>と同様に水性エマルション(E-14)を製造した。得られた水性エマルションの粒径(個数基準)は0.20μm、不揮発分濃度は34%であった。 <Production Example 14 of Aqueous Emulsion>
Instead of 100 parts of the polymer (B-1-2), 75 parts of the polymer (B-4-4) and 25 parts of an adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) were used, and the reaction temperature was 90. An aqueous emulsion (E-14) was produced in the same manner as in <Preparation Example 1 of Aqueous Emulsion> except that the temperature was changed to 0 ° C. The obtained aqueous emulsion had a particle size (on a number basis) of 0.20 μm and a nonvolatile content concentration of 34%.
重合体(B-1-2)100部に代えて、重合体(B-4-4)75部、粘着樹脂(テルペンフェノール、タマノル803L、荒川化学社製)25部を用い、反応温度を90℃とする以外は、<水性エマルションの製造例1>と同様に水性エマルション(E-14)を製造した。得られた水性エマルションの粒径(個数基準)は0.20μm、不揮発分濃度は34%であった。 <Production Example 14 of Aqueous Emulsion>
Instead of 100 parts of the polymer (B-1-2), 75 parts of the polymer (B-4-4) and 25 parts of an adhesive resin (terpene phenol, Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.) were used, and the reaction temperature was 90. An aqueous emulsion (E-14) was produced in the same manner as in <Preparation Example 1 of Aqueous Emulsion> except that the temperature was changed to 0 ° C. The obtained aqueous emulsion had a particle size (on a number basis) of 0.20 μm and a nonvolatile content concentration of 34%.
<水性エマルション(E-15)>
エチレン/メタクリル酸共重合体の水性エマルション(AC-3100、中央理化工業株式会社製)(E-15)。この水性エマルションの粒径は、0.7μm、不揮発分濃度は45%であった。 <Water-based emulsion (E-15)>
An aqueous emulsion of ethylene / methacrylic acid copolymer (AC-3100, manufactured by Chuo Rika Kogyo Co., Ltd.) (E-15). The particle size of this aqueous emulsion was 0.7 μm, and the nonvolatile content concentration was 45%.
エチレン/メタクリル酸共重合体の水性エマルション(AC-3100、中央理化工業株式会社製)(E-15)。この水性エマルションの粒径は、0.7μm、不揮発分濃度は45%であった。 <Water-based emulsion (E-15)>
An aqueous emulsion of ethylene / methacrylic acid copolymer (AC-3100, manufactured by Chuo Rika Kogyo Co., Ltd.) (E-15). The particle size of this aqueous emulsion was 0.7 μm, and the nonvolatile content concentration was 45%.
<水性エマルション(E-16)>
エチレン・酢酸ビニル(EVA)共重合体の水性エマルション(HA-1100、中央理化工業株式会社製)(E-16)。この水性エマルションの粒径は、0.8μm、不揮発分濃度は45%であった。 <Aqueous emulsion (E-16)>
An aqueous emulsion of ethylene / vinyl acetate (EVA) copolymer (HA-1100, manufactured by Chuo Rika Kogyo Co., Ltd.) (E-16). The particle size of this aqueous emulsion was 0.8 μm, and the nonvolatile content concentration was 45%.
エチレン・酢酸ビニル(EVA)共重合体の水性エマルション(HA-1100、中央理化工業株式会社製)(E-16)。この水性エマルションの粒径は、0.8μm、不揮発分濃度は45%であった。 <Aqueous emulsion (E-16)>
An aqueous emulsion of ethylene / vinyl acetate (EVA) copolymer (HA-1100, manufactured by Chuo Rika Kogyo Co., Ltd.) (E-16). The particle size of this aqueous emulsion was 0.8 μm, and the nonvolatile content concentration was 45%.
<水性エマルション(E-17)>
EVA共重合体の水性エマルション(EC-1800、中央理化工業株式会社製)(E-17)。この水性エマルションの粒径は、1.7μm、不揮発分濃度は45%であった。 <Aqueous emulsion (E-17)>
An aqueous emulsion of EVA copolymer (EC-1800, manufactured by Chuo Rika Kogyo Co., Ltd.) (E-17). The particle size of this aqueous emulsion was 1.7 μm, and the nonvolatile content concentration was 45%.
EVA共重合体の水性エマルション(EC-1800、中央理化工業株式会社製)(E-17)。この水性エマルションの粒径は、1.7μm、不揮発分濃度は45%であった。 <Aqueous emulsion (E-17)>
An aqueous emulsion of EVA copolymer (EC-1800, manufactured by Chuo Rika Kogyo Co., Ltd.) (E-17). The particle size of this aqueous emulsion was 1.7 μm, and the nonvolatile content concentration was 45%.
<水性エマルション(E-18)>
エチレン/グリシジルメタクリレート共重合体の水性エマルション(セポルジョンG415、住友精化株式会社製)(E-18)。この水性エマルションの粒径は、1.7μm、不揮発分濃度は50%であった。 <Aqueous emulsion (E-18)>
An aqueous emulsion of an ethylene / glycidyl methacrylate copolymer (Separjon G415, manufactured by Sumitomo Seika Co., Ltd.) (E-18). The particle size of this aqueous emulsion was 1.7 μm, and the nonvolatile content concentration was 50%.
エチレン/グリシジルメタクリレート共重合体の水性エマルション(セポルジョンG415、住友精化株式会社製)(E-18)。この水性エマルションの粒径は、1.7μm、不揮発分濃度は50%であった。 <Aqueous emulsion (E-18)>
An aqueous emulsion of an ethylene / glycidyl methacrylate copolymer (Separjon G415, manufactured by Sumitomo Seika Co., Ltd.) (E-18). The particle size of this aqueous emulsion was 1.7 μm, and the nonvolatile content concentration was 50%.
<水性エマルションの製造例19>
水性エマルション(E-18)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-19)を製造した。 <Production Example 19 of Aqueous Emulsion>
An aqueous emulsion (E-19) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
水性エマルション(E-18)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-19)を製造した。 <Production Example 19 of Aqueous Emulsion>
An aqueous emulsion (E-19) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
<水性エマルション(E-20)>
エチレン/酢酸ビニル共重合体の水性エマルション(スミカフレックス400HQ、住友化学株式会社製)(E-20)。この水性エマルションの粒径は、0.7μm、不揮発分濃度は55%であった。 <Aqueous emulsion (E-20)>
An aqueous emulsion of ethylene / vinyl acetate copolymer (Sumikaflex 400HQ, manufactured by Sumitomo Chemical Co., Ltd.) (E-20). The particle size of this aqueous emulsion was 0.7 μm, and the nonvolatile content concentration was 55%.
エチレン/酢酸ビニル共重合体の水性エマルション(スミカフレックス400HQ、住友化学株式会社製)(E-20)。この水性エマルションの粒径は、0.7μm、不揮発分濃度は55%であった。 <Aqueous emulsion (E-20)>
An aqueous emulsion of ethylene / vinyl acetate copolymer (Sumikaflex 400HQ, manufactured by Sumitomo Chemical Co., Ltd.) (E-20). The particle size of this aqueous emulsion was 0.7 μm, and the nonvolatile content concentration was 55%.
<水性エマルションの製造例21>
水性エマルション(E-20)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-21)を製造した。 <Production Example 21 of Aqueous Emulsion>
An aqueous emulsion (E-21) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were blended so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
水性エマルション(E-20)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-21)を製造した。 <Production Example 21 of Aqueous Emulsion>
An aqueous emulsion (E-21) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were blended so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
<水性エマルション(E-22)>
エチレン/酢酸ビニル共重合体の水性エマルション(スミカフレックス401HQ、住友化学株式会社製)(E-22)。この水性エマルションの粒径は、0.8μm、不揮発分濃度は55%であった。 <Water-based emulsion (E-22)>
An aqueous emulsion of ethylene / vinyl acetate copolymer (Sumikaflex 401HQ, manufactured by Sumitomo Chemical Co., Ltd.) (E-22). The particle size of this aqueous emulsion was 0.8 μm, and the nonvolatile content concentration was 55%.
エチレン/酢酸ビニル共重合体の水性エマルション(スミカフレックス401HQ、住友化学株式会社製)(E-22)。この水性エマルションの粒径は、0.8μm、不揮発分濃度は55%であった。 <Water-based emulsion (E-22)>
An aqueous emulsion of ethylene / vinyl acetate copolymer (Sumikaflex 401HQ, manufactured by Sumitomo Chemical Co., Ltd.) (E-22). The particle size of this aqueous emulsion was 0.8 μm, and the nonvolatile content concentration was 55%.
<水性エマルションの製造例23>
水性エマルション(E-22)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-23)を製造した。 <Production Example 23 of Aqueous Emulsion>
An aqueous emulsion (E-23) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
水性エマルション(E-22)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-23)を製造した。 <Production Example 23 of Aqueous Emulsion>
An aqueous emulsion (E-23) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
<水性エマルション(E-24)>
エチレン/酢酸ビニル共重合体の水性エマルション(スミカフレックス408HQE、住友化学株式会社製)(E-24)。この水性エマルションの粒径は、0.9μm、不揮発分濃度は50%であった。 <Aqueous emulsion (E-24)>
An aqueous emulsion of ethylene / vinyl acetate copolymer (Sumikaflex 408HQE, manufactured by Sumitomo Chemical Co., Ltd.) (E-24). The particle size of this aqueous emulsion was 0.9 μm, and the nonvolatile content concentration was 50%.
エチレン/酢酸ビニル共重合体の水性エマルション(スミカフレックス408HQE、住友化学株式会社製)(E-24)。この水性エマルションの粒径は、0.9μm、不揮発分濃度は50%であった。 <Aqueous emulsion (E-24)>
An aqueous emulsion of ethylene / vinyl acetate copolymer (Sumikaflex 408HQE, manufactured by Sumitomo Chemical Co., Ltd.) (E-24). The particle size of this aqueous emulsion was 0.9 μm, and the nonvolatile content concentration was 50%.
<水性エマルションの製造例25>
水性エマルション(E-24)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-25)を製造した。 <Production Example 25 of Aqueous Emulsion>
An aqueous emulsion (E-25) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
水性エマルション(E-24)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-25)を製造した。 <Production Example 25 of Aqueous Emulsion>
An aqueous emulsion (E-25) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
<水性エマルション(E-26)>
エチレン/酢酸ビニル共重合体の水性エマルション(スミカフレックス500、住友化学株式会社製)(E-26)。この水性エマルションの粒径は、0.7μm、不揮発分濃度は55%であった。 <Water-based emulsion (E-26)>
An aqueous emulsion of ethylene / vinyl acetate copolymer (Sumikaflex 500, manufactured by Sumitomo Chemical Co., Ltd.) (E-26). The particle size of this aqueous emulsion was 0.7 μm, and the nonvolatile content concentration was 55%.
エチレン/酢酸ビニル共重合体の水性エマルション(スミカフレックス500、住友化学株式会社製)(E-26)。この水性エマルションの粒径は、0.7μm、不揮発分濃度は55%であった。 <Water-based emulsion (E-26)>
An aqueous emulsion of ethylene / vinyl acetate copolymer (Sumikaflex 500, manufactured by Sumitomo Chemical Co., Ltd.) (E-26). The particle size of this aqueous emulsion was 0.7 μm, and the nonvolatile content concentration was 55%.
<水性エマルションの製造例27>
水性エマルション(E-26)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-27)を製造した。 <Production Example 27 of aqueous emulsion>
An aqueous emulsion (E-27) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
水性エマルション(E-26)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-27)を製造した。 <Production Example 27 of aqueous emulsion>
An aqueous emulsion (E-27) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
<水性エマルションの製造例28>
水性エマルション(E-11)と、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-28)を製造した。 <Production Example 28 of Aqueous Emulsion>
An aqueous emulsion (E-28) was formulated by mixing an aqueous emulsion (E-11) with an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) at a nonvolatile content ratio of 67 parts: 33 parts. Manufactured.
水性エマルション(E-11)と、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-28)を製造した。 <Production Example 28 of Aqueous Emulsion>
An aqueous emulsion (E-28) was formulated by mixing an aqueous emulsion (E-11) with an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) at a nonvolatile content ratio of 67 parts: 33 parts. Manufactured.
<水性エマルションの製造例29>
水性エマルション(E-9)と、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-29)を製造した。 <Production Example 29 of Aqueous Emulsion>
An aqueous emulsion (E-29) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
水性エマルション(E-9)と、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-29)を製造した。 <Production Example 29 of Aqueous Emulsion>
An aqueous emulsion (E-29) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were mixed so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
<水性エマルションの製造例30>
水性エマルション(E-8)と、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-30)を製造した。 <Production Example 30 of Aqueous Emulsion>
An aqueous emulsion (E-30) was formulated by mixing an aqueous emulsion (E-8) with an aqueous emulsion of terpene phenol (Tamanol E-200NT, Arakawa Chemical Co., Ltd.) in a nonvolatile content ratio of 67 parts: 33 parts. Manufactured.
