WO2012167443A1 - 地址池重分配的方法和网络管理系统实体设备 - Google Patents

地址池重分配的方法和网络管理系统实体设备 Download PDF

Info

Publication number
WO2012167443A1
WO2012167443A1 PCT/CN2011/075587 CN2011075587W WO2012167443A1 WO 2012167443 A1 WO2012167443 A1 WO 2012167443A1 CN 2011075587 W CN2011075587 W CN 2011075587W WO 2012167443 A1 WO2012167443 A1 WO 2012167443A1
Authority
WO
WIPO (PCT)
Prior art keywords
ggsn
network element
address
resource
pool
Prior art date
Application number
PCT/CN2011/075587
Other languages
English (en)
French (fr)
Inventor
朱智勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000899.1A priority Critical patent/CN102257841B/zh
Priority to PCT/CN2011/075587 priority patent/WO2012167443A1/zh
Publication of WO2012167443A1 publication Critical patent/WO2012167443A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method for re-allocating an address pool and a network management system entity device. Background technique
  • IPv4 Internet Protocol version 4
  • the operator generally adopts a gateway general packet radio service support node (hereinafter referred to as GGSN)/packet data network gateway (hereinafter referred to as PGW) that carries the same service on the network.
  • GGSN gateway general packet radio service support node
  • PGW packetet data network gateway
  • MME Mobility Management Entity
  • the GGSN/PGW network element in the GGSN/PGW pool is selected on a per-capacity basis.
  • the services are evenly carried on the GGSN/PGW network elements in the GGSN/PGW pool.
  • the SGSN/MME automatically selects the subsequent active user to the other working GGSN/PGW network element.
  • the address pool can be divided into multiple segments and allocated to each GGSN/PGW network element in advance.
  • the GGSN/PGW network element selects the IP in the respective address segment.
  • the address is allocated to the user.
  • the GGSN/PGW network element recovers the assigned IP address.
  • the GGSN/PGW network element fails in the GGSN/PGW pool,
  • the IP address segment resources occupied by the faulty GGSN/PGW network element cannot be allocated to other working GGSN/PGW network elements. This may cause GGSN/ working even in the GGSN/PGW pool when the service is busy.
  • the PGW network element has capacity and processing capability, but cannot be accessed by users due to shortage of IP address resources.
  • Another existing address pool management allocation scheme can be authenticated, authorized, and billed.
  • AAA Authentication Authorization and Accounting
  • Monthly Server or Dynamic Host Configuration Protocol hereinafter referred to as:
  • the server manages IP address resources uniformly.
  • the IP address is applied to the AAA server or the DHCP server through a gateway such as the GGSN/PGW, and then distributed to the mobile terminal.
  • the AAA server or the DHCP server reclaims the assigned IP address.
  • the above solution increases the network deployment cost by adding an additional AAA server or a DHCP server.
  • the user requests the IP address to the AAA server or the DHCP server every time the user activates, an additional processing delay is brought. Internet activation is slow.
  • the AAA server or the DHCP server is a centralized point for network address allocation. If the AAA server or the DHCP server fails, the entire network user cannot access the network. In terms of network deployment, the centrally deployed AAA server or DHCP server reduces the network. Reliability. Summary of the invention
  • the embodiment of the present invention provides a method for reallocating an address pool and a network management system entity device, so that IP address resources are shared among GGSN network elements in the GGSN pool without adding additional equipment.
  • the embodiment of the invention provides a method for reallocating an address pool, including:
  • the network management system generates a resource backup matrix according to the number of GGSN network elements and the maximum fault level in the gateway general wireless packet service support node (GGSN) pool;
  • the network management system stores the address resource of the resource backup matrix with the GGSN pool.
  • Each of the GGSN network element corresponding to the GGSN network element and the backup addressable resource of each level are respectively sent to each GGSN network element in the GGSN pool.
  • the embodiment of the invention further provides a method for reassigning an address pool, including:
  • the gateway general wireless packet service support node (GGSN) network element receives the own address resource corresponding to the GGSN network element and the backup occupiable address resource sent by the network management system; after the user equipment accesses the GGSN network element, And the GGSN network element selects an Internet Protocol (IP) address to allocate to the user equipment in the own address resource corresponding to the GGSN network element.
  • IP Internet Protocol
  • the embodiment of the invention further provides a network management system entity device, including:
  • a generating module configured according to a gateway general wireless packet service support node (GGSN) pool
  • GGSN gateway general wireless packet service support node
  • the sending module is configured to: in the address resource of the resource backup matrix generated by the generating module, the self-owned address resource corresponding to each GGSN network element in the GGSN pool, and the backup of each level may be occupied.
  • a gateway general wireless packet service support node (GGSN) network element including:
  • a receiving module configured to receive a self-address resource corresponding to the GGSN network element and a backup addressable address resource sent by the network management system entity device;
  • an allocating module configured to: after the user equipment accesses the GGSN network element, select an Internet Protocol (IP) address to allocate to the user equipment in the own address resource corresponding to the GGSN network element.
  • IP Internet Protocol
  • the network management system generates a resource backup matrix according to the number of GGSN network elements in the GGSN pool and the maximum fault level. Then, the network management system associates the address resource of the resource backup matrix with each GGSN network element in the GGSN pool. The corresponding own address resources and the backup-capable address resources of each level are respectively sent to the GGSN network elements in the GGSN pool. Therefore, the IP address resource can be shared among the GGSN network elements in the GGSN pool, and no additional equipment is added, and the network topology is not changed, and no additional activation processing delay is added.
  • FIG. 1 is a flow chart of an embodiment of a method for re-allocating an address pool according to the present invention
  • FIG. 2 is a flow chart of another embodiment of a method for re-allocating an address pool according to the present invention.
  • FIG. 3 is a schematic diagram of networking of an embodiment of a GPRS/UMTS network according to the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of IP address resource block partitioning according to the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a primary backup resource pool of an IP address resource according to the present invention
  • FIG. 6 is a flowchart of an embodiment of a method for generating a resource backup matrix according to the present invention
  • FIG. 7 is a flowchart of still another embodiment of a method for re-allocating an address pool according to the present invention.
  • FIG. 8 is a flowchart of another embodiment of a method for generating a resource backup matrix according to the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a resource backup matrix
  • FIG. 10 is a schematic diagram of an embodiment of an IP resource structure matrix according to the present invention.
  • FIG. 11 is a schematic diagram of an embodiment of an element in a first column of a resource backup matrix of the present invention pointing to an IP address resource block;
  • FIG. 12 is a schematic diagram of an embodiment of a rotation vector pointing IP address resource block according to the present invention
  • FIG. 13 is a schematic diagram of an embodiment of forming a first dimensionality reduction matrix according to the present invention
  • Figure 14 is a schematic view showing an embodiment of assigning an element to the first column of the first reduced dimensional matrix of the present invention
  • FIG. 15 is a schematic diagram of another embodiment of a rotation vector pointing IP address resource block according to the present invention.
  • FIG. 16 is a schematic diagram of an embodiment of forming a second dimensionality reduction matrix according to the present invention.
  • 17 is a schematic diagram of an embodiment after rotating a rotation vector once in the present invention.
  • Figure 18 is a schematic illustration of an embodiment of assigning an element to the first column of the second reduced dimension array of the present invention.
  • FIG. 19 is a schematic diagram of another embodiment of a rotation vector pointing IP address resource block according to the present invention.
  • FIG. 20 is a schematic diagram of an embodiment of forming a third dimensionality reduction matrix according to the present invention.
  • Figure 21 is a schematic view showing an embodiment of the present invention after rotating the rotation vector twice;
  • Figure 22 is a schematic view showing an embodiment of assigning an element to the first column of the third reduced dimension array of the present invention.
  • FIG. 23 is a schematic diagram of another embodiment of a resource backup matrix according to the present invention.
  • FIG. 24 is a schematic diagram of an embodiment of a prompting interface for adjusting an IP address resource block according to the present invention
  • FIG. 25 is a schematic diagram of an embodiment of occupying an IP address resource block according to the present invention
  • FIG. 26 is a schematic structural diagram of an embodiment of a network management system entity device according to the present invention
  • FIG. 27 is a schematic structural diagram of another embodiment of a network management system entity device according to the present invention
  • FIG. 28 is a schematic diagram of a gateway general wireless packet service support node network element according to the present invention. Schematic diagram of the structure of the embodiment;
  • 29 is a schematic structural diagram of another embodiment of a gateway general wireless packet service support node network element according to the present invention. detailed description
  • FIG. 1 is a flowchart of an embodiment of a method for reallocating an address pool according to the present invention. As shown in FIG. 1 , the method for reallocating the address pool may include:
  • Step 101 The network management system (hereinafter referred to as NMS) generates a resource backup according to the number of GGSN network elements and the maximum fault level in the GGSN pool. Matrix.
  • Step 102 The NMS sends the self-owned address resource corresponding to each GGSN network element in the GGSN pool and the backup vacant address resource in the address resource of the resource backup matrix to each GGSN network element in the GGSN pool.
  • the NMS may further adjust the address resources in the resource backup matrix according to the IP address resource situation and the allocation requirement. In this way, in step 102, the NMS may send the self-owned address resource corresponding to each GGSN network element in the GGSN pool and the backup-capable address resources in the GGSN pool to the GGSN network elements in the GGSN pool. .
  • the NMS may first bind the address resource in the resource backup matrix to the corresponding GGSN pool before sending the GGSN network element corresponding to the GGSN network element and the backup address occupant address resources.
