WO2012169375A1 - Waste heat recovery apparatus - Google Patents

Waste heat recovery apparatus Download PDF

Info

Publication number
WO2012169375A1
WO2012169375A1 PCT/JP2012/063468 JP2012063468W WO2012169375A1 WO 2012169375 A1 WO2012169375 A1 WO 2012169375A1 JP 2012063468 W JP2012063468 W JP 2012063468W WO 2012169375 A1 WO2012169375 A1 WO 2012169375A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
flow path
heat exchanger
waste heat
Prior art date
Application number
PCT/JP2012/063468
Other languages
French (fr)
Japanese (ja)
Inventor
英文 森
井口 雅夫
榎島 史修
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2012169375A1 publication Critical patent/WO2012169375A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention includes a first heat exchanger that transmits heat of a cooling fluid that cools a combustion engine that outputs a rotational driving force to a refrigerant, and a second heat exchanger that transfers heat of exhaust gas of the combustion engine to the refrigerant.
  • the present invention relates to a waste heat recovery apparatus including an expander directly connected to a combustion engine.
  • FIG. 10 of Patent Document 1 discloses a fluid machine used in this kind of waste heat recovery apparatus.
  • a pulley, an expander, and an alternator that are coupled to the engine via a belt so that driving force is transmitted from the engine are coupled to a rotating shaft.
  • the high-temperature and high-pressure refrigerant heated by the waste heat is introduced into the expander and expands in the expander.
  • the expander obtains rotational energy by the expansion of the refrigerant and drives the alternator.
  • Such an expander has a seal member to prevent the refrigerant from leaking from the refrigerant confinement space in the expander. From the viewpoint of the heat resistance of the seal member (expansion machine reliability), it is necessary to control the temperature of the refrigerant below the heat resistance temperature of the seal member.
  • the amount of waste heat from the engine may fluctuate even when the engine speed is the same. That is, even when the engine speed is the same, the temperature of the cooling water may fluctuate. When the engine speed is not so high and the temperature of the cooling water is high, the refrigerant flowing into the expander becomes high temperature.
  • the rotation speed of the expander is restricted by the rotation speed of the engine. Therefore, when the engine speed is not so high and the temperature of the cooling water is high, the amount of refrigerant flowing into the expander is small (that is, the refrigerant flow rate is small), and the temperature of the refrigerant introduced into the expander is low. It becomes too high. Therefore, it is necessary to throw away the heat of the refrigerant upstream from the expander from the viewpoint of the reliability of the expander, and waste is generated in using the waste heat of the engine.
  • An object of the present invention is to improve the efficiency of waste heat utilization in a waste heat recovery apparatus having an expander connected to a combustion engine so that the driving force is transmitted from the combustion engine that outputs a rotational driving force. .
  • a waste heat recovery apparatus includes a first heat exchanger, a second heat exchanger, an expander, a refrigerant channel, a bypass refrigerant channel, and a refrigerant.
  • a flow rate adjustment unit, a temperature detection unit, and a control unit are provided.
  • the waste heat recovery device recovers waste heat generated in a combustion engine that outputs a rotational driving force.
  • the first heat exchanger transmits heat of a cooling fluid that cools the combustion engine to the refrigerant.
  • the second heat exchanger transmits heat of exhaust gas discharged from the combustion engine to the refrigerant.
  • the expander is coupled to the combustion engine so that driving force is transmitted from the combustion engine.
  • the refrigerant passes through the refrigerant flow path.
  • the bypass refrigerant flow path branches off from the refrigerant flow path and bypasses the first heat exchanger.
  • the refrigerant flow rate adjusting unit adjusts the refrigerant flow rate in the bypass refrigerant flow path.
  • the temperature detection unit detects a refrigerant temperature in the refrigerant flow channel upstream of the expander.
  • the control unit controls a flow rate adjustment state of the refrigerant flow rate adjustment unit based on detection information of the temperature detection unit.
  • FIG. 2 is an overall side cross-sectional view of the waste heat recovery device of FIG. 1.
  • the top view which shows the 2nd heat exchanger and bypass pipe of FIG.
  • Sectional drawing which shows the 2nd heat exchanger of FIG.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 3.
  • Sectional drawing which shows the temperature action
  • the waste heat recovery device 11 includes an engine 12 (combustion engine) that is a waste heat source, and a Rankine cycle circuit 13.
  • the refrigerant heated by the waste heat from the engine 12 circulates.
  • the waste heat recovery equipment 14 constituting the waste heat recovery apparatus 11 constitutes a part of the Rankine cycle circuit 13.
  • the entire housing 35 constituting the waste heat recovery apparatus 14 includes a center housing 36, a front housing 37 connected to the front end (left end in FIG. 2) of the center housing 36, and the rear of the center housing 36. And a rear housing 38 connected to the end (the right end in FIG. 2).
  • a rotating shaft 40 is rotatably supported by bearings 51 and 52 on a partition wall 361 integrally formed at the front end of the center housing 36 and a front end wall 371 of the front housing 37, and the rotating shaft 40 in the front housing 37 is supported.
  • a rotor 41 is fixed to the rotor.
  • a stator 42 is fixed to the inner peripheral surface of the front housing 37 so as to surround the rotor 41.
  • the rotating shaft 40, the stator 42 provided with the coil 421, and the rotor 41 constitute an alternator 43 (generator).
  • the rotating shaft 40 is a rotor shaft of the alternator 43.
  • the alternator 43 has a function of generating electric power in the coil 421 of the stator 42 as the rotor 41 rotates.
  • a battery 45 is electrically connected to the alternator 43.
  • the electric power generated by the alternator 43 is stored in the battery 45.
  • the rotary shaft 40 passes through the front end wall 371 of the front housing 37 and protrudes out of the front housing 37, and a pulley 56 is fixed to the protruding end portion of the rotary shaft 40.
  • a belt 57 is wound around the pulley 56.
  • the belt 57 is wound around a pulley 69 fixed to a crankshaft 68 that is a rotation output shaft of the engine 12.
  • a side plate 62 is fixed in the center housing 36 so as to face the partition 361.
  • a pump chamber 64 is formed between the partition wall 361 and the side plate 62.
  • the rotating shaft 40 passes through the partition 361 and the side plate 62.
  • a drive gear 65 fixed to the rotary shaft 40 and a driven gear 66 that meshes with the drive gear 65 are disposed in the pump chamber 64.
  • the pump chamber 64, the drive gear 65 and the driven gear 66 constitute a gear pump 67.
  • a support block 63 is fixed in the center housing 36.
  • a rotating shaft 40 is rotatably supported by the support block 63 via a bearing 71.
  • a scroll type expander 72 is provided between the support block 63 and the rear housing 38.
  • An eccentric shaft 73 is provided at the rear end of the rotary shaft 40.
  • the eccentric shaft 73 revolves around the rotation axis of the rotation shaft 40 by the rotation of the rotation shaft 40.
  • a movable scroll 74 is rotatably supported on the eccentric shaft 73 via a bush 75 and a bearing 76.
  • the movable scroll 74 includes a movable side end plate 741 supported by a bearing 76 and a spiral movable side spiral wall 742 protruding from the movable side end plate 741.
  • a fixed scroll 77 is fixed in the rear part of the center housing 36 so as to face the movable scroll 74.
  • the fixed scroll 77 includes a fixed side end plate 771 and a spiral fixed side spiral wall 772 protruding from the fixed side end plate 771 toward the support block 63.
  • the movable spiral wall 742 of the movable scroll 74 and the fixed spiral wall 772 of the fixed scroll 77 are engaged with each other to form an expansion chamber 78 whose volume can be changed.
  • a supply chamber 79 is formed between the fixed side end plate 771 and the rear housing 38, and a supply port 773 is formed at the center of the fixed side end plate 771 so as to communicate with the supply chamber 79.
  • An introduction port 381 is formed in the rear housing 38.
  • a discharge chamber 80 is formed between the side plate 62 and the support block 63. The refrigerant in the expansion chamber 78 is discharged to the discharge chamber 80.
  • a discharge port 362 is formed on the peripheral wall of the center housing 36 so as to communicate with the discharge chamber 80.
  • the Rankine cycle circuit 13 includes an expander 72, a condenser 29, a gear pump 67, a first heat exchanger 20, and a second heat exchanger 21 that constitute the waste heat recovery device 14.
  • the first heat exchanger 20 includes a heat radiating part 201 and a heat absorbing part 202.
  • the heat radiating unit 201 is provided on the cooling water circulation path 23 connected to the engine 12.
  • a radiator 24 is provided on the cooling water circulation path 23. Cooling water (cooling fluid) that has cooled the engine 12 of the vehicle circulates through the cooling water circulation path 23 and radiates heat by the heat radiating unit 201 and the radiator 24.
  • the second heat exchanger 21 is provided on the refrigerant flow path between the first heat exchanger 20 and the expander 72 and is provided on the exhaust flow path 15 connected to the engine 12.
  • the heat of the exhaust gas exhausted from the engine 12 to the exhaust passage 15 is transmitted to the refrigerant in the refrigerant passage via the second heat exchanger 21.
  • Exhaust gas in the exhaust passage 15 is exhausted from the muffler 26.
  • the introduction port 381 (see FIG. 2) in the expander 72 is connected to the second heat exchanger 21 via the supply flow path 28.
  • the refrigerant heated by the first heat exchanger 20 and the second heat exchanger 21 is introduced into the expander 72 via the supply flow path 28.
  • the condenser 29 is connected to the discharge port 362 (see FIG. 2) on the expander 72 side via the discharge flow path 30.
  • the low-pressure refrigerant expanded by the expander 72 is discharged to the condenser 29 via the discharge flow path 30.
  • a gear pump 67 is connected to the downstream side of the condenser 29 via the second flow path 31.
  • the first heat exchanger 20 is connected to the downstream side of the gear pump 67 via the first flow path 22.
  • the second flow path 31, the first flow path 22, the connection flow path 25 between the first heat exchanger 20 and the second heat exchanger 21, the supply flow path 28, and the discharge flow path 30 are the Rankine cycle circuit 13.
  • a refrigerant flow path is configured. Due to the pumping action of the gear pump 67, the refrigerant in the second flow path 31 passes through the first flow path 22, the first heat exchanger 20, the second heat exchanger 21, the expander 72 and the condenser 29, and the gear pump 67. To reflux.
  • a bypass refrigerant flow path 32 is connected to the first flow path 22 so as to branch from the first flow path 22.
  • the bypass refrigerant flow path 32 is connected so as to merge with the connection flow path 25, and an electromagnetic opening / closing valve 33 is provided on the bypass refrigerant flow path 32.
  • an electromagnetic opening / closing valve 33 is provided on the bypass refrigerant flow path 32.
  • the electromagnetic on-off valve 33 is subjected to excitation / demagnetization control by a control unit (control device) 34.
  • a temperature detection unit 99 is connected to the control unit 34 so that signals can be transmitted.
  • the temperature detector 99 detects the temperature of the refrigerant in the supply flow path 28 between the second heat exchanger 21 and the expander 72.
  • the temperature detection unit 99 detects the temperature of the refrigerant in the refrigerant flow path upstream from the expander 72, that is, in the refrigerant flow path downstream from the first heat exchanger 20 and the second heat exchanger 21 and upstream from the expander 72. Is detected.
  • the temperature detection information obtained by the temperature detection unit 99 is sent to the control unit 34, and the control unit 34 performs excitation / demagnetization control of the electromagnetic on-off valve 33 based on the temperature detection information sent from the temperature detection unit 99.
  • the control unit 34 excites the electromagnetic on-off valve 33.
  • the control unit 34 demagnetizes the electromagnetic on-off valve 33.
  • the electromagnetic on-off valve 33 functions as a refrigerant flow rate adjusting unit that adjusts the refrigerant flow rate in the bypass refrigerant flow path 32.
  • the control unit 34 controls the flow rate adjustment state of the refrigerant flow rate adjustment unit based on the detection information of the temperature detection unit 99.
  • the upper limit temperature To is a value set from the viewpoint of such heat resistance.
  • the upper limit temperature To is, for example, 150 ° C.
  • FIG. 3 shows the second heat exchanger 21 and the flow path pipes 48 and 49 that are part of the exhaust flow path 15 (see FIG. 1). Exhaust gas exhausted from the engine 12 passes through the second heat exchanger 21 from the flow path pipe 48 and flows to the flow path pipe 49, and further flows to the muffler 26 (see FIG. 1).
  • the second heat exchanger 21 includes a waste heat fluid case 50 and a refrigerant header tank 58.
  • the waste heat fluid case 50 has a waste heat fluid chamber 501 that introduces and discharges exhaust gas, which is a waste heat fluid, and the exhaust gas on the side of the flow path pipe 48 (see FIG. 3) becomes the waste heat fluid chamber 501. It flows through the flow path pipe 49 (see FIG. 3).
  • a first header tank chamber 581, a second header tank chamber 582, a third header tank chamber 583, and a fourth header tank chamber 584 are formed.