水性エマルション(E-8)と、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-30)を製造した。 <Production Example 30 of Aqueous Emulsion>
An aqueous emulsion (E-30) was formulated by mixing an aqueous emulsion (E-8) with an aqueous emulsion of terpene phenol (Tamanol E-200NT, Arakawa Chemical Co., Ltd.) in a nonvolatile content ratio of 67 parts: 33 parts. Manufactured.
<水性エマルション(E-31)>
エチレン/酢酸ビニル/特殊エステル共重合体の水性エマルション(スミカフレックスS-950HQ、住友化学株式会社製)(E-31)。この水性エマルションの粒径は、0.6μm、不揮発分濃度は52%であった。 <Water-based emulsion (E-31)>
An aqueous emulsion of ethylene / vinyl acetate / special ester copolymer (Sumikaflex S-950HQ, manufactured by Sumitomo Chemical Co., Ltd.) (E-31). The particle size of this aqueous emulsion was 0.6 μm, and the nonvolatile content concentration was 52%.
エチレン/酢酸ビニル/特殊エステル共重合体の水性エマルション(スミカフレックスS-950HQ、住友化学株式会社製)(E-31)。この水性エマルションの粒径は、0.6μm、不揮発分濃度は52%であった。 <Water-based emulsion (E-31)>
An aqueous emulsion of ethylene / vinyl acetate / special ester copolymer (Sumikaflex S-950HQ, manufactured by Sumitomo Chemical Co., Ltd.) (E-31). The particle size of this aqueous emulsion was 0.6 μm, and the nonvolatile content concentration was 52%.
<水性エマルションの製造例32>
水性エマルション(E-31)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67:33になるように配合して水性エマルション(E-32)を製造した。 <Production Example 32 of Aqueous Emulsion>
An aqueous emulsion (E-32) was prepared by blending an aqueous emulsion (E-31) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) at a nonvolatile content ratio of 67:33. .
水性エマルション(E-31)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67:33になるように配合して水性エマルション(E-32)を製造した。 <Production Example 32 of Aqueous Emulsion>
An aqueous emulsion (E-32) was prepared by blending an aqueous emulsion (E-31) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) at a nonvolatile content ratio of 67:33. .
<水性エマルションの製造例33>
重合体(B-1-2)100部に代えて、プロピレン・ブチレン共重合体(B-3-2)50部及びエチレン・プロピレン共重合体(B-2-4)50部を用いる以外、<水性エマルションの製造例1>と同様に水性エマルション(E-33)を製造した。得られた水性エマルション(E-33)の粒径は0.2μm(個数基準)、不揮発分は34%であった。 <Production Example 33 of Aqueous Emulsion>
Instead of using 100 parts of the polymer (B-1-2), 50 parts of the propylene / butylene copolymer (B-3-2) and 50 parts of the ethylene / propylene copolymer (B-2-4) were used. An aqueous emulsion (E-33) was produced in the same manner as in <Aqueous emulsion production example 1>. The obtained aqueous emulsion (E-33) had a particle size of 0.2 μm (number basis) and a nonvolatile content of 34%.
重合体(B-1-2)100部に代えて、プロピレン・ブチレン共重合体(B-3-2)50部及びエチレン・プロピレン共重合体(B-2-4)50部を用いる以外、<水性エマルションの製造例1>と同様に水性エマルション(E-33)を製造した。得られた水性エマルション(E-33)の粒径は0.2μm(個数基準)、不揮発分は34%であった。 <Production Example 33 of Aqueous Emulsion>
Instead of using 100 parts of the polymer (B-1-2), 50 parts of the propylene / butylene copolymer (B-3-2) and 50 parts of the ethylene / propylene copolymer (B-2-4) were used. An aqueous emulsion (E-33) was produced in the same manner as in <Aqueous emulsion production example 1>. The obtained aqueous emulsion (E-33) had a particle size of 0.2 μm (number basis) and a nonvolatile content of 34%.
<水性エマルションの製造例34>
水性エマルション(E-13)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-34)を製造した。 <Production Example 34 of Aqueous Emulsion>
An aqueous emulsion (E-34) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were blended so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
水性エマルション(E-13)とテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)とを不揮発分比で67部:33部になるように配合して水性エマルション(E-34)を製造した。 <Production Example 34 of Aqueous Emulsion>
An aqueous emulsion (E-34) and an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) were blended so that the nonvolatile content ratio was 67 parts: 33 parts. Manufactured.
<水性エマルションの製造例35>
ラボプラストミルマイクロ(東洋精機製)のセル内の温度を95℃に設定した。このセル内に共重合体(B-1-2)3.12gを封入し、毎分300回転で3分間攪拌した。この時の最高剪断速度は1173秒-1であった。その後、乳化剤としてオキシエチレンオキシプロピレンブロック共重合体(重量平均分子量15500:プルロニックF108:旭電化(株)製)0.46gを水0.21gとともに添加し、セル内の温度を95℃に保ちながら、さらに、毎分300回転で3分間混練した(剪断速度1173秒-1)。混練した後、内容物を取り出し、約70℃の温水を入れた容器内で攪拌、分散させ、分散質の体積基準メジアン径が0.43μmの水性エマルション(E-35)を得た。 <Production Example 35 of Aqueous Emulsion>
The temperature in the cell of Labo Plast Mill Micro (manufactured by Toyo Seiki) was set to 95 ° C. In this cell, 3.12 g of the copolymer (B-1-2) was sealed and stirred at 300 rpm for 3 minutes. The maximum shear rate at this time was 1173 sec- 1 . Thereafter, 0.46 g of oxyethyleneoxypropylene block copolymer (weight average molecular weight 15500: Pluronic F108: manufactured by Asahi Denka Co., Ltd.) is added as an emulsifier together with 0.21 g of water, and the temperature in the cell is kept at 95 ° C. Further, the mixture was kneaded at 300 rpm for 3 minutes (shear rate 1173 sec- 1 ). After kneading, the content was taken out and stirred and dispersed in a container containing warm water of about 70 ° C. to obtain an aqueous emulsion (E-35) having a volume-based median diameter of dispersoid of 0.43 μm.
ラボプラストミルマイクロ(東洋精機製)のセル内の温度を95℃に設定した。このセル内に共重合体(B-1-2)3.12gを封入し、毎分300回転で3分間攪拌した。この時の最高剪断速度は1173秒-1であった。その後、乳化剤としてオキシエチレンオキシプロピレンブロック共重合体(重量平均分子量15500:プルロニックF108:旭電化(株)製)0.46gを水0.21gとともに添加し、セル内の温度を95℃に保ちながら、さらに、毎分300回転で3分間混練した(剪断速度1173秒-1)。混練した後、内容物を取り出し、約70℃の温水を入れた容器内で攪拌、分散させ、分散質の体積基準メジアン径が0.43μmの水性エマルション(E-35)を得た。 <Production Example 35 of Aqueous Emulsion>
The temperature in the cell of Labo Plast Mill Micro (manufactured by Toyo Seiki) was set to 95 ° C. In this cell, 3.12 g of the copolymer (B-1-2) was sealed and stirred at 300 rpm for 3 minutes. The maximum shear rate at this time was 1173 sec- 1 . Thereafter, 0.46 g of oxyethyleneoxypropylene block copolymer (weight average molecular weight 15500: Pluronic F108: manufactured by Asahi Denka Co., Ltd.) is added as an emulsifier together with 0.21 g of water, and the temperature in the cell is kept at 95 ° C. Further, the mixture was kneaded at 300 rpm for 3 minutes (shear rate 1173 sec- 1 ). After kneading, the content was taken out and stirred and dispersed in a container containing warm water of about 70 ° C. to obtain an aqueous emulsion (E-35) having a volume-based median diameter of dispersoid of 0.43 μm.
<水性エマルションの製造例36~38>
表1に示す共重合体と界面活性剤とを表1に示す重量比で用いて、実質的に<水性エマルションの製造例1>と同様にエマルション(E-36)~(E-38)を得た。
表1における共重合体及び界面活性剤は以下のとおりである。
共重合体U1:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE HX8290、ARKEMA社製、融点:81℃)
共重合体U2:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE LX4110、ARKEMA社製、融点:107℃)
共重合体U3:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE HX8210、ARKEMA社製、融点:100℃)
界面活性剤1:上記式(A)で表される化合物(ラテムルE-1000A、30%水溶液、花王株式会社製)
界面活性剤2:上記式(B)で表される化合物(ノイゲンEA-177、第一工業製薬株式会社製) <Production Examples 36 to 38 of aqueous emulsion>
Using the copolymer and surfactant shown in Table 1 in the weight ratio shown in Table 1, emulsions (E-36) to (E-38) were substantially the same as in <Preparation Example 1 of Aqueous Emulsion>. Obtained.
The copolymers and surfactants in Table 1 are as follows.
Copolymer U1: Ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE HX8290, manufactured by ARKEMA, melting point: 81 ° C.)
Copolymer U2: ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE LX4110, manufactured by ARKEMA, melting point: 107 ° C.)
Copolymer U3: ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE HX8210, manufactured by ARKEMA, melting point: 100 ° C.)
Surfactant 1: Compound represented by the above formula (A) (Latemul E-1000A, 30% aqueous solution, manufactured by Kao Corporation)
Surfactant 2: Compound represented by the above formula (B) (Neugen EA-177, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
表1に示す共重合体と界面活性剤とを表1に示す重量比で用いて、実質的に<水性エマルションの製造例1>と同様にエマルション(E-36)~(E-38)を得た。
表1における共重合体及び界面活性剤は以下のとおりである。
共重合体U1:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE HX8290、ARKEMA社製、融点:81℃)
共重合体U2:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE LX4110、ARKEMA社製、融点:107℃)
共重合体U3:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE HX8210、ARKEMA社製、融点:100℃)
界面活性剤1:上記式(A)で表される化合物(ラテムルE-1000A、30%水溶液、花王株式会社製)
界面活性剤2:上記式(B)で表される化合物(ノイゲンEA-177、第一工業製薬株式会社製) <Production Examples 36 to 38 of aqueous emulsion>
Using the copolymer and surfactant shown in Table 1 in the weight ratio shown in Table 1, emulsions (E-36) to (E-38) were substantially the same as in <Preparation Example 1 of Aqueous Emulsion>. Obtained.
The copolymers and surfactants in Table 1 are as follows.
Copolymer U1: Ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE HX8290, manufactured by ARKEMA, melting point: 81 ° C.)
Copolymer U2: ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE LX4110, manufactured by ARKEMA, melting point: 107 ° C.)
Copolymer U3: ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE HX8210, manufactured by ARKEMA, melting point: 100 ° C.)
Surfactant 1: Compound represented by the above formula (A) (Latemul E-1000A, 30% aqueous solution, manufactured by Kao Corporation)
Surfactant 2: Compound represented by the above formula (B) (Neugen EA-177, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
<水性エマルションの製造例39>
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:100部:5部になるように配合して水性エマルション(E-39)を得た。 <Production Example 39 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-39) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 100 parts: 5 parts.
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:100部:5部になるように配合して水性エマルション(E-39)を得た。 <Production Example 39 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-39) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 100 parts: 5 parts.
<水性エマルションの製造例40>
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:200部:10部になるように配合して水性エマルション(E-40)を得た。 <Production Example 40 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-40) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 200 parts: 10 parts.
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:200部:10部になるように配合して水性エマルション(E-40)を得た。 <Production Example 40 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-40) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 200 parts: 10 parts.
<水性エマルションの製造例41>
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:1600部:41部になるように配合して水性エマルション(E-41)を得た。 <Production Example 41 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-41) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 1600 parts: 41 parts.
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:1600部:41部になるように配合して水性エマルション(E-41)を得た。 <Production Example 41 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-41) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 1600 parts: 41 parts.
<水性エマルションの製造例42>
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:100部:15部になるように配合して水性エマルション(E-42)を得た。 <Production Example 42 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-42) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 100 parts: 15 parts.
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:100部:15部になるように配合して水性エマルション(E-42)を得た。 <Production Example 42 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-42) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 100 parts: 15 parts.
<水性エマルションの製造例43>
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:200部:20部になるように配合して水性エマルション(E-43)を得た。 <Production Example 43 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-43) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 200 parts: 20 parts.
水性エマルション(E-36)、テルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:200部:20部になるように配合して水性エマルション(E-43)を得た。 <Production Example 43 of Aqueous Emulsion>
An aqueous emulsion (E-36), an aqueous emulsion of terpene phenol (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.), a polyurethane emulsion (manufactured by SBU, Dispacol U-54), an isocyanate (manufactured by SBU, Desmodur N3300) An aqueous emulsion (E-43) was obtained by blending such that the nonvolatile content ratio was 100 parts: 100 parts: 200 parts: 20 parts.