  • Point Name Access Point Name; hereinafter referred to as APN).
  • step 101 may be:
  • the NMS divides the IP address resource of each GGSN network element in the GGSN pool into n-1 IP address resource blocks. Then, the NMS can assign a rotation vector composed of the IP address resource blocks of each GGSN network element to the resource backup.
  • the NMS may cyclically perform the step of performing the dimensionality reduction operation of the assigned resource backup matrix according to the i-th row and the first column, and performing the above-mentioned rotation vector composed of the IP address resource block of the i-th GGSN network element in the GGSN pool. After the loop is rotated, The step of assigning elements in the vector obtained after the loop rotation to the elements of the kth column in the dimension reduction matrix until all the
  • the NMS generates a resource backup matrix according to the number of the GGSN network elements in the GGSN pool and the maximum fault level. Then, the NMS stores the address of the resource backup matrix with the own address corresponding to each GGSN network element in the GGSN pool. The resources and the backup-capable address resources of each level are respectively sent to the GGSN network elements in the GGSN pool. Therefore, the IP address resource can be shared among the GGSN network elements in the GGSN pool, and no additional equipment is added, and the network topology is not changed, and no additional activation processing delay is added.
  • FIG. 2 is a flowchart of another embodiment of a method for re-allocating an address pool according to the present invention. As shown in FIG. 2, the method for reallocating the address pool may include:
  • Step 201 The GGSN network element receives the own address resource corresponding to the GGSN network element and the backup occupiable address resource sent by the NMS.
  • Step 202 After the user equipment accesses the GGSN network element, the GGSN network element selects an IP address to allocate to the user equipment in the own address resource corresponding to the GGSN network element.
  • the GGSN network element working in the GGSN pool can work normally according to the number of failed GGSN network elements.
  • the backup of the GGSN network element corresponding to the GGSN network element may occupy the IP address resource block of the GGSN network element in the address resource that is faulty.
  • the GGSN network element occupying the IP address resource of the failed GGSN network element returns the occupied IP address resource block to the GGSN network element that is working normally. Specifically, when returning the occupied IP address resource block, the GGSN network element that occupies the IP address resource of the failed GGSN network element can use the occupied IP address step by step according to the current usage of the occupied IP address resource block. The resource block is returned to the normal working GGSN network element to avoid affecting online users and the network.
  • the foregoing embodiment can implement that the IP address resource is shared between the GGSN network elements in the GGSN pool. And no additional equipment is added, the network topology is not changed, and no additional activation processing delay is added.
  • the GPRS/Universal Mobile Telecommunications System (UMTS) network is taken as an example to describe the method for reassigning the address pool provided by the embodiment of the present invention.
  • UMTS Universal Mobile Telecommunications System
  • FIG. 3 is a schematic diagram of networking of an embodiment of a GPRS/UMTS network according to the present invention.
  • a GGSN-1 network element, a GGSN-2 network element, and a GGSN-3 network element form a GGSN pool, and the SGSN-1 of the local network.
  • SGSN-2 is interconnected through the IP backbone network.
  • the IP address assigned to the GGSN-1 network element is IP1
  • the IP address assigned to the GGSN-2 network element is IP2
  • the IP address assigned to the GGSN-3 network element is IP3; the IP address owned by the GGSN pool
  • IP1, IP2 and IP3 can be divided into IP address resource blocks as shown in Figure 4: (IP1.1, IP1.2), ( IP2.1, IP2.2), (IP3.1, IP3.2)
  • Figure 4 is a schematic diagram of an embodiment of IP address resource block partitioning according to the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a primary backup resource pool of an IP address resource according to the present invention.
  • the GGSN network element in the GGSN pool When a GGSN network element in the GGSN pool fails, the GGSN network element in the GGSN pool will preempt the IP address resource block corresponding to the failed GGSN network element in the primary backup resource pool. For example, when the GGSN-1 network element in the GGSN pool fails, the GGSN-2 network element will preempt the IP1.1 address resource block corresponding to the GGSN-1 network element, and the GGSN-3 network element will preempt the GGSN-1 network element. IP1.2 address resource block. After the GGSN-1 network element resumes normal operation, the GGSN-2 network element returns the preempted IP1.1 address resource block to the normal working GGSN-1 network element; the GGSN-3 network element will preempt the IP1.2 address resource block. Return the GGSN-2 network element that has returned to normal operation.
  • the manner of dividing the above IP address resource blocks can be easily extended to accommodate at least two GGSNs.
  • the network element forms a GGSN pool and at least one level of backup resource allocation.
  • FIG. 6 is a flowchart of an embodiment of a method for generating a resource backup matrix according to the present invention.
  • the rotation vector ⁇ is composed of IP address resource blocks of each GGSN network element, wherein each element in the resource backup matrix A is itself a vector having the same dimension as ⁇ .
  • Step 604 Perform the dimensionality reduction operation on the assigned resource backup matrix according to the i-th row and the first column, and obtain the i-th dimensionality reduction matrix of the assigned resource backup matrix, that is, remove the i-th row of the resource backup matrix A and The elements in the first column are such that the assigned resource backup matrix becomes (n-1) X (n-1) dimensional matrix, and the i-th dimensionality reduction matrix can be denoted as A (ll ).
  • Step 605 Perform p-th rotation rotation on the rotation vector composed of the IP address resource blocks of the i-th GGSN network element in the GGSN pool, and assign the elements to the k-th column in the i-th dimensionality reduction matrix.
  • the vector t 1(1 + k _ 2 ) is obtained, and then the elements in the vector + k ⁇ are assigned to ⁇ ⁇ ) in the kth column. element.
  • the NMS loops to perform steps 605 and 606 until all the elements in the resource backup matrix A are assigned.
  • is the GGSN network element included in the GGSN pool.
  • the number of resource backups is n, and the maximum fault level is also n.
  • the foregoing embodiment can implement the resource backup matrix generated by the NMS according to the number of the GGSN network elements in the GGSN pool and the maximum fault level, and the IP address resources can be shared among the GGSN network elements in the GGSN pool.
  • the method for reallocating the address pool according to the embodiment of the present invention is described in detail below by taking the number of GGSN network elements in the GGSN pool as n and the maximum fault level as m.
  • FIG. 7 is a flowchart of still another embodiment of the method for re-allocating an address pool according to the present invention.
  • the method for reallocating the address pool may include:
  • Step 701 The NMS generates a resource backup matrix according to the number of GGSN network elements in the GGSN pool and the maximum fault level.
  • the NMS can generate a resource backup matrix by referring to the method provided in the embodiment shown in FIG. 6 of the present invention, which is specifically described below with reference to FIG. 8.
  • FIG. 8 is a flowchart of another embodiment of a method for generating a resource backup matrix according to the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a resource backup matrix.
  • Step 802 The NMS applies the IP resource structure matrix IP[n, n-l] according to the number of GGSN network elements in the GGSN pool.
  • each element in the IP[n, n-l] may be a structure linked list, and is initialized to be empty.
  • FIG. 10 is a schematic diagram of an embodiment of the IP resource structure matrix of the present invention.
  • Step 803 the NMS points the element in the first column of A to the corresponding in the IP resource structure matrix.
  • FIG. 11 is a schematic diagram of an embodiment of an element in a first column of a resource backup matrix pointing to an IP address resource block according to an embodiment of the present invention.
  • Step 804 defining a rotation vector T[n-1], and pointing ⁇ [ ⁇ -1] to the IP address resource block of the first row in the IP resource structure matrix, as shown in FIG. 12,
  • FIG. 12 is a rotation vector pointing of the present invention.
  • step 806 T[n-1] is rotated (i + k-2) times.
  • Step 807 assigning an element in the vector obtained by the cyclic rotation to the element of the first column in the first reduced-dimensional matrix A (11 ), as shown in FIG. 14, FIG. 14 assigns the first value to the present invention.
  • Step 808 the rotation vector T[n-1] is directed to the IP address resource block of the second row in the IP resource structure matrix, as shown in FIG. 15,
  • FIG. 15 is another embodiment of the rotation vector pointing IP address resource block according to the present invention. schematic diagram.
  • the invention forms a schematic diagram of an embodiment of forming a second dimensionality reduction matrix.
  • Step 810 which points to the T[n-1] of the IP address resource block of the second row in the IP resource structure matrix. Cycle rotation (i+k-2) times.
  • Step 811 assigning the elements in the vector shown in FIG. 17 to the elements in the first column of the second reduced-dimensional matrix A (ll ), as shown in FIG. 18, FIG. 18 assigns the value to the second drop in the present invention.
  • Step 812 pointing the rotation vector ⁇ [ ⁇ -1] to the IP address resource block of the third row in the IP resource structure matrix, as shown in FIG. 19,
  • FIG. 19 is another embodiment of the present invention, where the rotation vector points to the IP address resource block.
  • the present invention forms a schematic diagram of one embodiment of a third dimensionality reduction matrix.
  • Step 814 Rotate (i + k-2) times the vector of the IP address resource block pointing to the third row in the IP resource structure matrix.
  • Step 815 assigning the elements in the vector shown in FIG. 21 to the elements in the first column of the third dimensionality reduction matrix A (ll ), as shown in FIG. 22, FIG. 22 assigning the value to the third in the present invention.
  • FIG. 23 is a schematic diagram of another embodiment of the resource backup matrix of the present invention.
  • the first row element corresponds to the GGSN-1 network element IP address resource block
  • the second row element corresponds to the GGSN-2 network element IP address resource block
  • the third row element corresponds to the GGSN- 3 network
  • the IP address resource block of the element; the elements of the first column correspond to the own address resources of the GGSN-1 network element, the GGSN-2 network element, and the GGSN-3 network element
  • the elements of the second column correspond to the GGSN-1 network element and the GGSN- A primary backup of the network element and the GGSN-3 network element can occupy the address resource.
  • Step 702 The NMS adjusts the address resources in the resource backup matrix according to the IP address resource situation and the allocation requirement.
  • the NMS may provide a prompt interface for inputting or adjusting an IP address resource block to the user, as shown in FIG. 24, after which the NMS may receive information of the user-entered or adjusted IP address resource block, and according to the user input or adjusted IP.
  • the information of the address resource block adjusts the address resource in the resource backup matrix.
  • Figure 24 is a schematic diagram of an embodiment of a prompt interface for adjusting an IP address resource block according to the present invention.
  • Step 703 The NMS binds the adjusted address resource to the APN corresponding to the GGSN pool. Specifically, the NMS may prompt the user to input the APN corresponding to the adjusted address resource, as shown below:
  • the NMS can receive the APN input by the user, for example: Internet (Internet), and then the APN can bind the adjusted address resource to the APN, for example: Internet
  • Step 704 The NMS sends the adjusted address resource to the GGSN network element in the GGSN pool, and the backup address resource corresponding to each GGSN network element in the GGSN pool.
  • the NMS may prompt the user to input the address of the command received by each GGSN network element in the GGSN pool, as follows:
  • the NMS After receiving the above address entered by the user, the NMS will prompt whether to send it to each GGSN network. After receiving the indication sent by the user to each GGSN network element, the NMS sends the adjusted vacant address resource to each GGSN network element in the GGSN pool by using a management command message.
  • the embodiment shown in FIG. 7 can realize that the IP address resource is shared among the GGSN network elements in the GGSN pool, and does not need to add additional equipment, and does not change the network topology, and does not increase the additional activation processing delay.
  • the GGSN network element working in the GGSN pool may be less than or equal to the faulty level of the GGSN network element in the normal working according to the number of failed GGSN network elements.
  • the backup of the number of GGSN network elements may occupy the IP address resource block of the GGSN network element occupying the fault in the address resource.
  • the GGSN-2 network element can occupy the failed GGSN-1 in the primary backup addressable address resource corresponding to the GGSN-2 network element.
  • the IP address resource block of the network element, the GGSN-3 network element may occupy the IP address resource block of the failed GGSN-1 network element in the first-level backup occupiable address resource corresponding to the GGSN-3 network element, as shown in FIG. 25
  • the dotted line is shown in the box section.
  • FIG. 25 is a schematic diagram of an embodiment of an IP address resource block occupation according to the present invention.
  • the GGSN-2 network element and the GGSN-3 network element return the occupied IP address resource block to the normal working GGSN-1 network element.
  • the GGSN-2 when returning the occupied IP address resource block, it can be returned step by step according to the current usage of the occupied IP address resource block, thereby avoiding impact on the online user and the network; in specific implementation, the GGSN-2 is used.
  • the GGSN-2 when returning the occupied IP[1][1] address resource block, 4 IP[1][1] address resource block is divided into two segments, where IP address segment 1 is not used, and IP address is used.
  • the GGSN-2 may first return the IP address segment 1 of the IP[1][1] address resource block, and the IP[1][1] address is returned to the GGSN-1.
  • the method for reallocating the address pool provided by the embodiment of the present invention solves the problem of sharing network resources at the network level.
  • the method for re-allocating the address pool provided by the present invention does not add any network equipment, has the advantages of not changing the network topology, does not increase the network deployment cost, does not bring the user access delay, and does not reduce the network reliability.
  • the method for re-allocating an address pool provided by the embodiment of the present invention is also applicable to multiple application scenarios, for example, a scenario in which (n + m ) backup is performed between devices, processes, or data.
  • FIG. 26 is a schematic structural diagram of an embodiment of a network management system entity device according to the present invention.
  • the NMS entity device in this embodiment may implement the flowchart of the embodiment shown in FIG. 1 of the present invention.
  • the NMS entity device may include:
  • the generating module 2601 is configured to generate a resource backup matrix according to the number of GGSN network elements and the maximum fault level in the GGSN pool.
  • the sending module 2602 is configured to send, to the GGSN pool, the own address resource corresponding to each GGSN network element in the GGSN pool and the backup addressable address resources in the address resource of the resource backup matrix generated by the generating module 2601. Each GGSN network element.
  • the generating module 2601 may generate a resource backup matrix according to the number of GGSN network elements and the maximum fault level in the GGSN pool, and then the sending module 2602 may allocate the address resources of the resource backup matrix to each GGSN in the GGSN pool.
  • the self-owned address resource corresponding to the network element and the backup-capable address resources of each level are respectively sent to the GGSN network elements in the GGSN pool. Therefore, the IP address resource can be shared among the GGSN network elements in the GGSN pool, and no additional equipment is added, and the network topology is not changed, and no additional activation processing delay is added.
  • FIG. 27 is a schematic structural diagram of another embodiment of a network management system entity device according to the present invention. The difference is that the NMS entity device shown in FIG. 27 may further include:
  • the adjusting module 2603 is configured to adjust the address resource in the resource backup matrix generated by the generating module 2601 according to the IP address resource situation and the allocation requirement; at this time, the sending module 2602 may adjust the adjusted address resource of the adjusting module 2603 to the GGSN.
  • the NMS entity device in this embodiment may further include:
  • the binding module 2604 is configured to bind the address resource in the resource backup matrix to the GGSN before the sending module 2602 sends the own address resource corresponding to each GGSN network element in the GGSN pool and the backup addressable resource at each level.
  • the generating module 2601 may include:
  • the sub-module 26011 is configured to divide the IP address resource of each GGSN network element in the GGSN pool into n-1 block IP address resource blocks, where n is the number of GGSN network elements in the GGSN pool;
  • the assignment sub-module 26012 is configured to assign a rotation vector composed of an IP address resource block of each GGSN network element to an element in a first column of the resource backup matrix; the dimension of the element is the same as the dimension of the rotation vector, and the resource backup
  • the size of the matrix is nxm; where m is the maximum fault level;
  • the assignment sub-module 26012 may further perform a p-cycle rotation on the rotation vector composed of the IP address resource block of the i-th GGSN network element in the GGSN pool, and assign the element in the vector obtained after the loop rotation to the ith.
  • the following dimensionality reduction operation sub-module 26013 and the assignment sub-module 26012 can cyclically perform the above steps of performing a dimensionality reduction operation on the resource backup matrix according to the i-th row and the first column, and the IP address of the i-th GGSN network element in the GGSN pool.
  • the elements in the vector obtained by the cyclic rotation are assigned to the elements of the k-th column in the dimensionality reduction matrix until all the elements in the resource backup matrix are assigned.
  • the foregoing NMS entity device can implement the IP address resource sharing among the GGSN network elements in the GGSN pool, and does not need to add additional equipment, and does not change the network topology, and does not increase the additional activation processing delay.
  • FIG. 28 is a schematic structural diagram of an embodiment of a gateway general-purpose wireless packet service support node network element according to the present invention.
  • the GGSN network element in this embodiment can implement the process of the embodiment shown in FIG. 2 of the present invention. As shown in FIG. 28, the GGSN is shown in FIG.
  • the network element can include:
  • the receiving module 2801 is configured to receive, by the NMS entity device, the own address resource corresponding to the GGSN network element and the backup occupiable address resources of each level;
  • the allocating module 2802 is configured to: after the user equipment accesses the GGSN network element, select an IP address to be allocated to the user equipment in the own address resource corresponding to the GGSN network element.
  • the GGSN network element can share the IP address resources among the GGSN network elements in the GGSN pool, and does not need to add additional equipment, and does not change the network topology, and does not add additional activation processing delay.
  • FIG. 29 is a schematic structural diagram of another embodiment of a gateway general-purpose wireless packet service support node network element according to the present invention. The difference is that the GGSN network element shown in FIG. 29 may further include the GGSN network element shown in FIG. :
  • the occupant module 2803 is configured to work normally in the GGSN network element, but after the GGSN network element in the GGSN pool to which the GGSN network element belongs is faulty, the GGSN network element working normally according to the number of failed GGSN network elements The corresponding level is less than or equal to the number of failed GGSN network elements.
  • the backup can occupy the GGSN network in the address resource.
  • the IP address resource block of the element is configured to work normally in the GGSN network element, but after the GGSN network element in the GGSN pool to which the GGSN network element belongs is faulty, the GGSN network element working normally according to the number of failed GGSN network elements The corresponding level is less than or equal to the number of failed GGSN network elements.
  • the backup can occupy the GGSN network in the address resource.
  • the IP address resource block of the element is configured to work normally in the GGSN network element, but after the GGSN network element in the GGSN pool to which the GGSN network element belongs
  • the returning module 2804 is configured to return the IP address resource block occupied by the occupying module 2803 to the GGSN network element that is working normally after the failed GGSN network element resumes normal operation; specifically, the returning module 2804 can be based on the occupied IP address resource. For the current usage of the block, the occupied IP address resource blocks are returned to the normal working GGSN network element step by step to avoid affecting the online users and the network.
  • the GGSN network element can share the IP address resources among the GGSN network elements in the GGSN pool, and does not need to add additional equipment, and does not change the network topology, and does not add additional activation processing delay.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供一种地址池重分配的方法和网络管理系统实体设备,该地址池重分配的方法可以包括:NMS根据GGSN池中GGSN网元的个数和最大故障级别生成资源备份矩阵;将所述资源备份矩阵的地址资源中与GGSN池中各GGSN网元对应的自有地址资源和各级备份可占用地址资源分别发送给GGSN池中的各GGSN网元。本发明可以实现IP地址资源在GGSN池的各GGSN网元之间共享,并且不用增加额外设备,不会改变网络拓扑结构,不会增加额外的激活处理时延。

Description

地址池重分配的方法和网络管理系统实体设备 技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种地址池重分配的方法和 网络管理系统实体设备。 背景技术
随着全球移动互连网的蓬勃发展, 移动终端在通过网络上网的过程中 占用了大量因特网协议 ( Internet Protocol; 以下简称: IP ) 地址资源, 由 于目前因特网还是以因特网协议版本 4 ( Internet Protocol version 4; 以下 简称: IPv4 ) 网络为主, 这就加剧了 IPv4地址短缺的矛盾。
目前运营商普遍采取把网络上承载相同业务的多个网关通用无线分 组业务支持节点 ( Gateway General Packet Radio Service Support Node; 以 下简称: GGSN ) /分组数据网网关 ( Packet Data Network Gateway; 以下 简称: PGW )形成池(Pool ) 的组网方式, 在这种组网方式下, 通用无线 分组业务月良务支持节点 ( Serving General Packet Radio Service Support Node; 以下简称: SGSN ) /移动性管理实体( Mobility Management Entity; 以下简称: MME )按容量比例平均地选择 GGSN/PGW池里的 GGSN/PGW 网元, 正常情况下业务均匀的承载在 GGSN/PGW池中各 GGSN/PGW网 元上。 当 GGSN/PGW池中有 GGSN/PGW网元发生故障时, SGSN/MME 会自动将后续激活用户选择到其他正常工作的 GGSN/PGW网元上。
现有的一种地址池管理分配方案中, 可以将地址池分成多个段, 预先 分配给各 GGSN/PGW网元, 用户上网激活业务时由 GGSN/PGW网元在 各自的地址段内选择 IP地址分配给用户使用, 用户下线时 GGSN/PGW网 元回收各自分配的 IP地址。
但是上述方案中, 当 GGSN/PGW池中有 GGSN/PGW网元发生故障 时,发生故障的 GGSN/PGW网元所占用的 IP地址段资源不能分配给其他 正常工作的 GGSN/PGW 网元, 这样在业务繁忙的时候可能会造成即使 GGSN/PGW池中正常工作的 GGSN/PGW网元有容量和处理能力,但由于 IP地址资源短缺不能让用户接入。
现有的另一种地址池管理分配方案中, 可以由鉴权、 授权和计费
( Authentication Authorization and Accounting; 以下简称: AAA ) 月良务器 或动态主机配置协议 ( Dynamic Host Configuration Protocol; 以下简称:
DHCP ) 服务器统一管理 IP 地址资源。 在移动终端上线的时候通过 GGSN/PGW等网关向 AAA服务器或 DHCP服务器申请 IP地址, 然后分 配下发给移动终端, 在移动终端下线的时候 AAA服务器或 DHCP服务器 回收分配的 IP地址。
但是上述方案由于需要增加额外的 AAA服务器或 DHCP服务器, 增 加了网络部署成本; 其次, 由于用户激活的时候每次都要到 AAA服务器 或 DHCP服务器申请 IP地址, 带来了额外的处理时延, 上网激活速度慢。 最后, AAA服务器或 DHCP服务器是网络地址分配的集中点, 如果 AAA 服务器或 DHCP服务器出现故障会造成全网用户都不能接入,从网络部署 上来讲, 集中部署的 AAA服务器或 DHCP服务器降低了网络的可靠性。 发明内容
本发明实施例提供一种地址池重分配的方法和网络管理系统实体设备, 以在不增加额外设备的前提下, 实现 IP地址资源在 GGSN池的各 GGSN网 元之间共享。
本发明实施例提供一种地址池重分配的方法, 包括:
网络管理系统根据网关通用无线分组业务支持节点 (GGSN ) 池中 GGSN网元的个数和最大故障级别生成资源备份矩阵;
所述网络管理系统将所述资源备份矩阵的地址资源中与所述 GGSN池 中各 GGSN网元对应的自有地址资源和各级备份可占用地址资源分别发送 给所述 GGSN池中的各 GGSN网元。
本发明实施例还提供一种地址池重分配的方法, 包括:
网关通用无线分组业务支持节点 (GGSN ) 网元接收网络管理系统发 送的与所述 GGSN网元对应的自有地址资源和各级备份可占用地址资源; 在用户设备接入所述 GGSN网元之后, 所述 GGSN网元在所述 GGSN网 元对应的自有地址资源中选择因特网协议( IP )地址分配给所述用户设备。
本发明实施例还提供一种网络管理系统实体设备, 包括:
生成模块, 用于根据网关通用无线分组业务支持节点 (GGSN ) 池中
GGSN网元的个数和最大故障级别生成资源备份矩阵;
发送模块, 用于将所述生成模块生成的所述资源备份矩阵的地址资源 中与所述 GGSN池中各 GGSN网元对应的自有地址资源和各级备份可占用 本发明实施例还提供一种网关通用无线分组业务支持节点(GGSN )网 元, 包括:
接收模块,用于接收网络管理系统实体设备发送的与所述 GGSN网元 对应的自有地址资源和各级备份可占用地址资源;
分配模块, 用于在用户设备接入所述 GGSN网元之后, 在所述 GGSN 网元对应的自有地址资源中选择因特网协议(IP )地址分配给所述用户设 备。
通过本发明实施例, 网络管理系统根据 GGSN池中 GGSN网元的个 数和最大故障级别生成资源备份矩阵, 然后, 网络管理系统将该资源备份 矩阵的地址资源中与 GGSN池中各 GGSN网元对应的自有地址资源和各 级备份可占用地址资源分别发送给 GGSN池中的各 GGSN网元。 从而可 以实现 IP地址资源在 GGSN池的各 GGSN网元之间共享, 并且不用增加 额外设备, 不会改变网络拓朴结构, 不会增加额外的激活处理时延。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明地址池重分配的方法一个实施例的流程图;
图 2为本发明地址池重分配的方法另一个实施例的流程图;
图 3为本发明 GPRS/UMTS网络一个实施例的组网示意图;
图 4为本发明 IP地址资源块划分一个实施例的示意图;
图 5为本发明 IP地址资源一级备份资源池划分一个实施例的示意图; 图 6为本发明资源备份矩阵生成方法一个实施例的流程图;
图 7为本发明地址池重分配的方法再一个实施例的流程图;
图 8为本发明资源备份矩阵生成方法另一个实施例的流程图;
图 9为资源备份矩阵一个实施例的示意图;
图 10为本发明 IP资源结构距阵一个实施例的示意图;
图 11为本发明资源备份矩阵第一列中的元素指向 IP地址资源块一个实 施例的示意图;
图 12为本发明旋转向量指向 IP地址资源块一个实施例的示意图; 图 13为本发明形成第 1个降维矩阵一个实施例的示意图;
图 14为本发明赋值给第 1个降维距阵中第 1列的元素一个实施例的示意 图;
图 15为本发明旋转向量指向 IP地址资源块另一个实施例的示意图; 图 16为本发明形成第 2个降维矩阵一个实施例的示意图;
图 17为本发明将旋转向量旋转 1次后一个实施例的示意图;
图 18为本发明赋值给第 2个降维距阵第 1列中的元素一个实施例的示意 图;
图 19为本发明旋转向量指向 IP地址资源块再一个实施例的示意图; 图 20为本发明形成第 3个降维矩阵一个实施例的示意图;
图 21为本发明将旋转向量旋转 2次后一个实施例的示意图;
图 22为本发明赋值给第 3个降维距阵第 1列中的元素一个实施例的示意 图;
图 23为本发明资源备份矩阵另一个实施例的示意图;
图 24为本发明调整 IP地址资源块的提示界面一个实施例的示意图; 图 25为本发明 IP地址资源块占用一个实施例的示意图;
图 26为本发明网络管理系统实体设备一个实施例的结构示意图; 图 27为本发明网络管理系统实体设备另一个实施例的结构示意图; 图 28 为本发明网关通用无线分组业务支持节点网元一个实施例的结 构示意图;
图 29 为本发明网关通用无线分组业务支持节点网元另一个实施例的 结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动的前提下所 获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明地址池重分配的方法一个实施例的流程图,如图 1所示, 该地址池重分配的方法可以包括:
步骤 101 , 网络管理系统 ( Network Management System; 以下简称: NMS )根据 GGSN池中 GGSN网元的个数和最大故障级别生成资源备份 矩阵。
步骤 102, NMS将上述资源备份矩阵的地址资源中与上述 GGSN池中 各 GGSN 网元对应的自有地址资源和各级备份可占用地址资源分别发送 给该 GGSN池中的各 GGSN网元。
进一步地, 步骤 102之前, NMS还可以根据 IP地址资源情况和分配 要求对上述资源备份矩阵中的地址资源进行调整。这样,在步骤 102, NMS 可以将调整后的地址资源中与上述 GGSN池中各 GGSN网元对应的自有 地址资源和各级备份可占用地址资源分别发送给该 GGSN池中的各 GGSN 网元。
进一步地, 在发送 GGSN池中各 GGSN网元对应的自有地址资源和 各级备份可占用地址资源之前, NMS 还可以先将上述资源备份矩阵中的 地址资源绑定到上述 GGSN池对应的接入点名称( Access Point Name; 以 下简称: APN ) 。
具体地, 当 GGSN池中 GGSN网元的个数为 n, 最大故障级别为 m 时, 步骤 101可以为:
NMS将 GGSN池中每个 GGSN网元的 IP地址资源划分为 n-1块 IP 地址资源块; 然后, NMS可以将每个 GGSN网元的 IP地址资源块组成的 旋转向量分别赋值给上述资源备份矩阵第一列中的元素; 上述元素的维度 与该旋转向量的维度相同,该资源备份矩阵的大小为 n x m;接下来, NMS 可以将赋值后的资源备份矩阵按照第 i行和第一列进行降维操作, 获得赋 值后的资源备份矩阵的第 i个降维矩阵; 其中, i = l , ..· , n-1 , n; 进而, NMS可以对 GGSN池中第 i个 GGSN网元的 IP地址资源块组成的旋转向 量进行 p次循环旋转后, 赋值给第 i个降维矩阵中第 k列的元素; 其中, p = i + k - 2, k = 1 , n-1 ; 最后, NMS可以循环执行上述将赋值后的资 源备份矩阵按照第 i行和第一列进行降维操作的步骤和上述对 GGSN池中 第 i个 GGSN网元的 IP地址资源块组成的旋转向量进行 p次循环旋转后, 将循环旋转后获得的向量中的元素赋值给降维矩阵中第 k 列的元素的步 骤, 直至对资源备份矩阵中的所有元素赋值完毕。
上述实施例中, NMS根据 GGSN池中 GGSN网元的个数和最大故障 级别生成资源备份矩阵, 然后, NMS 将上述资源备份矩阵的地址资源中 与 GGSN池中各 GGSN网元对应的自有地址资源和各级备份可占用地址 资源分别发送给 GGSN池中的各 GGSN网元。 从而可以实现 IP地址资源 在 GGSN池的各 GGSN网元之间共享, 并且不用增加额外设备, 不会改 变网络拓朴结构, 不会增加额外的激活处理时延。
图 2为本发明地址池重分配的方法另一个实施例的流程图, 如图 2所 示, 该地址池重分配的方法可以包括:
步骤 201 , GGSN网元接收 NMS发送的与该 GGSN网元对应的自有 地址资源和各级备份可占用地址资源。
步骤 202, 在用户设备接入该 GGSN 网元之后, 该 GGSN 网元在该 GGSN网元对应的自有地址资源中选择 IP地址分配给上述用户设备。
本实施例中,进一步地,在上述 GGSN网元所属的 GGSN池中有 GGSN 网元发生故障之后, 该 GGSN池中正常工作的 GGSN网元可以根据发生 故障的 GGSN网元的数量, 在正常工作的 GGSN网元各自对应的级别小 于或等于发生故障的 GGSN 网元的数量的备份可占用地址资源中占用发 生故障的 GGSN网元的 IP地址资源块。
进一步地, 在上述发生故障的 GGSN网元恢复正常工作之后, 占用上述 发生故障的 GGSN网元的 IP地址资源的 GGSN网元将占用的 IP地址资源块 归还恢复正常工作的 GGSN网元。 具体地, 在归还占用的 IP地址资源块时, 占用发生故障的 GGSN网元的 IP地址资源的 GGSN网元可以根据占用的 IP 地址资源块当前的使用情况, 分步逐段将占用的 IP地址资源块归还恢复正常 工作的 GGSN网元, 以避免对在线用户和网络造成影响。
上述实施例可以实现 IP地址资源在 GGSN池的各 GGSN网元之间共享, 并且不用增加额外设备, 不会改变网络拓朴结构, 不会增加额外的激活处理 时延。
下面以 GPRS/通用移动通信系统 ( Universal Mobile Telecommunications System; 以下简称: UMTS ) 网络为例, 对本发明实施例提供的地址池重分 配的方法进行说明。
图 3为本发明 GPRS/UMTS网络一个实施例的组网示意图,如图 3所示, GGSN-1网元、 GGSN-2网元和 GGSN-3网元组成 GGSN池,与本网 SGSN-1 和 SGSN-2通过 IP骨干网全网互联。 本实施例中分配给 GGSN-1 网元的 IP 地址为 IP1 , 分配给 GGSN-2网元的 IP地址为 IP2, 分配给 GGSN-3网元的 IP地址为 IP3; GGSN池所拥有的 IP地址资源记为 IP— total, 则 IP— total = IP1 + IP2 + IP3„ 进一步可以将 IP1、 IP2和 IP3分别分成如图 4所示的 IP地址资 源块: (IP1.1 , IP1.2 ) , ( IP2.1 , IP2.2 ) , ( IP3.1 , IP3.2 ) 。 图 4为本发 明 IP地址资源块划分一个实施例的示意图。
为了实现当上述 GGSN池中一个 GGSN网元发生故障时,该发生故障的 GGSN网元所拥有的 IP地址资源能够被该 GGSN池中正常工作的 GGSN网 元使用, 可以将图 4中的 IP地址资源块按照图 5中虚线所示方式重新排列, 形成一级备份资源池。图 5为本发明 IP地址资源一级备份资源池划分一个实 施例的示意图。
当 GGSN池中某个 GGSN网元发生故障时, 该 GGSN池中正常工作的 GGSN网元将在上述一级备份资源池中抢占发生故障的 GGSN网元对应的 IP 地址资源块。 例如: 当 GGSN池中 GGSN-1网元发生故障时, GGSN-2网元 将抢占 GGSN-1网元对应的 IP1.1地址资源块, GGSN-3网元将抢占 GGSN-1 网元对应的 IP1.2地址资源块。 当 GGSN-1 网元恢复正常工作后, GGSN-2 网元将抢占的 IP1.1地址资源块归还恢复正常工作的 GGSN-1网元; GGSN-3 网元将抢占的 IP1.2地址资源块归还恢复正常工作的 GGSN-2网元。
上述 IP地址资源块划分的方式可以 ^艮容易扩展为适应至少两个 GGSN 网元组成 GGSN池和至少一级备份资源划分的情况。
一般来讲, 当 GGSN池中包含的 GGSN网元的个数为 n, 最大故障级别 (即备份级别)也为 n时, IP地址资源块划分和生成资源备份矩阵的方法可 以如图 6所示, 图 6为本发明资源备份矩阵生成方法一个实施例的流程图。 n-1, n) 划分为 (n-1)块 IP地址资源块, 标记为 IP (i= 1, ..., η-1, η; j = l, ..., η-1) 。
步骤 602, 定义资源备份距阵 Α = (¾)ηχη, 定义旋转向量 t^flPu, ..., Ι , IPin-1]T (i=l, ..., n-1, η) 。
如上所示, 旋转向量^由每个 GGSN网元的 IP地址资源块组成, 其中, 资源备份距阵 A中的每个元素 ¾本身是与 ^具备相同维度的向量。
步骤 603, 将 分别赋值给资源备份矩阵第一列中的元素, 即令资源备 份距阵 A的 1 =^ (i= 1, n-1, η) ; 令资源备份距阵 Α中除第一列中 的元素之外的其余元素 q (p = 1, n-1, n; q = 2, n-1, n)暂时为 空。
步骤 604, 将赋值后的资源备份矩阵按照第 i行和第一列进行降维操作, 获得赋值后的资源备份矩阵的第 i个降维矩阵, 即去掉资源备份距阵 A的第 i行和第一列的元素,使赋值后的资源备份矩阵变为 (n-1) X (n-1)维距阵,可以 将上述第 i个降维矩阵记为 A(ll)。
其中, i= 1, ... , n-1, n。
步骤 605,对上述 GGSN池中第 i个 GGSN网元的 IP地址资源块组成 的旋转向量进行 p次循环旋转后, 赋值给上述第 i个降维矩阵中第 k列的 元素。
其中, p = i + k- 2, k= 1, …, n-l。
也就是说,对旋转向量 进行(i + k-2)循环旋转后, 获得向量 t1(1 + k_2), 然后将向量 + k^中的元素赋值给 Α ι)第 k列中的元素。 之后, NMS循环执行步骤 605和步骤 606, 直至对资源备份矩阵 A中的 所有元素赋值完毕,这时所得资源备份距阵 A = (¾¾)η,η即为 GGSN池中包含 的 GGSN网元的个数为 n, 最大故障级别也为 n时的资源备份距阵。
上述实施例可以实现 NMS根据 GGSN池中 GGSN网元的个数和最大故 障级别生成资源备份矩阵,进而可以实现 IP地址资源在 GGSN池的各 GGSN 网元之间共享。
下面以 GGSN池中 GGSN网元的个数为 n,最大故障级别为 m为例,对 本发明实施例提供的地址池重分配的方法进行详细说明。
图 7为本发明地址池重分配的方法再一个实施例的流程图,为便于说明, 本实施例中以 n = 3 , m = 2为例进行说明。
如图 7所示, 该地址池重分配的方法可以包括:
步骤 701 , NMS根据 GGSN池中 GGSN网元的个数和最大故障级别生 成资源备份矩阵。
具体地, NMS可以参照本发明图 6所示实施例提供的方法生成资源备份 矩阵, 下面结合图 8进行具体说明。 图 8为本发明资源备份矩阵生成方法另 一个实施例的流程图, 如图 8所示, 该资源备份矩阵的生成方法可以包括: 步骤 801 , 根据 GGSN池中 GGSN网元的个数和最大故障级别, NMS 申请资源备份矩阵 A = (apq)nx m的内存资源。
本实施例中, n = 3 , m = 2, A = (aPq)nXm中的每个元素 aM是一个( n-1 ) 维的指针数组 R[n-1] , 初始化为空, 如图 9所示, 图 9为资源备份矩阵一 个实施例的示意图。
步骤 802, NMS根据 GGSN池中 GGSN网元的个数, 申请 IP资源结构距阵 IP[n, n-l]。
本实施例中, IP[n, n-l]中的每个元素可以为一个结构链表, 初始化为空, 如图 10所示, 图 10为本发明 IP资源结构距阵一个实施例的示意图。
步骤 803 , NMS将 A的第一列中的元素指向 IP资源结构矩阵中相应 的 IP地址资源块, 如图 11所示, 图 11为本发明资源备份矩阵第一列中 的元素指向 IP地址资源块一个实施例的示意图。
步骤 804, 定义旋转向量 T[n-1], 并将 Τ[η-1]指向 IP资源结构矩阵中 第 1行的 IP地址资源块, 如图 12所示, 图 12为本发明旋转向量指向 IP 地址资源块一个实施例的示意图。
步骤 805, 将资源备份矩阵 A按照第 1行和第 1列进行降维操作, 形 成第 1个降维距阵 A(ll), 此时 i=l, 如图 13所示, 图 13为本发明形成第 1个降维矩阵一个实施例的示意图。
步骤 806, 将 T[n-1]循环旋转 (i + k-2) 次。
本实施例中, i=l, 2, …, n; k= 1, …, m-l。
本步骤中, i=l, k= 1, 则 i + k- 2 = 0, 即不旋转, 也就是说, 本步 骤中, 将 T[n-1]循环旋转 (i + k-2) 次后获得的向量仍如图 12所示。
步骤 807, 将循环旋转后获得的向量中的元素, 赋值给第 1个降维距 阵 A(ll)中第 1列的元素, 如图 14所示, 图 14为本发明赋值给第 1个降维 距阵中第 1列的元素一个实施例的示意图。
需要说明的是, 由于本实施例中 m = 2, 因此进行上述赋值操作之后, k 已经达到了 m-1, 即不需要继续填充后面的列; 如果进行上述赋值操作之后, k还未达到 m-1, 则需要循环执行步骤 806〜步骤 807, 直至 k达到 m-1。 以下类 同。
步骤 808, 将旋转向量 T[n-1]指向 IP资源结构矩阵中第 2行的 IP地址资源 块, 如图 15所示, 图 15为本发明旋转向量指向 IP地址资源块另一个实施例的 示意图。
步骤 809, 将资源备份矩阵 A按照第 2行和第 1列进行降维操作, 形 成第 2个降维距阵 A(ll), 此时 i = 2, 如图 16所示, 图 16为本发明形成第 2个降维矩阵一个实施例的示意图。
步骤 810,将指向 IP资源结构矩阵中第 2行的 IP地址资源块的 T[n-1] 循环旋转 (i+k-2) 次。
本步骤中, i = 2, k= 1, 即旋转 1次, 将指向 IP资源结构矩阵中第 2行的 IP地址资源块的 T[n-1]旋转 1次后, 获得的向量如图 17所示, 图 17为本发明将旋转向量旋转 1次后一个实施例的示意图。
步骤 811, 将图 17所示向量中的元素, 赋值给第 2个降维距阵 A(ll) 第 1列中的元素, 如图 18所示, 图 18为本发明赋值给第 2个降维距阵第 1列中的元素一个实施例的示意图。
步骤 812, 将旋转向量 Τ[η-1]指向 IP资源结构矩阵中第 3行的 IP地址资源 块, 如图 19所示, 图 19为本发明旋转向量指向 IP地址资源块再一个实施例的 示意图。
步骤 813, 将资源备份距阵 A按照第 3行和第 1列进行降维操作, 形成第 3 个降维距阵 A(ll), 此时 i = 3, 如图 20所示, 图 20为本发明形成第 3个降维矩阵 一个实施例的示意图。
步骤 814, 将指向 IP资源结构矩阵中第 3行的 IP地址资源块的向量 循环旋转 (i + k-2) 次。
本步骤中, i = 3, k= 1, 即旋转 2次, 将指向 IP资源结构矩阵中第 3 行的 IP地址资源块的向量循环旋转 2次后, 获得的向量如图 21所示, 图 21为本发明将旋转向量旋转 2次后一个实施例的示意图。
步骤 815, 将图 21所示的向量中的元素, 赋值给第 3个降维距阵 A(ll)第 1列 中的元素, 如图 22所示, 图 22为本发明赋值给第 3个降维距阵第 1列中的元素 一个实施例的示意图。
至此, i已经达到最大值 n (本实施例中, η = 3) , 并且 k也已经达到最大 值 m-1 (本实施例中, m = 2) , 退出循环, 从而获得 nxm的资源备份距阵 A, 如图 23所示, 图 23为本发明资源备份矩阵另一个实施例的示意图。
图 23所示的资源备份矩阵 A中,第 1行元素对应 GGSN-1网元的 IP地址资源 块, 第 2行元素对应 GGSN-2网元的 IP地址资源块, 第 3行元素对应 GGSN-3网 元的 IP地址资源块;第 1列元素分别对应 GGSN-1网元、 GGSN-2网元和 GGSN-3 网元的自有地址资源, 第 2列元素分别对应 GGSN-1网元、 GGSN-2网元和 GGSN-3网元的一级备份可占用地址资源。
步骤 702, NMS根据 IP地址资源情况和分配要求对上述资源备份矩阵中的 地址资源进行调整。
具体地, NMS可以向用户提供输入或调整 IP地址资源块的提示界面, 如 图 24所示, 之后, NMS可以接收用户输入或调整的 IP地址资源块的信息, 并 根据用户输入或调整的 IP地址资源块的信息对上述资源备份矩阵中的地址资 源进行调整。 图 24为本发明调整 IP地址资源块的提示界面一个实施例的示意 图。
步骤 703 , NMS将调整后的地址资源绑定到上述 GGSN池对应的 APN。 具体地, NMS可以提示用户输入上述调整后的地址资源对应的 APN, 如 下所示:
> APN: Internet;
之后, NMS可以接收用户输入的 APN, 例如: 因特网 (Internet ) , 然后 APN可以将调整后的地址资源绑定到该 APN, 例如: Internet
步骤 704, NMS将调整后的地址资源中与上述 GGSN池中各 GGSN网元对 应的自有地址资源和各级备份可占用地址资源分别发送给该 GGSN池中的各 GGSN网元。
具体地, NMS可以提示用户输入 GGSN池中各 GGSN网元接收命令的 地址, 如下所示:
> GGSN-1网元: x.x.x.x
> GGSN-2网元: x.x.x.x
> GGSN-3网元: x.x.x.x 接收到用户输入的上述地址之后, NMS将提示是否下发给各 GGSN网 元, 在接收到用户的确认下发给各 GGSN网元的指示之后, NMS将调整后 份可占用地址资源通过管理命令消息分别发送给该 GGSN池中的各 GGSN网 元。
本发明图 7所示实施例可以实现 IP地址资源在 GGSN池的各 GGSN网 元之间共享, 并且不用增加额外设备, 不会改变网络拓朴结构, 不会增加额 外的激活处理时延。
在上述 GGSN池中有 GGSN网元发生故障之后, 该 GGSN池中正常工 作的 GGSN 网元可以根据发生故障的 GGSN 网元的数量, 在正常工作的 GGSN网元各自对应的级别小于或等于发生故障的 GGSN网元的数量的备份 可占用地址资源中占用发生故障的 GGSN网元的 IP地址资源块。
结合图 24所示的资源备份矩阵,假设 GGSN-1网元发生故障,则 GGSN-2 网元可以在该 GGSN-2网元对应的一级备份可占用地址资源中占用发生故障 的 GGSN-1网元的 IP地址资源块, GGSN-3网元可以在该 GGSN-3网元对应 的一级备份可占用地址资源中占用发生故障的 GGSN-1 网元的 IP地址资源 块, 如图 25中虚线框部分所示。 图 25为本发明 IP地址资源块占用一个实施 例的示意图。
在发生故障的 GGSN-1网元恢复正常工作之后, GGSN-2网元和 GGSN-3 网元将占用的 IP地址资源块归还恢复正常工作的 GGSN- 1网元。具体地,在 归还占用的 IP地址资源块时, 可以根据占用的 IP地址资源块当前的使用情 况, 分步骤逐段归还, 避免对在线用户和网络造成影响; 在具体实现时, 以 GGSN-2为例, 在归还占用的 IP[1][1]地址资源块时, 4叚设 IP[1][1]地址资源 块被分为两段, 其中 IP地址段 1未被使用, 而 IP地址段 2尚有用户使用, 则 GGSN-2可以先归还 IP[1][1]地址资源块的 IP地址段 1 , 待 IP[1][1]地址资 归还 GGSN- 1。 本发明实施例提供的地址池重分配的方法解决了网络资源在网络层面的 共享问题。 同时本发明提供的地址池重分配的方法没有新增任何网络设备, 具有不改变网络拓朴结构, 不增加网络部署成本, 没有带来用户接入延迟, 不降低网络可靠性等优点。
另外, 本发明实施例所提供的地址池重分配的方法同样可以适用于多种 应用场景, 例如: 设备、 进程或数据之间进行(n + m )备份的场景。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
图 26为本发明网络管理系统实体设备一个实施例的结构示意图, 本 实施例中的 NMS实体设备可以实现本发明图 1所示实施例的流程图。
如图 26所示, 该 NMS实体设备可以包括:
生成模块 2601 , 用于根据 GGSN池中 GGSN网元的个数和最大故障 级别生成资源备份矩阵;
发送模块 2602, 用于将生成模块 2601生成的资源备份矩阵的地址资 源中与上述 GGSN池中各 GGSN网元对应的自有地址资源和各级备份可 占用地址资源分别发送给上述 GGSN池中的各 GGSN网元。
上述 NMS实体设备中, 生成模块 2601可以根据 GGSN池中 GGSN 网元的个数和最大故障级别生成资源备份矩阵, 然后, 发送模块 2602可 以将上述资源备份矩阵的地址资源中与 GGSN池中各 GGSN网元对应的 自有地址资源和各级备份可占用地址资源分别发送给 GGSN 池中的各 GGSN网元。 从而可以实现 IP地址资源在 GGSN池的各 GGSN网元之间 共享, 并且不用增加额外设备, 不会改变网络拓朴结构, 不会增加额外的 激活处理时延。 图 27为本发明网络管理系统实体设备另一个实施例的结构示意图, 与图 26所示的 NMS 实体设备相比, 不同之处在于, 图 27所示的 NMS 实体设备还可以包括:
调整模块 2603 , 用于根据 IP 地址资源情况和分配要求对生成模块 2601 生成的资源备份矩阵中的地址资源进行调整; 这时, 发送模块 2602 可以将调整模块 2603调整后的地址资源中与上述 GGSN池中各 GGSN网 池中的各 GGSN网元。
进一步地, 本实施例中的 NMS实体设备还可以包括:
绑定模块 2604, 用于在发送模块 2602发送上述 GGSN池中各 GGSN 网元对应的自有地址资源和各级备份可占用地址资源之前, 将上述资源备 份矩阵中的地址资源绑定到上述 GGSN池对应的 APN。
具体地, 本实施例中, 生成模块 2601可以包括:
划分子模块 26011 , 用于将上述 GGSN池中每个 GGSN网元的 IP地 址资源划分为 n-1块 IP地址资源块; 其中, n为上述 GGSN池中 GGSN 网元的个数;
赋值子模块 26012,用于将每个 GGSN网元的 IP地址资源块组成的旋 转向量分别赋值给资源备份矩阵第一列中的元素; 该元素的维度与上述旋 转向量的维度相同, 该资源备份矩阵的大小为 n x m; 其中, m为最大故 障级别;
降维操作子模块 26013 , 用于将赋值子模块 26012赋值后的资源备份 矩阵按照第 i行和第一列进行降维操作, 获得赋值后的资源备份矩阵的第 i个降维矩阵; 其中, i = l , n-1 , n;
进一步地, 赋值子模块 26012还可以对上述 GGSN池中第 i个 GGSN 网元的 IP地址资源块组成的旋转向量进行 p次循环旋转后, 将循环旋转 后获得的向量中的元素赋值给第 i个降维矩阵中第 k列的元素; 其中, p = i + k - 2, k = 1 , ... , n-l。
接下来降维操作子模块 26013和赋值子模块 26012可以循环执行上述 将资源备份矩阵按照第 i行和第一列进行降维操作的步骤和上述对 GGSN 池中第 i个 GGSN网元的 IP地址资源块组成的旋转向量进行 p次循环旋 转后, 将循环旋转后获得的向量中的元素赋值给降维矩阵中第 k列的元素 的步骤, 直至对资源备份矩阵中的所有元素赋值完毕。
上述 NMS实体设备可以实现 IP地址资源在 GGSN池的各 GGSN网 元之间共享, 并且不用增加额外设备, 不会改变网络拓朴结构, 不会增加 额外的激活处理时延。
图 28 为本发明网关通用无线分组业务支持节点网元一个实施例的结 构示意图,本实施例中的 GGSN网元可以实现本发明图 2所示实施例的流 程, 如图 28所示, 该 GGSN网元可以包括:
接收模块 2801 , 用于接收 NMS实体设备发送的与上述 GGSN网元对 应的自有地址资源和各级备份可占用地址资源;
分配模块 2802 , 用于在用户设备接入上述 GGSN 网元之后, 在该 GGSN网元对应的自有地址资源中选择 IP地址分配给上述用户设备。
上述 GGSN网元可以实现 IP地址资源在 GGSN池的各 GGSN网元之 间共享, 并且不用增加额外设备, 不会改变网络拓朴结构, 不会增加额外 的激活处理时延。
图 29为本发明网关通用无线分组业务支持节点网元另一个实施例的 结构示意图, 与图 28所示的 GGSN网元相比, 不同之处在于, 图 29所示 的 GGSN网元还可以包括:
占用模块 2803 , 用于在该 GGSN网元正常工作, 但该 GGSN网元所 属的 GGSN池中有 GGSN网元发生故障之后, 根据发生故障的 GGSN网 元的数量,在正常工作的上述 GGSN网元对应的级别小于或等于发生故障 的 GGSN网元的数量的备份可占用地址资源中占用发生故障的 GGSN网 元的 IP地址资源块。
归还模块 2804, 用于在发生故障的 GGSN网元恢复正常工作之后, 将占 用模块 2803占用的 IP地址资源块归还恢复正常工作的 GGSN网元;具体地, 归还模块 2804可以根据占用的 IP地址资源块当前的使用情况, 分步逐段将 占用的 IP地址资源块归还恢复正常工作的 GGSN网元,以避免对在线用户和 网络造成影响。
上述 GGSN网元可以实现 IP地址资源在 GGSN池的各 GGSN网元之间 共享, 并且不用增加额外设备, 不会改变网络拓朴结构, 不会增加额外的激 活处理时延。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中 的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述 进行分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例的一 个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进一步拆 分成多个子模块。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种地址池重分配的方法, 其特征在于, 包括:
网络管理系统根据网关通用无线分组业务支持节点 (GGSN ) 池中 GGSN网元的个数和最大故障级别生成资源备份矩阵;
所述网络管理系统将所述资源备份矩阵的地址资源中与所述 GGSN 池中各 GGSN 网元对应的自有地址资源和各级备份可占用地址资源分别 发送给所述 GGSN池中的各 GGSN网元。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述网络管理系统将 所述资源备份矩阵的地址资源中与所述 GGSN池中各 GGSN网元对应的 自有地址资源和各级备份可占用地址资源分别发送给所述 GGSN 池中的 各 GGSN网元之前, 还包括:
所述网络管理系统根据因特网协议(IP )地址资源情况和分配要求对 所述资源备份矩阵中的地址资源进行调整;
所述网络管理系统将所述资源备份矩阵的地址资源中与所述 GGSN 池中各 GGSN 网元对应的自有地址资源和各级备份可占用地址资源分别 发送给所述 GGSN池中的各 GGSN网元包括:
所述网络管理系统将调整后的地址资源中与所述 GGSN池中各 GGSN 网元对应的自有地址资源和各级备份可占用地址资源分别下发给所述 GGSN池中的各 GGSN网元。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述网络管理系 统将所述资源备份矩阵的地址资源中与所述 GGSN池中各 GGSN网元对 应的自有地址资源和各级备份可占用地址资源分别发送给所述 GGSN 池 中的各 GGSN网元之前, 还包括:
所述网络管理系统将所述资源备份矩阵的地址资源绑定到所述 GGSN 池对应的接入点名称。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 当所述 GGSN池 中 GGSN网元的个数为 n, 最大故障级别为 m时, 所述网络管理系统根据 网关通用无线分组业务支持节点 (GGSN ) 池中 GGSN网元的个数和最大 故障级别生成资源备份矩阵包括:
所述网络管理系统将所述 GGSN池中每个 GGSN网元的 IP地址资源 划分为 n-1块 IP地址资源块;
将每个 GGSN网元的 IP地址资源块组成的旋转向量分别赋值给所述 资源备份矩阵第一列中的元素; 所述元素的维度与所述旋转向量的维度相 同, 所述资源备份矩阵的大小为 n x m;
将赋值后的资源备份矩阵按照第 i行和第一列进行降维操作, 获得所 述赋值后的资源备份矩阵的第 i个降维矩阵; 其中, i = l , ..· , n-1 , n;
对所述 GGSN池中第 i个 GGSN网元的 IP地址资源块组成的旋转向 量进行 p次循环旋转后, 将循环旋转后获得的向量中的元素赋值给所述第 i个降维矩阵中第 k列的元素; 其中, p = i + k - 2, k = 1 , n-1 ;
循环执行所述将赋值后的资源备份矩阵按照第 i行和第一列进行降维 操作的步骤和对所述 GGSN池中第 i个 GGSN网元的 IP地址资源块组成 的旋转向量进行 p次循环旋转后, 赋值给所述降维矩阵中第 k列的元素的 步骤, 直至对所述资源备份矩阵中的所有元素赋值完毕。
5、 一种地址池重分配的方法, 其特征在于, 包括:
网关通用无线分组业务支持节点 (GGSN ) 网元接收网络管理系统发 送的与所述 GGSN网元对应的自有地址资源和各级备份可占用地址资源; 在用户设备接入所述 GGSN网元之后,所述 GGSN网元在所述 GGSN 网元对应的自有地址资源中选择因特网协议(IP )地址分配给所述用户设 备。
6、 根据权利要求 5所述的方法, 其特征在于, 还包括:
在所述 GGSN网元所属的 GGSN池中有 GGSN网元发生故障之后, 所述 GGSN池中正常工作的 GGSN网元根据发生故障的 GGSN网元的数 量,在所述正常工作的 GGSN网元各自对应的级别小于或等于所述发生故 障的 GGSN 网元的数量的备份可占用地址资源中占用所述发生故障的 GGSN网元的 IP地址资源块。
7、 根据权利要求 6所述的方法, 其特征在于, 还包括:
在所述发生故障的 GGSN网元恢复正常工作之后,所述占用所述发生 故障的 GGSN网元的 IP地址资源的 GGSN网元将占用的 IP地址资源块归 还恢复正常工作的 GGSN网元。
8、 根据权利要求 7所述的方法, 其特征在于, 所述占用所述发生故 障的 GGSN网元的 IP地址资源的 GGSN网元将占用的 IP地址资源块归还 恢复正常工作的 GGSN网元包括:
所述占用所述发生故障的 GGSN网元的 IP地址资源的 GGSN网元根 据占用的 IP地址资源块当前的使用情况, 分步逐段将所述占用的 IP地址 资源块归还恢复正常工作的 GGSN网元。
9、 一种网络管理系统实体设备, 其特征在于, 包括:
生成模块, 用于根据网关通用无线分组业务支持节点 (GGSN ) 池中 GGSN网元的个数和最大故障级别生成资源备份矩阵;
发送模块, 用于将所述生成模块生成的所述资源备份矩阵的地址资源 中与所述 GGSN池中各 GGSN网元对应的自有地址资源和各级备份可占 用地址资源分别发送给所述 GGSN池中的各 GGSN网元。
10、 根据权利要求 9所述的网络管理系统实体设备, 其特征在于, 还 包括:
调整模块, 用于根据因特网协议(IP )地址资源情况和分配要求对所 述生成模块生成的所述资源备份矩阵中的地址资源进行调整。
11、 根据权利要求 10所述的网络管理系统实体设备, 其特征在于, 所述发送模块, 具体用于将所述调整模块调整后的地址资源中与所述
GGSN池中各 GGSN网元对应的自有地址资源和各级备份可占用地址资源 分别下发给所述 GGSN池中的各 GGSN网元。
12、根据权利要求 9-11任意一项所述的网络管理系统实体设备,其特 征在于, 还包括:
绑定模块, 用于在所述发送模块发送所述 GGSN池中各 GGSN网元 对应的自有地址资源和各级备份可占用地址资源之前, 将所述资源备份矩 阵的地址资源绑定到所述 GGSN池对应的接入点名称。
13、根据权利要求 9-11任意一项所述的网络管理系统实体设备,其特 征在于, 所述生成模块包括:
划分子模块, 用于将所述 GGSN池中每个 GGSN网元的因特网协议 ( IP )地址资源划分为 n-1块 IP地址资源块; 其中, n为所述 GGSN池中 GGSN网元的个数;
赋值子模块, 用于将每个 GGSN网元的 IP地址资源块组成的旋转向 量分别赋值给所述资源备份矩阵第一列中的元素; 所述元素的维度与所述 旋转向量的维度相同, 所述资源备份矩阵的大小为 n x m; 其中, m为所 述最大故障级别;
降维操作子模块, 用于将所述赋值子模块赋值后的资源备份矩阵按照 第 i行和第一列进行降维操作, 获得所述赋值后的资源备份矩阵的第 i个 降维矩阵; 其中, i = l , n-1 , n;
所述赋值子模块, 还用于对所述 GGSN池中第 i个 GGSN网元的 IP 地址资源块组成的旋转向量进行 p次循环旋转后, 将循环旋转后获得的向 量中的元素赋值给所述第 i个降维矩阵中第 k列的元素; 其中, p = i + k - 2 , k = 1 , ... , η-1。
14、 一种网关通用无线分组业务支持节点 (GGSN ) 网元, 其特征在 于, 包括:
接收模块,用于接收网络管理系统实体设备发送的与所述 GGSN网元 对应的自有地址资源和各级备份可占用地址资源; 分配模块, 用于在用户设备接入所述 GGSN网元之后, 在所述 GGSN 网元对应的自有地址资源中选择因特网协议(IP )地址分配给所述用户设 备。
15、 根据权利要求 14所述的 GGSN网元, 其特征在于, 还包括: 占用模块, 用于在所述 GGSN网元正常工作, 但所述 GGSN网元所 属的 GGSN池中有 GGSN网元发生故障之后, 根据发生故障的 GGSN网 元的数量,在正常工作的所述 GGSN网元对应的级别小于或等于所述发生 故障的 GGSN 网元的数量的备份可占用地址资源中占用所述发生故障的 GGSN网元的 IP地址资源块。
16、 根据权利要求 15所述的 GGSN网元, 其特征在于, 还包括: 归还模块, 用于在所述发生故障的 GGSN网元恢复正常工作之后, 将 所述占用模块占用的 IP地址资源块归还恢复正常工作的 GGSN网元。
17、 根据权利要求 16所述的 GGSN网元, 其特征在于,
所述归还模块, 具体用于根据占用的 IP地址资源块当前的使用情况, 分步逐段将所述占用的 IP地址资源块归还恢复正常工作的 GGSN网元。
PCT/CN2011/075587 2011-06-10 2011-06-10 地址池重分配的方法和网络管理系统实体设备 WO2012167443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000899.1A CN102257841B (zh) 2011-06-10 2011-06-10 地址池重分配的方法和网络管理系统实体设备
PCT/CN2011/075587 WO2012167443A1 (zh) 2011-06-10 2011-06-10 地址池重分配的方法和网络管理系统实体设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075587 WO2012167443A1 (zh) 2011-06-10 2011-06-10 地址池重分配的方法和网络管理系统实体设备

Publications (1)

Publication Number Publication Date
WO2012167443A1 true WO2012167443A1 (zh) 2012-12-13

Family

ID=44983379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075587 WO2012167443A1 (zh) 2011-06-10 2011-06-10 地址池重分配的方法和网络管理系统实体设备

Country Status (2)

Country Link
CN (1) CN102257841B (zh)
WO (1) WO2012167443A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811263A (zh) * 2012-07-25 2012-12-05 中国联合网络通信集团有限公司 移动终端基于IPv6的通信方法和系统以及移动终端
CN114826808B (zh) * 2022-04-14 2023-09-19 中国联合网络通信集团有限公司 用户终端接入网络方法和装置、用户终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859436A (zh) * 2005-08-04 2006-11-08 上海华为技术有限公司 在级联组网中分配地址的方法
CN101325799A (zh) * 2007-06-15 2008-12-17 华为技术有限公司 选择服务器的方法和支持分组交换的设备
EP2073595A1 (en) * 2007-12-19 2009-06-24 Nokia Siemens Networks Oy Methods, apparatuses and computer program product for providing I-WLAN mobility
CN101588325A (zh) * 2008-05-20 2009-11-25 华为技术有限公司 一种基于无线分组网关的容灾方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859436A (zh) * 2005-08-04 2006-11-08 上海华为技术有限公司 在级联组网中分配地址的方法
CN101325799A (zh) * 2007-06-15 2008-12-17 华为技术有限公司 选择服务器的方法和支持分组交换的设备
EP2073595A1 (en) * 2007-12-19 2009-06-24 Nokia Siemens Networks Oy Methods, apparatuses and computer program product for providing I-WLAN mobility
CN101588325A (zh) * 2008-05-20 2009-11-25 华为技术有限公司 一种基于无线分组网关的容灾方法、设备及系统

Also Published As

Publication number Publication date
CN102257841B (zh) 2014-05-21
CN102257841A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
JP7252305B2 (ja) データ伝送方法、デバイス、およびシステム
US11895577B2 (en) Network slice selection method and apparatus
CN110235427B (zh) 用于基于ip索引向用户设备分配ip地址的系统和方法
CN108476549B (zh) 一种ip地址分配方法及设备
CN108924268B (zh) 一种容器云服务系统及pod创建方法、装置
US11115826B2 (en) Method for managing network slicing resources in communication system and apparatus for the same
CN110049504B (zh) 一种会话管理方法及装置
CN113709200B (zh) 一种建立通信连接的方法及装置
CN108228350B (zh) 一种资源分配方法及装置
US11632738B2 (en) System and method of access point name (APN) dynamic mapping
WO2012167443A1 (zh) 地址池重分配的方法和网络管理系统实体设备
CN114257439A (zh) 业务调度方法、aaa服务器和业务支撑系统
WO2016000303A1 (zh) 一种资源分配方法、系统及计算机存储介质
CN108271149B (zh) 一种用户数据锚点迁移的方法、设备和系统
CN112769829A (zh) 云物理机的部署方法、相关设备及可读存储介质
CN111511041B (zh) 一种远程连接方法及装置
CN108632400B (zh) 一种IPv6地址分配方法和Leaf节点设备
CN110710167B (zh) 一种数据传输的方法和装置
WO2015131327A1 (zh) IPv6地址分配方法及装置
JPWO2020217465A1 (ja) ネットワークコントローラ
CN111683164B (zh) 一种ip地址的配置方法及vpn服务系统
CN107295112B (zh) 受限网络环境下分配域名的方法和系统
CN113395368B (zh) 访问配置方法、访问方法及装置
CN104754072B (zh) 一种地址分配的方法和设备
CN114173396A (zh) 终端联网时间的确定方法和装置、电子设备和存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000899.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867497

Country of ref document: EP

Kind code of ref document: A1