  • the inflow pipe 60 communicates with the first header tank chamber 581, and the outflow pipe 61 communicates with the fourth header tank chamber 584.
  • the inflow pipe 60 is a part of the connection flow path 25 (see FIG. 1), and the outflow pipe 61 is a part of the supply flow path 28 (see FIG. 1).
  • a large number of heat radiating plates 59 are arranged in parallel in the waste heat fluid chamber 501. Is penetrated.
  • An end portion of the straight pipe 531 constituting the assembled pipe 551 communicates with the first header tank chamber 581. Ends of the straight pipes 541 and 532 constituting the assembled pipes 551 and 552 communicate with the second header tank chamber 582. Ends of the straight pipes 542 and 533 constituting the assembled pipes 552 and 553 communicate with the third header tank chamber 583.
  • An end portion of the straight pipe 543 constituting the assembled pipe 553 communicates with the fourth header tank chamber 584.
  • the refrigerant that has flowed into the first header tank chamber 581 from the inflow pipe 60 that is a part of the connection flow path 25 flows into the second header tank chamber 582 via the assembled pipe 551.
  • a part of the refrigerant that has flowed into the second header tank chamber 582 flows into the third header tank chamber 583 via the assembled pipe 552.
  • the refrigerant that has flowed into the third header tank chamber 583 flows into the fourth header tank chamber 584 via the assembled pipe 553.
  • the refrigerant that has flowed into the fourth header tank chamber 584 flows out to the outflow pipe 61 that is a part of the supply flow path 28.
  • the second heat exchanger is provided between an exhaust inflow pipe 81 that is a part of the exhaust flow path 15 (see FIG. 1) and an exhaust outflow pipe 82 that is a part of the exhaust flow path 15.
  • 21 and the bypass pipe 83 are provided in parallel.
  • Inside the bypass pipe 83 is a bypass exhaust flow path 831 that bypasses the second heat exchanger 21 (waste heat fluid chamber 501).
  • a connection plate 84 is fixed to the outlet end of the exhaust inflow pipe 81.
  • a pair of connection holes 961 and 962 are provided through the connection plate 84.
  • a flow path pipe 48 is fitted in the connection hole 961, and a bypass pipe 83 is fitted in the connection hole 962.
  • connection plate 85 is fixed to the inlet end of the exhaust outlet pipe 82.
  • a pair of connection holes 971 and 972 are provided through the connection plate 85.
  • a flow path pipe 49 is fitted in the connection hole 971, and a bypass pipe 83 is fitted in the connection hole 972.
  • the on-off valve 86 In the exhaust inflow pipe 81, the on-off valve 86 is fixed to a pivotal support shaft 87. The on-off valve 86 is switched between a closed position indicated by a solid line in FIG. 5 (a position in contact with the position restricting piece 44) and an open position indicated by a chain line in FIG. The on-off valve 86 is urged in a direction from the closed position toward the open position by a torsion spring (not shown). When the on-off valve 86 is in the closed position, the flow of exhaust gas from the exhaust inflow pipe 81 to the bypass pipe 83 is blocked. When the on-off valve 86 is in the open position, the flow of exhaust gas from the exhaust inflow pipe 81 to the bypass pipe 83 is allowed.
  • the on-off valve 86 functions as an adjustment valve that adjusts the cross-sectional area of the bypass exhaust flow path 831.
  • the support shaft 87 penetrates the side surface of the exhaust inflow pipe 81 and protrudes outside the exhaust inflow pipe 81.
  • a lever 88 is fixed to the protruding end portion of the support shaft 87.
  • a guide hole 39 is formed in the lever 88.
  • a temperature operating actuator 89 that controls the opening degree of the on-off valve 86 is disposed on the side of the exhaust inflow pipe 81.
  • the temperature actuated actuator 89 includes a cylindrical housing 90, a temperature sensing cylinder 91 accommodated in the housing 90, a piston 92 slidably accommodated in the temperature sensing cylinder 91, and a temperature sensing just above the piston rod 46. And a drive rod 93 disposed in the cylinder 91. The drive rod 93 is pressed against the tip of the piston rod 46 by the spring force of the compression spring 94.
  • a driving pin 70 is fixed to the tip of the driving rod 93 that protrudes from the inside of the temperature-sensitive cylinder 91 to the outside.
  • the drive pin 70 is slidably fitted in the guide hole 39 of the lever 88.
  • a piston 92 is plunged into the lower cylinder of the temperature sensitive cylinder 91 and a thermal expansion material 95 is filled therein.
  • the thermal expansion material 95 is a wax that is a temperature phase transition material.
  • the refrigerant temperature in the second header tank chamber 582 is proportional to the refrigerant temperature downstream of the second heat exchanger 21, and the refrigerant (expansion) downstream of the second heat exchanger 21 from the refrigerant temperature in the second header tank chamber 582.
  • the temperature of the refrigerant flowing into the machine 72 can be estimated.
  • the phase transition temperature of the thermal expansion material 95 is set so that the thermal expansion material 95 expands and the temperature operation actuator 89 operates.
  • the predetermined temperature T1 is set to a value (To + ⁇ ) higher than the upper limit temperature To. ⁇ is, for example, 5 ° C.
  • a refrigerant introduction chamber 96 is formed between the temperature sensing cylinder 91 and the housing 90 around the thermal expansion material 95 that constitutes the temperature sensing section together with the temperature sensing cylinder 91.
  • the refrigerant introduction chamber 96 surrounds the thermal expansion material 95.
  • An introduction pipe 97 and a discharge pipe 98 are provided between the housing 90 and the refrigerant header tank 58.
  • the introduction pipe 97 communicates the second header tank chamber 582 and the refrigerant introduction chamber 96
  • the discharge pipe 98 communicates the refrigerant introduction chamber 96 and the fourth header tank chamber 584. .
  • the refrigerant that has flowed into the first header tank chamber 581 from the inflow pipe 60 that is a part of the connection flow path 25 flows into the second header tank chamber 582 via the assembled pipe 551 (see FIG. 4).
  • a part of the refrigerant flowing into the second header tank chamber 582 flows into the third header tank chamber 583 via the assembled pipe 552 (see FIG. 4).
  • the refrigerant that has flowed into the third header tank chamber 583 flows into the fourth header tank chamber 584 via the assembled pipe 553 (see FIG. 4).
  • the refrigerant flowing into the fourth header tank chamber 584 flows out to the outflow pipe 61.
  • the thermal expansion material 95 hardly expands, and the piston 92 and the drive rod 93 are held at the lowest position shown in FIG. 6 by the spring force of the compression spring 94.
  • the on-off valve 86 is disposed at the closed position indicated by a broken line in FIG.
  • the exhaust gas exhausted from the engine 12 flows into an exhaust inflow pipe 81 that is a part of the exhaust flow path 15.
  • the exhaust gas flowing into the exhaust inflow pipe 81 passes through the flow path pipe 48, the waste heat fluid chamber 501 (see FIG. 4) of the second heat exchanger 21, and the flow path pipe 49.
  • the heat of the exhaust gas is transmitted to the refrigerant through the second heat exchanger 21.
  • the temperature actuated actuator 89 and the on-off valve 86 constitute a gas flow rate adjusting unit that adjusts the exhaust gas flow rate by changing the cross-sectional area of the bypass exhaust flow channel 831.
  • the refrigerant sent to the first flow path 22 by the action of the gear pump 67 is the heat absorption part 202 of the first heat exchanger 20, the connection flow path 25, the refrigerant header tank 58 of the second heat exchanger 21, and the assembled pipes 551 and 552. , 553 and sent to the supply flow path 28.
  • the refrigerant passing through the heat absorption part 202 of the first heat exchanger 20 is heated by the heat of the cooling water that has cooled the engine 12.
  • the refrigerant passing through the assembled pipes 551, 552, 553 of the second heat exchanger 21 is heated by the heat of the exhaust gas discharged from the engine 12.
  • the high-pressure refrigerant heated by the heat exchangers 20 and 21 is introduced from the introduction port 381 through the supply chamber 79 of the expander 72 into the expansion chamber 78 and expands.
  • the expansion of the refrigerant causes the expander 72 to output mechanical energy (rotation imparting force), and the rotation imparting force assists the rotation of the rotating shaft 40.
  • the refrigerant whose pressure has decreased due to expansion is discharged to the discharge flow path 30.
  • the refrigerant discharged to the discharge passage 30 passes through the condenser 29 and returns to the gear pump 67.
  • the control unit 34 excites the electromagnetic on-off valve 33.
  • the electromagnetic opening / closing valve 33 is opened, and a part of the refrigerant sent out from the gear pump 67 flows into the bypass refrigerant flow path 32. That is, a part of the refrigerant sent out from the gear pump 67 bypasses the first heat exchanger 20.
  • the amount of heat transferred from the first heat exchanger 20 to the refrigerant decreases, and the temperature of the refrigerant flowing into the expander 72 decreases.
  • the control unit 34 demagnetizes the electromagnetic on-off valve 33. Thereby, the electromagnetic on-off valve 33 is closed, and all the refrigerant sent out from the gear pump 67 passes through the first heat exchanger 20.
  • the exhaust gas exhausted from the engine 12 flows into an exhaust inflow pipe 81 that is a part of the exhaust flow path 15.
  • the exhaust gas flowing into the exhaust inflow pipe 81 flows out through the flow path pipe 48, the waste heat fluid chamber 501 of the second heat exchanger 21 and the flow path pipe 49. Flow to tube 82. Accordingly, the heat of the exhaust gas is transmitted to the refrigerant through the second heat exchanger 21.
  • the thermal expansion material 95 expands. Due to the expansion of the thermal expansion material 95, the on-off valve 86 moves to the open position indicated by a two-dot chain line in FIG.
  • the control unit 34 controls the electromagnetic on-off valve 33 to be in an open state so that the refrigerant flows into the bypass refrigerant flow path 32. .
  • the amount of heat transferred from the cooling water to the refrigerant is reduced, and waste heat generated in the engine 12 is accumulated in the cooling water.
  • the temperature of the refrigerant flowing into the expander 72 becomes lower than the upper limit temperature To, all the refrigerant sent out from the gear pump 67 passes through the first heat exchanger 20, and the heat accumulated in the cooling water is transmitted to the refrigerant.
  • the temperature operation actuator 89 that operates autonomously in response to the temperature of the refrigerant is simple as a gas flow rate adjustment unit.
  • an electromagnetic on-off valve 33A is provided on the first flow path 22 between the branch section 100 between the first flow path 22 and the bypass refrigerant flow path 32 and the first heat exchanger 20, an electromagnetic on-off valve 33A is provided.
  • the control unit 34 Based on the temperature detection information sent from the temperature detection unit 99, the control unit 34 performs excitation / demagnetization control on the electromagnetic on-off valve 33A.
  • the control unit 34 excites the electromagnetic on-off valve 33A.
  • the control unit 34 demagnetizes the electromagnetic on-off valve 33A.
  • the electromagnetic on-off valve 33 opens when energized and closes when demagnetized, while the electromagnetic on-off valve 33A closes when energized and opens when demagnetized. That is, when the refrigerant temperature detected by the temperature detection unit 99 becomes equal to or higher than the upper limit temperature To, the electromagnetic on-off valve 33 is opened, the electromagnetic on-off valve 33A is closed, and all of the refrigerant sent from the gear pump 67 is the first heat exchanger. It bypasses 20 and flows through the bypass refrigerant flow path 32.
  • the electromagnetic on-off valve 33 and the electromagnetic on-off valve 33A function as a flow path switching unit that allows the refrigerant to flow through only one of the first heat exchanger 20 and the bypass refrigerant flow path 32.
  • the configuration in which the refrigerant flows only through the bypass refrigerant flow path 32 and does not flow through the first heat exchanger 20 is optimal in increasing the amount of heat stored in the cooling water circulation path 23.
  • the configuration in which the refrigerant flows only through the bypass refrigerant flow path 32 and does not flow through the first heat exchanger 20 is optimal for increasing the upper limit temperature of the cooling fluid in consideration of the reliability of the expander 72. is there.
  • an adjustment valve whose flow rate is continuously variable may be used.
  • an electromagnetic three-way valve may be provided at the branch portion 100 between the first flow path 22 and the bypass refrigerant flow path 32 instead of the electromagnetic on-off valves 33 and 33A.
  • the electromagnetic three-way valve causes all the refrigerant to flow to the bypass refrigerant flow path 32 when excited, and causes all the refrigerant to flow to the first heat exchanger 20 when demagnetized.
  • a gas flow rate adjusting unit in which the on-off valve 86 is driven by an electric motor may be used. In this case, the operation of the electric motor is controlled based on the temperature detection information of the temperature detection unit 99.
  • bypass exhaust flow path 831 and the gas flow rate adjustment unit may be omitted.
  • a pump that pumps the refrigerant that has passed through the condenser 29 may be provided outside the waste heat recovery device 14.
  • the present invention may be applied to a waste heat recovery device other than for vehicles.
  • a vane type expander may be used as the expander.

