WO2012167537A1 - 一种降低数字用户线路干扰的方法、装置和系统 - Google Patents
一种降低数字用户线路干扰的方法、装置和系统 Download PDFInfo
- Publication number
- WO2012167537A1 WO2012167537A1 PCT/CN2011/081715 CN2011081715W WO2012167537A1 WO 2012167537 A1 WO2012167537 A1 WO 2012167537A1 CN 2011081715 W CN2011081715 W CN 2011081715W WO 2012167537 A1 WO2012167537 A1 WO 2012167537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- digital subscriber
- spectral density
- power spectral
- subscriber line
- mask value
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/32—Reducing cross-talk, e.g. by compensating
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/46—Monitoring; Testing
- H04B3/487—Testing crosstalk effects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/18—Automatic or semi-automatic exchanges with means for reducing interference or noise; with means for reducing effects due to line faults with means for protecting lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M3/00—Automatic or semi-automatic exchanges
- H04M3/22—Arrangements for supervision, monitoring or testing
- H04M3/26—Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
- H04M3/28—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
- H04M3/30—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop
- H04M3/305—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop testing of physical copper line parameters, e.g. capacitance or resistance
- H04M3/306—Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop testing of physical copper line parameters, e.g. capacitance or resistance for frequencies above the voice frequency, e.g. xDSL line qualification
Definitions
- the present invention relates to the field of communications, and more particularly to a method, apparatus and system for reducing interference on digital subscriber lines.
- Digital Subscriber Line (DSL) technology is a high-speed transmission technology for data transmission over a telephone twisted pair, Unshielded Twist Pair (UTP), including asymmetric digital subscriber lines (Asymmetrical Digital).
- xDSL for passband transmission utilizes frequency division multiplexing technology to enable xDSL and traditional telephony services (POTS, Plain Old Telephone Service). Coexisting on the same pair of twisted pairs, where xDSL occupies a high frequency band, the traditional telephone service occupies a baseband portion below 4 kHz, and the POTS signal and the xDSL signal are separated by a splitter.
- POTS Plain Old Telephone Service
- the xDSL for passband transmission uses Discrete Multi-Tone (DMT) modulation.
- DMT Digital Subscriber Line Access Multiplexer
- NEXT Near End Crosstalk
- Far End Crosstalk Far End Crosstalk
- Both NEXT and FEXT energy will increase as the frequency band increases.
- NEXT since the xDSL uplink and downlink channels adopt frequency division multiplexing, NEXT does not cause much harm to the performance of the system.
- FEXT since the frequency band used by xDSL is wider and wider, FEXT is more and more seriously affecting the line. Transmission performance.
- Vectored-DSL mainly uses the possibility of joint transmission and reception at the DSLAM end, and uses signal processing to offset the interference of FEXT, eventually eliminating each channel.
- the FEXT interference in the signal as shown in FIG. 1a and FIG. 1b, respectively shows a schematic diagram of synchronous transmission and synchronous reception at the DSLAM end, and the working principle thereof will be described below.
- the shared channel H can be represented as a matrix in the k-th tone in the frequency domain.
- MxM is the transfer equation from line pair to line pair in Equation 1.
- i is equal and equal to the number of channels in the shared channel that have a crosstalk relationship with each other. It is assumed here that the number of channels having a crosstalk relationship with each other in the shared channel is M, and then H is a channel transmission matrix of ⁇ ⁇ .
- X be a channel input vector of M xl
- y is a channel output vector of M xl
- n is a noise vector of M xl.
- Equation 1 For uplink, the joint reception processing of signals at the Central Office (CO), ie, the vectorized digital subscriber line access multiplexer (the Vectored DSLAM) at the CO side The module sees Figure lc. Introducing a crosstalk canceller (represented by matrix W), then the signal received by 0 is
- the joint transmission processing of the signal is performed on the CO side, that is, the Vectored DSLAM at the CO side introduces a precoder (represented by the matrix P), and the signal transmitted by the CO side is
- Vectored - DSL achieves the effect of eliminating far-end crosstalk by combining uplink and downlink processing.
- the key is to estimate the downlink precoding matrix P and the uplink cancellation matrix W.
- the Vectored-DSL system is implemented by first synchronizing with a sync symbol (Sync Symbol), then jointly modulating a pilot sequence (Pilot Sequence) on the Sync Symbol of all lines, and finally receiving lateral vectorization control.
- VCE Vectoring Control Entity
- VDSL2 upgrade to Vectored-DSL must be considered compatible with VDSL2 legacy (Leady) user front-end equipment that is available on the existing network and does not support Vectored-DSL ( Customer Premises Equipment, CPE ), ie, VDSL2 Legacy CPE.
- VDSL2 Legacy CPE does not support the transmission and reception of pilot sequences and feedback errors on the Sync Symbol.
- the downlink precoding matrix P and the uplink cancellation matrix W are estimated.
- One method provided by the prior art is to use all the VDSL2 networks. All VDSL2 Legacy CPEs are upgraded or replaced with VDSL2 Vector CPE.
- VDSL2 Legacy CPE coexists for a longer period of time.
- Embodiments of the present invention provide a method, apparatus, and system for reducing digital subscriber line interference to minimize or eliminate the impact of traditional lines on a vectorized line in a digital subscriber line system.
- Embodiments of the present invention provide a method for reducing interference of a digital subscriber line, the method comprising: identifying at least one legacy digital subscriber line in a set of digital subscriber lines, the digital subscriber line set including at least one vectorized digital subscriber line And the conventional digital subscriber line;
- the power spectral density of the transmitted signal of the conventional digital subscriber line is reduced based on the target power spectral density mask value.
- Embodiments of the present invention provide a method for reducing interference of a digital subscriber line, the method comprising: identifying at least one legacy digital subscriber line in a set of digital subscriber lines, the digital subscriber line set including at least one vectorized digital subscriber line And the conventional digital subscriber line;
- Port template parameters are configured based on the target power spectral density mask value or the maximum transmission frequency limit value to reduce interference of the legacy digital subscriber line to the vectored digital subscriber line.
- An embodiment of the present invention provides a device for reducing interference of a digital subscriber line, where the device is a central office transceiver unit of a digital subscriber line system, and the device includes:
- An identification module configured to identify at least one traditional digital subscriber line in the digital subscriber line set, where the digital subscriber line set includes at least one vectorized digital subscriber line and the traditional digital subscriber line;
- An obtaining module configured to obtain a target power spectral density mask value of the traditional digital subscriber line, and a reference value when the user line interferes;
- An embodiment of the present invention provides an apparatus for reducing interference of a digital subscriber line, the apparatus comprising: a line identification module, configured to identify at least one traditional digital subscriber line in a set of digital subscriber lines, where the digital subscriber line set includes At least one vectored digital subscriber line and the conventional digital subscriber line;
- a reference value obtaining module configured to acquire a target power spectral density mask value or a maximum transmission frequency limit value of the traditional digital subscriber line, where the target power spectral density mask value is used to reduce the traditional digital subscriber line pair a reference value when vectoring a digital subscriber line interference;
- a configuration module configured to configure a port template parameter according to the target power spectral density mask value or a maximum transmission frequency limit value to reduce interference of the traditional digital subscriber line to the vectorized digital subscriber line.
- Embodiments of the present invention provide a system for reducing interference of a digital subscriber line, the system comprising a digital subscriber line access multiplexer, at least one vectorized digital subscriber line, at least one conventional digital subscriber line, and at least one vectorized user front end device And at least one conventional user front end device, the digital subscriber line access multiplexer comprising a vectorized digital subscriber line system central office transceiver unit;
- the at least one vectorized digital subscriber line is configured to connect the at least one vectorized user front end device and the vectorized digital subscriber line system central office transceiver unit;
- the at least one conventional digital subscriber line is configured to connect the at least one traditional user front end device and the vectorized digital subscriber line system central office transceiver unit;
- the at least one vectorized user front end device is configured to interact with the vectorized digital subscriber line system central office transceiver unit by using the at least one vectorized digital subscriber line;
- the at least one conventional user front end device is configured to interact with the vectorized digital subscriber line system central office transceiver unit by using the at least one traditional digital subscriber line;
- the vectorized digital subscriber line system central office transceiver unit is configured to identify the at least one traditional digital subscriber line in the digital subscriber line set, and obtain a target power spectral density mask value of the traditional digital subscriber line, according to the The target power spectral density mask value reduces the power spectral density of the transmitted signal of the at least one conventional digital subscriber line.
- the traditional digital number may be obtained according to the obtained target power spectral density mask value.
- the power spectral density of the transmitted signal of the subscriber line is reduced. Therefore, compared with the VDSL2 Legacy CPE provided in the existing VDSL2 network, the method provided by the embodiment of the present invention does not need to upgrade or replace the VDSL2 Legacy CPE, and the same can be obtained.
- the DSL vectorization line produces the effect of far-end crosstalk, thus eliminating the time cost associated with the upgrade and eliminating the labor and material (eg, equipment) costs associated with the upgrade.
- FIG. 2 is a schematic structural diagram of a vectorized digital subscriber line access multiplexer according to a prior art
- FIG. 2 is a schematic flowchart of a method for reducing interference of a digital subscriber line according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of another embodiment of the present invention. Schematic diagram of a method for reducing interference of digital subscriber lines;
- FIG. 4 is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to an embodiment of the present invention
- FIG. 4b is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention
- 4c is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- 4d is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 5a is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 5b is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- 6a is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- 6b is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 8b is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 8c is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 9a is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 9b is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 9c is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- 9e is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 10a is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 10b is a schematic structural diagram of an apparatus for reducing digital subscriber line interference according to another embodiment of the present invention. Meaning
- FIG. 10c is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of a system for reducing interference of a digital subscriber line according to an embodiment of the present invention. detailed description
- Embodiments of the present invention provide methods, apparatus, and systems for reducing digital subscriber line interference to minimize or eliminate the effects of traditional digital subscriber lines on vectorized lines in a digital subscriber line system.
- FIG. 2 it is a schematic flowchart of a method for reducing interference of a digital subscriber line according to an embodiment of the present invention.
- the main body of each step may be a central office device in a Vectored-DSL system, for example, a central office transceiver unit (VTU-0, VDSL Tranceive Unit - ONU), wherein the ONU is an optical network unit (Optical) Network Unit ) felicitous with a central office transceiver unit (VTU-0, VDSL Tranceive Unit - ONU), wherein the ONU is an optical network unit (Optical) Network Unit ) doctrine
- the method for reducing digital subscriber line interference as illustrated in Figure 2 mainly includes the steps:
- the set of digital subscriber lines is a set that includes at least one vectored (100) digital subscriber line and possibly a legacy (Legacy) digital subscriber line.
- the so-called Legacy digital subscriber line is relative to the vectorized digital subscriber line in the Vectored-DSL system.
- it may be a VDSL-0 user front-end device that connects VTU-0 and does not support Vectored-DSL. (Customer Premises Equipment, CPE) lines, the power (including uplink power and downlink power) on this line, if unrestricted, will affect the vectorized digital subscriber line in the Vectored-DSL system, for example, the far end Crosstalk and so on. Therefore, in order for the conventional digital subscriber line not to interfere with the vectorized digital subscriber line, it is first necessary to identify a conventional digital subscriber line that may exist in the digital subscriber line set.
- CPE Customer Premises Equipment
- VTU-0 when identifying at least one conventional digital subscriber line in the digital subscriber line set, it may be a VTU-0 and a remote transceiver unit of the vectorized digital subscriber line (VDSL).
- VTU-R the VTU-0 interacts with the VTU-R in the CPE (the VTU-R is a functional unit in the CPE) to obtain the capability set of the CPE.
- the VTU-0 knows that the CPE connected to at least one digital subscriber line does not support the Vector capability set, and identifies at least one digital subscriber line connected to the CPE as a legacy digital subscriber line. .
- the target power spectral density mask value is used to reduce the reference value of the traditional digital subscriber line to the vectorized digital subscriber line interference, including the uplink target power spectral density mask value and the downlink target power spectral density mask value, which is a conventional digital
- the power transmitted on the subscriber line (including the uplink power and the downlink power) is limited or reduced, so that the uplink power signal or the downlink signal transmitted on the conventional digital subscriber line does not generate far-end crosstalk transmission power spectral density of the vectorized digital line (Transmit Power) Spectral Density, TxPSD) mask value.
- the target power spectral density mask value of a conventional digital subscriber line can be estimated based on the digital subscriber line interference law.
- the power of the strongest crosstalk attenuation value actually measured is about _55dB. If the noise power spectral density of the crosstalk to the vectorized digital subscriber line is -135dBm/Hz, that is, the background The equivalent level of noise does not affect the vectorized digital subscriber line.
- the target power spectral density mask value of the conventional digital subscriber line can be estimated - 80dBm/Hz, without loss of generality, can estimate the target power spectral density mask value of the traditional digital subscriber line in the range of -75dBm/Hz ⁇ -85dBm/Hz.
- the target power spectral density mask value of the conventional digital subscriber line can be calculated by acquiring channel parameters of a conventional digital subscriber line.
- the channel parameters of the conventional digital subscriber line include channel attenuation (ie, channel attenuation log value, denoted by Hlog below), static line noise (Quiet Line Noise, QLN), signal to noise ratio margin, bit allocation table (b benefit), and Target rate (represented by TargetRate below), etc.
- channel attenuation ie, channel attenuation log value, denoted by Hlog below
- static line noise Quality of Noise
- QLN signal to noise ratio margin
- bit allocation table bdens Noise
- TargetRate represented by TargetRate below
- SNRi i) TxPSD( i) + H log i) — QLNi i) , by solving TxPSD ( n ), the value is used as the target of the traditional digital subscriber line Power spectral density mask value.
- the power of the transmitted signal of the traditional digital subscriber line may be obtained according to the obtained target power spectral density mask value.
- the spectral density is reduced. Therefore, with the prior art provided
- VDSL2 Vector CPE Compared with the VDSL2 Vector CPE, all the VDSL2 legacy CPEs in the existing VDSL2 network do not need to be upgraded or replaced with the VDSL2 Legacy CPE, and the remote crosstalk generated by the DSL vectorized line can be eliminated.
- the effect in this way, eliminates the time cost caused by the upgrade and eliminates the labor and material (for example, equipment) costs brought by the upgrade.
- the uplink target power spectral density mask value (herein referred to as “Cutting PSDMASKus” for convenience of explanation) or the downlink target power spectral density mask value (for convenience of explanation, “Cutting PSDMASKds” is used herein). Representing) reducing the power spectral density of the transmitted signal of a conventional digital subscriber line;
- reducing the power spectral density of the transmission signal of the conventional digital subscriber line according to the uplink target power spectral density mask value specifically includes:
- the uplink power spectral density mask value is expressed using "PSDMSKus".
- the uplink power spectral density mask value has an initialization value, which can compare the uplink power spectral density mask value and the uplink target power spectral density mask value obtained in the previous acquisition or initialization, The smaller value is used as the current uplink power spectral density mask value (for ease of explanation, used here
- the terminal compares the Channel Discovery maximum mask (CDMAXMASKus) value and the uplink power backoff mask value at the beginning of the channel discovery phase ( Upstream Power BackOff mask, UPBOMASK) and the current uplink power spectral density mask value are respectively subtracted by 3.5 dB, and the power spectrum density in the channel discovery phase is limited to not exceed the uplink maximum mask value and uplink power back at the beginning of the channel discovery phase.
- the back mask value and the current uplink power spectral density mask value are each subtracted from the smaller of the 3.5 dB values obtained.
- the uplink power spectral density value (represented by "CDPSD ⁇ ") at the beginning of the channel discovery phase is limited to the uplink maximum mask value, the uplink power backoff mask value, and the The current uplink power spectral density mask value is subtracted from the smaller value obtained by 3.5 dB, that is,
- RFIBANDS refers to a set of radio frequency interference (Radio Frequence Interference) bands.
- reducing the power spectral density of the transmitted signal of the conventional digital subscriber line according to the target power spectral density mask value includes:
- the downlink power spectral density mask value is represented by "PSDMSKds".
- Downtime when initializing The rate density mask value has an initialization value, which can compare the downlink power spectral density mask value and the downlink target power spectral density mask value obtained in the previous acquisition or initialization, and the smaller value is used as the current downlink power spectrum.
- the downlink maximum mask value at the beginning of the channel discovery phase may be a preset value.
- the downlink power is determined by the central office equipment, for example, VTU-0, so the reduction of downlink power is done at the central office equipment.
- the downlink power spectral density represented by "CDPSDds"
- CDPSDds the downlink power spectral density at the beginning of the channel discovery phase is limited to not exceed the downlink maximum mask value and the current downlink power spectral density mask value at the beginning of the channel discovery phase, respectively.
- the central office equipment for example, VTU-0 can reduce the downlink power according to the downlink maximum mask (represented by "MAXMASKds") and the current downlink power spectral density mask to obtain the downlink reference power spectral density during the training phase.
- MAXMASKds the downlink maximum mask
- MREFMASKds the current downlink power spectral density mask
- MREFMASKds(/) ⁇ current _ PSDMASKds MAXMASKds), f g RFIBANDS , " min " means the minimum value, and RFIBANDS refers to the set of radio frequency interference ( Radio Frequence Interference ) bands ( Set
- the terminal eg, VTU-R
- the terminal can be based on the upstream maximum mask (represented by "MAXMASKus"), the uplink power backoff mask (UPBOMASK), and the current
- MREFMASKus MEDLEY reference PSD mask
- MREF ASKcb(/) n(am-eni _PS ⁇ MASKm(f), MAXMASKus , lPBOMASK(3 ⁇ 4 0 , )
- reducing the power spectral density of the transmitted signal of the conventional digital subscriber line according to the target power spectral density mask value includes:
- the downstream maximum mask value at the beginning of the channel discovery phase has an initialization value. If the initial value of the downlink maximum mask (CDMAXMASKds) at the beginning of the channel discovery phase minus 3.5 dB is less than the downlink target power spectral density mask value, no power reduction is required. If the initial value of the downlink maximum mask value (CDMAXMASKds) at the beginning of the channel discovery phase is subtracted by 3.5 dB and the value obtained is greater than the downlink target power spectral density mask value, power reduction is required.
- the initial value of the downlink maximum mask value (CDMAXMASKds) and the downlink target power spectral density mask value at the beginning of the channel discovery phase of the previous acquisition may be compared.
- the downlink power is determined by the central office equipment, for example, VTU-0. Therefore, the downlink power reduction is at the central office.
- the device is complete. Specifically, here, the downlink power spectral density value (represented by "CDPSDds") at the beginning of the channel discovery phase is limited to the downlink maximum spectral mask value at the beginning of the downlink power spectral density mask and the current channel discovery phase, respectively.
