WO2012169150A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2012169150A1
WO2012169150A1 PCT/JP2012/003536 JP2012003536W WO2012169150A1 WO 2012169150 A1 WO2012169150 A1 WO 2012169150A1 JP 2012003536 W JP2012003536 W JP 2012003536W WO 2012169150 A1 WO2012169150 A1 WO 2012169150A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
light emitting
electron
metal
Prior art date
Application number
PCT/JP2012/003536
Other languages
French (fr)
Japanese (ja)
Inventor
松本 敏男
Original Assignee
エイソンテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エイソンテクノロジー株式会社 filed Critical エイソンテクノロジー株式会社
Priority to JP2013519371A priority Critical patent/JP5922654B2/en
Publication of WO2012169150A1 publication Critical patent/WO2012169150A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to an organic electroluminescent element (hereinafter sometimes abbreviated as “organic EL element”) used for a planar light source and a display element.
  • organic EL element organic electroluminescent element
  • an organic EL element having a light emitting layer made of an organic compound between an anode and a cathode, which are opposed to each other has attracted attention as a means for realizing a large-area display element driven at a low voltage.
  • Tang et al. Of Eastman Kodak Company has adopted a structure in which organic compounds having different carrier transport properties are stacked, and holes and electrons are injected in a balanced manner from the anode and the cathode, respectively, in order to increase the efficiency of the device.
  • the structure of the organic EL element has been developed on the basis of the structure shown by Tang et al. As described above. Recently, for example, as shown in Patent Document 7 and Patent Document 8, a structure sandwiched between electrodes. An organic EL element having a structure in which a plurality of light emitting units are stacked so that can be connected in series has been developed. This technology has been attracting attention as a technology that enables the organic EL device to dramatically extend its life, achieve high brightness required for light sources and illumination, and emit light uniformly over a large area. This is because the structure of the organic EL element of Tang et al. Which requires a large current despite the low voltage cannot satisfy these requirements.
  • an organic EL element having a series type (tandem type) structure, and ITO (Indium Tin Oxide) or IZO (IZO (A plurality of light emitting units can be connected in series by using a charge generation layer with low conductivity instead of a transparent electrode material such as Indium Zinc Oxide.
  • this organic EL element only the region where the cathode and the anode intersect with each other emits light as in the conventional organic EL element, and the sputtering process that is essential for the formation of the transparent electrode becomes unnecessary. It is recognized as the most useful among the structures of organic EL elements, and has been widely known as a multiphoton organic EL element. The reason for being referred to as multiphoton is that if the number of light emitting units is set to a predetermined number or more, the number of photons exceeding the number of electrons passing through the organic EL element can be generated.
  • this multi-photon organic EL element has a problem that a manufacturing process several times as many as that of the conventional organic EL element is required. Further, a low-conductivity charge generation layer is formed by, for example, Patent Documents 9 to There is also a problem that it is difficult to control the manufacturing process because the chemical doping method described in Document 14 must be used.
  • the series organic EL element is suitable for emitting light over a large area with uniform intensity.
  • the series organic EL element can increase the voltage V required to obtain the same luminance by multiplying by the number of units, and the current I is almost equal to the number of units. You can make it smaller by the amount you remove.
  • the element resistance ratio of voltage to current: VI ⁇ 1
  • VI ⁇ 1 increases by approximately the square of the number of units, the voltage drop due to the surface resistance of the external electrode can be reduced, and a substantially uniform potential in the surface can be realized. Because.
  • the uniformity of the potential in other words, the uniformity of the luminance, increases as the number of units increases.
  • a light emitting area of about 5 inches diagonal is approximately uniform in a laminate of several units.
  • light emission can be realized, for example, when the light emission area is 15 inches or more diagonally, uniform light emission with such high brightness is impossible with a laminate of several units, and at least about 15 units are considered necessary. It is almost impossible to produce such a large number of unit laminates efficiently and at low cost.
  • the charge transfer complex formed at the contact interface formed by mixing or stacking a metal oxide having a strong electron-donating property and an amine-based organic compound having a high electron-accepting property is as if the charge is charged. It is described that an electron charge and a hole charge necessary for excitation of the luminescent substance are supplied from the generation layer to the light emitting unit. However, in actuality, in the configuration described in Patent Document 8, although electrons are generated in the metal oxide by the applied electric field at the interface, holes are generated in the amine organic compound.
  • both the hole and electron charges are not automatically supplied to the light-emitting substance, and as shown in the specific examples, strong charges such as alkali metals are always present at the site in contact with the anode side of the charge generation layer.
  • a technique is required for causing an electron donating substance to act on an electron transporting organic substance and promoting electron injection into the organic substance.
  • Examples of a method for supplying alkali metal into the film include a method in which alkali metal is directly evaporated by resistance heating (resistance heating vapor deposition method), a method using a film containing a compound containing alkali metal ions, and the like. Is proposed in Patent Document 8.
  • an oxide, carbonate, composite oxide, composite carbonate, or the like containing an alkali metal ion is further deposited by electron beam evaporation
  • the electron beam evaporation method itself converts the metal in the compound from the ionic state to the metal. Since it is one of the means for reducing to an atomic state, as a result, an alkali metal can be allowed to act on an electron transporting organic substance.
  • cesium carbonate (CsCO 3 ) may be capable of producing metal cesium by reduction simply by resistance heating in vacuum without using an electron beam evaporation method.
  • Patent Document 9 For alkali metal compounds such as oxides, carbonates, composite oxides, composite carbonates and the like, for example, in Patent Document 9 or Patent Document 10, an electron injection layer or an intermediate cathode layer containing lithium carbonate or lithium oxide ( It is described that a layer called an interface layer is formed so as to be in contact with the anode side of the charge generation layer, and these documents do not clearly describe the vapor deposition method. If the film is formed by the usual resistance heating vapor deposition method regardless of the electron beam vapor deposition method, the alkali metal ions in the compound are not reduced to the metal, so that it becomes impossible to transport the electronic charge to the luminescent material as described above. This is easily verified by experiment.
  • the present inventors have conducted intensive studies, and the present inventors have proposed reducing substances such as alkali metals (strong electron donation) that have been indispensable for the structure of multi-photon organic EL devices that have been proposed and developed previously.
  • An organic EL element that exhibits substantially the same performance as the conventional one has been proposed (Patent Document 11) while avoiding the use of an organic substance (thus greatly simplifying the manufacturing process).
  • Patent Document 11 An organic EL element that exhibits substantially the same performance as the conventional one has been proposed (Patent Document 11) while avoiding the use of an organic substance (thus greatly simplifying the manufacturing process).
  • the present inventors have determined that an electron charge (radical anion state electron) in the direction of the anode as viewed from the charge generation site without using a strong electron donating substance such as an alkali metal.
  • the stack type organic EL element proposed in Patent Document 11 requires a driving voltage as high as that of the conventional organic EL element, and the present inventors have yet improved from the viewpoint of energy saving and the like. As a result, it was further studied that the structure of the organic EL element was repeated. And in the organic EL element in the above-mentioned patent document 11, if the charge injection into the light emitting layer can be made more efficient with respect to the element in which the insulating organic material layer is provided in the direction of the anode as viewed from the charge generation site, the driving voltage is set. The present inventors have found that a reduced stack type organic EL device structure can be obtained, and have completed the present invention.
  • the object of the present invention is a structure that does not use a strong electron donating substance such as an alkali metal and can be injected into the light emitting layer by moving the electron charge in the direction of the anode as viewed from the charge generation (carrier generation) site.
  • An object of the present invention is to provide a new structure of an organic EL element that has a structure in which an insulating organic material layer is provided at a site that becomes a barrier against the movement of electric charges to a light emitting layer, and can further reduce the driving voltage.
  • the present invention provides: The anode, A cathode, A plurality of light emitting units including a light emitting layer located between the anode and the cathode; An intermediate layer located between the plurality of light emitting units, The intermediate layer is composed of an insulating organic layer provided in a portion that serves as a barrier against charge transfer from the intermediate layer to the light emitting unit, and an organic material and a metal provided adjacent to the insulating organic layer.
  • a mixed layer, An organic electroluminescent element (hereinafter referred to as “organic EL element”) is provided. According to the present invention having such a configuration, it is possible to realize a stack type organic EL element that increases the efficiency of charge injection into the light emitting layer and suppresses an increase in driving voltage.
  • the difference between the electron affinity of the organic substance constituting the mixed layer and the ionization potential of the layer adjacent to the side of the mixture layer opposite to the insulating organic layer side is 1 It is preferably 4 eV or less. According to the present invention having such a configuration, a sufficient carrier density can be generated, the efficiency of charge injection into the light emitting layer can be more reliably increased, and an increase in driving voltage can be suppressed.
  • the organic substance constituting the mixed layer contains a hexaazatriphenylene derivative. Since the hexaazatriphenylene derivative has a deep electron affinity, if it is used, a sufficient carrier density can be generated more reliably, and the efficiency of charge injection into the light emitting layer can be increased more reliably, and the driving voltage can be reduced. The increase can be suppressed.
  • the metal constituting the mixed layer contains a metal element belonging to Group 3 to Group 13. If this is used, voltage loss in the intermediate layer can be greatly reduced, and an increase in drive voltage can be suppressed.
  • the mixed layer is a co-deposition layer of the organic material and the metal, even if the mixed layer is formed of a laminate of the organic material layer and the metal layer. It may be configured. That is, the mixed layer may be a laminate formed by sequentially laminating an organic layer and a metal layer, or a co-deposited layer formed by co-evaporating an organic layer and a metal. . According to this, an intermediate layer having high reproducibility and more reliable charge injection efficiency can be obtained, and an increase in drive voltage can be suppressed.
  • the characteristic feature of the present invention is “a mixture of an insulating organic layer provided in a portion that serves as a barrier against charge transfer to the light emitting unit, and an organic material and a metal provided adjacent to the insulating organic layer.
  • the intermediate layer including the layers will be described. The role of this intermediate layer is to inject the same amount of electrons into the light emitting unit adjacent to the unit on the anode side of the intermediate layer and holes into the unit on the cathode side. By maintaining this balance of injection, each light emitting unit is equivalently connected in series, and the operation expected as a stacked element can be obtained.
  • the intermediate layer in the organic EL device of the present invention acts as a so-called “charge generation layer” in the layer or at one interface (more precisely, acts as a carrier generation layer or a carrier generation interface), and is generated at the other interface. It has a function of injecting the thus-prepared carrier into the light emitting unit in contact with the interface. Specifically, a layer including a material having a deep electron affinity or a layer composed of the material is converted into a hole transport layer having a shallow ionization potential (for example, a layer composed of NPB or other triphenylamine derivatives). Next, by applying an electric field, holes can be generated on the hole transport layer side, and at the same time, electrons can be generated on the intermediate layer side.
  • a layer having such a function is referred to as a “charge generation layer”, and it has been described that a special configuration or an effect is generated, but this phenomenon itself is an organic EL.
  • ITO In addition, it is a well-known fact that ITO that has been used for the anode of an organic EL element can inject holes into an amine-based hole transport layer.
  • ITO is an n-type semiconductor, and the fact that its “work function” is the energy level of the conduction band, that is, the electron affinity, if there is an interface having such an energy level relationship, on the amine side. It is immediately understood that holes can be injected.
  • the deep electron affinity of the organic material constituting the mixed layer and a layer adjacent to the side of the mixed layer opposite to the insulating organic layer side (for example, a hole transport layer in a light emitting unit) ) Is not more than 1.4 eV, preferably not more than 0.8 eV, and it is preferable because carriers can be generated more reliably.
  • the work function of ITO that is, the electron affinity, varies depending on the surface treatment with oxygen and the like, and is generally in the range of 4.7 eV to 5.3 eV. .
  • the electron affinity of the amine hole transport material is 5.4 eV for 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (NPB) and 5 for triphenylenediamine (TPD). .5 eV, starburst amine derivatives are known to be about 5.0 eV to 5.2 eV. Therefore, if the difference between the electron affinity of the layer having a deep electron affinity and the ionization potential of the hole transport layer is 1.4 eV or less, carrier generation is sufficiently possible.
  • the value of 1.4 eV can be found theoretically from the energy level distribution of the organic layer.
  • a distribution occurs in polarization energy with respect to electric charge due to non-uniformity of intermolecular distance and molecular orientation distribution. Therefore, the electron affinity and ionization potential have a spatial distribution, and the deviation is 0.2. This produces a Gaussian distribution of ⁇ 0.3 eV.
  • the difference of 1.4 eV gives an overlap at the base of this distribution, and the overlap width is located at 2.33-3.5 ⁇ from the center of the distribution, and erfc (2.
  • the layer formed of a material having a shallow ionization potential on the intermediate layer side Alternatively, a layer containing the material is arranged, and a layer made of an insulating organic compound is arranged at the interface with the light emitting unit on the cathode side.
  • the difference in electron affinity between the shallow ionization potential layer and the layer in contact with the light emitting unit on the anode side is 1.4 eV or less, carriers can be generated, which is preferable.
  • this carrier is generated and both carriers are present as “a charge transfer complex is generated.”
  • the charge transfer complex has binding energy to form a complex. Therefore, it is a well-known fact that this binding energy is larger than the difference between the electron affinity of the acceptor and the ionization potential of the donor, and it is clear from the above discussion.
  • this charge transfer complex is generated, in order to generate electrons and holes as free carriers from the charge transfer complex, it is necessary to give energy exceeding the binding energy. This is equivalent to giving a potential difference corresponding to the energy to a single molecule, and causes an increase in the applied voltage of the potential difference even when all the complexes are arranged at the interface.
  • the important point as an intermediate layer is that in the case of the configuration of this example, electrons generated on the layer side having a deep electron affinity must be injected beyond the high barrier to the light emitting unit located on the anode side. It is to be realized by such a method.
  • the present inventors can inject electrons into an electron transport layer having a shallow electron affinity rather than a deep electron affinity layer by disposing a thin layer of an insulating organic compound at this interface. It was found that series operation is possible equivalently. Furthermore, the present inventors have made extensive studies, and when a metal is dosed to a layer made of an organic material having a deep electron affinity adjacent to the insulating organic material layer, or adjacent to the insulating organic material layer.
  • a hexaazatriphenylene derivative for example, HAT-CN6
  • HAT-CN6 hexaazatriphenylene derivative
  • the organic substance used is not limited to this example.
  • Organic substances having a deep electron affinity and metal elements tend to cause strong coordination bonds. Since the organic coordinated metal molecule functions as a molecule different from the original organic compound, different functions and physical properties can be realized by dosing the metal.
  • FIG. 4 shows the measurement results of the conductivity of a film in which Al is coordinated to HAT-CN6 by co-evaporation.
  • the measurement element was measured by arranging two parallel ITO electrodes with a spacing of 0.2 mm and forming a 100 nm thick film by vacuum deposition.
  • the dose amount or stacking amount starts to exceed 3 in terms of molar ratio
  • the conductivity rapidly increases, and ohmic changes from the original semiconductor characteristics of HAT-CN6.
  • the reason why the electron injection efficiency through the insulating layer is improved by increasing the conductivity is unknown exactly, but probably the carriers generated by the improvement in conductivity do not stay near the generation interface layer.
  • the generated carrier causes “band bending” in a state where it stays at the generation interface due to the space charge generated by each charge. Is easy to understand. In order to solve this bending and move electrons and holes, it is necessary to further increase the applied voltage.
  • the metal to be dosed that is, the metal contained in the mixed layer, Al, Ga, and In of group 13 are preferable, but transition metal elements of groups 3 to 12 can also be used because they provide the same effect.
  • the reason why the Group 13 metal is preferable is that the outermost orbital electrons are deeply involved, although the exact place is unknown.
  • the group 13 metal has a structure sandwiched between two nitrogen atoms and is coordinated in bidentate to HAT-CN6, etc., so there is one more lone electron, which induces electron transfer between molecules. It is thought that.
  • the group 13 metal is coordinated as an electron pair to the aromatic ring or CC double bond, it is considered that one excess electron exists and the same effect can be obtained.
  • transition metals of Groups 3 to 12 are effective is not clear, but the arrangement of the outermost electrons is probably changed during coordination, and some s electrons move to the d orbital and coordinate. One electron is deficient at this time, which is considered to cause a state opposite to that of the 13th group.
  • transition metals for example, Ag has an arrangement of 4d 10 3s 1 , and there are many such as s 1 that are Cu, Cr, Rh, Ru, Au, Pt and the like.
  • the transition metal of group 3 to group 12 changes its electron configuration by coordination with an organic molecule, so whether or not the effect is exerted depends on the combination.
  • the insulating organic material layer in the organic EL device of the present invention may be a single film made of only an insulating organic material, and may be an insulating organic material and an electron transporting organic material and / or an intermediate layer used for an electron transporting layer.
  • a mixed film containing an organic substance having a deep electron affinity to be used may be used.
  • the manufacturing process is greatly simplified, while the performance is almost the same as the conventional one. It is possible to realize a stack type organic EL element having a low driving voltage.
  • FIG. 6 is a graph plotting voltage (V) ⁇ luminance (cd / m 2 ) for the organic EL devices fabricated in Example 1 and Comparative Example 1.
  • FIG. 6 is a graph plotting current density (mA / cm 2 ) -current efficiency (cd / A) for the organic EL devices fabricated in Example 2 and Comparative Example 2.
  • 5 is a graph plotting voltage (V) ⁇ luminance (cd / m 2 ) for the organic EL devices fabricated in Example 2 and Comparative Example 2.
  • the organic EL device of the present invention includes an anode, a cathode, a plurality of light emitting units including a light emitting layer located between the anode and the cathode, an intermediate layer located between the plurality of light emitting units, An insulating organic layer provided at a site that serves as a barrier against charge transfer from the intermediate layer to the light emitting unit, and an organic material provided adjacent to the insulating organic layer; And a mixed layer made of a metal.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of the organic EL element of the present embodiment
  • FIG. 2 is a schematic diagram of an energy diagram showing a typical configuration of the organic EL element of the present invention.
  • the organic EL element 1 of the present embodiment includes n light emitting units (n is an integer of 2 or more), for example, an anode 4 formed in order on a glass substrate 2;
  • the first light-emitting unit 6-1, the second light-emitting unit 6-2, and the n-th light-emitting unit 6-n are collectively referred to as “light-emitting unit 6”, and the first insulating organic material layer 8-1.
  • the second insulating organic material layer 8-2 and the (n-1) th insulating organic material layer 8- (n-1) may be collectively referred to as "insulating organic material layer 8".
  • the first intermediate layer 9-1, the second intermediate layer 9-2, and the (n-1) th intermediate layer 9- (n-1) may be collectively referred to as "intermediate layer 9".
  • the first mixed layer, the second mixed layer 10-2, and the (n-1) th mixed layer 10- (n-1) may be collectively referred to as "mixed layer 10".
  • the organic EL element 1 of the present embodiment does not include any strong electron donating substance such as an alkali metal that quenches the luminescent organic substance contained in the light emitting unit 6. Further, in order to efficiently supply electronic charges into the light emitting unit 6, a low dielectric constant insulating organic material layer 8 is provided between the mixed layer 10 and the light emitting unit 6.
  • the insulating organic material layer 8 in the organic EL element 1 of the present invention may be composed of an insulating organic material having a low relative dielectric constant, and various organic compounds are used as the insulating organic material. It is expected. Among them, for example, the following formula:
  • the insulating organic material layer 8 when it is provided at a site where electronic charges move, it may be any layer that functions as an insulating layer with respect to the transport of electronic charges. ) A hole transporting organic material layer formed of a transporting organic material may be used.
  • the organic substance constituting the mixed layer 10 in the present embodiment may be any substance that can form a site for generating electrons and holes at the interface with an adjacent layer (for example, a hole transport layer) as described above.
  • the mixed layer 10 is composed of an organic substance having a deep electron affinity (for example, HAT-CN6) and a group 3 to group 13 element (for example, Al), and a hole transport layer (for example, NPB) adjacent to the cathode 14 side.
  • a deep electron affinity for example, HAT-CN6
  • group 3 to group 13 element for example, Al
  • NPB hole transport layer
  • the mixed layer 10 is composed of an organic substance having a deep electron affinity (for example, HAT-CN6) and a group 3 to group 13 element (for example, Al), and further, a deep electron adjacent to the cathode side.
  • a layer composed only of an organic substance having affinity may be laminated. That is, it is preferable to adopt such a two-layer structure when electron and hole carrier generation at the interface with the adjacent hole transport layer is inhibited by the presence of elements of Group 3 to Group 13 instead. .
  • a metal having a small work function, an alloy containing them, a metal oxide, or the like is used as a material constituting the cathode 14.
  • an alkali metal such as Li
  • an alkaline earth metal such as Mg or Ca
  • a rare earth metal such as Eu
  • an alloy of these metals with Al, Ag, In, or the like can be given. It is done.
  • the cathode when adopting a configuration in which a metal-doped organic layer is used at the interface between the cathode 14 and the organic layer (see, for example, Japanese Patent Laid-Open Nos. 10-270171 and 2001-102175), the cathode is electrically conductive. If it is a material, its properties such as work function are not limited.
  • an organic layer (organic layer in the light-emitting unit 6) in contact with the cathode 14 is formed with an alkali metal ion or an alkaline earth metal.
  • a metal capable of reducing metal ions contained in the organometallic complex compound to a metal in a vacuum for example, Al
  • a (thermally reducible) metal such as Zr, Ti, or Si, or an alloy containing these metals can also be used as the cathode material.
  • Al which is generally widely used as a wiring electrode, is preferable from the viewpoints of easiness of vapor deposition, high light reflectance, chemical stability, and the like.
  • the material constituting the anode 4 is not particularly limited.
  • a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide) can be used.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the ITO film is formed by a sputtering method that does not damage the organic film using the technique described in Japanese Patent Application Laid-Open No. 2002-332567, as in the case of the cathode 14, Japanese Patent Application Laid-Open No. 10-270171.
  • the transparent conductive material such as ITO or IZO described above can also be used for the cathode 14.
  • the cathode 14 and the anode 4 are transparent, the light emitting unit including the organic layer and the intermediate layer are transparent as well, so that a transparent organic EL element can be produced.
  • the anode 4 is made of metal and the cathode 14 is a transparent electrode, so that light is extracted from the cathode 14 side instead of the glass substrate 2 side.
  • the organic EL element 1 can also be used. Further, regarding the order of forming each layer, it is not always necessary to start with the formation (film formation) of the anode 14, and the formation may be started from the cathode 4.
  • the light emitting unit 6 in the present embodiment can take various structures as in the case of a conventionally known organic EL element, and is composed of, for example, a combination of a light emitting layer and a hole transport layer and / or an electron transport layer. Various modes may be adopted as the combination.
  • the “light emitting layer” included in the light emitting unit 6 may be a conventional light emitting layer used in a conventional organic EL element, and the light emitting material constituting the light emitting layer is not particularly limited, and various fluorescent materials or phosphorescences are used. Any known material can be used. For example, the following formula:
  • the “hole transport layer” may be formed using a hole transport material that constitutes the hole transport layer of the conventional organic EL device, and is not particularly limited.
  • the ionization potential is smaller than 5.7 eV
  • the hole transport property is That is, an organic compound having an electron donating property (electron donating substance) can be used.
  • it is desirable that the ionization potential is smaller than 5.7 eV in order for an organic compound having an electron donating property to easily enter a radical cation state.
  • Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent
  • Ar 1 , Ar 2 and Ar 3 are preferably arylamine compounds.
  • arylamine compounds are preferably 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (NPB) is preferable.
  • a pigment-based organic material containing a phthalocyanine compound that has been conventionally used as a hole injection material for organic EL elements may be used for the “hole transport layer”. Any material that can be generated can be appropriately selected and used.
  • the “electron transport layer” may be formed using an electron transport material constituting the electron transport layer of the conventional organic EL device, and is not particularly limited.
  • the electron transport material used in this embodiment is Among the electron transport materials used in the organic EL element, those having a relatively deep ionization potential are preferable. Specifically, it is preferable to use an electron transporting material having an ionization potential of at least about 6.0 eV.
  • an electron transporting material having a deep ionization potential is used as described above, the hole charge is difficult to move toward the electron transporting material, and the electron charge generated in the intermediate layer 9 is electrically neutralized as described above.
  • the light emitting material can be surely excited to emit light without being summed.
  • the electron affinity of the electron transporting substance used in the present embodiment is the electron affinity of the (strong) electron accepting substance used in the intermediate layer 9 and the electron affinity of the luminescent organic substance contained in the light emitting unit 6. It is preferably located between.
  • an electron transport substance for example, KLET02 manufactured by Chemipro Kasei Co., Ltd. can be used as an electron transport substance (organic substance).
  • the physical properties of the electron transport material (organic substance) manufactured by Chemipro Kasei Co., Ltd. are shown below (from Chemipro Kasei Co., Ltd. HP. Http://www.chemipro.co.jp/Yuki# EL / Products.html).
  • HAT-CN6 hexaazatriphenylene derivative
  • the electron transporting organic material constituting the electron transporting layer may be mixed in the insulating organic material layer. That is, the organic EL device of the present invention may have an insulating organic substance / electron transporting substance mixed layer instead of the insulating organic substance layer.
  • the strong organic accepting material constituting the strong electron accepting material layer is mixed in the insulating organic material layer. It may be. That is, the organic EL element of the present invention may have an insulating organic substance / strong electron accepting substance mixed layer instead of the insulating organic substance layer. Even in such a configuration, an undesirable interaction between the electron transporting substance and the strong electron accepting substance may be avoided, and this can be confirmed by experiments as appropriate.
  • the light emitting layer in the light emitting unit is often composed of a host material and a light emitting material dispersed in the host material, and the host material is an electron transporting material. May be the same material. Therefore, in the organic EL device of the present invention, when the electron transport layer is adjacent to the light emitting layer, the light emitting layer and the electron transport layer are configured as a single layer integrally formed using the same material. May be.
  • the hole transport material when the hole transport layer is adjacent to the light emitting layer, the hole transport material may emit light or function as a host material for the light emitting layer.
  • the layer and the hole transport layer may be formed as a single layer formed integrally.
  • the luminescent material may be dispersed and mixed only in the hole transport layer near the cathode.
  • the organic EL element of the present invention can have, for example, the following laminated structure.
  • a) Anode b) Organic layer with deep electron affinity c) Hole transport layer d) Light emitting layer e) Electron transport layer f) Insulating organic layer g) Mixed layer containing organic matter and metal h) Above b) to g) above Repeat ------------------------------------------------------------- i) Cathode
  • the organic EL device of the present invention may have a laminated structure having a mixed layer of an organic substance having a deep electron affinity and a hole transporting substance in the laminated structure as described below.
  • the mixed layer can be formed by separately heating a plurality of vapor deposition sources to form a laminated film, or can be formed as a mixed film by simultaneously heating a plurality of vapor deposition sources ( Co-deposition), the latter is common, but is not limited thereto.
  • the organic EL element of this invention can also take the following laminated structures, for example. a) anode b) organic material layer / hole transport material mixed layer having deep electron affinity c) hole transport layer d) light emitting layer e) electron transport layer f) insulating organic material layer g) mixed layer containing organic material and metal h) above b) to repeat g) above ------------------------------------------------ i) Cathode
  • a laminated constitution part in which the electron transport layer and the insulating organic layer are adjacent to each other is divided into an electron transport layer and an electron transporting organic material / insulating organic material mixed layer. May be changed to an adjacent laminated component (“electron transport layer / electron transport organic compound / insulating organic compound mixed layer”). That is, the electron transporting organic material constituting the electron transporting layer may be mixed with the insulating organic material layer and used.
  • the entire electron transport layer portion may be replaced in advance with an “electron transport organic compound / insulating organic compound mixed layer”, and the “electron transport organic compound / insulating organic compound mixed layer / insulating organic compound layer”
  • the insulating organic material layer may be laminated adjacent to the mixed layer.
  • the laminated component (“electron transport layer / insulating organic layer”) in which the electron transport layer and the insulating organic layer are adjacent to each other is mixed with the electron transport layer and the insulating organic / strong electron accepting substance mixture.
  • the layer may be changed to a laminated component (“electron transport layer / insulating organic substance / strong electron accepting substance mixed layer”) adjacent to the layer. That is, the strong electron accepting material constituting the strong electron accepting material layer may be used by mixing with the insulating organic material layer. Even in such a configuration, an undesirable interaction between the electron-transporting organic substance and the strong electron-accepting substance may be avoided, and these can be confirmed by experiments as appropriate.
  • a light emitting substance is often dispersed in a host material, and the host material may be the same as an electron transporting substance. Therefore, in the organic EL device of the present invention, the stacked constituent portion where the light emitting layer and the electron transport layer are adjacent may be a single layer made of the same material.
  • the hole transport material having the above laminated structure may constitute a light emitting layer or may function as a host material of the light emitting layer.
  • the “hole transport layer / light emitting layer / electron transport layer” laminated structure The part may be changed to a stacked constituent part of “hole transport layer (light emitting layer) / electron transport layer”.
  • the “hole transport layer / light-emitting layer / electron transport layer” layered structure is “hole transport layer / hole transport material / light-emitting material”. It may be changed to a layered configuration portion of “mixed layer / electron transport layer”.
  • an organic EL element including an anode, a cathode, a plurality of light emitting units including a light emitting layer positioned between the anode and the cathode, and an intermediate layer positioned between the plurality of light emitting units, the intermediate layer to the light emitting layer
  • An organic EL element including a laminated structure in which an insulating organic layer is provided in a portion that serves as a barrier against the transfer of electric charge to the insulating layer, and a mixed layer of an organic substance and a metal is formed adjacent to the insulating organic layer.
  • it is basically included in the technical scope of the organic EL device of the present invention.
  • the organic EL element of the present invention may have a structure in which a plurality of these basic units are stacked.
  • the organic EL element of the present invention as described above can be produced by a conventionally known method using a vacuum vapor deposition apparatus.
  • the production can be easily carried out without making the process complicated.
  • Example 1 As an organic EL element of Example 1, layers of materials and thicknesses shown in Table 1 below were laminated in order on a glass substrate to produce an organic EL element 1 including the structure shown in FIG.
  • a vacuum deposition machine manufactured by Eiko Co., Ltd. was used.
  • the thickness of each layer is measured using a stylus type surface shape measuring instrument (DEKTAK3030), and for the characteristic evaluation of the obtained organic EL element, a source meter 2400 manufactured by Keithley Instruments Co., Ltd. and Topcon Co., Ltd. are used.
  • Luminometer BM-7 As an organic EL element of Example 1, layers of materials and thicknesses shown in Table 1 below were laminated in order on a glass substrate to produce an organic EL element 1 including the structure shown in FIG.
  • a vacuum deposition machine manufactured by Eiko Co., Ltd. was used for the formation of each layer.
  • the thickness of each layer is measured using a stylus type surface shape measuring instrument (DEKTAK3030), and for the characteristic evaluation of the obtained organic EL element
  • Comparative example 1 As an organic EL element of Comparative Example 1, in the same manner as in Example 1, layers of materials and thicknesses shown in Table 2 below were sequentially laminated on a glass substrate to produce Comparative Organic EL Element 1.
  • the direct current voltage was 0.1 V / 2 seconds or 0.5 V between the anode and the cathode of the organic EL device 1 (Example 1) and the comparative organic EL device 1 (Comparative Example 1) produced as described above.
  • the voltage was applied stepwise at a rate of / 2 seconds, and the luminance (green light emission from the light emitting layer) and current value after 1 second of voltage increase were measured.
  • FIG. 3 shows a graph plotting voltage (V) -luminance (cd / m 2 ). As shown in FIG. 3, the voltage of Example 1 is significantly lower than that of Comparative Example 1.
  • Example 2 and Comparative Example 2 As organic EL elements of Example 2 and Comparative Example 2, two types of organic EL elements (green phosphorescent light emitting elements) 2 and comparative organic EL elements 2 having a structure composed of materials shown in Tables 3 and 4 respectively. Was made.
  • the comparative organic EL element 2 is an element having a single light emitting unit, and the organic EL element 2 is an element having a configuration in which three light emitting units are connected by an intermediate layer having the configuration of the present invention.
  • HT04 (trade name): Hall transport material manufactured by Chemipro Kasei Co., Ltd.
  • Mg (acac) 2 following formula: Magnesium acetylacetonate dehydrate with the structure
  • TCTA The following formula: 4,4 ′, 4 ′′ -Tris (carbazol-9-yl) -triphenylamine having the structure
  • NS60 (trade name): a light emitting layer host material manufactured by Nippon Steel Chemical Co., Ltd.
  • Example 2 and Comparative Example 2 are shown in FIGS.
  • the organic EL element (element having the structure shown in Table 4) 2 having three light emitting units connected by the intermediate layer of the present invention is a comparative example having a single light emitting unit.
  • the current efficiency was approximately tripled ( ⁇ 60 cd / A ⁇ ⁇ 180 cd / A).
  • the drive voltage is also approximately three times, so that it was proved that the connection was ideally connected in series.
  • the organic EL device of the present invention can be used in a wide range of product fields that require light generation, such as various light sources and image display devices that are required to have low energy consumption.

Abstract

Provided is a novel structure for an organic electroluminescent element which is capable of reducing a drive voltage, and which has a structure in which an insulating organic layer is disposed at a location that serves as a barrier to the movement of charges to a light-emitting layer, as a structure that allows electron charges to be moved in the direction of an anode, as viewed from a charge generation (carrier generation) location, and injected in the light-emitting layer, without using a strong electron-donating substance such as an alkali metal. The present invention pertains to an organic electroluminescent element characterized by having an anode, a cathode, a plurality of light-emitting units that includes a light-emitting layer and is positioned between the anode and the cathode, and intermediate layers that are positioned between the plurality of light-emitting units. The organic electroluminescent element is further characterized in that the intermediate layers each include an insulating organic layer that is disposed at a location that servers as a barrier to the movement of charges from the intermediate layer to the light-emitting unit, and a mixed layer comprising organic matter and a metal disposed adjacent to the insulating organic layer.

Description

有機エレクトロルミネッセント素子Organic electroluminescent device
 本発明は、平面光源や表示素子に利用される有機エレクトロルミネッセント素子(以下、「有機EL素子」と略記することがある。)に関する。 The present invention relates to an organic electroluminescent element (hereinafter sometimes abbreviated as “organic EL element”) used for a planar light source and a display element.
 対向する陽極と陰極との間に、有機化合物からなる発光層を有する有機EL素子は、近年、低電圧駆動の大面積表示素子を実現するものとして注目されている。イーストマンコダック社のTangらは、素子の高効率化のため、キャリア輸送性の異なる有機化合物を積層し、ホール及び電子がそれぞれ陽極及び陰極よりバランスよく注入される構造を採用し、しかも陰極と陽極に挟まれた有機層の層厚を200nm以下とすることで、10V以下の印加電圧で1000cd/m2と外部量子効率1%の実用化に十分な高輝度及び高効率を得ることに成功した。 In recent years, an organic EL element having a light emitting layer made of an organic compound between an anode and a cathode, which are opposed to each other, has attracted attention as a means for realizing a large-area display element driven at a low voltage. Tang et al. Of Eastman Kodak Company has adopted a structure in which organic compounds having different carrier transport properties are stacked, and holes and electrons are injected in a balanced manner from the anode and the cathode, respectively, in order to increase the efficiency of the device. By making the thickness of the organic layer sandwiched between the anodes 200 nm or less, we succeeded in obtaining high luminance and high efficiency sufficient for practical application of 1000 cd / m 2 and an external quantum efficiency of 1% at an applied voltage of 10 V or less. did.
 例えば特許文献1~特許文献6によれば、陰極と陽極に挟まれた有機層全体の膜厚を1μm以下とすることで、より低い印加電圧によって発光できるデバイスを提供できるとされており、好ましくは前記膜厚を100~500nmの範囲とすれば、25V以下の印加電圧で発光を得るに有用な電場(E=Vcm-1)が得られるとされている。 For example, according to Patent Documents 1 to 6, it is said that a device capable of emitting light with a lower applied voltage can be provided by setting the film thickness of the entire organic layer sandwiched between the cathode and the anode to 1 μm or less. If the film thickness is in the range of 100 to 500 nm, an electric field (E = Vcm −1 ) useful for obtaining light emission with an applied voltage of 25 V or less is obtained.
 有機EL素子の構造は、上記のようなTangらが示した構造を基礎として発展してきたが、最近では、例えば特許文献7及び特許文献8に示されているように、電極に挟まれた構造を一つの単位(発光ユニット)とし、この発光ユニットを直列に接続し得るように複数積層した構造を有する有機EL素子が開発されている。この技術は、有機EL素子の、飛躍的な長寿命化、光源や照明に要求される高輝度の実現、及び大面積の均一発光、を可能とする技術として注目されている。低電圧であるにもかかわらず大電流を必要とするTangらの有機EL素子の構造では、これらの要求を満たすことができなかったからである。 The structure of the organic EL element has been developed on the basis of the structure shown by Tang et al. As described above. Recently, for example, as shown in Patent Document 7 and Patent Document 8, a structure sandwiched between electrodes. An organic EL element having a structure in which a plurality of light emitting units are stacked so that can be connected in series has been developed. This technology has been attracting attention as a technology that enables the organic EL device to dramatically extend its life, achieve high brightness required for light sources and illumination, and emit light uniformly over a large area. This is because the structure of the organic EL element of Tang et al. Which requires a large current despite the low voltage cannot satisfy these requirements.
 次に、特許文献8に記載のように、本願の発明者は直列型(タンデム型)構造を有する有機EL素子を考案及び実現し、ユニットの接続層部分にITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)のような透明電極材料の代わりに、導電性の低い電荷発生層を使用することにより複数の発光ユニットの直列接続を可能とした。この有機EL素子では、従来型有機EL素子と同様に陰極と陽極の交差した領域のみが発光し、さらに透明電極の成膜に必須とされるスパッタリング工程も不要となるため、現在では、直列型の有機EL素子の構造のなかでも最も有用と認識され、マルチフォトン有機EL素子と呼称されて広く知られるに至っている。マルチフォトンと呼称される理由は、発光ユニットの数を所定以上とすれば、有機EL素子を通過する電子数を上回る光子数を発生させることができるからである。 Next, as described in Patent Document 8, the inventor of the present application devised and realized an organic EL element having a series type (tandem type) structure, and ITO (Indium Tin Oxide) or IZO (IZO ( A plurality of light emitting units can be connected in series by using a charge generation layer with low conductivity instead of a transparent electrode material such as Indium Zinc Oxide. In this organic EL element, only the region where the cathode and the anode intersect with each other emits light as in the conventional organic EL element, and the sputtering process that is essential for the formation of the transparent electrode becomes unnecessary. It is recognized as the most useful among the structures of organic EL elements, and has been widely known as a multiphoton organic EL element. The reason for being referred to as multiphoton is that if the number of light emitting units is set to a predetermined number or more, the number of photons exceeding the number of electrons passing through the organic EL element can be generated.
 しかしながら、このマルチフォトン有機EL素子は、従来型有機EL素子に比べて、数倍の製造工程が必要になるという問題があり、さらに、導電性の低い電荷発生層を、例えば特許文献9~特許文献14に記載の化学ドーピングの手法を駆使して作製しなければならず、その製造工程の制御が困難であるという問題もある。 However, this multi-photon organic EL element has a problem that a manufacturing process several times as many as that of the conventional organic EL element is required. Further, a low-conductivity charge generation layer is formed by, for example, Patent Documents 9 to There is also a problem that it is difficult to control the manufacturing process because the chemical doping method described in Document 14 must be used.
 直列型有機EL素子は、大面積を均一の強度で発光させるのに適している。直列型有機EL素子では、従来型有機EL素子と比べた場合、同輝度を得るために必要な電圧Vをほぼユニット数を乗じた分大きくすることができ、逆に電流Iはほぼユニット数で除した分だけ小さくできる。その結果、素子抵抗(電圧と電流の比:VI-1)がユニット数の略二乗分だけ上昇して、外部電極の面抵抗による電圧降下が低減でき、面内における略均一な電位を実現できるからである。 The series organic EL element is suitable for emitting light over a large area with uniform intensity. When compared with the conventional organic EL element, the series organic EL element can increase the voltage V required to obtain the same luminance by multiplying by the number of units, and the current I is almost equal to the number of units. You can make it smaller by the amount you remove. As a result, the element resistance (ratio of voltage to current: VI −1 ) increases by approximately the square of the number of units, the voltage drop due to the surface resistance of the external electrode can be reduced, and a substantially uniform potential in the surface can be realized. Because.
 この電位の均一性、換言すると輝度の均一性は、ユニット数を増やせば増やすほど向上することは言うまでもない。ただし、本発明者のこれまでの知見によれば、照明に必要な3000cdm-2以上の輝度が必要な場合、対角5インチ程度の発光面積ならば、数ユニット程度の積層体で略均一の発光を実現できるが、例えば対角15インチ以上の発光面積となると、数ユニット程度の積層体でそのような高輝度での均一発光は不可能で、少なくとも15ユニット程度は必要と思われる。これほどの多数のユニットの積層体を効率よく低コストで生産するのはほぼ不可能である。 Needless to say, the uniformity of the potential, in other words, the uniformity of the luminance, increases as the number of units increases. However, according to the present inventor's previous knowledge, when a luminance of 3000 cdm −2 or more necessary for illumination is required, a light emitting area of about 5 inches diagonal is approximately uniform in a laminate of several units. Although light emission can be realized, for example, when the light emission area is 15 inches or more diagonally, uniform light emission with such high brightness is impossible with a laminate of several units, and at least about 15 units are considered necessary. It is almost impossible to produce such a large number of unit laminates efficiently and at low cost.
 このような多数のユニットの積層体を効率よく低コストで生産するのが不可能な理由は、第一に、製法が複雑である点にある。即ち、本発明者らが特許文献8において提案しているように、ホール電荷と電子電荷を生成するために設けられる電荷発生層の作製が非常に複雑だからである。 The first reason why it is impossible to produce such a multi-unit laminate efficiently and at low cost is that the manufacturing method is complicated. That is, as proposed by the present inventors in Patent Document 8, the production of a charge generation layer provided for generating hole charges and electron charges is very complicated.
 例えば、特許文献8の請求項1又は2には、電子供与性の強い金属酸化物と電子受容性の高いアミン系有機化合物の混合または積層による接触界面に於いて生じる電荷移動錯体によって、あたかも電荷発生層から発光ユニットに、発光物質の励起に必要な電子電荷とホール電荷が供給されるような記載がされている。しかしながら、実際にはこの特許文献8に記載されている構成では、前記界面に於いて印加電界により金属酸化物に電子がアミン系有機化合物にホールが発生するものの、これらの電荷は該電荷移動錯体により発光物質にホール及び電子の両電荷が自動的に供給されるわけではなく、その実施例に具体的に示されるように、電荷発生層の陽極側に接する部位において、必ずアルカリ金属等の強電子供与性物質を電子輸送性有機物に作用させ、当該有機物に対し電子注入を促進させる手法を必要とする。 For example, in claim 1 or 2 of Patent Document 8, the charge transfer complex formed at the contact interface formed by mixing or stacking a metal oxide having a strong electron-donating property and an amine-based organic compound having a high electron-accepting property is as if the charge is charged. It is described that an electron charge and a hole charge necessary for excitation of the luminescent substance are supplied from the generation layer to the light emitting unit. However, in actuality, in the configuration described in Patent Document 8, although electrons are generated in the metal oxide by the applied electric field at the interface, holes are generated in the amine organic compound. Thus, both the hole and electron charges are not automatically supplied to the light-emitting substance, and as shown in the specific examples, strong charges such as alkali metals are always present at the site in contact with the anode side of the charge generation layer. A technique is required for causing an electron donating substance to act on an electron transporting organic substance and promoting electron injection into the organic substance.
 なぜならば、電子輸送性有機物と前記金属酸化物との間には、大きなエネルギー差があり、金属酸化物に発生した電子を電子輸送性有機物に注入するためにはアルカリ金属のような強い電子供与性物質によりキャリアドープを行い、イオン化したドーパントの空間電荷により実効的に電子輸送性有機物との注入障壁を低減する必要があるためである。 This is because there is a large energy difference between the electron transporting organic material and the metal oxide, and a strong electron donation such as an alkali metal is required to inject electrons generated in the metal oxide into the electron transporting organic material. This is because it is necessary to perform carrier doping with a conductive material and to effectively reduce the injection barrier with the electron transporting organic substance by the space charge of the ionized dopant.
 この注入効率が低い場合、電荷発生層より陽極側に位置する発光ユニット内で発光物質を含有する発光層の中をホールが優勢に移動し、その過剰のホールは電荷発生層で過剰に存在する電子と非発光再結合を起し電流が流れる過程を経る。発光層部位はホール電流の抵抗体としてのみ存在し、発光物質は発光しない。即ち、特許文献8における「電荷移動錯体からなる電荷発生層」を形成してマルチフォトン有機EL素子を作製しても、実際は何らの効果も得られない。 When the injection efficiency is low, holes move predominantly in the light-emitting layer containing the light-emitting substance in the light-emitting unit located on the anode side of the charge generation layer, and the excess holes exist in excess in the charge generation layer. It undergoes a process in which current flows due to non-radiative recombination with electrons. The light emitting layer portion exists only as a hole current resistor, and the light emitting material does not emit light. That is, even if a multiphoton organic EL device is produced by forming a “charge generation layer made of a charge transfer complex” in Patent Document 8, no effect is actually obtained.
 膜中へのアルカリ金属の供給方法としては、アルカリ金属を抵抗加熱によって直接蒸発させる方法(抵抗加熱蒸着法)や、アルカリ金属イオンを含む化合物を含有する膜を用いる方法等があり、これらの方法は特許文献8において提案されている。 Examples of a method for supplying alkali metal into the film include a method in which alkali metal is directly evaporated by resistance heating (resistance heating vapor deposition method), a method using a film containing a compound containing alkali metal ions, and the like. Is proposed in Patent Document 8.
 また、さらにアルカリ金属イオンを含む酸化物、炭酸化物、複合酸化物、複合炭酸化物、等を電子ビーム蒸着法で蒸着すれば、その電子ビーム蒸着法自体が、化合物中の金属をイオン状態から金属原子状態へ還元する手段の一つであることから、結果的にアルカリ金属を電子輸送性有機物に作用させることもできる。さらに例外的には、炭酸セシウム(CsCO3)のように、電子ビーム蒸着法を使用せずとも、単なる真空中での抵抗加熱により、還元により金属セシウムを生成させ得る場合もある。 Furthermore, if an oxide, carbonate, composite oxide, composite carbonate, or the like containing an alkali metal ion is further deposited by electron beam evaporation, the electron beam evaporation method itself converts the metal in the compound from the ionic state to the metal. Since it is one of the means for reducing to an atomic state, as a result, an alkali metal can be allowed to act on an electron transporting organic substance. Furthermore, in exceptional cases, cesium carbonate (CsCO 3 ) may be capable of producing metal cesium by reduction simply by resistance heating in vacuum without using an electron beam evaporation method.
 これらのような酸化物、炭酸化物、複合酸化物、複合炭酸化物等のアルカリ金属化合物については、例えば特許文献9又は特許文献10に、炭酸リチウムや酸化リチウムを含む電子注入層や中間陰極層(界面層)と称する層を、電荷発生層の陽極側に接するように形成させることが記載されており、これらの文献には蒸着法が明記されていない。もし電子ビーム蒸着法によらず通常の抵抗加熱蒸着法によって膜形成した場合には、化合物中のアルカリ金属イオンが金属に還元されないため、前述のように発光物質に電子電荷を輸送できなくなることは、実験によって簡単に確かめられる。 For alkali metal compounds such as oxides, carbonates, composite oxides, composite carbonates and the like, for example, in Patent Document 9 or Patent Document 10, an electron injection layer or an intermediate cathode layer containing lithium carbonate or lithium oxide ( It is described that a layer called an interface layer is formed so as to be in contact with the anode side of the charge generation layer, and these documents do not clearly describe the vapor deposition method. If the film is formed by the usual resistance heating vapor deposition method regardless of the electron beam vapor deposition method, the alkali metal ions in the compound are not reduced to the metal, so that it becomes impossible to transport the electronic charge to the luminescent material as described above. This is easily verified by experiment.
 このアルカリ金属は、有機EL素子の発光性有機物に接触作用すると、その強い還元性によって発光性有機物の発光性を失わせるため(この現象は発光クエンチングと呼称されることがある。)、実際の製造プロセスにおいては、発光層等の有機物からなる層の形成のための製造チャンバーとは隔離した場所に設置する必要がある。したがって、複数の発光ユニットを有するマルチフォトン有機EL素子のように、略同一の工程を何度も繰り返して製造しなければならない場合には、複数の蒸着チャンバーを設置して、かつ、その間を何度も行き来する必要が生じ、電荷発生層及びそれに接する層を形成する工程が煩雑になり、個々の工程の制御の複雑さと相まって、製品価格を押し上げてしまうという問題がある。 When this alkali metal makes contact with the luminescent organic substance of the organic EL element, the luminescent organic substance loses its luminescent property due to its strong reducibility (this phenomenon is sometimes called luminescence quenching). In this manufacturing process, it is necessary to install it in a place separated from a manufacturing chamber for forming a layer made of an organic substance such as a light emitting layer. Therefore, when it is necessary to repeatedly manufacture substantially the same process many times, such as a multi-photon organic EL element having a plurality of light emitting units, a plurality of vapor deposition chambers are installed and what is between them. The process of forming the charge generation layer and the layer in contact therewith becomes complicated, and there is a problem that the product price is increased in combination with the complexity of the control of each process.
 上記のような従来技術に対し、本発明者らは、鋭意検討の結果、従前に提案、開発してきたマルチフォトン有機EL素子の構造に必須であったアルカリ金属等の還元性物質(強電子供与性物質)の使用を回避しながらも(したがって製造工程を格段に簡素化し)、従来と略同等の性能を発揮する有機EL素子を提案している(特許文献11)。より具体的には、本発明者らは、鋭意検討の結果、アルカリ金属等の強電子供与性物質を使用しなくても、電荷発生部位からみて陽極の方向に電子電荷(ラジカルアニオン状態の電子受容性半導体分子)を移動させて発光層へ注入させ得る構造として、発光層への電荷の移動に対する障壁となる部位に絶縁性有機物層を設ける構造を見出し、アルカリ金属を用いずにスタック型構造を有する有機EL素子を完成した。 In contrast to the prior art as described above, the present inventors have conducted intensive studies, and the present inventors have proposed reducing substances such as alkali metals (strong electron donation) that have been indispensable for the structure of multi-photon organic EL devices that have been proposed and developed previously. An organic EL element that exhibits substantially the same performance as the conventional one has been proposed (Patent Document 11) while avoiding the use of an organic substance (thus greatly simplifying the manufacturing process). More specifically, as a result of intensive investigations, the present inventors have determined that an electron charge (radical anion state electron) in the direction of the anode as viewed from the charge generation site without using a strong electron donating substance such as an alkali metal. As a structure that can move (accepting semiconductor molecules) into the light-emitting layer, we have found a structure in which an insulating organic material layer is provided at a site that acts as a barrier against charge transfer to the light-emitting layer. The organic EL element which has was completed.
特開昭59-194393号公報JP 59-194393 A 特開昭63-264692号公報JP-A 63-264692 特開平2-15595号公報Japanese Patent Laid-Open No. 2-15595 米国特許第4,539,507号明細書US Pat. No. 4,539,507 米国特許第4,769,292号明細書U.S. Pat. No. 4,769,292 米国特許第4,885,211号明細書US Pat. No. 4,885,211 特開平11-329748号公報Japanese Patent Laid-Open No. 11-329748 特許第3933591号明細書Japanese Patent No. 3933591 特開2006-135145号公報JP 2006-135145 A 特開2007-123611号公報JP 2007-123611 A 国際公開 WO2010/113493号公報International publication WO2010 / 113493
 しかしながら、上記特許文献11において提案されているスタック型有機EL素子は、従来の有機EL素子と同様の高さの駆動電圧を必要としており、本発明者らは、省エネ等の観点からは未だ改善の余地があると考えていたところ、更に有機EL素子の構造について鋭意実験を繰返して検討を行った。そして、上記特許文献11における有機EL素子において、電荷発生部位からみて陽極の方向に絶縁性有機物層を設けた素子に対し、発光層への電荷注入をより効率良くさせることができれば、駆動電圧を低減したスタック型有機EL素子の構造が得られることを見出し、本発明を完成するに至った。即ち、本発明の目的は、アルカリ金属等の強電子供与性物質を使用せず、電荷発生(キャリア発生)部位からみて陽極の方向に電子電荷を移動させて発光層へ注入させ得る構造として、発光層への電荷の移動に対する障壁となる部位に絶縁性有機物層を設ける構造を有し、更にその駆動電圧を低減し得る有機EL素子の新たな構造を提供することにある。 However, the stack type organic EL element proposed in Patent Document 11 requires a driving voltage as high as that of the conventional organic EL element, and the present inventors have yet improved from the viewpoint of energy saving and the like. As a result, it was further studied that the structure of the organic EL element was repeated. And in the organic EL element in the above-mentioned patent document 11, if the charge injection into the light emitting layer can be made more efficient with respect to the element in which the insulating organic material layer is provided in the direction of the anode as viewed from the charge generation site, the driving voltage is set. The present inventors have found that a reduced stack type organic EL device structure can be obtained, and have completed the present invention. That is, the object of the present invention is a structure that does not use a strong electron donating substance such as an alkali metal and can be injected into the light emitting layer by moving the electron charge in the direction of the anode as viewed from the charge generation (carrier generation) site. An object of the present invention is to provide a new structure of an organic EL element that has a structure in which an insulating organic material layer is provided at a site that becomes a barrier against the movement of electric charges to a light emitting layer, and can further reduce the driving voltage.
 上記の課題を解決すべく、本発明は、
 陽極と、
 陰極と、
 前記陽極と前記陰極との間に位置する、発光層を含む複数の発光ユニットと、
 前記複数の発光ユニットの間に位置する中間層と、を有し、
 前記中間層が、前記中間層から前記発光ユニットへの電荷の移動に対する障壁となる部位に設けられた絶縁性有機物層と、前記絶縁性有機物層に隣接して設けられた有機物と金属とからなる混合層と、を含むこと、
を特徴とする有機エレクトルミネッセント素子(以下、「有機EL素子」という。)を提供する。このような構成を有する本発明によれば、発光層への電荷注入の効率を上げて、駆動電圧の増大を抑えたスタック型有機EL素子を実現することができる。
In order to solve the above problems, the present invention provides:
The anode,
A cathode,
A plurality of light emitting units including a light emitting layer located between the anode and the cathode;
An intermediate layer located between the plurality of light emitting units,
The intermediate layer is composed of an insulating organic layer provided in a portion that serves as a barrier against charge transfer from the intermediate layer to the light emitting unit, and an organic material and a metal provided adjacent to the insulating organic layer. A mixed layer,
An organic electroluminescent element (hereinafter referred to as “organic EL element”) is provided. According to the present invention having such a configuration, it is possible to realize a stack type organic EL element that increases the efficiency of charge injection into the light emitting layer and suppresses an increase in driving voltage.
 上記本発明の有機EL素子においては、前記混合層を構成する前記有機物の電子親和力と、前記混合物層の前記絶縁性有機物層側とは反対側に隣接する層のイオン化ポテンシャルとの差が、1.4eV以下であること、が好ましい。このような構成を有する本発明によれば、充分なキャリア密度を生成することができ、より確実に発光層への電荷注入の効率を上げて、駆動電圧の増大を抑えることができる。 In the organic EL device of the present invention, the difference between the electron affinity of the organic substance constituting the mixed layer and the ionization potential of the layer adjacent to the side of the mixture layer opposite to the insulating organic layer side is 1 It is preferably 4 eV or less. According to the present invention having such a configuration, a sufficient carrier density can be generated, the efficiency of charge injection into the light emitting layer can be more reliably increased, and an increase in driving voltage can be suppressed.
 また、上記本発明の有機EL素子においては、前記混合層を構成する前記有機物が、ヘキサアザトリフェニレン誘導体を含むこと、が好ましい。ヘキサアザトリフェニレン誘導体は深い電子親和力を有することから、これを用いれば、より確実に充分なキャリア密度を生成することができ、より確実に発光層への電荷注入の効率を上げて、駆動電圧の増大を抑えることができる。 In the organic EL device of the present invention, it is preferable that the organic substance constituting the mixed layer contains a hexaazatriphenylene derivative. Since the hexaazatriphenylene derivative has a deep electron affinity, if it is used, a sufficient carrier density can be generated more reliably, and the efficiency of charge injection into the light emitting layer can be increased more reliably, and the driving voltage can be reduced. The increase can be suppressed.
 また、上記本発明の有機EL素子においては、前記混合層を構成する前記金属が、3族から13族に属する金属元素を含むこと、が好ましい。これを用いれば、中間層における電圧ロスを大きく低減させることができ、駆動電圧の増大を抑えることができる。 In the organic EL device of the present invention, it is preferable that the metal constituting the mixed layer contains a metal element belonging to Group 3 to Group 13. If this is used, voltage loss in the intermediate layer can be greatly reduced, and an increase in drive voltage can be suppressed.
 上記本発明の有機EL素子において、前記混合層は、前記有機物の層と前記金属の層との積層体で構成されていても、前記有機物と前記金属の共蒸着層(co-deposition layer)で構成されていてもよい。即ち、前記混合層は、有機物の層と金属の層とを順次積層して形成される積層体であっても、有機物と金属とを共蒸着して形成される共蒸着層であってもよい。これによれば、再現性が高く、より確実に電荷の注入効率の良い中間層が得られ、駆動電圧の増大を抑えることができる。 In the organic EL element of the present invention, the mixed layer is a co-deposition layer of the organic material and the metal, even if the mixed layer is formed of a laminate of the organic material layer and the metal layer. It may be configured. That is, the mixed layer may be a laminate formed by sequentially laminating an organic layer and a metal layer, or a co-deposited layer formed by co-evaporating an organic layer and a metal. . According to this, an intermediate layer having high reproducibility and more reliable charge injection efficiency can be obtained, and an increase in drive voltage can be suppressed.
 ここで、本発明の特徴である「発光ユニットへの電荷の移動に対する障壁となる部位に設けられた絶縁性有機物層と、絶縁性有機物層に隣接して設けられた有機物と金属とからなる混合層と、とを含む中間層」について説明する。この中間層の役割は、隣接する発光ユニットに対し、中間層より陽極側のユニットに対しては電子を、陰極側のユニットに対しては正孔を、それぞれ同量ずつ注入することにある。この注入のバランスが保たれることで、各発光ユニットは等価的に直列接続となり、スタック化素子として期待される動作が得られる。 Here, the characteristic feature of the present invention is “a mixture of an insulating organic layer provided in a portion that serves as a barrier against charge transfer to the light emitting unit, and an organic material and a metal provided adjacent to the insulating organic layer. The intermediate layer including the layers will be described. The role of this intermediate layer is to inject the same amount of electrons into the light emitting unit adjacent to the unit on the anode side of the intermediate layer and holes into the unit on the cathode side. By maintaining this balance of injection, each light emitting unit is equivalently connected in series, and the operation expected as a stacked element can be obtained.
 本発明の有機EL素子における中間層は、層中又は一方の界面で、いわゆる「電荷発生層」として作用(より正確にはキャリア生成層又はキャリア生成界面として作用)し、他方の界面で、生成したキャリアをその界面に接する発光ユニットに注入する機能を持つものである。具体的には、深い電子親和力を持つ材料を含む層又は当該材料で構成される層を、浅いイオン化ポテンシャルを持つ正孔輸送層(例えばNPBやその他のトリフェニルアミン誘導体等によって構成される層)に隣接させ、電界を印加することで正孔輸送層側にホールを生成させ、同時に、中間層側に電子を生成させることができる。 The intermediate layer in the organic EL device of the present invention acts as a so-called “charge generation layer” in the layer or at one interface (more precisely, acts as a carrier generation layer or a carrier generation interface), and is generated at the other interface. It has a function of injecting the thus-prepared carrier into the light emitting unit in contact with the interface. Specifically, a layer including a material having a deep electron affinity or a layer composed of the material is converted into a hole transport layer having a shallow ionization potential (for example, a layer composed of NPB or other triphenylamine derivatives). Next, by applying an electric field, holes can be generated on the hole transport layer side, and at the same time, electrons can be generated on the intermediate layer side.
 従来、種々の文献において、このような機能を有する層を「電荷発生層」と称し、特別な構成は或いは効果を発生させているかのような記述がなされてきたものの、この現象自体は有機EL素子の技術分野においては何ら特別なものではなく、当該技術者であれば周知の事実である。例えば、従来有機EL素子の陽極に用いられてきたITOがアミン系の正孔輸送層に対してホール注入可能であることは周知の事実である。また、ITOはn型半導体であり、その「仕事関数」は伝導帯のエネルギーレベル、即ち電子親和力であるという事実からすれば、このようなエネルギーレベルの関係にある界面があれば、アミン側にホールを注入することが可能であることは直ちに理解される。したがって、従来、種々の文献においては、いわゆる「電荷発生層」について、電子受容性化合物と電子供与性化合物の組合せや、電荷移動錯体の生成が必要であるかの誤解が多く見られ、特別な構成によりこれを達成したかの記述も多数あるが、純粋にエネルギーの関係のみでこの性質は決定される。 Conventionally, in various literatures, a layer having such a function is referred to as a “charge generation layer”, and it has been described that a special configuration or an effect is generated, but this phenomenon itself is an organic EL. There is nothing special in the technical field of the element, and it is well known to those skilled in the art. For example, it is a well-known fact that ITO that has been used for the anode of an organic EL element can inject holes into an amine-based hole transport layer. In addition, ITO is an n-type semiconductor, and the fact that its “work function” is the energy level of the conduction band, that is, the electron affinity, if there is an interface having such an energy level relationship, on the amine side. It is immediately understood that holes can be injected. Therefore, conventionally, in various literatures, there are many misunderstandings regarding the so-called “charge generation layer” that a combination of an electron-accepting compound and an electron-donating compound or the generation of a charge transfer complex is necessary. There are many descriptions of whether this has been achieved by construction, but this property is determined purely by the energy relationship.
 次に、上記のように、前記混合層を構成する前記有機物の深い電子親和力と、前記混合物層の前記絶縁性有機物層側とは反対側に隣接する層(例えば発光ユニット中の正孔輸送層)のイオン化ポテンシャルとの差が、1.4eV以下、好ましくは0.8eV以下であれば、より確実にキャリア生成が可能であり好ましい。なお、ITOとアミン系正孔輸送材料の場合、ITOの仕事関数、即ち電子親和力は、酸素による表面処理等によって変化し、概ね4.7eVから5.3eVの範囲にあることが知られている。更に、例えば、D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, J. Schwartz, J. Appl. Phys. Vol. 87(2000), 572では、4.1eVから4.5eV程度のものも得られ、正孔輸送層のイオン化ポテンシャルとの差が1.34eVの場合にでも正孔注入が可能であることが示されている。 Next, as described above, the deep electron affinity of the organic material constituting the mixed layer and a layer adjacent to the side of the mixed layer opposite to the insulating organic layer side (for example, a hole transport layer in a light emitting unit) ) Is not more than 1.4 eV, preferably not more than 0.8 eV, and it is preferable because carriers can be generated more reliably. In the case of ITO and an amine-based hole transport material, it is known that the work function of ITO, that is, the electron affinity, varies depending on the surface treatment with oxygen and the like, and is generally in the range of 4.7 eV to 5.3 eV. . Further, for example, D.I. J. Millylon, I.D. G. Hill, C.I. Shen, A. Kahn, J.M. Schwartz, J.M. Appl. Phys. Vol. 87 (2000) and 572 are obtained from about 4.1 eV to 4.5 eV, indicating that hole injection is possible even when the difference from the ionization potential of the hole transport layer is 1.34 eV. Has been.
 アミン系の正孔輸送材料の電子親和力としては、4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル(NPB)が5.4eV、トリフェニレンジアミン(TPD)で5.5eV、スターバーストアミン誘導体が約5.0eVから5.2eVであることが知られている。従って、深い電子親和力を持つ層の電子親和力と正孔輸送層のイオン化ポテンシャルとの差が1.4eV以下であれば、充分にキャリア生成が可能である。 The electron affinity of the amine hole transport material is 5.4 eV for 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (NPB) and 5 for triphenylenediamine (TPD). .5 eV, starburst amine derivatives are known to be about 5.0 eV to 5.2 eV. Therefore, if the difference between the electron affinity of the layer having a deep electron affinity and the ionization potential of the hole transport layer is 1.4 eV or less, carrier generation is sufficiently possible.
 また、この1.4eVという値は、有機層のエネルギーレベルの分布から理論的にも妥当性を見出せる。例えば、アモルファス性の薄膜の場合、分子間距離の不均一性、分子の配向分布から、電荷に対する分極エネルギーに分布が生じ、このため電子親和力及びイオン化ポテンシャルが空間分布を持ち、偏差が0.2~0.3eVのガウス分布を生じる。このため、1.4eVの差はこの分布のすそ野で重なりを与え、その重なり幅は分布中心から2.33~3.5σに位置することになり、ガウスの誤差関数を用いてerfc(2.33)^2~erfc(3.5)^2の状態密度を持つこととなる。これは、全状態密度を10^22としたときに、1015~1018/cm3の状態密度に相当し、有機ELの発光に必要とされる1014~1017/cm3のキャリア密度から考えても、1.4eV以内であれば十分なキャリア密度を生成可能であることがわかる。 The value of 1.4 eV can be found theoretically from the energy level distribution of the organic layer. For example, in the case of an amorphous thin film, a distribution occurs in polarization energy with respect to electric charge due to non-uniformity of intermolecular distance and molecular orientation distribution. Therefore, the electron affinity and ionization potential have a spatial distribution, and the deviation is 0.2. This produces a Gaussian distribution of ~ 0.3 eV. For this reason, the difference of 1.4 eV gives an overlap at the base of this distribution, and the overlap width is located at 2.33-3.5σ from the center of the distribution, and erfc (2. 33) It has a density of states of 2 to erfc (3.5) 2 This corresponds to a state density of 10 15 to 10 18 / cm 3 when the total state density is 10 ^ 22, and a carrier density of 10 14 to 10 17 / cm 3 required for organic EL light emission. From this, it can be seen that a sufficient carrier density can be generated within 1.4 eV.
 ここで、上記の構成を逆にし、中間層側にホールを生成させ、隣接する陽極側の発光ユニットに電子を生成する場合には、中間層側に浅いイオン化ポテンシャルを持つ材料で構成された層或いは当該材料を含む層を配置し、陰極側の発光ユニットとの界面に絶縁性有機化合物からなる層を配する。この場合の浅いイオン化ポテンシャルの層と陽極側の発光ユニットの接する層の電子親和力との差も、同様に1.4eV以下であればキャリア生成が可能であり好ましい。 Here, in the case where the above configuration is reversed, holes are generated on the intermediate layer side, and electrons are generated in the light emitting unit on the adjacent anode side, the layer formed of a material having a shallow ionization potential on the intermediate layer side Alternatively, a layer containing the material is arranged, and a layer made of an insulating organic compound is arranged at the interface with the light emitting unit on the cathode side. In this case, if the difference in electron affinity between the shallow ionization potential layer and the layer in contact with the light emitting unit on the anode side is 1.4 eV or less, carriers can be generated, which is preferable.
 また、混合層を構成する有機物の深い電子親和力と、混合物層の絶縁性有機物層側とは反対側に隣接する層のイオン化ポテンシャルとの差が、負になる場合(例えば、深い電子親和力を持つ層の電子親和力が正孔輸送層のイオン化ポテンシャルより大きくなった場合等)は、電界を印加すること無く界面でキャリアを生成することとなる。電子親和力の定義、即ち「(中性分子のエネルギー)-(アニオン分子のエネルギー)」と、イオン化ポテンシャルの定義、即ち「(カチオン分子のエネルギー)-(中性分子のエネルギー)」から、両分子が中性でいるよりもアニオンとカチオンになった方がエネルギーが低いため、熱平衡状態に於いてキャリア生成を自発的に引き起こす。従って、このように上記差が負になる場合でもキャリア生成の効果があるため、上記のようなエネルギーレベルの関係にある層を中間層として利用可能である。 Also, when the difference between the deep electron affinity of the organic material constituting the mixed layer and the ionization potential of the layer adjacent to the side opposite to the insulating organic layer side of the mixed layer becomes negative (for example, has a deep electron affinity) When the electron affinity of the layer becomes larger than the ionization potential of the hole transport layer), carriers are generated at the interface without applying an electric field. From the definition of electron affinity, ie “(neutral molecule energy) − (anion molecule energy)” and the definition of ionization potential, ie “(cation molecule energy) − (neutral molecule energy)”, both molecules Since anion and cation have lower energy than is neutral, carrier generation occurs spontaneously in a thermal equilibrium state. Therefore, even when the difference is negative as described above, the carrier generation effect is obtained, and thus the layer having the energy level relationship as described above can be used as the intermediate layer.
 なお、このキャリアが生成され、両キャリアが存在している場合を時として「電荷移動錯体が生成されている。」と誤解するきらいがあるが、電荷移動錯体は錯体を形成する束縛エネルギーを持つもので、この束縛エネルギーがアクセプターの電子親和力とドナーのイオン化ポテンシャルとの差より大きいことは、周知の事実であり、先に述べた議論からも明らかである。この電荷移動錯体が生成されると、電荷移動錯体から自由キャリアとして電子とホールを生成するには、束縛エネルギーを超えるエネルギーを与える必要がある。これは、単一分子に対してそのエネルギーに相当する電位差を与えることに等しく、界面にこの錯体が全て配列している場合でも、その電位差分の印加電圧上昇を引き起こす。混合層の場合であって、層内に電荷移動錯体が分布している場合は、その電圧上昇は分子層数倍となり、数nm程度の膜厚でさえ数V以上の電位差となり、中間層として機能させることが困難となる。 It is sometimes misunderstood that this carrier is generated and both carriers are present as “a charge transfer complex is generated.” However, the charge transfer complex has binding energy to form a complex. Therefore, it is a well-known fact that this binding energy is larger than the difference between the electron affinity of the acceptor and the ionization potential of the donor, and it is clear from the above discussion. When this charge transfer complex is generated, in order to generate electrons and holes as free carriers from the charge transfer complex, it is necessary to give energy exceeding the binding energy. This is equivalent to giving a potential difference corresponding to the energy to a single molecule, and causes an increase in the applied voltage of the potential difference even when all the complexes are arranged at the interface. In the case of a mixed layer, when the charge transfer complex is distributed in the layer, the voltage rise is several times the molecular layer, and even a film thickness of about several nanometers has a potential difference of several volts or more. It becomes difficult to make it function.
 中間層として重要な点は、この例の構成の場合、深い電子親和力を持つ層側に生成された電子は陽極側に位置する発光ユニットへ高いバリアを超えて注入されねばならず、これをどのような手法で実現するかにある。本発明者らは、上記特許文献11において、この界面に絶縁性有機化合物の薄層を配置することで、深い電子親和力の層より、浅い電子親和力を持つ電子輸送層に電子注入が可能となり、等価的に直列動作が可能となることを見出した。更に、本発明者らは鋭意検討を進め、絶縁性有機物層に隣接し深い電子親和力を持つ有機物からなる層に対して金属をドーズして混合層とした場合、又は、絶縁性有機物層に隣接し深い電子親和力を持つ有機物からなる層に対して金属層を積層して混合層とした場合に、当該絶縁性有機物層と当該混合層とからなる中間層における電圧ロスが大きく低減し、より低い駆動電圧で動作することを見いだし、本発明に至った。 The important point as an intermediate layer is that in the case of the configuration of this example, electrons generated on the layer side having a deep electron affinity must be injected beyond the high barrier to the light emitting unit located on the anode side. It is to be realized by such a method. In the above-mentioned patent document 11, the present inventors can inject electrons into an electron transport layer having a shallow electron affinity rather than a deep electron affinity layer by disposing a thin layer of an insulating organic compound at this interface. It was found that series operation is possible equivalently. Furthermore, the present inventors have made extensive studies, and when a metal is dosed to a layer made of an organic material having a deep electron affinity adjacent to the insulating organic material layer, or adjacent to the insulating organic material layer. However, when a metal layer is laminated on a layer made of an organic substance having a deep electron affinity, a voltage loss in the intermediate layer made up of the insulating organic layer and the mixed layer is greatly reduced and lower. It has been found that it operates with a driving voltage, and has reached the present invention.
 深い電子親和力をもつ有機物としては、ヘキサアザトリフェニレン誘導体(例えばHAT-CN6)が好ましい化合物であるが、用いる有機物としてはこの例に限らない。深い電子親和力を持つ有機物と金属元素とは、強い配位結合を引き起こす傾向にある。金属配位した有機物分子は、それ自身がもとの有機物とは異なる分子として機能するため、金属をドーズすることで異なる機能及び物性を実現することができる。 As the organic substance having a deep electron affinity, a hexaazatriphenylene derivative (for example, HAT-CN6) is a preferred compound, but the organic substance used is not limited to this example. Organic substances having a deep electron affinity and metal elements tend to cause strong coordination bonds. Since the organic coordinated metal molecule functions as a molecule different from the original organic compound, different functions and physical properties can be realized by dosing the metal.
 ここで、図4に、HAT-CN6にAlを共蒸着により配位させた膜の導電率の測定結果を示す。測定素子は二本の平行するITO電極を間隔0.2mmで配置し、100nmの厚さの膜を真空蒸着法により形成し測定した。この例では、ドーズ量又は積層量がモル比で3を超え始めると急激に導電率が上昇し、また本来のHAT-CN6の半導体特性からオーミックに変化している。導電性が高くなることで絶縁層を介しての電子注入効率が向上する理由は、正確なところは不明であるが、おそらくは導電性が向上することで発生したキャリアが生成界面付近に留まらず層内全体に広がり絶縁層界面に到達し、発光ユニット側で封じ込められ貯まっているホールの作る電位と、この中間層内の電子の作る電位が有効に絶縁層に作用し電界を印加し、電子注入を促進しているものと考えられる。このため、発光ユニット側からは無効なホール電流が中間層に流れ込まない十分なホールバリアとなる絶縁層及び/又は電子輸送層が必要となる。 Here, FIG. 4 shows the measurement results of the conductivity of a film in which Al is coordinated to HAT-CN6 by co-evaporation. The measurement element was measured by arranging two parallel ITO electrodes with a spacing of 0.2 mm and forming a 100 nm thick film by vacuum deposition. In this example, when the dose amount or stacking amount starts to exceed 3 in terms of molar ratio, the conductivity rapidly increases, and ohmic changes from the original semiconductor characteristics of HAT-CN6. The reason why the electron injection efficiency through the insulating layer is improved by increasing the conductivity is unknown exactly, but probably the carriers generated by the improvement in conductivity do not stay near the generation interface layer. The electric potential created by the holes that reach the interface between the insulating layers and reach the insulating layer and are contained and stored on the light-emitting unit side, and the electric potential created by the electrons in this intermediate layer effectively act on the insulating layer to apply an electric field, thereby injecting electrons. It is thought that it promotes. For this reason, an insulating layer and / or an electron transporting layer that is a sufficient hole barrier from which invalid hole current does not flow into the intermediate layer from the light emitting unit side is required.
 中間層の導電性が低い場合、即ち、熱平衡キャリアが存在していない絶縁体等の場合、生成したキャリアはそれぞれの電荷が作る空間電荷により,生成界面に留まる状態に「バンドベンディング」を引き起こすことは容易に理解できる。このベンディングを解いて、電子とホールを移動させるには、更に印加電圧を高くしていく必要がある。 When the conductivity of the intermediate layer is low, that is, in the case of an insulator or the like in which no thermal equilibrium carrier exists, the generated carrier causes “band bending” in a state where it stays at the generation interface due to the space charge generated by each charge. Is easy to understand. In order to solve this bending and move electrons and holes, it is necessary to further increase the applied voltage.
 ドーズする金属、即ち、上記混合層に含まれる金属としては、13族のAl、Ga、Inが好ましいが、3族~12族の遷移金属元素も同様の効果をもたらすため用いることができる。13族の金属が好ましい理由としては、正確なところは不明ではあるが、最外殻軌道電子が深く関わっていると考えられる。13族の金属は、HAT-CN6等に対しては2つの窒素に挟まれた構造を取り2座で配位するため、孤立電子が1つ余り、この電子が分子間の電子移動を誘発していると考えられる。また、13族の金属は、芳香環やCC二重結合に対しては、電子対として配位するため、やはり1個の過剰電子が存在し同様な効果が得られるものと考えられる。 As the metal to be dosed, that is, the metal contained in the mixed layer, Al, Ga, and In of group 13 are preferable, but transition metal elements of groups 3 to 12 can also be used because they provide the same effect. The reason why the Group 13 metal is preferable is that the outermost orbital electrons are deeply involved, although the exact place is unknown. The group 13 metal has a structure sandwiched between two nitrogen atoms and is coordinated in bidentate to HAT-CN6, etc., so there is one more lone electron, which induces electron transfer between molecules. It is thought that. Moreover, since the group 13 metal is coordinated as an electron pair to the aromatic ring or CC double bond, it is considered that one excess electron exists and the same effect can be obtained.
 また、3族~12族の遷移金属が効果を発揮する理由も明確ではないが、おそらくは配位する際に最外殻電子の配置が換わり、一部s電子がd軌道に移り、配位する際に1電子欠乏することとなり、13族とは逆の状態を引き起こすためと考えられる。このような遷移金属は、元素自体でも例えばAgは4d103s1の配置をとり、同様にs1となるものはCu、Cr、Rh、Ru、Au、Pt等多数ある。有機分子と配位し変化する場合も考慮すると、全ての遷移金属元素を本発明における上記金属として使用し得ると言える。もちろん、3族~12族の遷移金属は、有機分子との配位により、その電子配置が変化してしまうため、効果を発現するか否かは組合せに依存する。 The reason why the transition metals of Groups 3 to 12 are effective is not clear, but the arrangement of the outermost electrons is probably changed during coordination, and some s electrons move to the d orbital and coordinate. One electron is deficient at this time, which is considered to cause a state opposite to that of the 13th group. As such transition metals, for example, Ag has an arrangement of 4d 10 3s 1 , and there are many such as s 1 that are Cu, Cr, Rh, Ru, Au, Pt and the like. In consideration of the case of coordinating with organic molecules and changing, it can be said that all transition metal elements can be used as the metal in the present invention. Of course, the transition metal of group 3 to group 12 changes its electron configuration by coordination with an organic molecule, so whether or not the effect is exerted depends on the combination.
 なお、本発明の有機EL素子における絶縁性有機物層は、絶縁性有機物のみからなる単一膜でもよく、また、絶縁性有機物と、電子輸送層に用いられる電子輸送性有機物及び/又は中間層に利用する深い電子親和力を持つ有機物を含む混合膜であってもよい。 The insulating organic material layer in the organic EL device of the present invention may be a single film made of only an insulating organic material, and may be an insulating organic material and an electron transporting organic material and / or an intermediate layer used for an electron transporting layer. A mixed film containing an organic substance having a deep electron affinity to be used may be used.
 本発明によれば、従来のスタック型有機EL素子の構造に必須であったアルカリ金属等の還元性物質の使用を回避し、製造工程を格段に簡素化しながらも、従来と略同等の性能を有しかつ駆動電圧を低減させたスタック型有機EL素子を実現することができる。 According to the present invention, while avoiding the use of reducing substances such as alkali metals, which are essential for the structure of the conventional stack type organic EL device, the manufacturing process is greatly simplified, while the performance is almost the same as the conventional one. It is possible to realize a stack type organic EL element having a low driving voltage.
本発明の有機EL素子の典型的な構成を示す概略断面図である。It is a schematic sectional drawing which shows the typical structure of the organic EL element of this invention. 本発明の有機EL素子の典型的な構成を示すエネルギーダイアグラムの概略図である。It is the schematic of the energy diagram which shows the typical structure of the organic EL element of this invention. 実施例1と比較例1で作製した有機EL素子について、電圧(V)-輝度(cd/m2)をプロットしたグラフである。6 is a graph plotting voltage (V) −luminance (cd / m 2 ) for the organic EL devices fabricated in Example 1 and Comparative Example 1. FIG. 実施例2と比較例2で作製した有機EL素子について、電流密度(mA/cm2)-電流効率(cd/A)をプロットしたグラフである。6 is a graph plotting current density (mA / cm 2 ) -current efficiency (cd / A) for the organic EL devices fabricated in Example 2 and Comparative Example 2. 実施例2と比較例2で作製した有機EL素子について、電圧(V)-輝度(cd/m2)をプロットしたグラフである。5 is a graph plotting voltage (V) −luminance (cd / m 2 ) for the organic EL devices fabricated in Example 2 and Comparative Example 2. FIG.
 本発明の有機EL素子は、陽極と、陰極と、前記陽極と前記陰極との間に位置する、発光層を含む複数の発光ユニットと、前記複数の発光ユニットの間に位置する中間層と、を有し、前記中間層が、前記中間層から前記発光ユニットへの電荷の移動に対する障壁となる部位に設けられた絶縁性有機物層と、前記絶縁性有機物層に隣接して設けられた有機物と金属とからなる混合層と、を含むこと、を特徴とする。以下において、本発明の有機EL素子の好適な実施形態について詳細に説明する。なお、以下の説明では重複する説明は省略することがある。 The organic EL device of the present invention includes an anode, a cathode, a plurality of light emitting units including a light emitting layer located between the anode and the cathode, an intermediate layer located between the plurality of light emitting units, An insulating organic layer provided at a site that serves as a barrier against charge transfer from the intermediate layer to the light emitting unit, and an organic material provided adjacent to the insulating organic layer; And a mixed layer made of a metal. Hereinafter, preferred embodiments of the organic EL device of the present invention will be described in detail. In the following description, overlapping description may be omitted.
 図1は、本実施形態の有機EL素子の構成を示す概略断面図であり、図2は、本発明の有機EL素子の典型的な構成を示すエネルギーダイアグラムの概略図である。図1に示すように、本実施形態の有機EL素子1は、n個の発光ユニットを含み(nは2以上の整数)、例えばガラス基板2上に順に形成された、陽極4と;第1の発光ユニット6-1と;第1の絶縁性有機物層8-1及び第1の混合層(有機物と金属とからなる混合層)10-1を含む第1の中間層9-1と;第2の発光ユニット6-2と;第2の絶縁性有機物層8-2及び第2の混合層10-2を含む第2の中間層9-2と;第(n-1)の絶縁性有機物層8-(n-1)及び第(n-1)の混合層10-(n-1)を含む第(n-1)の中間層9-(n-1)と;第nの発光ユニット6-nと;陰極14と;を含む構造を有している。 FIG. 1 is a schematic cross-sectional view showing a configuration of the organic EL element of the present embodiment, and FIG. 2 is a schematic diagram of an energy diagram showing a typical configuration of the organic EL element of the present invention. As shown in FIG. 1, the organic EL element 1 of the present embodiment includes n light emitting units (n is an integer of 2 or more), for example, an anode 4 formed in order on a glass substrate 2; A first intermediate layer 9-1 including a first insulating organic layer 8-1 and a first mixed layer (mixed layer made of an organic substance and a metal) 10-1. The second light emitting unit 6-2; the second intermediate layer 9-2 including the second insulating organic material layer 8-2 and the second mixed layer 10-2; and the (n-1) insulating organic material. An (n-1) th intermediate layer 9- (n-1) including a layer 8- (n-1) and an (n-1) th mixed layer 10- (n-1); and an nth light emitting unit 6-n; and cathode 14;
 以下においては、第1の発光ユニット6-1、第2の発光ユニット6-2及び第nの発光ユニット6-nを「発光ユニット6」と総称し、第1の絶縁性有機物層8-1、第2の絶縁性有機物層8-2及び第(n-1)の絶縁性有機物層8-(n-1)を「絶縁性有機物層8」と総称することがある。また、第1の中間層9-1、第2の中間層9-2及び第(n-1)の中間層9-(n-1)を「中間層9」と総称することがあり、第1の混合層、第2の混合層10-2及び第(n-1)の混合層10-(n-1)を「混合層10」と総称することがある。 Hereinafter, the first light-emitting unit 6-1, the second light-emitting unit 6-2, and the n-th light-emitting unit 6-n are collectively referred to as “light-emitting unit 6”, and the first insulating organic material layer 8-1. The second insulating organic material layer 8-2 and the (n-1) th insulating organic material layer 8- (n-1) may be collectively referred to as "insulating organic material layer 8". Further, the first intermediate layer 9-1, the second intermediate layer 9-2, and the (n-1) th intermediate layer 9- (n-1) may be collectively referred to as "intermediate layer 9". The first mixed layer, the second mixed layer 10-2, and the (n-1) th mixed layer 10- (n-1) may be collectively referred to as "mixed layer 10".
 上記のように、本実施形態の有機EL素子1は、発光ユニット6に含まれる発光性有機物をクエンチングするアルカリ金属等の強電子供与性物質を一切含まない。また、発光ユニット6中に効率よく電子電荷を供給するために、低誘電率の絶縁性有機物層8が混合層10と発光ユニット6との間に設けられた構成を有している。 As described above, the organic EL element 1 of the present embodiment does not include any strong electron donating substance such as an alkali metal that quenches the luminescent organic substance contained in the light emitting unit 6. Further, in order to efficiently supply electronic charges into the light emitting unit 6, a low dielectric constant insulating organic material layer 8 is provided between the mixed layer 10 and the light emitting unit 6.
 本発明の有機EL素子1における絶縁性有機物層8は、上述のように、比誘電率の低い絶縁性有機物で構成されていればよく、かかる絶縁性有機物としては、種々の有機化合物を使用することが期待される。なかでも、例えば、下記式:
Figure JPOXMLDOC01-appb-C000001
As described above, the insulating organic material layer 8 in the organic EL element 1 of the present invention may be composed of an insulating organic material having a low relative dielectric constant, and various organic compounds are used as the insulating organic material. It is expected. Among them, for example, the following formula:
Figure JPOXMLDOC01-appb-C000001
で表わされるCa(dpm)2(ビス-ジ-ピバロイル-メタナート-カルシウム)等のβジケトン型配位子を有する金属錯体等が挙げられる。 And metal complexes having β-diketone type ligands such as Ca (dpm) 2 (bis-di-pivaloyl-methanate-calcium) represented by
 また、絶縁性有機物層8は、例えば、電子電荷が移動する部位に設けられる場合は、電子電荷の輸送に対して絶縁性を有する層として機能するものであればよく、したがって、ホール(正孔)輸送性有機物で形成されたホール輸送性有機物層であってもよい。 Further, for example, when the insulating organic material layer 8 is provided at a site where electronic charges move, it may be any layer that functions as an insulating layer with respect to the transport of electronic charges. ) A hole transporting organic material layer formed of a transporting organic material may be used.
 本実施形態における混合層10を構成する有機物は、は、上述のとおり、隣接する層(例えばホール輸送層)との界面において、電子及びホールを発生させる部位を形成し得る物質であればよい。例えば、混合層10を深い電子親和力を持つ有機物(例えばHAT-CN6)と3族~13族の元素(例えばAl)で構成し、陰極14側に隣接するホール輸送層(例えばNPB)で構成すれば、電圧を印加すると界面において、電子及びホールのキャリア生成を起こし、かつ絶縁性有機物層8を経て発光ユニット6へ良好なキャリア注入を行うことができる。 The organic substance constituting the mixed layer 10 in the present embodiment may be any substance that can form a site for generating electrons and holes at the interface with an adjacent layer (for example, a hole transport layer) as described above. For example, the mixed layer 10 is composed of an organic substance having a deep electron affinity (for example, HAT-CN6) and a group 3 to group 13 element (for example, Al), and a hole transport layer (for example, NPB) adjacent to the cathode 14 side. For example, when a voltage is applied, carriers of electrons and holes are generated at the interface, and good carrier injection can be performed to the light emitting unit 6 through the insulating organic material layer 8.
 また、上記、混合層10は、深い電子親和力を持つ有機物(例えばHAT-CN6)と3族~13族の元素(例えばAl)とから構成され、更に、その陰極側に隣接して、深い電子親和力を持つ有機物のみからなる層が積層されていてもよい。即ち、隣接するホール輸送層との界面における電子及びホールのキャリア生成が、3族~13族の元素の存在によって却って阻害される場合は、このような2層構造を採用するのが好適である。 The mixed layer 10 is composed of an organic substance having a deep electron affinity (for example, HAT-CN6) and a group 3 to group 13 element (for example, Al), and further, a deep electron adjacent to the cathode side. A layer composed only of an organic substance having affinity may be laminated. That is, it is preferable to adopt such a two-layer structure when electron and hole carrier generation at the interface with the adjacent hole transport layer is inhibited by the presence of elements of Group 3 to Group 13 instead. .
 陰極14を構成する材料としては、一般的には仕事関数の小さい金属、またそれらを含む合金、金属酸化物等が用いられる。具体的には、Li等のアルカリ金属、Mg、Ca等のアルカリ土類金属、Eu等の希土類金属等からなる金属単体、もしくは、これらの金属とAl、Ag、In等との合金等が挙げられる。 As a material constituting the cathode 14, generally, a metal having a small work function, an alloy containing them, a metal oxide, or the like is used. Specifically, an alkali metal such as Li, an alkaline earth metal such as Mg or Ca, a rare earth metal such as Eu, or an alloy of these metals with Al, Ag, In, or the like can be given. It is done.
 また、陰極14と有機層との界面に金属ドーピングされた有機層を用いる構成(例えば、特開平10-270171号公報及び特開2001-102175号公報参照)を採用する場合には、陰極は導電性材料であれば、その仕事関数等の性質は別段、制限とはならない。 In addition, when adopting a configuration in which a metal-doped organic layer is used at the interface between the cathode 14 and the organic layer (see, for example, Japanese Patent Laid-Open Nos. 10-270171 and 2001-102175), the cathode is electrically conductive. If it is a material, its properties such as work function are not limited.
 例えば特開平11-233262号公報及び特開2000-182774号公報に開示された技術を使用して、陰極14に接する有機層(発光ユニット6中の有機層)をアルカリ金属イオン、アルカリ土類金属イオン及び希土類金属イオンの少なくとも1種を含有する有機金属錯体化合物により構成する場合には、当該有機金属錯体化合物中に含有される金属イオンを真空中で金属に還元し得る金属、例えば、Al、Zr、Ti、Si等の(熱還元性)金属、又はこれらの金属を含有する合金を陰極材料として使用することもできる。これらのうち、特に、配線電極として一般に広く使用されているAlが蒸着の容易さ、光反射率の高さ、化学的安定性等の観点から好ましい。 For example, using the techniques disclosed in Japanese Patent Application Laid-Open Nos. 11-233262 and 2000-182774, an organic layer (organic layer in the light-emitting unit 6) in contact with the cathode 14 is formed with an alkali metal ion or an alkaline earth metal. When constituted by an organometallic complex compound containing at least one of ions and rare earth metal ions, a metal capable of reducing metal ions contained in the organometallic complex compound to a metal in a vacuum, for example, Al, A (thermally reducible) metal such as Zr, Ti, or Si, or an alloy containing these metals can also be used as the cathode material. Of these, Al, which is generally widely used as a wiring electrode, is preferable from the viewpoints of easiness of vapor deposition, high light reflectance, chemical stability, and the like.
 陽極4を構成する材料としては、特に制限はなく、例えば、ITO(インジウム・すず酸化物)、IZO(インジウム・亜鉛酸化物)等の透明導電材料を使用することができる。例えば、特開2002-332567号公報に記載された手法を用いてITO成膜を有機膜に損傷の無いようなスパッタリング法によって行う場合は、陰極14の場合と同様に、特開平10-270171号公報に記載されている金属ドーピングされた有機層を電子注入層に用いれば、前述のITOやIZO等の透明導電材料を陰極14に使用することもできる。 The material constituting the anode 4 is not particularly limited. For example, a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide) can be used. For example, when the ITO film is formed by a sputtering method that does not damage the organic film using the technique described in Japanese Patent Application Laid-Open No. 2002-332567, as in the case of the cathode 14, Japanese Patent Application Laid-Open No. 10-270171. If the metal-doped organic layer described in the publication is used for the electron injection layer, the transparent conductive material such as ITO or IZO described above can also be used for the cathode 14.
 したがって、陰極14及び陽極4の両方を透明とすれば、有機層を含む発光ユニットも中間層も同様に透明であるから、透明な有機EL素子を作ることもできる。また、一般的な有機EL素子の場合とは逆に、陽極4を金属で構成して陰極14を透明電極とすることで、ガラス基板2側からではなく陰極14側から光をとり出す構造の有機EL素子1とすることも可能である。また、各層の形成順序に関しては、必ずしも陽極14の形成(成膜)から始める必要はなく、陰極4から形成を始めてもよい。 Therefore, if both the cathode 14 and the anode 4 are transparent, the light emitting unit including the organic layer and the intermediate layer are transparent as well, so that a transparent organic EL element can be produced. Contrary to the case of a general organic EL element, the anode 4 is made of metal and the cathode 14 is a transparent electrode, so that light is extracted from the cathode 14 side instead of the glass substrate 2 side. The organic EL element 1 can also be used. Further, regarding the order of forming each layer, it is not always necessary to start with the formation (film formation) of the anode 14, and the formation may be started from the cathode 4.
 本実施形態における発光ユニット6は、従来公知の有機EL素子と同様に、種々の構造を採ることができ、例えば、発光層と、ホール輸送層及び/又は電子輸送層と、の組合せで構成すればよく、その組合せとしても種々の態様を採用することが可能である。 The light emitting unit 6 in the present embodiment can take various structures as in the case of a conventionally known organic EL element, and is composed of, for example, a combination of a light emitting layer and a hole transport layer and / or an electron transport layer. Various modes may be adopted as the combination.
 発光ユニット6に含まれる「発光層」は、従来の有機EL素子に用いられる従来の発光層であればよく、発光層を構成する発光材料についても、特に制限はなく、各種の蛍光材料又は燐光材料等の公知の任意のものを使用することができる。例えば、下記式:
Figure JPOXMLDOC01-appb-C000002
The “light emitting layer” included in the light emitting unit 6 may be a conventional light emitting layer used in a conventional organic EL element, and the light emitting material constituting the light emitting layer is not particularly limited, and various fluorescent materials or phosphorescences are used. Any known material can be used. For example, the following formula:
Figure JPOXMLDOC01-appb-C000002
で表わされるトリス(8-キノリノラト)アルミニウム錯体(Alq3)等が挙げられる。 And tris (8-quinolinolato) aluminum complex (Alq3) and the like.
 「ホール輸送層」は、従来の有機EL素子のホール輸送層を構成するホール輸送性物質を用いて形成すればよく、特に制限はないが、例えばイオン化ポテンシャルが5.7eVより小さく、ホール輸送性即ち電子供与性を有する有機化合物(電子供与性物質)が挙げられる。一般に電子供与性を有する有機化合物が容易にラジカルカチオン状態となるにはイオン化ポテンシャルが5.7eVより小さいことが望ましい。 The “hole transport layer” may be formed using a hole transport material that constitutes the hole transport layer of the conventional organic EL device, and is not particularly limited. For example, the ionization potential is smaller than 5.7 eV, and the hole transport property is That is, an organic compound having an electron donating property (electron donating substance) can be used. In general, it is desirable that the ionization potential is smaller than 5.7 eV in order for an organic compound having an electron donating property to easily enter a radical cation state.
 例えば、一般式(I):
Figure JPOXMLDOC01-appb-C000003
For example, the general formula (I):
Figure JPOXMLDOC01-appb-C000003
(式(I)中、Ar1、Ar2及びAr3は、それぞれ独立して置換基を有してよい芳香族炭化水素基を表わす。)で示されるアリールアミン化合物であるのが好ましい。なかでも、4,4’-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル(NPB)が好ましい。 (In formula (I), Ar 1 , Ar 2 and Ar 3 each independently represents an aromatic hydrocarbon group which may have a substituent) are preferably arylamine compounds. Of these, 4,4′-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl (NPB) is preferable.
 また、「ホール輸送層」には、上記アリールアミン化合物以外にも、従来から有機EL素子のホール注入材料として用いられてきたフタロシアニン化合物を含む顔料系有機材料を用いてもよく、電圧印加時に電荷発生できる材料であれば、適宜選択して使用することができる。 In addition to the arylamine compound, a pigment-based organic material containing a phthalocyanine compound that has been conventionally used as a hole injection material for organic EL elements may be used for the “hole transport layer”. Any material that can be generated can be appropriately selected and used.
 「電子輸送層」は、従来の有機EL素子の電子輸送層を構成する電子輸送性物質を用いて形成すればよく、特に制限はないが、本実施形態で使用する電子輸送性物質は、一般に有機EL素子に用いられる電子輸送性物質のなかでも比較的深いイオン化ポテンシャルを有するものが好ましい。具体的には、少なくとも概ね6.0eV以上のイオン化ポテンシャルを有する電子輸送性物質を用いるのが好ましい。このようにイオン化ポテンシャルの深い電子輸送性物質を使用すると、電子輸送性物質に向かってホール電荷が移動しにくく、上述のように、中間層9で発生した電子電荷がホール電荷を電気的に中和することなく、確実に発光物質を励起して発光させることができる。 The “electron transport layer” may be formed using an electron transport material constituting the electron transport layer of the conventional organic EL device, and is not particularly limited. Generally, the electron transport material used in this embodiment is Among the electron transport materials used in the organic EL element, those having a relatively deep ionization potential are preferable. Specifically, it is preferable to use an electron transporting material having an ionization potential of at least about 6.0 eV. When an electron transporting material having a deep ionization potential is used as described above, the hole charge is difficult to move toward the electron transporting material, and the electron charge generated in the intermediate layer 9 is electrically neutralized as described above. The light emitting material can be surely excited to emit light without being summed.
 また、本実施形態で使用する電子輸送性物質の電子親和力は、中間層9内に使用される(強)電子受容性物質の電子親和力と発光ユニット6に含まれる発光性有機物の電子親和力との間に位置することが好ましい。 In addition, the electron affinity of the electron transporting substance used in the present embodiment is the electron affinity of the (strong) electron accepting substance used in the intermediate layer 9 and the electron affinity of the luminescent organic substance contained in the light emitting unit 6. It is preferably located between.
 なお、電子輸送性物質(有機物)としては、例えば、ケミプロ化成(株)製のKLET02等を用いることができる。なお、ケミプロ化成(株)製の電子輸送性物質(有機物)の物性値は以下に示されている(ケミプロ化成(株)のHPより。http://www.chemipro.co.jp/Yuki#EL/Products.html)。 In addition, as an electron transport substance (organic substance), for example, KLET02 manufactured by Chemipro Kasei Co., Ltd. can be used. The physical properties of the electron transport material (organic substance) manufactured by Chemipro Kasei Co., Ltd. are shown below (from Chemipro Kasei Co., Ltd. HP. Http://www.chemipro.co.jp/Yuki# EL / Products.html).
 ここで、本実施形態における中間層9を構成する混合層10に用いられる有機物としては、例えば、下記式:
Figure JPOXMLDOC01-appb-C000004
Here, as an organic substance used for the mixed layer 10 which comprises the intermediate | middle layer 9 in this embodiment, following formula:
Figure JPOXMLDOC01-appb-C000004
で表わされるヘキサアザトリフェニレン誘導体(HAT-CN6)等が挙げられる。 And a hexaazatriphenylene derivative (HAT-CN6) represented by the formula:
 以上、本発明の有機EL素子の典型的な積層構造(単位)を有する実施形態について説明したが、本発明は、本発明の技術的思想の範囲内で種々の設計変更が可能であり、これら設計変更した発明も当然に本発明に含まれる。 As mentioned above, although the embodiment having a typical laminated structure (unit) of the organic EL element of the present invention has been described, the present invention can be modified in various ways within the scope of the technical idea of the present invention. Naturally, the invention whose design has been changed is also included in the present invention.
<変形態様>
 例えば、本発明の有機EL素子において絶縁性有機物層に電子輸送層が隣接している場合、絶縁性有機物層には、電子輸送層を構成する電子輸送性有機物が混合されていてもよい。即ち、本発明の有機EL素子は、絶縁性有機物層に代えて、絶縁性有機物・電子輸送性物質混合層を有していてもよい。
<Deformation mode>
For example, when the electron transport layer is adjacent to the insulating organic material layer in the organic EL element of the present invention, the electron transporting organic material constituting the electron transporting layer may be mixed in the insulating organic material layer. That is, the organic EL device of the present invention may have an insulating organic substance / electron transporting substance mixed layer instead of the insulating organic substance layer.
 また、本発明の有機EL素子において絶縁性有機物層に強電子受容物質層が隣接している場合、絶縁性有機物層には、強電子受容性物質層を構成する強電子受容性物質が混合されていてもよい。即ち、本発明の有機EL素子は、絶縁性有機物層に代えて、絶縁性有機物・強電子受容性物質混合層を有していてもよい。このような構成であっても、電子輸送性物質と強電子受容性物質の好ましくない相互作用を回避することができる場合があり、このことは適宜実験によって確かめることができる。 In the organic EL device of the present invention, when the strong electron accepting material layer is adjacent to the insulating organic material layer, the strong organic accepting material constituting the strong electron accepting material layer is mixed in the insulating organic material layer. It may be. That is, the organic EL element of the present invention may have an insulating organic substance / strong electron accepting substance mixed layer instead of the insulating organic substance layer. Even in such a configuration, an undesirable interaction between the electron transporting substance and the strong electron accepting substance may be avoided, and this can be confirmed by experiments as appropriate.
 また、一般的に、発光ユニット中の発光層は、ホスト材料と、当該ホスト材料中に分散された発光物質と、で構成されている場合が多く、また、当該ホスト材料は、電子輸送性物質と同一の材料である場合もある。したがって、本発明の有機EL素子において発光層に電子輸送層が隣接している場合、発光層と電子輸送層とは、同一の材料を用いて一体的に形成された単一の層で構成してもよい。 In general, the light emitting layer in the light emitting unit is often composed of a host material and a light emitting material dispersed in the host material, and the host material is an electron transporting material. May be the same material. Therefore, in the organic EL device of the present invention, when the electron transport layer is adjacent to the light emitting layer, the light emitting layer and the electron transport layer are configured as a single layer integrally formed using the same material. May be.
 また、本発明の有機EL素子において発光層にホール輸送層が隣接している場合、ホール輸送性物質が発光したり発光層のホスト材料として機能したりすることもあるため、この場合は、発光層とホール輸送層とを一体的に形成された単一の層で構成してもよい。更にこの場合、ホール輸送層の陰極寄りの部位のみに発光物質が分散混合されている場合もある。 In the organic EL device of the present invention, when the hole transport layer is adjacent to the light emitting layer, the hole transport material may emit light or function as a host material for the light emitting layer. The layer and the hole transport layer may be formed as a single layer formed integrally. Furthermore, in this case, the luminescent material may be dispersed and mixed only in the hole transport layer near the cathode.
 より具体的には、本発明の有機EL素子は、例えば次のような積層構造をとることもできる。
 a)陽極
 b)深い電子親和力を持つ有機物層
 c)ホール輸送層
 d)発光層
 e)電子輸送層
 f)絶縁性有機物層
 g)有機物及び金属を含む混合層
 h)上記b)~上記g)の繰り返し
 -------------------------------
 i)陰極
More specifically, the organic EL element of the present invention can have, for example, the following laminated structure.
a) Anode b) Organic layer with deep electron affinity c) Hole transport layer d) Light emitting layer e) Electron transport layer f) Insulating organic layer g) Mixed layer containing organic matter and metal h) Above b) to g) above Repeat -------------------------------
i) Cathode
 本発明の有機EL素子は、下記のように、上記積層構造において、深い電子親和力を持つ有機物とホール輸送性物質の混合層を有する積層構造を有していてもよい。なお、上記のように、混合層は、複数の蒸着源を別々に加熱して成膜し、積層膜として形成したり、複数の蒸着源を同時に加熱して混合膜として形成することができ(共蒸着)、後者が一般的ではあるが、これらに限定されるものではない。 The organic EL device of the present invention may have a laminated structure having a mixed layer of an organic substance having a deep electron affinity and a hole transporting substance in the laminated structure as described below. As described above, the mixed layer can be formed by separately heating a plurality of vapor deposition sources to form a laminated film, or can be formed as a mixed film by simultaneously heating a plurality of vapor deposition sources ( Co-deposition), the latter is common, but is not limited thereto.
 また、本発明の有機EL素子は、例えば次のような積層構造をとることもできる。
 a)陽極
 b)深い電子親和力を持つ有機物層・ホール輸送物質混合層
 c)ホール輸送層
 d)発光層
 e)電子輸送層
 f)絶縁性有機物層
 g)有機物及び金属を含む混合層
 h)上記b)~上記g)の繰り返し
 -------------------------------
 i)陰極
Moreover, the organic EL element of this invention can also take the following laminated structures, for example.
a) anode b) organic material layer / hole transport material mixed layer having deep electron affinity c) hole transport layer d) light emitting layer e) electron transport layer f) insulating organic material layer g) mixed layer containing organic material and metal h) above b) to repeat g) above ------------------------------
i) Cathode
 更に、上記積層構造において、電子輸送層と絶縁性有機物層とが隣接する積層構成部分(「電子輸送層/絶縁性有機物層」)を、電子輸送層と電子輸送性有機物・絶縁性有機物混合層とが隣接する積層構成部分(「電子輸送層/電子輸送性有機物・絶縁性有機物混合層」)に変更してもよい。即ち、電子輸送層を構成する電子輸送性有機物を、絶縁性有機物層に混合して使用してもよい。 Further, in the above laminated structure, a laminated constitution part (“electron transport layer / insulating organic layer”) in which the electron transport layer and the insulating organic layer are adjacent to each other is divided into an electron transport layer and an electron transporting organic material / insulating organic material mixed layer. May be changed to an adjacent laminated component (“electron transport layer / electron transport organic compound / insulating organic compound mixed layer”). That is, the electron transporting organic material constituting the electron transporting layer may be mixed with the insulating organic material layer and used.
 また、更には、電子輸送層部分全体が予め「電子輸送性有機物・絶縁性有機物混合層」に置換されていてもよく、「電子輸送性有機物・絶縁性有機物混合層/絶縁性有機物層」のように、混合層に絶縁性有機物層が隣接して積層されていてもよい。 Furthermore, the entire electron transport layer portion may be replaced in advance with an “electron transport organic compound / insulating organic compound mixed layer”, and the “electron transport organic compound / insulating organic compound mixed layer / insulating organic compound layer” Thus, the insulating organic material layer may be laminated adjacent to the mixed layer.
 また、上記積層構造において、電子輸送層と絶縁性有機物層とが隣接する積層構成部分(「電子輸送層/絶縁性有機物層」)を、電子輸送層と絶縁性有機物・強電子受容性物質混合層とが隣接する積層構成部分(「電子輸送層/絶縁性有機物・強電子受容性物質混合層」)に変更してもよい。即ち、強電子受容性物質層を構成する強電子受容性物質を、絶縁性有機物層に混合して使用してもよい。このような構成であっても電子輸送性有機物と強電子受容性物質の好ましくない相互作用を回避できる場合があり、これらは適宜実験によって確かめることができる。 Moreover, in the above laminated structure, the laminated component (“electron transport layer / insulating organic layer”) in which the electron transport layer and the insulating organic layer are adjacent to each other is mixed with the electron transport layer and the insulating organic / strong electron accepting substance mixture. The layer may be changed to a laminated component (“electron transport layer / insulating organic substance / strong electron accepting substance mixed layer”) adjacent to the layer. That is, the strong electron accepting material constituting the strong electron accepting material layer may be used by mixing with the insulating organic material layer. Even in such a configuration, an undesirable interaction between the electron-transporting organic substance and the strong electron-accepting substance may be avoided, and these can be confirmed by experiments as appropriate.
 また、一般的に、発光層においては、発光物質がホスト材料に分散されて存在する場合が多く、当該ホスト材料は電子輸送物質と同一である場合もある。したがって、本発明の有機EL素子においては、発光層と電子輸送層とが隣接する積層構成部分は、同一の材料からなる一層であってもよい。 In general, in a light emitting layer, a light emitting substance is often dispersed in a host material, and the host material may be the same as an electron transporting substance. Therefore, in the organic EL device of the present invention, the stacked constituent portion where the light emitting layer and the electron transport layer are adjacent may be a single layer made of the same material.
 上記積層構造のホール輸送材料が、発光層を構成する場合や、発光層のホスト材料として機能する場合もあるので、これらの場合は、「ホール輸送層/発光層/電子輸送層」の積層構成部位が、「ホール輸送層(発光層)/電子輸送層」の積層構成部位に変更されてもよい。ホール輸送層の陰極寄りの部位のみに発光物質が分散混合されている場合は、「ホール輸送層/発光層/電子輸送層」の積層構成部位が、「ホール輸送層/ホール輸送材料・発光材料混合層/電子輸送層」の積層構成部位に変更されてもよい。 The hole transport material having the above laminated structure may constitute a light emitting layer or may function as a host material of the light emitting layer. In these cases, the “hole transport layer / light emitting layer / electron transport layer” laminated structure The part may be changed to a stacked constituent part of “hole transport layer (light emitting layer) / electron transport layer”. When the light-emitting substance is dispersed and mixed only in the portion near the cathode of the hole transport layer, the “hole transport layer / light-emitting layer / electron transport layer” layered structure is “hole transport layer / hole transport material / light-emitting material”. It may be changed to a layered configuration portion of “mixed layer / electron transport layer”.
 即ち、陽極、陰極、陽極と陰極との間に位置する、発光層を含む複数の発光ユニット、及び複数の発光ユニットの間に位置する中間層、を含む有機EL素子において、中間層から発光層への電荷の移動に対する障壁となる部位に絶縁性有機物層が設けられており、その絶縁性有機物層に有機物と金属の混合層が隣接して形成される積層構造を含む有機EL素子は、他の構成要素を含んでいても、基本的には本発明の有機EL素子の技術的範囲に含まれる。 That is, in an organic EL element including an anode, a cathode, a plurality of light emitting units including a light emitting layer positioned between the anode and the cathode, and an intermediate layer positioned between the plurality of light emitting units, the intermediate layer to the light emitting layer An organic EL element including a laminated structure in which an insulating organic layer is provided in a portion that serves as a barrier against the transfer of electric charge to the insulating layer, and a mixed layer of an organic substance and a metal is formed adjacent to the insulating organic layer. However, it is basically included in the technical scope of the organic EL device of the present invention.
 上記では、本発明の有機EL素子の基本単位の構造を説明したが、本発明の有機EL素子は、これらの基本単位が複数積層された構造を有していてもよい。そして、上記のような本発明の有機EL素子は、真空蒸着装置を用いて従来公知の方法で製造することができる。特に、陽極及び陰極以外の各層が有機化合物で形成された構成を有する有機EL素子を得る場合には、工程が煩雑になることなく簡便に製造を実施することができる。 Although the structure of the basic unit of the organic EL element of the present invention has been described above, the organic EL element of the present invention may have a structure in which a plurality of these basic units are stacked. The organic EL element of the present invention as described above can be produced by a conventionally known method using a vacuum vapor deposition apparatus. In particular, when obtaining an organic EL device having a structure in which each layer other than the anode and the cathode is formed of an organic compound, the production can be easily carried out without making the process complicated.
 以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
≪実施例1≫
 実施例1の有機EL素子として、ガラス基板上に以下の表1に示す材料及び厚さの層を順に積層し、図1に示す構造を含む有機EL素子1を作製した。各層の形成には、(株)エイコー製の真空蒸着機を使用した。各層の厚さは、触針式表面形状測定器(DEKTAK3030)を用いて測定し、得られた有機EL素子の特性評価には、ケースレーインスツルメンツ(株)製のソースメータ2400及びトプコン(株)製の輝度計BM-7を使用した。
Figure JPOXMLDOC01-appb-T000001
Example 1
As an organic EL element of Example 1, layers of materials and thicknesses shown in Table 1 below were laminated in order on a glass substrate to produce an organic EL element 1 including the structure shown in FIG. For the formation of each layer, a vacuum deposition machine manufactured by Eiko Co., Ltd. was used. The thickness of each layer is measured using a stylus type surface shape measuring instrument (DEKTAK3030), and for the characteristic evaluation of the obtained organic EL element, a source meter 2400 manufactured by Keithley Instruments Co., Ltd. and Topcon Co., Ltd. are used. Luminometer BM-7.
Figure JPOXMLDOC01-appb-T000001
≪比較例1≫
 比較例1の有機EL素子として、実施例1と同様にして、ガラス基板上に以下の表2に示す材料及び厚さの層を順に積層し、比較有機EL素子1を作製した。
Figure JPOXMLDOC01-appb-T000002
≪Comparative example 1≫
As an organic EL element of Comparative Example 1, in the same manner as in Example 1, layers of materials and thicknesses shown in Table 2 below were sequentially laminated on a glass substrate to produce Comparative Organic EL Element 1.
Figure JPOXMLDOC01-appb-T000002
[評価試験]
 上記のようにして作製した有機EL素子1(実施例1)及び比較有機EL素子1(比較例1)それぞれの陽極と陰極との間に、直流電圧を0.1V/2秒又は0.5V/2秒の割合でステップ状に印加して、電圧上昇1秒後の輝度(発光層からの緑色発光)及び電流値を測定した。図3に電圧(V)-輝度(cd/m2)をプロットしたグラフを示した。図3に示されたとおり、比較例1に対し実施例1は大幅な低電圧化が達成されている。
[Evaluation test]
The direct current voltage was 0.1 V / 2 seconds or 0.5 V between the anode and the cathode of the organic EL device 1 (Example 1) and the comparative organic EL device 1 (Comparative Example 1) produced as described above. The voltage was applied stepwise at a rate of / 2 seconds, and the luminance (green light emission from the light emitting layer) and current value after 1 second of voltage increase were measured. FIG. 3 shows a graph plotting voltage (V) -luminance (cd / m 2 ). As shown in FIG. 3, the voltage of Example 1 is significantly lower than that of Comparative Example 1.
≪実施例2及び比較例2≫
 実施例2及び比較例2の有機EL素子として、それぞれ表3及び表4に示す材料で構成された層を有する構造の2種類の有機EL素子(緑色燐光発光素子)2及び比較有機EL素子2を作製した。比較有機EL素子2は、発光ユニットが単一である素子であり、有機EL素子2は本発明の構成を有する中間層によって発光ユニットが3個接続された構成を有する素子である。
Figure JPOXMLDOC01-appb-T000003
<< Example 2 and Comparative Example 2 >>
As organic EL elements of Example 2 and Comparative Example 2, two types of organic EL elements (green phosphorescent light emitting elements) 2 and comparative organic EL elements 2 having a structure composed of materials shown in Tables 3 and 4 respectively. Was made. The comparative organic EL element 2 is an element having a single light emitting unit, and the organic EL element 2 is an element having a configuration in which three light emitting units are connected by an intermediate layer having the configuration of the present invention.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、ここで使用した化合物は、以下のとおりとした。
1)HT04(商品名):ケミプロ化成(株)製のホール輸送材料
The compounds used here were as follows.
1) HT04 (trade name): Hall transport material manufactured by Chemipro Kasei Co., Ltd.
2)Ir(ppy)3:下記式:
Figure JPOXMLDOC01-appb-C000005
の構造を有するtris(2-phenylpyridine)iridium
2) Ir (ppy) 3 :
Figure JPOXMLDOC01-appb-C000005
Tris (2-phenylpyridine) iridium having the structure
3)Mg(acac)2: 下記式:
Figure JPOXMLDOC01-appb-C000006
の構造を有するMagnesium acetylacetonate dehydrate
3) Mg (acac) 2 : following formula:
Figure JPOXMLDOC01-appb-C000006
Magnesium acetylacetonate dehydrate with the structure
4)TCTA:下記式:
Figure JPOXMLDOC01-appb-C000007
の構造を有する4,4',4''-Tris(carbazol-9-yl)-triphenylamine
4) TCTA: The following formula:
Figure JPOXMLDOC01-appb-C000007
4,4 ′, 4 ″ -Tris (carbazol-9-yl) -triphenylamine having the structure
5)NS60(商品名):新日鐵化学(株)製の発光層ホスト材料 5) NS60 (trade name): a light emitting layer host material manufactured by Nippon Steel Chemical Co., Ltd.
 実施例2及び比較例2の結果を図4及び5に示した。図4のグラフに示されるように、本発明の中間層によって接続された、発光ユニット3個を有する有機EL素子(表4に示す構造を有する素子)2は、単一の発光ユニットを有する比較有機EL素子(表3の構造を有する素子)2と比較して、電流効率が略3倍となった(~60cd/A→~180cd/A)。更に、図5のグラフに示されるように、駆動電圧も略3倍であることから、理想的に直列接続されていることが証明された。 The results of Example 2 and Comparative Example 2 are shown in FIGS. As shown in the graph of FIG. 4, the organic EL element (element having the structure shown in Table 4) 2 having three light emitting units connected by the intermediate layer of the present invention is a comparative example having a single light emitting unit. Compared with the organic EL element (element having the structure of Table 3) 2, the current efficiency was approximately tripled (˜60 cd / A → ˜180 cd / A). Furthermore, as shown in the graph of FIG. 5, the drive voltage is also approximately three times, so that it was proved that the connection was ideally connected in series.
 以上のことから、本発明の有機EL素子は、低エネルギー消費であることが要求される各種光源及び画像表示装置等、光発生を必要とする広範囲の製品分野で使用可能であるといえる。 From the above, it can be said that the organic EL device of the present invention can be used in a wide range of product fields that require light generation, such as various light sources and image display devices that are required to have low energy consumption.

Claims (6)

  1.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に位置する、発光層を含む複数の発光ユニットと、
     前記複数の発光ユニットの間に位置する中間層と、を有し、
     前記中間層が、前記中間層から前記発光ユニットへの電荷の移動に対する障壁となる部位に設けられた絶縁性有機物層と、前記絶縁性有機物層に隣接して設けられた有機物と金属とからなる混合層と、を含むこと、
    を特徴とする有機エレクトルミネッセント素子。
    The anode,
    A cathode,
    A plurality of light emitting units including a light emitting layer located between the anode and the cathode;
    An intermediate layer located between the plurality of light emitting units,
    The intermediate layer is composed of an insulating organic layer provided at a site that serves as a barrier against charge transfer from the intermediate layer to the light emitting unit, and an organic material and a metal provided adjacent to the insulating organic layer. A mixed layer,
    Organic electroluminescent element characterized by the above.
  2.  前記混合層を構成する前記有機物の電子親和力と、前記混合物層の前記絶縁性有機物層側とは反対側に隣接する層のイオン化ポテンシャルとの差が、1.4eV以下であること、
    を特徴とする請求項1に記載の有機エレクトロルミネッセント素子。
    The difference between the electron affinity of the organic material constituting the mixed layer and the ionization potential of the layer adjacent to the side of the mixed layer opposite to the insulating organic layer side is 1.4 eV or less,
    The organic electroluminescent element according to claim 1.
  3.  前記混合層を構成する前記有機物が、ヘキサアザトリフェニレン誘導体を含むこと、
    を特徴とする請求項1又は2に記載の有機エレクトロルミネッセント素子。
    The organic substance constituting the mixed layer contains a hexaazatriphenylene derivative;
    The organic electroluminescent element according to claim 1 or 2.
  4.  前記混合層を構成する前記金属が、3族~13族に属する金属元素を含むこと、
    を特徴とする請求項1~3のうちのいずれかに記載の有機エレクトロルミネッセント素子。
    The metal constituting the mixed layer contains a metal element belonging to Group 3 to Group 13,
    The organic electroluminescent device according to any one of claims 1 to 3, wherein:
  5.  前記混合層が、前記有機物の層と前記金属の層との積層体で構成されていること、
    を特徴とする請求項1~4のうちのいずれかに記載の有機エレクトロルミネッセント素子。
    The mixed layer is composed of a laminate of the organic layer and the metal layer;
    The organic electroluminescent device according to any one of claims 1 to 4, wherein:
  6.  前記混合層が、前記有機物と前記金属の共蒸着層で構成されていること
    を特徴とする請求項1~4のうちのいずれかに記載の有機エレクトロルミネッセント素子。
    The organic electroluminescent device according to any one of claims 1 to 4, wherein the mixed layer is composed of a co-evaporated layer of the organic substance and the metal.
PCT/JP2012/003536 2011-06-07 2012-05-30 Organic electroluminescent element WO2012169150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013519371A JP5922654B2 (en) 2011-06-07 2012-05-30 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-127349 2011-06-07
JP2011127349 2011-06-07

Publications (1)

Publication Number Publication Date
WO2012169150A1 true WO2012169150A1 (en) 2012-12-13

Family

ID=47295737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003536 WO2012169150A1 (en) 2011-06-07 2012-05-30 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP5922654B2 (en)
WO (1) WO2012169150A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809252A (en) * 2021-08-04 2021-12-17 鹏城实验室 Up-conversion device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264085A (en) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd Organic semiconductor element, organic electroluminescence element and organic solar cell
JP2005293980A (en) * 2004-03-31 2005-10-20 Junji Kido Light emitting transistor
JP2007518220A (en) * 2004-05-11 2007-07-05 エルジー・ケム・リミテッド Organic electrical element
WO2010113493A1 (en) * 2009-04-01 2010-10-07 エイソンテクノロジー株式会社 Organic electroluminescent element
JP2011029108A (en) * 2009-07-29 2011-02-10 Rohm Co Ltd Organic el element
JP2011040373A (en) * 2009-07-14 2011-02-24 Semiconductor Energy Lab Co Ltd Light source, and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264085A (en) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd Organic semiconductor element, organic electroluminescence element and organic solar cell
JP2005293980A (en) * 2004-03-31 2005-10-20 Junji Kido Light emitting transistor
JP2007518220A (en) * 2004-05-11 2007-07-05 エルジー・ケム・リミテッド Organic electrical element
WO2010113493A1 (en) * 2009-04-01 2010-10-07 エイソンテクノロジー株式会社 Organic electroluminescent element
JP2011040373A (en) * 2009-07-14 2011-02-24 Semiconductor Energy Lab Co Ltd Light source, and device
JP2011029108A (en) * 2009-07-29 2011-02-10 Rohm Co Ltd Organic el element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809252A (en) * 2021-08-04 2021-12-17 鹏城实验室 Up-conversion device and manufacturing method thereof
CN113809252B (en) * 2021-08-04 2024-04-09 鹏城实验室 Up-conversion device and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2012169150A1 (en) 2015-02-23
JP5922654B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5180369B2 (en) Organic electroluminescent device
US10217967B2 (en) Organic electroluminescent device
JP4939284B2 (en) Organic electroluminescent device
JP5205584B2 (en) Organic electroluminescence device and display device
JP5008557B2 (en) Organic electroluminescence device
JP4833748B2 (en) Organic light emitting device
WO2011010696A1 (en) Organic electroluminescent element
WO2006121105A1 (en) Organic electroluminescent element
Yao et al. High efficiency and low roll-off all fluorescence white organic light-emitting diodes by the formation of interface exciplex
JP5922654B2 (en) Organic electroluminescent device
JP5977742B2 (en) Organic electroluminescent device
WO2007069740A1 (en) Organic electroluminescent device
Kim et al. Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host
JP2006024655A (en) Organic electroluminescence (el) device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013519371

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12797034

Country of ref document: EP

Kind code of ref document: A1