Abstract

This waste heat recovery device recovers waste heat generated by a combustion engine that outputs a rotational driving force. A first heat exchanger transfers heat from a cooling fluid that cools the combustion engine to a refrigerant. A second heat exchanger transfers heat from exhaust gas discharged from the combustion engine to the refrigerant. An expander is linked to the combustion engine in such a manner that a driving force is transmitted from the combustion engine. A bypass refrigerant flow channel branches off from a refrigerant flow channel and bypasses the first heat exchanger. A refrigerant flow rate regulator regulates the flow rate of the refrigerant in the bypass refrigerant flow channel. A temperature detector detects the temperature of the refrigerant in the refrigerant flow channel upstream from the expander. A control unit controls the flow rate regulation state of the refrigerant flow rate regulator on the basis of information detected by the temperature detector.

Description

廃熱回収装置Waste heat recovery device
 本発明は、回転駆動力を出力する燃焼機関を冷却する冷却流体の熱を冷媒に伝達する第1熱交換器と、燃焼機関の排気ガスの熱を前記冷媒に伝達する第2熱交換器と、燃焼機関に直結された膨張機とを備えた廃熱回収装置に関する。 The present invention includes a first heat exchanger that transmits heat of a cooling fluid that cools a combustion engine that outputs a rotational driving force to a refrigerant, and a second heat exchanger that transfers heat of exhaust gas of the combustion engine to the refrigerant. The present invention relates to a waste heat recovery apparatus including an expander directly connected to a combustion engine.
 この種の廃熱回収装置に用いられる流体機械が特許文献1の図10に開示されている。図10に開示の流体機械では、エンジンから駆動力が伝達されるようにベルトを介して同エンジンに連結されたプーリと、膨張機と、オルタネータとが回転軸に連結されている。これにより、ランキンサイクルの熱エネルギーが充分に得られない場合にも、エンジンの回転駆動力がプーリ及び回転軸を介してオルタネータに入力されて発電が行なわれる。 FIG. 10 of Patent Document 1 discloses a fluid machine used in this kind of waste heat recovery apparatus. In the fluid machine disclosed in FIG. 10, a pulley, an expander, and an alternator that are coupled to the engine via a belt so that driving force is transmitted from the engine are coupled to a rotating shaft. Thereby, even when the thermal energy of the Rankine cycle cannot be obtained sufficiently, the rotational driving force of the engine is input to the alternator via the pulley and the rotating shaft to generate electric power.
特開2004-340139号公報JP 2004-340139 A
 廃熱によって加熱された高温高圧の冷媒は、膨張機に導入されて膨張機内で膨張する。膨張機は、冷媒の膨張によって回転エネルギーを得てオルタネータを駆動する。このような膨張機は、同膨張機内の冷媒閉じ込め空間から冷媒が洩れることを防止するためにシール部材を有している。同シール部材の耐熱性(膨張機の信頼性)の観点から、冷媒の温度をシール部材の耐熱温度以下に制御する必要がある。 The high-temperature and high-pressure refrigerant heated by the waste heat is introduced into the expander and expands in the expander. The expander obtains rotational energy by the expansion of the refrigerant and drives the alternator. Such an expander has a seal member to prevent the refrigerant from leaking from the refrigerant confinement space in the expander. From the viewpoint of the heat resistance of the seal member (expansion machine reliability), it is necessary to control the temperature of the refrigerant below the heat resistance temperature of the seal member.
 エンジンの回転数が同じである場合でも、エンジンからの廃熱の大きさが変動することがある。すなわち、エンジンの回転数が同じである場合でも、冷却水の温度が変動することがある。エンジンの回転数があまり高くなく、しかも冷却水の温度が高い場合には、膨張機に流入する冷媒が高温になる。 ∙ The amount of waste heat from the engine may fluctuate even when the engine speed is the same. That is, even when the engine speed is the same, the temperature of the cooling water may fluctuate. When the engine speed is not so high and the temperature of the cooling water is high, the refrigerant flowing into the expander becomes high temperature.
 しかし、膨張機はプーリを介してエンジンに連結されているため、膨張機の回転数は、エンジンの回転数によって制約を受ける。そのため、エンジンの回転数があまり高くなく、しかも冷却水の温度が高い場合には、膨張機に流入する冷媒量が少なく(つまり冷媒流量が少なく)なり、膨張機へ導入される冷媒の温度が高すぎる状態になる。そのため、膨張機の信頼性の観点から膨張機より上流の冷媒の熱を捨てる必要があり、エンジンの廃熱利用において無駄が生じる。 However, since the expander is connected to the engine via a pulley, the rotation speed of the expander is restricted by the rotation speed of the engine. Therefore, when the engine speed is not so high and the temperature of the cooling water is high, the amount of refrigerant flowing into the expander is small (that is, the refrigerant flow rate is small), and the temperature of the refrigerant introduced into the expander is low. It becomes too high. Therefore, it is necessary to throw away the heat of the refrigerant upstream from the expander from the viewpoint of the reliability of the expander, and waste is generated in using the waste heat of the engine.
 本発明の目的は、回転駆動力を出力する燃焼機関から駆動力が伝達されるように燃焼機関に連結されている膨張機を有する廃熱回収装置における廃熱利用の効率を向上することにある。 An object of the present invention is to improve the efficiency of waste heat utilization in a waste heat recovery apparatus having an expander connected to a combustion engine so that the driving force is transmitted from the combustion engine that outputs a rotational driving force. .
 上記目的を達成するため、本発明の一態様に係る廃熱回収装置は、第1熱交換器と、第2熱交換器と、膨張機と、冷媒流路と、バイパス冷媒流路と、冷媒流量調整部と、温度検出部と、制御部とを備える。廃熱回収装置は、回転駆動力を出力する燃焼機関で生じる廃熱を回収する。前記第1熱交換器は、前記燃焼機関を冷却する冷却流体の熱を冷媒に伝達する。前記第2熱交換器は、前記燃焼機関から排出された排気ガスの熱を前記冷媒に伝達する。前記膨張機は、前記燃焼機関から駆動力が伝達されるように同燃焼機関に連結される。前記冷媒流路には前記冷媒が通過する。前記バイパス冷媒流路は、前記冷媒流路から分岐して前記第1熱交換器を迂回する。前記冷媒流量調整部は、前記バイパス冷媒流路における冷媒流量を調整する。前記温度検出部は、前記膨張機より上流の前記冷媒流路内の冷媒温度を検出する。前記制御部は、前記温度検出部の検出情報に基づいて前記冷媒流量調整部の流量調整状態を制御する。 In order to achieve the above object, a waste heat recovery apparatus according to an aspect of the present invention includes a first heat exchanger, a second heat exchanger, an expander, a refrigerant channel, a bypass refrigerant channel, and a refrigerant. A flow rate adjustment unit, a temperature detection unit, and a control unit are provided. The waste heat recovery device recovers waste heat generated in a combustion engine that outputs a rotational driving force. The first heat exchanger transmits heat of a cooling fluid that cools the combustion engine to the refrigerant. The second heat exchanger transmits heat of exhaust gas discharged from the combustion engine to the refrigerant. The expander is coupled to the combustion engine so that driving force is transmitted from the combustion engine. The refrigerant passes through the refrigerant flow path. The bypass refrigerant flow path branches off from the refrigerant flow path and bypasses the first heat exchanger. The refrigerant flow rate adjusting unit adjusts the refrigerant flow rate in the bypass refrigerant flow path. The temperature detection unit detects a refrigerant temperature in the refrigerant flow channel upstream of the expander. The control unit controls a flow rate adjustment state of the refrigerant flow rate adjustment unit based on detection information of the temperature detection unit.
第1の実施形態に係る廃熱回収装置を示す模式図。The schematic diagram which shows the waste-heat recovery apparatus which concerns on 1st Embodiment. 図1の廃熱回収機器の全体側断面図。FIG. 2 is an overall side cross-sectional view of the waste heat recovery device of FIG. 1. 図1の第2熱交換器及びバイパス管を示す平面図。The top view which shows the 2nd heat exchanger and bypass pipe of FIG. 図1の第2熱交換器を示す断面図。Sectional drawing which shows the 2nd heat exchanger of FIG. 図3のV-V線に沿った断面図。FIG. 5 is a cross-sectional view taken along line VV in FIG. 3. 図1の開閉弁を制御する温度作動アクチュエータ及び図4の冷媒ヘッダータンクを示す断面図。Sectional drawing which shows the temperature action | operation actuator which controls the on-off valve of FIG. 1, and the refrigerant | coolant header tank of FIG. 第2の実施形態に係る廃熱回収装置を示す模式図。The schematic diagram which shows the waste heat recovery apparatus which concerns on 2nd Embodiment.
 以下、本発明を具体化した第1の実施形態を図1乃至図6に基づいて説明する。 Hereinafter, a first embodiment embodying the present invention will be described with reference to FIGS.
 図1に示すように、廃熱回収装置11は、廃熱源であるエンジン12(燃焼機関)と、ランキンサイクル回路13とを備えている。 As shown in FIG. 1, the waste heat recovery device 11 includes an engine 12 (combustion engine) that is a waste heat source, and a Rankine cycle circuit 13.
 ランキンサイクル回路13では、エンジン12からの廃熱によって加熱される冷媒が循環する。廃熱回収装置11を構成する廃熱回収機器14は、ランキンサイクル回路13の一部を構成している。 In the Rankine cycle circuit 13, the refrigerant heated by the waste heat from the engine 12 circulates. The waste heat recovery equipment 14 constituting the waste heat recovery apparatus 11 constitutes a part of the Rankine cycle circuit 13.
 図2に示すように、廃熱回収機器14を構成する全体ハウジング35は、センターハウジング36と、センターハウジング36の前端(図2において左端)に連結されたフロントハウジング37と、センターハウジング36の後端(図2において右端)に連結されたリヤハウジング38とを含む。 As shown in FIG. 2, the entire housing 35 constituting the waste heat recovery apparatus 14 includes a center housing 36, a front housing 37 connected to the front end (left end in FIG. 2) of the center housing 36, and the rear of the center housing 36. And a rear housing 38 connected to the end (the right end in FIG. 2).
 センターハウジング36の前端に一体形成された隔壁361とフロントハウジング37の前端壁371とには回転軸40が軸受51,52を介して回転可能に支持されており、フロントハウジング37内の回転軸40にはロータ41が固定されている。フロントハウジング37の内周面にはステータ42がロータ41を取り囲むように固定されている。回転軸40、コイル421を備えたステータ42及びロータ41は、オルタネータ43(発電機)を構成する。回転軸40は、オルタネータ43のロータ軸である。 A rotating shaft 40 is rotatably supported by bearings 51 and 52 on a partition wall 361 integrally formed at the front end of the center housing 36 and a front end wall 371 of the front housing 37, and the rotating shaft 40 in the front housing 37 is supported. A rotor 41 is fixed to the rotor. A stator 42 is fixed to the inner peripheral surface of the front housing 37 so as to surround the rotor 41. The rotating shaft 40, the stator 42 provided with the coil 421, and the rotor 41 constitute an alternator 43 (generator). The rotating shaft 40 is a rotor shaft of the alternator 43.
 オルタネータ43は、ロータ41が回転することによってステータ42のコイル421に電力を生じさせる機能を有する。 The alternator 43 has a function of generating electric power in the coil 421 of the stator 42 as the rotor 41 rotates.
 オルタネータ43にはバッテリ45が電気的に接続されている。オルタネータ43で生じた電力は、バッテリ45に蓄電される。 A battery 45 is electrically connected to the alternator 43. The electric power generated by the alternator 43 is stored in the battery 45.
 回転軸40は、フロントハウジング37の前端壁371を貫通してフロントハウジング37外に突出しており、回転軸40の突出端部にはプーリ56が止着されている。プーリ56にはベルト57が巻き掛けられている。 The rotary shaft 40 passes through the front end wall 371 of the front housing 37 and protrudes out of the front housing 37, and a pulley 56 is fixed to the protruding end portion of the rotary shaft 40. A belt 57 is wound around the pulley 56.
 図1に示すように、ベルト57は、エンジン12の回転出力軸であるクランク軸68に止着されたプーリ69に巻き掛けられている。 As shown in FIG. 1, the belt 57 is wound around a pulley 69 fixed to a crankshaft 68 that is a rotation output shaft of the engine 12.
 図2に示すように、センターハウジング36内にはサイドプレート62が隔壁361に対向するように固設されている。隔壁361とサイドプレート62との間にはポンプ室64が形成されている。回転軸40は、隔壁361及びサイドプレート62を貫通している。ポンプ室64内には回転軸40に止着された駆動ギヤ65と、駆動ギヤ65に噛合する従動ギヤ66とが配設されている。ポンプ室64、駆動ギヤ65及び従動ギヤ66は、ギヤポンプ67を構成する。 As shown in FIG. 2, a side plate 62 is fixed in the center housing 36 so as to face the partition 361. A pump chamber 64 is formed between the partition wall 361 and the side plate 62. The rotating shaft 40 passes through the partition 361 and the side plate 62. In the pump chamber 64, a drive gear 65 fixed to the rotary shaft 40 and a driven gear 66 that meshes with the drive gear 65 are disposed. The pump chamber 64, the drive gear 65 and the driven gear 66 constitute a gear pump 67.
 センターハウジング36内には支持ブロック63が固設されている。支持ブロック63には回転軸40が軸受71を介して回転可能に支持されている。支持ブロック63とリヤハウジング38との間にはスクロール式の膨張機72が設けられている。 A support block 63 is fixed in the center housing 36. A rotating shaft 40 is rotatably supported by the support block 63 via a bearing 71. A scroll type expander 72 is provided between the support block 63 and the rear housing 38.
 次に、膨張機72の構成を説明する。 Next, the configuration of the expander 72 will be described.
 回転軸40の後端には偏心軸73が設けられている。偏心軸73は、回転軸40の回転により回転軸40の回転軸線の周りを公転する。偏心軸73には可動スクロール74がブッシュ75及び軸受76を介して回転可能に支持されている。可動スクロール74は、軸受76に支持された可動側端板741と、可動側端板741から突設された渦巻状の可動側渦巻壁742とを備えている。 An eccentric shaft 73 is provided at the rear end of the rotary shaft 40. The eccentric shaft 73 revolves around the rotation axis of the rotation shaft 40 by the rotation of the rotation shaft 40. A movable scroll 74 is rotatably supported on the eccentric shaft 73 via a bush 75 and a bearing 76. The movable scroll 74 includes a movable side end plate 741 supported by a bearing 76 and a spiral movable side spiral wall 742 protruding from the movable side end plate 741.
 センターハウジング36の後部内には固定スクロール77が可動スクロール74と対向するように固設されている。固定スクロール77は、固定側端板771と、固定側端板771から支持ブロック63に向けて突設された渦巻状の固定側渦巻壁772とを備えている。可動スクロール74の可動側渦巻壁742と、固定スクロール77の固定側渦巻壁772とは、互いに噛み合わされて容積変更可能な膨張室78を形成する。 A fixed scroll 77 is fixed in the rear part of the center housing 36 so as to face the movable scroll 74. The fixed scroll 77 includes a fixed side end plate 771 and a spiral fixed side spiral wall 772 protruding from the fixed side end plate 771 toward the support block 63. The movable spiral wall 742 of the movable scroll 74 and the fixed spiral wall 772 of the fixed scroll 77 are engaged with each other to form an expansion chamber 78 whose volume can be changed.
 固定側端板771とリヤハウジング38との間には供給室79が形成されており、固定側端板771の中央部には供給口773が供給室79に連通するように形成されている。リヤハウジング38には導入ポート381が形成されている。サイドプレート62と支持ブロック63との間には排出室80が形成されている。膨張室78の冷媒は、排出室80へ排出される。センターハウジング36の周壁には排出ポート362が排出室80に連通するように形成されている。 A supply chamber 79 is formed between the fixed side end plate 771 and the rear housing 38, and a supply port 773 is formed at the center of the fixed side end plate 771 so as to communicate with the supply chamber 79. An introduction port 381 is formed in the rear housing 38. A discharge chamber 80 is formed between the side plate 62 and the support block 63. The refrigerant in the expansion chamber 78 is discharged to the discharge chamber 80. A discharge port 362 is formed on the peripheral wall of the center housing 36 so as to communicate with the discharge chamber 80.
 次に、廃熱回収装置11におけるランキンサイクル回路13について説明する。 Next, the Rankine cycle circuit 13 in the waste heat recovery apparatus 11 will be described.
 図1に示すように、ランキンサイクル回路13は、廃熱回収機器14を構成する膨張機72、凝縮器29、ギヤポンプ67、第1熱交換器20、及び第2熱交換器21を含む。 As shown in FIG. 1, the Rankine cycle circuit 13 includes an expander 72, a condenser 29, a gear pump 67, a first heat exchanger 20, and a second heat exchanger 21 that constitute the waste heat recovery device 14.
 第1熱交換器20は、放熱部201と吸熱部202とを備える。放熱部201は、エンジン12に接続された冷却水循環経路23上に設けられている。冷却水循環経路23上にはラジエータ24が設けられている。車両のエンジン12を冷却した冷却水(冷却流体)は、冷却水循環経路23を循環して放熱部201及びラジエータ24で放熱する。 The first heat exchanger 20 includes a heat radiating part 201 and a heat absorbing part 202. The heat radiating unit 201 is provided on the cooling water circulation path 23 connected to the engine 12. A radiator 24 is provided on the cooling water circulation path 23. Cooling water (cooling fluid) that has cooled the engine 12 of the vehicle circulates through the cooling water circulation path 23 and radiates heat by the heat radiating unit 201 and the radiator 24.
 第2熱交換器21は、第1熱交換器20と膨張機72との間の冷媒流路上に設けられていると共に、エンジン12に接続された排気流路15上に設けられている。エンジン12から排気流路15へ排気された排気ガスの熱は、第2熱交換器21を介して冷媒流路内の冷媒に伝達される。排気流路15内の排気ガスは、マフラ26から排気される。 The second heat exchanger 21 is provided on the refrigerant flow path between the first heat exchanger 20 and the expander 72 and is provided on the exhaust flow path 15 connected to the engine 12. The heat of the exhaust gas exhausted from the engine 12 to the exhaust passage 15 is transmitted to the refrigerant in the refrigerant passage via the second heat exchanger 21. Exhaust gas in the exhaust passage 15 is exhausted from the muffler 26.
 第2熱交換器21には膨張機72における導入ポート381(図2参照)が供給流路28を介して接続されている。第1熱交換器20及び第2熱交換器21で加熱された冷媒は、供給流路28を介して膨張機72に導入される。膨張機72側の排出ポート362(図2参照)には凝縮器29が排出流路30を介して接続されている。膨張機72で膨張した低圧の冷媒は、排出流路30を介して凝縮器29へ排出される。凝縮器29の下流側にはギヤポンプ67が第2流路31を介して接続されている。ギヤポンプ67の下流側には第1熱交換器20が第1流路22を介して接続されている。 The introduction port 381 (see FIG. 2) in the expander 72 is connected to the second heat exchanger 21 via the supply flow path 28. The refrigerant heated by the first heat exchanger 20 and the second heat exchanger 21 is introduced into the expander 72 via the supply flow path 28. The condenser 29 is connected to the discharge port 362 (see FIG. 2) on the expander 72 side via the discharge flow path 30. The low-pressure refrigerant expanded by the expander 72 is discharged to the condenser 29 via the discharge flow path 30. A gear pump 67 is connected to the downstream side of the condenser 29 via the second flow path 31. The first heat exchanger 20 is connected to the downstream side of the gear pump 67 via the first flow path 22.
 第2流路31、第1流路22、第1熱交換器20と第2熱交換器21との間の接続流路25、供給流路28及び排出流路30は、ランキンサイクル回路13の冷媒流路を構成する。ギヤポンプ67のポンプ作用により、第2流路31内の冷媒は、第1流路22、第1熱交換器20、第2熱交換器21、膨張機72及び凝縮器29を通過してギヤポンプ67へ還流する。 The second flow path 31, the first flow path 22, the connection flow path 25 between the first heat exchanger 20 and the second heat exchanger 21, the supply flow path 28, and the discharge flow path 30 are the Rankine cycle circuit 13. A refrigerant flow path is configured. Due to the pumping action of the gear pump 67, the refrigerant in the second flow path 31 passes through the first flow path 22, the first heat exchanger 20, the second heat exchanger 21, the expander 72 and the condenser 29, and the gear pump 67. To reflux.
 第1流路22には、同第1流路22から分岐するようにバイパス冷媒流路32が接続されている。バイパス冷媒流路32は、接続流路25に合流するように接続されており、バイパス冷媒流路32上には電磁開閉弁33が設けられている。電磁開閉弁33が励磁されると、バイパス冷媒流路32が開かれ、電磁開閉弁33が消磁されると、バイパス冷媒流路32が閉じられる。 A bypass refrigerant flow path 32 is connected to the first flow path 22 so as to branch from the first flow path 22. The bypass refrigerant flow path 32 is connected so as to merge with the connection flow path 25, and an electromagnetic opening / closing valve 33 is provided on the bypass refrigerant flow path 32. When the electromagnetic on-off valve 33 is excited, the bypass refrigerant flow path 32 is opened, and when the electromagnetic on-off valve 33 is demagnetized, the bypass refrigerant flow path 32 is closed.
 電磁開閉弁33は、制御部(制御装置)34の励消磁制御を受ける。制御部34には温度検出部99が信号伝達可能に接続されている。温度検出部99は、第2熱交換器21と膨張機72との間の供給流路28内の冷媒の温度を検出する。言い換えると、温度検出部99は、膨張機72より上流の冷媒流路、すなわち第1熱交換器20及び第2熱交換器21より下流且つ膨張機72より上流の冷媒流路内の冷媒の温度を検出する。温度検出部99によって得られた温度検出情報は、制御部34へ送られ、制御部34は、温度検出部99から送られた温度検出情報に基づいて、電磁開閉弁33を励消磁制御する。温度検出部99によって検出された冷媒温度が予め設定された上限温度To以上になると、制御部34は、電磁開閉弁33を励磁する。温度検出部99によって検出された冷媒温度が予め設定された上限温度To未満になると、制御部34は、電磁開閉弁33を消磁する。 The electromagnetic on-off valve 33 is subjected to excitation / demagnetization control by a control unit (control device) 34. A temperature detection unit 99 is connected to the control unit 34 so that signals can be transmitted. The temperature detector 99 detects the temperature of the refrigerant in the supply flow path 28 between the second heat exchanger 21 and the expander 72. In other words, the temperature detection unit 99 detects the temperature of the refrigerant in the refrigerant flow path upstream from the expander 72, that is, in the refrigerant flow path downstream from the first heat exchanger 20 and the second heat exchanger 21 and upstream from the expander 72. Is detected. The temperature detection information obtained by the temperature detection unit 99 is sent to the control unit 34, and the control unit 34 performs excitation / demagnetization control of the electromagnetic on-off valve 33 based on the temperature detection information sent from the temperature detection unit 99. When the refrigerant temperature detected by the temperature detection unit 99 becomes equal to or higher than a preset upper limit temperature To, the control unit 34 excites the electromagnetic on-off valve 33. When the refrigerant temperature detected by the temperature detection unit 99 becomes lower than the preset upper limit temperature To, the control unit 34 demagnetizes the electromagnetic on-off valve 33.
 電磁開閉弁33は、バイパス冷媒流路32における冷媒流量を調整する冷媒流量調整部として機能する。制御部34は、温度検出部99の検出情報に基づいて冷媒流量調整部の流量調整状態を制御する。 The electromagnetic on-off valve 33 functions as a refrigerant flow rate adjusting unit that adjusts the refrigerant flow rate in the bypass refrigerant flow path 32. The control unit 34 controls the flow rate adjustment state of the refrigerant flow rate adjustment unit based on the detection information of the temperature detection unit 99.
 膨張機72内の膨張室78からの冷媒洩れを防止するためのシール部材の耐熱性の観点から、膨張機72へ流入する冷媒の温度をシール部材の耐熱温度以下に制御する必要がある。上限温度Toは、このような耐熱性の観点から設定された値である。上限温度Toは、例えば150℃である。 From the viewpoint of heat resistance of the seal member for preventing refrigerant leakage from the expansion chamber 78 in the expander 72, it is necessary to control the temperature of the refrigerant flowing into the expander 72 below the heat resistance temperature of the seal member. The upper limit temperature To is a value set from the viewpoint of such heat resistance. The upper limit temperature To is, for example, 150 ° C.
 図3は、第2熱交換器21と、排気流路15(図1参照)の一部となる流路管48,49とを示す。エンジン12から排気された排気ガスは、流路管48から第2熱交換器21を通過して流路管49へ流れ、さらにマフラ26(図1参照)へ流れる。 FIG. 3 shows the second heat exchanger 21 and the flow path pipes 48 and 49 that are part of the exhaust flow path 15 (see FIG. 1). Exhaust gas exhausted from the engine 12 passes through the second heat exchanger 21 from the flow path pipe 48 and flows to the flow path pipe 49, and further flows to the muffler 26 (see FIG. 1).
 次に、第2熱交換器21の構造を説明する。 Next, the structure of the second heat exchanger 21 will be described.
 図4に示すように、第2熱交換器21は、廃熱流体ケース50と冷媒ヘッダータンク58とを備えている。廃熱流体ケース50内は、廃熱流体である排気ガスを導入して排出する廃熱流体室501となっており、流路管48(図3参照)側の排気ガスが廃熱流体室501を通って流路管49(図3参照)側へ流れる。 As shown in FIG. 4, the second heat exchanger 21 includes a waste heat fluid case 50 and a refrigerant header tank 58. The waste heat fluid case 50 has a waste heat fluid chamber 501 that introduces and discharges exhaust gas, which is a waste heat fluid, and the exhaust gas on the side of the flow path pipe 48 (see FIG. 3) becomes the waste heat fluid chamber 501. It flows through the flow path pipe 49 (see FIG. 3).
 冷媒ヘッダータンク58内には第1ヘッダータンク室581、第2ヘッダータンク室582、第3ヘッダータンク室583及び第4ヘッダータンク室584が形成されている。 In the refrigerant header tank 58, a first header tank chamber 581, a second header tank chamber 582, a third header tank chamber 583, and a fourth header tank chamber 584 are formed.
 第1ヘッダータンク室581には流入管60が通じており、第4ヘッダータンク室584には流出管61が通じている。流入管60は、接続流路25(図1参照)の一部であり、流出管61は、供給流路28(図1参照)の一部である。 The inflow pipe 60 communicates with the first header tank chamber 581, and the outflow pipe 61 communicates with the fourth header tank chamber 584. The inflow pipe 60 is a part of the connection flow path 25 (see FIG. 1), and the outflow pipe 61 is a part of the supply flow path 28 (see FIG. 1).
 廃熱流体室501内には多数枚の放熱板59が並設されており、各放熱板59には組管551,552,553を構成する直管531,532,533,541,542,543が貫通されている。組管551を構成する直管531の端部は、第1ヘッダータンク室581に通じている。組管551,552を構成する直管541,532の端部は、第2ヘッダータンク室582に通じている。組管552,553を構成する直管542,533の端部は、第3ヘッダータンク室583に通じている。組管553を構成する直管543の端部は、第4ヘッダータンク室584に通じている。 A large number of heat radiating plates 59 are arranged in parallel in the waste heat fluid chamber 501. Is penetrated. An end portion of the straight pipe 531 constituting the assembled pipe 551 communicates with the first header tank chamber 581. Ends of the straight pipes 541 and 532 constituting the assembled pipes 551 and 552 communicate with the second header tank chamber 582. Ends of the straight pipes 542 and 533 constituting the assembled pipes 552 and 553 communicate with the third header tank chamber 583. An end portion of the straight pipe 543 constituting the assembled pipe 553 communicates with the fourth header tank chamber 584.
 接続流路25の一部である流入管60から第1ヘッダータンク室581へ流入した冷媒は、組管551を経由して第2ヘッダータンク室582へ流入する。第2ヘッダータンク室582へ流入した冷媒の一部は、組管552を経由して第3ヘッダータンク室583へ流入する。第3ヘッダータンク室583へ流入した冷媒は、組管553を経由して第4ヘッダータンク室584へ流入する。第4ヘッダータンク室584へ流入した冷媒は、供給流路28の一部である流出管61へ流出する。 The refrigerant that has flowed into the first header tank chamber 581 from the inflow pipe 60 that is a part of the connection flow path 25 flows into the second header tank chamber 582 via the assembled pipe 551. A part of the refrigerant that has flowed into the second header tank chamber 582 flows into the third header tank chamber 583 via the assembled pipe 552. The refrigerant that has flowed into the third header tank chamber 583 flows into the fourth header tank chamber 584 via the assembled pipe 553. The refrigerant that has flowed into the fourth header tank chamber 584 flows out to the outflow pipe 61 that is a part of the supply flow path 28.
 図5に示すように、排気流路15(図1参照)の一部となる排気流入管81と、排気流路15の一部となる排気流出管82との間には第2熱交換器21及びバイパス管83が並列状態に設けられている。バイパス管83の管内は、第2熱交換器21(廃熱流体室501)を迂回するバイパス排気流路831である。排気流入管81の出口端には接続プレート84が止着されている。接続プレート84には一対の接続孔961,962が貫設されている。接続孔961には流路管48が嵌合されており、接続孔962にはバイパス管83が嵌合されている。 As shown in FIG. 5, the second heat exchanger is provided between an exhaust inflow pipe 81 that is a part of the exhaust flow path 15 (see FIG. 1) and an exhaust outflow pipe 82 that is a part of the exhaust flow path 15. 21 and the bypass pipe 83 are provided in parallel. Inside the bypass pipe 83 is a bypass exhaust flow path 831 that bypasses the second heat exchanger 21 (waste heat fluid chamber 501). A connection plate 84 is fixed to the outlet end of the exhaust inflow pipe 81. A pair of connection holes 961 and 962 are provided through the connection plate 84. A flow path pipe 48 is fitted in the connection hole 961, and a bypass pipe 83 is fitted in the connection hole 962.
 排気流出管82の入口端には接続プレート85が止着されている。接続プレート85には一対の接続孔971,972が貫設されている。接続孔971には流路管49が嵌合されており、接続孔972にはバイパス管83が嵌合されている。 A connection plate 85 is fixed to the inlet end of the exhaust outlet pipe 82. A pair of connection holes 971 and 972 are provided through the connection plate 85. A flow path pipe 49 is fitted in the connection hole 971, and a bypass pipe 83 is fitted in the connection hole 972.
 排気流入管81内において、開閉弁86は回動可能な支軸87に止着されている。開閉弁86は、支軸87を中心にして、図5に実線で示す閉位置(位置規制片44に接する位置)と、図5に鎖線で示す開位置との間で切り換え配置される。開閉弁86は、図示しないねじりばねによって閉位置から開位置に向かう方向に付勢されている。開閉弁86が閉位置にあるときには、排気流入管81からバイパス管83への排気ガスの流れが阻止される。開閉弁86が開位置にあるときには、排気流入管81からバイパス管83への排気ガスの流れが許容される。開閉弁86は、バイパス排気流路831における流路断面積を調整する調整弁として機能する。 In the exhaust inflow pipe 81, the on-off valve 86 is fixed to a pivotal support shaft 87. The on-off valve 86 is switched between a closed position indicated by a solid line in FIG. 5 (a position in contact with the position restricting piece 44) and an open position indicated by a chain line in FIG. The on-off valve 86 is urged in a direction from the closed position toward the open position by a torsion spring (not shown). When the on-off valve 86 is in the closed position, the flow of exhaust gas from the exhaust inflow pipe 81 to the bypass pipe 83 is blocked. When the on-off valve 86 is in the open position, the flow of exhaust gas from the exhaust inflow pipe 81 to the bypass pipe 83 is allowed. The on-off valve 86 functions as an adjustment valve that adjusts the cross-sectional area of the bypass exhaust flow path 831.
 図6に示すように、支軸87は、排気流入管81の側面を貫通して排気流入管81の外部に突出している。支軸87の突出端部にはレバー88が止着されている。レバー88にはガイド孔39が形成されている。 As shown in FIG. 6, the support shaft 87 penetrates the side surface of the exhaust inflow pipe 81 and protrudes outside the exhaust inflow pipe 81. A lever 88 is fixed to the protruding end portion of the support shaft 87. A guide hole 39 is formed in the lever 88.
 排気流入管81の側方には、開閉弁86の開度を制御する温度作動アクチュエータ89が配設されている。温度作動アクチュエータ89は、円筒状のハウジング90と、ハウジング90内に収納された感温筒91と、感温筒91内にスライド可能に収納されたピストン92と、ピストンロッド46の直上で感温筒91内に配設された駆動ロッド93とを備えている。駆動ロッド93は、圧縮ばね94のばね力によってピストンロッド46の先端に押接されている。 A temperature operating actuator 89 that controls the opening degree of the on-off valve 86 is disposed on the side of the exhaust inflow pipe 81. The temperature actuated actuator 89 includes a cylindrical housing 90, a temperature sensing cylinder 91 accommodated in the housing 90, a piston 92 slidably accommodated in the temperature sensing cylinder 91, and a temperature sensing just above the piston rod 46. And a drive rod 93 disposed in the cylinder 91. The drive rod 93 is pressed against the tip of the piston rod 46 by the spring force of the compression spring 94.
 感温筒91の筒内から外部へ突出する駆動ロッド93の先端部には駆動ピン70が止着されている。駆動ピン70は、レバー88のガイド孔39にスライド可能に嵌入されている。 A driving pin 70 is fixed to the tip of the driving rod 93 that protrudes from the inside of the temperature-sensitive cylinder 91 to the outside. The drive pin 70 is slidably fitted in the guide hole 39 of the lever 88.
 感温筒91の下部の筒内には、ピストン92が突入されていると共に、熱膨張材95が充填されている。本実施形態では、熱膨張材95は、温度相転移材であるワックスである。第2ヘッダータンク室582内の冷媒温度は、第2熱交換器21下流の冷媒温度と比例しており、第2ヘッダータンク室582内の冷媒温度から第2熱交換器21下流の冷媒(膨張機72に流入する冷媒)の温度を推定できる。よって、第2熱交換器21下流の冷媒温度が所定温度T1となるときに、熱膨張材95が膨張し温度作動アクチュエータ89が作動するよう熱膨張材95の相転移温度は設定される。所定温度T1は、上限温度Toよりも大きい値(To+α)に設定されている。αは、例えば5°Cである。 A piston 92 is plunged into the lower cylinder of the temperature sensitive cylinder 91 and a thermal expansion material 95 is filled therein. In the present embodiment, the thermal expansion material 95 is a wax that is a temperature phase transition material. The refrigerant temperature in the second header tank chamber 582 is proportional to the refrigerant temperature downstream of the second heat exchanger 21, and the refrigerant (expansion) downstream of the second heat exchanger 21 from the refrigerant temperature in the second header tank chamber 582. The temperature of the refrigerant flowing into the machine 72 can be estimated. Therefore, when the refrigerant temperature downstream of the second heat exchanger 21 reaches the predetermined temperature T1, the phase transition temperature of the thermal expansion material 95 is set so that the thermal expansion material 95 expands and the temperature operation actuator 89 operates. The predetermined temperature T1 is set to a value (To + α) higher than the upper limit temperature To. α is, for example, 5 ° C.
 感温筒91と共に感温部を構成する熱膨張材95の周囲において、感温筒91とハウジング90との間には冷媒導入室96が形成されている。冷媒導入室96は、熱膨張材95を包囲している。 A refrigerant introduction chamber 96 is formed between the temperature sensing cylinder 91 and the housing 90 around the thermal expansion material 95 that constitutes the temperature sensing section together with the temperature sensing cylinder 91. The refrigerant introduction chamber 96 surrounds the thermal expansion material 95.
 ハウジング90と冷媒ヘッダータンク58との間には導入パイプ97及び排出パイプ98が設けられている。本実施形態では、導入パイプ97は、第2ヘッダータンク室582と冷媒導入室96とを連通しており、排出パイプ98は、冷媒導入室96と第4ヘッダータンク室584とを連通している。 An introduction pipe 97 and a discharge pipe 98 are provided between the housing 90 and the refrigerant header tank 58. In the present embodiment, the introduction pipe 97 communicates the second header tank chamber 582 and the refrigerant introduction chamber 96, and the discharge pipe 98 communicates the refrigerant introduction chamber 96 and the fourth header tank chamber 584. .
 接続流路25の一部である流入管60から第1ヘッダータンク室581へ流入した冷媒は、組管551(図4参照)を経由して第2ヘッダータンク室582へ流入する。第2ヘッダータンク室582へ流入した冷媒の一部は、組管552(図4参照)を経由して第3ヘッダータンク室583へ流入する。第3ヘッダータンク室583へ流入した冷媒は、組管553(図4参照)を経由して第4ヘッダータンク室584へ流入する。第4ヘッダータンク室584へ流入した冷媒は、流出管61へ流出する。 The refrigerant that has flowed into the first header tank chamber 581 from the inflow pipe 60 that is a part of the connection flow path 25 flows into the second header tank chamber 582 via the assembled pipe 551 (see FIG. 4). A part of the refrigerant flowing into the second header tank chamber 582 flows into the third header tank chamber 583 via the assembled pipe 552 (see FIG. 4). The refrigerant that has flowed into the third header tank chamber 583 flows into the fourth header tank chamber 584 via the assembled pipe 553 (see FIG. 4). The refrigerant flowing into the fourth header tank chamber 584 flows out to the outflow pipe 61.
 第2ヘッダータンク室582へ流入した冷媒の一部は、導入パイプ97、冷媒導入室96及び排出パイプ98を経由して第4ヘッダータンク室584へ流入する。冷媒の温度が低い場合、熱膨張材95が殆ど膨張せず、ピストン92及び駆動ロッド93が圧縮ばね94のばね力によって図6に示す最下位位置に保持される。ピストン92及び駆動ロッド93が最下位位置にある状態では、開閉弁86が図6に破線で示す閉位置に配置される。 A part of the refrigerant flowing into the second header tank chamber 582 flows into the fourth header tank chamber 584 via the introduction pipe 97, the refrigerant introduction chamber 96, and the discharge pipe 98. When the temperature of the refrigerant is low, the thermal expansion material 95 hardly expands, and the piston 92 and the drive rod 93 are held at the lowest position shown in FIG. 6 by the spring force of the compression spring 94. In a state where the piston 92 and the drive rod 93 are at the lowest position, the on-off valve 86 is disposed at the closed position indicated by a broken line in FIG.
 エンジン12から排気された排気ガスは、排気流路15の一部である排気流入管81へ流入する。開閉弁86が閉位置にある状態では、排気流入管81へ流入した排気ガスは、流路管48、第2熱交換器21の廃熱流体室501(図4参照)及び流路管49を経由して排気流出管82へ流れる。従って、排気ガスの熱が第2熱交換器21を介して冷媒に伝達される。 The exhaust gas exhausted from the engine 12 flows into an exhaust inflow pipe 81 that is a part of the exhaust flow path 15. In the state where the on-off valve 86 is in the closed position, the exhaust gas flowing into the exhaust inflow pipe 81 passes through the flow path pipe 48, the waste heat fluid chamber 501 (see FIG. 4) of the second heat exchanger 21, and the flow path pipe 49. To the exhaust outlet pipe 82. Accordingly, the heat of the exhaust gas is transmitted to the refrigerant through the second heat exchanger 21.
 冷媒の温度が高くなって熱膨張材95が膨張すると、ピストン92及び駆動ロッド93が圧縮ばね94のばね力に抗して押し上げられる。駆動ロッド93と共に上動する駆動ピン70は、ガイド孔39内を移動しながらレバー88を押し上げる。レバー88の上動は、図6において支軸87及び開閉弁86を反時計回り方向に回動させる。これにより、開閉弁86が図6に2点鎖線で示す開位置に向けて移動する。 When the temperature of the refrigerant increases and the thermal expansion material 95 expands, the piston 92 and the drive rod 93 are pushed up against the spring force of the compression spring 94. The drive pin 70 moving upward together with the drive rod 93 pushes up the lever 88 while moving in the guide hole 39. The upward movement of the lever 88 turns the support shaft 87 and the opening / closing valve 86 in the counterclockwise direction in FIG. Thereby, the on-off valve 86 moves toward the open position shown by the two-dot chain line in FIG.
 温度作動アクチュエータ89及び開閉弁86は、バイパス排気流路831における流路断面積を変更することで排気ガス流量を調整するガス流量調整部を構成する。 The temperature actuated actuator 89 and the on-off valve 86 constitute a gas flow rate adjusting unit that adjusts the exhaust gas flow rate by changing the cross-sectional area of the bypass exhaust flow channel 831.
 次に、第1の実施形態の作用を説明する。 Next, the operation of the first embodiment will be described.
 ギヤポンプ67の作用によって第1流路22へ送られた冷媒は、第1熱交換器20の吸熱部202、接続流路25、第2熱交換器21の冷媒ヘッダータンク58及び組管551,552,553を通過して供給流路28へ送られる。第1熱交換器20の吸熱部202を通過する冷媒は、エンジン12を冷却した冷却水の熱によって加熱される。又、第2熱交換器21の組管551,552,553を通過する冷媒は、エンジン12から排出された排気ガスの熱によって加熱される。 The refrigerant sent to the first flow path 22 by the action of the gear pump 67 is the heat absorption part 202 of the first heat exchanger 20, the connection flow path 25, the refrigerant header tank 58 of the second heat exchanger 21, and the assembled pipes 551 and 552. , 553 and sent to the supply flow path 28. The refrigerant passing through the heat absorption part 202 of the first heat exchanger 20 is heated by the heat of the cooling water that has cooled the engine 12. The refrigerant passing through the assembled pipes 551, 552, 553 of the second heat exchanger 21 is heated by the heat of the exhaust gas discharged from the engine 12.
 熱交換器20,21で加熱された高圧の冷媒は、導入ポート381から膨張機72の供給室79を経て膨張室78に導入されて膨張する。この冷媒の膨張により膨張機72が機械的エネルギー(回転付与力)を出力し、この回転付与力によって回転軸40の回転がアシストされる。膨張して圧力が低下した冷媒は、排出流路30へ排出される。排出流路30へ排出された冷媒は、凝縮器29を通過してギヤポンプ67へ還流する。 The high-pressure refrigerant heated by the heat exchangers 20 and 21 is introduced from the introduction port 381 through the supply chamber 79 of the expander 72 into the expansion chamber 78 and expands. The expansion of the refrigerant causes the expander 72 to output mechanical energy (rotation imparting force), and the rotation imparting force assists the rotation of the rotating shaft 40. The refrigerant whose pressure has decreased due to expansion is discharged to the discharge flow path 30. The refrigerant discharged to the discharge passage 30 passes through the condenser 29 and returns to the gear pump 67.
 温度検出部99によって検出された冷媒温度が予め設定された上限温度To以上になると、制御部34は、電磁開閉弁33を励磁する。これにより、電磁開閉弁33が開き、ギヤポンプ67から送り出された冷媒の一部がバイパス冷媒流路32へ流入する。つまり、ギヤポンプ67から送り出された冷媒の一部が第1熱交換器20を迂回する。その結果、第1熱交換器20から冷媒に伝達される熱量が減り、膨張機72へ流入する冷媒の温度が低下する。温度検出部99によって検出された冷媒温度が予め設定された上限温度To未満になると、制御部34は、電磁開閉弁33を消磁する。これにより、電磁開閉弁33が閉じ、ギヤポンプ67から送り出された冷媒が全て第1熱交換器20を通過する。 When the refrigerant temperature detected by the temperature detection unit 99 is equal to or higher than the preset upper limit temperature To, the control unit 34 excites the electromagnetic on-off valve 33. As a result, the electromagnetic opening / closing valve 33 is opened, and a part of the refrigerant sent out from the gear pump 67 flows into the bypass refrigerant flow path 32. That is, a part of the refrigerant sent out from the gear pump 67 bypasses the first heat exchanger 20. As a result, the amount of heat transferred from the first heat exchanger 20 to the refrigerant decreases, and the temperature of the refrigerant flowing into the expander 72 decreases. When the refrigerant temperature detected by the temperature detection unit 99 becomes lower than the preset upper limit temperature To, the control unit 34 demagnetizes the electromagnetic on-off valve 33. Thereby, the electromagnetic on-off valve 33 is closed, and all the refrigerant sent out from the gear pump 67 passes through the first heat exchanger 20.
 第2熱交換器21の第2ヘッダータンク室582へ流入した冷媒の一部は、導入パイプ97、冷媒導入室96及び排出パイプ98を経由して第4ヘッダータンク室584へ流入する。冷媒の温度が低い場合、熱膨張材95が殆ど膨張せず、ピストン92及び駆動ロッド93が圧縮ばね94のばね力によって図6に示す最下位位置に保持される。ピストン92及び駆動ロッド93が最下位位置にある状態では、圧縮ばね94が図6に破線で示す閉位置に配置される。 Part of the refrigerant that has flowed into the second header tank chamber 582 of the second heat exchanger 21 flows into the fourth header tank chamber 584 via the introduction pipe 97, the refrigerant introduction chamber 96, and the discharge pipe 98. When the temperature of the refrigerant is low, the thermal expansion material 95 hardly expands, and the piston 92 and the drive rod 93 are held at the lowest position shown in FIG. 6 by the spring force of the compression spring 94. In a state where the piston 92 and the drive rod 93 are at the lowest position, the compression spring 94 is disposed at the closed position indicated by a broken line in FIG.
 エンジン12から排気された排気ガスは、排気流路15の一部である排気流入管81へ流入する。開閉弁86が閉位置にある状態では、排気流入管81へ流入した排気ガスは、流路管48、第2熱交換器21の廃熱流体室501及び流路管49を経由して排気流出管82へ流れる。従って、排気ガスの熱が第2熱交換器21を介して冷媒に伝達される。 The exhaust gas exhausted from the engine 12 flows into an exhaust inflow pipe 81 that is a part of the exhaust flow path 15. In the state where the on-off valve 86 is in the closed position, the exhaust gas flowing into the exhaust inflow pipe 81 flows out through the flow path pipe 48, the waste heat fluid chamber 501 of the second heat exchanger 21 and the flow path pipe 49. Flow to tube 82. Accordingly, the heat of the exhaust gas is transmitted to the refrigerant through the second heat exchanger 21.
 第2熱交換器21下流の冷媒温度が所定温度T1に達すると、熱膨張材95が膨張する。この熱膨張材95の膨張により、開閉弁86が図6に2点鎖線で示す開位置へ移動する。 When the refrigerant temperature downstream of the second heat exchanger 21 reaches the predetermined temperature T1, the thermal expansion material 95 expands. Due to the expansion of the thermal expansion material 95, the on-off valve 86 moves to the open position indicated by a two-dot chain line in FIG.
 開閉弁86が開位置にある状態では、排気流入管81へ流入した排気ガスの大部分は、バイパス管83内のバイパス排気流路831を経由して排気流出管82へ流れる。従って、高温の排気ガスから第2熱交換器21を介した冷媒への伝達熱量が少なくなり、排気ガスが異常高温の場合でも、冷媒の過熱が抑制される。 When the on-off valve 86 is in the open position, most of the exhaust gas flowing into the exhaust inflow pipe 81 flows to the exhaust outflow pipe 82 via the bypass exhaust flow path 831 in the bypass pipe 83. Therefore, the amount of heat transferred from the high-temperature exhaust gas to the refrigerant via the second heat exchanger 21 is reduced, and even when the exhaust gas is at an abnormally high temperature, overheating of the refrigerant is suppressed.
 第1の実施形態では以下の利点が得られる。 The following advantages are obtained in the first embodiment.
 (1)膨張機72に流入する冷媒の温度が予め設定された上限温度To以上になると、制御部34は、バイパス冷媒流路32へ冷媒を流すように電磁開閉弁33を開状態に制御する。これにより冷却水から冷媒への熱伝達量が減り、エンジン12で生じる廃熱が冷却水に蓄積されることになる。膨張機72に流入する冷媒の温度が上限温度Toよりも低くなったときには、ギヤポンプ67から送り出される冷媒が全て第1熱交換器20を通過し、冷却水に蓄積された熱が冷媒に伝達される。 (1) When the temperature of the refrigerant flowing into the expander 72 becomes equal to or higher than a preset upper limit temperature To, the control unit 34 controls the electromagnetic on-off valve 33 to be in an open state so that the refrigerant flows into the bypass refrigerant flow path 32. . As a result, the amount of heat transferred from the cooling water to the refrigerant is reduced, and waste heat generated in the engine 12 is accumulated in the cooling water. When the temperature of the refrigerant flowing into the expander 72 becomes lower than the upper limit temperature To, all the refrigerant sent out from the gear pump 67 passes through the first heat exchanger 20, and the heat accumulated in the cooling water is transmitted to the refrigerant. The
 バイパス冷媒流路32が無い場合には、冷却水の温度が冷媒の温度より低い状態では常に冷却水の熱が冷媒に伝達されてしまうため、第2熱交換器21に流入する冷媒温度が高くなる。その場合、第2熱交換器21に流入させてよい排気ガスの量が少なくなり、廃熱利用において無駄が生じる。しかし、バイパス冷媒流路32が有る本発明では、エンジン12の廃熱を冷却水に蓄積することができ、この蓄積熱は、膨張機72に流入する冷媒の温度が上限温度Toよりも低くなったときに、オルタネータ43における発電のために利用できる。従って、回転駆動力を出力するエンジン12から駆動力が伝達されるように同エンジン12に連結された膨張機72を有する廃熱回収装置11における廃熱利用の効率が向上する。 When there is no bypass refrigerant flow path 32, the heat of the cooling water is always transmitted to the refrigerant when the temperature of the cooling water is lower than the temperature of the refrigerant, so the temperature of the refrigerant flowing into the second heat exchanger 21 is high. Become. In that case, the amount of exhaust gas that can flow into the second heat exchanger 21 is reduced, and waste heat is wasted. However, in the present invention having the bypass refrigerant flow path 32, the waste heat of the engine 12 can be accumulated in the cooling water, and the accumulated heat is such that the temperature of the refrigerant flowing into the expander 72 is lower than the upper limit temperature To. Can be used for power generation in the alternator 43. Therefore, the efficiency of waste heat utilization in the waste heat recovery apparatus 11 having the expander 72 connected to the engine 12 so that the driving force is transmitted from the engine 12 that outputs the rotational driving force is improved.
 (2)バイパス冷媒流路32へ冷媒の一部を迂回させても、膨張機72に流入する冷媒の温度が上限温度Toを超える所定温度T1以上になってしまう場合には、冷媒の温度に感応して自律的に作動する温度作動アクチュエータ89が作動する。これにより、排気ガスがバイパス排気流路831へ流され、上限温度Toを大きく超えないように冷媒の温度を抑制することができる。 (2) If the temperature of the refrigerant flowing into the expander 72 is equal to or higher than the predetermined temperature T1 exceeding the upper limit temperature To even if a part of the refrigerant is bypassed to the bypass refrigerant flow path 32, the temperature of the refrigerant is increased. A temperature-actuating actuator 89 that operates autonomously in response is activated. As a result, the exhaust gas is allowed to flow into the bypass exhaust flow path 831 and the temperature of the refrigerant can be suppressed so as not to greatly exceed the upper limit temperature To.
 (3)冷媒の温度に感応して自律的に作動する温度作動アクチュエータ89は、ガス流量調整部として簡便である。 (3) The temperature operation actuator 89 that operates autonomously in response to the temperature of the refrigerant is simple as a gas flow rate adjustment unit.
 次に、図7の第2の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。 Next, the second embodiment of FIG. 7 will be described. The same reference numerals are used for the same components as those in the first embodiment, and detailed description thereof is omitted.
 第1流路22とバイパス冷媒流路32との分岐部100と、第1熱交換器20との間の第1流路22上には電磁開閉弁33Aが設けられている。制御部34は、温度検出部99から送られた温度検出情報に基づいて、電磁開閉弁33Aを励消磁制御する。温度検出部99によって検出された冷媒温度が予め設定された上限温度To以上になると、制御部34は、電磁開閉弁33Aを励磁する。温度検出部99によって検出された冷媒温度が予め設定された上限温度To未満になると、制御部34は、電磁開閉弁33Aを消磁する。 On the first flow path 22 between the branch section 100 between the first flow path 22 and the bypass refrigerant flow path 32 and the first heat exchanger 20, an electromagnetic on-off valve 33A is provided. Based on the temperature detection information sent from the temperature detection unit 99, the control unit 34 performs excitation / demagnetization control on the electromagnetic on-off valve 33A. When the refrigerant temperature detected by the temperature detection unit 99 becomes equal to or higher than a preset upper limit temperature To, the control unit 34 excites the electromagnetic on-off valve 33A. When the refrigerant temperature detected by the temperature detection unit 99 becomes lower than the preset upper limit temperature To, the control unit 34 demagnetizes the electromagnetic on-off valve 33A.
 電磁開閉弁33は、励磁されると開き、消磁されると閉じるが、電磁開閉弁33Aは、励磁されると閉じ、消磁されると開く。つまり、温度検出部99によって検出された冷媒温度が上限温度To以上になると、電磁開閉弁33が開くと共に、電磁開閉弁33Aが閉じ、ギヤポンプ67から送り出された冷媒は、全て第1熱交換器20を迂回してバイパス冷媒流路32を流れる。 The electromagnetic on-off valve 33 opens when energized and closes when demagnetized, while the electromagnetic on-off valve 33A closes when energized and opens when demagnetized. That is, when the refrigerant temperature detected by the temperature detection unit 99 becomes equal to or higher than the upper limit temperature To, the electromagnetic on-off valve 33 is opened, the electromagnetic on-off valve 33A is closed, and all of the refrigerant sent from the gear pump 67 is the first heat exchanger. It bypasses 20 and flows through the bypass refrigerant flow path 32.
 電磁開閉弁33及び電磁開閉弁33Aは、第1熱交換器20とバイパス冷媒流路32とのいずれか一方にのみ冷媒を流す流路切り換え部として機能する。 The electromagnetic on-off valve 33 and the electromagnetic on-off valve 33A function as a flow path switching unit that allows the refrigerant to flow through only one of the first heat exchanger 20 and the bypass refrigerant flow path 32.
 バイパス冷媒流路32にのみ冷媒を流して第1熱交換器20に冷媒を流さない構成は、冷却水循環経路23内における蓄熱量を大きくする上で最適である。言い換えると、バイパス冷媒流路32にのみ冷媒を流して第1熱交換器20に冷媒を流さない構成は、膨張機72の信頼性を考慮して冷却流体の上限温度を高くする上で最適である。 The configuration in which the refrigerant flows only through the bypass refrigerant flow path 32 and does not flow through the first heat exchanger 20 is optimal in increasing the amount of heat stored in the cooling water circulation path 23. In other words, the configuration in which the refrigerant flows only through the bypass refrigerant flow path 32 and does not flow through the first heat exchanger 20 is optimal for increasing the upper limit temperature of the cooling fluid in consideration of the reliability of the expander 72. is there.
 本発明では以下のような実施形態も可能である。 In the present invention, the following embodiments are also possible.
 第1の実施形態において、電磁開閉弁33の代わりに、流量を連続的に可変な調整弁を用いてもよい。 In the first embodiment, instead of the electromagnetic on-off valve 33, an adjustment valve whose flow rate is continuously variable may be used.
 第2の実施形態において、電磁開閉弁33,33Aの代わりに、第1流路22とバイパス冷媒流路32との分岐部100に電磁三方弁を設けてもよい。この場合、電磁三方弁は、励磁されると冷媒を全てバイパス冷媒流路32へ流し、消磁されると冷媒を全て第1熱交換器20へ流す。 In the second embodiment, an electromagnetic three-way valve may be provided at the branch portion 100 between the first flow path 22 and the bypass refrigerant flow path 32 instead of the electromagnetic on-off valves 33 and 33A. In this case, the electromagnetic three-way valve causes all the refrigerant to flow to the bypass refrigerant flow path 32 when excited, and causes all the refrigerant to flow to the first heat exchanger 20 when demagnetized.
 開閉弁86を電動モータで駆動するようにしたガス流量調整部を用いてもよい。この場合、電動モータの作動は、温度検出部99の温度検出情報に基づいて制御される。 A gas flow rate adjusting unit in which the on-off valve 86 is driven by an electric motor may be used. In this case, the operation of the electric motor is controlled based on the temperature detection information of the temperature detection unit 99.
 バイパス排気流路831及びガス流量調整部を無くしてもよい。 The bypass exhaust flow path 831 and the gas flow rate adjustment unit may be omitted.
 凝縮器29を通過した冷媒を圧送するポンプを廃熱回収機器14外に設けてもよい。 A pump that pumps the refrigerant that has passed through the condenser 29 may be provided outside the waste heat recovery device 14.
 車両用以外の廃熱回収装置に本発明を適用してもよい。 The present invention may be applied to a waste heat recovery device other than for vehicles.
 膨張機として、ベーン式の膨張機を用いてもよい。 As the expander, a vane type expander may be used.

Claims (6)

  1.  回転駆動力を出力する燃焼機関で生じる廃熱を回収する廃熱回収装置であって、
     前記燃焼機関を冷却する冷却流体の熱を冷媒に伝達する第1熱交換器と、
     前記燃焼機関から排出された排気ガスの熱を前記冷媒に伝達する第2熱交換器と、
     前記燃焼機関から駆動力が伝達されるように同燃焼機関に連結された膨張機と、
     前記冷媒が通過する冷媒流路と、
     前記冷媒流路から分岐して前記第1熱交換器を迂回するバイパス冷媒流路と、
     前記バイパス冷媒流路における冷媒流量を調整する冷媒流量調整部と、
     前記膨張機より上流の前記冷媒流路内の冷媒温度を検出する温度検出部と、
     前記温度検出部の検出情報に基づいて前記冷媒流量調整部の流量調整状態を制御する制御部と、
    を備える廃熱回収装置。
    A waste heat recovery device that recovers waste heat generated in a combustion engine that outputs rotational driving force,
    A first heat exchanger that transfers heat of a cooling fluid that cools the combustion engine to a refrigerant;
    A second heat exchanger that transfers heat of the exhaust gas discharged from the combustion engine to the refrigerant;
    An expander coupled to the combustion engine such that driving force is transmitted from the combustion engine;
    A refrigerant flow path through which the refrigerant passes;
    A bypass refrigerant flow path that branches from the refrigerant flow path and bypasses the first heat exchanger;
    A refrigerant flow rate adjusting unit for adjusting a refrigerant flow rate in the bypass refrigerant flow path;
    A temperature detector for detecting a refrigerant temperature in the refrigerant flow channel upstream of the expander;
    A control unit for controlling a flow rate adjustment state of the refrigerant flow rate adjustment unit based on detection information of the temperature detection unit;
    A waste heat recovery device.
  2.  前記燃焼機関は同機関から排出される排気ガスが通過する排気流路を有し、前記廃熱回収装置は、
     前記排気流路から分岐して前記第2熱交換器を迂回するバイパス排気流路と、
     前記バイパス排気流路における排気ガス流量を調整するガス流量調整部と、
    をさらに備える請求項1に記載の廃熱回収装置。
    The combustion engine has an exhaust passage through which exhaust gas discharged from the engine passes, and the waste heat recovery device includes:
    A bypass exhaust passage that branches off from the exhaust passage and bypasses the second heat exchanger;
    A gas flow rate adjusting unit for adjusting an exhaust gas flow rate in the bypass exhaust flow path;
    The waste heat recovery apparatus according to claim 1, further comprising:
  3.  前記ガス流量調整部は、前記バイパス排気流路における流路断面積を調整する調整弁と、前記調整弁の開度を制御する温度作動アクチュエータとを備え、
     前記温度作動アクチュエータは、前記第2熱交換器で熱を受け取った後の冷媒の温度に感応する感温部を有する請求項2に記載の廃熱回収装置。
    The gas flow rate adjustment unit includes an adjustment valve that adjusts a cross-sectional area of the bypass exhaust passage, and a temperature-actuated actuator that controls an opening degree of the adjustment valve,
    The waste heat recovery apparatus according to claim 2, wherein the temperature-actuated actuator has a temperature-sensitive part that is sensitive to the temperature of the refrigerant after receiving heat by the second heat exchanger.
  4.  前記冷媒流量調整部は、前記第1熱交換器と前記バイパス冷媒流路とのいずれか一方にのみ冷媒を流す流路切り換え部である請求項1乃至請求項3のいずれか1項に記載の廃熱回収装置。 The said refrigerant | coolant flow volume adjustment part is a flow-path switching part which flows a refrigerant | coolant only in any one of a said 1st heat exchanger and the said bypass refrigerant | coolant flow path. Waste heat recovery device.
  5.  前記冷媒流量調整部は、前記バイパス冷媒流路上に設けられた開閉弁である請求項1乃至請求項3のいずれか1項に記載の廃熱回収装置。 The waste heat recovery apparatus according to any one of claims 1 to 3, wherein the refrigerant flow rate adjusting unit is an on-off valve provided on the bypass refrigerant flow path.
  6.  凝縮器を通過した冷媒を圧送するポンプをさらに備え、
     前記ポンプは、前記膨張機の回転軸に直結されている請求項1乃至請求項3のいずれか1項に記載の廃熱回収装置。
    A pump that pumps the refrigerant that has passed through the condenser;
    The waste heat recovery apparatus according to any one of claims 1 to 3, wherein the pump is directly connected to a rotation shaft of the expander.
PCT/JP2012/063468 2011-06-06 2012-05-25 Waste heat recovery apparatus WO2012169375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-126334 2011-06-06
JP2011126334A JP2012251517A (en) 2011-06-06 2011-06-06 Waste heat recovery apparatus

Publications (1)

Publication Number Publication Date
WO2012169375A1 true WO2012169375A1 (en) 2012-12-13

Family

ID=47295943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063468 WO2012169375A1 (en) 2011-06-06 2012-05-25 Waste heat recovery apparatus

Country Status (2)

Country Link
JP (1) JP2012251517A (en)
WO (1) WO2012169375A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166055A1 (en) * 2014-04-30 2015-11-05 MAHLE Behr GmbH & Co. KG Exhaust gas system for a motor vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563176B1 (en) * 2013-10-31 2014-07-30 中国電力株式会社 Engine exhaust heat recovery device
WO2015080697A1 (en) * 2013-11-26 2015-06-04 Volvo Truck Corporation Supplemental heating in waste heat recovery
CN104564195B (en) * 2015-01-26 2016-06-15 鼎立实创智能控制技术(北京)有限公司 Afterheat of IC engine utilization system
CN104564194B (en) * 2015-01-26 2016-02-03 鼎立实创智能控制技术(北京)有限公司 The waste heat comprehensive utilization system of internal-combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236014A (en) * 2008-03-27 2009-10-15 Isuzu Motors Ltd Waste heat recovery system
JP2010174848A (en) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp Waste heat regeneration system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236014A (en) * 2008-03-27 2009-10-15 Isuzu Motors Ltd Waste heat recovery system
JP2010174848A (en) * 2009-02-02 2010-08-12 Mitsubishi Electric Corp Waste heat regeneration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166055A1 (en) * 2014-04-30 2015-11-05 MAHLE Behr GmbH & Co. KG Exhaust gas system for a motor vehicle
US10240488B2 (en) 2014-04-30 2019-03-26 MAHLE Behr GmbH & Co. KG Exhaust gas system for a motor vehicle

Also Published As

Publication number Publication date
JP2012251517A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
US7249459B2 (en) Fluid machine for converting heat energy into mechanical rotational force
US7735335B2 (en) Fluid pump having expansion device and rankine cycle using the same
US8613193B2 (en) Vehicle waste heat recovery device
US7181919B2 (en) System utilizing waste heat of internal combustion engine
JP5505506B2 (en) Waste heat utilization equipment
US20070227472A1 (en) Waste heat collecting system having expansion device
US7992400B2 (en) Refrigerating apparatus and fluid machine therefor
US20110041505A1 (en) Waste Heat Utilization Device for Internal Combustion Engine
CN102042119B (en) Waste heat regeneration system
US7263828B2 (en) Fluid machine
JP5106464B2 (en) Fluid machine, refrigerant circuit and waste heat utilization apparatus using fluid machine
US20110088397A1 (en) Waste heat recovery system
WO2012169375A1 (en) Waste heat recovery apparatus
US20110088394A1 (en) Waste heat regeneration system
JP2009097387A (en) Waste heat recovery apparatus
JP2014231739A (en) Waste heat regeneration system
US8739532B2 (en) Exhaust heat regeneration system
WO2010035891A1 (en) Fluid machine
JP6228027B2 (en) Scroll expander
CN109072722B (en) Exhaust heat recovery system
JP2012246870A (en) Waste heat recovery device
WO2011102319A1 (en) Rankine cycle apparatus
JP2019015228A (en) Rankine cycle system and method for controlling the same
JP2014134174A (en) Rankine cycle device for vehicle
JP4985665B2 (en) Waste heat regeneration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796063

Country of ref document: EP

Kind code of ref document: A1