- CDPSDds downlink power spectral density value
- reducing the power spectral density of the transmitted signal of the conventional digital subscriber line according to the uplink target power spectral density mask value includes:
- the upstream maximum mask value at the beginning of the channel discovery phase has an initialization value that compares the size of the upstream maximum mask and the upstream target power spectral density mask value at the beginning of the channel discovery phase that was previously acquired or initialized.
- the terminal compares the uplink maximum mask value at the beginning of the current channel discovery phase (Channel Discovery).
- Maximum mask, CDMAXMASKus), Upstream Power BackOff mask (UPBOMASK) and Uplink Power Spectral Density Mask values are subtracted by 3.5dB, respectively, and the channel discovery phase power spectral density (Channel) Discovery PSD, CDPSD) is limited to a smaller of the value obtained by subtracting 3.5 dB from the upstream maximum mask value, the uplink power backoff mask value, and the uplink power spectral density mask value at the beginning of the current channel discovery phase. value.
- the uplink power spectral density value (represented by "CDPSD ⁇ ") at the beginning of the channel discovery phase is limited to not exceed the uplink maximum mask value and the uplink power backoff mask value at the beginning of the channel discovery phase.
- the lower power spectral density mask value is subtracted from the smaller value of 3.5 dB, ie,
- CDPSEte( ) ⁇ min[(PSDMASKus( ) -3.5), (CDMAXMASKus -3.5), (UPBOMASK(3 ⁇ 4, ) -3.5)] , gRFIBANDS , and
- RFIBANDS refers to a collection of Radio Frequence Interference bands.
- the terminal At the end of the channel discovery phase, the terminal, for example, the VTU-R recalculates the downlink maximum mask at the end of the channel discovery phase (the downlink maximum mask at the end of the channel discovery phase is represented by "MAXMASKds"), and sends the MAXMASKds to the office.
- MAXMASKus the upstream maximum mask at the end of the channel discovery phase
- Recalculated c rr t _ MAXMASKus( ⁇ ) is sent to the terminal as a reference, for example, VTU-R, by The terminal performs uplink power reduction.
- FIG. 3 it is a schematic flowchart of a method for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- the main body of each step may be a Vector Control Entity (VCE) in the Vectored-DSL system, which mainly includes the steps:
- VCE Vector Control Entity
- At least one conventional digital subscriber line in the set of digital subscriber lines may be identified by acquiring a priori information, ie, the VCE is obtained by The a priori information that the operator has, such as the version and model of the terminal device, or whether it is the history of the vectorized terminal (these a priori information is stored in the VCE).
- a database, a storage unit or a VCE-independent database, storage unit) identifying whether at least one digital subscriber line in the set of digital subscriber lines is a legacy digital subscriber line.
- the target power spectral density mask value of the traditional digital subscriber line it can be obtained by one of the following methods:
- Method 1 Estimating the target power spectral density mask value of the traditional digital subscriber line according to the digital subscriber line interference law.
- the power of the strongest crosstalk attenuation value actually measured is about _55dB, and if the noise power spectral density of the crosstalk to the vectorized digital subscriber line is -135dBm/Hz, That is, the level equivalent to the background noise does not affect the vectorized digital subscriber line.
- the target power spectral density mask value of the conventional digital subscriber line can be estimated as _ 80dBm/Hz, without loss of generality, can estimate the target power spectral density mask value of the traditional digital subscriber line in the range of -75dBm/Hz ⁇ -85dBm/Hz.
- Manner 2 Calculate a target power spectral density mask value of the traditional digital subscriber line by acquiring channel parameters of the traditional digital subscriber line history.
- the channel parameters of the traditional digital subscriber line history include previously stored channel attenuation (ie, channel attenuation logarithm, denoted by Hlog below), static line noise (Quiet Line Noise, QLN), signal to noise ratio margin, bit allocation table ( b benefit) and target rate (represented by TargetRate below), etc.
- channel attenuation ie, channel attenuation logarithm, denoted by Hlog below
- QLN static line noise
- signal to noise ratio margin bit allocation table ( b benefit)
- TargetRate target rate
- the rate of traditional digital subscriber lines is relatively low, according to the Shannon capacity formula:
- Manner 1 Estimating the maximum transmission frequency limit value of the conventional digital subscriber line according to the digital subscriber line interference law.
- the working frequency range of ADSL is in the range of 0 ⁇ 1.1 ⁇ .
- the working frequency range of ADSL2+ is 0 ⁇ 2.2MHz, and the working frequency range of VDSL2 and Vectored DSL is 0 ⁇ 30MHz. Since ADSL and ADSL2+ operate in the lower frequency band, the lower frequency band crosstalk is smaller, and the frequency band used is much smaller than the working frequency band of the Vectored DSL. Therefore, the crosstalk effect of ADSL and ADSL2+ on Vectored DSL is very small.
- the traditional digital subscriber line can work at a frequency of 10Mbps in the frequency range of 0 ⁇ 1.1 ⁇ , and the speed that can be achieved in the frequency range of 0 ⁇ 2.2MHz is about 20Mbps. Most traditional digital subscriber line rates are in the 20 Mbps range. Therefore, the maximum transmission frequency limit value of the conventional digital subscriber line can be estimated based on the digital subscriber line interference law, for example, 2.2 MHz.
- Manner 2 Calculate a maximum transmission frequency limit value of the traditional digital subscriber line by acquiring channel parameters of the traditional digital subscriber line history.
- the VCE obtains historical channel parameters, including signal-to-noise ratio (SNR), bit allocation table (b recommendation), and target rate (TargetRate), etc.
- SNR signal-to-noise ratio
- B bit allocation table
- TigetRate target rate
- the maximum digital transmission line limit value of the traditional digital subscriber line Maximum subcarrier number N x subcarrier width.
- Method 1 Configuring the target power spectral density mask Code value, the target power spectral density of the configuration
- the mask value is used as a management information base (MIB) uplink and/or downlink power spectral density mask value, and specifically includes: configuring the uplink target power by configuring an uplink target power spectral density mask value
- the spectral density mask value is used as the MIB uplink power spectral density mask value
- the configured downlink target power spectral density mask value is used as the MIB downlink power spectral density mask value by configuring the downlink target power spectral density mask value; or
- Manner 2 Configuring an average value, a maximum value, or a minimum value of the target power spectral density mask value, and using the average, maximum, or minimum value of the configured target power spectral density mask value as the management information database uplink or Downstream maximum conventional power spectral density.
- the method includes: configuring, by using an average value, a maximum value, or a minimum value of the uplink target power spectral density mask value, an average value, a maximum value, or a minimum value of the configured uplink target power spectral density mask value as management information.
- the maximum normal power spectral density of the uplink or by configuring the average, maximum or minimum value of the downlink target power spectral density mask value, the average value, the maximum value of the configured downlink target power spectral density mask value, or The minimum value is used as the maximum conventional power spectral density of the management information library.
- Manner 3 Configuring a sum of the target power spectral density mask values, and using the sum of the configured target power spectral density mask values as the management information database uplink and/or downlink maximum conventional power spectral density.
- the method includes: configuring a sum of uplink target power spectral density mask values, using the sum of the configured uplink target power spectral density mask values as the uplink normal maximum power spectral density of the management information base; configuring the downlink target power spectral density mask a sum of code values, using the sum of the configured downlink target power spectral density mask values as the downlink normal maximum power spectral density of the management information base; or, configuring the sum of the uplink target power spectral density mask values and configuring the downlink target The sum of the power spectral density mask values, the sum of the configured uplink target power spectral density mask values as the management database upper maximum conventional power spectral density, and the sum of the configured downlink target power spectral density mask values As the management information base, the maximum conventional power
- Manner 1 The mask value after the maximum transmission frequency limit value of the power spectral density mask of the management information base is configured as a minimum value defined by the management information base.
- the mask value after the maximum transmission frequency limit value of the power spectral density mask of the management information base is configured as the minimum value defined by the management information base, generally around -100 dBm/Hz, it will not be after the maximum transmission frequency limit. Any effect on the vectorization line.
- Manner 2 Configure a radio frequency interference slot set (RFI notch) or a subcarrier mask set (Tone blackout) in the management information base to delete the frequency band after the maximum transmission frequency limit value from the transmission set.
- RFID notch radio frequency interference slot set
- Tone blackout subcarrier mask set
- Method 3 Configure the transmission mode in the management information base.
- This method is for the case where the maximum transmission frequency limit value is less than 2.2 MHz, that is, if the maximum transmission frequency limit value is less than 2.2 MHz, the transmission mode of the VDSL2 can be reduced to the transmission of ADSL2+ by configuring the transmission mode in the management information base. Mode, the same can be used to limit the traditional digital subscriber line to the maximum transmission frequency range.
- FIG. 4 is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to an embodiment of the present invention.
- the apparatus for digital subscriber line interference illustrated in Figure 4a may be a vectorized digital subscriber line system office transceiver unit (VTU-0), which includes an identification module 401, an acquisition module 402 and a reduction module 403, wherein:
- VTU-0 vectorized digital subscriber line system office transceiver unit
- the identification module 401 is configured to identify at least one traditional digital subscriber line in the digital subscriber line set, where the digital subscriber line set includes at least one vectorized digital subscriber line and the traditional digital subscriber line.
- the set of digital subscriber lines is a set that includes at least one vectored digital subscriber line and possibly a legacy digital subscriber line.
- the so-called Legacy digital subscriber line is relative to the Vectored-DSL system.
- the vectorized digital subscriber line in this embodiment, it may be a line connecting VTU-0 and VDSL2 Customer Premises Equipment (CPE) that does not support Vectored-DSL, the power on the line ( Including uplink power and downlink power, if not limited, will affect the vectorized digital subscriber line in the Vectored-DSL system, for example, far-end crosstalk. Therefore, in order for the conventional digital subscriber line not to interfere with the vectorized digital subscriber line, it is first necessary to employ the identification module 401 to identify a conventional digital subscriber line that may exist in the digital subscriber line set.
- CPE Customer Premises Equipment
- the obtaining module 402 is configured to obtain a target power spectral density mask value of the traditional digital subscriber line, and a reference value when the digital subscriber line interferes.
- the target power spectral density mask value is used to reduce the reference value of the traditional digital subscriber line to the vectorized digital subscriber line interference, including the uplink target power spectral density mask value or the downlink target power spectral density mask value, which is a conventional digital
- the power transmitted on the subscriber line is limited or reduced, so that the uplink power signal or the downlink signal transmitted on the conventional digital subscriber line does not generate far-end crosstalk transmission power spectral density of the vectorized digital line (Transmit Power) Spectral Density, TxPSD) mask value.
- the reduction module 403 is configured to reduce a power spectral density of the transmitted signal of the conventional digital subscriber line according to the target power spectral density mask value.
- the reduction module may obtain the target power spectrum according to the acquisition module.
- the density mask value reduces the power spectral density of the transmitted signal of the conventional digital subscriber line. Therefore, compared with the VDSL2 Legacy CPE provided in the existing VDSL2 network, the method provided by the embodiment of the present invention does not need to upgrade or replace the VDSL2 Legacy CPE, and the same can be obtained.
- the DSL vectorization line produces the effect of far-end crosstalk, thus eliminating the time cost or upgrade transition problem caused by the upgrade, and eliminating the labor and material (for example, equipment) costs brought by the upgrade.
- each functional module is merely an example, and the actual application may be considered according to requirements, such as configuration requirements of the corresponding hardware or convenience of implementation of the software. Assigning the above functions to different functional modules, ie The internal structure of the control device that reduces digital subscriber line interference is divided into different functional modules to perform all or part of the functions described above. Moreover, in practical applications, the corresponding functional modules in this embodiment may be implemented by corresponding hardware, or may be executed by corresponding hardware. For example, the foregoing identification module may have the foregoing identification performed.
- the hardware of at least one conventional digital subscriber line in the set of digital subscriber lines may also be a general processor or other hardware device capable of executing a corresponding computer program to perform the aforementioned functions; Having a function of performing the aforementioned function of reducing the power spectral density of the transmission signal of the conventional digital subscriber line according to the target power spectral density mask value, such as a reducer, may also be capable of executing a corresponding computer program to perform the aforementioned functions.
- a general processor or other hardware device (the various embodiments described herein may apply the above described principles).
- the identification module 401 of the example of FIG. 4a may further include an interaction unit 4011 and an identification unit 4012, such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention, as shown in FIG. 4b, wherein:
- the interaction unit 4011 is configured to interact with a remote transceiver unit of the vectorized digital subscriber line to obtain a capability set of the user front end device
- the identification unit 4012 is configured to: if the interaction unit 4011 learns a user connected by a digital subscriber line through the interaction If the front-end device does not support the vectorization capability set, it identifies a digital subscriber line connecting the user front-end equipment as a traditional digital subscriber line. Specifically, it may be a handshake phase of the interaction unit 4011 and the remote transceiver unit of the vectorized digital subscriber line.
- the interaction unit 4011 interacts with the VTU-R of the CPE to obtain the capability set of the CPE, if the interaction unit 4011 Through the above interaction with the VTU-0, it is known that the CPE of at least one digital subscriber line connection does not support the Vector capability set, and the identification unit 4012 identifies that at least one digital subscriber line connecting the CPE is a legacy digital subscriber line.
- the acquisition module 402 of the example of FIG. 4a may further include an estimation unit 4021, such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention, as shown in FIG. 4c.
- an estimation unit 4021 such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention, as shown in FIG. 4c.
- the estimating unit 4021 is configured to estimate a target power spectral density mask value of the conventional digital subscriber line according to a digital subscriber line interference rule. For example, according to the digital subscriber line interference law, the power of the strongest crosstalk attenuation value actually measured is about -55dB, if the noise power spectral density of the crosstalk to the vectorized digital subscriber line is -135dBm/Hz, that is, the background The level of noise is not the same Vectorized digital subscriber lines have an impact.
- the value is -80dBm/Hz, without loss of generality, the target power spectral density mask value of the traditional digital subscriber line can be estimated to be in the range of -75dBm/Hz ⁇ -85dBm/Hz.
- the acquisition module 402 of the example of FIG. 4a may further include a calculation unit 4022, and the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention as shown in FIG. 4d
- the calculating unit 4022 is configured to calculate a target power spectral density mask value of the traditional digital subscriber line by acquiring channel parameters of the conventional digital subscriber line.
- the channel parameters of the traditional digital subscriber line include channel attenuation (ie, channel attenuation log value, denoted by Hlog below), static line noise (QLN), signal to noise ratio margin, bit allocation table (b benefit), and target rate. (The following uses TargetRate), etc.
- the rate of traditional digital subscriber lines is relatively low, according to the Shannon capacity formula:
- the computing unit 4022 solves the TxPSD(n) as the target power spectral density mask value of the conventional digital subscriber line. .
- the reduction module 403 of the example of FIG. 4a may further include a first acquisition unit 501 and a first transmission unit 502, such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention, as shown in FIG. 5a, wherein:
- the first obtaining unit 501 is configured to take a smaller value of the uplink power spectral density mask value and the target uplink power spectral density mask value that was previously acquired or initialized, to obtain a current uplink power spectral density mask value;
- the uplink power spectral density mask value is expressed using "PSDMSKus".
- the first sending unit 502 is configured to send the current uplink power spectral density mask value to a terminal of the digital subscriber line system, so that the terminal limits the power spectrum density in the channel discovery phase to not exceed the channel discovery phase.
- Uplink signal to the conventional digital subscriber line when the uplink maximum mask value, the uplink power backoff mask value, and the current uplink power spectral density mask value are respectively subtracted from the smaller value of the 3.5 dB value obtained at the beginning stage The power spectral density is reduced.
- the terminal compares the channel discovery maximum mask (CDMAXMASKus) and the uplink power backoff mask value (in the beginning of the channel discovery phase). Upstream Power BackOff mask, UPBOMASK) and the current uplink power spectral density mask value are subtracted by 3.5 dB, respectively, and the channel discovery phase power spectral density value (Channel Discovery PSD, CDPSD) is limited to not exceed the beginning of the channel discovery phase.
- the maximum mask value, the uplink power backoff mask value, and the current uplink power spectral density mask value are each subtracted from the smaller of the 3.5 dB values.
- the uplink power spectral density (represented by "CDPSD ⁇ ") at the beginning of the channel discovery phase is limited to not exceed the uplink maximum mask value, the uplink power backoff mask value, and the The current uplink power spectral density mask value is subtracted from the smaller of the values obtained by 3.5, ie,
- RFIBANDS refers to a set of radio frequency interference (Radio Frequence Interference) bands.
- the reduction module 403 illustrated in FIG. 4a may further include a second acquisition unit 503, a first comparison unit 504, and a first restriction unit 505, as shown in FIG. 5b, which reduces the interference of the digital subscriber line provided by another embodiment of the present invention.
- Device where:
- the second obtaining unit 503 is configured to take the downlink power spectral density mask that was previously acquired or initialized. The smaller of the code value and the downlink target power spectral density mask value, the current downlink power spectral density mask value is obtained.
- the downstream power spectral density mask is represented by "PSDMSKds".
- the downlink power spectral density mask has an initialization value, and the second obtaining unit 503 can compare the downlink power spectral density mask value and the downlink target power spectral density value of the previous acquisition or initialization, and compare the values thereof.
- the first difference obtaining unit 504 is configured to obtain a difference between a downlink maximum mask value in the initial stage of the channel discovery phase and a smaller value of the current downlink power spectral density mask value and 3.5 dB.
- the downlink maximum mask value at the beginning of the channel discovery phase may be a preset value.
- the first limiting unit 505 is configured to reduce the power spectral density of the downlink signal of the traditional digital subscriber line when the power spectrum density of the channel discovery phase is limited to not exceed the difference.
- the downlink power is determined by the central office equipment, for example, VTU-0, so the reduction of downlink power is done at the central office equipment.
- the first limiting unit 505 limits the downlink power spectral density (represented by "CDPSDi ⁇ ") at the beginning of the channel discovery phase to the downlink maximum mask value and the current downlink power spectral density at the beginning of the channel discovery phase.
- the mask value is subtracted from the smaller of the values obtained by 3.5, ie, CDPSD&(/) ⁇ xm [ ⁇ current _PSDMASKds(/) - 3.5), (CDMAXMASKds - 3.5)] , / g RHBANDS ?
- RFIBANDS refers to a set of Radio Frequence Interference frequency bands
- the first limiting unit 505 reduces the power spectral density of the downlink signals of the conventional digital subscriber line.
- the reduction module 403 illustrated in FIG. 4a may further include a third acquisition unit 601, a second difference acquisition unit 602, and a second restriction unit 603, as shown in FIG. 6a, to reduce digital subscriber line interference provided by another embodiment of the present invention.
- Device where:
- the third obtaining unit 601 is configured to: when the channel discovery phase is started, the downlink maximum mask is subtracted
- the downstream maximum mask has an initialization value at the beginning of the channel discovery phase. If the initial value of the downlink maximum mask (CDMAXMASKds) at the beginning of the channel discovery phase minus 3.5 dB is less than the downlink target power spectral density mask value, no power reduction is required. If the channel discovery is greater than the downlink target power spectral density mask value, power reduction is required.
- the second difference obtaining unit 602 is configured to obtain a difference between a downlink power spectral density mask value and a smaller value of a downlink maximum mask value in a starting phase of the current channel discovery phase and a difference of 3.5 dB.
- a second limiting unit 603 configured to limit, when the power spectral density of the downlink signal of the traditional digital subscriber line is reduced, the channel discovery phase power spectral density CDPSD to not exceed the downlink power spectral density mask value and the The downlink maximum mask value at the beginning of the current channel discovery phase is subtracted from the smaller of the 3.5 dB values.
- the downlink power is determined by the central office equipment, for example, VTU-0, so the reduction of downlink power is done at the central office equipment.
- the second power limiting unit 603 limits the downlink power spectral density (represented by "CDPSDi ⁇ ") at the beginning of the channel discovery phase to a downlink phase not exceeding the downlink power spectral density mask value and the current channel discovery phase.
- the maximum mask value is subtracted from the resulting value of 3.5 dB, respectively, as 'J, value, P, CDPSDds(/) ⁇ min[(PSDMASKds(/)— 3.5), (current _ CDMAXMASKds - 3.5)] , f ⁇ RFTOANDS ,
- RFIBANDS refers to a collection of Radio Frequence Interference bands.
- the reduction module 403 illustrated in FIG. 4a may further include a fourth acquisition unit 604 and a second transmission
- the sending unit 605, as shown in FIG. 6b, provides a device for reducing digital subscriber line interference according to another embodiment of the present invention, where:
- the fourth obtaining unit 604 is configured to take a smaller value of the uplink maximum mask value and the uplink target power spectral density mask value in the beginning phase of the channel discovery phase that was acquired or initialized before, to obtain the current current uplink target power spectral density. Mask value.
- the uplink maximum mask value has an initialization value at the beginning of the channel discovery phase
- the fourth obtaining unit 604 can compare the uplink maximum mask value and the uplink target power spectrum at the beginning of the channel acquisition phase acquired or initialized.
- a second sending unit 605 configured to send an uplink power backoff mask value and the uplink target power spectral density mask value to a terminal of the digital subscriber line system, so that the terminal is in the channel discovery phase power spectrum
- the density CDPSD is limited to a value that does not exceed the uplink power spectral density mask value, the lower maximum value of the uplink maximum mask value and the uplink power back-off mask value at the beginning of the current channel discovery phase, and the smaller value obtained by subtracting 3.5 dB, respectively.
- the power spectral density of the uplink signal of the conventional digital subscriber line is reduced.
- the terminal compares the channel maximum maximum mask value (Channel Discovery maximum mask) at the beginning of the current channel discovery phase.
- CDMAXMASKus Upstream Power BackOff Mask (UPBOMASK) and Uplink Power Spectral Density Mask values are subtracted by 3.5dB, respectively, and the channel discovery phase power spectral density value (Channel Discovery PSD, CDPSD) is limited.
- the uplink maximum mask value, the uplink power backoff mask value, and the uplink power spectral density mask value are subtracted from the smaller of the 3.5 dB values respectively at the beginning of the current channel discovery phase.
- the uplink power spectral density (represented by "CDPSDM5") at the beginning of the channel discovery phase is limited to an uplink maximum mask that does not exceed the beginning of the channel discovery phase.
- the value, the uplink power backoff mask value, and the uplink power spectral density mask value are respectively subtracted from the smaller of the values obtained by 3.5 dB, that is,
- CDPSEte( ) ⁇ min[(PSDMASKus( ) - 3.5), (current _CDMAXMASKus -3.5), (UPBOMASK(3 ⁇ 4, ) - 3.5)] , f ⁇ RFIBANDS
- RFIBANDS refers to a collection of radio frequency interference (RF Frequence Interference) bands.
- FIG. 7 is a schematic structural diagram of an apparatus for reducing interference of a digital subscriber line according to another embodiment of the present invention.
- the exemplary apparatus for reducing digital subscriber line interference can be a DSL System Vectorization Control Entity (VCE) that includes a channel line identification module 701, a reference value module 702, and a configuration module 703, where:
- VCE DSL System Vectorization Control Entity
- the line identification module 701 is configured to identify at least one legacy digital subscriber line in the set of digital subscriber lines, the set of digital subscriber lines including at least one vectorized digital subscriber line and the traditional digital subscriber line.
- the line identification module 701 can be configured to identify at least one legacy digital subscriber line in the set of digital subscriber lines by acquiring a priori information. That is, the line identification module 701 obtains a priori information existing by the operator, for example, the terminal device version and model, or whether it is a history of the vectorized terminal, etc. (these a priori information is stored in a VCE database, a storage unit, or The VCE independent database, storage unit), identifies whether at least one digital subscriber line in the digital subscriber line set is a legacy digital subscriber line.
- a reference value obtaining module 702 configured to acquire a target power spectral density mask value or a maximum transmission frequency limit value of the traditional digital subscriber line, where the target power spectral density mask value is used to reduce the traditional digital subscriber line pair The reference value when the vectorized digital subscriber line interferes.
- the reference value acquisition module 702 of the exemplary embodiment of FIG. 7 may further include a first estimating unit 801, such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention as shown in FIG. 8a.
- a first estimating unit 801 such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention as shown in FIG. 8a.
- the first estimating unit 801 is configured to estimate a target power spectral density mask value of the traditional digital subscriber line according to a digital subscriber line interference rule.
- a digital subscriber line interference rule As mentioned above, according to the digital subscriber line interference law, the power of the strongest crosstalk attenuation value actually measured is about -55dB, and if the noise power spectral density of the crosstalk to the vectorized digital subscriber line is -135dBm/Hz, That is, the level equivalent to the background noise does not affect the vectorized digital subscriber line.
- the first estimating unit 801 can estimate the target power spectral density mask value of the traditional digital subscriber line to be -80 dBm/Hz, without loss of generality, and can estimate the target power spectral density mask value of the traditional digital subscriber line at -75 dBm/ In the range of Hz ⁇ - 85dBm / Hz.
- the reference value acquisition module 702 of the exemplary embodiment of FIG. 7 may further include a first computing unit 802, such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention as shown in FIG. 8b.
- the first calculating unit 802 is configured to calculate a target power spectral density mask value of the traditional digital subscriber line by acquiring channel parameters of the traditional digital subscriber line history.
- the channel parameters of the traditional digital subscriber line history include previously stored channel attenuation (ie, channel attenuation log value, denoted by Hlog below), static line noise (QLN), signal to noise ratio margin, bit allocation table ( bvul ) and target rate (represented by TargetRate below), etc.
- the rate of traditional digital subscriber lines is relatively low, according to the Shannon capacity formula:
- SNR(n) TxPSD(n) + H ⁇ og(n) - QLN(n)
- the first calculating unit 802 solves the TxPSD(n), and uses the value as a conventional digital subscriber line.
- SNR(n) TxPSD(n) + H ⁇ og(n) - QLN(n)
- the first calculating unit 802 solves the TxPSD(n), and uses the value as a conventional digital subscriber line.
- the reference value acquisition module 702 of the exemplary embodiment of FIG. 7 may further include a second estimation unit 803, such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention as shown in FIG. 8c.
- the second estimating unit 803 is configured to estimate a maximum transmission frequency limit value of the conventional digital subscriber line according to a digital subscriber line interference rule.
- the working frequency range of ADSL is 0 ⁇ l.lMHz
- the working frequency range of ADSL2+ is 0 ⁇ 2.2MHz
- the working frequency range of VDSL2 and Vectored DSL is 0 ⁇ 30MHz. Since ADSL and ADSL2+ work in the lower frequency band, the lower frequency band crosstalk is smaller, and the frequency band used is much smaller than the working frequency band of Vectored DSL. Therefore, the crosstalk effect of ADSL and ADSL2+ on Vectored DSL is very small.
- the traditional digital subscriber line can work at a frequency of 10Mbps in the frequency range of 0 ⁇ 1.1 ⁇ , and the speed that can be achieved in the frequency range of 0 ⁇ 2.2MHz is about 20Mbps.
- Most traditional digital subscriber line rates are in the 20 Mbps range. Therefore, the second estimating unit 803 can The maximum transmission frequency limit value of the conventional digital subscriber line is estimated in accordance with the digital subscriber line interference law, for example, 2.2 MHz.
- the reference value acquisition module 702 of the example of FIG. 7 may further include a second calculation unit 804, such as the apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention as shown in FIG. 8d. Calculating a maximum transmission frequency limit value of the conventional digital subscriber line.
- the second calculating unit 804 obtains historical channel parameters, including a signal-to-noise ratio (SNR), a bit allocation table (bong), and a target rate, and the rate of the conventional digital subscriber line is generally low, according to the Shannon capacity formula. :
- ⁇ is the available subcarrier number
- ⁇ is the maximum subcarrier number
- ⁇ is the SNR difference (fixed value) and SNR margin And the difference obtained by subtracting the coding gain.
- the maximum digital transmission frequency limit value of the conventional digital subscriber line the maximum subcarrier number ⁇ ⁇ subcarrier width.
- the configuration module 703 is configured to configure a port template parameter according to the target power spectral density mask value or a maximum transmission frequency limit value to reduce interference of the traditional digital subscriber line to the vectorized digital subscriber line.
- the configuration module 703 illustrated in FIG. 7 may further include a first configuration unit 901, a second configuration unit 902, a third configuration unit 903, a second calculation unit 904, or a fourth configuration unit 905, as shown in FIGS. 9a to 9e.
- Another apparatus for reducing digital subscriber line interference provided by another embodiment of the present invention, wherein:
- the first configuration unit 901 is configured to configure the target power spectral density mask value, and use the configured target power spectral density mask value as a management information database uplink and/or downlink power spectral density mask value.
- the method includes: configuring, by using an uplink target power spectral density mask value, the configured uplink target power spectral density mask value as a MIB uplink power spectral density mask value; and configuring a downlink target power spectral density mask value, Using the configured downlink target power spectral density mask value as the MIB downlink power spectral density mask value; or configuring the configured uplink target power spectral density mask value as the MIB by configuring the uplink target power spectral density mask value And setting the downlink target power spectral density mask value as the MIB downlink power spectral density mask value by configuring the downlink target power spectral density mask value; a second configuration unit 902, configured to configure an average value, a maximum value, or a minimum value of the target power spectral density mask
- the method includes: configuring, by using an average value, a maximum value, or a minimum value of the uplink target power spectral density mask value, an average value, a maximum value, or a minimum value of the configured uplink target power spectral density mask value as management information.
- the maximum normal power spectral density of the uplink or by configuring the average, maximum or minimum value of the downlink target power spectral density mask value, the average value, the maximum value of the configured downlink target power spectral density mask value, or The minimum value is used as the maximum conventional power spectral density of the management information base;
- a third configuration unit 903 configured to configure a sum of the target power spectral density mask values, and use the sum of the configured target power spectral density mask values as a management information database uplink and/or downlink maximum conventional power spectral density;
- the second calculating unit 904 is configured to calculate a target power spectral density mask value of the traditional digital subscriber line by acquiring channel parameters of the traditional digital subscriber line history.
- the method includes: configuring a sum of uplink target power spectral density mask values, using the sum of the configured uplink target power spectral density mask values as a maximum normal power spectral density of the management information database; configuring a downlink target power spectral density mask a sum of code values, using the sum of the configured downlink target power spectral density mask values as the downlink normal maximum power spectral density of the management information base; or, configuring the sum of the uplink target power spectral density mask values and configuring the downlink target a sum of power spectral density mask values, the sum of the configured uplink target power spectral density mask values as the maximum normal power spectral density of the management information base, and the sum of the configured downlink target power spectral density mask values As the management information base, the maximum conventional power spectral density is down.
- the fourth configuration unit 905 is configured to configure an uplink maximum SNR margin to be an actual row SNR margin minus the uplink target power spectral density mask value or configure a downlink maximum SNR margin as an actual downlink.
- the signal to noise ratio margin is subtracted from the downlink target power spectral density mask value.
- the configuration module 703 illustrated in FIG. 7 may further include a fifth configuration unit 1001, a sixth configuration unit 1002, or a seventh configuration unit 1003, as shown in FIGS. 10a to 10c, which provides a reduced digital subscriber line according to another embodiment of the present invention.
- Interference device where:
- the fifth configuration unit 1001 is configured to configure a mask value after the maximum transmission frequency limit value of the power spectral density mask of the management information base as a minimum value defined by the management information base. Because if you will manage the letter The mask value after the maximum transmission frequency limit value of the power spectral density mask of the database is configured as the minimum value defined by the management information base, generally around -100 dBm/Hz, and will not be vectorized after the maximum transmission frequency limit. The line has any effect;
- a sixth configuration unit 1002 configured to configure a radio frequency interference slot set (RFI notch) or a sub-carrier mask set (Tone blackout) in the management information base to delete the frequency band after the maximum transmission frequency limit value from the transmission set;
- RFID notch radio frequency interference slot set
- Tone blackout sub-carrier mask set
- the seventh configuration unit 1003 is configured to configure a transmission mode in the management information base.
- the seventh configuration unit 1003 can reduce the transmission mode of the VDSL2 to the transmission of the ADSL2+ by configuring the transmission mode in the management information base. Mode, the same can be used to limit the traditional digital subscriber line to the maximum transmission frequency range.
- the system includes a system including a digital subscriber line multiplexer 1101, at least one vectored digital subscriber line 1102, at least one legacy digital subscriber line 1103, at least one vectorized subscriber front end device 1104, and at least one conventional subscriber front end equipment 1105
- the digital subscriber line access multiplexer 1101 may include a vectorized digital subscriber line system office transceiver unit 1106 provided by any of the examples of FIG. 4a to FIG. 6b, where:
- the vectorized digital subscriber line 1102 is configured to connect the at least one vectorized user front end device 1104 and the vectorized digital subscriber line system central office transceiver unit 1106;
- a conventional digital subscriber line 1103, configured to connect the at least one conventional user front end device 1105 and the vectorized digital subscriber line system central office transceiver unit 1106;
- the vectorized user front end device 1104 is configured to interact with the vectorized digital subscriber line system central office transceiver unit 1106 by the at least one vectorized digital subscriber line 1102;
- the traditional user front end device 1105 is configured to interact with the vectorized digital subscriber line system central office transceiver unit 1106 by using the at least one traditional digital subscriber line 1103;
- the vectorized digital subscriber line system central office transceiver unit 1106 is configured to identify the at least one legacy digital subscriber line 1103 in the digital subscriber line set, and obtain a target power spectral density mask of the at least legacy digital subscriber line 1103. a value according to the target power spectral density mask value to the at least The power spectral density of the transmitted signal of a conventional digital subscriber line 1103 is reduced.
- Method 1 Identify at least one legacy digital subscriber line in the set of digital subscriber lines, the digital subscriber line set including at least one vectorized digital subscriber line and the traditional digital subscriber line; acquiring the target of the traditional digital subscriber line a power spectral density mask value, a reference value of the target power spectrum density; and a power spectral density of the transmission signal of the conventional digital subscriber line is reduced according to the target power spectral density mask value.
- Method 2 Identify at least one legacy digital subscriber line in the set of digital subscriber lines, the set of digital subscriber lines including at least one vectorized digital subscriber line and the traditional digital subscriber line; acquiring the target of the traditional digital subscriber line a power spectral density mask value or a maximum transmission frequency to limit a reference value when the digital subscriber line interferes; configuring a port template parameter according to the target power spectral density mask value or a maximum transmission frequency limit value to reduce the traditional digital subscriber line pair The vectoring interferes with the digital subscriber line.
- the program may be stored in a computer readable storage medium, and the storage medium may include: a Read Only Memory (ROM), a Random Access Memory (RAM), a magnetic disk or an optical disk, and the like.
- ROM Read Only Memory
- RAM Random Access Memory
- magnetic disk or an optical disk and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Telephonic Communication Services (AREA)
Abstract
本发明提供一种降低数字用户线路干扰的方法、装置和系统,以尽可能降低或消除数字用户线路系统中传统线路对矢量化线路的影响。所述方法包括识别数字用户线DSL传统线路集合中的至少一条的电气长度或信道衰减值传统数字用户线路;获取所述传统数字用户线路的目标功率谱密度掩码值;根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送信号的功率谱密度进行削减。本发明实施例提供的方法不需要升级或更换VDSL2 Legacy CPE而同样可以获得消除对DSL矢量化线路产生远端串扰的效果,如此,既免去了升级导致的时间成本,又消除了升级带来的人力、物力(例如,设备)成本。
Description
一种降低数字用户线路干扰的方法、 装置和系统 技术领域
本发明涉及通信领域, 尤其涉及一种降低数字用户线路干扰的方法、装置 和系统。
背景技术
数字用户线路 ( Digital Subscriber Line, DSL )技术是一种通过电话双绞 线, 即无屏蔽双绞线(Unshielded Twist Pair, UTP )进行数据传输的高速传输 技术,包括非对称数字用户线路( Asymmetrical Digital Subscriber Line, ADSL )、 甚高速数字用户线路(Very-high-bit-rate Digital Subscriber Line, VDSL ) 、 基 于综合业务数字网 (Integrated Services Digital Network, ISDN )的用户数字线 路( ISDN Digital Subscriber Line, IDSL )等, xDSL是上述对数字用户线路的 统称。
除了 IDSL和对称高速数字用户线路 (Symmetric High bit rate Digital Subscriber Line, SHDSL)等基带传输的 DSL外, 通带传输的 xDSL利用频分复 用技术使得 xDSL与传统电话业务(POTS, Plain Old Telephone Service )共存 于同一对双绞线上,其中 xDSL占据高频段,传统电话业务占用 4千赫兹(KHz ) 以下基带部分, POTS信号与 xDSL信号通过分离器分离。 通带传输的 xDSL采 用离散多音频( Discrete Multi-Tone, DMT )调制。 提供多路 xDSL接入的系统 称作数字用户线接入复用器 (Digital Subscriber Line Access Multiplexer, DSLAM )。 由于电磁感应原理, DSLAM接入的多路信号之间, 会相互产生干 扰, 称为串音(Crosstalk ) , 包括近端串音( Near End Crosstalk, NEXT )和 远端串音(Far End Crosstalk, FEXT )。 NEXT和 FEXT能量都会随着频段升高 而增强。 一方面, 由于 xDSL上下行信道采用频分复用, 因此, NEXT对系统的 性能不产生太大的危害, 另一方面, 由于 xDSL使用的频段越来越宽, FEXT愈 发严重地影响线路的传输性能。 从香农公式 = ^ 10§2 (1 + 5/^ (其中 C为信道 容量, β为信号带宽, S为信号能量, N为噪声能量)可知, 由于 xDSL传输中 的串音体现为噪声的一部分, 因此, 严重的 FEXT会显著地降低信道速率。 当
一捆电缆内有多路用户都要求开通 xDSL业务时,会因为 FEXT使一些线路速率 低、 性能不稳定、 甚至不能开通等, 最终导致 DSLAM的出线率比较低。
目前业界提出一种称为矢量化的数字用户线路( Vectored - DSL )技术, Vectored - DSL主要利用在 DSLAM端进行联合收发的可能性,使用信号处理的 方法来抵消 FEXT的干扰, 最终消除每一路信号中 FEXT干扰, 如附图 la和附图 lb所示, 分別给出了在 DSLAM端同步发送和同步接收的示意图, 以下说明其 工作原理。
在附图 la和附图 lb中,共享信道 H在频率域第 k个 tone上可以表示为矩阵形
(公式 1 )
」MxM 在公式 1中, 是从线对 到线对 的传输方程。 在实际情况下, i , 相等 且等于共享信道中相互具有串音关系的信道个数。此处假设共享信道中相互具 有串音关系的信道个数为 M,则 H是一个 Μ χ Μ的信道传输矩阵。又分別设 X是 一个 M x l的信道输入向量, y是一个 M x l的信道输出向量, n是一个 M x l的噪 声向量。 最终, 将信道传输方程表达为如下形式:
y = Hx + n (公式 1 ) 对于上行, 在中心局 (Central Office, CO )端进行信号的联合接收处理, 即, 在 CO端的矢量化数字用户线接入复用器(Vectored DSLAM, 其功能模块 见附图 lc ) 引入一个串音抵消器(使用矩阵 W表示) , 则 0 接收到的信号 为
y = Wy = WHx + Wn (公式 2 ) 当矩阵 WH为一个对角矩阵时, 串音得到了消除。
对于下行, 在 CO端进行信号的联合发送处理, 即, 在 CO端的 Vectored DSLAM 引入一个预编码器(使用矩阵 P表示) , 则 CO端发送的信号为
x = Px (公式 3 )
接收端 (用户端)接收到的信号为
y = Hx + n = HPx + n (公式 4 ) 当矩阵 HP为一个对角阵时, 串音也得到了消除。
从以上分析可知, Vectored - DSL是通过对上下行联合处理, 达到消除远 端串音的效果, 其关键是估计下行预编码矩阵 P与上行抵消矩阵 W。
一般地, Vectored-DSL 系统通过如下方法实现, 即, 首先通过同步符号 ( Sync Symbol )进行同步, 然后在所有线路的 Sync Symbol上联合调制导频 序列( Pilot Sequence ),最后接收侧向矢量化控制实体( Vectoring Control Entity, VCE )反馈误差。 由此可以在 VCE 中估计出下行预编码矩阵 P与上行氏消矩 阵 W , 继而应用上述矢量化技术抵消 FEXT。
由于 VDSL2技术早于 Vectored-DSL技术且已得到广泛应用, 因此, 将 VDSL2 升级到 Vectored-DSL 时必须考虑兼容现网已有的且不支持 Vectored-DSL的 VDSL2传统( Legacy ) 的用户前端设备 ( Customer Premises Equipment, CPE ), 即, VDSL2 Legacy CPE。 然而, VDSL2 Legacy CPE不支 持在同步符号 (Sync Symbol )上发送、 接收导频序列和反馈误差。
为了支持在同步符号(Sync Symbol )上发送、 接收导频序列和反馈误差, 从而估计出下行预编码矩阵 P与上行抵消矩阵 W ,现有技术提供的一种方法是 将 VDSL2现网中所有的 VDSL2 Legacy CPE全部升级或更换至 VDSL2 Vector CPE。
本案发明人发现, 上述现有技术至少存在以下缺陷:
1 )成本高。 一是升级现网所有 VDSL2 Legacy CPE需要消耗大量成本, 二是一些较为陈旧的 VDSL2 Legacy CPE可能因为不支持误差计算、误差反馈 和上行发送导频序列等各种原因而无法升级到矢量化(Vector ) CPE, 从而需 要更换整个 CPE, 这将进一步增加成本;
2 )升级完成的周期长。 由于现网 VDSL2 Legacy CPE存量较多, 升级不 可能一蹴而就, 还有用户不在家等各种因素, 仍然会导致 Vectored CPE 与
VDSL2 Legacy CPE在较长的一段时期内共存的局面。
发明内容
本发明实施例提供一种降低数字用户线路干扰的方法、装置和系统, 以尽 可能降低或消除数字用户线路系统中传统线路对矢量化线路的影响。
本发明实施例提供一种降低数字用户线路干扰的方法, 所述方法包括: 识別数字用户线路集合中的至少一条传统数字用户线路,所述数字用户线 路集合中包括至少一条矢量化数字用户线路和所述传统数字用户线路;
获取所述传统数字用户线路的目标功率谱密度掩码值,所述目标功率谱密 时的参考值;
根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送信号的 功率谱密度进行削减。
本发明实施例提供一种降低数字用户线路干扰的方法, 所述方法包括: 识別数字用户线路集合中的至少一条传统数字用户线路,所述数字用户线 路集合中包括至少一条矢量化数字用户线路和所述传统数字用户线路;
获取所述传统数字用户线路的目标功率谱密度掩码值或最大发送频率限 量化数字用户线路干扰时的参考值;
根据所述目标功率谱密度掩码值或最大发送频率限制值配置端口模板参 数以降低所述传统数字用户线路对所述矢量化数字用户线路的干扰。
本发明实施例提供一种降低数字用户线路干扰的装置,所述装置为数字用 户线路系统的局端收发单元, 所述装置包括:
识別模块, 用于识別数字用户线路集合中的至少一条传统数字用户线路, 所述数字用户线路集合中包括至少一条矢量化数字用户线路和所述传统数字 用户线路;
获取模块, 用于获取所述传统数字用户线路的目标功率谱密度掩码值, 所 字用户线路干扰时的参考值;
削减模块,用于根据所述目标功率谱密度掩码值对所述传统数字用户线路 的发送信号的功率谱密度进行削减。
本发明实施例提供一种降低数字用户线路干扰的装置, 所述装置包括: 线路识別模块,用于识別数字用户线路集合中的至少一条传统数字用户线 路,所述数字用户线路集合中包括至少一条矢量化数字用户线路和所述传统数 字用户线路;
参考值获取模块,用于获取所述传统数字用户线路的目标功率谱密度掩码 值或最大发送频率限制值,所述目标功率谱密度掩码值为用于降低所述传统数 字用户线路对所述矢量化数字用户线路干扰时的参考值;
配置模块,用于根据所述目标功率谱密度掩码值或最大发送频率限制值配 置端口模板参数以降低所述传统数字用户线路对所述矢量化数字用户线路的 干扰。
本发明实施例提供一种降低数字用户线路干扰的系统,所述系统包括数字 用户线路接入复用器、至少一条矢量化数字用户线路、至少一条传统数字用户 线路、至少一个矢量化用户前端设备和至少一个传统用户前端设备, 所述数字 用户线路接入复用器包括矢量化数字用户线路系统局端收发单元;
所述至少一条矢量化数字用户线路,用于连接所述至少一个矢量化用户前 端设备和所述矢量化数字用户线路系统局端收发单元;
所述至少一条传统数字用户线路,用于连接所述至少一个传统用户前端设 备和所述矢量化数字用户线路系统局端收发单元;
所述至少一个矢量化用户前端设备,用于通过所述至少一条矢量化数字用 户线路与所述矢量化数字用户线路系统局端收发单元交互;
所述至少一个传统用户前端设备,用于通过所述至少一条传统数字用户线 路与所述矢量化数字用户线路系统局端收发单元交互;
所述矢量化数字用户线路系统局端收发单元,用于识別数字用户线路集合 中的所述至少一条传统数字用户线路,获取所述传统数字用户线路的目标功率 谱密度掩码值,根据所述目标功率谱密度掩码值对所述至少一条传统数字用户 线路的发送信号的功率谱密度进行削减。
从上述本发明实施例可知,由于在识別出数字用户线路集合中的至少一条 传统数字用户线路后,可以根据获取的目标功率谱密度掩码值对所述传统数字
用户线路的发送信号的功率谱密度进行削减。 因此, 与现有技术提供的将 VDSL2现网中所有的 VDSL2 Legacy CPE全部升级或更换至 VDSL2 Vector CPE 相比, 本发明实施例提供的方法不需要升级或更换 VDSL2 Legacy CPE而同样 可以获得消除对 DSL矢量化线路产生远端串扰的效果, 如此, 既免去了升级导 致的时间成本, 又消除了升级带来的人力、 物力 (例如, 设备)成本。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对现有技术或实施例 描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动 性的前提下, 还可以如这些附图获得其他的附图。 意图; 图;
图 lc是公知技术给出的矢量化数字用户线接入复用器结构示意图; 图 2是本发明实施例提供的降低数字用户线路干扰的方法流程示意图; 图 3是本发明另一实施例提供的降低数字用户线路干扰的方法流程示意 图;
图 4a是本发明实施例提供的降低数字用户线路干扰的装置结构示意图; 图 4b是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 4c是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 4d是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 5a是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 5b是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意
图;
图 6a是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 6b是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 7是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 8a是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 8b是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 8c是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 8d是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 9a是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 9b是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 9c是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 9d是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 9e是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 10a是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 10b是本发明另一实施例提供的降低数字用户线路干扰的装置结构示
意;
图 10c是本发明另一实施例提供的降低数字用户线路干扰的装置结构示意 图;
图 11是本发明实施例提供的降低数字用户线路干扰的系统结构示意图。 具体实施方式
本发明实施例提供降低数字用户线路干扰的方法、装置和系统, 以尽可能 降低或消除数字用户线路系统中传统数字用户线路对矢量化线路的影响。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
请参阅附图 2, 是本发明实施例提供的降低数字用户线路干扰的方法流程 示意图。 附图 2的方法中, 各步骤执行的主体可以是 Vectored-DSL系统中的 局端设备, 例如, 局端收发单元(VTU-0, VDSL Tranceive Unit -ONU ), 其 中 ONU 为光网络单元(Optical Network Unit )„ 附图 2示例的降低数字用户 线路干扰的方法主要包括步骤:
S201 , 识別数字用户线路集合中的至少一条传统数字用户线路。
在本发明实施例中, 所述数字用户线路集合是这样一种集合, 即, 该集合 包括至少一条矢量化(Vector )数字用户线路以及可能包含有传统(Legacy ) 数字用户线路。 所谓传统(Legacy )数字用户线路, 是相对于 Vectored-DSL 系统中的矢量化数字用户线路而言, 在本发明实施例中, 可以是连接 VTU-0 和不支持 Vectored-DSL 的 VDSL2 用户前端设备 ( Customer Premises Equipment, CPE ) 的线路, 这种线路上的功率 (包括上行功率和下行功率) 如不加限制, 则会对 Vectored-DSL 系统中的矢量化数字用户线路产生影响, 例如, 远端串扰等。 因此, 为了使传统数字用户线路不对矢量化数字用户线路 产生干扰, 首先需要识別出数字用户线路集合可能存在的传统数字用户线路。
作为本发明一个实施例,在识別数字用户线路集合中的至少一条传统数字 用户线路时, 可以是 VTU-0与矢量化数字用户线路的远端收发单元(VDSL
Tranceive Unit -Remote, VTU-R ) 的握手 (Handshaking ) 阶段, VTU-0通过 与 CPE中的 VTU-R ( VTU-R为 CPE中的功能单元 ) 交互, 以获取该 CPE的 能力集, 若通过 VTU-0与 VTU-0的上述交互, VTU-0获知至少一条数字用 户线路连接的 CPE不支持矢量化(Vector ) 能力集, 则识別连接该 CPE的至 少一条数字用户线路为传统数字用户线路。
S202, 获取所述传统数字用户线路的目标功率谱密度掩码值。
目标功率谱密度掩码值为用于降低传统数字用户线路对矢量化数字用户 线路干扰时的参考值,包括上行目标功率谱密度掩码值和下行目标功率谱密度 掩码值, 它是传统数字用户线路上发送的功率(包括上行功率和下行功率)经 过限制或削减,从而使得传统数字用户线路上发送的上行信号或下行信号不对 矢量化数字线路产生远端串扰的发送功率频谱密度 ( Transmit Power Spectral Density, TxPSD )掩码值。
在本发明一个实施例中,可以根据数字用户线路干扰规律估计传统数字用 户线路的目标功率谱密度掩码值。
例如,根据数字用户线路干扰规律,一般实际测得的最强串扰衰减值的功 率在 _ 55dB 左右, 若串扰到矢量化数字用户线路的噪声功率谱密度为 - 135dBm/Hz 的水平, 即与背景噪声相当的水平, 则不会对矢量化数字用户线 路产生影响。 因此, 根据串扰信号的功率谱密度掩码值 =传统数字用户线路 的目标功率谱密度掩码值 + 串扰衰减值这一关系, 即可估计传统数字用户线 路的目标功率谱密度掩码值为 - 80dBm/Hz, 不失一般性, 可以将传统数字用 户线路的目标功率谱密度掩码值估计在 - 75dBm/Hz ~ - 85dBm/Hz的范围内。
在本发明另一个实施例中, 可以通过获取传统数字用户线路的信道参数, 计算所述传统数字用户线路的目标功率谱密度掩码值。所述传统数字用户线路 的信道参数包括信道衰减(即信道衰减对数值, 以下使用 Hlog表示)、静态线 路噪声 (Quiet Line Noise, QLN )、 信噪比裕量、 比特分配表( b„ )和目标速 率(以下使用 TargetRate表示)等。 一般而言, 传统数字用户线路的速率都比
较低, 根据香农容量公式:
TargetRate =∑b„ = ¾10§2(1 + ^°-^) , 其中, η为可用子载波序号, Ν为最 大子载波序号, Γ为信噪比差额 (固定值)与信噪比裕量的和减去编码增益 后所得差值。 其中, SNRi i) = TxPSD( i) + H log i)— QLNi i) , 通过求解出 TxPSD ( n ), 将该 值作为传统数字用户线路的目标功率谱密度掩码值。
S203,根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送信 号的功率谱密度进行削减。
从上述本发明实施例可知,由于在识別出数字用户线路集合中的至少一条 传统数字用户线路后,可以根据获取的目标功率谱密度掩码值对所述传统数字 用户线路的发送信号的功率谱密度进行削减。 因此, 与现有技术提供的将
VDSL2现网中所有的 VDSL2 Legacy CPE全部升级或更换至 VDSL2 Vector CPE 相比, 本发明实施例提供的方法不需要升级或更换 VDSL2 Legacy CPE而同样 可以获得消除对 DSL矢量化线路产生远端串扰的效果, 如此, 既免去了升级导 致的时间成本, 又消除了升级带来的人力、 物力 (例如, 设备)成本。
作为本发明一个实施例, 可以根据上行目标功率谱密度掩码值(为了便于 说明, 这里使用 "Cutting PSDMASKus" 表示)或下行目标功率谱密度掩码值 (为了便于说明, 这里使用 "Cutting PSDMASKds" 表示)对传统数字用户线 路的发送信号的功率谱密度进行削减;
进一步地,根据上行目标功率谱密度掩码值对所述传统数字用户线路的发 送信号的功率谱密度进行削减具体包括:
S11 , 取之前一次获取的或初始化时的上行功率谱密度掩码值和所述上行 目标功率谱密度掩码值中的较小值, 得到当前上行功率谱密度掩码值;
为了便于说明, 将上行功率谱密度掩码值使用 "PSDMSKus"表示。 在初 始化时, 上行功率谱密度掩码值有一个初始化值, 可以比较之前一次获取的或 初始化时上行功率谱密度掩码值和上行目标功率谱密度掩码值的大小,将其中
的较小值作为当前上行功率谱密度掩码值 (为了便于说明, 这里使用
" current_PSOMSKm " 表示当前上行功率谱密度掩码值 ), 即, c (PSDMASKusfJ) =min [PSDMASKus(/), Cutting PSDMASKus(/)] , "min"表示取 最小值, 频率 / RFIBANDS , 而 RFIB ANDS是指射频干扰( Radio Frequence Interference )频段的集合( Set )。
S12 , 将当前上行功率谱密度掩码值发送至数字用户线路系统的终端, 以 使所述终端在将信道发现阶段功率谱密度 ( Channel Discovery Power Spectral Density, CDPSD ) 限制在不超过信道发现阶段的开始阶段上行最大掩码值、 上行功率回退掩码值和所述当前上行功率谱密度掩码值分別减去 3.5dB所得值 中的较小值时, 对所述传统数字用户线路的上行信号的功率谱密度进行削减。
在信道发现阶段的开始阶段, 终端在收到当前上行功率谱密度掩码后, 比 较信道发现阶段的开始阶段上行最大掩码 ( Channel Discovery maximum mask, CDMAXMASKus )值、 上行功率回退掩码值 ( Upstream Power BackOff mask, UPBOMASK )和当前上行功率谱密度掩码值分別减去 3.5dB所得值, 将信道发 现阶段功率谱密度限制在不超过信道发现阶段的开始阶段上行最大掩码值、上 行功率回退掩码值和所述当前上行功率谱密度掩码值分別减去 3.5dB所得值中 的较小值。 具体地, 这里是将信道发现阶段的开始阶段上行功率谱密度值(使 用 "CDPSD^"表示)限制在不超过信道发现阶段的开始阶段上行最大掩码值、 上行功率回退掩码值和所述当前上行功率谱密度掩码值分別减去 3.5dB所得值 中 的 较 小 值 , 即 ,
CDPSEte( ) < xmn[{current _ PSDMASKus( ) -3.5), (CDMAXMASKus -3.5), (UPBOMASK(¾, ) -3.5)] , f ί RFIBANDS
, 这里, RFIBANDS是指射频干扰(Radio Frequence Interference )频段的集合 ( Set )。
作为本发明另一个实施例,根据目标功率谱密度掩码值对所述传统数字用 户线路的发送信号的功率谱密度进行削减具体包括:
S' ll ,取之前一次获取的或初始化时下行功率谱密度掩码值和下行目标功 率谱密度掩码值中的较小值, 得到当前下行功率谱密度掩码值;
将下行功率谱密度掩码值使用 "PSDMSKds" 表示。 在初始化时, 下行功
率语密度掩码值有一个初始化值,可以比较之前一次获取的或初始化时下行功 率谱密度掩码值和下行目标功率谱密度掩码值的大小,将其中的较小值作为当 前下行功率谱密度掩码值(为了便于说明, 这里使用 "CMrre«i_PSDMSKds" 表 示 当 前 下 行 功 率 谱 密 度 掩 码 值 ) , 即 , c PSDMASKdsfJ) =min [PSDMASKds(/), Cutting PSDMASKds(/)] "min"表示取 最小值, 频率 / RFIBANDS , 而 RFIBANDS是指射频干扰( Radio Frequence Interference )频段的集合。
S' 12,获取信道发现阶段的开始阶段下行最大掩码值和所述当前下行功率 谱密度掩码值中的较小值与 3.5dB的差值;
在本实施例中, 信道发现阶段的开始阶段下行最大掩码值可以是预置值。
S 13 , 在将信道发现阶段功率谱密度限制在不超过所述差值时, 对所述传 统数字用户线路的下行信号的功率谱密度进行削减。
下行功率由局端设备, 例如, VTU-0决定, 因此, 下行功率的削减在局端 设备完成。 具体地, 这里是将信道发现阶段的开始阶段下行功率谱密度(使用 "CDPSDds"表示 )限制在不超过信道发现阶段的开始阶段下行最大掩码值和 当前下行功率谱密度掩码值分別减去 3.5dB所得值中的较小值时, 即,
CDPSDds(f)≤ min [(CM ί _ PSDMASKds(/) - 3.5), (CDMAXMASKds - 3.5)] , f g RFIBANDS , RFIBANDS 是指射频干扰 ( Radio Frequence Interference )频段的集合(Set ), 对所述传统 数字用户线路的下行信号的功率谱密度进行削减。
在信道发现阶段的结束阶段, 局端设备, 例如, VTU-0可以根据下行最大 掩码(使用 "MAXMASKds"表示)和当前下行功率谱密度掩码, 削减下行功 率得到训练阶段下行参考功率谱密度掩码 ( MEDLEY reference PSD mask, MREFMASKds ) 即 ,
MREFMASKds(/) = ^{current _ PSDMASKds MAXMASKds), f g RFIBANDS , " min " 表示取最小值, 而 RFIBANDS是指射频干扰 ( Radio Frequence Interference )频段的集合( Set
在信道发现阶段的结束阶段, 终端(例如 VTU-R )可以根据上行最大掩码 (使用 "MAXMASKus" 表示)、 上行功率回退掩码(UPBOMASK )和当前
上行功率谱密度掩码, 削减上行功率得到训练阶段上行参考功率谱密度掩码 ( MEDLEY reference PSD mask , MREFMASKus ) , 即 , MREF ASKcb(/) = n(am-eni _PS∑MASKm(f), MAXMASKus,lPBOMASK(¾0 , )), gRHBANDS , " min " 表示取最小值, 而 RFIB ANDS是指射频干扰 ( Radio Frequence Interference )频段的集合( Set )。
作为本发明另一个实施例,根据所述目标功率谱密度掩码值对所述传统数 字用户线路的发送信号的功率谱密度进行削减具体包括:
521 , 取之前一次获取的或初始化时信道发现阶段的开始阶段下行最大掩 码值和削减的目标下行功率谱密度限制值中的较小值,得到当前信道发现阶段 的开始阶段下行最大掩码值;
在初始化时, 信道发现阶段的开始阶段下行最大掩码值有一个初始化值。 若信道发现阶段的开始阶段下行最大掩码 ( CDMAXMASKds )初始值减去 3.5dB后所得值小于下行目标功率谱密度掩码值, 则无需进行功率削减。 若信 道发现阶段的开始阶段下行最大掩码值( CDMAXMASKds )初始值减去 3.5dB 后所得值大于下行目标功率谱密度掩码值, 则需要进行功率削减。
可以比较前一次获取的信道发现阶段的开始阶段下行最大掩码值或信道 发现阶段的开始阶段下行最大掩码值(CDMAXMASKds )初始值和下行目标 功率谱密度掩码值的大小,将其中的较小值作为当前信道发现阶段的开始阶段 下行最大掩码值(为了便于说明, 这里使用 "CMrre«i_CDMAXMASKds"表示 当 前信道发现 阶段的 开始 阶段下 行最 大掩码值 ), 即 , c«™t_CDAMXMASKds( ") = min [CDMAXMASKds(/), Cutting PSDMASKds(/)], "min" 表示取最小值, 频率 / RFIB ANDS , 而 RFIB ANDS是指射频干扰 ( Radio Frequence Interference )频段的集合 ( Set )。
522 , 获取下行功率谱密度掩码值和当前信道发现阶段的开始阶段下行最 大掩码值中的较小值与 3.5dB的差值;
523 , 在将信道发现阶段功率谱密度限制在不超过所述差值时, 对所述传 统数字用户线路的下行信号的功率谱密度进行削减。
下行功率由局端设备, 例如, VTU-0决定, 因此, 下行功率的削减在局端
设备完成。 具体地, 这里是将信道发现阶段的开始阶段下行功率谱密度值(使 用 "CDPSDds"表示)限制在不超过下行功率谱密度掩码和当前信道发现阶段 的开始阶段下行最大掩码值分別减去 3.5dB所得值中的较小值时, 即,
CDPSDds(/) < min [(PSDMASKds(/) - 3.5), (current _CDMAXMASKds - 3.5)] , / g RHBANDS ?对所述传统 数字用户线路的下行信号的功率谱密度进行削减。
作为本发明另一个实施例,根据上行目标功率谱密度掩码值对所述传统数 字用户线路的发送信号的功率谱密度进行削减具体包括:
S'21 ,取之前一次获取的或初始化时信道发现阶段的开始阶段上行最大掩 码值和上行目标功率谱密度掩码值中的较小值,得到当前当前上行目标功率谱 密度掩码值;
在初始化时, 信道发现阶段的开始阶段上行最大掩码值有一个初始化值, 可以比较之前一次获取的或初始化时信道发现阶段的开始阶段上行最大掩码 和上行目标功率谱密度掩码值的大小,将其中的较小值作为当前上行目标功率 谱密度掩码值(为了便于说明, 这里使用 "CMrre«i_Cutting PSDMSKus" 表示 当 前 上 行 目 标 功 率 谱 密 度 掩 码 值 ) , 即 , currentjCutting PSDMASKus( ") = min [CDMAXMASKus(/), Cutting PSDMASKus(/)] , "min"表示取最小值,频率 f ^ RFIBANDS ,而 RFIBANDS是指射频干扰( Radio Frequence Interference )频段的集合。
S'22,将上行功率回退掩码值和当前上行目标功率谱密度掩码值发送至数 字用户线路系统的终端,以使所述终端在将信道发现阶段功率谱密度限制在不 超过所述当前信道发现阶段的开始阶段上行最大掩码值、上行功率回退掩码值 和上行功率谱密度掩码值分別减去 3.5dB所得值中的较小值时, 对所述传统数 字用户线路的上行信号的功率谱密度进行削减。
在信道发现阶段的开始阶段,终端在收到上行功率回退掩码值和当前信道 发现阶段的开始阶段上行最大掩码值后,比较当前信道发现阶段的开始阶段上 行最大掩码值 ( Channel Discovery maximum mask, CDMAXMASKus )、 上行 功率回退掩码值 ( Upstream Power BackOff mask, UPBOMASK )和上行功率 谱密度掩码值分別减去 3.5dB所得值, 将信道发现阶段功率谱密度(Channel
Discovery PSD, CDPSD ) 限制在不超过所述当前信道发现阶段的开始阶段上 行最大掩码值、 上行功率回退掩码值和上行功率谱密度掩码值分別减去 3.5dB 所得值中的较小值。具体地, 这里是将信道发现阶段的开始阶段上行功率谱密 度值(使用 "CDPSD^"表示)限制在不超过所述信道发现阶段的开始阶段上 行最大掩码值、 上行功率回退掩码值和上行功率谱密度掩码值分別减去 3.5dB 所 得 值 中 的 较 小 值 , 即 ,
CDPSEte( ) < min[(PSDMASKus( ) -3.5), (CDMAXMASKus -3.5), (UPBOMASK(¾, ) -3.5)] , gRFIBANDS , 而
RFIBANDS是指射频干扰( Radio Frequence Interference )频段的集合。
在信道发现阶段的结束阶段,终端,例如 VTU-R重新计算信道发现阶段结 束阶段的下行最大掩码 (信道发现阶段结束阶段的下行最大掩码使用 "MAXMASKds"表示),,将 MAXMASKds发送给局端设备作为参考,例如, VTU-0 , 由 局 端 设 备 再 进 行 下 行 功 率 的 削 减 , 即 , current _ MAXMASKds( ") = min [MAXMASKds(/), Cutting PSDMASKds(/)]。
在信道发现阶段的结束阶段, 局端设备, 例如, VTU-0也可以重新计算信 道发现阶段结束阶段的上行最大掩码(信道发现阶段结束阶段的上行最大掩码 使 用 " MAXMASKus " 表 示 ) , 即 , current _ MAXMASKus( ") = min [MAXMASKus(/), Cutting PSDMASKus(/)] , ^!夺重新计 算得到的 c rr t _ MAXMASKus( ~)发送给终端作为参考, 例如, VTU-R, 由终端 进行上行功率的削减。
请参阅附图 3, 是本发明另一实施例提供的一种降低数字用户线路干扰的 方法流程示意图。 附图 3的方法中, 各步骤执行的主体可以是 Vectored-DSL系 统中的矢量化控制实体(Vector Control Entity, VCE ), 主要包括步骤:
S301 ,识別数字用户线路集合中的至少一条传统数字用户线路,所述数字 用户线路集合中包括至少一条矢量化数字用户线路和所述传统数字用户线路。
作为本发明识別数字用户线路集合中的至少一条传统数字用户线路的一 个实施例, 可以是通过获取先验信息, 识別数字用户线路集合中的至少一条传 统数字用户线路, 即, VCE通过获取运营商已有的先验信息, 例如, 终端设备 版本及型号、或者是否为矢量化终端的历史记录等(这些先验信息存储于 VCE
的数据库、 存储单元或者独立于 VCE的数据库、 存储单元), 识別数字用户线 路集合中的至少一条数字用户线路是否为传统数字用户线路。
S302 ,获取所述传统数字用户线路的目标功率谱密度掩码值或最大发送频 率限制值。
对于传统数字用户线路的目标功率谱密度掩码值,可以通过下述方式之一 获取:
方式一、根据数字用户线路干扰规律估计所述传统数字用户线路的目标功 率谱密度掩码值。
如前所述,根据数字用户线路干扰规律, 一般实际测得的最强串扰衰减值 的功率在 _ 55dB左右, 若串扰到矢量化数字用户线路的噪声功率谱密度为 - 135dBm/Hz的水平, 即与背景噪声相当的水平, 则不会对矢量化数字用户线路 产生影响。 因此, 根据串扰信号的功率谱密度掩码值 =传统数字用户线路的 目标功率谱密度掩码值 + 串扰衰减值这一关系, 即可估计传统数字用户线路 的目标功率谱密度掩码值为 _ 80dBm/Hz , 不失一般性, 可以将传统数字用户 线路的目标功率谱密度掩码值估计在 - 75dBm/Hz ~ - 85dBm/Hz的范围内。
方式二、通过获取所述传统数字用户线路历史的信道参数,计算所述传统 数字用户线路的目标功率谱密度掩码值。
所述传统数字用户线路历史的信道参数包括之前存储的信道衰减(即信道 衰减对数值, 以下使用 Hlog表示)、 静态线路噪声 (Quiet Line Noise , QLN )、 信噪比裕量、 比特分配表( b„ )和目标速率(以下使用 TargetRate表示)等。 一般而言, 传统数字用户线路的速率都比较低, 根据香农容量公式:
TargetRate =∑b„ = ¾log2(l + ^-^) , 其中, η为可用子载波序号, Ν为最 大子载波序号, Γ为信噪比差额 (固定值)与信噪比裕量的和减去编码增益 后所得差值。
其中, SNRW = TxPSDW + H logW _ QLN ( ") , 通过求解出 PSZ) ( n ), 将该 值作为传统数字用户线路的目标功率谱密度掩码值。
对于传统数字用户线路的最大发送频率限制值,可以通过下述方式之一获 取:
方式一、根据数字用户线路干扰规律估计所述传统数字用户线路的最大发 送频率限制值。
根据数字用户线路干扰规律, ADSL的工作频段范围在 0~1.1ΜΗζ ,
ADSL2+的工作频段范围在 0~2.2MHz, VDSL2以及 Vectored DSL工作频段范围 都在 0~30MHz。 由于 ADSL和 ADSL2+工作在较低的频段, 较低的频段串扰也 较小,而且使用的频段远小于 Vectored DSL的工作频段,因此, ADSL和 ADSL2+ 对 Vectored DSL的串扰影响非常小。 由实测经验可知, 在 1000m的线长范围, 传统的数字用户线工作在 0~1.1ΜΗζ的频段可达到的速率为 10Mbps , 工作在 0~2.2MHz的频段可达到的速率为 20Mbps左右, 目前大多数传统数字用户线的 速率需求都在 20Mbps范围之内。 因此, 可以根据数字用户线路干扰规律估计 所述传统数字用户线路的最大发送频率限制值, 例如, 2.2MHz。
方式二、通过获取所述传统数字用户线路历史的信道参数,计算所述传统 数字用户线路的最大发送频率限制值。
VCE通过获取历史的信道参数, 包括信噪比(SNR )、 比特分配表(b„ ) 和目标速率 (TargetRate )等。 一般传统数字用户线路的速率都较低, 根据香 农容量公式:
、
TargetRate =∑b„ =∑log2(l +——— ) , n为可用子载波序号。 求解出传统数字用户线路所需要的最大子载波序号 Ν,则传统数字用户线路最 大发送频率限制值 = 最大子载波序号 N x子载波宽度。
S303,根据所述目标功率谱密度掩码值或最大发送频率限制值配置端口模 板参数以降低所述传统数字用户线路对所述矢量化数字用户线路的干扰。
作为根据目标功率谱密度掩码值配置端口模板参数以降低传统数字用户 线路对矢量化数字用户线路的干扰的实施例, 可以通过以下任一方式进行: 方式一、 配置所述目标功率谱密度掩码值,将所述配置的目标功率谱密度
掩码值作为管理信息库 ( Management Information Base, MIB )上行和 /或下行 功率谱密度掩码值, 具体地, 包括: 通过配置上行目标功率谱密度掩码值, 将 所述配置的上行目标功率谱密度掩码值作为 MIB上行功率谱密度掩码值;通过 配置下行目标功率谱密度掩码值,将所述配置的下行目标功率谱密度掩码值作 为 MIB下行功率谱密度掩码值;或者既通过配置上行目标功率谱密度掩码值将 所述配置的上行目标功率谱密度掩码值作为 MIB上行功率谱密度掩码值,又通 过配置下行目标功率谱密度掩码值将所述配置的下行目标功率谱密度掩码值 作为 MIB下行功率谱密度掩码值。
方式二、 配置所述目标功率谱密度掩码值的平均值、 最大值或最小值, 以 所述配置的目标功率谱密度掩码值的平均值、最大值或最小值作为管理信息库 上行或下行最大常规功率谱密度。 具体地, 包括: 通过配置上行目标功率谱密 度掩码值的平均值、最大值或最小值, 以所述配置的上行目标功率谱密度掩码 值的平均值、最大值或最小值作为管理信息库上行最大常规功率谱密度,或者, 通过配置下行目标功率谱密度掩码值的平均值、最大值或最小值, 以所述配置 的下行目标功率谱密度掩码值的平均值、最大值或最小值作为管理信息库下行 最大常规功率谱密度。
方式三、 配置所述目标功率谱密度掩码值的总和, 以所述配置的目标功率 谱密度掩码值的总和作为管理信息库上行和 /或下行最大常规功率谱密度。 具 体地, 包括: 配置上行目标功率谱密度掩码值的总和, 以所述配置的上行目标 功率谱密度掩码值的总和作为管理信息库上行最大常规功率谱密度;配置下行 目标功率谱密度掩码值的总和,以所述配置的下行目标功率谱密度掩码值的总 和作为管理信息库下行最大常规功率谱密度; 或者, 既配置上行目标功率谱密 度掩码值的总和, 又配置下行目标功率谱密度掩码值的总和, 以所述配置的上 行目标功率谱密度掩码值的总和作为管理信息库上行最大常规功率谱密度,以 所述配置的下行目标功率谱密度掩码值的总和作为管理信息库下行最大常规 功率谱密度。
方式四、根据所述上行目标功率谱密度掩码值计算上行功率回退参数,将 所述计算出的上行功率回退参数作为管理信息库上行功率回退参数。
方式五、将上行最大信噪比裕量配置为实际上行信噪比裕量减去所述上行 目标功率谱密度掩码值或者将下行最大信噪比裕量配置为实际下行信噪比裕 量减去所述下行目标功率谱密度掩码值。
作为根据所述最大发送频率限制值配置端口模板参数的实施例,可以通过 以下任一方式进行:
方式一、将管理信息库的功率谱密度掩码的所述最大发送频率限制值之后 的掩码值配置为管理信息库定义的最小值。
若将管理信息库的功率谱密度掩码的最大发送频率限制值之后的掩码值 配置为管理信息库定义的最小值, 一般在 - lOOdBm/Hz左右, 则在最大发送频 率限制之后就不会对矢量化线路产生任何影响。
方式二、 配置管理信息库中射频干扰开槽集合( RFI notch )或子载波遮蔽 集合( Tone blackout )以从发送集合中删除所述最大发送频率限制值之后的频 段。
方式三、 配置管理信息库中传输模式。
这种方式是针对最大发送频率限制值小于 2.2MHz的情形, 即, 如果最大 发送频率限制值小于 2.2MHz, 则可以通过配置管理信息库中的传输模式, 将 VDSL2的传输模式降成 ADSL2+的传输模式, 同样可以将传统数字用户线路限 制在最大发送频率范围之内。
请参阅附图 4a,是本发明实施例提供的降低数字用户线路干扰的装置结构 示意图。 为了便于说明, 仅仅示出了与本发明实施例相关的部分。 附图 4a示例 的数字用户线路干扰的装置可以是矢量化数字用户线路系统局端收发单元 ( VTU-0 ), 其包括识別模块 401、 获取模块 402和削减模块 403, 其中:
识別模块 401 , 用于识別数字用户线路集合中的至少一条传统数字用户线 路,所述数字用户线路集合中包括至少一条矢量化数字用户线路和所述传统数 字用户线路。
在本实施例中, 所述数字用户线路集合是这样一种集合, 即, 该集合包括 至少一条矢量化(Vector )数字用户线路以及可能包含有传统(Legacy )数字 用户线路。 所谓传统(Legacy )数字用户线路, 是相对于 Vectored-DSL 系统
中的矢量化数字用户线路而言, 在本实施例中, 可以是连接 VTU-0和不支持 Vectored-DSL的 VDSL2用户前端设备 ( Customer Premises Equipment, CPE ) 的线路, 这种线路上的功率(包括上行功率和下行功率)如不加限制, 则会对 Vectored-DSL系统中的矢量化数字用户线路产生影响, 例如, 远端串扰等。 因 此, 为了使传统数字用户线路不对矢量化数字用户线路产生干扰, 首先需要采 用识別模块 401识別出数字用户线路集合可能存在的传统数字用户线路。
获取模块 402,用于获取所述传统数字用户线路的目标功率谱密度掩码值, 数字用户线路干扰时的参考值。
目标功率谱密度掩码值为用于降低传统数字用户线路对矢量化数字用户 线路干扰时的参考值,包括上行目标功率谱密度掩码值或下行目标功率谱密度 掩码值, 它是传统数字用户线路上发送的功率(包括上行功率和下行功率)经 过限制或削减,从而使得传统数字用户线路上发送的上行信号或下行信号不对 矢量化数字线路产生远端串扰的发送功率频谱密度 ( Transmit Power Spectral Density, TxPSD )掩码值。
削减模块 403 , 用于根据所述目标功率谱密度掩码值对所述传统数字用户 线路的发送信号的功率谱密度进行削减。
从上述本发明实施例提供的降低数字用户线路干扰的装置可知,由于识別 模块在识別出数字用户线路集合中的至少一条传统数字用户线路后,削减模块 可以根据获取模块获取的目标功率谱密度掩码值对所述传统数字用户线路的 发送信号的功率谱密度进行削减。 因此,与现有技术提供的将 VDSL2现网中所 有的 VDSL2 Legacy CPE全部升级或更换至 VDSL2 Vector CPE相比, 本发明实 施例提供的方法不需要升级或更换 VDSL2 Legacy CPE而同样可以获得消除对 DSL矢量化线路产生远端串扰的效果, 如此, 既免去了升级导致的时间成本或 者升级过渡问题, 又消除了升级带来的人力、 物力 (例如, 设备)成本。
需要说明的是, 以上降低数字用户线路干扰的装置的实施方式中,各功能 模块的划分仅是举例说明, 实际应用中可以根据需要, 例如相应硬件的配置要 求或者软件的实现的便利考虑, 而将上述功能分配由不同的功能模块完成, 即
将所述降低数字用户线路干扰的的控制装置的内部结构划分成不同的功能模 块, 以完成以上描述的全部或者部分功能。 而且, 实际应用中, 本实施例中的 相应的功能模块可以是由相应的硬件实现,也可以由相应的硬件执行相应的软 件完成, 例如, 前述的识別模块, 可以是具有执行前述识別数字用户线路集合 中的至少一条传统数字用户线路的硬件, 例如识別器,也可以是能够执行相应 计算机程序从而完成前述功能的一般处理器或者其他硬件设备;再如前述的削 减模块,可以是具有执行前述根据所述目标功率谱密度掩码值对所述传统数字 用户线路的发送信号的功率谱密度进行削减功能的硬件, 例如削减器,也可以 是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设 备(本说明书提供的各个实施例都可应用上述描述原则)。
附图 4a示例的识別模块 401可以进一步包括交互单元 4011和识別单元 4012, 如附图 4b所示本发明另一实施例提供的降低数字用户线路干扰的装置, 其中:
交互单元 4011用于与矢量化数字用户线路的远端收发单元交互以获取用 户前端设备的能力集,识別单元 4012用于若所述交互单元 4011通过所述交互获 知一条数字用户线路连接的用户前端设备不支持矢量化能力集,则识別连接所 述用户前端设备的一条数字用户线路为传统数字用户线路。具体地, 可以是交 互单元 4011与矢量化数字用户线路的远端收发单元的握手 (Handshaking ) 阶 段, 交互单元 4011通过与 CPE的 VTU-R交互, 以获取该 CPE的能力集, 若交互 单元 4011通过与 VTU-0的上述交互,获知至少一条数字用户线路连接的 CPE不 支持矢量化(Vector ) 能力集, 则识別单元 4012识別连接该 CPE的至少一条数 字用户线路为传统数字用户线路。
附图 4a示例的获取模块 402可以进一步包括估计单元 4021 , 如附图 4c所示 本发明另一实施例提供的降低数字用户线路干扰的装置。
估计单元 4021用于根据数字用户线路干扰规律估计所述传统数字用户线 路的目标功率谱密度掩码值。 例如, 根据数字用户线路干扰规律, 一般实际测 得的最强串扰衰减值的功率在 - 55dB左右, 若串扰到矢量化数字用户线路的 噪声功率谱密度为- 135dBm/Hz的水平, 即与背景噪声相当的水平, 则不会对
矢量化数字用户线路产生影响。 因此,估计单元 4021根据串扰信号的功率谱密 度掩码值 =传统数字用户线路的目标功率谱密度掩码值 + 串扰衰减值这一 关系, 即可估计传统数字用户线路的目标功率谱密度掩码值为 - 80dBm/Hz, 不失一般性, 可以将传统数字用户线路的目标功率谱密度掩码值估计在 - 75dBm/Hz ~ - 85dBm/Hz的范围内。
附图 4a示例的获取模块 402也可以进一步包括计算单元 4022 , 如附图 4d所 示本发明另一实施例提供的降低数字用户线路干扰的装置
计算单元 4022用于通过获取所述传统数字用户线路的信道参数, 计算所 述传统数字用户线路的目标功率谱密度掩码值。传统数字用户线路的信道参数 包括信道衰减(即信道衰减对数值,以下使用 Hlog表示)、静态线路噪声( Quiet Line Noise, QLN )、 信噪比裕量、 比特分配表( b„ )和目标速率 (以下使用 TargetRate表示)等。 一般而言, 传统数字用户线路的速率都比较低, 根据香 农容量公式:
TargetRate =∑b„ = ¾log2(l + ^-^) , n为可用子载波序号, N为最大子载 波序号, Γ为信噪比差额(固定值)与信噪比裕量的和减去编码增益后所得差 值。
其中, SNR(n、 = TxPSD(n) + H log(n) - QLN(n)。计算单元 4022通过求解出 TxPSD ( n ), 将该值作为传统数字用户线路的目标功率谱密度掩码值。
附图 4a示例的削减模块 403可以进一步包括第一获取单元 501和第一发送 单元 502 , 如附图 5a所示本发明另一实施例提供的降低数字用户线路干扰的装 置, 其中:
第一获取单元 501 , 用于取之前一次获取的或初始化时上行功率谱密度掩 码值和所述目标上行功率谱密度掩码值中的较小值,得到当前上行功率谱密度 掩码值;
为了便于说明, 将上行功率谱密度掩码值使用 "PSDMSKus"表示。 在初 始化时, 上行功率谱密度掩码值有一个初始化值, 第一获取单元 501可以比较
之前一次获取的或初始化时上行功率谱密度掩码和上行目标功率谱密度限制 值的大小, 将其中的较小值作为当前上行功率谱密度掩码值(为了便于说明, 这里使用 " CMrre«i_PSDMSKus " 表示当前上行功率谱密度掩码), 即, c (PSDMASKusfJ) =min [PSDMASKus(/), Cutting PSDMASKus(/)], "min"表示取 最小值, 频率 / RFIBANDS , 而 RFIB ANDS是指射频干扰( Radio Frequence Interference )频段的集合( Set )。
第一发送单元 502, 用于将所述当前上行功率谱密度掩码值发送至数字用 户线路系统的终端,以使所述终端在将所述信道发现阶段功率谱密度限制在不 超过信道发现阶段的开始阶段上行最大掩码值、上行功率回退掩码值和所述当 前上行功率谱密度掩码值分別减去 3.5dB所得值中的较小值时对所述传统数字 用户线路的上行信号的功率谱密度进行削减。
在信道发现阶段的开始阶段, 终端在收到当前上行功率谱密度掩码后, 比 较信道发现阶段的开始阶段上行最大掩码值 (Channel Discovery maximum mask, CDMAXMASKus ), 上行功率回退掩码值 ( Upstream Power BackOff mask, UPBOMASK )和当前上行功率谱密度掩码值分別减去 3.5dB所得值, 将 信道发现阶段功率谱密度值 ( Channel Discovery PSD, CDPSD )限制在不超过 信道发现阶段的开始阶段上行最大掩码值、上行功率回退掩码值和所述当前上 行功率谱密度掩码值分別减去 3.5dB所得值中的较小值。 具体地, 这里是将信 道发现阶段的开始阶段上行功率谱密度(使用 "CDPSD^"表示)限制在不超 过信道发现阶段的开始阶段上行最大掩码值、上行功率回退掩码值和所述当前 上行功率谱密度掩码值分別减去 3.5所得值中的较小值, 即,
CDPSEte( ) < xmn[{current _ PSDMASKus( ) -3.5), (CDMAXMASKus -3.5), (UPBOMASK(¾, ) -3.5)] , f ί RFIBANDS
, 这里, RFIBANDS是指射频干扰(Radio Frequence Interference )频段的集合 ( Set )。
附图 4a示例的削减模块 403也可以进一步包括第二获取单元 503、第一比较 单元 504和第一限制单元 505,如附图 5b所示本发明另一实施例提供的降低数字 用户线路干扰的装置, 其中:
第二获取单元 503 , 用于取之前一次获取的或初始化时下行功率谱密度掩
码值和下行目标功率谱密度掩码值中的较小值,得到当前下行功率谱密度掩码 值。
将下行功率谱密度掩码使用 "PSDMSKds"表示。 在初始化时, 下行功率 谱密度掩码有一个初始化值, 第二获取单元 503可以比较之前一次获取的或初 始化时下行功率谱密度掩码值和下行目标功率谱密度值的大小,将其中的较小 值作为 当前下行功率谱密度掩码值 ( 为 了便于说明, 这里使用 " current_PSOMSKds " 表示当前上行功率谱密度掩码值 ), 即, c (PSDMASKdsfJ) =min [PSDMASKds(/), Cutting PSDMASKds(/)] , "min"表示取 最小值,频率 f ί RFIBANDS ,这里, RFIBANDS是指射频干扰( Radio Frequence Interference )频段的集合( Set )。
第一差值获取单元 504, 用于获取信道发现阶段的开始阶段下行最大掩码 值和所述当前下行功率谱密度掩码值中的较小值与 3.5dB的差值。
在本实施例中, 信道发现阶段的开始阶段下行最大掩码值可以是预置值。 第一限制单元 505 , 用于在将信道发现阶段功率谱密度限制在不超过所述 差值时, 对所述传统数字用户线路的下行信号的功率谱密度进行削减。
下行功率由局端设备, 例如, VTU-0决定, 因此, 下行功率的削减在局端 设备完成。 具体地, 这里是第一限制单元 505将信道发现阶段的开始阶段下行 功率谱密度(使用 "CDPSDi^"表示)限制在不超过信道发现阶段的开始阶段 下行最大掩码值和当前下行功率谱密度掩码值分別减去 3.5所得值中的较小值 时, 即, CDPSD&(/) < xm [{current _ PSDMASKds(/) - 3.5), (CDMAXMASKds - 3.5)] , / g RHBANDS ? 而
RFIBANDS是指射频干扰( Radio Frequence Interference )频段的集合, 第一限 制单元 505对所述传统数字用户线路的下行信号的功率谱密度进行削减。
附图 4a示例的削减模块 403可以进一步包括第三获取单元 601、第二差值获 取单元 602和第二限制单元 603 ,如附图 6a所示本发明另一实施例提供的降低数 字用户线路干扰的装置, 其中:
第三获取单元 601 , 用于若信道发现阶段的开始阶段下行最大掩码减去
3.5dB后大于下行目标功率谱密度掩码值, 取之前一次获取的或初始化时信道 发现阶段的开始阶段下行最大掩码和所述削减的下行功率谱密度限制值中的
较小值, 得到当前信道发现阶段的开始阶段下行最大掩码。
在初始化时,信道发现阶段的开始阶段下行最大掩码有一个初始化值。若 信道发现阶段的开始阶段下行最大掩码( CDMAXMASKds )初始值减去 3.5dB 后所得值小于下行目标功率谱密度掩码值, 则无需进行功率削减。若信道发现 大于下行目标功率谱密度掩码值, 则需要进行功率削减。
第三获取单元 601可以比较前一次获取的信道发现阶段的开始阶段下行最 大掩码或信道发现阶段的开始阶段下行最大掩码值(CDMAXMASKds )初始 值和下行目标功率谱密度值的大小,将其中的较小值作为当前信道发现阶段的 开 始 阶段 下 行 最 大掩码值 ( 为 了 便于 说 明 , 这里 使用 "cMrre«i_CDMAXMASKds"表示当前信道发现阶段的开始阶段下行最大掩码 值 ) , 即 , c«™t_CDAMXMASKds( ") = min [CDMAXMASKds(/), Cutting PSDMASKds(/)], "min" 表示取最小值, 频率 / RFIBANDS , 而 RFIB ANDS是指射频干扰 ( Radio Frequence Interference )频段的集合。
第二差值获取单元 602, 用于获取下行功率谱密度掩码值和所述当前信道 发现阶段的开始阶段下行最大掩码值中的较小值与 3.5dB的差值。
第二限制单元 603 , 用于对所述传统数字用户线路的下行信号的功率谱密 度进行削减时将所述信道发现阶段功率谱密度 CDPSD限制在不超过所述下行 功率谱密度掩码值和所述当前信道发现阶段的开始阶段下行最大掩码值分別 减去 3.5dB所得值中的较小值。
下行功率由局端设备, 例如, VTU-0决定, 因此, 下行功率的削减在局端 设备完成。 具体地, 这里是第二功率限制单元 603将信道发现阶段的开始阶段 下行功率谱密度(使用 "CDPSDi^"表示)限制在不超过下行功率谱密度掩码 值和当前信道发现阶段的开始阶段下行最大掩码值分別减去 3.5dB所得值中的 较 'J、值, P , CDPSDds(/) < min[(PSDMASKds(/)— 3.5), (current _ CDMAXMASKds - 3.5)] , f ί RFTOANDS ,
RFIBANDS是指射频干扰( Radio Frequence Interference )频段的集合。
附图 4a示例的削减模块 403也可以进一步包括第四获取单元 604和第二发
送单元 605 , 如附图 6b所示本发明另一实施例提供的降低数字用户线路干扰的 装置, 其中:
第四获取单元 604, 用于取之前一次获取的或初始化时信道发现阶段的开 始阶段上行最大掩码值和上行目标功率谱密度掩码值中的较小值,得到当前当 前上行目标功率谱密度掩码值。
在初始化时, 信道发现阶段的开始阶段上行最大掩码值有一个初始化值, 第四获取单元 604可以比较之前一次获取的或初始化时信道发现阶段的开始阶 段上行最大掩码值和上行目标功率谱密度值的大小,将其中的较小值作为当前 上行目标功率谱密度值(为了便于说明,这里使用 "cMrre«i_Cutting PSDMSKus" 表 示 当 前 上 行 目 标 功 率 谱 密 度 限 制 值 ) , 即 , currentjCutting PSDMASKus( ") = min [CDMAXMASKus(/), Cutting PSDMASKus(/)] , "min"表示取最小值,频率 f ^ RFIBANDS ,而 RFIBANDS是指射频干扰( Radio Frequence Interference )频段的集合。
第二发送单元 605 , 用于将上行功率回退掩码值和所述上行目标功率谱密 度掩码值发送至数字用户线路系统的终端,以使所述终端在将所述信道发现阶 段功率谱密度 CDPSD限制在不超过上行功率谱密度掩码值、 所述当前信道发 现阶段的开始阶段上行最大掩码值和上行功率回退掩码值分別减去 3.5dB所得 值中的较小值时, 对所述传统数字用户线路的上行信号的功率谱密度进行削 减。
在信道发现阶段的开始阶段,终端在收到上行功率回退掩码值和当前上行 目标功率谱密度掩码值后,比较当前信道发现阶段的开始阶段上行最大掩码值 ( Channel Discovery maximum mask, CDMAXMASKus )、 上行功率回退掩码 值( Upstream Power BackOff mask, UPBOMASK )和上行功率谱密度掩码值 分別减去 3.5dB所得值, 将信道发现阶段功率谱密度值 (Channel Discovery PSD, CDPSD )限制在不超过所述当前信道发现阶段的开始阶段上行最大掩码 值、 上行功率回退掩码值和上行功率谱密度掩码值分別减去 3.5dB所得值中的 较小值。 具体地, 这里是将信道发现阶段的开始阶段上行功率谱密度(使用 "CDPSDM5"表示)限制在不超过所述信道发现阶段的开始阶段上行最大掩码
值、 上行功率回退掩码值和上行功率谱密度掩码值分別减去 3.5dB所得值中的 较 小 值 , 即 ,
CDPSEte( ) < min[(PSDMASKus( ) - 3.5), (current _CDMAXMASKus -3.5), (UPBOMASK(¾, ) - 3.5)] , f ί RFIBANDS
, 这里, RFIBANDS是指射频干扰( Radio Frequence Interference )频段的集合。
请参阅附图 7, 是本发明另一实施例提供的降低数字用户线路干扰的装置 结构示意图。 为了便于说明, 仅仅示出了与本发明实施例相关的部分。 附图 7 示例的降低数字用户线路干扰的装置可以是 DSL系统矢量化控制实体( VCE ), 其包括信道线路识別模块 701、 参考值模块 702和配置模块 703, 其中:
线路识別模块 701 , 用于识別数字用户线路集合中的至少一条传统数字用 户线路,所述数字用户线路集合中包括至少一条矢量化数字用户线路和所述传 统数字用户线路。
在本实施例中, 线路识別模块 701可用于通过获取先验信息, 识別数字用 户线路集合中的至少一条传统数字用户线路。 即, 线路识別模块 701通过获取 运营商已有的先验信息, 例如, 终端设备版本及型号、 或者是否为矢量化终端 的历史记录等(这些先验信息存储于 VCE的数据库、存储单元或者独立于 VCE 的数据库、 存储单元), 识別数字用户线路集合中的至少一条数字用户线路是 否为传统数字用户线路。
参考值获取模块 702, 用于获取所述传统数字用户线路的目标功率谱密度 掩码值或最大发送频率限制值,所述目标功率谱密度掩码值为用于降低所述传 统数字用户线路对所述矢量化数字用户线路干扰时的参考值。
附图 7示例的参考值获取模块 702可以进一步包括第一估计单元 801 , 如附 图 8a所示本发明另一实施例提供的降低数字用户线路干扰的装置。
第一估计单元 801用于根据数字用户线路干扰规律估计所述传统数字用户 线路的目标功率谱密度掩码值。 如前所述, 根据数字用户线路干扰规律, 一般 实际测得的最强串扰衰减值的功率在 - 55dB左右, 若串扰到矢量化数字用户 线路的噪声功率谱密度为- 135dBm/Hz的水平, 即与背景噪声相当的水平, 则 不会对矢量化数字用户线路产生影响。 因此,根据串扰信号的功率谱密度掩码 值 =传统数字用户线路的目标功率谱密度掩码值 + 串扰衰减值这一关系,
第一估计单元 801即可估计传统数字用户线路的目标功率谱密度掩码值为 - 80dBm/Hz , 不失一般性, 可以将传统数字用户线路的目标功率谱密度掩码值 估计在 - 75dBm/Hz ~ - 85dBm/Hz的范围内。
附图 7示例的参考值获取模块 702也可以进一步包括第一计算单元 802 , 如 附图 8b所示本发明另一实施例提供的降低数字用户线路干扰的装置。
第一计算单元 802用于通过获取所述传统数字用户线路历史的信道参数, 计算所述传统数字用户线路的目标功率谱密度掩码值。所述传统数字用户线路 历史的信道参数包括之前存储的信道衰减(即信道衰减对数值,以下使用 Hlog 表示)、静态线路噪声( Quiet Line Noise , QLN )、信噪比裕量、比特分配表( b„ ) 和目标速率(以下使用 TargetRate表示)等。 一般而言, 传统数字用户线路的 速率都比较低, 根据香农容量公式:
TargetRate = b„= g2(l + ^」 ), 其中, n为可用子载波序号, N为最大 子载波序号, Γ为信噪比差额(固定值)与信噪比裕量的和减去编码增益后所 得差值, SNR(n) = TxPSD(n) + H \og(n) - QLN(n) , 第一计算单元 802 通过求解出 TxPSD ( n ), 将该值作为传统数字用户线路的目标功率谱密度掩码值。
附图 7示例的参考值获取模块 702也可以进一步包括第二估计单元 803 , 如 附图 8c所示本发明另一实施例提供的降低数字用户线路干扰的装置。
第二估计单元 803用于根据数字用户线路干扰规律估计所述传统数字用户 线路的最大发送频率限制值。 根据数字用户线路干扰规律, ADSL的工作频段 范围在 0~l .lMHz , ADSL2+的工作频段范围在 0~2.2MHz , VDSL2以及 Vectored DSL工作频段范围都在 0~30MHz。 由于 ADSL和 ADSL2+工作在较低的频段, 较低的频段串扰也较小, 而且使用的频段远小于 Vectored DSL的工作频段, 因 此, ADSL和 ADSL2+对 Vectored DSL的串扰影响非常小。 由实测经验可知, 在 1000m的线长范围, 传统的数字用户线工作在 0~1.1ΜΗζ的频段可达到的速率 为 10Mbps , 工作在 0~2.2MHz的频段可达到的速率为 20Mbps左右, 目前大多数 传统数字用户线的速率需求都在 20Mbps范围之内。 因此, 第二估计单元 803可
以根据数字用户线路干扰规律估计所述传统数字用户线路的最大发送频率限 制值, 例如, 2.2MHz。
附图 7示例的参考值获取模块 702也可以进一步包括第二计算单元 804 , 如 附图 8d所示本发明另一实施例提供的降低数字用户线路干扰的装置。 计算所述传统数字用户线路的最大发送频率限制值。具体地,第二计算单元 804 通过获取历史的信道参数, 包括信噪比(SNR )、 比特分配表(b„ )和目标速 率等, 一般传统数字用户线路的速率都较低, 根据香农容量公式:
TargetRate =∑b„ = ¾10§2(1 + ^°-^) , η为可用子载波序号, Ν为最大子载波 序号, Γ为信噪比差额(固定值)与信噪比裕量的和减去编码增益后所得差值。 求解出传统数字用户线路所需要的最大子载波序号 Ν, 则传统数字用户线路最 大发送频率限制值 = 最大子载波序号 Ν χ子载波宽度。
配置模块 703 , 用于根据所述目标功率谱密度掩码值或最大发送频率限制 值配置端口模板参数以降低所述传统数字用户线路对所述矢量化数字用户线 路的干扰。
附图 7示例的配置模块 703也可以进一步包括第一配置单元 901、 第二配置 单元 902、 第三配置单元 903、 第二计算单元 904或第四配置单元 905 , 如附图 9a 至 9e所示本发明另一实施例提供的降低数字用户线路干扰的装置, 其中:
第一配置单元 901 , 用于配置所述目标功率谱密度掩码值, 将所述配置的 目标功率谱密度掩码值作为管理信息库上行和 /或下行功率谱密度掩码值。 具 体地, 包括: 通过配置上行目标功率谱密度掩码值, 将所述配置的上行目标功 率谱密度掩码值作为 MIB上行功率谱密度掩码值;通过配置下行目标功率谱密 度掩码值,将所述配置的下行目标功率谱密度掩码值作为 MIB下行功率谱密度 掩码值;或者既通过配置上行目标功率谱密度掩码值将所述配置的上行目标功 率谱密度掩码值作为 MIB上行功率谱密度掩码值,又通过配置下行目标功率谱 密度掩码值将所述配置的下行目标功率谱密度掩码值作为 MIB下行功率谱密 度掩码值;
第二配置单元 902, 用于配置所述目标功率谱密度掩码值的平均值、 最大 值或最小值, 以所述配置的目标功率谱密度掩码值的平均值、最大值或最小值 作为管理信息库上行或下行最大常规功率谱密度。 具体地, 包括: 通过配置上 行目标功率谱密度掩码值的平均值、最大值或最小值, 以所述配置的上行目标 功率谱密度掩码值的平均值、最大值或最小值作为管理信息库上行最大常规功 率谱密度, 或者, 通过配置下行目标功率谱密度掩码值的平均值、 最大值或最 小值, 以所述配置的下行目标功率谱密度掩码值的平均值、最大值或最小值作 为管理信息库下行最大常规功率谱密度;
第三配置单元 903 , 用于配置所述目标功率谱密度掩码值的总和, 以所述 配置的目标功率谱密度掩码值的总和作为管理信息库上行和 /或下行最大常规 功率谱密度;
第二计算单元 904,用于通过获取所述传统数字用户线路历史的信道参数, 计算所述传统数字用户线路的目标功率谱密度掩码值。 具体地, 包括: 配置上 行目标功率谱密度掩码值的总和,以所述配置的上行目标功率谱密度掩码值的 总和作为管理信息库上行最大常规功率谱密度;配置下行目标功率谱密度掩码 值的总和,以所述配置的下行目标功率谱密度掩码值的总和作为管理信息库下 行最大常规功率谱密度; 或者, 既配置上行目标功率谱密度掩码值的总和, 又 配置下行目标功率谱密度掩码值的总和,以所述配置的上行目标功率谱密度掩 码值的总和作为管理信息库上行最大常规功率谱密度,以所述配置的下行目标 功率谱密度掩码值的总和作为管理信息库下行最大常规功率谱密度。
第四配置单元 905 , 用于将上行最大信噪比裕量配置为实际上行信噪比裕 量减去所述上行目标功率谱密度掩码值或者将下行最大信噪比裕量配置为实 际下行信噪比裕量减去所述下行目标功率谱密度掩码值。
附图 7示例的配置模块 703也可以进一步包括第五配置单元 1001、第六配置 单元 1002或第七配置单元 1003 ,如附图 10a至 10c所示本发明另一实施例提供的 降低数字用户线路干扰的装置, 其中:
第五配置单元 1001 ,用于将管理信息库的功率谱密度掩码的所述最大发送 频率限制值之后的掩码值配置为管理信息库定义的最小值。 因为, 若将管理信
息库的功率谱密度掩码的最大发送频率限制值之后的掩码值配置为管理信息 库定义的最小值, 一般在 - lOOdBm/Hz左右, 则在最大发送频率限制之后就不 会对矢量化线路产生任何影响;
第六配置单元 1002,用于配置管理信息库中射频干扰开槽集合( RFI notch ) 或子载波遮蔽集合( Tone blackout ) 以从发送集合中删除所述最大发送频率限 制值之后的频段;
第七配置单元 1003, 用于配置管理信息库中传输模式。
针对最大发送频率限制值小于 2.2MHz的情形, 即, 如果最大发送频率限 制值小于 2.2MHz, 第七配置单元 1003可以通过配置管理信息库中的传输模式, 将 VDSL2的传输模式降成 ADSL2+的传输模式, 同样可以将传统数字用户线路 限制在最大发送频率范围之内。
请参阅附图 11 , 是本发明实施例提供的一种降低数字用户线路干扰的系 统。 所述系统包括系统包括数字用户线^妻入复用器 1101、 至少一条矢量化数 字用户线路 1102、 至少一条传统数字用户线路 1103、 至少一个矢量化用户前端 设备 1104和至少一个传统用户前端设备 1105 , 所述数字用户线路接入复用器 1101可以包括附图 4a至附图 6b任一示例提供的矢量化数字用户线路系统局端 收发单元 1106, 其中:
矢量化数字用户线路 1102, 用于连接所述至少一个矢量化用户前端设备 1104和所述矢量化数字用户线路系统局端收发单元 1106;
传统数字用户线路 1103 , 用于连接所述至少一个传统用户前端设备 1105 和所述矢量化数字用户线路系统局端收发单元 1106;
矢量化用户前端设备 1104, 用于通过所述至少一条矢量化数字用户线路 1102与所述矢量化数字用户线路系统局端收发单元 1106交互;
传统用户前端设备 1105 , 用于通过所述至少一条传统数字用户线路 1103 与所述矢量化数字用户线路系统局端收发单元 1106交互;
所述矢量化数字用户线路系统局端收发单元 1106,用于识別数字用户线路 集合中的所述至少一条传统数字用户线路 1103,获取所述至少传统数字用户线 路 1103的目标功率谱密度掩码值,根据所述目标功率谱密度掩码值对所述至少
一条传统数字用户线路 1103的发送信号的功率谱密度进行削减。
需要说明的是, 上述装置各模块 /单元之间的信息交互、 执行过程等内容, 由于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施 例相同, 具体内容可参见本发明方法实施例中的叙述, 此处不再赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,比如以下各种方法的一种或多种 或全部:
方法一: 识別数字用户线路集合中的至少一条传统数字用户线路, 所述数 字用户线路集合中包括至少一条矢量化数字用户线路和所述传统数字用户线 路; 获取所述传统数字用户线路的目标功率谱密度掩码值, 所述目标功率谱密 时的参考值;根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送 信号的功率谱密度进行削减。
方法二: 识別数字用户线路集合中的至少一条传统数字用户线路, 所述数 字用户线路集合中包括至少一条矢量化数字用户线路和所述传统数字用户线 路;获取所述传统数字用户线路的目标功率谱密度掩码值或最大发送频率限制 化数字用户线路干扰时的参考值;根据所述目标功率谱密度掩码值或最大发送 频率限制值配置端口模板参数以降低所述传统数字用户线路对所述矢量化数 字用户线路的干扰。
该程序可以存储于一计算机可读存储介质中,存储介质可以包括: 只读存 储器(ROM, Read Only Memory ), 随机存取存储器(RAM, Random Access Memory )、 磁盘或光盘等。
以上对本发明实施例提供的降低数字用户线路干扰的方法、装置和系统进 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。
Claims
1、 一种降低数字用户线路干扰的方法, 其特征在于, 所述方法包括: 识別数字用户线路集合中的至少一条传统数字用户线路,所述数字用户线 路集合中包括至少一条矢量化数字用户线路和所述传统数字用户线路;
获取所述传统数字用户线路的目标功率谱密度掩码值,所述目标功率谱密 时的参考值;
根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送信号的 功率谱密度进行削减。
2、 如权利要求 1所述的方法, 其特征在于, 所述识別数字用户线路集合中 的至少一条传统数字用户线路包括:
与用户前端设备的远端收发单元交互以所述获取用户前端设备的能力集; 若通过所述交互获知一条数字用户线路连接的用户前端设备不支持矢量 化能力集,则识別连接到所述用户前端设备的一条数字用户线路为传统数字用 户线路。
3、 如权利要求 1所述的方法, 其特征在于, 所述获取所述传统数字用户线 路的目标功率谱密度掩码值包括:
根据数字用户线路干扰规律估计所述传统数字用户线路的目标功率谱密 度掩码值; 或者
通过获取所述传统数字用户线路的信道参数,计算所述传统数字用户线路 的目标功率谱密度掩码值。
4、 如权利要求 1所述的方法, 其特征在于, 所述目标功率谱密度掩码值包 括上行目标功率谱密度掩码值或下行目标功率谱密度掩码值;
所述根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送信 号的功率谱密度进行削减包括:
取之前一次获取的或初始化时的上行功率谱密度掩码值和所述上行目标 功率谱密度掩码值中的较小值, 得到当前上行功率谱密度掩码值;
将所述当前上行功率谱密度掩码值发送至数字用户线路系统的终端,以使 所述终端在将信道发现阶段功率谱密度限制在不超过信道发现阶段的开始阶 段上行最大掩码值、上行功率回退掩码值和所述当前上行功率谱密度掩码值分 別减去 3.5dB所得值中的较小值时, 对所述传统数字用户线路的上行信号的功 率谱密度进行削减; 或者
所述根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送信 号的功率谱密度进行削减包括:
取之前一次获取的或初始化时下行功率谱密度掩码值和所述下行目标功 率谱密度掩码值中的较小值, 得到当前下行功率谱密度掩码值;
获取信道发现阶段的开始阶段下行最大掩码值和所述当前下行功率谱密 度掩码值中的较小值与 3.5dB的差值;
在将信道发现阶段功率谱密度限制在不超过所述差值时,对所述传统数字 用户线路的下行信号的功率谱密度进行削减。
5、 如权利要求 1所述的方法, 其特征在于, 所述目标功率谱密度掩码值包 括上行目标功率谱密度掩码值或下行目标功率谱密度掩码值;
所述根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送信 号的功率谱密度进行削减包括:
若信道发现阶段的开始阶段下行最大掩码值减去 3.5dB后大于所述下行目 标功率谱密度掩码值,则取之前一次获取的或初始化时信道发现阶段的开始阶 段下行最大掩码值和所述下行目标功率谱密度掩码值中的较小值,得到当前信 道发现阶段的开始阶段下行最大掩码值;
获取下行功率谱密度掩码值和所述当前信道发现阶段的开始阶段下行最 大掩码值中的较小值与 3.5dB的差值;
在将信道发现阶段功率谱密度限制在不超过所述差值时,对所述传统数字 用户线路的下行信号的功率谱密度进行削减; 或者
所述根据所述目标功率谱密度掩码值对所述传统数字用户线路的发送信 号的功率谱密度进行削减包括:
取之前一次获取的或初始化时信道发现阶段的开始阶段上行最大掩码指 和所述上行目标功率谱密度掩码值中的较小值,得到当前上行目标功率谱密度 掩码值;
将上行功率回退掩码值和所述当前上行目标功率谱密度掩码值发送至数 字用户线路系统的终端,以使所述终端在将信道发现阶段功率谱密度限制在不 超过上行功率谱密度掩码值、当前信道发现阶段的开始阶段上行最大掩码值和 上行功率回退掩码值分別减去 3.5dB所得值中的较小值时对所述传统数字用户 线路的上行信号的功率谱密度进行削减。
6、 一种降低数字用户线路干扰的方法, 其特征在于, 所述方法包括: 识別数字用户线路集合中的至少一条传统数字用户线路,所述数字用户线 路集合中包括至少一条矢量化数字用户线路和所述传统数字用户线路;
获取所述传统数字用户线路的目标功率谱密度掩码值或最大发送频率限 量化数字用户线路干扰时的参考值;
根据所述目标功率谱密度掩码值或最大发送频率限制值配置端口模板参 数以降低所述传统数字用户线路对所述矢量化数字用户线路的干扰。
7、 如权利要求 6所述的方法, 其特征在于, 所述识別数字用户线路集合中 的至少一条传统数字用户线路包括:
通过获取先验信息,识別数字用户线路集合中的至少一条传统数字用户线 路。
8、 如权利要求 6所述的方法, 其特征在于, 所述获取所述传统数字用户线 路的目标功率谱密度掩码值包括:
根据数字用户线路干扰规律估计所述传统数字用户线路的目标功率谱密 度掩码值; 或者
通过获取所述传统数字用户线路历史的信道参数,计算所述传统数字用户 线路的目标功率谱密度掩码值。
9、 如权利要求 6所述的方法, 其特征在于, 所述获取所述传统数字用户线 路的最大发送频率限制值包括:
根据数字用户线路干扰规律估计所述传统数字用户线路的最大发送频率 限制值; 或者 通过获取所述传统数字用户线路历史的信道参数,计算所述传统数字用户 线路的最大发送频率限制值。
10、 如权利要求 6所述的方法, 其特征在于, 所述目标功率谱密度掩码值 包括上行目标功率谱密度掩码值或下行目标功率谱密度掩码值;
所述根据所述目标功率谱密度掩码值配置端口模板参数包括:
配置所述目标功率谱密度掩码值,将所述配置的目标功率谱密度掩码值作 为管理信息库上行和 /或下行功率谱密度掩码值; 或者
配置所述目标功率谱密度掩码值的平均值、最大值或最小值, 以所述配置 的目标功率谱密度掩码值的平均值、最大值或最小值作为管理信息库上行或下 行最大常规功率谱密度; 或者
配置所述目标功率谱密度掩码值的总和,以所述配置的目标功率谱密度掩 码值的总和作为管理信息库上行和 /或下行最大常规功率谱密度; 或者
根据所述上行目标功率谱密度掩码值计算上行功率回退参数,将所述计算 出的上行功率回退参数作为管理信息库上行功率回退参数; 或者
将上行最大信噪比裕量配置为实际上行信噪比裕量减去所述上行目标功 率谱密度掩码值或者将下行最大信噪比裕量配置为实际下行信噪比裕量减去 所述下行目标功率谱密度掩码值。
11、 如权利要求 6所述的方法, 其特征在于, 所述根据所述最大发送频率 限制值配置端口模板参数包括:
将管理信息库的功率谱密度掩码的所述最大发送频率限制值之后的掩码 值配置为管理信息库定义的最小值; 或者
配置管理信息库中射频干扰开槽集合或子载波遮蔽集合以从发送集合中 删除所述最大发送频率限制值之后的频段; 或者
配置管理信息库中传输模式。
12、 一种降低数字用户线路干扰的装置, 其特征在于, 所述装置为数字用 户线路系统的局端收发单元, 所述装置包括:
识別模块, 用于识別数字用户线路集合中的至少一条传统数字用户线路, 所述数字用户线路集合中包括至少一条矢量化数字用户线路和所述传统数字 用户线路;
获取模块, 用于获取所述传统数字用户线路的目标功率谱密度掩码值, 所 字用户线路干扰时的参考值;
削减模块,用于根据所述目标功率谱密度掩码值对所述传统数字用户线路 的发送信号的功率谱密度进行削减。
13、 如权利要求 12所述的装置, 其特征在于, 所述识別模块包括: 设备的能力集;
识別单元,用于若所述交互单元通过所述交互获知一条数字用户线路连接 的用户前端设备不支持矢量化能力集,则识別连接所述用户前端设备的一条数 字用户线路为传统数字用户线路。
14、 如权利要求 12所述的装置, 其特征在于, 所述获取模块包括估计单元 或计算单元;
所述估计单元,用于根据数字用户线路干扰规律估计所述传统数字用户线 路的目标功率谱密度掩码值;
所述计算单元, 用于通过获取所述传统数字用户线路的信道参数,计算所 述传统数字用户线路的目标功率谱密度掩码值。
15、 如权利要求 13所述的装置, 其特征在于, 所述目标功率谱密度掩码值 包括上行目标功率谱密度掩码值或下行目标功率谱密度掩码值;
所述削减模块包括第一获取单元和第一发送单元;
所述第一获取单元,用于取之前一次获取的或初始化时上行功率谱密度掩 码值和所述目标上行功率谱密度掩码值中的较小值,得到当前上行功率谱密度 掩码值;
所述第一发送单元,用于将所述当前上行功率谱密度掩码值发送至数字用 户线路系统的终端,以使所述终端在将信道发现阶段功率谱密度限制在不超过 信道发现阶段的开始阶段上行最大掩码值、上行功率回退掩码值和所述当前上 行功率谱密度掩码值分別减去 3.5dB所得值中的较小值时对所述传统数字用户 线路的上行信号的功率谱密度进行削减; 或者
所述功率限制模块包括第二获取单元、 第一差值单元和第一限制单元; 所述第二获取单元,用于取之前一次获取的或初始化时下行功率谱密度掩 码值和所述目标下行功率谱密度掩码值中的较小值,得到当前下行功率谱密度 掩码值;
所述第一差值获取单元,用于获取信道发现阶段的开始阶段下行最大掩码 值和所述当前下行功率谱密度掩码值中的较小值与 3.5dB的差值;
所述第一限制单元,用于在将信道发现阶段功率谱密度限制在不超过所述 差值时, 对所述传统数字用户线路的下行信号的功率谱密度进行削减。
16、 如权利要求 13所述的装置, 其特征在于, 所述目标功率谱密度掩码值 包括上行目标功率谱密度掩码值或下行目标功率谱密度掩码值;
所述削减模块包括第三获取单元、 第二差值获取单元和第二限制单元; 所述第三获取单元,用于若信道发现阶段的开始阶段下行最大掩码值减去 3.5dB后大于所述下行目标功率谱密度掩码值, 则取之前一次获取的或初始化 时信道发现阶段的开始阶段下行最大掩码值和所述下行目标功率谱密度掩码 值中的较小值, 得到当前信道发现阶段的开始阶段下行最大掩码值;
所述第二差值获取单元,用于获取下行功率谱密度掩码值和所述当前信道 发现阶段的开始阶段下行最大掩码值中的较小值与 3.5dB的差值;
所述第二限制单元,用于在将信道发现阶段功率谱密度限制在不超过所述 差值时, 对所述传统数字用户线路的下行信号的功率谱密度进行削减; 或者 所述削减模块包括第四获取单元和第二发送单元;
所述第四获取单元,用于取之前一次获取的或初始化时信道发现阶段的开 始阶段上行最大掩码值和所述上行目标功率谱密度掩码值中的较小值,得到当 前上行目标功率谱密度掩码值;
所述第二发送单元,用于将上行功率回退掩码值和所述当前上行目标功率 谱密度掩码值发送至数字用户线路系统的终端,以使所述终端在将信道发现阶 段功率谱密度限制在不超过上行功率谱密度掩码值、当前信道发现阶段的开始 阶段上行最大掩码值和上行功率回退掩码值分別减去 3.5dB所得值中的较小值 时对所述传统数字用户线路的上行信号的功率谱密度进行削减。
17、 一种降低数字用户线路干扰的装置, 其特征在于, 所述装置包括: 线路识別模块,用于识別数字用户线路集合中的至少一条传统数字用户线 路,所述数字用户线路集合中包括至少一条矢量化数字用户线路和所述传统数 字用户线路;
参考值获取模块,用于获取所述传统数字用户线路的目标功率谱密度掩码 值或最大发送频率限制值,所述目标功率谱密度掩码值为用于降低所述传统数 字用户线路对所述矢量化数字用户线路干扰时的参考值;
配置模块,用于根据所述目标功率谱密度掩码值或最大发送频率限制值配 置端口模板参数以降低所述传统数字用户线路对所述矢量化数字用户线路的 干扰。
18、 如权利要求 17所述的装置, 其特征在于, 所述线路识別模块具体用于 通过获取先验信息, 识別数字用户线路集合中的至少一条传统数字用户线路。
19、 如权利要求 17所述的装置, 其特征在于, 所述参考值获取模块包括第 一估计单元或第一计算单元;
所述第一估计单元,用于根据数字用户线路干扰规律估计所述传统数字用 户线路的目标功率谱密度掩码值;
所述第一计算单元, 用于通过获取所述传统数字用户线路历史的信道参 数, 计算所述传统数字用户线路的目标功率谱密度掩码值。
20、 如权利要求 17所述的装置, 其特征在于, 所述参考值获取模块包括第 二估计单元或第二计算单元;
所述第二估计单元,用于根据数字用户线路干扰规律估计所述传统数字用 户线路的最大发送频率限制值;
所述第二计算单元, 用于通过获取所述传统数字用户线路历史的信道参 数, 计算所述传统数字用户线路的最大发送频率限制值。
21、 如权利要求 17所述的装置, 其特征在于, 所述目标功率谱密度掩码值 包括上行目标功率谱密度掩码值或下行目标功率谱密度掩码值;
所述配置模块包括第一配置单元、 第二配置单元、 第三配置单元、 第三计 算单元或第四配置单元;
所述第一配置单元, 用于配置所述目标功率谱密度掩码值,将所述配置的 目标功率谱密度掩码值作为管理信息库上行和 /或下行功率谱密度掩码值; 所述第二配置单元, 用于配置所述目标功率谱密度掩码值的平均值、 最大 值或最小值, 以所述配置的目标功率谱密度掩码值的平均值、最大值或最小值 作为管理信息库上行或下行最大常规功率谱密度;
所述第三配置单元, 用于配置所述目标功率谱密度掩码值的总和, 以所述 配置的目标功率谱密度掩码值的总和作为管理信息库上行和 /或下行最大常规 功率谱密度;
所述第二计算单元,用于根据所述上行目标功率谱密度掩码值计算上行功 率回退参数,将所述计算出的上行功率回退参数作为管理信息库上行功率回退 参数;
所述第四配置单元,用于将上行最大信噪比裕量配置为实际上行信噪比裕 量减去所述上行目标功率谱密度掩码值或者将下行最大信噪比裕量配置为实 际下行信噪比裕量减去所述下行目标功率谱密度掩码值。
22、 如权利要求 17所述的装置, 其特征在于, 所述配置模块包括第五配置 单元、 第六配置单元或第七配置单元;
所述第五配置单元,用于将管理信息库的功率谱密度掩码的所述最大发送 频率限制值之后的掩码值配置为管理信息库定义的最小值;
所述第六配置单元,用于配置管理信息库中射频干扰开槽集合或子载波遮 蔽集合以从发送集合中删除所述最大发送频率限制值之后的频段; 或者
所述第七配置单元, 用于配置管理信息库中传输模式。
23、 一种降低数字用户线路干扰的系统, 其特征在于, 所述系统包括数字 用户线路接入复用器、至少一条矢量化数字用户线路、至少一条传统数字用户 线路、至少一个矢量化用户前端设备和至少一个传统用户前端设备, 所述数字 用户线路接入复用器包括矢量化数字用户线路系统局端收发单元;
所述至少一条矢量化数字用户线路,用于连接所述至少一个矢量化用户前 端设备和所述矢量化数字用户线路系统局端收发单元; 所述至少一条传统数字用户线路,用于连接所述至少一个传统用户前端设 备和所述矢量化数字用户线路系统局端收发单元;
所述至少一个矢量化用户前端设备,用于通过所述至少一条矢量化数字用 户线路与所述矢量化数字用户线路系统局端收发单元交互;
所述至少一个传统用户前端设备,用于通过所述至少一条传统数字用户线 路与所述矢量化数字用户线路系统局端收发单元交互;
所述矢量化数字用户线路系统局端收发单元,用于识別数字用户线路集合 中的所述至少一条传统数字用户线路,获取所述传统数字用户线路的目标功率 谱密度掩码值,根据所述目标功率谱密度掩码值对所述至少一条传统数字用户 线路的发送信号的功率谱密度进行削减。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11867212.0A EP2763324B1 (en) | 2011-11-03 | 2011-11-03 | Method, apparatus and system for reducing interference in digital subscriber line |
CN201180002641.5A CN103004099B (zh) | 2011-11-03 | 2011-11-03 | 一种降低数字用户线路干扰的方法、装置和系统 |
PCT/CN2011/081715 WO2012167537A1 (zh) | 2011-11-03 | 2011-11-03 | 一种降低数字用户线路干扰的方法、装置和系统 |
US14/266,522 US8908834B2 (en) | 2011-11-03 | 2014-04-30 | Method, apparatus, and system for reducing digital subscriber line interference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/081715 WO2012167537A1 (zh) | 2011-11-03 | 2011-11-03 | 一种降低数字用户线路干扰的方法、装置和系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/266,522 Continuation US8908834B2 (en) | 2011-11-03 | 2014-04-30 | Method, apparatus, and system for reducing digital subscriber line interference |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012167537A1 true WO2012167537A1 (zh) | 2012-12-13 |
Family
ID=47295398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/081715 WO2012167537A1 (zh) | 2011-11-03 | 2011-11-03 | 一种降低数字用户线路干扰的方法、装置和系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8908834B2 (zh) |
EP (1) | EP2763324B1 (zh) |
CN (1) | CN103004099B (zh) |
WO (1) | WO2012167537A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104641566A (zh) * | 2013-09-18 | 2015-05-20 | 华为技术有限公司 | 一种串扰场景下的去激活方法及系统 |
WO2016082221A1 (zh) * | 2014-11-28 | 2016-06-02 | 华为技术有限公司 | 信号发送的方法、装置和系统 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101984754B1 (ko) * | 2012-05-08 | 2019-09-24 | 한국전자통신연구원 | 엘티이기반 이동통신시스템에서의 전력 제어 및 링크 적응 방법 |
WO2014175869A1 (en) * | 2013-04-23 | 2014-10-30 | Adaptive Spectrum And Signal Alignment, Inc. | Methods systems, and apparatuses for implementing upstream power control for dsl |
US10033431B2 (en) | 2013-05-05 | 2018-07-24 | Lantiq Deutschland Gmbh | Training optimization of multiple lines in a vectored system using a prepared-to-join group |
US11233538B2 (en) * | 2014-03-25 | 2022-01-25 | Lantiq Beteiligungs-GmbH & Co. KG | Interference mitigation |
EP2942933B1 (en) * | 2014-05-05 | 2021-04-21 | ADTRAN GmbH | Data processing in a digital subscriber line environment |
CN105814804B (zh) * | 2014-11-18 | 2018-06-26 | 华为技术有限公司 | 串扰消除的方法、装置及系统 |
US10141976B2 (en) * | 2015-02-24 | 2018-11-27 | Lantiq Beteiligungs-GmbH & Co. KG | Crosstalk mitigation |
US9948769B2 (en) * | 2015-03-26 | 2018-04-17 | Alcatel-Lucent Usa Inc. | Methods and systems for determining crosstalk for a line in a vectored system |
WO2016172885A1 (zh) * | 2015-04-29 | 2016-11-03 | 华为技术有限公司 | 一种发送信号的方法、装置和系统 |
US9729936B2 (en) * | 2015-11-16 | 2017-08-08 | Arris Enterprises Llc | Interference reduction for upstream signals in communication networks |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1954586A (zh) * | 2004-03-25 | 2007-04-25 | 适应性频谱和信号校正股份有限公司 | 高速多环线dsl系统 |
WO2009152188A2 (en) * | 2008-06-10 | 2009-12-17 | Vector Silicon, Inc. | Vectored dsl crosstalk cancellation |
WO2010081868A2 (en) * | 2009-01-15 | 2010-07-22 | Lantiq Deutschland Gmbh | Methods and apparatuses for data transmission |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100228493B1 (ko) | 1997-08-30 | 1999-11-01 | 윤종용 | 비대칭 디지털 가입자 라인 시스템에서 송출 전력제어방법 |
US7158563B2 (en) | 2001-06-01 | 2007-01-02 | The Board Of Trustees Of The Leland Stanford Junior University | Dynamic digital communication system control |
DE60316544T2 (de) * | 2003-06-25 | 2008-07-03 | Alcatel Lucent | Leistungssteuerungsverfahren für ein fernbedienbaren Kommunikationsdienst |
US20060062288A1 (en) | 2004-09-21 | 2006-03-23 | Texas Instruments Incorporated | Short loop ADSL power spectral density management |
US7499487B2 (en) * | 2004-12-01 | 2009-03-03 | Texas Instruments Incorporated | System and method to mitigate interference in DSL systems |
US8073135B2 (en) * | 2005-05-10 | 2011-12-06 | Adaptive Spectrum And Signal Alignment, Inc. | Binder identification |
US7991122B2 (en) * | 2005-06-02 | 2011-08-02 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system training |
US7852952B2 (en) * | 2005-06-10 | 2010-12-14 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system loading and ordering |
CN100426807C (zh) * | 2005-09-30 | 2008-10-15 | 华为技术有限公司 | 降低串扰的方法及装置 |
US7813293B2 (en) * | 2006-05-12 | 2010-10-12 | John Papandriopoulos | Method for distributed spectrum management of digital communications systems |
US7843949B2 (en) * | 2007-08-17 | 2010-11-30 | Lantiq Deutschland Gmbh | Communication apparatus and method with changing composition of a vectored group |
CN101399575B (zh) * | 2007-09-27 | 2013-04-17 | 华为技术有限公司 | 一种控制dsl线路发送功率的方法和设备 |
JP5186046B2 (ja) * | 2008-11-27 | 2013-04-17 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | デジタル通信システムにおける伝送資源の管理方法及びシステム |
US8750492B2 (en) * | 2009-01-30 | 2014-06-10 | Futurewei Technologies, Inc. | Reducing the feedback overhead during crosstalk precoder initialization |
CN103125104B (zh) * | 2010-07-22 | 2015-10-21 | 伊卡诺斯通讯公司 | 用于操作矢量化vdsl线路组的方法 |
US8817857B2 (en) * | 2010-07-28 | 2014-08-26 | Ikanos Communications, Inc. | UPBO for vectored DSL |
WO2012018289A2 (en) * | 2010-08-05 | 2012-02-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Method in a communication system |
-
2011
- 2011-11-03 CN CN201180002641.5A patent/CN103004099B/zh active Active
- 2011-11-03 EP EP11867212.0A patent/EP2763324B1/en active Active
- 2011-11-03 WO PCT/CN2011/081715 patent/WO2012167537A1/zh active Application Filing
-
2014
- 2014-04-30 US US14/266,522 patent/US8908834B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1954586A (zh) * | 2004-03-25 | 2007-04-25 | 适应性频谱和信号校正股份有限公司 | 高速多环线dsl系统 |
WO2009152188A2 (en) * | 2008-06-10 | 2009-12-17 | Vector Silicon, Inc. | Vectored dsl crosstalk cancellation |
WO2010081868A2 (en) * | 2009-01-15 | 2010-07-22 | Lantiq Deutschland Gmbh | Methods and apparatuses for data transmission |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104641566A (zh) * | 2013-09-18 | 2015-05-20 | 华为技术有限公司 | 一种串扰场景下的去激活方法及系统 |
CN104641566B (zh) * | 2013-09-18 | 2017-05-10 | 华为技术有限公司 | 一种串扰场景下的去激活方法及系统 |
US9973236B2 (en) | 2013-09-18 | 2018-05-15 | Huawei Technologies Co., Ltd. | Deactivation method and system in crosstalk scenario |
US10516438B2 (en) | 2013-09-18 | 2019-12-24 | Huawei Technologies Co., Ltd. | Deactivation method and system in crosstalk scenario |
WO2016082221A1 (zh) * | 2014-11-28 | 2016-06-02 | 华为技术有限公司 | 信号发送的方法、装置和系统 |
CN105830353A (zh) * | 2014-11-28 | 2016-08-03 | 华为技术有限公司 | 信号发送的方法、装置和系统 |
CN105830353B (zh) * | 2014-11-28 | 2018-03-09 | 华为技术有限公司 | 信号发送的方法、装置和系统 |
Also Published As
Publication number | Publication date |
---|---|
EP2763324B1 (en) | 2016-09-07 |
CN103004099B (zh) | 2014-11-05 |
EP2763324A1 (en) | 2014-08-06 |
US8908834B2 (en) | 2014-12-09 |
US20140233710A1 (en) | 2014-08-21 |
CN103004099A (zh) | 2013-03-27 |
EP2763324A4 (en) | 2015-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012167537A1 (zh) | 一种降低数字用户线路干扰的方法、装置和系统 | |
EP1583308B1 (en) | Semi-distributed power spectrum control for DSL communications | |
US9225826B2 (en) | Method, apparatus and system for compatibility with VDSL2 legacy customer premises equipment | |
US9020017B2 (en) | Signal processing method, device and system | |
EP1396101A1 (en) | Dynamic digital communication system control | |
EP1322101A2 (en) | Near-end crosstalk noise minimization and power reduction for digital subscriber loops | |
WO2008052485A1 (fr) | Procédé et dispositif de gestion du spectre de fréquences | |
WO2007098674A1 (fr) | Procédé et dispositif d'obtention d'informations sur la diaphonie | |
US20060062288A1 (en) | Short loop ADSL power spectral density management | |
EP3373456B1 (en) | Method and arrangement in a digital subscriber line system | |
Strobel et al. | Coexistence of G. fast and VDSL in FTTDP and FTTC deployments | |
US20150003597A1 (en) | Method and device for adjusting a power allocation of users in a digital subscriber line environment | |
US8923454B2 (en) | Method, apparatus and system for eliminating aliasing noise in multi-carrier modulation system | |
US11218588B2 (en) | Methods and apparatus for communicating via digital subscriber lines | |
US8325825B2 (en) | Method and apparatus for optimizing dynamic range in DMT modems | |
CN101610103B (zh) | 一种信道估计方法、装置和系统 | |
WO2009152704A1 (zh) | 一种信道估计方法、装置和系统 | |
JACOBSEN | Last Mile Copper Access |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11867212 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011867212 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011867212 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |