WO2012169252A1 - Position measuring apparatus, position measuring method, and computer readable recording medium - Google Patents

Position measuring apparatus, position measuring method, and computer readable recording medium Download PDF

Info

Publication number
WO2012169252A1
WO2012169252A1 PCT/JP2012/056626 JP2012056626W WO2012169252A1 WO 2012169252 A1 WO2012169252 A1 WO 2012169252A1 JP 2012056626 W JP2012056626 W JP 2012056626W WO 2012169252 A1 WO2012169252 A1 WO 2012169252A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
mobility
positioning
unit
detecting
Prior art date
Application number
PCT/JP2012/056626
Other languages
French (fr)
Japanese (ja)
Inventor
小西勇介
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2012169252A1 publication Critical patent/WO2012169252A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto

Definitions

  • the present invention relates to a positioning device for detecting the position of a terminal, a positioning method, and a computer-readable recording medium on which a program for realizing the positioning is recorded.
  • Non-Patent Document 1 discloses a positioning system that uses various media such as radio waves, ultrasonic waves, sound waves, and infrared rays from a terminal attached to a moving body.
  • the positioning system disclosed in Non-Patent Document 1 uses a medium to measure signal reception strength and signal transmission time for a terminal, generates an observation amount from the measurement value, and based on the generated observation amount Detect the position of the moving object.
  • processing using the following statistics is executed. First, a time window is set, and a statistic is calculated from a plurality of measured values obtained during the set time window. Next, based on the calculated statistics, an observation amount used for positioning is generated.
  • examples of the “statistic” include an average value, a median value, a mode value, a maximum value, and a minimum value among a plurality of measurement values. Further, in the above-described method, as the time length of the time window (hereinafter referred to as “time window length”) is increased, the observation bias and the omission are reduced.
  • Patent Document 1 a technique that uses the movement state of a terminal determined using an acceleration sensor or the like has also been proposed (for example, Patent Document 1 and Patent Document 2). reference).
  • Patent Document 1 discloses a technique for preventing degradation of position detection performance due to the stationary state of the terminal by determining the stationary state of the terminal in two stages.
  • Patent Document 2 discloses a technique for preventing a positioning result from being disturbed by referring to a past positioning result when the terminal is stationary.
  • An example of an object of the present invention is a positioning device, a positioning method, and a computer-readable device that can improve the accuracy of terminal position detection even when the above-described problem is solved and the terminal stationary state is determined. Is to provide a simple recording medium.
  • a positioning device for detecting the position of a terminal, A mobility detector for detecting a mobility representing a movement state of the terminal; A time window is set according to the detected mobility, information for specifying the position of the terminal is acquired in the set time window, and the position of the terminal is detected using the acquired information
  • a positioning method in one aspect of the present invention is a positioning method for detecting the position of a terminal, (A) detecting a mobility indicating a movement state of the terminal; (B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and (C) detecting the position of the terminal based on the observation amount generated in the step (b); It is characterized by having.
  • a computer-readable recording medium is a computer-readable recording medium recording a program for detecting the position of a terminal by a computer, In the computer, (A) detecting a mobility indicating a movement state of the terminal; (B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and (C) detecting the position of the terminal based on the observation amount generated in the step (b); A program including an instruction for executing is recorded.
  • FIG. 1 is a block diagram showing a configuration of a positioning device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating an example of the relationship between mobility and time window length.
  • FIG. 3 is a diagram illustrating an example of a relationship between mobility and reliability.
  • FIG. 4 is a flowchart showing the operation of the positioning device according to Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram showing an example of a computer that can implement the positioning device according to Embodiment 1 of the present invention.
  • FIG. 6 is a block diagram showing the configuration of the positioning device according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart showing the operation of the positioning device according to Embodiment 2 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a positioning device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating an example of the relationship between mobility and reliability.
  • FIG. 8 is a block diagram illustrating an example of a computer capable of realizing the positioning device according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram showing a configuration of the positioning apparatus according to Embodiment 3 of the present invention.
  • FIG. 10 is a flowchart showing the operation of the positioning device according to Embodiment 3 of the present invention.
  • FIG. 11 is a diagram showing an example of a network system used in the embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an example of the position specifying information measured in the embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an example of an observation amount created in the embodiment of the present invention.
  • Embodiment 1 a positioning device, a positioning method, and a program according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a block diagram showing a configuration of a positioning device according to Embodiment 1 of the present invention.
  • the positioning device 10 is a device for detecting the position of the terminal 100.
  • the positioning device 10 is built inside the terminal device 100.
  • the terminal device 100 has a function of communicating with a base station 120 installed in advance, and constitutes a network system 110 together with each base station 120.
  • the positioning device 10 includes an observation amount generation unit 11, a positioning unit 12, and a mobility detection unit 13.
  • the mobility detection unit 13 detects the movement state of the terminal 100, that is, the mobility indicating the degree of movement.
  • the mobility is obtained from the acceleration of terminal 100.
  • the observation amount generation unit 11 sets a time window according to the detected mobility, and information for specifying the position of the terminal 100 using the set time window (hereinafter referred to as “position specifying information”). To get. Moreover, the observation amount generation unit 11 generates an observation amount used for detecting the position of the terminal 100 using the acquired position specifying information.
  • the position specifying information is information for specifying the positional relationship between the terminal 100 and the base station 120 when communication is performed between the terminal 100 and each base station 120, for example, a signal Examples include reception intensity and signal transmission time.
  • a plurality of position specifying information that is, statistical values (average value, median value, mode value, maximum value, minimum value) such as signal reception intensity and signal transmission time measured for each base station 120 Etc.).
  • the positioning unit 12 detects the position of the terminal 100 based on the generated observation amount.
  • the positioning device 10 acquires the mobility of the terminal, and acquires the position specifying information under the time window set according to the acquired mobility. That is, the positioning device 10 determines whether the terminal is moving or stationary, and if the terminal is moving, the time window is reduced and the terminal is stationary. The position specifying information is acquired by increasing the time window. Therefore, according to the positioning device 10, even when the stationary state of the terminal is determined, the accuracy of the terminal position detection can be improved.
  • the positioning device 10 includes a reliability detection unit 14, a position information acquisition, in addition to the observation amount generation unit 11, the positioning unit 12, and the mobility detection unit 13. Unit 15, mobility detection sensor 16, and output unit 17.
  • generation part 11, the positioning part 12, the mobility detection part 13, and the reliability detection part 14 are programmed on arithmetic units 18, such as a microcomputer. Is built by running This point will be described later.
  • the position information acquisition unit 15 acquires the position specification information according to the time window set by the observation amount generation unit 11 and outputs the acquired position specification information to the observation amount generation unit 11.
  • the position information acquisition unit 15 measures the signal reception intensity or the signal transmission time when the terminal 100 transmits and receives a signal to and from the base station 120 installed in the environment, and measures the measurement. The result is acquired as position specifying information.
  • a specific example of the position information acquisition unit 15 is a communication module provided in the terminal 100.
  • the medium used for communication between terminal 100 and base station 120 is not particularly limited, and examples thereof include radio waves, ultrasonic waves, sound waves, and infrared rays.
  • specific examples of the base station 120 include a base station for a wireless LAN (Local Area Network), a base station for a mobile phone, and a GPS (Global Positioning System) satellite.
  • the mobility detection sensor 16 is a sensor for detecting mobility, and for example, an acceleration sensor is used as the mobility detection sensor 16. In the following description, a case where an acceleration sensor is used as the mobility detection sensor 16 will be described. In this case, the mobility detection sensor 16 outputs a signal for specifying the acceleration of the terminal 100 to the mobility detection 13.
  • the mobility detector 13 detects the acceleration of the terminal 100 based on the signal from the mobility detection sensor 16. Then, the mobility detector 13 obtains the detected acceleration change (change amount per unit time), and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detect the mobility of the terminal.
  • the mobility detected in this way is 0 when there is no movement of the terminal 100, and 1 when there is the most movement (when the change in acceleration is the largest). Further, the mobility value increases as the degree of movement of the terminal 100 increases, that is, as the acceleration change of the terminal 100 increases.
  • the observation amount generation unit 11 determines the terminal 100 from the measurement result (position specifying information) output from the position information acquisition unit 1 and the mobility of the terminal detected by the mobility detection unit 13. An observation amount used for detecting the position of is generated.
  • the observed amount generation unit 11 firstly relates the detected mobility of the terminal to a preset mobility and a time window length (hereinafter referred to as “time window length”). To determine the time window length.
  • FIG. 2 is a diagram illustrating an example of the relationship between mobility and time window length. As shown in FIG. 2, the relationship between the mobility and the time window length is set so that the time window length is the largest when the mobility is 0, and the time window length is the smallest when the mobility is 1. ing. Furthermore, the relationship between the mobility and the time window length is set so that the time window length decreases as the mobility increases between 0 and 1.
  • the observation amount generation unit 11 acquires the measurement result (position specifying information) obtained by the position information acquisition unit 15 while tracing back the time by the determined time window length with the current time as a reference. Further, the observation amount generation unit 11 may cause the position information acquisition unit 15 to perform measurement with the determined time window length and output the measurement result acquired at this time.
  • the observation amount generation unit 11 calculates a statistic using the acquired measurement result (position specifying information).
  • the observation amount generation unit 11 can output the calculated statistic as an observation amount to the positioning unit 12. Examples of the statistic include an average value, a median value, a mode value, a maximum value, and a minimum value for a plurality of acquired measurement results.
  • the positioning unit 12 detects the position of the terminal based on the observation amount output from the observation amount generation unit 11. Specifically, the positioning unit 12 estimates the distance between the terminal 100 and each base station 120 based on the observation amount obtained from the measurement result between the terminal 100 and each base station 120, And the position of the terminal 100 is detected by applying the estimated distance for each base station to the principle of three-point surveying.
  • the positioning unit 12 obtains a feature amount for each base station from the observation amount obtained from the measurement result between the terminal 100 and each base station 120, and the position of the acquired feature amount is known in advance.
  • the position of the terminal 100 can also be detected by comparing with the feature amount acquired at the place.
  • the reliability detection unit 14 detects the reliability indicating the reliability of the position of the terminal 100 detected by the positioning unit 12 based on the mobility.
  • the reliability is set such that the value is higher as the mobility of the terminal 100 is smaller, and the value is lower as the mobility of the terminal 100 is larger.
  • the reliability detection unit 14 determines the reliability by applying the mobility of the terminal 100 detected by the mobility detection unit 13 to a preset relationship between the mobility and the reliability. The reliability obtained in this manner increases as the reliability of the position detection result (positioning result) increases, and decreases as the reliability of the positioning result decreases.
  • FIG. 3 is a diagram illustrating an example of the relationship between mobility and reliability. As shown in FIG. 3, the relationship between the mobility and the reliability is set so that the reliability is the highest when the mobility is 0, and the reliability is the lowest when the mobility is 1. Furthermore, the relationship between the mobility and the reliability is set so that the reliability decreases as the mobility increases between 0 and 1.
  • the output unit 17 outputs the terminal position (positioning result) detected by the positioning unit 12 and the reliability detected by the reliability detection unit 14 to the outside of the positioning device 10.
  • the output unit 17 outputs the positioning result and the reliability to the display device 19 provided in the terminal device 10 and displays it on the display screen.
  • the output unit 17 can also output the positioning result and the reliability to an external device other than the terminal 100.
  • FIG. 4 is a flowchart showing the operation of the positioning device according to Embodiment 1 of the present invention.
  • FIGS. 1 to 3 are referred to as appropriate.
  • the positioning method is implemented by operating the positioning device 10. Therefore, the description of the positioning method in the first embodiment is replaced with the following description of the operation of the positioning device 10.
  • the mobility detector 13 detects acceleration based on a signal from the mobility detection sensor 16, and further detects the mobility of the terminal 100 using the detected acceleration. (Step A1).
  • the mobility detector 13 outputs the detected mobility to the observation amount generator 11 and the reliability detector 14.
  • the observation amount generation unit 11 determines the time window length by applying the mobility detected in Step A1 to the relationship between the mobility set in advance and the time window length (see FIG. 2) (Step S1). A2). Next, the observation amount generation unit 11 causes the position information acquisition unit 15 to acquire the position specifying information in the determined time window length, specifically, measure the signal reception intensity or the signal transmission time. Then, the position specifying information (measurement result) is acquired from the position information acquiring unit 15 (step A3).
  • the observation amount generation unit 11 generates an observation amount used for detecting the position of the terminal 100 using the acquired position specifying information (step A4). Specifically, the observed amount generation unit 11 calculates a statistic using the acquired position specifying information, and outputs the calculated statistic to the positioning unit 12 as an observed amount.
  • the positioning unit 12 detects the position of the terminal 100 based on the observation amount output from the observation amount generation unit 11 (step A5). Specifically, the positioning unit 12 estimates the distance between the terminal 100 and each base station 120 based on the observation amount, and applies the estimated distance for each base station to the principle of three-point surveying. Then, the position of the terminal 100 is detected. In addition, the positioning unit 12 outputs the detected position (positioning result) of the terminal 100 to the output unit 17.
  • the reliability detection unit 14 detects the reliability of the position of the terminal 100 detected in step A5 based on the mobility output by the mobility detection unit 13 in step A1 (step A6). Specifically, the reliability detection unit 14 applies the mobility output in step A1 to a preset relationship between the mobility and the positioning reliability (see FIG. 3) to obtain the reliability. Further, the reliability detection unit 14 outputs the obtained reliability to the output unit 17.
  • the output unit 17 combines the positioning result detected by the positioning unit 12 in step A5 and the reliability detected by the reliability detection unit 14 in step A6, and displays these on the display provided in the terminal device 100. It outputs to the apparatus 19 (step A7).
  • step A ⁇ b> 7 the output unit 17 can also output the positioning result and the reliability to an external device other than the terminal 100.
  • the program in the first embodiment may be a program that causes a terminal equipped with a computer to execute steps A1 to A7 shown in FIG.
  • the positioning device 10 and the positioning method in the first embodiment can be realized by installing and executing this program on a terminal computer.
  • a CPU Central Processing Unit
  • the computer functions as the arithmetic unit 18 shown in FIG. 1 and performs processing.
  • FIG. 5 is a block diagram showing an example of a computer that can implement the positioning device according to Embodiment 1 of the present invention.
  • the terminal 100 includes a computer (microcomputer) 130 that functions as the arithmetic unit 18 shown in FIG. Further, the terminal 100 includes a communication module 137 that functions as the position information acquisition unit 15 (see FIG. 1) and an acceleration sensor 138 that functions as the mobility detection sensor 16 (see FIG. 1).
  • a computer microcomputer 130 that functions as the arithmetic unit 18 shown in FIG.
  • the terminal 100 includes a communication module 137 that functions as the position information acquisition unit 15 (see FIG. 1) and an acceleration sensor 138 that functions as the mobility detection sensor 16 (see FIG. 1).
  • the computer 130 includes a CPU 131, a RAM (Random Access Memory) 132, an input interface 133, a display controller 134, and a storage device 135. These units are connected to each other via a bus 136 so that data communication is possible.
  • a nonvolatile semiconductor storage device such as a flash memory is used.
  • the CPU 131 performs various operations by expanding the program stored in the storage device 135 in the RAM 132 and executing them in a predetermined order.
  • the communication module 137 and the acceleration sensor 138 described above are connected to the input interface 133, and the CPU 131 acquires signals from these via the input interface 133.
  • the display controller 134 is connected to the display device 19 and controls display on the display device 19. The display controller 134 functions as the output unit 17 illustrated in FIG.
  • the CPU 131 causes the observation amount generation unit 11, the positioning unit 12, the mobility detection unit 13, and the reliability detection unit 14 to operate. Functions as a process. As a result, the positioning device 10 is realized.
  • the movement state of the terminal 100 is determined using an acceleration sensor or the like, and when the movement is small, a long-time measurement result (position specifying information) is acquired and the movement is large. In some cases, a short-time measurement result is obtained. Then, an observation amount is generated from the measurement result thus obtained, and the position of the terminal 100 is detected based on the observation amount.
  • the measurement results obtained at short intervals are used, so that the position detection is highly accurate.
  • measurement results obtained at long intervals are used, so that it is possible to reduce observation bias and omission, and in this case as well, high accuracy of position detection can be achieved.
  • the reliability is output such that the value is high when the movement of the terminal is small and the value is low when the movement of the terminal is large. Therefore, the user of the terminal can determine whether or not the result of the position detection has a reliability suitable for the purpose when using the result of the position detection of the terminal.
  • Embodiment 2 Next, a positioning device, a positioning method, and a program according to Embodiment 2 of the present invention will be described with reference to FIGS.
  • FIG. 6 is a block diagram showing the configuration of the positioning device according to Embodiment 2 of the present invention.
  • the positioning device 20 includes an observation amount generation unit 21, a positioning unit 22, a mobility detection unit 23, a reliability detection unit 24, and a position information acquisition unit 25. And an output unit 26.
  • the observation amount generation unit 21, the positioning unit 22, the reliability detection unit 24, the position information acquisition unit 25, and the output unit 26, respectively, are the observation amount generation unit 11, shown in FIG.
  • the same processing as that of the positioning unit 12, the reliability detection unit 14, the position information acquisition unit 15, and the output unit 17 is executed.
  • the positioning device 20 according to the second embodiment is also built inside the terminal device 100.
  • the positioning device 20 does not include the mobility detection sensor 16 shown in FIG. 1 in the first embodiment, and is different from the positioning device 10 in the first embodiment in this respect. For this reason, in the positioning device 20, the mobility detector 23 executes a process different from that of the mobility detector 13 shown in FIG. 1 in the first embodiment.
  • the difference from the first embodiment will be mainly described.
  • the mobility detection unit 23 obtains a change per unit time of the position specifying information (measurement result) acquired by the position information acquisition unit 25, and the change is large based on the obtained change.
  • the mobility of the terminal 100 is detected such that the value increases and the value decreases as the change decreases.
  • the terminal 100 and the base station when communicating between the terminal 100 and each base station 120 are used as the position specifying information.
  • Information specifying the positional relationship with 120 for example, signal reception intensity, signal transmission time, and the like.
  • the position information acquisition unit 1 measures the signal reception strength or signal transmission time during communication between the terminal 100 and each base station. In this case, when the terminal 100 moves greatly, the measured signal reception intensity or signal transmission time varies greatly accordingly. For this reason, the movement detection unit 23 can detect the mobility of the terminal 100 based on the change per unit time of the measurement result obtained by the position information acquisition unit 1.
  • FIG. 7 is a flowchart showing the operation of the positioning device according to Embodiment 2 of the present invention.
  • FIG. 6 is taken into consideration as appropriate.
  • the positioning method is implemented by operating the positioning device 20. Therefore, the description of the positioning method in the second embodiment is replaced with the following description of the operation of the positioning device 20.
  • the mobility detector 23 acquires position specifying information at a predetermined interval with respect to the position information acquisition unit 25, specifically, signal reception intensity or signal transmission time, etc.
  • the mobility is detected from the change per unit time of the obtained position specifying information (measurement result) (step A11).
  • the mobility detector 23 outputs the detected mobility to the observation amount generator 21 and the reliability detector 24.
  • the observation amount generation unit 21 determines the time window length by applying the mobility detected in Step A11 to the relationship between the mobility set in advance and the time window length (see FIG. 2) (Step S11). A12). Next, the observation amount generation unit 21 causes the position information acquisition unit 25 to acquire the position specifying information in the determined time window length, specifically, measure the signal reception intensity or the signal transmission time. The position specifying information (measurement result) is acquired from the position information acquisition unit 25 (step A13).
  • the observation amount generation unit 21 generates an observation amount used for detecting the position of the terminal 100 using the acquired position specifying information (step A14).
  • the positioning unit 22 detects the position of the terminal 100 based on the observation amount output from the observation amount generation unit 21 (step A15).
  • the reliability detection unit 24 detects the reliability of the position of the terminal 100 detected in step A15 based on the mobility output by the mobility detection unit 23 in step A11 (step A16).
  • the output unit 26 combines the positioning result detected by the positioning unit 22 in step A15 and the reliability detected by the reliability detection unit 24 in step A16, and displays these in the display provided in the terminal device 100. It outputs to the apparatus 19 (step A17).
  • Steps A12 to A17 described above are the same steps as steps A2 to A7 shown in FIG.
  • the program in the second embodiment may be a program that causes a terminal equipped with a computer to execute steps A11 to A17 shown in FIG. By installing and executing this program on a terminal computer, the positioning device 20 and the positioning method in the second embodiment can be realized.
  • a CPU Central Processing Unit
  • the computer functions as the arithmetic device 27 shown in FIG. 6 and performs processing.
  • FIG. 8 is a block diagram illustrating an example of a computer capable of realizing the positioning device according to Embodiment 2 of the present invention.
  • the terminal 100 includes a computer (microcomputer) 130 that functions as the arithmetic unit 27 shown in FIG.
  • the terminal 100 includes only the communication module 137 that functions as the position information acquisition unit 15 (see FIG. 1).
  • the computer 130 is the same as the computer shown in FIG.
  • the computer 130 includes a CPU 131, a RAM (Random Access Memory) 132, an input interface 133, a display controller 134, and a storage device 135.
  • a CPU 131 a central processing unit (CPU) 131
  • a RAM Random Access Memory
  • an input interface 133 a display controller 134
  • the CPU 131 causes the observation amount generation unit 21, the positioning unit 22, the mobility detection unit 23, and the reliability detection. It functions as the unit 24 and performs processing. As a result, the positioning device 20 is realized.
  • the positioning device 20 is realized even if the terminal 100 is not equipped with a sensor such as an acceleration sensor. According to the second embodiment, the same effect as in the first embodiment can be obtained without using a mobility detection sensor such as an acceleration sensor. Moreover, according to this Embodiment 2, the kind of terminal 100 which can construct
  • FIG. 9 is a block diagram showing a configuration of the positioning apparatus according to Embodiment 3 of the present invention.
  • the positioning device 30 includes an observation amount generation unit 31, a positioning unit 32, a mobility detection unit 33, a reliability detection unit 34, and a position information acquisition unit 35. And an output unit 36.
  • the positioning unit 32, the reliability detection unit 34, the position information acquisition unit 35, and the output unit 36 are respectively the positioning unit 12, the reliability detection unit 14, and the position information shown in FIG. The same processing as that of the acquisition unit 15 and the output unit 17 is executed.
  • the positioning device 30 according to the second embodiment is also built inside the terminal device 100.
  • the positioning device 30 does not include the mobility detection sensor 16 shown in FIG. 1 in the first embodiment, and is different from the positioning device 10 in the first embodiment in this respect. For this reason, in the positioning device 30, the observation amount generation unit 31 and the mobility detection unit 33 execute processing different from the observation amount generation unit 11 and the mobility detection unit 13 shown in FIG. 1 in the first embodiment. To do.
  • the positioning device 30 further includes a storage unit 38.
  • the difference from the first embodiment will be mainly described.
  • the mobility detection unit 33 obtains a change in the position of the terminal 100 detected by the positioning unit 32, and based on the obtained change, the larger the change, the larger the value, and the smaller the change. The mobility of the terminal 100 whose value becomes smaller is detected. In addition, the mobility detection unit 33 stores the detected mobility in the storage unit 38.
  • the mobility of the terminal 100 is obtained from a change in the position of the terminal 100, and the observation amount generation unit 31 uses the mobility detected by the mobility detection unit 33 in the past, Determine the time window. Specifically, the observation amount generation unit 31 acquires the latest mobility stored in the storage unit 38, that is, the mobility detected last time, and uses this to determine a time window.
  • FIG. 10 is a flowchart showing the operation of the positioning device according to Embodiment 3 of the present invention.
  • FIG. 10 is taken into consideration as appropriate.
  • the positioning method is implemented by operating the positioning device 30. Therefore, the description of the positioning method in the third embodiment is replaced with the following description of the operation of the positioning device 30.
  • the observation amount generation unit 31 accesses the storage unit 38 and acquires the latest mobility stored therein (step A21). Next, the observation amount generation unit 31 determines the time window length by applying the mobility acquired in Step A21 to the relationship between the mobility set in advance and the time window length (see FIG. 2) (Step A22). ).
  • the observation amount generation unit 31 causes the position information acquisition unit 35 to acquire position specifying information in the determined time window length, specifically, measure signal reception intensity or signal transmission time. Then, the position specifying information (measurement result) is acquired from the position information acquiring unit 35 (step A23).
  • the observation amount generation unit 31 generates an observation amount used for detecting the position of the terminal 100 using the acquired position specifying information (step A24).
  • the positioning unit 32 detects the position of the terminal 100 based on the observation amount output by the observation amount generation unit 21 (step A25). In addition, the positioning unit 32 outputs the detected position (positioning result) of the terminal 100 to the output unit 17 and the mobility detection unit 33.
  • the mobility detection unit 33 detects the mobility from the position detection result output by the positioning unit 32 in step A25 and the position detection result output by the positioning unit 32 in the previous step A25. Also, the mobility detector 33 outputs the detected mobility to the storage unit 38, and updates the latest mobility in the storage unit 38 (step A26). The mobility updated in step A26 is used later when step A21 is executed. In step A26, the mobility detector 33 also outputs the detected mobility to the reliability detector 34.
  • the reliability detection unit 34 detects the reliability of the position of the terminal 100 detected in step A25 based on the mobility output by the mobility detection unit 33 in step A26 (step A27).
  • the output unit 26 combines the positioning result detected by the positioning unit 32 in step A25 and the reliability detected by the reliability detection unit 24 in step A27, and displays these in the display provided in the terminal device 100. It outputs to the apparatus 19 (step A28).
  • Steps A23 to A25 described above are the same steps as steps A3 to A5 shown in FIG. Further, steps A27 and A28 described above are the same steps as steps A6 and A7 shown in FIG.
  • the program in the third embodiment may be a program that causes a terminal equipped with a computer to execute steps A21 to A28 shown in FIG.
  • the positioning device 30 and the positioning method according to the third embodiment can be realized by installing and executing this program on a terminal computer.
  • a CPU Central Processing Unit
  • the computer functions as the arithmetic device 37 shown in FIG. 9 and performs processing.
  • the computer functioning as the arithmetic device 37 shown in FIG. 9 includes the computer 130 shown in FIG. 8 as in the second embodiment.
  • the program in the third embodiment is stored in the storage device 135, the CPU 131 functions as the observation amount generation unit 31, the positioning unit 32, the mobility detection unit 33, and the reliability detection unit 34.
  • the RAM 132 functions as the storage unit 38. As a result, the positioning device 30 is realized.
  • the positioning device 30 is realized even if the terminal 100 is not provided with a sensor such as an acceleration sensor. According to the third embodiment, the same effect as in the first embodiment can be obtained without using a mobility detection sensor such as an acceleration sensor. Moreover, according to this Embodiment 3, the kind of terminal 100 which can construct
  • FIG. 11 is a diagram showing an example of a network system used in the embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an example of the position specifying information measured in the embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an example of an observation amount created in the embodiment of the present invention. Further, the present example described below corresponds to the first embodiment. Therefore, in the following description, FIGS. 1 to 5 are referred to as appropriate.
  • an IEEE 802.11 wireless local area network (hereinafter referred to as wireless LAN) system 110 is constructed by a terminal 100 and a base station 120.
  • the base station 120 is an access point (AP) used in the wireless LAN system.
  • AP access point
  • the terminal 100 is a mobile phone, a smart phone or the like having a wireless LAN function.
  • the terminal device 100 includes a wireless LAN module that functions as the position information acquisition unit 15 and an acceleration sensor that functions as the mobility detection sensor 16.
  • the terminal 100 includes a microcomputer inside, and the microcomputer functions as the positioning device 10 by program control.
  • the terminal 100 performs an operation called “scanning” to search for the base stations 120 existing in the vicinity in order to connect to the base station (access point) 120.
  • this scan corresponds to an operation for the position information acquisition unit 15 to acquire position specifying information.
  • position information acquisition unit 15 acquires an identifier (hereinafter referred to as “BSSID”) of each base station 120 existing in the vicinity by scanning, and further, from each base station.
  • the radio field intensity (hereinafter referred to as “RSSI”) of the received signal is measured.
  • a single scanning operation may take a time from several hundred milliseconds to several seconds in some cases.
  • the feature vector obtained by this scan corresponds to the position specifying information.
  • the operation of the terminal 100 in this embodiment will be described along the steps shown in FIG.
  • the microcomputer provided in the terminal 100 first detects the amount of change of the acceleration measured by the acceleration sensor during the past certain time (for example, 5 seconds) as the mobility.
  • Step A2 the microcomputer determines whether the terminal 100 is moving or not based on the detected mobility. For example, when the difference between the maximum value and the minimum value of the amount of change in the past certain time of acceleration is equal to or less than a preset threshold value (for example, 0.1 G), the microcomputer determines that the object has not moved. On the other hand, if the difference between the maximum value and the minimum value is greater than a preset threshold value, the microcomputer determines that it is moving.
  • a preset threshold value for example, 0.1 G
  • the microcomputer determines the number of scans per unit time to be executed using the wireless LAN function according to the determination result based on the mobility (presence / absence of movement). For example, if the microcomputer determines that the terminal 100 is moving, the microcomputer determines the number of scans to be a small number (for example, once). On the other hand, if the microcomputer determines that it has not moved, it determines the number of scans to be a large number (for example, 3 times). In this embodiment, a value obtained by dividing the unit time by the number of scans corresponds to the time window length.
  • Step A3 the microcomputer operates the wireless LAN module as many times as the number of scans determined in this way, executes the scan, and acquires a measurement result (feature vector) for each scan.
  • the acquired measurement result corresponds to the position specifying information.
  • the microcomputer calculates an RSSI statistic for the number of scans for each base station based on the acquired feature vectors for the number of scans, and generates an observation amount used for positioning.
  • an average value, median value, mode value, maximum value, minimum value, or the like can be used as a statistic.
  • the radio wave intensity (signal reception intensity) measured from each base station is “ ⁇ n ”.
  • n indicates a number assigned to the base station.
  • the number of scans when it is determined that the terminal 100 is moving is set to 1 and the number of scans when it is determined that the terminal 100 is not moved is set to 3 times.
  • the maximum value is used as the statistic. In such a case, the observation amount is as shown in FIG. 13, for example.
  • Step A5 the microcomputer compares the observation amount generated in step A4 with the RSSI measured between the base station 120 and the terminal 100 whose positions are specified in advance, and the terminal 100 and each base station 120 Estimate the distance. Then, the microcomputer detects the position of the terminal 100 based on the principle of three-point surveying using the estimated distance. Further, the microcomputer obtains the closeness between the observation amount generated in step A4 and the feature vector obtained at a plurality of positions in advance, and detects the position of the terminal 100 based on the obtained proximity. You can also.
  • Step A6 the microcomputer detects the reliability indicating the reliability of the position of the terminal 100 detected by the positioning unit 12 based on the mobility.
  • the microcomputer acquires the number of scans determined in step A2 as the reliability. The greater the number of scans, the higher the reliability of the positioning result.
  • Step A7 the microcomputer displays the position of the terminal 100 detected in step A5 and the reliability acquired in step A6 on a display device provided in the terminal 100. As a result, the user of the terminal 100 can know his position and its reliability.
  • the observation amount is generated from the scan results of a large number of times, so that the position detection accuracy is improved.
  • the position detection accuracy deteriorates due to the movement of the terminal during the multiple scans. Is set to be small, so that deterioration in position detection accuracy is suppressed.
  • the position detection result when the movement of the terminal is small, it means that the reliability of the position detection result is high, and when the movement of the terminal is large, the value means that the reliability of the position detection result is low. Is output as the reliability of the position detection result. Therefore, when using the position detection result, the user can determine whether the position detection result has a reliability suitable for the purpose.
  • a positioning device for detecting the position of a terminal, A mobility detector for detecting a mobility representing a movement state of the terminal; A time window is set according to the detected mobility, information for specifying the position of the terminal is acquired in the set time window, and the position of the terminal is detected using the acquired information
  • An observable generator for generating an observable used for A positioning unit that detects a position of the terminal based on the generated observation amount;
  • a positioning device characterized by comprising:
  • the terminal has a function of communicating with a base station;
  • the positioning apparatus according to supplementary note 1, wherein the observation amount generation unit acquires information specifying a positional relationship of the terminal with the base station as the information.
  • Appendix 3 The information for specifying the positional relationship of the terminal with the base station is acquired according to the time window set by the observation amount generation unit, and the acquired information is output to the observation amount generation unit.
  • a reliability detection unit for detecting the reliability
  • An output unit for outputting the position of the terminal detected by the positioning unit and the reliability detected by the reliability detection unit;
  • the positioning device according to any one of supplementary notes 1 to 3.
  • the mobility detector obtains a change in acceleration obtained from an acceleration sensor provided in the terminal, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility; The positioning device according to any one of supplementary notes 1 to 4.
  • the mobility detector obtains a change in the information acquired by the position information acquisition unit, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility; The positioning device according to any one of supplementary notes 1 to 4.
  • the mobility detection unit obtains a change in the position of the terminal detected by the positioning unit, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detect the degree, The positioning device according to any one of supplementary notes 1 to 4.
  • a positioning method for detecting the position of a terminal (A) detecting a mobility indicating a movement state of the terminal; (B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and (C) detecting the position of the terminal based on the observation amount generated in the step (b);
  • the terminal has a function of communicating with a base station;
  • the positioning method according to appendix 8 wherein in the step (b), information specifying a positional relationship of the terminal with the base station is acquired as the information.
  • step (a) a change in acceleration obtained from an acceleration sensor provided in the terminal is obtained. Based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility, The positioning method according to any one of appendices 8 to 10.
  • step (a) information for specifying the position of the terminal is acquired, a change in the acquired information is obtained, and based on the obtained change, the value increases as the change increases.
  • step (a) a change in the position of the terminal is obtained, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases.
  • the positioning method according to any one of appendices 8 to 10.
  • a computer-readable recording medium recording a program for detecting the position of a terminal by a computer, In the computer, (A) detecting a mobility indicating a movement state of the terminal; (B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and (C) detecting the position of the terminal based on the observation amount generated in the step (b);
  • the computer-readable recording medium which has recorded the program containing the instruction
  • the terminal has a function of communicating with a base station; 15.
  • step (a) a change in acceleration obtained from an acceleration sensor provided in the terminal is obtained. Based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility, The computer-readable recording medium according to any one of appendices 14 to 16.
  • step (a) information for specifying the position of the terminal is acquired, a change in the acquired information is obtained, and based on the obtained change, the value increases as the change increases.
  • step (a) a change in the position of the terminal is obtained, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases.
  • the computer-readable recording medium according to any one of appendices 14 to 16.
  • the present invention it is possible to improve the accuracy of terminal position detection even when determining the stationary state of a terminal. Therefore, the present invention can improve the accuracy of position detection of humans and objects using a positioning system, and is useful in various fields where positioning of terminals is required.
  • Positioning device (Embodiment 1) DESCRIPTION OF SYMBOLS 11 Observed quantity production

Abstract

In order to detect the position of a terminal (100), a position measuring device (10) is provided with: a mobility detecting unit (13), which detects mobility that indicates a moving state of the terminal (100); an observation quantity generating unit (11), which sets a time window, corresponding to the detected mobility, acquires, with the set time window, information for specifying the position of the terminal (100), and generates, using the acquired information, an observation quantity to be used for the purpose of detecting the position of the terminal (100); and a position measuring unit (12), which detects the position of the terminal (100) on the basis of the observation quantity thus generated. With such configuration, accuracy of detecting the position of the terminal is improved, even in the cases where it is determined that the terminal is in a stationary state.

Description

測位装置、測位方法、およびコンピュータ読み取り可能な記録媒体POSITIONING DEVICE, POSITIONING METHOD, AND COMPUTER-READABLE RECORDING MEDIUM
 本発明は、端末の位置を検出するための測位装置、測位方法、及びこれらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to a positioning device for detecting the position of a terminal, a positioning method, and a computer-readable recording medium on which a program for realizing the positioning is recorded.
 従来から、人、物などの移動体に取り付け又は保持された端末の位置を検出するシステムとして、GPS、無線LAN、RFID(Radio Frequency Identification)、赤外線、超音波などを利用した測位システムが提案されている。例えば、非特許文献1は、移動体に取り付けられた端末から、無線、超音波、音波、赤外線などの様々な媒体を用いる測位システムを開示している。非特許文献1に開示された測位システムは、媒体を用いて、端末に対する信号受信強度及び信号伝達時間等の測定を行ない、測定値から観測量を生成し、そして、生成した観測量に基づいて移動体の位置を検出する。 Conventionally, positioning systems using GPS, wireless LAN, RFID (Radio Frequency Identification), infrared rays, ultrasonic waves, etc. have been proposed as systems for detecting the position of a terminal attached to or held by a moving body such as a person or an object. ing. For example, Non-Patent Document 1 discloses a positioning system that uses various media such as radio waves, ultrasonic waves, sound waves, and infrared rays from a terminal attached to a moving body. The positioning system disclosed in Non-Patent Document 1 uses a medium to measure signal reception strength and signal transmission time for a terminal, generates an observation amount from the measurement value, and based on the generated observation amount Detect the position of the moving object.
 但し、このような媒体を用いる測位システムにおいては、端末の保持方法又は観測の特性によって、観測に偏り、欠落、又は両方が生じ、測位性能が劣化してしまうことがある。よって、観測の偏り及び欠落を低減するために、一般的には、次の統計量を用いる処理が実行されている。まず、時間窓が設定され、設定された時間窓の間に得られた複数の測定値から統計量が算出される。次に、算出された統計量に基づいて、測位に用いる観測量が生成される。 However, in a positioning system using such a medium, depending on the terminal holding method or the observation characteristics, the observation may be biased, missing, or both, and the positioning performance may deteriorate. Therefore, in order to reduce the bias and lack of observation, generally, processing using the following statistics is executed. First, a time window is set, and a statistic is calculated from a plurality of measured values obtained during the set time window. Next, based on the calculated statistics, an observation amount used for positioning is generated.
 ここで、「統計量」としては、複数の測定値における、平均値、中央値、最頻値、最大値、及び最小値等が挙げられる。また、上述の手法では、時間窓の時間長(以下「時間窓長」と表記する。)を長くすればするほど、観測の偏り及び欠落の低減が図られることになる。 Here, examples of the “statistic” include an average value, a median value, a mode value, a maximum value, and a minimum value among a plurality of measurement values. Further, in the above-described method, as the time length of the time window (hereinafter referred to as “time window length”) is increased, the observation bias and the omission are reduced.
 また、このような測位システムによる位置検出を高精度化するために、加速度センサ等を用いて判定された端末の移動状態を利用する技術も提案されている(例えば、特許文献1及び特許文献2参照)。 In addition, in order to improve the position detection by such a positioning system, a technique that uses the movement state of a terminal determined using an acceleration sensor or the like has also been proposed (for example, Patent Document 1 and Patent Document 2). reference).
 具体的には、特許文献1は、端末の静止を2段階で判定することによって、端末の静止状態に起因する位置検出性能の劣化を防ぐ技術を開示している。更に、特許文献2は、端末が静止している場合に、過去の測位結果を参照することによって、測位結果が乱れることを防ぐ技術を開示している。 Specifically, Patent Document 1 discloses a technique for preventing degradation of position detection performance due to the stationary state of the terminal by determining the stationary state of the terminal in two stages. Furthermore, Patent Document 2 discloses a technique for preventing a positioning result from being disturbed by referring to a past positioning result when the terminal is stationary.
特開2008-249396号公報JP 2008-249396 A 特開2008-116370号公報JP 2008-116370 A
 ここで、上述した統計量を用いる処理を、特許文献1及び2に開示された技術に組み合わせる場合について検討する。この場合は、観測の偏り及び欠落が低減されるので、よりいっそう、位置検出の高精度化が達成されることが期待される。 Here, the case where the process using the above-described statistical amount is combined with the techniques disclosed in Patent Documents 1 and 2 will be examined. In this case, since the bias and lack of observation are reduced, it is expected that higher accuracy in position detection will be achieved.
 ところで、上述した統計量を用いる処理では、端末が移動していることを前提としているため、時間窓が大きい程、観測の偏り及び欠落の低減が図られる。しかしながら、特許文献1及び2に開示された技術においては、停止状態を厳密に判定する必要があるため、時間窓が大きい程、却って、位置検出精度が劣化してしまう。 By the way, since the above-described processing using the statistic is based on the premise that the terminal is moving, the larger the time window, the smaller the observation bias and the omission. However, in the techniques disclosed in Patent Documents 1 and 2, since it is necessary to strictly determine the stop state, the position detection accuracy deteriorates as the time window increases.
 本発明の目的の一例は、上記問題を解消し、端末の静止状態の判断を行なう場合であっても、端末の位置検出の精度の向上を図りうる、測位装置、測位方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。 An example of an object of the present invention is a positioning device, a positioning method, and a computer-readable device that can improve the accuracy of terminal position detection even when the above-described problem is solved and the terminal stationary state is determined. Is to provide a simple recording medium.
 上記目的を達成するため、本発明の一側面における測位装置は、端末の位置を検出するための測位装置であって、
 前記端末の移動状態を表す移動度を検出する、移動度検出部と、
 検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、観測量生成部と、
 生成された前記観測量に基づいて、前記端末の位置を検出する、測位部と、
を備えていることを特徴とする。
In order to achieve the above object, a positioning device according to one aspect of the present invention is a positioning device for detecting the position of a terminal,
A mobility detector for detecting a mobility representing a movement state of the terminal;
A time window is set according to the detected mobility, information for specifying the position of the terminal is acquired in the set time window, and the position of the terminal is detected using the acquired information An observable generator for generating an observable used for
A positioning unit that detects a position of the terminal based on the generated observation amount;
It is characterized by having.
 また、上記目的を達成するため、本発明の一側面における測位方法は、端末の位置を検出するための測位方法であって、
(a)前記端末の移動状態を表す移動度を検出する、ステップと、
(b)前記ステップ(a)で検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、ステップと、
(c)前記ステップ(b)で生成された前記観測量に基づいて、前記端末の位置を検出する、ステップと、
を有することを特徴とする。
In order to achieve the above object, a positioning method in one aspect of the present invention is a positioning method for detecting the position of a terminal,
(A) detecting a mobility indicating a movement state of the terminal;
(B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and
(C) detecting the position of the terminal based on the observation amount generated in the step (b);
It is characterized by having.
 更に、上記目的を達成するため、本発明の一側面におけるコンピュータ読み取り可能な記録媒体は、コンピュータによって端末の位置を検出するための、プログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)前記端末の移動状態を表す移動度を検出する、ステップと、
(b)前記ステップ(a)で検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、ステップと、
(c)前記ステップ(b)で生成された前記観測量に基づいて、前記端末の位置を検出する、ステップと、
を実行させる、命令を含むプログラムを記録していることを特徴とする。
Furthermore, in order to achieve the above object, a computer-readable recording medium according to one aspect of the present invention is a computer-readable recording medium recording a program for detecting the position of a terminal by a computer,
In the computer,
(A) detecting a mobility indicating a movement state of the terminal;
(B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and
(C) detecting the position of the terminal based on the observation amount generated in the step (b);
A program including an instruction for executing is recorded.
 以上のように、本発明によれば、端末の静止状態の判断を行なう場合であっても、端末の位置検出の精度の向上を図ることができる。 As described above, according to the present invention, it is possible to improve the accuracy of terminal position detection even when determining the stationary state of a terminal.
図1は、本発明の実施の形態1における測位装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a positioning device according to Embodiment 1 of the present invention. 図2は、移動度と時間窓長との関係の一例を示す図である。FIG. 2 is a diagram illustrating an example of the relationship between mobility and time window length. 図3は、移動度と信頼度との関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of a relationship between mobility and reliability. 図4は、本発明の実施の形態1における測位装置の動作を示すフロー図である。FIG. 4 is a flowchart showing the operation of the positioning device according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1における測位装置を実現可能なコンピュータの一例を示すブロック図である。FIG. 5 is a block diagram showing an example of a computer that can implement the positioning device according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態2における測位装置の構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of the positioning device according to Embodiment 2 of the present invention. 図7は、本発明の実施の形態2における測位装置の動作を示すフロー図である。FIG. 7 is a flowchart showing the operation of the positioning device according to Embodiment 2 of the present invention. 図8は、本発明の実施の形態2における測位装置を実現可能なコンピュータの一例を示すブロック図である。FIG. 8 is a block diagram illustrating an example of a computer capable of realizing the positioning device according to Embodiment 2 of the present invention. 図9は、本発明の実施の形態3における測位装置の構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of the positioning apparatus according to Embodiment 3 of the present invention. 図10は、本発明の実施の形態3における測位装置の動作を示すフロー図である。FIG. 10 is a flowchart showing the operation of the positioning device according to Embodiment 3 of the present invention. 図11は、本発明の実施例で用いられるネットワークシステムの一例を示す図である。FIG. 11 is a diagram showing an example of a network system used in the embodiment of the present invention. 図12は、本発明の実施例において計測された位置特定情報の一例を示す図である。FIG. 12 is a diagram illustrating an example of the position specifying information measured in the embodiment of the present invention. 図13は、本発明の実施例において作成された観測量の一例を示す図である。FIG. 13 is a diagram illustrating an example of an observation amount created in the embodiment of the present invention.
(実施の形態1)
 以下、本発明の実施の形態1における、測位装置、測位方法、及びプログラムについて、図1~図5を参照しながら説明する。
(Embodiment 1)
Hereinafter, a positioning device, a positioning method, and a program according to Embodiment 1 of the present invention will be described with reference to FIGS.
[装置構成]
 最初に、図1を用いて、本実施の形態1における測位装置10の構成について説明する。図1は、本発明の実施の形態1における測位装置の構成を示すブロック図である。
[Device configuration]
Initially, the structure of the positioning apparatus 10 in this Embodiment 1 is demonstrated using FIG. FIG. 1 is a block diagram showing a configuration of a positioning device according to Embodiment 1 of the present invention.
 図1に示すように、測位装置10は、端末100の位置を検出するための装置である。本実施の形態1では、測位装置10は、端末装置100の内部に構築されている。更に、端末装置100は、予め設置されている基地局120と通信する機能を備えており、各基地局120と共にネットワークシステム110を構成している。 As shown in FIG. 1, the positioning device 10 is a device for detecting the position of the terminal 100. In the first embodiment, the positioning device 10 is built inside the terminal device 100. Further, the terminal device 100 has a function of communicating with a base station 120 installed in advance, and constitutes a network system 110 together with each base station 120.
 また、図1に示すように、測位装置10は、観測量生成部11と、測位部12と、移動度検出部13とを備えている。このうち、移動度検出部13は、端末100の移動状態、即ち、移動の度合いを表す移動度を検出する。本実施の形態1では、後述するように、移動度は、端末100の加速度から求められる。 As shown in FIG. 1, the positioning device 10 includes an observation amount generation unit 11, a positioning unit 12, and a mobility detection unit 13. Among these, the mobility detection unit 13 detects the movement state of the terminal 100, that is, the mobility indicating the degree of movement. In the first embodiment, as will be described later, the mobility is obtained from the acceleration of terminal 100.
 観測量生成部11は、検出された移動度に応じて時間窓を設定し、設定した時間窓で、端末100の位置を特定するための情報(以下、「位置特定情報」と表記する。)を取得する。また、観測量生成部11は、取得した位置特定情報を用いて、端末100の位置の検出に用いる観測量を生成する。 The observation amount generation unit 11 sets a time window according to the detected mobility, and information for specifying the position of the terminal 100 using the set time window (hereinafter referred to as “position specifying information”). To get. Moreover, the observation amount generation unit 11 generates an observation amount used for detecting the position of the terminal 100 using the acquired position specifying information.
 本実施の形態1において、位置特定情報としては、端末100と各基地局120との間で通信を行なった際の、端末100と基地局120との位置的関係を特定する情報、例えば、信号受信強度、信号伝達時間等が挙げられる。また、観測量としては、複数の位置特定情報、即ち、基地局120毎に測定された信号受信強度及び信号伝達時間等の統計値(平均値、中央値、最頻値、最大値、最小値等)が挙げられる。測位部12は、生成された観測量に基づいて、端末100の位置を検出する。 In the first embodiment, the position specifying information is information for specifying the positional relationship between the terminal 100 and the base station 120 when communication is performed between the terminal 100 and each base station 120, for example, a signal Examples include reception intensity and signal transmission time. In addition, as the observation amount, a plurality of position specifying information, that is, statistical values (average value, median value, mode value, maximum value, minimum value) such as signal reception intensity and signal transmission time measured for each base station 120 Etc.). The positioning unit 12 detects the position of the terminal 100 based on the generated observation amount.
 このように、測位装置10では、端末の移動度を取得し、取得した移動度に応じて設定された時間窓の下で、位置特定情報が取得される。即ち、測位装置10では、端末が移動しているのか、静止しているのか、といった状態が判定され、端末が移動している場合は時間窓を小さくして、端末が静止している場合は時間窓を大きくして、位置特定情報が取得される。従って、測位装置10によれば、端末の静止状態の判断を行う場合であっても、端末の位置検出の精度の向上が図られる。 As described above, the positioning device 10 acquires the mobility of the terminal, and acquires the position specifying information under the time window set according to the acquired mobility. That is, the positioning device 10 determines whether the terminal is moving or stationary, and if the terminal is moving, the time window is reduced and the terminal is stationary. The position specifying information is acquired by increasing the time window. Therefore, according to the positioning device 10, even when the stationary state of the terminal is determined, the accuracy of the terminal position detection can be improved.
 ここで、図1に加えて図2及び図3を用いて、本実施の形態1における測位装置10の構成を更に具体的に説明する。まず、図1に示すように、本実施の形態では、測位装置10は、観測量生成部11、測位部12、及び移動度検出部13に加えて、信頼度検出部14と、位置情報取得部15と、移動度検出用センサ16と、出力部17とを備えている。 Here, the configuration of the positioning device 10 according to the first embodiment will be described more specifically with reference to FIGS. 2 and 3 in addition to FIG. First, as illustrated in FIG. 1, in the present embodiment, the positioning device 10 includes a reliability detection unit 14, a position information acquisition, in addition to the observation amount generation unit 11, the positioning unit 12, and the mobility detection unit 13. Unit 15, mobility detection sensor 16, and output unit 17.
 また、本実施の形態1では、測位装置10の構成のうち、観測量生成部11、測位部12、移動度検出部13、及び信頼度検出部14は、マイコン等の演算装置18上でプログラムを実行することによって構築されている。この点については、後述する。 Moreover, in this Embodiment 1, among the structures of the positioning apparatus 10, the observation amount production | generation part 11, the positioning part 12, the mobility detection part 13, and the reliability detection part 14 are programmed on arithmetic units 18, such as a microcomputer. Is built by running This point will be described later.
 位置情報取得部15は、位置特定情報を、観測量生成部11が設定した時間窓に応じて取得し、取得した位置特定情報を観測量生成部11に出力する。本実施の形態1では、位置情報取得部15は、端末100が、環境に設置された基地局120との間で信号を送受信した際の、信号受信強度又は信号伝達時間等を計測し、計測結果を位置特定情報として取得する。また、位置情報取得部15の具体例としては、端末100に備えられた通信モジュールが挙げられる。 The position information acquisition unit 15 acquires the position specification information according to the time window set by the observation amount generation unit 11 and outputs the acquired position specification information to the observation amount generation unit 11. In the first embodiment, the position information acquisition unit 15 measures the signal reception intensity or the signal transmission time when the terminal 100 transmits and receives a signal to and from the base station 120 installed in the environment, and measures the measurement. The result is acquired as position specifying information. A specific example of the position information acquisition unit 15 is a communication module provided in the terminal 100.
 また、本実施の形態1では、端末100と基地局120との通信に用いられる媒体は、特に限定されるものではなく、電波、超音波、音波、赤外線等が挙げられる。更に、基地局120の具体例としては、無線LAN(Local Area Network)用の基地局、携帯電話用の基地局、更には、GPS(Global Positioning System)衛星等が挙げられる。 In Embodiment 1, the medium used for communication between terminal 100 and base station 120 is not particularly limited, and examples thereof include radio waves, ultrasonic waves, sound waves, and infrared rays. Furthermore, specific examples of the base station 120 include a base station for a wireless LAN (Local Area Network), a base station for a mobile phone, and a GPS (Global Positioning System) satellite.
 移動度検出用センサ16は、移動度を検出するためのセンサであり、移動度検出用センサ16としては、例えば、加速度センサが用いられる。なお、以降の説明では、移動度検出用センサ16として加速度センサが用いられる場合について説明する。この場合、移動度検出用センサ16は、端末100の加速度を特定する信号を、移動度検出13に出力する。 The mobility detection sensor 16 is a sensor for detecting mobility, and for example, an acceleration sensor is used as the mobility detection sensor 16. In the following description, a case where an acceleration sensor is used as the mobility detection sensor 16 will be described. In this case, the mobility detection sensor 16 outputs a signal for specifying the acceleration of the terminal 100 to the mobility detection 13.
 移動度検出部13は、本実施の形態1では、移動度検出用センサ16からの信号に基づいて、端末100の加速度を検出する。そして、移動度検出部13は、検出した加速度の変化(単位時間当たりの変化量)を求め、求めた変化に基づいて、変化が大きい程値が大きくなり、変化が小さい程値が小さくなる、端末の移動度を検出する。 In the first embodiment, the mobility detector 13 detects the acceleration of the terminal 100 based on the signal from the mobility detection sensor 16. Then, the mobility detector 13 obtains the detected acceleration change (change amount per unit time), and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detect the mobility of the terminal.
 このようにして検出された移動度は、端末100の移動が無い場合に0となり、最も移動が多い場合(加速度の変化が最も大きい場合)に1となる。また、移動度の値は、端末100の移動の度合いが大きくなるに従って、即ち、端末100の加速度の変化が大きくなるに従って大きくなる。 The mobility detected in this way is 0 when there is no movement of the terminal 100, and 1 when there is the most movement (when the change in acceleration is the largest). Further, the mobility value increases as the degree of movement of the terminal 100 increases, that is, as the acceleration change of the terminal 100 increases.
 観測量生成部11は、本実施の形態1では、位置情報取得部1から出力された計測結果(位置特定情報)と、移動度検出部13によって検出された端末の移動度とから、端末100の位置の検出に用いる観測量を生成する。 In the first embodiment, the observation amount generation unit 11 determines the terminal 100 from the measurement result (position specifying information) output from the position information acquisition unit 1 and the mobility of the terminal detected by the mobility detection unit 13. An observation amount used for detecting the position of is generated.
 具体的には、観測量生成部11は、まず、検出された端末の移動度を、予め設定された移動度と時間窓の長さ(以下「時間窓長」と表記する。)との関係に当てはめて、時間窓長を決定する。図2は、移動度と時間窓長との関係の一例を示す図である。図2に示すように、移動度と時間窓長との関係は、移動度が0のときに時間窓長が最も大きく、移動度が1のときに時間窓長が最も小さくなるように設定されている。更に、移動度と時間窓長との関係は、移動度が0から1の間は、移動度が大きくなるに従って、時間窓長が小さくなるように設定されている。 Specifically, the observed amount generation unit 11 firstly relates the detected mobility of the terminal to a preset mobility and a time window length (hereinafter referred to as “time window length”). To determine the time window length. FIG. 2 is a diagram illustrating an example of the relationship between mobility and time window length. As shown in FIG. 2, the relationship between the mobility and the time window length is set so that the time window length is the largest when the mobility is 0, and the time window length is the smallest when the mobility is 1. ing. Furthermore, the relationship between the mobility and the time window length is set so that the time window length decreases as the mobility increases between 0 and 1.
 次に、観測量生成部11は、現時点を基準として、決定した時間窓長の分だけ時間を遡った間に、位置情報取得部15によって得られた計測結果(位置特定情報)を取得する。また、観測量生成部11は、位置情報取得部15に対し、決定した時間窓長での計測を行なわせ、このとき取得された計測結果を出力させても良い。 Next, the observation amount generation unit 11 acquires the measurement result (position specifying information) obtained by the position information acquisition unit 15 while tracing back the time by the determined time window length with the current time as a reference. Further, the observation amount generation unit 11 may cause the position information acquisition unit 15 to perform measurement with the determined time window length and output the measurement result acquired at this time.
 続いて、観測量生成部11は、取得した計測結果(位置特定情報)を用いて、統計量を算出する。観測量生成部11は、算出した統計量を観測量として、測位部12に出力することができる。統計量としては、取得した複数の計測結果についての、平均値、中央値、最頻値、最大値、最小値等が挙げられる。 Subsequently, the observation amount generation unit 11 calculates a statistic using the acquired measurement result (position specifying information). The observation amount generation unit 11 can output the calculated statistic as an observation amount to the positioning unit 12. Examples of the statistic include an average value, a median value, a mode value, a maximum value, and a minimum value for a plurality of acquired measurement results.
 測位部12は、観測量生成部11が出力した観測量に基づいて、端末の位置を検出する。具体的には、測位部12は、端末100と各基地局120との間の計測結果から求められている観測量に基づいて、端末100と各基地局120との間の距離を推定し、そして、推定した基地局毎の距離を、三点測量の原理に当てはめて、端末100の位置を検出する。 The positioning unit 12 detects the position of the terminal based on the observation amount output from the observation amount generation unit 11. Specifically, the positioning unit 12 estimates the distance between the terminal 100 and each base station 120 based on the observation amount obtained from the measurement result between the terminal 100 and each base station 120, And the position of the terminal 100 is detected by applying the estimated distance for each base station to the principle of three-point surveying.
 また、測位部12は、端末100と各基地局120との間の計測結果から求められている観測量から、基地局毎の特徴量を求め、取得した特徴量を、事前に位置が既知の場所で取得しておいた特徴量と比較することによっても、端末100の位置を検出することができる。 In addition, the positioning unit 12 obtains a feature amount for each base station from the observation amount obtained from the measurement result between the terminal 100 and each base station 120, and the position of the acquired feature amount is known in advance. The position of the terminal 100 can also be detected by comparing with the feature amount acquired at the place.
 信頼度検出部14は、移動度に基づいて、測位部12によって検出された端末100の位置の信頼性を示す信頼度を検出する。また、信頼度は、端末100の移動度が小さい程値が高く、端末100の移動度が大きい程値が低くなるように設定されている。 The reliability detection unit 14 detects the reliability indicating the reliability of the position of the terminal 100 detected by the positioning unit 12 based on the mobility. In addition, the reliability is set such that the value is higher as the mobility of the terminal 100 is smaller, and the value is lower as the mobility of the terminal 100 is larger.
 具体的には、信頼度検出部14は、移動度検出部13によって検出された端末100の移動度を、予め設定された、移動度と信頼度との関係に当てはめて、信頼度を求める。このようにして求められた信頼度は、位置の検出結果(測位結果)の信頼性が高い程大きくなり、測位結果の信頼性が低い程小さくなる。 Specifically, the reliability detection unit 14 determines the reliability by applying the mobility of the terminal 100 detected by the mobility detection unit 13 to a preset relationship between the mobility and the reliability. The reliability obtained in this manner increases as the reliability of the position detection result (positioning result) increases, and decreases as the reliability of the positioning result decreases.
 図3は、移動度と信頼度との関係の一例を示す図である。図3に示すように、移動度と信頼度との関係は、移動度が0のときに信頼度が最も大きく、移動度が1のときに信頼度が最も小さくなるように設定されている。更に、移動度と信頼度との関係は、移動度が0から1の間は、移動度が大きくなるに従って、信頼度が小さくなるように設定されている。 FIG. 3 is a diagram illustrating an example of the relationship between mobility and reliability. As shown in FIG. 3, the relationship between the mobility and the reliability is set so that the reliability is the highest when the mobility is 0, and the reliability is the lowest when the mobility is 1. Furthermore, the relationship between the mobility and the reliability is set so that the reliability decreases as the mobility increases between 0 and 1.
 出力部17は、測位部12によって検出された端末の位置(測位結果)と、信頼度検出部14によって検出された信頼度とを、測位装置10の外部に出力する。本実施の形態では、出力部17は、測位結果と信頼度とを、端末装置10に備えられた表示装置19に出力し、その表示画面に表示させている。また、出力部17は、測位結果と信頼度とを、端末100以外の外部の装置に出力することもできる。 The output unit 17 outputs the terminal position (positioning result) detected by the positioning unit 12 and the reliability detected by the reliability detection unit 14 to the outside of the positioning device 10. In the present embodiment, the output unit 17 outputs the positioning result and the reliability to the display device 19 provided in the terminal device 10 and displays it on the display screen. The output unit 17 can also output the positioning result and the reliability to an external device other than the terminal 100.
[システム動作]
 次に、本発明の実施の形態1における測位装置10の動作について図4を用いて説明する。図4は、本発明の実施の形態1における測位装置の動作を示すフロー図である。また、以下の説明においては、適宜図1~図3を参酌する。また、本実施の形態1では、測位装置10を動作させることによって、測位方法が、実施される。よって、本実施の形態1における測位方法の説明は、以下の測位装置10の動作説明に代える。
[System operation]
Next, operation | movement of the positioning apparatus 10 in Embodiment 1 of this invention is demonstrated using FIG. FIG. 4 is a flowchart showing the operation of the positioning device according to Embodiment 1 of the present invention. In the following description, FIGS. 1 to 3 are referred to as appropriate. In the first embodiment, the positioning method is implemented by operating the positioning device 10. Therefore, the description of the positioning method in the first embodiment is replaced with the following description of the operation of the positioning device 10.
 まず、図4に示すように、移動度検出部13は、移動度検出用センサ16からの信号に基づいて、加速度を検出し、更に、検出した加速度を用いて、端末100の移動度を検出する(ステップA1)。また、移動度検出部13は、検出した移動度を、観測量生成部11及び信頼度検出部14に出力する。 First, as shown in FIG. 4, the mobility detector 13 detects acceleration based on a signal from the mobility detection sensor 16, and further detects the mobility of the terminal 100 using the detected acceleration. (Step A1). The mobility detector 13 outputs the detected mobility to the observation amount generator 11 and the reliability detector 14.
 次に、観測量生成部11は、ステップA1で検出された移動度を、予め設定された移動度と時間窓長との関係(図2参照)に当てはめて、時間窓長を決定する(ステップA2)。次に、観測量生成部11は、位置情報取得部15に対して、決定した時間窓長での位置特定情報の取得、具体的には、信号受信強度又は信号伝達時間等の計測を行なわせ、位置情報取得部15から、位置特定情報(計測結果)を取得する(ステップA3)。 Next, the observation amount generation unit 11 determines the time window length by applying the mobility detected in Step A1 to the relationship between the mobility set in advance and the time window length (see FIG. 2) (Step S1). A2). Next, the observation amount generation unit 11 causes the position information acquisition unit 15 to acquire the position specifying information in the determined time window length, specifically, measure the signal reception intensity or the signal transmission time. Then, the position specifying information (measurement result) is acquired from the position information acquiring unit 15 (step A3).
 次に、観測量生成部11は、取得した位置特定情報を用いて、端末100の位置の検出に用いる観測量を生成する(ステップA4)。具体的には、観測量生成部11は、取得した位置特定情報を用いて、統計量を算出し、算出した統計量を観測量として測位部12へ出力する。 Next, the observation amount generation unit 11 generates an observation amount used for detecting the position of the terminal 100 using the acquired position specifying information (step A4). Specifically, the observed amount generation unit 11 calculates a statistic using the acquired position specifying information, and outputs the calculated statistic to the positioning unit 12 as an observed amount.
 次に、測位部12は、観測量生成部11が出力した観測量に基づいて、端末100の位置を検出する(ステップA5)。具体的には、測位部12は、観測量に基づいて、端末100と各基地局120との間の距離を推定し、そして、推定した基地局毎の距離を、三点測量の原理に当てはめて、端末100の位置を検出する。また、測位部12は、検出した端末100の位置(測位結果)を出力部17に出力する。 Next, the positioning unit 12 detects the position of the terminal 100 based on the observation amount output from the observation amount generation unit 11 (step A5). Specifically, the positioning unit 12 estimates the distance between the terminal 100 and each base station 120 based on the observation amount, and applies the estimated distance for each base station to the principle of three-point surveying. Then, the position of the terminal 100 is detected. In addition, the positioning unit 12 outputs the detected position (positioning result) of the terminal 100 to the output unit 17.
 次に、信頼度検出部14は、ステップA1において移動度検出部13が出力した移動度に基づいて、ステップA5で検出された端末100の位置の信頼度を検出する(ステップA6)。具体的には、信頼度検出部14は、ステップA1で出力された移動度を、予め設定されたた移動度と測位信頼度との関係(図3参照)に当てはめて、信頼度を求める。また、信頼度検出部14は、求めた信頼度を、出力部17に出力する。 Next, the reliability detection unit 14 detects the reliability of the position of the terminal 100 detected in step A5 based on the mobility output by the mobility detection unit 13 in step A1 (step A6). Specifically, the reliability detection unit 14 applies the mobility output in step A1 to a preset relationship between the mobility and the positioning reliability (see FIG. 3) to obtain the reliability. Further, the reliability detection unit 14 outputs the obtained reliability to the output unit 17.
 次に、出力部17は、ステップA5で測位部12が検出した測位結果と、ステップA6で信頼度検出部14が検出した信頼度とを合わせて、これらを、端末装置100に備えられた表示装置19に出力する(ステップA7)。 Next, the output unit 17 combines the positioning result detected by the positioning unit 12 in step A5 and the reliability detected by the reliability detection unit 14 in step A6, and displays these on the display provided in the terminal device 100. It outputs to the apparatus 19 (step A7).
 この結果、端末100のユーザは、自己の位置とその信頼性とを知ることができる。また、ステップA7では、出力部17は、測位結果及び信頼度を端末100以外の外部の装置に出力することもできる。 As a result, the user of the terminal 100 can know his position and its reliability. In step A <b> 7, the output unit 17 can also output the positioning result and the reliability to an external device other than the terminal 100.
[プログラム]
 本実施の形態1におけるプログラムは、コンピュータを備えた端末に、図4に示すステップA1~A7を実行させるプログラムであれば良い。このプログラムを端末のコンピュータにインストールし、実行することによって、本実施の形態1における測位装置10と測位方法とを実現することができる。この場合、コンピュータのCPU(Central Processing Unit)は、図1に示した演算装置18として機能し、処理を行なう。
[program]
The program in the first embodiment may be a program that causes a terminal equipped with a computer to execute steps A1 to A7 shown in FIG. The positioning device 10 and the positioning method in the first embodiment can be realized by installing and executing this program on a terminal computer. In this case, a CPU (Central Processing Unit) of the computer functions as the arithmetic unit 18 shown in FIG. 1 and performs processing.
 ここで、実施の形態1におけるプログラムを実行可能なコンピュータの構成について説明する。図5は、本発明の実施の形態1における測位装置を実現可能なコンピュータの一例を示すブロック図である。 Here, the configuration of a computer capable of executing the program in the first embodiment will be described. FIG. 5 is a block diagram showing an example of a computer that can implement the positioning device according to Embodiment 1 of the present invention.
 図5に示すように、端末100は、図1に示した演算装置18として機能するコンピュータ(マイコン)130を備えている。また、端末100には、位置情報取得部15(図1参照)として機能する通信モジュール137と、移動度検出用センサ16(図1参照)として機能する加速度センサ138とが備えられている。 As shown in FIG. 5, the terminal 100 includes a computer (microcomputer) 130 that functions as the arithmetic unit 18 shown in FIG. Further, the terminal 100 includes a communication module 137 that functions as the position information acquisition unit 15 (see FIG. 1) and an acceleration sensor 138 that functions as the mobility detection sensor 16 (see FIG. 1).
 また、図5に示すように、コンピュータ130は、CPU131と、RAM(Random Access Memory)132と、入力インターフェイス133と、表示コントローラ134と、記憶装置135とを備える。これらの各部は、バス136を介して、互いにデータ通信可能に接続されている。また、記憶装置135としては、フラッシュメモリ等の不揮発性の半導体記憶装置が用いられる。 Further, as shown in FIG. 5, the computer 130 includes a CPU 131, a RAM (Random Access Memory) 132, an input interface 133, a display controller 134, and a storage device 135. These units are connected to each other via a bus 136 so that data communication is possible. As the storage device 135, a nonvolatile semiconductor storage device such as a flash memory is used.
 CPU131は、記憶装置135に格納されているプログラムを、RAM132に展開し、これらを所定順序で実行することにより、各種の演算を実施する。上述の通信モジュール137及び加速度センサ138は、入力インターフェイス133に接続されており、CPU131は、これらからの信号を、入力インターフェイス133を介して取得する。また、表示コントローラ134は、表示装置19に接続されており、表示装置19での表示を制御する。表示コントローラ134は、図1に示した出力部17として機能する。 The CPU 131 performs various operations by expanding the program stored in the storage device 135 in the RAM 132 and executing them in a predetermined order. The communication module 137 and the acceleration sensor 138 described above are connected to the input interface 133, and the CPU 131 acquires signals from these via the input interface 133. The display controller 134 is connected to the display device 19 and controls display on the display device 19. The display controller 134 functions as the output unit 17 illustrated in FIG.
 このような構成により、記憶装置135に、本実施の形態1におけるプログラムを格納しておけば、CPU131は、観測量生成部11、測位部12、移動度検出部13、及び信頼度検出部14として機能し、処理を行なう。この結果、測位装置10が具現化される。 With such a configuration, if the program in the first embodiment is stored in the storage device 135, the CPU 131 causes the observation amount generation unit 11, the positioning unit 12, the mobility detection unit 13, and the reliability detection unit 14 to operate. Functions as a process. As a result, the positioning device 10 is realized.
[効果]
 以上のように、本実施の形態1では、加速度センサ等を用いて端末100の移動状態が判定され、移動が少ない場合には長時間の計測結果(位置特定情報)が取得され、移動が多い場合には短時間の計測結果が取得される。そして、このようにして取得された計測結果から、観測量が生成され、この観測量に基づいて、端末100の位置が検出される。
[effect]
As described above, in the first embodiment, the movement state of the terminal 100 is determined using an acceleration sensor or the like, and when the movement is small, a long-time measurement result (position specifying information) is acquired and the movement is large. In some cases, a short-time measurement result is obtained. Then, an observation amount is generated from the measurement result thus obtained, and the position of the terminal 100 is detected based on the observation amount.
 つまり、本実施の形態1では、端末の移動が少ない場合は、短い間隔で取得された計測結果が用いられるので、位置検出の高精度化が図られる。一方、端末の移動が多い場合は、長い間隔で取得された計測結果が用いられるので、観測の偏り及び欠落を低減でき、この場合も位置検出の高精度化が図られる。 That is, in the first embodiment, when the movement of the terminal is small, the measurement results obtained at short intervals are used, so that the position detection is highly accurate. On the other hand, when there are many movements of the terminal, measurement results obtained at long intervals are used, so that it is possible to reduce observation bias and omission, and in this case as well, high accuracy of position detection can be achieved.
 また、本実施の形態1では、端末の移動が少ない場合には値が高く、端末の移動が多い場合には値が低くなる、信頼度が出力される。このため、端末のユーザは、端末の位置検出の結果を利用する際に、位置検出の結果が目的に適う信頼性を有するかどうかを判断することができる。 Further, in the first embodiment, the reliability is output such that the value is high when the movement of the terminal is small and the value is low when the movement of the terminal is large. Therefore, the user of the terminal can determine whether or not the result of the position detection has a reliability suitable for the purpose when using the result of the position detection of the terminal.
(実施の形態2)
 次に、本発明の実施の形態2における、測位装置、測位方法、及びプログラムについて、図6~図8を参照しながら説明する。
(Embodiment 2)
Next, a positioning device, a positioning method, and a program according to Embodiment 2 of the present invention will be described with reference to FIGS.
[装置構成]
 最初に、図6を用いて、本実施の形態2における測位装置20の構成について説明する。図6は、本発明の実施の形態2における測位装置の構成を示すブロック図である。
[Device configuration]
Initially, the structure of the positioning apparatus 20 in this Embodiment 2 is demonstrated using FIG. FIG. 6 is a block diagram showing the configuration of the positioning device according to Embodiment 2 of the present invention.
 図6に示すように、本実施の形態2における測位装置20は、観測量生成部21と、測位部22と、移動度検出部23と、信頼度検出部24と、位置情報取得部25と、出力部26とを備えている。 As illustrated in FIG. 6, the positioning device 20 according to the second embodiment includes an observation amount generation unit 21, a positioning unit 22, a mobility detection unit 23, a reliability detection unit 24, and a position information acquisition unit 25. And an output unit 26.
 このうち、観測量生成部21、測位部22、信頼度検出部24、位置情報取得部25、及び出力部26、それぞれは、実施の形態1において図1に示した、観測量生成部11、測位部12、信頼度検出部14、位置情報取得部15、及び出力部17それぞれと同様の処理を実行する。また、本実施の形態2における測位装置20も、端末装置100の内部に構築されている。 Among these, the observation amount generation unit 21, the positioning unit 22, the reliability detection unit 24, the position information acquisition unit 25, and the output unit 26, respectively, are the observation amount generation unit 11, shown in FIG. The same processing as that of the positioning unit 12, the reliability detection unit 14, the position information acquisition unit 15, and the output unit 17 is executed. In addition, the positioning device 20 according to the second embodiment is also built inside the terminal device 100.
 一方、測位装置20は、実施の形態1において図1に示した移動度検出用センサ16を備えておらず、この点で、実施の形態1における測位装置10と異なっている。また、このため、測位装置20において、移動度検出部23は、実施の形態1において図1に示した移動度検出部13と異なる処理を実行する。以下、実施の形態1との相違点を中心に説明する。 On the other hand, the positioning device 20 does not include the mobility detection sensor 16 shown in FIG. 1 in the first embodiment, and is different from the positioning device 10 in the first embodiment in this respect. For this reason, in the positioning device 20, the mobility detector 23 executes a process different from that of the mobility detector 13 shown in FIG. 1 in the first embodiment. Hereinafter, the difference from the first embodiment will be mainly described.
 本実施の形態2では、移動度検出部23は、位置情報取得部25によって取得された位置特定情報(計測結果)の単位時間当たりの変化を求め、求めた変化に基づいて、その変化が大きい程値が大きくなり、変化が小さい程値が小さくなる、端末100の移動度を検出する。 In the second embodiment, the mobility detection unit 23 obtains a change per unit time of the position specifying information (measurement result) acquired by the position information acquisition unit 25, and the change is large based on the obtained change. The mobility of the terminal 100 is detected such that the value increases and the value decreases as the change decreases.
 具体的には、本実施の形態2においても、実施の形態1と同様に、位置特定情報としては、端末100と各基地局120との間で通信を行なった際の、端末100と基地局120との位置的関係を特定する情報、例えば、信号受信強度、信号伝達時間等が挙げられる。 Specifically, also in the present second embodiment, as in the first embodiment, as the position specifying information, the terminal 100 and the base station when communicating between the terminal 100 and each base station 120 are used. Information specifying the positional relationship with 120, for example, signal reception intensity, signal transmission time, and the like.
 よって、位置情報取得部1が、端末100と各基地局との間の通信の際に、信号受信強度又は信号伝達時間を計測するとする。この場合、端末100が大きく移動すると、それによって、計測された信号受信強度又は信号伝達時間も大きく変動する。このため、移動検出部23は、位置情報取得部1で得られた計測結果の単位時間当たりの変化に基づいて、端末100の移動度を検出できる。 Therefore, it is assumed that the position information acquisition unit 1 measures the signal reception strength or signal transmission time during communication between the terminal 100 and each base station. In this case, when the terminal 100 moves greatly, the measured signal reception intensity or signal transmission time varies greatly accordingly. For this reason, the movement detection unit 23 can detect the mobility of the terminal 100 based on the change per unit time of the measurement result obtained by the position information acquisition unit 1.
[システム動作]
 次に、本発明の実施の形態2における測位装置20の動作について図7を用いて説明する。図7は、本発明の実施の形態2における測位装置の動作を示すフロー図である。また、以下の説明においては、適宜図6を参酌する。また、本実施の形態2では、測位装置20を動作させることによって、測位方法が、実施される。よって、本実施の形態2における測位方法の説明は、以下の測位装置20の動作説明に代える。
[System operation]
Next, operation | movement of the positioning apparatus 20 in Embodiment 2 of this invention is demonstrated using FIG. FIG. 7 is a flowchart showing the operation of the positioning device according to Embodiment 2 of the present invention. In the following description, FIG. 6 is taken into consideration as appropriate. In the second embodiment, the positioning method is implemented by operating the positioning device 20. Therefore, the description of the positioning method in the second embodiment is replaced with the following description of the operation of the positioning device 20.
 まず、図6に示すように、移動度検出部23は、位置情報取得部25に対して、予め設定した間隔で、位置特定情報の取得、具体的には、信号受信強度又は信号伝達時間等の計測を行なわせ、得られた位置特定情報(計測結果)の単位時間当たりの変化から、移動度を検出する(ステップA11)。また、移動度検出部23は、検出した移動度を、観測量生成部21及び信頼度検出部24に出力する。 First, as shown in FIG. 6, the mobility detector 23 acquires position specifying information at a predetermined interval with respect to the position information acquisition unit 25, specifically, signal reception intensity or signal transmission time, etc. The mobility is detected from the change per unit time of the obtained position specifying information (measurement result) (step A11). The mobility detector 23 outputs the detected mobility to the observation amount generator 21 and the reliability detector 24.
 次に、観測量生成部21は、ステップA11で検出された移動度を、予め設定された移動度と時間窓長との関係(図2参照)に当てはめて、時間窓長を決定する(ステップA12)。次に、観測量生成部21は、位置情報取得部25に対して、決定した時間窓長での位置特定情報の取得、具体的には、信号受信強度又は信号伝達時間等の計測を行なわせ、位置情報取得部25から、位置特定情報(計測結果)を取得する(ステップA13)。 Next, the observation amount generation unit 21 determines the time window length by applying the mobility detected in Step A11 to the relationship between the mobility set in advance and the time window length (see FIG. 2) (Step S11). A12). Next, the observation amount generation unit 21 causes the position information acquisition unit 25 to acquire the position specifying information in the determined time window length, specifically, measure the signal reception intensity or the signal transmission time. The position specifying information (measurement result) is acquired from the position information acquisition unit 25 (step A13).
 次に、観測量生成部21は、取得した位置特定情報を用いて、端末100の位置の検出に用いる観測量を生成する(ステップA14)。次に、測位部22は、観測量生成部21が出力した観測量に基づいて、端末100の位置を検出する(ステップA15)。 Next, the observation amount generation unit 21 generates an observation amount used for detecting the position of the terminal 100 using the acquired position specifying information (step A14). Next, the positioning unit 22 detects the position of the terminal 100 based on the observation amount output from the observation amount generation unit 21 (step A15).
 次に、信頼度検出部24は、ステップA11において移動度検出部23が出力した移動度に基づいて、ステップA15で検出された端末100の位置の信頼度を検出する(ステップA16)。 Next, the reliability detection unit 24 detects the reliability of the position of the terminal 100 detected in step A15 based on the mobility output by the mobility detection unit 23 in step A11 (step A16).
 次に、出力部26は、ステップA15で測位部22が検出した測位結果と、ステップA16で信頼度検出部24が検出した信頼度とを合わせて、これらを、端末装置100に備えられた表示装置19に出力する(ステップA17)。 Next, the output unit 26 combines the positioning result detected by the positioning unit 22 in step A15 and the reliability detected by the reliability detection unit 24 in step A16, and displays these in the display provided in the terminal device 100. It outputs to the apparatus 19 (step A17).
 この結果、端末100のユーザは、自己の位置とその信頼性とを知ることができる。なお、上述したステップA12~A17は、図4に示したステップA2~A7と同様のステップである。 As a result, the user of the terminal 100 can know his position and its reliability. Steps A12 to A17 described above are the same steps as steps A2 to A7 shown in FIG.
[プログラム]
 本実施の形態2におけるプログラムは、コンピュータを備えた端末に、図7に示すステップA11~A17を実行させるプログラムであれば良い。このプログラムを端末のコンピュータにインストールし、実行することによって、本実施の形態2における測位装置20と測位方法とを実現することができる。この場合、コンピュータのCPU(Central Processing Unit)は、図6に示した演算装置27として機能し、処理を行なう。
[program]
The program in the second embodiment may be a program that causes a terminal equipped with a computer to execute steps A11 to A17 shown in FIG. By installing and executing this program on a terminal computer, the positioning device 20 and the positioning method in the second embodiment can be realized. In this case, a CPU (Central Processing Unit) of the computer functions as the arithmetic device 27 shown in FIG. 6 and performs processing.
 ここで、実施の形態2におけるプログラムを実行可能なコンピュータの構成について説明する。図8は、本発明の実施の形態2における測位装置を実現可能なコンピュータの一例を示すブロック図である。 Here, the configuration of a computer capable of executing the program in the second embodiment will be described. FIG. 8 is a block diagram illustrating an example of a computer capable of realizing the positioning device according to Embodiment 2 of the present invention.
 図8に示すように、端末100は、図6に示した演算装置27として機能するコンピュータ(マイコン)130を備えている。但し、本実施の形態2においては、図5の例と異なり、端末100には、位置情報取得部15(図1参照)として機能する通信モジュール137のみが備えられている。 As shown in FIG. 8, the terminal 100 includes a computer (microcomputer) 130 that functions as the arithmetic unit 27 shown in FIG. However, in the second embodiment, unlike the example of FIG. 5, the terminal 100 includes only the communication module 137 that functions as the position information acquisition unit 15 (see FIG. 1).
 なお、図8に示すように、コンピュータ130は、図5に示したコンピュータと同様のものである。コンピュータ130は、CPU131と、RAM(Random Access Memory)132と、入力インターフェイス133と、表示コントローラ134と、記憶装置135とを備える。 As shown in FIG. 8, the computer 130 is the same as the computer shown in FIG. The computer 130 includes a CPU 131, a RAM (Random Access Memory) 132, an input interface 133, a display controller 134, and a storage device 135.
 本実施の形態2においても、記憶装置135に、本実施の形態2におけるプログラムを格納しておけば、CPU131は、観測量生成部21、測位部22、移動度検出部23、及び信頼度検出部24として機能し、処理を行なう。この結果、測位装置20が具現化される。 Also in the second embodiment, if the program in the second embodiment is stored in the storage device 135, the CPU 131 causes the observation amount generation unit 21, the positioning unit 22, the mobility detection unit 23, and the reliability detection. It functions as the unit 24 and performs processing. As a result, the positioning device 20 is realized.
[効果]
 以上のように、本実施の形態2では、加速度センサ等のセンサが端末100に備えられていなくても、測位装置20が実現される。本実施の形態2によれば、加速度センサ等の移動度検出用センサを用いることなく、実施の形態1と同様の効果を得ることができる。また、本実施の形態2によれば、測位装置20を構築可能な端末100の種類を増加させることができる。
[effect]
As described above, in the second embodiment, the positioning device 20 is realized even if the terminal 100 is not equipped with a sensor such as an acceleration sensor. According to the second embodiment, the same effect as in the first embodiment can be obtained without using a mobility detection sensor such as an acceleration sensor. Moreover, according to this Embodiment 2, the kind of terminal 100 which can construct | assemble the positioning apparatus 20 can be increased.
(実施の形態3)
 次に、本発明の実施の形態3における、測位装置、測位方法、及びプログラムについて、図9及び図10を参照しながら説明する。
(Embodiment 3)
Next, a positioning device, a positioning method, and a program according to Embodiment 3 of the present invention will be described with reference to FIG. 9 and FIG.
[装置構成]
 最初に、図9を用いて、本実施の形態3における測位装置30の構成について説明する。図9は、本発明の実施の形態3における測位装置の構成を示すブロック図である。
[Device configuration]
Initially, the structure of the positioning apparatus 30 in this Embodiment 3 is demonstrated using FIG. FIG. 9 is a block diagram showing a configuration of the positioning apparatus according to Embodiment 3 of the present invention.
 図9に示すように、本実施の形態3における測位装置30は、観測量生成部31と、測位部32と、移動度検出部33と、信頼度検出部34と、位置情報取得部35と、出力部36とを備えている。 As illustrated in FIG. 9, the positioning device 30 according to the third embodiment includes an observation amount generation unit 31, a positioning unit 32, a mobility detection unit 33, a reliability detection unit 34, and a position information acquisition unit 35. And an output unit 36.
 このうち、測位部32、信頼度検出部34、位置情報取得部35、及び出力部36、それぞれは、実施の形態1において図1に示した、測位部12、信頼度検出部14、位置情報取得部15、及び出力部17それぞれと同様の処理を実行する。また、本実施の形態2における測位装置30も、端末装置100の内部に構築されている。 Among them, the positioning unit 32, the reliability detection unit 34, the position information acquisition unit 35, and the output unit 36 are respectively the positioning unit 12, the reliability detection unit 14, and the position information shown in FIG. The same processing as that of the acquisition unit 15 and the output unit 17 is executed. The positioning device 30 according to the second embodiment is also built inside the terminal device 100.
 一方、測位装置30は、実施の形態1において図1に示した移動度検出用センサ16を備えておらず、この点で、実施の形態1における測位装置10と異なっている。また、このため、測位装置30において、観測量生成部31及び移動度検出部33は、実施の形態1において図1に示した、観測量生成部11及び移動度検出部13と異なる処理を実行する。また、測位装置30は、更に、記憶部38も備えている。以下、実施の形態1との相違点を中心に説明する。 On the other hand, the positioning device 30 does not include the mobility detection sensor 16 shown in FIG. 1 in the first embodiment, and is different from the positioning device 10 in the first embodiment in this respect. For this reason, in the positioning device 30, the observation amount generation unit 31 and the mobility detection unit 33 execute processing different from the observation amount generation unit 11 and the mobility detection unit 13 shown in FIG. 1 in the first embodiment. To do. The positioning device 30 further includes a storage unit 38. Hereinafter, the difference from the first embodiment will be mainly described.
 本実施の形態3では、移動度検出部33は、測位部32によって検出された端末100の位置の変化を求め、求めた変化に基づいて、変化が大きい程値が大きくなり、変化が小さい程値が小さくなる、端末100の移動度を検出する。また、移動度検出部33は、検出した移動度を記憶部38に格納する。 In the third embodiment, the mobility detection unit 33 obtains a change in the position of the terminal 100 detected by the positioning unit 32, and based on the obtained change, the larger the change, the larger the value, and the smaller the change. The mobility of the terminal 100 whose value becomes smaller is detected. In addition, the mobility detection unit 33 stores the detected mobility in the storage unit 38.
 また、本実施の形態3では、端末100の移動度は、端末100の位置の変化から求められるで、観測量生成部31は、移動度検出部33が過去に検出した移動度を用いて、時間窓を決定する。具体的には、観測量生成部31は、記憶部38から、それに格納されている最新の移動度、即ち前回検出された移動度を取得し、これを用いて時間窓を決定する。 In the third embodiment, the mobility of the terminal 100 is obtained from a change in the position of the terminal 100, and the observation amount generation unit 31 uses the mobility detected by the mobility detection unit 33 in the past, Determine the time window. Specifically, the observation amount generation unit 31 acquires the latest mobility stored in the storage unit 38, that is, the mobility detected last time, and uses this to determine a time window.
[システム動作]
 次に、本発明の実施の形態3における測位装置30の動作について図10を用いて説明する。図10は、本発明の実施の形態3における測位装置の動作を示すフロー図である。また、以下の説明においては、適宜図10を参酌する。また、本実施の形態3では、測位装置30を動作させることによって、測位方法が、実施される。よって、本実施の形態3における測位方法の説明は、以下の測位装置30の動作説明に代える。
[System operation]
Next, the operation of the positioning device 30 according to the third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a flowchart showing the operation of the positioning device according to Embodiment 3 of the present invention. In the following description, FIG. 10 is taken into consideration as appropriate. In the third embodiment, the positioning method is implemented by operating the positioning device 30. Therefore, the description of the positioning method in the third embodiment is replaced with the following description of the operation of the positioning device 30.
 まず、図10に示すように、観測量生成部31は、記憶部38にアクセスし、そこに格納されている最新の移動度を取得する(ステップA21)。次に、観測量生成部31は、ステップA21で取得した移動度を、予め設定された移動度と時間窓長との関係(図2参照)に当てはめて、時間窓長を決定する(ステップA22)。 First, as shown in FIG. 10, the observation amount generation unit 31 accesses the storage unit 38 and acquires the latest mobility stored therein (step A21). Next, the observation amount generation unit 31 determines the time window length by applying the mobility acquired in Step A21 to the relationship between the mobility set in advance and the time window length (see FIG. 2) (Step A22). ).
 次に、観測量生成部31は、位置情報取得部35に対して、決定した時間窓長での位置特定情報の取得、具体的には、信号受信強度又は信号伝達時間等の計測を行なわせ、位置情報取得部35から、位置特定情報(計測結果)を取得する(ステップA23)。 Next, the observation amount generation unit 31 causes the position information acquisition unit 35 to acquire position specifying information in the determined time window length, specifically, measure signal reception intensity or signal transmission time. Then, the position specifying information (measurement result) is acquired from the position information acquiring unit 35 (step A23).
 次に、観測量生成部31は、取得した位置特定情報を用いて、端末100の位置の検出に用いる観測量を生成する(ステップA24)。次に、測位部32は、観測量生成部21が出力した観測量に基づいて、端末100の位置を検出する(ステップA25)。また、測位部32は、検出した端末100の位置(測位結果)を、出力部17と移動度検出部33とに出力する。 Next, the observation amount generation unit 31 generates an observation amount used for detecting the position of the terminal 100 using the acquired position specifying information (step A24). Next, the positioning unit 32 detects the position of the terminal 100 based on the observation amount output by the observation amount generation unit 21 (step A25). In addition, the positioning unit 32 outputs the detected position (positioning result) of the terminal 100 to the output unit 17 and the mobility detection unit 33.
 次に、移動度検出部33は、ステップA25で測位部32が出力した位置検出の結果と、前回のステップA25で測位部32が出力した位置検出の結果とから、移動度を検出する。また、移動度検出部33は、検出した移動度を記憶部38に出力し、記憶部38において、最新の移動度を更新させる(ステップA26)。ステップA26で更新された移動度は、後に、ステップA21が実行される場合に利用される。また、ステップA26では、移動度検出部33は、検出した移動度を、信頼度検出部34にも出力する。 Next, the mobility detection unit 33 detects the mobility from the position detection result output by the positioning unit 32 in step A25 and the position detection result output by the positioning unit 32 in the previous step A25. Also, the mobility detector 33 outputs the detected mobility to the storage unit 38, and updates the latest mobility in the storage unit 38 (step A26). The mobility updated in step A26 is used later when step A21 is executed. In step A26, the mobility detector 33 also outputs the detected mobility to the reliability detector 34.
 次に、信頼度検出部34は、ステップA26で移動度検出部33が出力した移動度に基づいて、ステップA25で検出された端末100の位置の信頼度を検出する(ステップA27)。 Next, the reliability detection unit 34 detects the reliability of the position of the terminal 100 detected in step A25 based on the mobility output by the mobility detection unit 33 in step A26 (step A27).
 次に、出力部26は、ステップA25で測位部32が検出した測位結果と、ステップA27で信頼度検出部24が検出した信頼度とを合わせて、これらを、端末装置100に備えられた表示装置19に出力する(ステップA28)。 Next, the output unit 26 combines the positioning result detected by the positioning unit 32 in step A25 and the reliability detected by the reliability detection unit 24 in step A27, and displays these in the display provided in the terminal device 100. It outputs to the apparatus 19 (step A28).
 この結果、端末100のユーザは、自己の位置とその信頼性とを知ることができる。なお、上述したステップA23~A25は、図4に示したステップA3~A5と同様のステップである。また、上述したステップA27及びA28は、図4に示したステップA6及びA7と同様のステップである。 As a result, the user of the terminal 100 can know his position and its reliability. Steps A23 to A25 described above are the same steps as steps A3 to A5 shown in FIG. Further, steps A27 and A28 described above are the same steps as steps A6 and A7 shown in FIG.
[プログラム]
 本実施の形態3におけるプログラムは、コンピュータを備えた端末に、図10に示すステップA21~A28を実行させるプログラムであれば良い。このプログラムを端末のコンピュータにインストールし、実行することによって、本実施の形態3における測位装置30と測位方法とを実現することができる。この場合、コンピュータのCPU(Central Processing Unit)は、図9に示した演算装置37として機能し、処理を行なう。
[program]
The program in the third embodiment may be a program that causes a terminal equipped with a computer to execute steps A21 to A28 shown in FIG. The positioning device 30 and the positioning method according to the third embodiment can be realized by installing and executing this program on a terminal computer. In this case, a CPU (Central Processing Unit) of the computer functions as the arithmetic device 37 shown in FIG. 9 and performs processing.
 また、本実施の形態3において、図9に示した演算装置37として機能するコンピュータ(マイコン)としては、実施の形態2と同様に、図8に示したコンピュータ130が挙げられる。この場合、記憶装置135に、本実施の形態3におけるプログラムを格納しておけば、CPU131は、観測量生成部31、測位部32、移動度検出部33、及び信頼度検出部34として機能し、処理を行なう。また、RAM132は、記憶部38として機能する。この結果、測位装置30が具現化される。 In the third embodiment, the computer (microcomputer) functioning as the arithmetic device 37 shown in FIG. 9 includes the computer 130 shown in FIG. 8 as in the second embodiment. In this case, if the program in the third embodiment is stored in the storage device 135, the CPU 131 functions as the observation amount generation unit 31, the positioning unit 32, the mobility detection unit 33, and the reliability detection unit 34. , Process. The RAM 132 functions as the storage unit 38. As a result, the positioning device 30 is realized.
[効果]
 以上のように、本実施の形態3においても、実施の形態2と同様に、加速度センサ等のセンサが端末100に備えられていなくても、測位装置30が実現される。本実施の形態3によれば、加速度センサ等の移動度検出用センサを用いることなく、実施の形態1と同様の効果を得ることができる。また、本実施の形態3によれば、測位装置20を構築可能な端末100の種類を増加させることができる。
[effect]
As described above, also in the third embodiment, as in the second embodiment, the positioning device 30 is realized even if the terminal 100 is not provided with a sensor such as an acceleration sensor. According to the third embodiment, the same effect as in the first embodiment can be obtained without using a mobility detection sensor such as an acceleration sensor. Moreover, according to this Embodiment 3, the kind of terminal 100 which can construct | assemble the positioning apparatus 20 can be increased.
 次に、本発明における、測位装置、測位方法、及びプログラムの実施例について、図11~図13を用いて説明する。図11は、本発明の実施例で用いられるネットワークシステムの一例を示す図である。図12は、本発明の実施例において計測された位置特定情報の一例を示す図である。図13は、本発明の実施例において作成された観測量の一例を示す図である。また、以下に示す本実施例は、実施の形態1に対応する。よって、以下の説明においては、適宜、図1~図5を参酌する。 Next, embodiments of the positioning device, positioning method, and program according to the present invention will be described with reference to FIGS. FIG. 11 is a diagram showing an example of a network system used in the embodiment of the present invention. FIG. 12 is a diagram illustrating an example of the position specifying information measured in the embodiment of the present invention. FIG. 13 is a diagram illustrating an example of an observation amount created in the embodiment of the present invention. Further, the present example described below corresponds to the first embodiment. Therefore, in the following description, FIGS. 1 to 5 are referred to as appropriate.
 図11に示すように、本実施例では、端末100と、基地局120とによって、IEEE802.11無線ローカルエリアネットワーク(以下、無線LAN)システム110が構築されている。基地局120は、無線LANシステムで用いられるアクセスポイント(AP)である。 As shown in FIG. 11, in this embodiment, an IEEE 802.11 wireless local area network (hereinafter referred to as wireless LAN) system 110 is constructed by a terminal 100 and a base station 120. The base station 120 is an access point (AP) used in the wireless LAN system.
 端末100は、無線LAN機能を備えた携帯電話、スマートフォン等である。端末装置100は、位置情報取得部15として機能する無線LANモジュールと、移動度検出用センサ16として機能する加速度センサとを備えている。また、端末100は、内部にマイコンを備えており、このマイコンがプログラム制御により、測位装置10として機能する。 The terminal 100 is a mobile phone, a smart phone or the like having a wireless LAN function. The terminal device 100 includes a wireless LAN module that functions as the position information acquisition unit 15 and an acceleration sensor that functions as the mobility detection sensor 16. The terminal 100 includes a microcomputer inside, and the microcomputer functions as the positioning device 10 by program control.
 また、無線LANシステム110において、端末100は、基地局(アクセスポイント)120に接続するため、周辺に存在する基地局120を探索する「スキャン」と呼ばれる動作を実施する。本実施例では、このスキャンが、位置情報取得部15が位置特定情報を取得するための動作に相当する。 In the wireless LAN system 110, the terminal 100 performs an operation called “scanning” to search for the base stations 120 existing in the vicinity in order to connect to the base station (access point) 120. In this embodiment, this scan corresponds to an operation for the position information acquisition unit 15 to acquire position specifying information.
 具体的には、端末100において、位置情報取得部15は、スキャンによって、周辺に存在する各基地局120の識別子(以下、「BSSID」と表記する。)を取得し、更に、各基地局から受信した信号の電波強度(以下、「RSSI」と表記する。)を測定する。また、1回のスキャン動作には、数百ミリ秒から場合によっては数秒程度の時間がかかることがある。 Specifically, in terminal 100, position information acquisition unit 15 acquires an identifier (hereinafter referred to as “BSSID”) of each base station 120 existing in the vicinity by scanning, and further, from each base station. The radio field intensity (hereinafter referred to as “RSSI”) of the received signal is measured. In addition, a single scanning operation may take a time from several hundred milliseconds to several seconds in some cases.
 端末100の1回のスキャンによって得られる計測量は、例えば、図12に示すように、(AP1のRSSI、AP2のRSSI、AP3のRSSI、AP4のRSSI、…)=(-35、-80、-65、-60、…)といった、特徴ベクトルで表される。本実施例では、このスキャンによって得られた特徴ベクトルが、位置特定情報に相当する。以下、本実施例における端末100の動作を図4に示した各ステップに沿って説明する。 The measurement amount obtained by one scan of the terminal 100 is, for example, as shown in FIG. 12, (APSI RSSI, AP2 RSSI, AP3 RSSI, AP4 RSSI,...) = (− 35, −80, -65, -60,...). In the present embodiment, the feature vector obtained by this scan corresponds to the position specifying information. Hereinafter, the operation of the terminal 100 in this embodiment will be described along the steps shown in FIG.
[ステップA1]
 本実施例では、端末100に備えられたマイコンは、先ず、加速度センサで計測された加速度の過去一定時間(例えば5秒間)の間の変化量を、移動度として検出する。
[Step A1]
In the present embodiment, the microcomputer provided in the terminal 100 first detects the amount of change of the acceleration measured by the acceleration sensor during the past certain time (for example, 5 seconds) as the mobility.
[ステップA2]
 次に、マイコンは、検出した移動度に基づいて、端末100が移動しているか、移動していないかを判定する。例えば、マイコンは、加速度の過去一定時間の変化量の最大値と最小値との差が、予め設定された閾値(例えば0.1G)以下の場合は、移動していないと判定する。一方、マイコンは、最大値と最小値との差が、予め設定された閾値よりも大きい場合は、移動していると判定する。
[Step A2]
Next, the microcomputer determines whether the terminal 100 is moving or not based on the detected mobility. For example, when the difference between the maximum value and the minimum value of the amount of change in the past certain time of acceleration is equal to or less than a preset threshold value (for example, 0.1 G), the microcomputer determines that the object has not moved. On the other hand, if the difference between the maximum value and the minimum value is greater than a preset threshold value, the microcomputer determines that it is moving.
 次に、マイコンは、移動度に基づく判定の結果(移動の有無)に応じて、無線LAN機能を用いて実行する単位時間当たりのスキャンの回数を決定する。例えば、マイコンは、端末100が移動していると判定した場合は、スキャン回数を、少ない回数(例えば1回)に決定する。一方、マイコンは、移動していないと判定した場合は、スキャン回数を、多い回数(例えば3回)に決定する。本実施例では、上記の単位時間をスキャン回数で除して得られる値が時間窓長に相当する。 Next, the microcomputer determines the number of scans per unit time to be executed using the wireless LAN function according to the determination result based on the mobility (presence / absence of movement). For example, if the microcomputer determines that the terminal 100 is moving, the microcomputer determines the number of scans to be a small number (for example, once). On the other hand, if the microcomputer determines that it has not moved, it determines the number of scans to be a large number (for example, 3 times). In this embodiment, a value obtained by dividing the unit time by the number of scans corresponds to the time window length.
[ステップA3]
 次に、マイコンは、このようにして決定されたスキャン回数だけ、無線LANモジュールを動作させてスキャンを実行し、スキャン毎に、計測結果(特徴ベクトル)を取得する。取得された計測結果が位置特定情報に相当する。
[Step A3]
Next, the microcomputer operates the wireless LAN module as many times as the number of scans determined in this way, executes the scan, and acquires a measurement result (feature vector) for each scan. The acquired measurement result corresponds to the position specifying information.
[ステップA4]
 次に、マイコンは、取得したスキャン回数分の特徴ベクトルに基づいて、基地局毎に、スキャン回数分のRSSIの統計量を算出し、測位に用いる観測量を生成する。本実施例において、統計量としては、平均値、中央値、最頻値、最大値、最小値などを用いることができる。
[Step A4]
Next, the microcomputer calculates an RSSI statistic for the number of scans for each base station based on the acquired feature vectors for the number of scans, and generates an observation amount used for positioning. In this embodiment, an average value, median value, mode value, maximum value, minimum value, or the like can be used as a statistic.
 ここで、周辺に4つの基地局120が存在しているとする。また、各基地局から測定された電波強度(信号受信強度)を「τ」とする。nは基地局に付与された番号を示す。更に、端末100が移動していると判定された場合のスキャン回数が1回に設定され、端末100が移動していないと判定された場合のスキャン回数が3回に設定されているとする。そして、統計量としては、最大値が用いられるとする。このような場合において、観測量は、例えば、図13に示す通りとなる。 Here, it is assumed that there are four base stations 120 in the vicinity. In addition, the radio wave intensity (signal reception intensity) measured from each base station is “τ n ”. n indicates a number assigned to the base station. Furthermore, it is assumed that the number of scans when it is determined that the terminal 100 is moving is set to 1 and the number of scans when it is determined that the terminal 100 is not moved is set to 3 times. The maximum value is used as the statistic. In such a case, the observation amount is as shown in FIG. 13, for example.
[ステップA5]
 次に、マイコンは、ステップA4で生成した観測量と、予め位置が特定されている基地局120と端末100との間で計測されたRSSIとを対比して、端末100と各基地局120との距離を推定する。そして、マイコンは、推定した距離を用い、三点測量の原理に基づいて、端末100の位置を検出する。また、マイコンは、ステップA4で生成した観測量と、事前に複数の位置で取得しておいた特徴ベクトルとの近さを求め、求めた近さに基づいて、端末100の位置を検出することもできる。
[Step A5]
Next, the microcomputer compares the observation amount generated in step A4 with the RSSI measured between the base station 120 and the terminal 100 whose positions are specified in advance, and the terminal 100 and each base station 120 Estimate the distance. Then, the microcomputer detects the position of the terminal 100 based on the principle of three-point surveying using the estimated distance. Further, the microcomputer obtains the closeness between the observation amount generated in step A4 and the feature vector obtained at a plurality of positions in advance, and detects the position of the terminal 100 based on the obtained proximity. You can also.
[ステップA6]
 次に、マイコンは、移動度に基づいて、測位部12によって検出された端末100の位置の信頼性を示す信頼度を検出する。本実施例では、マイコンは、信頼度として、ステップA2で決定したスキャン回数を取得する。スキャン回数が多ければ多い程、測位結果の信頼性は高くなる。
[Step A6]
Next, the microcomputer detects the reliability indicating the reliability of the position of the terminal 100 detected by the positioning unit 12 based on the mobility. In the present embodiment, the microcomputer acquires the number of scans determined in step A2 as the reliability. The greater the number of scans, the higher the reliability of the positioning result.
[ステップA7]
 次に、マイコンは、ステップA5で検出した端末100の位置と、ステップA6で取得した信頼度とを、端末100に備えられた表示装置に表示する。この結果、端末100のユーザは、自己の位置とその信頼性とを知ることができる。
[Step A7]
Next, the microcomputer displays the position of the terminal 100 detected in step A5 and the reliability acquired in step A6 on a display device provided in the terminal 100. As a result, the user of the terminal 100 can know his position and its reliability.
 このように、本実施例では、端末100が移動していない場合は、多数回のスキャン結果から観測量が生成されるので、位置検出精度が向上することになる。また、端末100が移動している場合に、多数回のスキャンを行うと、多数回のスキャン中に端末が移動することによって、位置検出精度が劣化してしまうが、本実施例では、スキャン回数は少なく設定されるので、位置検出精度の劣化が抑制される。 Thus, in this embodiment, when the terminal 100 is not moving, the observation amount is generated from the scan results of a large number of times, so that the position detection accuracy is improved. Further, when the terminal 100 is moving, if a large number of scans are performed, the position detection accuracy deteriorates due to the movement of the terminal during the multiple scans. Is set to be small, so that deterioration in position detection accuracy is suppressed.
 また、本実施例では、端末の移動が少ない場合には位置検出結果の信頼性が高いことを意味し、端末の移動が多い場合には位置検出結果の信頼性が低いことを意味する、値が、位置検出結果の信頼度として出力される。よって、ユーザは、位置検出の結果を利用する際に、位置検出の結果が目的に適う信頼性を有するかどうかを判断できる。 Further, in this embodiment, when the movement of the terminal is small, it means that the reliability of the position detection result is high, and when the movement of the terminal is large, the value means that the reliability of the position detection result is low. Is output as the reliability of the position detection result. Therefore, when using the position detection result, the user can determine whether the position detection result has a reliability suitable for the purpose.
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記19)によって表現することができるが、以下の記載に限定されるものではない。 Some or all of the above-described embodiments can be expressed by the following (Appendix 1) to (Appendix 19), but is not limited to the following description.
(付記1)
 端末の位置を検出するための測位装置であって、
 前記端末の移動状態を表す移動度を検出する、移動度検出部と、
 検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、観測量生成部と、
 生成された前記観測量に基づいて、前記端末の位置を検出する、測位部と、
を備えていることを特徴とする測位装置。
(Appendix 1)
A positioning device for detecting the position of a terminal,
A mobility detector for detecting a mobility representing a movement state of the terminal;
A time window is set according to the detected mobility, information for specifying the position of the terminal is acquired in the set time window, and the position of the terminal is detected using the acquired information An observable generator for generating an observable used for
A positioning unit that detects a position of the terminal based on the generated observation amount;
A positioning device characterized by comprising:
(付記2)
 前記端末が、基地局と通信する機能を備えており、
 前記観測量生成部が、前記情報として、前記端末の前記基地局との位置的関係を特定する情報を取得する、付記1に記載の測位装置。
(Appendix 2)
The terminal has a function of communicating with a base station;
The positioning apparatus according to supplementary note 1, wherein the observation amount generation unit acquires information specifying a positional relationship of the terminal with the base station as the information.
(付記3)
 前記端末の前記基地局との位置的関係を特定する前記情報を、前記観測量生成部が設定した前記時間窓に応じて取得し、取得した前記情報を、前記観測量生成部に出力する、位置情報取得部を更に備えている、付記2に記載の測位装置。
(Appendix 3)
The information for specifying the positional relationship of the terminal with the base station is acquired according to the time window set by the observation amount generation unit, and the acquired information is output to the observation amount generation unit. The positioning apparatus according to appendix 2, further comprising a position information acquisition unit.
(付記4)
 前記移動度に基づいて、前記測位部によって検出された前記端末の位置の信頼性を示し、且つ、前記端末の移動度が小さい程値が高く、前記端末の移動度が大きい程値が低くなる、信頼度を、検出する、信頼度検出部と、
 前記測位部によって検出された前記端末の位置と、前記信頼度検出部によって検出された前記信頼度とを、出力する、出力部と、を更に備えている、
付記1~3のいずれかに記載の測位装置。
(Appendix 4)
Based on the mobility, the reliability of the position of the terminal detected by the positioning unit is shown. The smaller the mobility of the terminal, the higher the value, and the higher the mobility of the terminal, the lower the value. A reliability detection unit for detecting the reliability;
An output unit for outputting the position of the terminal detected by the positioning unit and the reliability detected by the reliability detection unit;
The positioning device according to any one of supplementary notes 1 to 3.
(付記5)
 前記移動度検出部が、前記端末に備えられた加速度センサから得られる加速度の変化を求め、求めた変化に基づいて、前記変化が大きい程値が大きくなり、前記変化が小さい程値が小さくなる、前記移動度を検出する、
付記1~4のいずれかに記載の測位装置。
(Appendix 5)
The mobility detector obtains a change in acceleration obtained from an acceleration sensor provided in the terminal, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility;
The positioning device according to any one of supplementary notes 1 to 4.
(付記6)
 前記移動度検出部が、前記位置情報取得部によって取得された前記情報の変化を求め、求めた変化に基づいて、前記変化が大きい程値が大きくなり、前記変化が小さい程値が小さくなる、前記移動度を検出する、
付記1~4のいずれかに記載の測位装置。
(Appendix 6)
The mobility detector obtains a change in the information acquired by the position information acquisition unit, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility;
The positioning device according to any one of supplementary notes 1 to 4.
(付記7)
 前記移動度検出部が、前記測位部によって検出された前記端末の位置の変化を求め、求めた変化に基づいて、変化が大きい程値が大きくなり、変化が小さい程値が小さくなる、前記移動度を検出する、
付記1~4のいずれかに記載の測位装置。
(Appendix 7)
The mobility detection unit obtains a change in the position of the terminal detected by the positioning unit, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detect the degree,
The positioning device according to any one of supplementary notes 1 to 4.
(付記8)
 端末の位置を検出するための測位方法であって、
(a)前記端末の移動状態を表す移動度を検出する、ステップと、
(b)前記ステップ(a)で検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、ステップと、
(c)前記ステップ(b)で生成された前記観測量に基づいて、前記端末の位置を検出する、ステップと、
を有することを特徴とする測位方法。
(Appendix 8)
A positioning method for detecting the position of a terminal,
(A) detecting a mobility indicating a movement state of the terminal;
(B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and
(C) detecting the position of the terminal based on the observation amount generated in the step (b);
A positioning method characterized by comprising:
(付記9)
 前記端末が、基地局と通信する機能を備えており、
 前記(b)のステップにおいて、前記情報として、前記端末の前記基地局との位置的関係を特定する情報を取得する、付記8に記載の測位方法。
(Appendix 9)
The terminal has a function of communicating with a base station;
The positioning method according to appendix 8, wherein in the step (b), information specifying a positional relationship of the terminal with the base station is acquired as the information.
(付記10)
(d)前記(a)のステップで検出された移動度に基づいて、前記(c)のステップで検出された前記端末の位置の信頼性を示し、且つ、前記端末の移動度が小さい程値が高く、前記端末の移動度が大きい程値が低くなる、信頼度を、検出する、ステップと、
(e)前記(c)のステップで検出された前記端末の位置と、前記(d)のステップで検出された前記信頼度とを、出力する、ステップと、を更に備えている、
付記8または9に記載の測位方法。
(Appendix 10)
(D) Based on the mobility detected in the step (a), the reliability of the position of the terminal detected in the step (c) is shown, and the value is smaller as the mobility of the terminal is smaller. Detecting a reliability that is higher and has a lower value as the mobility of the terminal increases; and
(E) further comprising the step of outputting the position of the terminal detected in the step (c) and the reliability detected in the step (d).
The positioning method according to appendix 8 or 9.
(付記11)
 前記(a)のステップで、前記端末に備えられた加速度センサから得られる加速度の変化を求め、求めた変化に基づいて、前記変化が大きい程値が大きくなり、前記変化が小さい程値が小さくなる、前記移動度を検出する、
付記8~10のいずれかに記載の測位方法。
(Appendix 11)
In the step (a), a change in acceleration obtained from an acceleration sensor provided in the terminal is obtained. Based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility,
The positioning method according to any one of appendices 8 to 10.
(付記12)
 前記(a)のステップで、前記端末の位置を特定するための情報を取得し、取得した前記情報の変化を求め、求めた変化に基づいて、前記変化が大きい程値が大きくなり、前記変化が小さい程値が小さくなる、前記移動度を検出する、
付記8~10のいずれかに記載の測位方法。
(Appendix 12)
In the step (a), information for specifying the position of the terminal is acquired, a change in the acquired information is obtained, and based on the obtained change, the value increases as the change increases. The smaller the value, the smaller the value, detecting the mobility,
The positioning method according to any one of appendices 8 to 10.
(付記13)
 前記(a)のステップで、前記端末の位置の変化を求め、求めた変化に基づいて、変化が大きい程値が大きくなり、変化が小さい程値が小さくなる、前記移動度を検出する、
付記8~10のいずれかに記載の測位方法。
(Appendix 13)
In the step (a), a change in the position of the terminal is obtained, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases.
The positioning method according to any one of appendices 8 to 10.
(付記14)
 コンピュータによって端末の位置を検出するための、プログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)前記端末の移動状態を表す移動度を検出する、ステップと、
(b)前記ステップ(a)で検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、ステップと、
(c)前記ステップ(b)で生成された前記観測量に基づいて、前記端末の位置を検出する、ステップと、
を実行させる、命令を含むプログラムを記録しているコンピュータ読み取り可能な記録媒体。
(Appendix 14)
A computer-readable recording medium recording a program for detecting the position of a terminal by a computer,
In the computer,
(A) detecting a mobility indicating a movement state of the terminal;
(B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and
(C) detecting the position of the terminal based on the observation amount generated in the step (b);
The computer-readable recording medium which has recorded the program containing the instruction | command which performs.
(付記15)
 前記端末が、基地局と通信する機能を備えており、
 前記(b)のステップにおいて、前記情報として、前記端末の前記基地局との位置的関係を特定する情報を取得する、付記14に記載のコンピュータ読み取り可能な記録媒体。
(Appendix 15)
The terminal has a function of communicating with a base station;
15. The computer-readable recording medium according to appendix 14, wherein in the step (b), information specifying a positional relationship of the terminal with the base station is acquired as the information.
(付記16)
(d)前記(a)のステップで検出された移動度に基づいて、前記(c)のステップで検出された前記端末の位置の信頼性を示し、且つ、前記端末の移動度が小さい程値が高く、前記端末の移動度が大きい程値が低くなる、信頼度を、検出する、ステップと、
(e)前記(c)のステップで検出された前記端末の位置と、前記(d)のステップで検出された前記信頼度とを、出力する、ステップと、を更に前記コンピュータに実行させる、
付記14または15に記載のコンピュータ読み取り可能な記録媒体。
(Appendix 16)
(D) Based on the mobility detected in the step (a), the reliability of the position of the terminal detected in the step (c) is shown, and the value is smaller as the mobility of the terminal is smaller. Detecting a reliability that is higher and has a lower value as the mobility of the terminal increases; and
(E) causing the computer to further execute a step of outputting the position of the terminal detected in the step (c) and the reliability detected in the step (d).
The computer-readable recording medium according to appendix 14 or 15.
(付記17)
 前記(a)のステップで、前記端末に備えられた加速度センサから得られる加速度の変化を求め、求めた変化に基づいて、前記変化が大きい程値が大きくなり、前記変化が小さい程値が小さくなる、前記移動度を検出する、
付記14~16のいずれかに記載のコンピュータ読み取り可能な記録媒体。
(Appendix 17)
In the step (a), a change in acceleration obtained from an acceleration sensor provided in the terminal is obtained. Based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility,
The computer-readable recording medium according to any one of appendices 14 to 16.
(付記18)
 前記(a)のステップで、前記端末の位置を特定するための情報を取得し、取得した前記情報の変化を求め、求めた変化に基づいて、前記変化が大きい程値が大きくなり、前記変化が小さい程値が小さくなる、前記移動度を検出する、
付記14~16のいずれかに記載のコンピュータ読み取り可能な記録媒体。
(Appendix 18)
In the step (a), information for specifying the position of the terminal is acquired, a change in the acquired information is obtained, and based on the obtained change, the value increases as the change increases. The smaller the value, the smaller the value, detecting the mobility,
The computer-readable recording medium according to any one of appendices 14 to 16.
(付記19)
 前記(a)のステップで、前記端末の位置の変化を求め、求めた変化に基づいて、変化が大きい程値が大きくなり、変化が小さい程値が小さくなる、前記移動度を検出する、
付記14~16のいずれかに記載のコンピュータ読み取り可能な記録媒体。
(Appendix 19)
In the step (a), a change in the position of the terminal is obtained, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases.
The computer-readable recording medium according to any one of appendices 14 to 16.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2011年6月10日に出願された日本出願特願2011-130096を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-130096 filed on June 10, 2011, the entire disclosure of which is incorporated herein.
 以上のように、本発明によれば、端末の静止状態の判断を行なう場合であっても、端末の位置検出の精度の向上を図ることができる。従って、本発明は、測位システムを利用したヒト及びモノの位置検出を高精度化でき、端末の測位が求められる種々の分野に有用である。 As described above, according to the present invention, it is possible to improve the accuracy of terminal position detection even when determining the stationary state of a terminal. Therefore, the present invention can improve the accuracy of position detection of humans and objects using a positioning system, and is useful in various fields where positioning of terminals is required.
 10 測位装置(実施の形態1)
 11 観測量生成部
 12 測位部
 13 移動度検出部
 14 信頼度検出部
 15 位置情報取得部
 16 移動度検出用センサ
 17 出力部
 18 演算装置
 19 表示装置
 20 測位装置(実施の形態2)
 21 観測量生成部
 22 測位部
 23 移動度検出部
 24 信頼度検出部
 25 位置情報取得部
 26 出力部
 27 演算装置
 30 測位装置(実施の形態3)
 31 観測量生成部
 32 測位部
 33 移動度検出部
 34 信頼度検出部
 35 位置情報取得部
 36 出力部
 37 演算装置
 38 記憶部
 100 端末
 110 ネットワークシステム
 120 基地局
 130 コンピュータ
 131 CPU
 132 RAM
 133 入力インターフェイス
 134 表示コントローラ
 135 記憶装置
 136 バス
 137 通信モジュール
 138 加速度センサ
 