<水性エマルションの製造例44>
ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:5部になるように配合して水性エマルション(E-44)を得た。 <Production Example 44 of Aqueous Emulsion>
An aqueous emulsion (E-44) was obtained by blending a polyurethane emulsion (SBU, Dispacol U-54) and isocyanate (SBU, Desmodur N3300) at a nonvolatile content ratio of 100 parts: 5 parts. It was.
ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:5部になるように配合して水性エマルション(E-44)を得た。 <Production Example 44 of Aqueous Emulsion>
An aqueous emulsion (E-44) was obtained by blending a polyurethane emulsion (SBU, Dispacol U-54) and isocyanate (SBU, Desmodur N3300) at a nonvolatile content ratio of 100 parts: 5 parts. It was.
<水性エマルションの製造例45>
水性エマルション(E-36)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:5部になるように配合して水性エマルション(E-45)を得た。 <Production Example 45 of Aqueous Emulsion>
Aqueous emulsion (E-36), polyurethane emulsion (manufactured by SBU, Dispacol U-54), and isocyanate (manufactured by SBU, Desmodur N3300) are blended so that the nonvolatile content ratio is 100 parts: 100 parts: 5 parts. Thus, an aqueous emulsion (E-45) was obtained.
水性エマルション(E-36)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:100部:5部になるように配合して水性エマルション(E-45)を得た。 <Production Example 45 of Aqueous Emulsion>
Aqueous emulsion (E-36), polyurethane emulsion (manufactured by SBU, Dispacol U-54), and isocyanate (manufactured by SBU, Desmodur N3300) are blended so that the nonvolatile content ratio is 100 parts: 100 parts: 5 parts. Thus, an aqueous emulsion (E-45) was obtained.
<水性エマルションの製造例46>
水性エマルション(E-36)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:200部:10部になるように配合して水性エマルション(E-46)を得た。 <Production Example 46 of Aqueous Emulsion>
Aqueous emulsion (E-36), polyurethane emulsion (manufactured by SBU, Dispacol U-54), and isocyanate (manufactured by SBU, Desmodur N3300) are blended so that the nonvolatile content ratio is 100 parts: 200 parts: 10 parts. Thus, an aqueous emulsion (E-46) was obtained.
水性エマルション(E-36)、ポリウレタンエマルション(SBU社製、ディスパコールU-54)、イソシアネート(SBU社製、デスモジュールN3300)を不揮発分比で100部:200部:10部になるように配合して水性エマルション(E-46)を得た。 <Production Example 46 of Aqueous Emulsion>
Aqueous emulsion (E-36), polyurethane emulsion (manufactured by SBU, Dispacol U-54), and isocyanate (manufactured by SBU, Desmodur N3300) are blended so that the nonvolatile content ratio is 100 parts: 200 parts: 10 parts. Thus, an aqueous emulsion (E-46) was obtained.
<水性エマルションの製造例47~63>
表2~表3示す共重合体と界面活性剤とを表2~表3に示す重量比で用いて、実質的に<水性エマルションの製造例1>と同様にして水性エマルション(E-47)~(E-63)を得た。
表中における共重合体及び界面活性剤は以下のとおりである。
共重合体P1:C2(エチレン)/EVA(エチレン・酢酸ビニル共重合体)/MAH(無水マレイン酸)共重合体(OREVAC T9314、ARKEMA社製)
共重合体P2:C2/EVA/MAH共重合体(OREVAC T9318、ARKEMA社製)
共重合体Q1:MAH変性-EVA(OREVAC G18211、ARKEMA社製)
共重合体R1:EVA部分けん化物(メルセン H6051、東ソー(株)製)
共重合体R2:EVA部分けん化物(メルセン H6410M、東ソー(株)製)
共重合体R3:EVA部分けん化物(メルセン H6820、東ソー(株)製)
共重合体R4:EVA部分けん化物(メルセン H6822X、東ソー(株)製)
共重合体R5:EVA部分けん化物(メルセン H6960、東ソー(株)製)
共重合体S1:EVA(EVATATE KA-40、住友化学工業(株)製)
共重合体T1:熱減成ポリエチレン(UMX2000、三洋化成工業(株)製)
共重合体U1:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE HX8290、ARKEMA社製)
共重合体U2:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE LX4110、ARKEMA社製)
界面活性剤1:上記式(A)で表される化合物(ラテムルE-1000A、30%水溶液、花王株式会社製)
界面活性剤2:上記式(B)で表される化合物(ノイゲンEA-177、第一工業製薬株式会社製)
粘着樹脂1:テルペンフェノール(タマノル803L、荒川化学社製) <Production Examples 47 to 63 of aqueous emulsion>
Using the copolymers and surfactants shown in Tables 2 to 3 in the weight ratios shown in Tables 2 to 3, an aqueous emulsion (E-47) substantially in the same manner as <Production Example 1 of aqueous emulsion> To (E-63) was obtained.
The copolymers and surfactants in the table are as follows.
Copolymer P1: C 2 (ethylene) / EVA (ethylene / vinyl acetate copolymer) / MAH (maleic anhydride) copolymer (OREVAC T9314, manufactured by ARKEMA)
Copolymer P2: C 2 / EVA / MAH copolymer (OREVAC T9318, manufactured by ARKEMA)
Copolymer Q1: MAH modified-EVA (OREVAC G18211, manufactured by ARKEMA)
Copolymer R1: EVA part saponified product (Mersen H6051, manufactured by Tosoh Corporation)
Copolymer R2: EVA part saponification product (Mersen H6410M, manufactured by Tosoh Corporation)
Copolymer R3: EVA partly saponified product (Mersen H6820, manufactured by Tosoh Corporation)
Copolymer R4: EVA part saponification product (Mersen H6822X, manufactured by Tosoh Corporation)
Copolymer R5: EVA partly saponified product (Mersen H6960, manufactured by Tosoh Corporation)
Copolymer S1: EVA (EVATEATE KA-40, manufactured by Sumitomo Chemical Co., Ltd.)
Copolymer T1: heat-degraded polyethylene (UMX2000, manufactured by Sanyo Chemical Industries, Ltd.)
Copolymer U1: Ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE HX8290, manufactured by ARKEMA)
Copolymer U2: ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE LX4110, manufactured by ARKEMA)
Surfactant 1: Compound represented by the above formula (A) (Latemul E-1000A, 30% aqueous solution, manufactured by Kao Corporation)
Surfactant 2: Compound represented by the above formula (B) (Neugen EA-177, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
Adhesive resin 1: terpene phenol (Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.)
表2~表3示す共重合体と界面活性剤とを表2~表3に示す重量比で用いて、実質的に<水性エマルションの製造例1>と同様にして水性エマルション(E-47)~(E-63)を得た。
表中における共重合体及び界面活性剤は以下のとおりである。
共重合体P1:C2(エチレン)/EVA(エチレン・酢酸ビニル共重合体)/MAH(無水マレイン酸)共重合体(OREVAC T9314、ARKEMA社製)
共重合体P2:C2/EVA/MAH共重合体(OREVAC T9318、ARKEMA社製)
共重合体Q1:MAH変性-EVA(OREVAC G18211、ARKEMA社製)
共重合体R1:EVA部分けん化物(メルセン H6051、東ソー(株)製)
共重合体R2:EVA部分けん化物(メルセン H6410M、東ソー(株)製)
共重合体R3:EVA部分けん化物(メルセン H6820、東ソー(株)製)
共重合体R4:EVA部分けん化物(メルセン H6822X、東ソー(株)製)
共重合体R5:EVA部分けん化物(メルセン H6960、東ソー(株)製)
共重合体S1:EVA(EVATATE KA-40、住友化学工業(株)製)
共重合体T1:熱減成ポリエチレン(UMX2000、三洋化成工業(株)製)
共重合体U1:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE HX8290、ARKEMA社製)
共重合体U2:エチレン-アクリル酸-無水マレイン酸ターポリマー(BONDINE LX4110、ARKEMA社製)
界面活性剤1:上記式(A)で表される化合物(ラテムルE-1000A、30%水溶液、花王株式会社製)
界面活性剤2:上記式(B)で表される化合物(ノイゲンEA-177、第一工業製薬株式会社製)
粘着樹脂1:テルペンフェノール(タマノル803L、荒川化学社製) <Production Examples 47 to 63 of aqueous emulsion>
Using the copolymers and surfactants shown in Tables 2 to 3 in the weight ratios shown in Tables 2 to 3, an aqueous emulsion (E-47) substantially in the same manner as <Production Example 1 of aqueous emulsion> To (E-63) was obtained.
The copolymers and surfactants in the table are as follows.
Copolymer P1: C 2 (ethylene) / EVA (ethylene / vinyl acetate copolymer) / MAH (maleic anhydride) copolymer (OREVAC T9314, manufactured by ARKEMA)
Copolymer P2: C 2 / EVA / MAH copolymer (OREVAC T9318, manufactured by ARKEMA)
Copolymer Q1: MAH modified-EVA (OREVAC G18211, manufactured by ARKEMA)
Copolymer R1: EVA part saponified product (Mersen H6051, manufactured by Tosoh Corporation)
Copolymer R2: EVA part saponification product (Mersen H6410M, manufactured by Tosoh Corporation)
Copolymer R3: EVA partly saponified product (Mersen H6820, manufactured by Tosoh Corporation)
Copolymer R4: EVA part saponification product (Mersen H6822X, manufactured by Tosoh Corporation)
Copolymer R5: EVA partly saponified product (Mersen H6960, manufactured by Tosoh Corporation)
Copolymer S1: EVA (EVATEATE KA-40, manufactured by Sumitomo Chemical Co., Ltd.)
Copolymer T1: heat-degraded polyethylene (UMX2000, manufactured by Sanyo Chemical Industries, Ltd.)
Copolymer U1: Ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE HX8290, manufactured by ARKEMA)
Copolymer U2: ethylene-acrylic acid-maleic anhydride terpolymer (BONDINE LX4110, manufactured by ARKEMA)
Surfactant 1: Compound represented by the above formula (A) (Latemul E-1000A, 30% aqueous solution, manufactured by Kao Corporation)
Surfactant 2: Compound represented by the above formula (B) (Neugen EA-177, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
Adhesive resin 1: terpene phenol (Tamanol 803L, manufactured by Arakawa Chemical Co., Ltd.)
上記水性エマルションの製造例で得られた水性エマルションについて、以下の試験を行なった。
<5日間静置安定性>
得られた水性エマルションを250mLポリ容器に入れ、室温にて5日間静置した後に外観の変化を観察した。評価基準は下記の通りとした。その結果を表4-1及び表4-2に示す。
○:凝集や沈殿、相分離が認められず、良好な状態であった。
×:凝集や沈殿、相分離が発生した。 The following tests were conducted on the aqueous emulsions obtained in the above production examples of aqueous emulsions.
<Standing stability for 5 days>
The obtained aqueous emulsion was put into a 250 mL plastic container and allowed to stand at room temperature for 5 days, and then the appearance change was observed. The evaluation criteria were as follows. The results are shown in Tables 4-1 and 4-2.
○: Aggregation, precipitation, and phase separation were not observed, and the condition was good.
X: Aggregation, precipitation, and phase separation occurred.
<5日間静置安定性>
得られた水性エマルションを250mLポリ容器に入れ、室温にて5日間静置した後に外観の変化を観察した。評価基準は下記の通りとした。その結果を表4-1及び表4-2に示す。
○:凝集や沈殿、相分離が認められず、良好な状態であった。
×:凝集や沈殿、相分離が発生した。 The following tests were conducted on the aqueous emulsions obtained in the above production examples of aqueous emulsions.
<Standing stability for 5 days>
The obtained aqueous emulsion was put into a 250 mL plastic container and allowed to stand at room temperature for 5 days, and then the appearance change was observed. The evaluation criteria were as follows. The results are shown in Tables 4-1 and 4-2.
○: Aggregation, precipitation, and phase separation were not observed, and the condition was good.
X: Aggregation, precipitation, and phase separation occurred.
試験例15~63
また、水性エマルション(E-15)~(E-35)は、いずれも、目視観察により均質に分散しており、かつ、長期間の保存においても、凝集、沈殿、相分離などが発生せず、良好な安定性を示した。
さらに、水性エマルション(E-36)~(E-63)についても、上記と同様に、5日間静置安定性を評価したところ、いずれも、凝集や沈殿、相分離が認められず、良好な状態である。 Test Examples 15 to 63
In addition, all of the water-based emulsions (E-15) to (E-35) are homogeneously dispersed by visual observation, and no aggregation, precipitation, phase separation or the like occurs during long-term storage. Showed good stability.
Further, when the aqueous emulsions (E-36) to (E-63) were evaluated for stability for 5 days in the same manner as described above, no aggregation, precipitation, or phase separation was observed. State.
また、水性エマルション(E-15)~(E-35)は、いずれも、目視観察により均質に分散しており、かつ、長期間の保存においても、凝集、沈殿、相分離などが発生せず、良好な安定性を示した。
さらに、水性エマルション(E-36)~(E-63)についても、上記と同様に、5日間静置安定性を評価したところ、いずれも、凝集や沈殿、相分離が認められず、良好な状態である。 Test Examples 15 to 63
In addition, all of the water-based emulsions (E-15) to (E-35) are homogeneously dispersed by visual observation, and no aggregation, precipitation, phase separation or the like occurs during long-term storage. Showed good stability.
Further, when the aqueous emulsions (E-36) to (E-63) were evaluated for stability for 5 days in the same manner as described above, no aggregation, precipitation, or phase separation was observed. State.
<実施例A:水性接着剤のM-EVAへの密着性の評価1>
水性エマルションの製造例で得られた各水性エマルション(不揮発分比)に、増粘剤としてアデカノールUH-420(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表5に記載の量(不揮発分比、単位:重量部)を添加し、かつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌し、水性接着剤を得た。
得られた表5の水性接着剤を、ガラス棒を用いて、綿100%の帆布に塗布(塗布量:乾燥後重量約60g/m2)し、20分間自然乾燥し、得られた帆布を電子レンジ(panasonic社製、NE-EH212、周波数2.455GHz)に入れ、750Wで30秒間電磁波処理した。
また、各水性接着剤を、バーコーターNo.75(巻き線の径:75×25μm)を用いて、M-EVA(エチレン・酢酸ビニル共重合体の発泡体)に塗布(塗布量:乾燥後重量約70g/m2)し、得られたM-EVAを電子レンジに入れ、750Wで110秒間電磁波処理した。
再度、綿帆布及びM-EVAに各々に、各水性接着剤を塗布(綿帆布塗布量:乾燥後重量約40g/m2、M-EVA塗布量:乾燥後重量約80g/m2)し、得られた綿帆布及びM-EVAを電子レンジに入れ、750Wで30秒間電磁波処理した。
続いて、綿帆布及びM-EVAの水性接着剤の塗布面同士を貼り合せ、圧着した。
このようにして得られた綿/接着層/M-EVA積層構造を、再度電子レンジに入れ、750Wで110秒間電磁波処理した。電子レンジからすぐに取り出し、手で圧着した。 <Example A: Evaluation 1 of Adhesiveness of Aqueous Adhesive to M-EVA>
Table 5 shows Adecanol UH-420 (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each of the water-based emulsions (nonvolatile content ratio) obtained in the production examples of water-based emulsions. The stated amount (non-volatile content ratio, unit: parts by weight) was added, and the mixture was prepared with water so that the non-volatile content of the formulation was 40%, and stirred with a three-one motor to obtain an aqueous adhesive.
The obtained water-based adhesive of Table 5 was applied to 100% cotton canvas using a glass rod (coating amount: weight after drying about 60 g / m 2 ), and then naturally dried for 20 minutes. It was put in a microwave oven (manufactured by panasonic, NE-EH212, frequency 2.455 GHz), and subjected to electromagnetic wave treatment at 750 W for 30 seconds.
In addition, each water-based adhesive was bonded to a bar coater No. 75 (coil diameter: 75 × 25 μm) was applied to M-EVA (ethylene / vinyl acetate copolymer foam) (coating amount: weight after drying about 70 g / m 2 ), and obtained. M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 110 seconds.
Again, each aqueous adhesive was applied to each of cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 40 g / m 2 , M-EVA coating amount: weight after drying about 80 g / m 2 ), The obtained cotton canvas and M-EVA were put in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 30 seconds.
Subsequently, the coated surfaces of cotton canvas and M-EVA water-based adhesive were bonded together and pressure-bonded.
The cotton / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 110 seconds. Immediately removed from the microwave and crimped by hand.
水性エマルションの製造例で得られた各水性エマルション(不揮発分比)に、増粘剤としてアデカノールUH-420(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表5に記載の量(不揮発分比、単位:重量部)を添加し、かつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌し、水性接着剤を得た。
得られた表5の水性接着剤を、ガラス棒を用いて、綿100%の帆布に塗布(塗布量:乾燥後重量約60g/m2)し、20分間自然乾燥し、得られた帆布を電子レンジ(panasonic社製、NE-EH212、周波数2.455GHz)に入れ、750Wで30秒間電磁波処理した。
また、各水性接着剤を、バーコーターNo.75(巻き線の径:75×25μm)を用いて、M-EVA(エチレン・酢酸ビニル共重合体の発泡体)に塗布(塗布量:乾燥後重量約70g/m2)し、得られたM-EVAを電子レンジに入れ、750Wで110秒間電磁波処理した。
再度、綿帆布及びM-EVAに各々に、各水性接着剤を塗布(綿帆布塗布量:乾燥後重量約40g/m2、M-EVA塗布量:乾燥後重量約80g/m2)し、得られた綿帆布及びM-EVAを電子レンジに入れ、750Wで30秒間電磁波処理した。
続いて、綿帆布及びM-EVAの水性接着剤の塗布面同士を貼り合せ、圧着した。
このようにして得られた綿/接着層/M-EVA積層構造を、再度電子レンジに入れ、750Wで110秒間電磁波処理した。電子レンジからすぐに取り出し、手で圧着した。 <Example A: Evaluation 1 of Adhesiveness of Aqueous Adhesive to M-EVA>
Table 5 shows Adecanol UH-420 (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each of the water-based emulsions (nonvolatile content ratio) obtained in the production examples of water-based emulsions. The stated amount (non-volatile content ratio, unit: parts by weight) was added, and the mixture was prepared with water so that the non-volatile content of the formulation was 40%, and stirred with a three-one motor to obtain an aqueous adhesive.
The obtained water-based adhesive of Table 5 was applied to 100% cotton canvas using a glass rod (coating amount: weight after drying about 60 g / m 2 ), and then naturally dried for 20 minutes. It was put in a microwave oven (manufactured by panasonic, NE-EH212, frequency 2.455 GHz), and subjected to electromagnetic wave treatment at 750 W for 30 seconds.
In addition, each water-based adhesive was bonded to a bar coater No. 75 (coil diameter: 75 × 25 μm) was applied to M-EVA (ethylene / vinyl acetate copolymer foam) (coating amount: weight after drying about 70 g / m 2 ), and obtained. M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 110 seconds.
Again, each aqueous adhesive was applied to each of cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 40 g / m 2 , M-EVA coating amount: weight after drying about 80 g / m 2 ), The obtained cotton canvas and M-EVA were put in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 30 seconds.
Subsequently, the coated surfaces of cotton canvas and M-EVA water-based adhesive were bonded together and pressure-bonded.
The cotton / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 110 seconds. Immediately removed from the microwave and crimped by hand.
上記で得られた各積層構造を24時間、室温で放置し、その後、引張り試験機(島津製作所社製、オートグラフ)を用いて、剥離速度200mm/分、剥離角度180度で、積層構造の密着性を、剥離強度を測定することにより評価した。その結果を表5に示す。
○:剥離強度10N/inch以上。
×:剥離強度10N/inch未満。 Each laminated structure obtained above was allowed to stand at room temperature for 24 hours, and then, using a tensile tester (manufactured by Shimadzu Corporation, Autograph), at a peeling rate of 200 mm / min and a peeling angle of 180 degrees, Adhesion was evaluated by measuring peel strength. The results are shown in Table 5.
○: Peel strength of 10 N / inch or more.
X: Peel strength is less than 10 N / inch.
○:剥離強度10N/inch以上。
×:剥離強度10N/inch未満。 Each laminated structure obtained above was allowed to stand at room temperature for 24 hours, and then, using a tensile tester (manufactured by Shimadzu Corporation, Autograph), at a peeling rate of 200 mm / min and a peeling angle of 180 degrees, Adhesion was evaluated by measuring peel strength. The results are shown in Table 5.
○: Peel strength of 10 N / inch or more.
X: Peel strength is less than 10 N / inch.
水性エマルション(E-1)~(E-7)を用いても、上述した実施例A(M-EVAへの密着性の評価)と同様にして、密着性のよい積層構造を製造することができる。
Even when aqueous emulsions (E-1) to (E-7) are used, a laminated structure having good adhesion can be produced in the same manner as in Example A (evaluation of adhesion to M-EVA) described above. it can.
<実施例B:水性接着剤のM-EVAへの密着性の評価2>
水性エマルションの製造例で得られた各水性エマルション(不揮発分比)に、増粘剤としてアデカノールUH-756VF(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表6に記載の量(不揮発分比、単位:重量部)を添加しかつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌し、水性接着剤B1及び水性接着剤B2を、それぞれを得た。
得られた水性接着剤B2を、ガラス棒を用いて、綿100%の帆布に塗布(塗布量:乾燥後重量約130g/m2)し、20分間自然乾燥し、得られた帆布を電子レンジ(ミクロ電子社製、9KWマイクロ波オーブン、周波数2.45GHz)に入れ、3000Wで30秒間電磁波処理した。
また、水性接着剤B1を、バーコーターNo.75を用いて、M-EVAに塗布(塗布量:乾燥後重量約30g/m2)し、得られたM-EVAを電子レンジに入れ、3000Wで110秒間電磁波処理した。
再度、綿帆布及びM-EVAに各々に、水性接着剤B2を塗布(綿帆布塗布量:乾燥後重量約60g/m2、M-EVA塗布量:乾燥後重量約30g/m2)し、得られた綿帆布及びM-EVAをマイクロ波オーブンに入れ、3000Wで15秒間電磁波処理した。
続いて、綿帆布及びM-EVAの水性接着剤の塗布面同士を貼り合せ、圧着した。
このようにして得られた綿/接着層/M-EVA積層構造を、再度電子レンジに入れ、3900Wで120秒間電磁波処理した。電子レンジからすぐに取り出し、手で圧着した。
得られた積層構造を24時間、室温で放置し、上記と同様の方法及び評価基準で積層構造の密着性評価した。その結果を表6に示す。 <Example B: Evaluation 2 of Adhesiveness of Aqueous Adhesive to M-EVA>
Table 6 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant. Add the indicated amount (non-volatile content ratio, unit: parts by weight) and prepare with water so that the non-volatile content of the formulation is 40%, and stir with a three-one motor. Got each.
The obtained water-based adhesive B2 was applied to 100% cotton canvas using a glass rod (application amount: weight after drying about 130 g / m 2 ) and air-dried for 20 minutes. The resulting canvas was microwaved (Microelectronics company make, 9KW microwave oven, frequency 2.45GHz) It put into electromagnetic waves for 30 seconds at 3000W.
Also, water-based adhesive B1 was applied to bar coater No. 75 was used to coated on the M-EVA (coating amount: weight after drying about 30 g / m 2) was placed and the resulting M-EVA microwave was 110 seconds electromagnetic wave treatment at 3000W.
Again, water-based adhesive B2 was applied to each of cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 60 g / m 2 , M-EVA coating amount: weight after drying about 30 g / m 2 ), The obtained cotton canvas and M-EVA were placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 15 seconds.
Subsequently, the coated surfaces of cotton canvas and M-EVA water-based adhesive were bonded together and pressure-bonded.
The cotton / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 3900 W for 120 seconds. Immediately removed from the microwave and crimped by hand.
The obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 6.
水性エマルションの製造例で得られた各水性エマルション(不揮発分比)に、増粘剤としてアデカノールUH-756VF(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表6に記載の量(不揮発分比、単位:重量部)を添加しかつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌し、水性接着剤B1及び水性接着剤B2を、それぞれを得た。
得られた水性接着剤B2を、ガラス棒を用いて、綿100%の帆布に塗布(塗布量:乾燥後重量約130g/m2)し、20分間自然乾燥し、得られた帆布を電子レンジ(ミクロ電子社製、9KWマイクロ波オーブン、周波数2.45GHz)に入れ、3000Wで30秒間電磁波処理した。
また、水性接着剤B1を、バーコーターNo.75を用いて、M-EVAに塗布(塗布量:乾燥後重量約30g/m2)し、得られたM-EVAを電子レンジに入れ、3000Wで110秒間電磁波処理した。
再度、綿帆布及びM-EVAに各々に、水性接着剤B2を塗布(綿帆布塗布量:乾燥後重量約60g/m2、M-EVA塗布量:乾燥後重量約30g/m2)し、得られた綿帆布及びM-EVAをマイクロ波オーブンに入れ、3000Wで15秒間電磁波処理した。
続いて、綿帆布及びM-EVAの水性接着剤の塗布面同士を貼り合せ、圧着した。
このようにして得られた綿/接着層/M-EVA積層構造を、再度電子レンジに入れ、3900Wで120秒間電磁波処理した。電子レンジからすぐに取り出し、手で圧着した。
得られた積層構造を24時間、室温で放置し、上記と同様の方法及び評価基準で積層構造の密着性評価した。その結果を表6に示す。 <Example B: Evaluation 2 of Adhesiveness of Aqueous Adhesive to M-EVA>
Table 6 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant. Add the indicated amount (non-volatile content ratio, unit: parts by weight) and prepare with water so that the non-volatile content of the formulation is 40%, and stir with a three-one motor. Got each.
The obtained water-based adhesive B2 was applied to 100% cotton canvas using a glass rod (application amount: weight after drying about 130 g / m 2 ) and air-dried for 20 minutes. The resulting canvas was microwaved (Microelectronics company make, 9KW microwave oven, frequency 2.45GHz) It put into electromagnetic waves for 30 seconds at 3000W.
Also, water-based adhesive B1 was applied to bar coater No. 75 was used to coated on the M-EVA (coating amount: weight after drying about 30 g / m 2) was placed and the resulting M-EVA microwave was 110 seconds electromagnetic wave treatment at 3000W.
Again, water-based adhesive B2 was applied to each of cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 60 g / m 2 , M-EVA coating amount: weight after drying about 30 g / m 2 ), The obtained cotton canvas and M-EVA were placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 15 seconds.
Subsequently, the coated surfaces of cotton canvas and M-EVA water-based adhesive were bonded together and pressure-bonded.
The cotton / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 3900 W for 120 seconds. Immediately removed from the microwave and crimped by hand.
The obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 6.
<実施例C:水性接着剤のM-EVAへの密着性の評価3>
水性エマルションの製造例で得られた各エマルション(不揮発分比)に、増粘剤としてアデカノールUH-756VF(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表7に記載の量(不揮発分比、単位:重量部)を添加してかつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌して、水性接着剤C1と水性接着剤C2を得た。
得られた表7記載の水性接着剤C2を、ガラス棒を用いて、綿100%の帆布に塗布(乾燥後重量塗布量:約130g/m2)し、20分間自然乾燥し、得られた帆布をマイクロ波オーブンで3000W、30秒間電磁波処理した。
また、表7に示す各水性接着剤C1を、バーコーターNo.75を用いて、M-EVAに塗布(乾燥後重量塗布量:約30g/m2)し、得られたM-EVAをマイクロ波オーブンに入れ、5000Wで170秒電磁波処理した。
得られた綿帆布及びM-EVA各々に、水性接着剤C2を塗布(綿帆布塗布量:乾燥後重量約70g/m2、M-EVA塗布量:乾燥後重量約30g/m2)し、これら綿帆布を80℃の熱風オーブンに約15分、M-EVAを80℃の熱風オーブンに約10分入れ、水性接着剤の塗布面同士を熱いうちに貼り合わせた。
得られた綿/接着層/M-EVA積層構造を、再度熱風乾燥機に入れ、80℃で10分間加熱処理し、乾燥機から取り出したあと、手で圧着した。
得られた積層構造を24時間、室温で放置し、上記と同様の方法及び評価基準で積層構造の密着性評価した。その結果を表7に示す。 <Example C: Evaluation 3 of Adhesiveness of Water-based Adhesive to M-EVA>
Table 7 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each emulsion (nonvolatile content ratio) obtained in the production example of the aqueous emulsion. (Non-volatile content ratio, unit: parts by weight) and water so that the non-volatile content of the formulation is 40%, and the mixture is stirred with a three-one motor to produce water-based adhesive C1 and water-based adhesive C2. Got.
The obtained water-based adhesive C2 shown in Table 7 was applied to 100% cotton canvas using a glass rod (weight application amount after drying: about 130 g / m 2 ), and naturally dried for 20 minutes. The canvas was subjected to electromagnetic wave treatment in a microwave oven at 3000 W for 30 seconds.
In addition, each water-based adhesive C1 shown in Table 7 was replaced with a bar coater No. 75 was applied to M-EVA (weight application amount after drying: about 30 g / m 2 ), and the obtained M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 5000 W for 170 seconds.
A water-based adhesive C2 was applied to each of the obtained cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 70 g / m 2 , M-EVA coating amount: weight after drying about 30 g / m 2 ), These cotton canvases were placed in a hot air oven at 80 ° C. for about 15 minutes, and M-EVA was placed in a hot air oven at 80 ° C. for about 10 minutes, and the coated surfaces of the aqueous adhesive were bonded together while hot.
The obtained cotton / adhesive layer / M-EVA laminate structure was again put into a hot air dryer, heat-treated at 80 ° C. for 10 minutes, taken out from the dryer, and then pressure-bonded by hand.
The obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 7.
水性エマルションの製造例で得られた各エマルション(不揮発分比)に、増粘剤としてアデカノールUH-756VF(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表7に記載の量(不揮発分比、単位:重量部)を添加してかつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌して、水性接着剤C1と水性接着剤C2を得た。
得られた表7記載の水性接着剤C2を、ガラス棒を用いて、綿100%の帆布に塗布(乾燥後重量塗布量:約130g/m2)し、20分間自然乾燥し、得られた帆布をマイクロ波オーブンで3000W、30秒間電磁波処理した。
また、表7に示す各水性接着剤C1を、バーコーターNo.75を用いて、M-EVAに塗布(乾燥後重量塗布量:約30g/m2)し、得られたM-EVAをマイクロ波オーブンに入れ、5000Wで170秒電磁波処理した。
得られた綿帆布及びM-EVA各々に、水性接着剤C2を塗布(綿帆布塗布量:乾燥後重量約70g/m2、M-EVA塗布量:乾燥後重量約30g/m2)し、これら綿帆布を80℃の熱風オーブンに約15分、M-EVAを80℃の熱風オーブンに約10分入れ、水性接着剤の塗布面同士を熱いうちに貼り合わせた。
得られた綿/接着層/M-EVA積層構造を、再度熱風乾燥機に入れ、80℃で10分間加熱処理し、乾燥機から取り出したあと、手で圧着した。
得られた積層構造を24時間、室温で放置し、上記と同様の方法及び評価基準で積層構造の密着性評価した。その結果を表7に示す。 <Example C: Evaluation 3 of Adhesiveness of Water-based Adhesive to M-EVA>
Table 7 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each emulsion (nonvolatile content ratio) obtained in the production example of the aqueous emulsion. (Non-volatile content ratio, unit: parts by weight) and water so that the non-volatile content of the formulation is 40%, and the mixture is stirred with a three-one motor to produce water-based adhesive C1 and water-based adhesive C2. Got.
The obtained water-based adhesive C2 shown in Table 7 was applied to 100% cotton canvas using a glass rod (weight application amount after drying: about 130 g / m 2 ), and naturally dried for 20 minutes. The canvas was subjected to electromagnetic wave treatment in a microwave oven at 3000 W for 30 seconds.
In addition, each water-based adhesive C1 shown in Table 7 was replaced with a bar coater No. 75 was applied to M-EVA (weight application amount after drying: about 30 g / m 2 ), and the obtained M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 5000 W for 170 seconds.
A water-based adhesive C2 was applied to each of the obtained cotton canvas and M-EVA (cotton canvas coating amount: weight after drying about 70 g / m 2 , M-EVA coating amount: weight after drying about 30 g / m 2 ), These cotton canvases were placed in a hot air oven at 80 ° C. for about 15 minutes, and M-EVA was placed in a hot air oven at 80 ° C. for about 10 minutes, and the coated surfaces of the aqueous adhesive were bonded together while hot.
The obtained cotton / adhesive layer / M-EVA laminate structure was again put into a hot air dryer, heat-treated at 80 ° C. for 10 minutes, taken out from the dryer, and then pressure-bonded by hand.
The obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 7.
<実施例D:水性接着剤のM-EVAへの密着性の評価4>
水性エマルションの製造例で得られた各水性エマルション(不揮発分比)100重量部に、増粘剤としてアデカノールUH-420(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表8に記載の量(不揮発分比、単位:重量部)を添加しかつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌し、水性接着剤Dを得た。
得られた表8の水性接着剤Dを、ガラス棒を用いて、綿100%の帆布に塗布(塗布量:乾燥後重量約130g/m2)し、1時間自然乾燥した。
また、綿に塗布したものと同じ水性接着剤Dを、バーコーターNo.75を用いて、M-EVA(エチレン・酢酸ビニル共重合体の発泡体)に塗布(乾燥後重量塗布量:約30g/m2)し、得られたM-EVAを1時間自然乾燥した。その後、綿帆布およびM-EVAにガラス棒を用いて塗布(綿帆布:乾燥後重量約70g/m2、M-EVA塗布量:乾燥後重量約30g/m2)し、電子レンジに入れ、750Wで30秒間電磁波処理した。
続いて、綿帆布及びM-EVAの水性接着剤の塗布面同士を貼り合せ、圧着した。
このようにして得られた綿/接着層/M-EVA積層構造を、再度電子レンジに入れ、750Wで110秒間電磁波処理した。乾燥機から取り出したあと、手で圧着した。これによって、綿/接着層/M-EVAからなる積層構造を得た。
得られた積層構造を24時間、室温で放置し、上記と同様の方法及び評価基準で積層構造の密着性評価した。その結果を表8に示す。 <Example D: Evaluation 4 of adhesion of water-based adhesive to M-EVA>
To 100 parts by weight of each aqueous emulsion (non-volatile content ratio) obtained in the production example of an aqueous emulsion, Adecanol UH-420 (manufactured by ADEKA) as a thickener, and Nopco Wet 50 (manufactured by San Nopco) as a dispersant, The amount shown in Table 8 (nonvolatile content ratio, unit: parts by weight) was added and water was prepared so that the nonvolatile content of the formulation was 40%, and the mixture was stirred with a three-one motor to obtain an aqueous adhesive D. .
The obtained water-based adhesive D in Table 8 was applied to 100% cotton canvas using a glass rod (coating amount: weight about 130 g / m 2 after drying) and air-dried for 1 hour.
Also, the same water-based adhesive D applied to cotton was applied to the bar coater No. 75 was applied to M-EVA (foamed ethylene / vinyl acetate copolymer) (weight applied amount after drying: about 30 g / m 2 ), and the obtained M-EVA was naturally dried for 1 hour. Then, apply it to cotton canvas and M-EVA using a glass rod (cotton canvas: weight after drying about 70 g / m 2 , M-EVA coating amount: weight after drying about 30 g / m 2 ), put in a microwave oven, Electromagnetic wave treatment was performed at 750 W for 30 seconds.
Subsequently, the coated surfaces of cotton canvas and M-EVA water-based adhesive were bonded together and pressure-bonded.
The cotton / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 110 seconds. After removing from the dryer, it was crimped by hand. Thus, a laminated structure composed of cotton / adhesive layer / M-EVA was obtained.
The obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 8.
水性エマルションの製造例で得られた各水性エマルション(不揮発分比)100重量部に、増粘剤としてアデカノールUH-420(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表8に記載の量(不揮発分比、単位:重量部)を添加しかつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌し、水性接着剤Dを得た。
得られた表8の水性接着剤Dを、ガラス棒を用いて、綿100%の帆布に塗布(塗布量:乾燥後重量約130g/m2)し、1時間自然乾燥した。
また、綿に塗布したものと同じ水性接着剤Dを、バーコーターNo.75を用いて、M-EVA(エチレン・酢酸ビニル共重合体の発泡体)に塗布(乾燥後重量塗布量:約30g/m2)し、得られたM-EVAを1時間自然乾燥した。その後、綿帆布およびM-EVAにガラス棒を用いて塗布(綿帆布:乾燥後重量約70g/m2、M-EVA塗布量:乾燥後重量約30g/m2)し、電子レンジに入れ、750Wで30秒間電磁波処理した。
続いて、綿帆布及びM-EVAの水性接着剤の塗布面同士を貼り合せ、圧着した。
このようにして得られた綿/接着層/M-EVA積層構造を、再度電子レンジに入れ、750Wで110秒間電磁波処理した。乾燥機から取り出したあと、手で圧着した。これによって、綿/接着層/M-EVAからなる積層構造を得た。
得られた積層構造を24時間、室温で放置し、上記と同様の方法及び評価基準で積層構造の密着性評価した。その結果を表8に示す。 <Example D: Evaluation 4 of adhesion of water-based adhesive to M-EVA>
To 100 parts by weight of each aqueous emulsion (non-volatile content ratio) obtained in the production example of an aqueous emulsion, Adecanol UH-420 (manufactured by ADEKA) as a thickener, and Nopco Wet 50 (manufactured by San Nopco) as a dispersant, The amount shown in Table 8 (nonvolatile content ratio, unit: parts by weight) was added and water was prepared so that the nonvolatile content of the formulation was 40%, and the mixture was stirred with a three-one motor to obtain an aqueous adhesive D. .
The obtained water-based adhesive D in Table 8 was applied to 100% cotton canvas using a glass rod (coating amount: weight about 130 g / m 2 after drying) and air-dried for 1 hour.
Also, the same water-based adhesive D applied to cotton was applied to the bar coater No. 75 was applied to M-EVA (foamed ethylene / vinyl acetate copolymer) (weight applied amount after drying: about 30 g / m 2 ), and the obtained M-EVA was naturally dried for 1 hour. Then, apply it to cotton canvas and M-EVA using a glass rod (cotton canvas: weight after drying about 70 g / m 2 , M-EVA coating amount: weight after drying about 30 g / m 2 ), put in a microwave oven, Electromagnetic wave treatment was performed at 750 W for 30 seconds.
Subsequently, the coated surfaces of cotton canvas and M-EVA water-based adhesive were bonded together and pressure-bonded.
The cotton / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 750 W for 110 seconds. After removing from the dryer, it was crimped by hand. Thus, a laminated structure composed of cotton / adhesive layer / M-EVA was obtained.
The obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 8.
<実施例F:水性接着剤のM-EVAへの密着性及び耐熱性の評価5>
表9-1に示したように、水性エマルションの製造例で得られた水性エマルション(E-36)~(E-38)(不揮発分比、単位:重量部)に、粘着樹脂1としてテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)及び粘着樹脂2として水性ウレタンエマルション(ディスコパールU-54、SBU社製)を、不揮発分比で100:100:100になるように配合し、さらに、増粘剤としてアデカノールUH-756VF(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、架橋剤としてデスモジュールN3300(SBU社製)を添加してかつ配合物の不揮発分が40%になるように水で調製した後スリーワンモーターで攪拌し、水性接着剤F1~F10を得た。 <Example F: Evaluation 5 of adhesion and heat resistance of water-based adhesive to M-EVA>
As shown in Table 9-1, terpene phenol as the adhesive resin 1 was added to the aqueous emulsions (E-36) to (E-38) (nonvolatile content ratio, unit: parts by weight) obtained in the production examples of the aqueous emulsion. An aqueous emulsion (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) and an aqueous urethane emulsion (Disco Pearl U-54, manufactured by SBU) as the adhesive resin 2 were blended so that the nonvolatile content ratio was 100: 100: 100. Furthermore, Adecanol UH-756VF (manufactured by ADEKA) was added as a thickener, Nopco Wet 50 (manufactured by San Nopco) was added as a dispersant, and Desmodur N3300 (manufactured by SBU) was added as a crosslinking agent. After preparing with water so that the non-volatile content was 40%, the mixture was stirred with a three-one motor to obtain aqueous adhesives F1 to F10.
表9-1に示したように、水性エマルションの製造例で得られた水性エマルション(E-36)~(E-38)(不揮発分比、単位:重量部)に、粘着樹脂1としてテルペンフェノールの水性エマルション(タマノルE-200NT、荒川化学社製)及び粘着樹脂2として水性ウレタンエマルション(ディスコパールU-54、SBU社製)を、不揮発分比で100:100:100になるように配合し、さらに、増粘剤としてアデカノールUH-756VF(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、架橋剤としてデスモジュールN3300(SBU社製)を添加してかつ配合物の不揮発分が40%になるように水で調製した後スリーワンモーターで攪拌し、水性接着剤F1~F10を得た。 <Example F: Evaluation 5 of adhesion and heat resistance of water-based adhesive to M-EVA>
As shown in Table 9-1, terpene phenol as the adhesive resin 1 was added to the aqueous emulsions (E-36) to (E-38) (nonvolatile content ratio, unit: parts by weight) obtained in the production examples of the aqueous emulsion. An aqueous emulsion (Tamanol E-200NT, manufactured by Arakawa Chemical Co., Ltd.) and an aqueous urethane emulsion (Disco Pearl U-54, manufactured by SBU) as the adhesive resin 2 were blended so that the nonvolatile content ratio was 100: 100: 100. Furthermore, Adecanol UH-756VF (manufactured by ADEKA) was added as a thickener, Nopco Wet 50 (manufactured by San Nopco) was added as a dispersant, and Desmodur N3300 (manufactured by SBU) was added as a crosslinking agent. After preparing with water so that the non-volatile content was 40%, the mixture was stirred with a three-one motor to obtain aqueous adhesives F1 to F10.
得られた表9-1の水性接着剤(F10)を、ガラス棒を用いて、綿100%の帆布に塗布(塗布量:乾燥後重量約130g/m2)し、20分自然乾燥後、3000Wで30秒電磁波処理した。
また、各水性接着剤(F1)~(F9)を、バーコーターNo.75を用いて、M-EVA(エチレン・酢酸ビニル共重合体の発泡体)に塗布(塗布量:乾燥後重量約30g/m2)し、得られたM-EVAを3000Wで110秒電子波処理した。その後、水性接着剤(F10)を、綿帆布およびM-EVAにガラス棒を用いて塗布(綿帆布塗布量:乾燥後重量約70g/m2、M-EVA塗布量:乾燥後重量約70g/m2)し、M-EVAを3000Wで15秒間電磁波処理した。
続いて、綿帆布及びM-EVAの水性接着剤の塗布面同士を貼り合せ、3900Wで120秒電磁波処理した。その後、手で圧着した。これによって、綿/接着層/M-EVAからなる積層構造を得た。 The obtained water-based adhesive (F10) in Table 9-1 was applied to 100% cotton canvas using a glass rod (coating amount: weight after drying: about 130 g / m 2 ), and after natural drying for 20 minutes, The electromagnetic wave treatment was performed at 3000 W for 30 seconds.
In addition, each of the water-based adhesives (F1) to (F9) was given a bar coater No. 75 was applied to M-EVA (ethylene / vinyl acetate copolymer foam) (coating amount: weight after drying: about 30 g / m 2 ), and the obtained M-EVA was heated at 3000 W for 110 seconds. Processed. Thereafter, the aqueous adhesive (F10) was applied to cotton canvas and M-EVA using a glass rod (cotton canvas coating amount: weight after drying: about 70 g / m 2, M-EVA coating amount: weight after drying: about 70 g / m m 2 ), and M-EVA was subjected to electromagnetic wave treatment at 3000 W for 15 seconds.
Subsequently, the coated surfaces of the cotton canvas and the M-EVA aqueous adhesive were bonded to each other and subjected to electromagnetic wave treatment at 3900 W for 120 seconds. Then, it crimped | bonded by hand. Thus, a laminated structure composed of cotton / adhesive layer / M-EVA was obtained.
また、各水性接着剤(F1)~(F9)を、バーコーターNo.75を用いて、M-EVA(エチレン・酢酸ビニル共重合体の発泡体)に塗布(塗布量:乾燥後重量約30g/m2)し、得られたM-EVAを3000Wで110秒電子波処理した。その後、水性接着剤(F10)を、綿帆布およびM-EVAにガラス棒を用いて塗布(綿帆布塗布量:乾燥後重量約70g/m2、M-EVA塗布量:乾燥後重量約70g/m2)し、M-EVAを3000Wで15秒間電磁波処理した。
続いて、綿帆布及びM-EVAの水性接着剤の塗布面同士を貼り合せ、3900Wで120秒電磁波処理した。その後、手で圧着した。これによって、綿/接着層/M-EVAからなる積層構造を得た。 The obtained water-based adhesive (F10) in Table 9-1 was applied to 100% cotton canvas using a glass rod (coating amount: weight after drying: about 130 g / m 2 ), and after natural drying for 20 minutes, The electromagnetic wave treatment was performed at 3000 W for 30 seconds.
In addition, each of the water-based adhesives (F1) to (F9) was given a bar coater No. 75 was applied to M-EVA (ethylene / vinyl acetate copolymer foam) (coating amount: weight after drying: about 30 g / m 2 ), and the obtained M-EVA was heated at 3000 W for 110 seconds. Processed. Thereafter, the aqueous adhesive (F10) was applied to cotton canvas and M-EVA using a glass rod (cotton canvas coating amount: weight after drying: about 70 g / m 2, M-EVA coating amount: weight after drying: about 70 g / m m 2 ), and M-EVA was subjected to electromagnetic wave treatment at 3000 W for 15 seconds.
Subsequently, the coated surfaces of the cotton canvas and the M-EVA aqueous adhesive were bonded to each other and subjected to electromagnetic wave treatment at 3900 W for 120 seconds. Then, it crimped | bonded by hand. Thus, a laminated structure composed of cotton / adhesive layer / M-EVA was obtained.
得られた各積層構造を24時間、室温で放置し、その後、引張り試験機(島津製作所社製、オートグラフ)を用いて、剥離速度50mm/分、剥離角度180度で、積層構造の密着性を、剥離強度を測定することにより評価した。その結果を表9-2に示す。
○:剥離強度70N/inch以上。
×:剥離強度70N/inch未満。 Each of the obtained laminated structures was allowed to stand at room temperature for 24 hours, and then, using a tensile tester (manufactured by Shimadzu Corporation, Autograph), at a peeling rate of 50 mm / min and a peeling angle of 180 degrees, the adhesion of the laminated structure. Was evaluated by measuring the peel strength. The results are shown in Table 9-2.
○: Peel strength of 70 N / inch or more.
X: Peel strength is less than 70 N / inch.
○:剥離強度70N/inch以上。
×:剥離強度70N/inch未満。 Each of the obtained laminated structures was allowed to stand at room temperature for 24 hours, and then, using a tensile tester (manufactured by Shimadzu Corporation, Autograph), at a peeling rate of 50 mm / min and a peeling angle of 180 degrees, the adhesion of the laminated structure. Was evaluated by measuring the peel strength. The results are shown in Table 9-2.
○: Peel strength of 70 N / inch or more.
X: Peel strength is less than 70 N / inch.
得られた各積層構造を24時間、室温で放置し、その後、引張り試験機(東洋精機製、ストログラフT)を用いて、槽内設定温度60℃、剥離速度50mm/分、剥離角度180度で、積層構造の耐熱性を、剥離強度を測定することにより評価した。その結果を表9-2に示す。
○:剥離強度15N/inch以上。
×:剥離強度15N/inch未満。 Each of the obtained laminated structures was allowed to stand at room temperature for 24 hours, and then, using a tensile tester (manufactured by Toyo Seiki, Strograph T), the set temperature in the tank was 60 ° C., the peeling speed was 50 mm / min, and the peeling angle was 180 degrees. Thus, the heat resistance of the laminated structure was evaluated by measuring the peel strength. The results are shown in Table 9-2.
○: Peel strength of 15 N / inch or more.
X: Peel strength is less than 15 N / inch.
○:剥離強度15N/inch以上。
×:剥離強度15N/inch未満。 Each of the obtained laminated structures was allowed to stand at room temperature for 24 hours, and then, using a tensile tester (manufactured by Toyo Seiki, Strograph T), the set temperature in the tank was 60 ° C., the peeling speed was 50 mm / min, and the peeling angle was 180 degrees. Thus, the heat resistance of the laminated structure was evaluated by measuring the peel strength. The results are shown in Table 9-2.
○: Peel strength of 15 N / inch or more.
X: Peel strength is less than 15 N / inch.
<実施例H:水性接着剤のM-EVA/合成皮革への密着性の評価7>
水性エマルションの製造例で得られた各エマルション(不揮発分比)に、増粘剤としてアデカノールUH-756VF(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表10に記載の量(不揮発分比、単位:重量部)添加し、かつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌して、水性接着剤H1と水性接着剤H2を得た。
得られた表10の水性接着剤H-1を、バーコーターNo.75を用いて、M-EVAに塗布(乾燥後重量塗布量:約30g/m2)し、得られたM-EVAをマイクロ波オーブンに入れ、3000Wで110秒電磁波処理した。
得られたM-EVA及び合成皮革の各々に、水性接着剤H-1、H-2を塗布(合成皮革へのH-2塗布量:乾燥後重量約30g/m2、M-EVAへのH-1塗布量:乾燥後重量約30g/m2)し、得られた合成皮革及びM-EVAをマイクロ波オーブンに入れ、3000Wで15秒間電磁波処理した。
続いて、合成皮革及びM-EVAの水性接着剤の塗布面同士を貼り合せ、圧着した。
このようにして得られた合成皮革/接着層/M-EVA積層構造を、再度電子レンジに入れ、3900Wで120秒間電磁波処理した。電子レンジからすぐに取り出し、手で圧着した。
得られた積層構造を24時間、室温で放置し、上記と同様の方法及び評価基準で積層構造の密着性評価した。その結果を表10に示す。 <Example H: Evaluation 7 for Adhesion of Water-based Adhesive to M-EVA / Synthetic Leather>
Table 10 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each emulsion (nonvolatile content ratio) obtained in the aqueous emulsion production example. (Non-volatile content ratio, unit: parts by weight), and prepared with water so that the non-volatile content of the formulation is 40%, and stirred with a three-one motor, water-based adhesive H1 and water-based adhesive H2 Obtained.
The obtained water-based adhesive H-1 in Table 10 was applied to bar coater No. 75 was applied to M-EVA (weight application amount after drying: about 30 g / m 2 ), and the obtained M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 110 seconds.
Aqueous adhesives H-1 and H-2 were applied to each of the obtained M-EVA and synthetic leather (the amount of H-2 applied to the synthetic leather: weight after drying: about 30 g / m 2 , applied to M-EVA) H-1 coating amount: weight after drying of about 30 g / m 2 ), the obtained synthetic leather and M-EVA were placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 15 seconds.
Subsequently, the coated surfaces of synthetic leather and M-EVA aqueous adhesive were bonded together and pressure-bonded.
The synthetic leather / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 3900 W for 120 seconds. Immediately removed from the microwave and crimped by hand.
The obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 10.
水性エマルションの製造例で得られた各エマルション(不揮発分比)に、増粘剤としてアデカノールUH-756VF(ADEKA社製)を、分散剤としてノプコウェット50(サンノプコ社製)を、表10に記載の量(不揮発分比、単位:重量部)添加し、かつ配合物の不揮発分が40%になるように水で調製してスリーワンモーターで攪拌して、水性接着剤H1と水性接着剤H2を得た。
得られた表10の水性接着剤H-1を、バーコーターNo.75を用いて、M-EVAに塗布(乾燥後重量塗布量:約30g/m2)し、得られたM-EVAをマイクロ波オーブンに入れ、3000Wで110秒電磁波処理した。
得られたM-EVA及び合成皮革の各々に、水性接着剤H-1、H-2を塗布(合成皮革へのH-2塗布量:乾燥後重量約30g/m2、M-EVAへのH-1塗布量:乾燥後重量約30g/m2)し、得られた合成皮革及びM-EVAをマイクロ波オーブンに入れ、3000Wで15秒間電磁波処理した。
続いて、合成皮革及びM-EVAの水性接着剤の塗布面同士を貼り合せ、圧着した。
このようにして得られた合成皮革/接着層/M-EVA積層構造を、再度電子レンジに入れ、3900Wで120秒間電磁波処理した。電子レンジからすぐに取り出し、手で圧着した。
得られた積層構造を24時間、室温で放置し、上記と同様の方法及び評価基準で積層構造の密着性評価した。その結果を表10に示す。 <Example H: Evaluation 7 for Adhesion of Water-based Adhesive to M-EVA / Synthetic Leather>
Table 10 shows Adecanol UH-756VF (manufactured by ADEKA) as a thickener and Nopco Wet 50 (manufactured by San Nopco) as a dispersant in each emulsion (nonvolatile content ratio) obtained in the aqueous emulsion production example. (Non-volatile content ratio, unit: parts by weight), and prepared with water so that the non-volatile content of the formulation is 40%, and stirred with a three-one motor, water-based adhesive H1 and water-based adhesive H2 Obtained.
The obtained water-based adhesive H-1 in Table 10 was applied to bar coater No. 75 was applied to M-EVA (weight application amount after drying: about 30 g / m 2 ), and the obtained M-EVA was placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 110 seconds.
Aqueous adhesives H-1 and H-2 were applied to each of the obtained M-EVA and synthetic leather (the amount of H-2 applied to the synthetic leather: weight after drying: about 30 g / m 2 , applied to M-EVA) H-1 coating amount: weight after drying of about 30 g / m 2 ), the obtained synthetic leather and M-EVA were placed in a microwave oven and subjected to electromagnetic wave treatment at 3000 W for 15 seconds.
Subsequently, the coated surfaces of synthetic leather and M-EVA aqueous adhesive were bonded together and pressure-bonded.
The synthetic leather / adhesive layer / M-EVA laminated structure thus obtained was again placed in a microwave oven and subjected to electromagnetic wave treatment at 3900 W for 120 seconds. Immediately removed from the microwave and crimped by hand.
The obtained laminated structure was allowed to stand at room temperature for 24 hours, and the adhesion of the laminated structure was evaluated by the same method and evaluation criteria as described above. The results are shown in Table 10.
本発明の積層構造の製造方法によれば、接着性に優れた積層構造を製造することができる。
According to the method for producing a laminated structure of the present invention, a laminated structure having excellent adhesion can be produced.
Claims (22)
- 第1の基材、接着層及び第2の基材がこの順に積層された積層構造の製造方法であって、
(a)第1の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第1の基材を熱乾燥する工程、
(b)第2の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第2の基材を熱乾燥する工程、
(c)前記第1の基材及び第2の基材の少なくともいずれか一方の熱乾燥された面に、再度水性接着剤を塗布し、得られた基材を熱乾燥する工程、
(d)前記熱乾燥された第1の基材の水性接着剤が塗布された面及び前記熱乾燥された第2の基材の水性接着剤が塗布された面を貼り合せる工程を含み、
前記(a)~(c)における熱乾燥の少なくとも1回が電磁波処理である積層構造の製造方法。 A manufacturing method of a laminated structure in which a first base material, an adhesive layer, and a second base material are laminated in this order,
(A) applying a water-based adhesive to the surface of the first base material, and thermally drying the first base material coated with the water-based adhesive;
(B) applying a water-based adhesive to the surface of the second base material, and thermally drying the second base material coated with the water-based adhesive;
(C) a step of applying an aqueous adhesive again to the heat-dried surface of at least one of the first base material and the second base material, and thermally drying the obtained base material;
(D) including a step of bonding the surface of the first substrate dried with the aqueous adhesive and the surface of the second dried substrate coated with the aqueous adhesive;
A method for producing a laminated structure in which at least one heat drying in the above (a) to (c) is an electromagnetic wave treatment. - 前記(a)又は(b)における熱乾燥が電磁波処理である請求項1に記載の積層構造の製造方法。 The method for producing a laminated structure according to claim 1, wherein the heat drying in (a) or (b) is an electromagnetic wave treatment.
- (a’)第1の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第1の基材を電磁波処理する工程、
(b’)第2の基材表面に水性接着剤を塗布し、水性接着剤が塗布された第2の基材を電磁波処理する工程、
(c’)前記第1の基材及び第2の基材の少なくともいずれか一方の電磁波処理された面に、再度水性接着剤を塗布し、得られた基材を電磁波処理する工程、
(d’)電磁波処理された第1の基材の水性接着剤が塗布された面及び電磁波処理された第2の基材の水性接着剤が塗布された面を貼り合せる工程を含む請求項1に記載の積層構造の製造方法。 (A ′) applying a water-based adhesive to the surface of the first base material, and subjecting the first base material coated with the water-based adhesive to electromagnetic wave treatment;
(B ′) applying a water-based adhesive to the surface of the second base material and subjecting the second base material coated with the water-based adhesive to electromagnetic wave treatment;
(C ′) a step of applying an aqueous adhesive again to the surface subjected to electromagnetic wave treatment of at least one of the first base material and the second base material, and subjecting the obtained base material to electromagnetic wave treatment;
(D ′) The method includes a step of bonding a surface of the first base material subjected to electromagnetic wave treatment to which the aqueous adhesive is applied and a surface of the second base material subjected to electromagnetic wave treatment to which the aqueous adhesive is applied. The manufacturing method of laminated structure as described in 2. - 前記電磁波処理を、2.45±0.02GHzの周波数帯での電磁波によって行なう請求項1~3のいずれか1つに記載の積層構造の製造方法。 The method for producing a laminated structure according to any one of claims 1 to 3, wherein the electromagnetic wave treatment is performed by electromagnetic waves in a frequency band of 2.45 ± 0.02 GHz.
- 前記第1の基材及び前記第2の基材を貼り合せて得られた積層構造をさらに電磁波処理する請求項1~4のいずれか1つに記載の積層構造の製造方法。 The method for producing a laminated structure according to any one of claims 1 to 4, wherein the laminated structure obtained by bonding the first base material and the second base material is further subjected to electromagnetic wave treatment.
- 貼り合せ工程を、熱、圧力又はその双方を負荷しながら行なう請求項1~5のいずれか1つに記載の積層構造の製造方法。 The method for producing a laminated structure according to any one of claims 1 to 5, wherein the bonding step is performed while applying heat, pressure, or both.
- (i-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(i-4)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(ii-1)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-2)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(ii-3)第1の基材(第1回目・電磁波処理)、第2の基材(第1回目・電磁波処理以外の熱乾燥)、第1の基材又は第2の基材(第2回目・電磁波処理)、
(iii-1)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)、
(iii-2)第1の基材(第1回目・電磁波処)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理以外の熱乾燥)及び
(iii-3)第1の基材(第1回目・電磁波処理以外の熱乾燥)、第2の基材(第1回目・電磁波処理)、第1の基材又は第2の基材(第2回目・電磁波処理)からなる群から選択される1つの処理を行う請求項1~6のいずれか1つに記載の積層構造の製造方法。 (i-1) 1st base material (heat drying other than 1st time and electromagnetic wave treatment), 2nd base material (heat drying other than 1st time and electromagnetic wave treatment), 1st base material, or 2nd Base material (second time, electromagnetic wave treatment),
(i-2) 1st base material (1st time and electromagnetic wave treatment), 2nd base material (thermal drying other than 1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-3) 1st base material (heat drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second time, electromagnetic wave treatment),
(i-4) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) processing),
(ii-1) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second, heat drying other than electromagnetic treatment)
(ii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) Heat drying other than processing),
(ii-3) First base material (first time / electromagnetic wave treatment), second base material (thermal drying other than the first time / electromagnetic wave treatment), first base material or second base material (first Second time, electromagnetic wave treatment),
(iii-1) 1st base material (thermal drying other than 1st time and electromagnetic wave treatment), 2nd base material (1st time and electromagnetic wave treatment), 1st base material, or 2nd base material (1st Second, heat drying other than electromagnetic treatment)
(iii-2) First base material (first time / electromagnetic wave treatment), second base material (first time / electromagnetic wave treatment), first base material or second base material (second time / electromagnetic wave treatment) (Iii-3) the first substrate (thermal drying other than the first electromagnetic wave treatment), the second substrate (first electromagnetic wave treatment), the first substrate or The method for producing a laminated structure according to any one of claims 1 to 6, wherein one treatment selected from the group consisting of a second base material (second time / electromagnetic wave treatment) is performed. - 水性接着剤が、炭素数2~20のα-オレフィン由来の構造単位を1種以上有する重合体を含む熱可塑性樹脂(B)と、式(I)で表される界面活性剤(A)とを含む請求項1~7のいずれか1つに記載の積層構造の製造方法。
(式中、Xは水素原子又は-SO3M(Mは水素原子、NH4又はアルカリ金属)を示す。nは1~3の整数を表す。mは1~100の整数を表す。) A thermoplastic resin (B) in which the aqueous adhesive contains a polymer having at least one structural unit derived from an α-olefin having 2 to 20 carbon atoms, and a surfactant (A) represented by the formula (I); The method for producing a laminated structure according to any one of claims 1 to 7, comprising:
(In the formula, X .m is hydrogen atom or -SO 3 M (M represents an integer of .n 1-3 represents a hydrogen atom, NH 4, or an alkali metal) is an integer of 1 to 100.) - 水性接着剤が、下記(A)、(B)及び(C)を含む請求項1~7のいずれか1つに記載の積層構造の製造方法。
(A)2種類以上の下記式(I)で表される界面活性剤
(B)熱可塑性樹脂
(C)水 The method for producing a laminated structure according to any one of claims 1 to 7, wherein the aqueous adhesive contains the following (A), (B) and (C).
(A) Two or more types of surfactants represented by the following formula (I) (B) Thermoplastic resin (C) Water - 前記界面活性剤が、Xが水素原子である界面活性剤と、Xが-SO3Mである界面活性剤との2種類以上を含むか、Xが水素原子である界面活性剤と、Xが-SO3NH4である界面活性剤との2種類以上を含む請求項8又は9に記載の積層構造の製造方法。 The surfactant includes two or more of a surfactant in which X is a hydrogen atom and a surfactant in which X is —SO 3 M, or a surfactant in which X is a hydrogen atom; The method for producing a laminated structure according to claim 8 or 9, comprising two or more types of surfactants that are -SO 3 NH 4 .
- 前記熱可塑性樹脂が、
(1)炭素数2~20のα-オレフィン由来の構造単位を1種類以上有する重合体、
(2)炭素数2~20のα-オレフィン由来の構造単位と、炭素数2~20のα-オレフィンと異なる炭素数2~20のα-オレフィン、α、β-不飽和カルボン酸エステル、α、β-不飽和カルボン酸無水物、酢酸ビニルよりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(3)エチレン由来の構造単位と、炭素数3~20のα-オレフィン、α、β-不飽和カルボン酸エステル及びα、β-不飽和カルボン酸無水物、酢酸ビニルよりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(4)エチレン由来の構造単位と、α、β-不飽和カルボン酸エステル及びα、β-不飽和カルボン酸よりなる群から選ばれる1種以上のモノマーを由来とする構造単位とを有する共重合体、
(5)エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-プロピレン-1-ブテン共重合体等のα-オレフィン系共重合体又はその変性物;あるいはこれらの2種以上の混合物、
(6)エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-プロピレン-1-ブテン共重合体等のα-オレフィン系共重合体又はその無水マレイン酸変性物;あるいはこれらの2種以上の混合物、
(7)α-オレフィンと酢酸ビニルとの共重合体又はその変性物;あるいはこれらの2種以上の混合物、
(8)α-オレフィンと(メタ)アクリレートとα,β-カルボン酸との共重合体又はその変性物;あるいはこれらの2種以上の混合物、及び
(9)α-オレフィンと(メタ)アクリレートと無水マレイン酸との共重合体又はその変性物;あるいはこれらの2種以上の混合物
からなる群から選択される少なくとも1種である請求項8~10のいずれか1つに記載の積層構造の製造方法。 The thermoplastic resin is
(1) a polymer having at least one structural unit derived from an α-olefin having 2 to 20 carbon atoms,
(2) a structural unit derived from an α-olefin having 2 to 20 carbon atoms, an α-olefin having 2 to 20 carbon atoms different from the α-olefin having 2 to 20 carbon atoms, an α, β-unsaturated carboxylic acid ester, α A copolymer having a structural unit derived from one or more monomers selected from the group consisting of β-unsaturated carboxylic acid anhydride and vinyl acetate,
(3) 1 selected from the group consisting of a structural unit derived from ethylene, an α-olefin having 3 to 20 carbon atoms, an α, β-unsaturated carboxylic acid ester, an α, β-unsaturated carboxylic acid anhydride, and vinyl acetate. A copolymer having a structural unit derived from a monomer of at least one species,
(4) Copolymer having a structural unit derived from ethylene and a structural unit derived from one or more monomers selected from the group consisting of α, β-unsaturated carboxylic acid esters and α, β-unsaturated carboxylic acids Coalescence,
(5) Ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer, ethylene-propylene- An α-olefin copolymer such as 1-butene copolymer or a modified product thereof; or a mixture of two or more of these,
(6) Ethylene-propylene copolymer, propylene-1-butene copolymer, ethylene-1-butene copolymer, ethylene-1-octene copolymer, ethylene-1-hexene copolymer, ethylene-propylene- An α-olefin copolymer such as 1-butene copolymer or a maleic anhydride modified product thereof; or a mixture of two or more of these,
(7) a copolymer of α-olefin and vinyl acetate or a modified product thereof; or a mixture of two or more of these,
(8) a copolymer of α-olefin, (meth) acrylate and α, β-carboxylic acid or a modified product thereof; or a mixture of two or more thereof; and (9) α-olefin and (meth) acrylate The production of a laminated structure according to any one of claims 8 to 10, which is at least one selected from the group consisting of a copolymer with maleic anhydride or a modified product thereof; or a mixture of two or more thereof. Method. - 熱可塑性樹脂が、60~110℃の融点を有する請求項8~11いずれか1つに記載の積層構造の製造方法。 The method for producing a laminated structure according to any one of claims 8 to 11, wherein the thermoplastic resin has a melting point of 60 to 110 ° C.
- 水性接着剤が、さらに、ポリウレタン樹脂又は非水溶性のポリウレタン樹脂を含有する請求項8~12のいずれか1つに記載の積層構造の製造方法。 The method for producing a laminated structure according to any one of claims 8 to 12, wherein the aqueous adhesive further contains a polyurethane resin or a water-insoluble polyurethane resin.
- 水性接着剤が、さらに、テルペン重合体、テルペンフェノール、β-ピネン重合体、芳香族変性テルペン重合体、α-ピネン重合体、テルペン系水素添加樹脂からなる群から選択されるテルペン系樹脂を含有する請求項8~13のいずれか1つに記載の積層構造の製造方法。 The aqueous adhesive further contains a terpene resin selected from the group consisting of terpene polymer, terpene phenol, β-pinene polymer, aromatic modified terpene polymer, α-pinene polymer, and terpene hydrogenated resin. The method for manufacturing a laminated structure according to any one of claims 8 to 13.
- 水性接着剤が、さらに、ポリウレタン樹脂と、テルペン重合体、テルペンフェノール、β-ピネン重合体、芳香族変性テルペン重合体、α-ピネン重合体、テルペン系水素添加樹脂からなる群から選択されるテルペン系樹脂とを含有する請求項8~12のいずれか1つに記載の積層構造の製造方法。 The aqueous adhesive further includes a terpene selected from the group consisting of a polyurethane resin, a terpene polymer, a terpene phenol, a β-pinene polymer, an aromatic modified terpene polymer, an α-pinene polymer, and a terpene hydrogenated resin. The method for producing a laminated structure according to any one of claims 8 to 12, comprising a resin.
- 水性接着剤が、さらに、ポリウレタン樹脂とテルペンフェノールと、又は非水溶性のポリウレタン樹脂とテルペンフェノールとを含有する請求項8~13のいずれか1つに記載の積層構造の製造方法。 The method for producing a laminated structure according to any one of claims 8 to 13, wherein the water-based adhesive further contains a polyurethane resin and terpene phenol, or a water-insoluble polyurethane resin and terpene phenol.
- 水性接着剤が、さらに、イソシアネートを含有する請求項8~16のいずれか1つに記載の積層構造の製造方法。 The method for producing a laminated structure according to any one of claims 8 to 16, wherein the water-based adhesive further contains an isocyanate.
- 水性接着剤が、さらに、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、キシレンジイソシアネート(XDI)及びこれらのオリゴマー又はポリマーからなる群から選択されるイソシアネートを含有する請求項8~16のいずれか1つに記載の積層構造の製造方法。 The aqueous adhesive further contains an isocyanate selected from the group consisting of diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI) and oligomers or polymers thereof. Item 17. The method for producing a laminated structure according to any one of Items 8 to 16.
- 水性接着剤が、さらに、塩基性化合物を含有する請求項8~18のいずれか1つに記載の積層構造の製造方法。 The method for producing a laminated structure according to any one of claims 8 to 18, wherein the aqueous adhesive further contains a basic compound.
- 前記界面活性剤が、水性接着剤を構成する全樹脂100重量部に対して、0.1~50重量部、0.1~20重量部又は0.1~10重量部含む請求項8~19のいずれか1つに記載の積層構造の製造方法。 The surfactant is contained in an amount of 0.1 to 50 parts by weight, 0.1 to 20 parts by weight, or 0.1 to 10 parts by weight with respect to 100 parts by weight of the total resin constituting the aqueous adhesive. The manufacturing method of the laminated structure as described in any one of these.
- 前記界面活性剤は、式(A)で表される界面活性剤と式(B)で表される界面活性剤とを、質量比で、1~99:99~1、5~95:95~5、10~90:90~10、30:70~90:10、40:60~90:10又は50:50~90:10で含む請求項8~20のいずれか1つに記載の積層構造の製造方法。
The surfactant is a surfactant represented by the formula (A) and a surfactant represented by the formula (B) in a mass ratio of 1 to 99:99 to 1, 5 to 95:95 to The laminated structure according to any one of claims 8 to 20, comprising 5, 10 to 90:90 to 10, 30:70 to 90:10, 40:60 to 90:10, or 50:50 to 90:10. Manufacturing method.
- 熱可塑性樹脂の重合の後、該樹脂が水性媒体中に分散させられた後乳化法、強制乳化法、自己乳化法又は転相乳化法によって得られた水性接着剤を用いる請求項8~21のいずれか1つに記載の積層構造の製造方法。 The aqueous adhesive obtained by an emulsion method, a forced emulsification method, a self-emulsification method or a phase inversion emulsification method after the resin is dispersed in an aqueous medium after polymerization of the thermoplastic resin is used. The manufacturing method of the laminated structure as described in any one.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011130406 | 2011-06-10 | ||
JP2011-130406 | 2011-06-10 | ||
JP2011-288218 | 2011-12-28 | ||
JP2011288218 | 2011-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012169484A1 true WO2012169484A1 (en) | 2012-12-13 |
Family
ID=47296047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064428 WO2012169484A1 (en) | 2011-06-10 | 2012-06-05 | Method for producing laminate structure |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013151140A (en) |
TW (1) | TW201307076A (en) |
WO (1) | WO2012169484A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5815645B2 (en) * | 2013-11-14 | 2015-11-17 | 日東電工株式会社 | Optical film manufacturing method, optical film, and image display device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02127491A (en) * | 1988-11-04 | 1990-05-16 | Dai Ichi Kogyo Seiyaku Co Ltd | Water-based adhesive composition |
JPH03277680A (en) * | 1990-01-19 | 1991-12-09 | Arakawa Chem Ind Co Ltd | Aqueous emulsion adhesive composition |
JP2004051884A (en) * | 2002-07-23 | 2004-02-19 | Unitika Ltd | Aqueous dispersion and adhesive |
JP2009227913A (en) * | 2008-03-25 | 2009-10-08 | Denki Kagaku Kogyo Kk | Resin composition and method for producing the same |
JP2009235289A (en) * | 2008-03-28 | 2009-10-15 | Unitika Ltd | Aqueous dispersion and laminated body |
JP2009298154A (en) * | 2009-09-17 | 2009-12-24 | Dic Corp | Manufacturing process of fiber laminate and synthetic leather obtained by the same |
JP2011500314A (en) * | 2007-10-17 | 2011-01-06 | 株式会社ブリヂストン | Application method of water-based adhesive mixture for tire manufacture |
-
2012
- 2012-06-05 WO PCT/JP2012/064428 patent/WO2012169484A1/en active Application Filing
- 2012-06-06 JP JP2012128475A patent/JP2013151140A/en active Pending
- 2012-06-08 TW TW101120646A patent/TW201307076A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02127491A (en) * | 1988-11-04 | 1990-05-16 | Dai Ichi Kogyo Seiyaku Co Ltd | Water-based adhesive composition |
JPH03277680A (en) * | 1990-01-19 | 1991-12-09 | Arakawa Chem Ind Co Ltd | Aqueous emulsion adhesive composition |
JP2004051884A (en) * | 2002-07-23 | 2004-02-19 | Unitika Ltd | Aqueous dispersion and adhesive |
JP2011500314A (en) * | 2007-10-17 | 2011-01-06 | 株式会社ブリヂストン | Application method of water-based adhesive mixture for tire manufacture |
JP2009227913A (en) * | 2008-03-25 | 2009-10-08 | Denki Kagaku Kogyo Kk | Resin composition and method for producing the same |
JP2009235289A (en) * | 2008-03-28 | 2009-10-15 | Unitika Ltd | Aqueous dispersion and laminated body |
JP2009298154A (en) * | 2009-09-17 | 2009-12-24 | Dic Corp | Manufacturing process of fiber laminate and synthetic leather obtained by the same |
Also Published As
Publication number | Publication date |
---|---|
TW201307076A (en) | 2013-02-16 |
JP2013151140A (en) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8404780B2 (en) | Articles comprising nonpolar polyolefin and polyurethane, and methods for their preparation and use | |
JP6652968B2 (en) | Aqueous dispersion mixture | |
WO2012169478A1 (en) | Aqueous emulsion, method for forming coating film, and coating film | |
EP2592113A1 (en) | Composition, laminated structure, and laminated structure production method | |
JP2013151144A (en) | Laminated structure | |
JP7431737B2 (en) | aqueous dispersion | |
WO2012169483A1 (en) | Method for producing laminate structure | |
JP2013151142A (en) | Laminated structure | |
WO2012169485A1 (en) | Method for producing laminate structure | |
WO2013099801A1 (en) | Aqueous adhesive | |
JP2013151634A (en) | Aqueous adhesive | |
JP2013151145A (en) | Laminated structure | |
WO2012169484A1 (en) | Method for producing laminate structure | |
WO2013099800A1 (en) | Laminated structure fabrication method | |
WO2012169479A1 (en) | Aqueous adhesive and laminate structure | |
JP2013151631A (en) | Aqueous adhesive | |
WO2012169480A1 (en) | Aqueous adhesive and laminate structure | |
WO2012169481A1 (en) | Aqueous adhesive and laminate structure | |
WO2012169482A1 (en) | Aqueous adhesive and laminate structure | |
JP2013151632A (en) | Aqueous adhesive | |
JP2013151633A (en) | Aqueous adhesive | |
JP2013151143A (en) | Laminated structure | |
JP2014125586A (en) | Aqueous adhesive | |
JP2017036342A (en) | Aqueous emulsion | |
JP2014125585A (en) | Aqueous adhesive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12796313 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12796313 Country of ref document: EP Kind code of ref document: A1 |