 
10. Positioning device (Embodiment 1)
DESCRIPTION OF SYMBOLS 11 Observed quantity production | generation part 12 Positioning part 13 Mobility detection part 14 Reliability detection part 15 Position information acquisition part 16 Sensor for mobility detection 17 Output part 18 Arithmetic unit 19 Display apparatus 20 Positioning apparatus (Embodiment 2)
DESCRIPTION OF SYMBOLS 21 Observation amount production | generation part 22 Positioning part 23 Mobility detection part 24 Reliability detection part 25 Position information acquisition part 26 Output part 27 Arithmetic apparatus 30 Positioning apparatus (Embodiment 3)
Reference Signs List 31 observation amount generation unit 32 positioning unit 33 mobility detection unit 34 reliability detection unit 35 position information acquisition unit 36 output unit 37 arithmetic unit 38 storage unit 100 terminal 110 network system 120 base station 130 computer 131 CPU
132 RAM
133 Input interface 134 Display controller 135 Storage device 136 Bus 137 Communication module 138 Acceleration sensor

Claims (9)

  1.  端末の位置を検出するための測位装置であって、
     前記端末の移動状態を表す移動度を検出する、移動度検出部と、
     検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、観測量生成部と、
     生成された前記観測量に基づいて、前記端末の位置を検出する、測位部と、
    を備えていることを特徴とする測位装置。
    A positioning device for detecting the position of a terminal,
    A mobility detector for detecting a mobility representing a movement state of the terminal;
    A time window is set according to the detected mobility, information for specifying the position of the terminal is acquired in the set time window, and the position of the terminal is detected using the acquired information An observable generator for generating an observable used for
    A positioning unit that detects a position of the terminal based on the generated observation amount;
    A positioning device characterized by comprising:
  2.  前記端末が、基地局と通信する機能を備えており、
     前記観測量生成部が、前記情報として、前記端末の前記基地局との位置的関係を特定する情報を取得する、請求項1に記載の測位装置。
    The terminal has a function of communicating with a base station;
    The positioning apparatus according to claim 1, wherein the observation amount generation unit acquires information specifying a positional relationship of the terminal with the base station as the information.
  3.  前記端末の前記基地局との位置的関係を特定する前記情報を、前記観測量生成部が設定した前記時間窓に応じて取得し、取得した前記情報を、前記観測量生成部に出力する、位置情報取得部を更に備えている、請求項2に記載の測位装置。 The information for specifying the positional relationship of the terminal with the base station is acquired according to the time window set by the observation amount generation unit, and the acquired information is output to the observation amount generation unit. The positioning device according to claim 2, further comprising a position information acquisition unit.
  4.  前記移動度に基づいて、前記測位部によって検出された前記端末の位置の信頼性を示し、且つ、前記端末の移動度が小さい程値が高く、前記端末の移動度が大きい程値が低くなる、信頼度を、検出する、信頼度検出部と、
     前記測位部によって検出された前記端末の位置と、前記信頼度検出部によって検出された前記信頼度とを、出力する、出力部と、を更に備えている、
    請求項1~3のいずれかに記載の測位装置。
    Based on the mobility, the reliability of the position of the terminal detected by the positioning unit is shown. The smaller the mobility of the terminal, the higher the value, and the higher the mobility of the terminal, the lower the value. A reliability detection unit for detecting the reliability;
    An output unit for outputting the position of the terminal detected by the positioning unit and the reliability detected by the reliability detection unit;
    The positioning device according to any one of claims 1 to 3.
  5.  前記移動度検出部が、前記端末に備えられた加速度センサから得られる加速度の変化を求め、求めた変化に基づいて、前記変化が大きい程値が大きくなり、前記変化が小さい程値が小さくなる、前記移動度を検出する、
    請求項1~4のいずれかに記載の測位装置。
    The mobility detector obtains a change in acceleration obtained from an acceleration sensor provided in the terminal, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility;
    The positioning device according to any one of claims 1 to 4.
  6.  前記移動度検出部が、前記位置情報取得部によって取得された前記情報の変化を求め、求めた変化に基づいて、前記変化が大きい程値が大きくなり、前記変化が小さい程値が小さくなる、前記移動度を検出する、
    請求項1~4のいずれかに記載の測位装置。
    The mobility detector obtains a change in the information acquired by the position information acquisition unit, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detecting the mobility;
    The positioning device according to any one of claims 1 to 4.
  7.  前記移動度検出部が、前記測位部によって検出された前記端末の位置の変化を求め、求めた変化に基づいて、変化が大きい程値が大きくなり、変化が小さい程値が小さくなる、前記移動度を検出する、
    請求項1~4のいずれかに記載の測位装置。
    The mobility detection unit obtains a change in the position of the terminal detected by the positioning unit, and based on the obtained change, the value increases as the change increases, and the value decreases as the change decreases. Detect the degree,
    The positioning device according to any one of claims 1 to 4.
  8.  端末の位置を検出するための測位方法であって、
    (a)前記端末の移動状態を表す移動度を検出する、ステップと、
    (b)前記ステップ(a)で検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、ステップと、
    (c)前記ステップ(b)で生成された前記観測量に基づいて、前記端末の位置を検出する、ステップと、
    を有することを特徴とする測位方法。
    A positioning method for detecting the position of a terminal,
    (A) detecting a mobility indicating a movement state of the terminal;
    (B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and
    (C) detecting the position of the terminal based on the observation amount generated in the step (b);
    A positioning method characterized by comprising:
  9.  コンピュータによって端末の位置を検出するための、プログラムを記録したコンピュータ読み取り可能な記録媒体であって、
    前記コンピュータに、
    (a)前記端末の移動状態を表す移動度を検出する、ステップと、
    (b)前記ステップ(a)で検出された前記移動度に応じて時間窓を設定し、設定した時間窓で、前記端末の位置を特定するための情報を取得し、そして、取得した情報を用いて、前記端末の位置の検出に用いる観測量を生成する、ステップと、
    (c)前記ステップ(b)で生成された前記観測量に基づいて、前記端末の位置を検出する、ステップと、
    を実行させる、命令を含むプログラムを記録しているコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium recording a program for detecting the position of a terminal by a computer,
    In the computer,
    (A) detecting a mobility indicating a movement state of the terminal;
    (B) A time window is set according to the mobility detected in the step (a), information for specifying the position of the terminal is acquired in the set time window, and the acquired information is Generating an observable for use in detecting the location of the terminal; and
    (C) detecting the position of the terminal based on the observation amount generated in the step (b);
    The computer-readable recording medium which has recorded the program containing the instruction | command which performs.
PCT/JP2012/056626 2011-06-10 2012-03-15 Position measuring apparatus, position measuring method, and computer readable recording medium WO2012169252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-130096 2011-06-10
JP2011130096 2011-06-10

Publications (1)

Publication Number Publication Date
WO2012169252A1 true WO2012169252A1 (en) 2012-12-13

Family

ID=47295825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056626 WO2012169252A1 (en) 2011-06-10 2012-03-15 Position measuring apparatus, position measuring method, and computer readable recording medium

Country Status (1)

Country Link
WO (1) WO2012169252A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530498A (en) * 2013-06-26 2016-09-29 クゥアルコム・インコーポレイテッドQualcomm Incorporated Using motion detection in estimating variability of positioning-related metrics
JP2018194537A (en) * 2017-05-15 2018-12-06 富士ゼロックス株式会社 Method, program and system for position determination and tracking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133880A (en) * 1984-12-04 1986-06-21 Furuno Electric Co Ltd Display unit for navigating position
JPH112675A (en) * 1997-06-13 1999-01-06 Mitsubishi Electric Corp Relative position detecting system and relative position detecting device
JP2004513354A (en) * 2000-11-04 2004-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Spread spectrum receiver and related method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133880A (en) * 1984-12-04 1986-06-21 Furuno Electric Co Ltd Display unit for navigating position
JPH112675A (en) * 1997-06-13 1999-01-06 Mitsubishi Electric Corp Relative position detecting system and relative position detecting device
JP2004513354A (en) * 2000-11-04 2004-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Spread spectrum receiver and related method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016530498A (en) * 2013-06-26 2016-09-29 クゥアルコム・インコーポレイテッドQualcomm Incorporated Using motion detection in estimating variability of positioning-related metrics
JP2018194537A (en) * 2017-05-15 2018-12-06 富士ゼロックス株式会社 Method, program and system for position determination and tracking
JP7077598B2 (en) 2017-05-15 2022-05-31 富士フイルムビジネスイノベーション株式会社 Methods, programs, and systems for position-fixing and tracking

Similar Documents

Publication Publication Date Title
Farid et al. Recent advances in wireless indoor localization techniques and system
US9198121B2 (en) Systems and methods for selective scanning based on range and movement
EP3186654B1 (en) Method and apparatus for real-time, mobile-based positioning according to sensor and radio frequency measurements
JP2005176386A (en) Mobile device
US9113291B2 (en) Location detection within identifiable pre-defined geographic areas
US8456364B2 (en) Positioning of mobile objects based on mutually transmitted signals
US9253598B2 (en) Method for measuring location of terminal in wireless network and device therefor
US20170034656A1 (en) Apparatus,system and method of geofencing
WO2011132635A1 (en) Positioning device and positioning method
KR101234177B1 (en) Method for estimating position of user device
US10292009B2 (en) Apparatus and method for estimating location in a wireless communication system
US9408136B2 (en) Method and apparatus for performing scan operations
US10527430B2 (en) Method and apparatus for beacon data collection
US20180317111A1 (en) Caching positioning measurement reports
US11856552B2 (en) Devices and methods for automatically labelling high-accuracy indoor localization and determining location information
CN107533123B (en) Method and server for positioning a communication device in a wireless communication environment
JP2013156257A (en) Dynamic compensation for wireless device location determination
WO2012169252A1 (en) Position measuring apparatus, position measuring method, and computer readable recording medium
Pereira et al. Evaluating location fingerprinting methods for underground GSM networks deployed over Leaky Feeder
US9274206B2 (en) Wireless device, control method, recording medium, and display method
Grzechca et al. Indoor localization of objects based on RSSI and MEMS sensors
KR102492309B1 (en) User terminal and location estimation method using the same
JP2015165616A (en) White space sensing device, white space sensing method, and program
KR20160133350A (en) Apparatus and method for estimating location in wirleess communicnation system
US9374676B1 (en) Mobile communication station having selectable position latency for position estimation in a wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP