WO2012165748A1 - Method for washing a filtration membrane using a novel disinfectant - Google Patents

Method for washing a filtration membrane using a novel disinfectant Download PDF

Info

Publication number
WO2012165748A1
WO2012165748A1 PCT/KR2012/000726 KR2012000726W WO2012165748A1 WO 2012165748 A1 WO2012165748 A1 WO 2012165748A1 KR 2012000726 W KR2012000726 W KR 2012000726W WO 2012165748 A1 WO2012165748 A1 WO 2012165748A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
solution
filtration membrane
isocyanuric acid
Prior art date
Application number
PCT/KR2012/000726
Other languages
French (fr)
Korean (ko)
Inventor
윤제용
유지현
백영빈
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2012165748A1 publication Critical patent/WO2012165748A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a filtration membrane cleaning and bio fouling control method using a new disinfectant, and more particularly, to a filtration membrane cleaning method capable of minimizing membrane damage and reducing membrane performance change by using a new disinfectant.
  • Water treatment method using a filtration membrane is one of the widely used water treatment technology as the depletion and pollution of water resources intensify. It is widely used in water treatment, including desalination of seawater and brackish water, water purification, wastewater treatment, etc. because of its high stability and efficiency since energy efficiency and no additional chemicals are used.
  • water treatment including desalination of seawater and brackish water, water purification, wastewater treatment, etc. because of its high stability and efficiency since energy efficiency and no additional chemicals are used.
  • a fouling phenomenon occurs that contaminants adhere to the surface of the filtration membrane such as the osmosis membrane, thereby reducing performance.
  • the pretreatment process and clean-in-place (CIP) are important, which is a key factor in determining membrane performance and membrane lifetime.
  • Osmotic membrane is a membrane used to separate osmotic pressure, which is a membrane for separating a solution with a difference in concentration, after which a water of a low concentration solution moves through the membrane to a high concentration solution.
  • the reverse osmosis phenomenon is to send water to a low concentration solution by applying an osmotic pressure or more to a high concentration solution, and the separator used at this time is a reverse osmosis membrane.
  • Reverse osmosis membrane system is divided into water treatment, pretreatment, reverse osmosis membrane process, and post treatment.
  • the pretreatment process is an initial treatment of raw water before it is supplied to the reverse osmosis membrane. This process is performed to improve the quality of the raw water at the stage before the reverse osmosis membrane process.
  • the chemical treatment and filter removes contaminants such as organic matter using chemicals and removes them through filters. Physical processing steps.
  • Chlorine solution which is commonly used at this time, is made by diluting a liquid solution such as sodium hypochlorite, which decomposes hypochlorous acid in water.
  • Microorganisms are inactivated by chlorine, a strong oxidizing agent, where inactivation of microorganisms inhibits or kills the growth of microorganisms attached to the membrane or in water to eliminate the infectivity of microorganisms and inhibit the formation of biofilms.
  • Chlorine disinfectants can reduce the contamination of membranes and contribute to maintaining performance and extending the lifespan by killing microorganisms by forming biofilms, reducing the permeation rate of membranes and shortening membrane lifespans and inhibiting their growth.
  • polyamide synthesized on the surface in order to increase the salt removal rate in the reverse osmosis membrane has a weak property to chlorine, which is easily damaged by chlorine treatment, resulting in deterioration of the membrane performance. For this reason, a large amount of reducing agent is added after the pretreatment process to remove residual chlorine present in the feed water of the membrane, thereby preventing damage to the membrane by chlorine.
  • Reverse osmosis membranes are vulnerable to biofouling if microorganisms pass the pretreatment process in the absence of residual disinfectant. Therefore, short-term exposure to reverse osmosis membranes using alkali or complex salts other than chlorine reduces biofouling, but is not very effective.
  • Hypochlorous acid is a strong oxidant with economical disinfection and sterilization ability and is widely used in water treatment process for inactivation of contaminant microorganisms. Hypochlorous acid is a weak acid and exists as hypochlorous acid and hypochlorite ions depending on pH. Chlorine solutions containing hypochlorous acid are also used in various water treatment applications and in pretreatment of reverse osmosis membrane processes.
  • the polyamide-based reverse osmosis membrane Although pretreatment using hypochlorous acid is excellent for inactivating microorganisms, the polyamide-based reverse osmosis membrane, which has been generalized, is damaged from hypochlorous acid and has a disadvantage of degrading the performance of the membrane. That is, the polyamide reverse osmosis membrane has a problem in that its structure is degraded by the chlorine component and thus its performance is lost, thereby shortening the life of the membrane.
  • a large amount of reducing agent used after pretreatment to prevent oxidation of the membrane by the strong oxidizer hypochlorous acid may potentially promote biofouling because it can potentially become a nutrient of the microorganism.
  • the filtration membrane cleaning method of the present invention comprises the step of disinfecting the filtration membrane with a solution containing isocyanuric acid.
  • the filtration membrane may be at least one of reverse osmosis membrane, forward osmosis membrane, nanofiltration membrane, ultrafiltration membrane and microfiltration membrane.
  • a polyamide reverse osmosis membrane is applied as the filtration membrane.
  • the solution containing isocyanuric acid is obtained by dissolving an isocyanurate solid phase including powder and pellets in water.
  • At least one of sodium isocyanur dichloride, potassium isocyanur dichloride, sodium isocyanur trichloride, and potassium isocyanurate trichloride can be used.
  • the filtration membrane is used in a water treatment process including desalination of seawater or brackish water, water purification, sewage treatment and wastewater treatment.
  • the sterilizing of the filtration membrane is a method of injecting a solution containing isocyanuric acid during the pretreatment process, isocyanuric acid before or after the influent is supplied after the pretreatment process is performed.
  • Method of injecting a solution containing, and immersing the filtration membrane in the solution containing the isocyanuric acid or circulating the solution is carried out in any one of the manner.
  • the step of rinsing the filtration membrane with distilled water is further performed.
  • a compaction step of supplying water for a predetermined time to stabilize the permeate amount is further performed before performing the disinfection step.
  • the pressure applied to the membrane in the compaction step is in the range of 200 to 800 psig.
  • the microorganisms attached to the filtration membrane is inactivated through sterilizing the filtration membrane.
  • the isocyanuric acid disinfectant according to the embodiment of the present invention is a component that is well dissolved in water, and does not need to use a separate organic solvent for its dissolution, and maintains an effective chlorine concentration that is relatively stable with respect to pH, temperature, and time. As a result, the membrane can be continuously disinfected and sterilized.
  • FIG. 1 is a view schematically showing an example of a system for performing a water treatment process using a reverse osmosis membrane.
  • FIG. 2 is a flowchart illustrating a reverse osmosis membrane cleaning method according to an embodiment of the present invention.
  • FIG. 3 is a graph showing a change in the amount of permeated water according to the system operating time of the filtration membrane treated with sodium hypochlorite solution.
  • FIG. 4 is a graph showing a change in the amount of permeated water according to the system operation time of the filtration membrane treated with sodium isocyanurium dichloride solution.
  • 5 is a graph showing the change in the salt removal rate according to the system operation time of the filter membrane treated with sodium hypochlorite solution.
  • FIG. 6 is a graph showing the change in the salt removal rate according to the system operation time of the filtration membrane treated with sodium isocyanurium dichloride solution.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the present invention is to describe a method for cleaning and fouling the polyamide-based reverse osmosis membrane surface control.
  • the filter membrane is used in different materials, in particular, the reverse osmosis membrane is a specific embodiment because the surface of the polyamide is vulnerable to chlorine components. After all, it means that the washing isocyanuric acid solution applicable to the reverse osmosis membrane can be easily applied to various other filtration membranes.
  • the washing method of the present invention is applicable almost without exception to all the filtration membranes used in the water treatment.
  • reverse osmosis membranes, forward osmosis membranes, nanofiltration membranes, ultrafiltration membranes, microfiltration membranes can be applied to all common filtration membranes that require disinfection and washing.
  • the water treatment method can be applied to almost all water treatment methods requiring filtration membranes such as desalination of seawater and brackish water, as well as water purification, sewage treatment, and wastewater treatment.
  • the present invention it is possible to reduce the damage of the filtration membrane by the chlorine solution used as a disinfectant in the washing process to inactivate the microorganism, one of the main causes of contamination to the filtration membrane and to control biofouling, and to decrease the membrane performance due to the filtration membrane damage. It is to use a solution containing isocyanuric acid component is a new chlorine disinfectant to minimize the.
  • microorganisms are inactivated, but the membrane is cleaned using isocyanuric acid, a new disinfectant that has minimal effect on the membrane.
  • isocyanurate all compounds which have high solubility in water and which can be dissolved in water to produce an isocyanuric acid component are applicable.
  • isocyanate dichloride solution and potassium isocyanur dichloride solution are applicable.
  • Filtration membrane disinfection includes various methods such as injecting a chlorine solution into the membrane system and dipping the membrane itself in the chlorine solution or circulating the solution.
  • isocyanuric acid treatment may be performed instead of the conventional hypochlorous acid treatment.
  • an appropriate amount of reducing agent may be used to remove the isocyanuric acid component after treatment, and a reducing agent may not be used to retain trace components. If the isocyanuric acid concentration is kept low, the traces of residual isocyanuric acid in the influent may continue to provide disinfecting effects rather than damaging the membrane, thus cleaning the membrane and controlling biofouling during influent treatment. You will get the effect.
  • the influent may be inactivated and the biofouling in the membrane may be controlled by injecting a low concentration of isocyanuric acid solution into the influent before or during the pretreatment of the influent. have.
  • the biofouling of the membrane through this control has the advantage of slowing down the membrane fouling rate and increasing the cycle time of the cleaning process (CIP).
  • the concentration of isocyanuric acid in the solution should be maintained in an appropriate range.
  • the concentration should be applied at the level necessary for pretreatment of raw water.
  • the pretreatment process is an initial treatment of feed water, which includes chemical treatment of pollutants such as organic matter and physical treatment of removal through a filter. Therefore, the concentration of isocyanuric acid may vary according to various factors such as the degree of pollution of the raw water, the types of components included in the raw water, and the type of raw water.
  • isocyanuric acid solution containing an effective chlorine concentration of about 50 mg / L or less is added.
  • the isocyanuric acid component remaining in the influent after the chemical treatment is continuously passed through the filtration membrane, so the concentration should be lowered so that there is little irritation to the membrane. Therefore, if necessary, an appropriate amount of reducing agent is added to adjust the concentration of isocyanuric acid to a low level, and then to the filtration membrane system.
  • a solution containing an effective chlorine concentration of about 20 mg / L or less is used. It is desirable to. In this case, the disinfecting solution must maintain a low chlorine concentration and can be injected discontinuously or continuously as necessary.
  • the membrane is immersed in a solution containing isocyanuric acid or the solution is circulated.
  • the highest concentration of isocyanuric acid solution is applied because the membrane is brought into contact with the disinfecting solution for a certain time.
  • it is possible to use high concentration solution because the membrane is thoroughly washed with clean water before the production water is redrawn.
  • a solution containing an effective chlorine concentration of about 5000 mg / L or less can be used.
  • the classification of the concentration according to each washing method is for illustration only and is appropriately changed according to various factors such as the type of pollutant in the raw water, the degree of contamination, the type of raw water, whether the damage to the membrane, and whether the by-products are produced. Can be.
  • FIG. 1 is a diagram schematically showing a system for performing a water treatment process using a reverse osmosis membrane.
  • the water treatment system schematically shows each component used to evaluate the performance of the membrane under pressure and temperature conditions for carrying out the reverse osmosis membrane process.
  • the system is largely divided into feed tank (1), temperature controller (2), high pressure pump (3), pressure regulator (4), cell (5), flow valve (6), permeation scale (7), computer (10), etc. It includes.
  • Each cell 5 is equipped with a reverse osmosis membrane in the form of a plate.
  • the reverse osmosis membrane in the form of a plate can be used by cutting a spiral wound membrane into a flat membrane that can be attached to the cell 5.
  • Influent can be supplied to the membrane in a lateral flow manner and pressure can be applied to an appropriate value.
  • the pressure is adjustable for each cell 5 and the pressure regulated by the pressure regulator 4 is monitored via a connected computer 10. Different pressure values may be applied within the range of about 200 to 800 psig, depending on the use of the membrane, such as seawater and brackish water. For example, when using a membrane for water can be set to a constant pressure condition of about 225 psig.
  • FIG. 2 is a flowchart illustrating a reverse osmosis membrane cleaning method according to an embodiment of the present invention. With reference to Figures 1 and 2 will be described the operation of the filtration system and the washing method of the reverse osmosis membrane.
  • the microorganisms are washed with an isocyanuric acid, a new chlorine disinfectant that inactivates but has minimal effect on the membrane and measures the resulting change in membrane performance.
  • the membrane was treated in such a way that a solution containing a high concentration of chlorine was made to immerse the filter membrane in order to show that the membrane performance was maintained well even under high chlorine conditions.
  • the membrane was washed with sodium hypochlorite solution under the same conditions to evaluate the performance and compare the result data.
  • the reverse osmosis membrane mounted in each cell 5 in the form of a flat plate is compacted into tertiary distilled water as inflow water at a constant pressure, temperature, and lateral flow rate until the permeate amount of the membrane is stabilized (FIG. 2, step S10).
  • the third distilled water generally refers to pure distilled water prepared by first distilling tap water, secondly distilling water using a filter, and thirdly distilling water using a semipermeable membrane. Recently, it is also manufactured using a filter, a semipermeable membrane and an ion exchange resin without first distillation.
  • the tertiary distilled water is supplied from the feed tank 1 and the temperature of the tertiary distilled water is kept constant by the temperature controller 2 connected to the tank.
  • the temperature of the influent is 25 ?? It can be maintained at room temperature conditions.
  • the tertiary distilled water of the feed tank 1 is delivered to each cell 5 by a high pressure pump 3 and used for the compaction of the membrane.
  • the time at which the compaction is finished may vary depending on the type of membrane or the sample site of the membrane, and is the point at which it is determined that the permeate is stabilized. If the membrane has a certain amount of permeate, it can be determined that the compaction is completed.
  • treated water such as artificial seawater or brackish water having a salt concentration suitable for the treatment conditions of the membrane is supplied to evaluate the performance of the membrane.
  • treated water such as artificial seawater or brackish water having a salt concentration suitable for the treatment conditions of the membrane
  • a reverse osmosis membrane for brackish membrane performance evaluation can be performed with 2000 mg / L NaCl solution.
  • the treated water such as artificial seawater or brackish water
  • the treated water is used to determine the performance of the membrane by its influent treatment capability, which consists of measuring the permeate and salt removal rates.
  • 2000 mg / L NaCl solution used as influent is sent from feed tank 1 to each cell 5 by high pressure pump 3 and permeate the membrane under constant pressure by pressure regulator 4.
  • the permeate 8 is collected by the automatic flowmeter and after collecting a certain amount, it returns to the feed tank 1 again.
  • the permeate (8) passing through the membrane in the cell is an automatic flow meter, the concentrated water (9) that has not permeated and flows past the membrane to the feed tank (1) as it is.
  • One embodiment thus employs a circulating system in which permeate and concentrated water are returned to feed tank 1.
  • Permeate volume and pressure in the system can be monitored in real time through the computer 10 connected to the system.
  • the permeated water that passed through the membrane for a certain period of time was measured using a permeate water balance (7) to measure the concentration of the salt, from which the performance of the polyamide reverse osmosis membrane before chlorination was evaluated.
  • Membranes evaluated in accordance with the method described above are sterilized using sodium hypochlorite solution (Comparative Example 1) and sodium isocyanurium dichloride solution (Example 1) (FIG. 2, step S20).
  • the disinfection is performed by immersing the membrane in a chlorine solution such as sodium hypochlorite solution, sodium isocyanur dichloride solution, etc. at the same effective chlorine concentration for a predetermined time.
  • a solution of 5000 mg / L effective chlorine concentration can be used and the membrane can be exposed for 1 hour, 2 hours and 3 hours. After disinfection, the membrane is rinsed sufficiently with tertiary distilled water so as not to be affected by the residual chlorine (FIG. 2, step S30), and then mounted in the cell 5 of the system.
  • Permeate volume and salt removal rate can be measured to compare membrane performance with the type of disinfectant and before disinfectant treatment.
  • a spiral wound osmosis reverse osmosis membrane LFC1 (Hydranautics Co.) was dissected and cut into a flat membrane to fit the cell and mounted on the cell. All operations were set to 225 psig (or 15.5 bar) and 27 ⁇ 2 ° C by a temperature controller and pressure regulator. The flow rate through all the cells was controlled to 50 ml / min by the flow valve. In order to find the equilibrium condition, feed 3rd distilled water (Millpore SAS, Mill-Q Direct8) to the feed tank for more than 20 hours, and monitor the permeate flow rate by automatic flow meter. The performance evaluation of the membrane was started.
  • a circulating system was used to provide about 6 L of NaCl solution to the feed tank and permeate and concentrated water back to the feed tank (see FIG. 1).
  • the volume of permeate was measured after receiving the permeate for 1 hour.
  • the salt concentration was measured using a conductivity meter (Horiba, DS-51, 9382-10D). After the initial membrane permeation rate and salt removal rate was confirmed, the membrane was removed from the cell, rinsed thoroughly with tertiary distilled water to remove the contaminants or salts, and the membrane was disinfected.
  • Disinfection of the membrane was carried out using a solution of sodium isocyanur dichloride, with an effective chlorine concentration of 5000 mg / L.
  • the effective chlorine concentration was measured at a wavelength of 530 nm on a UV spectrometer using a DPD reagent (HACH ⁇ , DPD free chlorine reagent). Since the damage of the membrane was caused by the effective chlorine, the experiment was conducted based on the same effective chlorine, and the membrane was exposed to the solution for 1 hour, 2 hours, and 3 hours at a slightly higher concentration than in the actual process.
  • One set of example experiments was conducted with one disinfection solution. The chlorinated membrane was then rinsed sufficiently with flowing tertiary distilled water so that residual chlorine did not remain on the surface and was then put back into the cell.
  • 3 and 4 and 5 and 6 show the results of evaluating the performance of the membrane after disinfection of the membrane using sodium hypochlorite solution and sodium isocyanurium dichloride solution.
  • 3 is a graph showing the change of the permeate amount according to the system operation time of the membrane treated with sodium hypochlorite solution.
  • 4 is a graph showing a change in the amount of permeated water according to the system operation time of the membrane treated with sodium isocyanurium dichloride solution.
  • 5 is a graph showing the change in the salt removal rate with the system operating time of the membrane treated with sodium hypochlorite solution.
  • 6 is a graph showing the change in the salt removal rate according to the system operation time of the membrane treated with sodium isocyanur dichloride solution.
  • the graphs marked with ⁇ and solid line show the results for the case of using the reverse osmosis membrane without the disinfectant treatment.
  • the graph marked with ⁇ shows the result when the membrane was treated with the disinfecting solution for 1 hour
  • the graph marked with ⁇ shows the result when the membrane was treated with the disinfecting solution for 2 hours
  • the graph marked with ⁇ shows the disinfection of the membrane for 3 hours.
  • the result about the case with the solution is shown.
  • the graphs marked with ⁇ show the changing performance when the membrane treated with effective chlorine 5000 mg / L sodium hypochlorite solution for 1 hour was operated in the system as shown in Figure 1 for 120 hours. Represents an evaluation of the performance of the membrane treated for 2 and 3 hours, respectively.
  • the graphs of FIGS. 4 and 6 show the results of performance evaluation of membranes treated with 5000 mg / L of sodium isocyanuric dichloride solution of effective chlorine.
  • 2 shows the water permeation rate of the performance of the membrane.
  • the performance of the membrane treated with sodium isocyanuric dichloride solution shows that the change in the amount of permeate with time is smaller than the performance of the membrane treated with sodium hypochlorite solution (FIG. 3). Can be.
  • the permeate yield decreased sharply after disinfection of the membrane and then increased with increasing system operating time.
  • the longer the disinfectant treatment time the higher the rate of permeation increase, and in the case of the membrane treated for 3 hours, the amount increased by about 1.3 times beyond the initial permeate.
  • the membrane performance treated with sodium isocyanate dichloride solution was significantly smaller than that treated with sodium hypochlorite solution compared to the untreated membrane, and the permeate amount was also not chlorine treated. It can be seen that the decrease is similar to the decrease in permeated water in fouling of the membrane by salt.
  • Membrane treated with sodium hypochlorite solution shows low salt removal rate in spite of high permeated water, so it can be seen that the amount of water passing through the membrane is increased due to surface damage of the membrane by disinfectant, but not only water but also salt of influent.
  • the filter membrane using sodium isocyanate dichloride solution as a disinfectant is superior to the performance maintaining the filter membrane treated with sodium hypochlorite solution, which is used. It can be seen that the effect on the film is small.
  • a method of washing a membrane using an isocyanuric dichloride solution capable of maintaining stable concentrations of effective chlorine for a longer period of time with little damage to the membrane and allowing stable and continuous disinfection.
  • the isocyanurate raw material is in a solid phase, which is convenient for preservation, high solubility in water, easy to use, and inexpensive, and therefore economical.
  • the disinfection and sterilization effect of microorganisms can be maintained for a long time.
  • membranes cleaned using isocyanurate as a disinfectant have a high salt removal rate and a stable permeate rate even during long system operation.

Abstract

Provided is a method for washing a filtration membrane using novel disinfectant applied to water treatment, and a method for controlling biofouling. The method for washing the filtration membrane includes a step of disinfecting raw water, inflow water, and a filtration membrane using a solution including isocyanurate to minimize damage of the membrane and maintain superior performance. Microorganisms which form a biofilm and cause biofouling may be inactivated to maintain a high salt removal rate and a stable amount of water penetration.

Description

새로운 소독제를 이용한 여과막 세척 방법Filtration membrane cleaning method using a new disinfectant
본 발명은 새로운 소독제를 이용한 여과막 세척 및 바이오 파울링 제어 방법에 관한 것으로서, 보다 상세하게는 새로운 소독제를 이용하여 막의 손상을 최소화 하고 막 성능 변화를 감소시킬 수 있는 여과막의 세척 방법에 관한 것이다.The present invention relates to a filtration membrane cleaning and bio fouling control method using a new disinfectant, and more particularly, to a filtration membrane cleaning method capable of minimizing membrane damage and reducing membrane performance change by using a new disinfectant.
여과막을 이용한 수처리 방법은 수자원의 고갈과 오염이 심화되면서 널리 사용되는 수처리 기술 중 하나이다. 이는 에너지 효율이 높고 부수적인 화학 약품이 사용되지 않아서 안정성과 효율성이 높아 해수와 기수의 담수화, 정수, 폐수 처리 등을 포함하는 수처리에 많이 사용되고 있다. 그런데 삼투막과 같은 여과막의 표면에 오염 물질이 달라붙어 성능을 저하시키는 막오염 현상이 발생하는 문제가 있다. 이러한 문제를 해결하기 위해서는 전처리 공정과 막의 세척(CIP; clean-in-place)이 중요한데, 이는 막의 성능과 막의 수명을 좌우하는 핵심 요소라 할 수 있다.Water treatment method using a filtration membrane is one of the widely used water treatment technology as the depletion and pollution of water resources intensify. It is widely used in water treatment, including desalination of seawater and brackish water, water purification, wastewater treatment, etc. because of its high stability and efficiency since energy efficiency and no additional chemicals are used. However, there is a problem that a fouling phenomenon occurs that contaminants adhere to the surface of the filtration membrane such as the osmosis membrane, thereby reducing performance. In order to solve this problem, the pretreatment process and clean-in-place (CIP) are important, which is a key factor in determining membrane performance and membrane lifetime.
삼투막은 농도차가 있는 용액을 분리하기 위한 분리막으로서 일정한 시간이 경과한 뒤 저농도 용액의 물이 막을 통과하여 고농도 용액 쪽으로 이동하게 되는 삼투압 현상에 사용되는 막이다. 역삼투 현상은 고농도 용액에 삼투압 이상의 압력을 가하여 저농도 용액으로 물을 보내는 것으로서, 이 때 사용되는 분리막이 역삼투막이다. 역삼투막 시스템은 크게 취수처리, 전처리, 역삼투막 공정, 후처리로 나뉜다.Osmotic membrane is a membrane used to separate osmotic pressure, which is a membrane for separating a solution with a difference in concentration, after which a water of a low concentration solution moves through the membrane to a high concentration solution. The reverse osmosis phenomenon is to send water to a low concentration solution by applying an osmotic pressure or more to a high concentration solution, and the separator used at this time is a reverse osmosis membrane. Reverse osmosis membrane system is divided into water treatment, pretreatment, reverse osmosis membrane process, and post treatment.
전처리 공정은 역삼투막에 공급되기 전의 원수에 대한 초기 처리과정으로서 역삼투막 공정 앞 단계에서 원수의 질을 높이기 위하여 행해지며 유기물 등의 오염 물질을 화학 약품을 사용하여 응집, 침전시키는 화학적 처리와 필터를 통해 제거하는 물리적인 처리 단계 등이 있다.The pretreatment process is an initial treatment of raw water before it is supplied to the reverse osmosis membrane. This process is performed to improve the quality of the raw water at the stage before the reverse osmosis membrane process. The chemical treatment and filter removes contaminants such as organic matter using chemicals and removes them through filters. Physical processing steps.
역삼투막 공정에서 전처리와 막세척 단계에서 막의 성능을 저하시키고 수명을 단축시키는 주된 오염원 중 하나인 미생물을 불활성화 하기 위하여 염소 용액을 소독제로 사용한다. 이 때 흔히 사용되는 염소 용액은 물 속에서 차아염소산을 분해하는 차아염소산나트륨 등의 액상 용액을 희석하여 만들어진다.In reverse osmosis membrane processes, chlorine solutions are used as disinfectants to inactivate microorganisms, one of the major contaminants that degrade membranes and shorten their life during pretreatment and membrane cleaning steps. Chlorine solution, which is commonly used at this time, is made by diluting a liquid solution such as sodium hypochlorite, which decomposes hypochlorous acid in water.
미생물은 강한 산화제인 염소에 의하여 불활성화 되는데 여기서 미생물의 불활성화란 막에 붙어있거나 물속에 존재하는 미생물들의 증식을 억제하거나 사멸시켜 미생물의 감염력을 없애고 생물막의 형성을 저해하는 것이다. 염소 소독제는 생물막을 형성하여 막의 투과수량을 낮추고 막의 수명을 단축시키는 미생물들을 사멸시키고 증식을 억제함으로써 막의 오염현상을 줄이고 성능 유지와 수명 연장에 기여할 수 있다.Microorganisms are inactivated by chlorine, a strong oxidizing agent, where inactivation of microorganisms inhibits or kills the growth of microorganisms attached to the membrane or in water to eliminate the infectivity of microorganisms and inhibit the formation of biofilms. Chlorine disinfectants can reduce the contamination of membranes and contribute to maintaining performance and extending the lifespan by killing microorganisms by forming biofilms, reducing the permeation rate of membranes and shortening membrane lifespans and inhibiting their growth.
그러나 역삼투막에서 염 제거율을 높이기 위하여 표면에 합성되는 폴리아마이드는 염소에 약한 성질을 가지고 있어 염소 처리에 의해 쉽게 손상되어 막의 성능 저하가 초래된다. 이 때문에 전처리 공정 이후 다량의 환원제를 첨가하여 막의 공급수에 존재하는 잔류 염소를 제거하는데 이를 통하여 염소에 의한 막의 손상을 방지하는 것이다. 잔류 소독제가 존재하지 않은 상황에서 미생물이 전처리 공정을 통과하는 경우 역삼투막은 바이오파울링에 취약하게 된다. 따라서 염소가 아닌 알칼리 또는 착염 등을 사용하여 역삼투막에 짧은 시간 노출시켜 바이오파울링을 저감하기도 하지만 크게 효과적이지는 않다.However, polyamide synthesized on the surface in order to increase the salt removal rate in the reverse osmosis membrane has a weak property to chlorine, which is easily damaged by chlorine treatment, resulting in deterioration of the membrane performance. For this reason, a large amount of reducing agent is added after the pretreatment process to remove residual chlorine present in the feed water of the membrane, thereby preventing damage to the membrane by chlorine. Reverse osmosis membranes are vulnerable to biofouling if microorganisms pass the pretreatment process in the absence of residual disinfectant. Therefore, short-term exposure to reverse osmosis membranes using alkali or complex salts other than chlorine reduces biofouling, but is not very effective.
차아염소산은 경제적이면서도 우수한 소독 및 살균력을 지닌 강한 산화제로서 오염 물질인 미생물의 불활성화를 위하여 수처리 공정에서 널리 사용된다. 차아염소산은 약산으로 pH에 따라 차아염소산과 차아염소산 이온으로 존재한다. 차아염소산을 포함하는 염소 용액은 다양한 수처리 분야와 역삼투막 공정의 전처리에서도 사용되고 있다.Hypochlorous acid is a strong oxidant with economical disinfection and sterilization ability and is widely used in water treatment process for inactivation of contaminant microorganisms. Hypochlorous acid is a weak acid and exists as hypochlorous acid and hypochlorite ions depending on pH. Chlorine solutions containing hypochlorous acid are also used in various water treatment applications and in pretreatment of reverse osmosis membrane processes.
차아염소산을 이용한 전처리는 미생물 불활성화에 탁월하기는 하나 보편화 되어 있는 폴리아마이드계 역삼투막이 차아염소산으로부터 손상을 받아 막의 성능이 저하되는 단점이 있다. 즉, 폴리아마이드계 역삼투막은 염소 성분에 의해 구조가 와해되어 성능을 잃게 되고, 그로 인하여 막의 수명이 단축되는 문제가 있는 것이다. 또한 강한 산화제인 차아염소산에 의한 막의 산화를 막기 위해 전처리후 사용되는 다량의 환원제는 잠정적으로 미생물의 영양분이 될 수 있기 때문에 오히려 바이오파울링을 촉진할 수도 있다.Although pretreatment using hypochlorous acid is excellent for inactivating microorganisms, the polyamide-based reverse osmosis membrane, which has been generalized, is damaged from hypochlorous acid and has a disadvantage of degrading the performance of the membrane. That is, the polyamide reverse osmosis membrane has a problem in that its structure is degraded by the chlorine component and thus its performance is lost, thereby shortening the life of the membrane. In addition, a large amount of reducing agent used after pretreatment to prevent oxidation of the membrane by the strong oxidizer hypochlorous acid may potentially promote biofouling because it can potentially become a nutrient of the microorganism.
상술한 바와 같은 문제점을 최소화하기 위하여 염소에 대한 내구성이 우수한 새로운 막의 개발이나, 기존의 막에서도 사용가능하면서도 막에 대한 손상이 방지되는 새로운 소독제의 개발이 요구되는 실정이다.In order to minimize the problems described above, it is necessary to develop a new membrane having excellent durability against chlorine, or to develop a new disinfectant which can be used in an existing membrane but prevents damage to the membrane.
본 발명의 목적은 이러한 요구에 초점을 맞추어 염소에 의한 여과막의 손상과 성능 저하를 최소화하면서 바이오파울링을 억제할 수 있는 새로운 소독제를 이용한 여과막 세척 방법을 제공하는 것이다.It is an object of the present invention to provide a method for cleaning a membrane using a new disinfectant which can suppress biofouling while minimizing damage and degradation of the membrane by chlorine.
상기 과제를 달성하기 위하여 본 발명의 여과막 세척 방법은 아이소시아누르산을 포함하는 용액으로 여과막을 소독하는 단계를 포함하여 이루어진다.In order to achieve the above object, the filtration membrane cleaning method of the present invention comprises the step of disinfecting the filtration membrane with a solution containing isocyanuric acid.
일 실시예에 있어서, 상기 여과막은 역삼투막, 정삼투막, 나노여과막, 한외여과막 및 정밀여과막 중 적어도 하나일 수 있다.In one embodiment, the filtration membrane may be at least one of reverse osmosis membrane, forward osmosis membrane, nanofiltration membrane, ultrafiltration membrane and microfiltration membrane.
일 실시예에 있어서, 상기 여과막으로는 폴리아마이드계 역삼투막이 적용된다.In one embodiment, a polyamide reverse osmosis membrane is applied as the filtration membrane.
일 실시예에 있어서, 상기 아이소시아누르산을 포함하는 용액은 파우더 및 펠렛을 포함하는 아이소시아누르산염 고체상을 물에 용해시켜 얻어지는 것이 사용된다.In one embodiment, the solution containing isocyanuric acid is obtained by dissolving an isocyanurate solid phase including powder and pellets in water.
일 실시예에 있어서, 상기 아이소시아누르산염으로서는 이염화아이소시아누르산나트륨, 이염화아이소시아누르산칼륨, 삼염화아이소시아누르산나트륨 및 삼염화아이소시아누르산칼륨 중에서 적어도 하나를 사용할 수 있다.In one embodiment, as the isocyanurate, at least one of sodium isocyanur dichloride, potassium isocyanur dichloride, sodium isocyanur trichloride, and potassium isocyanurate trichloride can be used.
일 실시예에 있어서, 상기 여과막은 해수 또는 기수의 담수화, 정수, 하수 처리 및 폐수 처리를 포함하는 수처리 공정에 사용되는 것이다.In one embodiment, the filtration membrane is used in a water treatment process including desalination of seawater or brackish water, water purification, sewage treatment and wastewater treatment.
일 실시예에 있어서, 상기 여과막을 소독하는 단계는 전처리 공정 중에 아이소시아누르산을 포함하는 용액을 주입하는 방식, 상기 전처리 공정의 수행후 유입수가 공급되기 전에 또는 유입수가 공급되는 중에 아이소시아누르산을 포함하는 용액을 주입하는 방식, 및 상기 여과막을 상기 아이소시아누르산을 포함하는 용액에 담그거나 용액을 순환시키는 방식중 어느 하나의 방식으로 수행된다.In one embodiment, the sterilizing of the filtration membrane is a method of injecting a solution containing isocyanuric acid during the pretreatment process, isocyanuric acid before or after the influent is supplied after the pretreatment process is performed. Method of injecting a solution containing, and immersing the filtration membrane in the solution containing the isocyanuric acid or circulating the solution is carried out in any one of the manner.
일 실시예에 있어서, 상기 여과막을 상기 아이소시아누르산을 포함하는 용액에 담그거나 용액을 순환시키는 방식으로 소독하는 단계 이후에, 상기 여과막을 증류수로 세정하는 단계를 더 수행하도록 한다.In one embodiment, after immersing the filtration membrane in a solution containing the isocyanuric acid or circulating the solution, the step of rinsing the filtration membrane with distilled water is further performed.
일 실시예에 있어서, 상기 소독하는 단계를 수행하기 전에, 투과 수량의 안정화를 위하여 일정 시간 동안 물을 공급하는 컴팩션 단계를 더 수행하도록 한다.In one embodiment, before performing the disinfection step, a compaction step of supplying water for a predetermined time to stabilize the permeate amount is further performed.
일 실시예에 있어서, 상기 컴팩션 단계에서 막에 가해지는 압력은 200 내지 800 psig 범위로 한다.In one embodiment, the pressure applied to the membrane in the compaction step is in the range of 200 to 800 psig.
일 실시예에 있어서, 상기 여과막을 소독하는 단계를 통하여 상기 여과막에 부착된 미생물의 불활성화가 이루어진다.In one embodiment, the microorganisms attached to the filtration membrane is inactivated through sterilizing the filtration membrane.
이와 같이 구성되는 본 발명의 실시예에 따른 여과막의 세척 및 바이오 파울링 제어방법에 의하면 염소 성분에 대한 장시간의 노출에도 불구하고 염제거율이 우수하고 투과수량의 변화가 거의 없다. 또한 본 발명의 실시예에 따른 아이소시아누르산 소독제는 물에 잘 용해되는 성분으로서, 이의 용해를 위하여 별도의 유기 용매를 사용할 필요가 없으며, pH, 온도, 시간에 대하여 비교적 안정적인 유효 염소 농도를 유지하기 때문에 막의 지속적인 소독, 살균이 가능하다.According to the washing method and the bio fouling control method according to an embodiment of the present invention configured as described above, despite the long-term exposure to the chlorine component, the salt removal rate is excellent and there is almost no change in the amount of permeate. In addition, the isocyanuric acid disinfectant according to the embodiment of the present invention is a component that is well dissolved in water, and does not need to use a separate organic solvent for its dissolution, and maintains an effective chlorine concentration that is relatively stable with respect to pH, temperature, and time. As a result, the membrane can be continuously disinfected and sterilized.
도 1은 역삼투막을 사용한 수처리 공정을 수행하기 위한 시스템의 일례를 개략적으로 나타낸 도면이다.1 is a view schematically showing an example of a system for performing a water treatment process using a reverse osmosis membrane.
도 2는 본 발명의 일 실시예에 따른 역삼투막 세척 방법을 설명하기 위한 흐름도이다.2 is a flowchart illustrating a reverse osmosis membrane cleaning method according to an embodiment of the present invention.
도 3은 차아염소산나트륨 용액으로 처리된 여과막의 시스템 운전 시간에 따른 투과수량의 변화를 나타내는 그래프이다.3 is a graph showing a change in the amount of permeated water according to the system operating time of the filtration membrane treated with sodium hypochlorite solution.
도 4는 이염화아이소시아누르산나트륨 용액으로 처리된 여과막의 시스템 운전 시간에 따른 투과수량의 변화를 나타내는 그래프이다.4 is a graph showing a change in the amount of permeated water according to the system operation time of the filtration membrane treated with sodium isocyanurium dichloride solution.
도 5는 차아염소산나트륨 용액으로 처리된 여과막의 시스템 운전 시간에 따른 염제거율의 변화를 나타내는 그래프이다.5 is a graph showing the change in the salt removal rate according to the system operation time of the filter membrane treated with sodium hypochlorite solution.
도 6은 이염화아이소시아누르산나트륨 용액으로 처리된 여과막의 시스템 운전 시간에 따른 염제거율의 변화를 나타내는 그래프이다.FIG. 6 is a graph showing the change in the salt removal rate according to the system operation time of the filtration membrane treated with sodium isocyanurium dichloride solution.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예에 따른 새로운 염소 소독제를 이용한 여과막 세척 방법에 대하여 상세히 설명하기로 한다.Hereinafter, a filtration membrane washing method using a new chlorine disinfectant according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.On the other hand, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
구체적인 실시예로서, 본 발명에서는 폴리아마이드계 역삼투막 표면 오염의 세척 및 바이오파울링 제어 방법을 기술하고자 한다. 여과막은 종류에 따라 사용하는 재질이 다른데 특히 역삼투막의 경우 표면의 폴리아마이드가 염소 성분에 취약하기 때문에 이를 구체적인 실시예로 한 것이다. 결국, 역삼투막에 적용가능한 세척용 아이소시아누르산 용액은 기타 다양한 여과막에 대하여도 용이하게 적용할 수 있다는 것을 의미한다.As a specific example, the present invention is to describe a method for cleaning and fouling the polyamide-based reverse osmosis membrane surface control. The filter membrane is used in different materials, in particular, the reverse osmosis membrane is a specific embodiment because the surface of the polyamide is vulnerable to chlorine components. After all, it means that the washing isocyanuric acid solution applicable to the reverse osmosis membrane can be easily applied to various other filtration membranes.
본 발명의 세척 방법은 수처리에 사용되는 모든 여과막에 대하여 거의 예외 없이 적용가능하다. 예컨대, 역삼투막, 정삼투막, 나노여과막, 한외여과막, 정밀여과막 등 소독과 세척이 요구되는 일반적인 여과막에 모두 적용할 수 있다.The washing method of the present invention is applicable almost without exception to all the filtration membranes used in the water treatment. For example, reverse osmosis membranes, forward osmosis membranes, nanofiltration membranes, ultrafiltration membranes, microfiltration membranes can be applied to all common filtration membranes that require disinfection and washing.
역삼투막과 비교할 때 다른 여과막들은 염소 성분에 의한 성능 저하나 수명 단축 정도가 비교적 경미한 편이지만 상기 소독제를 사용하는 경우 고체상태인 소독제 취급의 용이성과 유효 염소 농도의 지속성에 의한 소독 효과를 기대할 수 있기 때문이다. 또한 아이소시아누르산염은 물에 대한 용해도가 좋기 때문에 별도의 유기 용매의 사용 없이도 물에 잘 용해되어 수처리 기술 중 하나인 여과막 세정 공정에 용이하게 사용될 수 있다.Compared with reverse osmosis membranes, other filtration membranes have a relatively slight degradation in performance or shortened lifespan due to chlorine components. to be. In addition, since isocyanurate has good solubility in water, it is well soluble in water without the use of a separate organic solvent and can be easily used in a filtration membrane cleaning process, which is one of water treatment technologies.
수처리 방식도 해수 및 기수의 담수화 뿐 아니라 정수, 하수 처리, 폐수 처리등 여과막이 요구되는 거의 모든 수처리 방식에 적용할 수 있다. The water treatment method can be applied to almost all water treatment methods requiring filtration membranes such as desalination of seawater and brackish water, as well as water purification, sewage treatment, and wastewater treatment.
본 발명에서는 여과막에 대한 주요 오염의 원인 중 하나인 미생물을 불활성화 시키고 바이오파울링을 제어하고자 하는 세척 공정에서 소독제로 사용되는 염소 용액에 의한 여과막의 손상을 감소시키고 여과막의 손상에 따른 막 성능 저하를 최소화하기 위한 새로운 염소 소독제인 아이소시아누르산 성분이 포함된 용액을 사용하는 것이다.In the present invention, it is possible to reduce the damage of the filtration membrane by the chlorine solution used as a disinfectant in the washing process to inactivate the microorganism, one of the main causes of contamination to the filtration membrane and to control biofouling, and to decrease the membrane performance due to the filtration membrane damage. It is to use a solution containing isocyanuric acid component is a new chlorine disinfectant to minimize the.
즉, 미생물은 불활성화 하되 막에는 최소한의 영향을 주는 새로운 소독제인 아이소시아누르산을 이용하여 막을 세척하도록 한 것이다. 아이소시아누르산염으로서는 물에 대하여 용해도가 높으며 물에 용해되어 아이소시아누르산 성분을 생성할 수 있는 화합물은 모두 적용가능하며 바람직하게, 이염화아이소시아누르산나트륨 용액, 이염화아이소시아누르산칼륨 용액, 삼염화아이소시아누르산나트륨 용액, 삼염화아이소시아누르산칼륨 등의 화합물을 사용할 수 있다.In other words, microorganisms are inactivated, but the membrane is cleaned using isocyanuric acid, a new disinfectant that has minimal effect on the membrane. As the isocyanurate, all compounds which have high solubility in water and which can be dissolved in water to produce an isocyanuric acid component are applicable. Preferably, isocyanate dichloride solution and potassium isocyanur dichloride solution. Compounds, such as a solution, sodium isocyanur trichloride solution, and potassium isocyanur trichloride, can be used.
아이소시아누르산 성분을 이용한 여과막의 세척과 바이오파울링 제어는 다양한 방식으로 수행될 수 있다. 여과막 소독은 염소 용액을 막 시스템으로 주입하는 방식과 막 자체를 상기 염소 용액에 담그거나 용액을 순환시켜 소독하는 방식 등의 다양한 방법을 포함한다. The washing of the filtration membrane using the isocyanuric acid component and the biofouling control can be performed in various ways. Filtration membrane disinfection includes various methods such as injecting a chlorine solution into the membrane system and dipping the membrane itself in the chlorine solution or circulating the solution.
구체적으로 전처리 공정 단계에서 기존의 차아염소산 처리 대신에 아이소시아누르산 처리를 수행할 수 있다. 이 경우, 아이소시아누르산 농도에 따라 처리후 아이소시아누르산 성분을 제거하기 위하여 적절한 양의 환원제를 사용할 수도 있고 미량의 성분을 잔류시키기 위하여 환원제를 사용하지 않을 수도 있을 것이다. 만약 아이소시아누르산 농도를 낮게 유지하면 유입수에 포함된 미량의 잔류 아이소시아누르산이 막의 손상을 초래하기 보다는 오히려 소독 효과를 지속적으로 제공해 줄 수 있기 때문에 유입수의 처리 중에 막이 세척되고 바이오파울링을 제어하는 효과를 얻을 수 있을 것이다. Specifically, in the pretreatment process step, isocyanuric acid treatment may be performed instead of the conventional hypochlorous acid treatment. In this case, depending on the isocyanuric acid concentration, an appropriate amount of reducing agent may be used to remove the isocyanuric acid component after treatment, and a reducing agent may not be used to retain trace components. If the isocyanuric acid concentration is kept low, the traces of residual isocyanuric acid in the influent may continue to provide disinfecting effects rather than damaging the membrane, thus cleaning the membrane and controlling biofouling during influent treatment. You will get the effect.
다르게는, 전처리가 수행된 유입수를 여과 시스템에 유입하기 전이나 유입하는 중에 저농도의 아이소시아누르산 용액을 유입수에 주입하는 방식으로 유입수의 미생물을 불활성화하고 막에서의 바이오파울링을 제어할 수도 있다. 이를 통한 막의 바이오파울링의 제어는 막의 오염속도를 늦춰주고 세정과정(CIP)의 주기를 늘릴 수 있다는 이점이 있다.Alternatively, the influent may be inactivated and the biofouling in the membrane may be controlled by injecting a low concentration of isocyanuric acid solution into the influent before or during the pretreatment of the influent. have. The biofouling of the membrane through this control has the advantage of slowing down the membrane fouling rate and increasing the cycle time of the cleaning process (CIP).
또한 다르게는, 일정 시간 동안 정수를 정지하고 막을 비교적 고농도의 아이소시아누르산 용액에 담그거나 용액을 순환시켜 소독하는 방식이 있다. 이 방식은 CIP 공정에서 적용가능한 방식으로서 비교적 고농도의 용액을 사용하므로 단시간에 쇼킹 처리 (shocking dosing)하는 방식으로서, 높은 만족도로 소독이 가능하다는 이점이 있으나 소독 이후 막을 증류수로 세정하는 단계를 더 수행해야 하고 시스템의 정상 가동 후 일부 세정용액이 포함가능한 일정량의 생산수는 버려야 한다는 단점이 있다.Alternatively, there is a method in which the purified water is stopped for a certain time and the membrane is immersed in a relatively high concentration of isocyanuric acid solution or the solution is circulated for disinfection. This method is applicable to the CIP process because it uses a relatively high concentration of the solution, shocking dosing in a short time (Shocking dosing) method has the advantage that can be disinfected with high satisfaction, but after the sterilization the step of further cleaning the membrane with distilled water The disadvantage is that after a normal operation of the system, a certain amount of production water, which can contain some cleaning solution, must be discarded.
각 방식의 적용을 위해서는 용액 내에서 아이소시아누르산의 농도를 적절한 범위로 유지하는 것이 바람직하다. 첫 번째 방식의 적용을 위해서는 원수의 전처리를 위해 필요한 수준의 농도로 적용하도록 한다. 전처리 공정은 공급수에 대한 초기 처리과정으로서 크게 유기물 등의 오염물질을 화학 약품 처리하는 과정과 필터를 통해 제거하는 물리적인 처리 과정을 포함한다. 따라서 원수의 오염 정도, 원수에 포함된 성분의 종류, 원수의 종류 등 다양한 요인에 따라 아이소시아누르산의 농도가 달라질 수 있을 것이다. 바람직하게는 약 50 mg/L 이하의 유효염소 농도를 함유하는 아이소시아누르산 용액을 투입하도록 한다. 약품 처리 후 유입수에 잔류하는 아이소시아누르산 성분은 연속적으로 여과막을 통과하게 되므로 막에 대한 자극이 거의 없을 정도로 농도를 낮추어 공급해야 한다. 따라서 필요에 따라 적절한 양의 환원제를 투입하여 아이소시아누르산의 농도를 낮은 수준으로 맞추어 준 후 여과막 시스템으로 투입하도록 한다.For each application, it is desirable to maintain the concentration of isocyanuric acid in the solution in an appropriate range. To apply the first method, the concentration should be applied at the level necessary for pretreatment of raw water. The pretreatment process is an initial treatment of feed water, which includes chemical treatment of pollutants such as organic matter and physical treatment of removal through a filter. Therefore, the concentration of isocyanuric acid may vary according to various factors such as the degree of pollution of the raw water, the types of components included in the raw water, and the type of raw water. Preferably isocyanuric acid solution containing an effective chlorine concentration of about 50 mg / L or less is added. The isocyanuric acid component remaining in the influent after the chemical treatment is continuously passed through the filtration membrane, so the concentration should be lowered so that there is little irritation to the membrane. Therefore, if necessary, an appropriate amount of reducing agent is added to adjust the concentration of isocyanuric acid to a low level, and then to the filtration membrane system.
전처리가 수행된 유입수의 유입전이나 유입중에 저농도의 아이소시아누르산 용액을 주입하는 방식으로 소독 및 바이오파울링 제어를 수행하는 경우에는 약 20 mg/L 이하의 유효염소 농도를 함유하는 용액을 사용하는 것이 바람직하다. 이 경우, 소독 용액은 낮은 염소 농도를 유지해야 하며 필요에 따라 비연속적으로 혹은 연속적으로 주입될 수 있다.When disinfection and biofouling control are performed by injecting a low concentration of isocyanuric acid solution before or during the inflow of pretreated influent, a solution containing an effective chlorine concentration of about 20 mg / L or less is used. It is desirable to. In this case, the disinfecting solution must maintain a low chlorine concentration and can be injected discontinuously or continuously as necessary.
세 번째 방식인 막을 아이소시아누르산이 포함된 용액에 담그거나 용액을 순환시켜주는 방법의 경우는 일정 시간 동안 막을 소독 용액과 접촉시키게 되므로 가장 고농도의 아이소시아누르산 용액이 적용된다. 막의 소독 이후 생산수를 다시 뽑기 전에 깨끗한 물로 충분히 막을 씻어 주기 때문에 고농도의 용액사용이 가능하다. 이 경우에는 약 5000 mg/L 이하의 유효염소 농도를 함유하는 용액을 사용할 수 있다.In the third method, the membrane is immersed in a solution containing isocyanuric acid or the solution is circulated. Thus, the highest concentration of isocyanuric acid solution is applied because the membrane is brought into contact with the disinfecting solution for a certain time. After disinfection of the membrane, it is possible to use high concentration solution because the membrane is thoroughly washed with clean water before the production water is redrawn. In this case, a solution containing an effective chlorine concentration of about 5000 mg / L or less can be used.
그러나, 각 세척 방식에 따른 농도의 구분은 예시를 위한 것일 뿐, 원수 내의 오염원의 종류, 오염 정도, 원수의 종류, 막에 대한 손상의 초래 여부, 부산물의 생성 여부등 다양한 요인에 따라 적절하게 변경될 수 있다.However, the classification of the concentration according to each washing method is for illustration only and is appropriately changed according to various factors such as the type of pollutant in the raw water, the degree of contamination, the type of raw water, whether the damage to the membrane, and whether the by-products are produced. Can be.
상술한 바와 같이 막의 소독을 위해서는 다양한 방식의 적용이 가능하며, 각각 장단점이 있는데, 세척 효과 등을 고려할 때는 세 번째 방식인 막을 용액에 담그거나 용액을 순환시켜 세척하는 방식이 가장 바람직하다.As described above, various methods can be applied to disinfect the membrane, and each has advantages and disadvantages. In consideration of the cleaning effect, a method of immersing the membrane in a solution or circulating the solution is most preferred.
이하, 본 발명의 바람직한 일실시예에 따른 여과막 세척 방법을 도면을 참고하여 더욱 상세히 설명하기로 한다.Hereinafter, the filtration membrane washing method according to an embodiment of the present invention will be described in more detail with reference to the drawings.
도 1은 역삼투막을 사용한 수처리 공정을 수행하기 위한 시스템을 개략적으로 나타내는 도면이다.1 is a diagram schematically showing a system for performing a water treatment process using a reverse osmosis membrane.
도 1을 참고하면, 수처리 시스템에는 역삼투막 공정을 수행하기 위한 압력과 온도 조건 하에서 막의 성능을 평가하기 위해 사용되는 각 부품들이 개략적으로 나타나 있다.Referring to FIG. 1, the water treatment system schematically shows each component used to evaluate the performance of the membrane under pressure and temperature conditions for carrying out the reverse osmosis membrane process.
시스템은 크게 피드 탱크(1), 온도 컨트롤러(2), 고압 펌프(3), 압력 레귤레이터(4), 셀(5), 유량 밸브(6), 투과 수량 저울(7), 컴퓨터(10) 등을 포함한다.The system is largely divided into feed tank (1), temperature controller (2), high pressure pump (3), pressure regulator (4), cell (5), flow valve (6), permeation scale (7), computer (10), etc. It includes.
각 셀(5)에는 평판 형태의 역삼투막을 장착한다. 평판 형태의 역삼투막은 나권형의 막을 해부하여 셀(5)에 장착이 가능한 평판형 막으로 잘라 사용할 수 있다. 유입수는 측면 흐름 방식으로 막에 공급할 수 있으며 압력은 적절한 값으로 조절하여 가해질 수 있다. 압력은 각 셀(5)마다 조절이 가능하며 압력 레귤레이터(4)에 의해 조절된 압력은 연결된 컴퓨터(10)를 통하여 모니터링 된다. 해수용과 기수용 등 막의 용도에 따라 약 200 내지 800 psig 범위 내에서 다른 압력값이 적용될 수 있다. 예컨대, 기수용 막을 이용하는 경우에는 약 225 psig의 정압조건으로 설정될 수 있다.Each cell 5 is equipped with a reverse osmosis membrane in the form of a plate. The reverse osmosis membrane in the form of a plate can be used by cutting a spiral wound membrane into a flat membrane that can be attached to the cell 5. Influent can be supplied to the membrane in a lateral flow manner and pressure can be applied to an appropriate value. The pressure is adjustable for each cell 5 and the pressure regulated by the pressure regulator 4 is monitored via a connected computer 10. Different pressure values may be applied within the range of about 200 to 800 psig, depending on the use of the membrane, such as seawater and brackish water. For example, when using a membrane for water can be set to a constant pressure condition of about 225 psig.
도 2는 본 발명의 일 실시예에 따른 역삼투막 세척 방법을 설명하기 위한 흐름도이다. 도 1 및 도 2를 참고로 하여 여과 시스템의 작동 방식과 역삼투막의 세척 방법을 설명하도록 한다.2 is a flowchart illustrating a reverse osmosis membrane cleaning method according to an embodiment of the present invention. With reference to Figures 1 and 2 will be described the operation of the filtration system and the washing method of the reverse osmosis membrane.
구체적이고 바람직한 실시예에서는, 미생물은 불활성화 하되 막에는 최소한의 영향을 주는 새로운 염소 소독제인 아이소시아누르산을 이용하여 막을 세척하고 그에 따른 막 성능 변화를 측정한다. 본 실시예에서는 특히, 높은 농도의 염소 조건에서도 막의 성능이 우수하게 유지되는 것을 보여주기 위하여 고농도의 염소를 함유하는 용액을 만들어 여과막을 담그는 방식으로 막을 처리하였다. 또한 동일 조건의 차아염소산나트륨 용액을 이용한 막의 세척을 실행하여 성능을 평가하고 이들의 결과 데이터를 비교하였다.In a specific and preferred embodiment, the microorganisms are washed with an isocyanuric acid, a new chlorine disinfectant that inactivates but has minimal effect on the membrane and measures the resulting change in membrane performance. In the present embodiment, the membrane was treated in such a way that a solution containing a high concentration of chlorine was made to immerse the filter membrane in order to show that the membrane performance was maintained well even under high chlorine conditions. In addition, the membrane was washed with sodium hypochlorite solution under the same conditions to evaluate the performance and compare the result data.
평판 형태로 각 셀(5)에 장착된 역삼투막은 막의 투과수량이 안정화 될 때까지 일정 조건의 압력과 온도, 측면 흐름 속도에서 유입수로서 3차 증류수로 컴팩션된다(도 2, 단계 S10). 3차 증류수는 일반적으로 수돗물을 1차 증류하고, 2차로는 필터를 이용하여 증류하고, 3차에서는 반투막을 이용하여 여과하여 제조한 순수한 증류수를 말한다. 최근에는 1차 증류 없이 필터, 반투막, 이온교환수지를 이용하여 제조하기도 한다.The reverse osmosis membrane mounted in each cell 5 in the form of a flat plate is compacted into tertiary distilled water as inflow water at a constant pressure, temperature, and lateral flow rate until the permeate amount of the membrane is stabilized (FIG. 2, step S10). The third distilled water generally refers to pure distilled water prepared by first distilling tap water, secondly distilling water using a filter, and thirdly distilling water using a semipermeable membrane. Recently, it is also manufactured using a filter, a semipermeable membrane and an ion exchange resin without first distillation.
3차 증류수는 피드 탱크(1)에서 공급되며 탱크와 연결된 온도 컨트롤러(2)에 의하여 3차 증류수의 온도가 일정하게 유지된다. 유입수의 온도는 예컨대 25?? 상온 조건으로 유지될 수 있다. 피드 탱크(1)의 3차 증류수는 고압 펌프(3)에 의하여 각 셀(5)로 전달되고 막의 컴팩션에 쓰인다. 컴팩션이 종료되는 시간은 막의 종류에 따라 혹은 막의 샘플 부위에 따라 달라질 수 있으며 투과수량이 안정화 되었다고 판단되는 시점이다. 어느 정도 막의 투과수량이 일정해지면 컴팩션이 완료되었다고 판단할 수 있다. 컴팩션이 완료되면, 막의 성능을 평가하기 위하여 막의 처리 조건에 맞는 염 농도의 인공 해수 혹은 기수 등의 처리수를 공급한다. 예컨대, 기수용 역삼투막을 사용하는 경우 2000 mg/L의 NaCl 용액으로 막 성능 평가를 수행할 수 있다.The tertiary distilled water is supplied from the feed tank 1 and the temperature of the tertiary distilled water is kept constant by the temperature controller 2 connected to the tank. The temperature of the influent is 25 ?? It can be maintained at room temperature conditions. The tertiary distilled water of the feed tank 1 is delivered to each cell 5 by a high pressure pump 3 and used for the compaction of the membrane. The time at which the compaction is finished may vary depending on the type of membrane or the sample site of the membrane, and is the point at which it is determined that the permeate is stabilized. If the membrane has a certain amount of permeate, it can be determined that the compaction is completed. When the compaction is completed, treated water such as artificial seawater or brackish water having a salt concentration suitable for the treatment conditions of the membrane is supplied to evaluate the performance of the membrane. For example, when using a reverse osmosis membrane for brackish membrane performance evaluation can be performed with 2000 mg / L NaCl solution.
컴팩션이 끝난 후 인공 해수 혹은 기수 등의 처리수를 공급하여 막의 유입수 처리 능력으로 막의 성능을 판단하는데 이는 투과수량과 염 제거율을 측정하는 것으로 이루어진다. 예컨대, 유입수로 사용된 2000 mg/L의 NaCl 용액은 피드 탱크(1)로부터 고압 펌프(3)에 의해 각 셀(5)로 보내어 지고, 압력 레귤레이터(4)에 의해 일정 압력 하에서 막을 투과한다. 투과수(8)는 자동유량측정기로 모이고 일정량 모인 후에는 다시 피드 탱크(1)로 되돌아간다. 또한 셀에서 막을 통과한 투과수(8)는 자동유량 측정기로, 투과되지 못하고 측면으로 막을 지나쳐 흐른 농축수(9)는 그대로 피드 탱크(1)로 되돌아간다.After compaction, the treated water, such as artificial seawater or brackish water, is used to determine the performance of the membrane by its influent treatment capability, which consists of measuring the permeate and salt removal rates. For example, 2000 mg / L NaCl solution used as influent is sent from feed tank 1 to each cell 5 by high pressure pump 3 and permeate the membrane under constant pressure by pressure regulator 4. The permeate 8 is collected by the automatic flowmeter and after collecting a certain amount, it returns to the feed tank 1 again. In addition, the permeate (8) passing through the membrane in the cell is an automatic flow meter, the concentrated water (9) that has not permeated and flows past the membrane to the feed tank (1) as it is.
일 실시예에서는 이와 같이 투과수와 농축수가 다시 피드 탱크(1)로 돌아가는 순환 방식의 시스템을 사용한다. 시스템에서 투과수량과 압력은 시스템과 연결된 컴퓨터(10)를 통해 실시간으로 모니터링이 가능하다. NaCl 용액의 공급 이후 일정시간 동안 막을 통과한 투과수를 받아 투과 수량 저울(7)을 사용하여 양을 측정하고 염의 농도도 측정하여 그로부터 염소처리가 되기 전의 폴리아마이드 역삼투막의 성능을 평가하는 것이다.One embodiment thus employs a circulating system in which permeate and concentrated water are returned to feed tank 1. Permeate volume and pressure in the system can be monitored in real time through the computer 10 connected to the system. After supplying the NaCl solution, the permeated water that passed through the membrane for a certain period of time was measured using a permeate water balance (7) to measure the concentration of the salt, from which the performance of the polyamide reverse osmosis membrane before chlorination was evaluated.
상술한 방법에 따라 성능 평가된 막은 차아염소산나트륨 용액(비교예 1)과 이염화아이소시아누르산나트륨 용액(실시예 1)을 사용하여 소독된다(도 2, 단계 S20). 바람직하게는 막을 일정시간 동안 동일 유효염소 농도의 차아염소산나트륨 용액, 이염화아이소시아누르산나트륨 용액 등과 같은 염소 용액에 담그는 방식으로 소독을 수행하도록 한다.Membranes evaluated in accordance with the method described above are sterilized using sodium hypochlorite solution (Comparative Example 1) and sodium isocyanurium dichloride solution (Example 1) (FIG. 2, step S20). Preferably, the disinfection is performed by immersing the membrane in a chlorine solution such as sodium hypochlorite solution, sodium isocyanur dichloride solution, etc. at the same effective chlorine concentration for a predetermined time.
막의 손상 정도에 대한 성능 평가를 위하여 5000 mg/L 의 유효염소 농도의 용액을 사용하고 1시간, 2시간, 3시간 동안 막을 노출시킬 수 있다. 소독 처리가 끝난 막은 잔여 염소에 영향을 받지 않도록 3차 증류수로 충분히 헹궈준 후(도 2, 단계 S30)에 다시 시스템의 셀(5)에 장착된다.For performance evaluation of the degree of membrane damage, a solution of 5000 mg / L effective chlorine concentration can be used and the membrane can be exposed for 1 hour, 2 hours and 3 hours. After disinfection, the membrane is rinsed sufficiently with tertiary distilled water so as not to be affected by the residual chlorine (FIG. 2, step S30), and then mounted in the cell 5 of the system.
이 후 소독제 처리된 막의 성능 평가는 이전과 동일한 방식으로 진행된다. 투과수량과 염 제거율을 측정하여 막의 성능을 소독제의 종류에 따라, 또한 소독제 처리 전과 비교할 수 있다.Thereafter, the performance evaluation of the disinfectant treated membrane is carried out in the same manner as before. Permeate volume and salt removal rate can be measured to compare membrane performance with the type of disinfectant and before disinfectant treatment.
실시예 1Example 1
나권형의 기수담수용 역삼투막 LFC1(Hydranautics Co.)을 해부하여 셀에 맞게 평판형 막으로 잘라 셀에 장착하였다. 모든 운전은 온도 컨트롤러와 압력 레귤레이터에 의하여 225 psig(또는 15.5 bar)와 27± 2℃ 로 설정하여 진행하였다. 유량 밸브에 의하여 모든 셀을 지나는 유속은 50 ml/min 으로 조절되었다. 평형조건을 찾기 위해 피드 탱크에 3차 증류수(Millpore SAS, Mill-Q Direct8)를 약 20시간 이상 공급하면서, 투과 수량을 자동유량측정기로 모니터링 하여 투과 수량이 어느 정도 일정해지면 NaCl 2000 mg/L 용액으로 막의 성능평가를 시작하였다.A spiral wound osmosis reverse osmosis membrane LFC1 (Hydranautics Co.) was dissected and cut into a flat membrane to fit the cell and mounted on the cell. All operations were set to 225 psig (or 15.5 bar) and 27 ± 2 ° C by a temperature controller and pressure regulator. The flow rate through all the cells was controlled to 50 ml / min by the flow valve. In order to find the equilibrium condition, feed 3rd distilled water (Millpore SAS, Mill-Q Direct8) to the feed tank for more than 20 hours, and monitor the permeate flow rate by automatic flow meter. The performance evaluation of the membrane was started.
피드 탱크에 약 6L의 NaCl 용액을 제공하고 투과수와 농축수는 다시 피드 탱크로 돌아오는 순환 방식의 시스템을 사용하였다 (도 1 참고). NaCl 용액이 막을 지나 투과수로 받아지는데 걸리는 시간을 고려하여 1시간 후의 투과수를 일정시간 받아 부피와 염분의 양을 측정하였다. 염분의 농도는 conductivity meter기(Horiba, DS-51, 9382-10D)를 사용하여 측정하였다. 초기 막의 투과 수량과 염 제거율 확인이 끝나면 셀에서 막을 꺼내고 붙어있는 오염물질이나 염을 제거하기 위하여 3차 증류수로 충분히 헹궈 준 후 막의 소독을 시작하였다.A circulating system was used to provide about 6 L of NaCl solution to the feed tank and permeate and concentrated water back to the feed tank (see FIG. 1). In consideration of the time taken for the NaCl solution to pass through the membrane as permeate, the volume of permeate was measured after receiving the permeate for 1 hour. The salt concentration was measured using a conductivity meter (Horiba, DS-51, 9382-10D). After the initial membrane permeation rate and salt removal rate was confirmed, the membrane was removed from the cell, rinsed thoroughly with tertiary distilled water to remove the contaminants or salts, and the membrane was disinfected.
막의 소독은 이염화아이소시아누르산 나트륨 용액을 사용하여 수행하였는데 이때 용액의 유효염소 농도는 5000 mg/L 으로 맞추어졌다. 유효염소의 농도는 DPD 시약(HACHㄾ, DPD free chlorine reagent)을 이용하여 UV spectrometer기의 wavelength 530nm에서 측정되었다. 막의 손상은 유효염소에 의하여 나타나기 때문에 동일 유효염소를 기준으로 실험을 진행했으며 실제 공정에서보다 다소 높은 농도로 1시간, 2시간, 3시간 동안 막을 용액에 노출 시켰다. 한 가지 소독 용액으로 일실시예 실험 1세트가 진행되었다. 염소처리가 끝난 막은 흐르는 3차 증류수에 의해 잔여 염소가 표면에 남지 않도록 충분히 헹궈진 후에 다시 셀에 장착되었다.Disinfection of the membrane was carried out using a solution of sodium isocyanur dichloride, with an effective chlorine concentration of 5000 mg / L. The effective chlorine concentration was measured at a wavelength of 530 nm on a UV spectrometer using a DPD reagent (HACH ㄾ, DPD free chlorine reagent). Since the damage of the membrane was caused by the effective chlorine, the experiment was conducted based on the same effective chlorine, and the membrane was exposed to the solution for 1 hour, 2 hours, and 3 hours at a slightly higher concentration than in the actual process. One set of example experiments was conducted with one disinfection solution. The chlorinated membrane was then rinsed sufficiently with flowing tertiary distilled water so that residual chlorine did not remain on the surface and was then put back into the cell.
시간별로 소독처리를 끝낸 각각의 막은 다시 셀에 장착되었고, 다시 시스템을 가동하였다. 공급된 NaCl 용액이 막을 통과 할 때까지의 시간을 고려하여 약 한 시간 후에 처리된 막의 성능을 위와 동일한 방식으로 평가하였다. 시스템의 운전시간에 따른 막의 성능 변화를 측정하기 위해 약 120 시간 동안의 막 성능 테스트를 수행하였다.After each hour of disinfection, each membrane was put back in the cell and the system was run again. The performance of the treated membrane was evaluated in the same manner as above, considering the time until the supplied NaCl solution passed through the membrane. Membrane performance tests for about 120 hours were performed to measure the change in membrane performance over the operating hours of the system.
비교예 1Comparative Example 1
실시예 1에 개지된 방식과 동일한 방식으로 수행하되 막의 소독은 차아염소산나트륨 용액을 사용하여 수행하였으며 이때 용액의 유효염소 농도는 5000 mg/L 으로 맞추어졌다.In the same manner as described in Example 1, but disinfection of the membrane was carried out using sodium hypochlorite solution, the effective chlorine concentration of the solution was adjusted to 5000 mg / L.
실험 결과Experiment result
차아염소산나트륨 용액과 이염화아이소시아누르산나트륨 용액을 이용한 막의 소독 과정을 거친 후의 막의 성능 평가를 진행한 결과를 도 3 & 4 및 도 5 & 6에 나타내었다. 도 3은 차아염소산나트륨 용액으로 처리된 막의 시스템 운전 시간에 따른 투과수량의 변화를 나타내는 그래프이다. 도 4는 이염화아이소시아누르산나트륨 용액으로 처리된 막의 시스템 운전 시간에 따른 투과수량의 변화를 나타내는 그래프이다.3 and 4 and 5 and 6 show the results of evaluating the performance of the membrane after disinfection of the membrane using sodium hypochlorite solution and sodium isocyanurium dichloride solution. 3 is a graph showing the change of the permeate amount according to the system operation time of the membrane treated with sodium hypochlorite solution. 4 is a graph showing a change in the amount of permeated water according to the system operation time of the membrane treated with sodium isocyanurium dichloride solution.
도 5는 차아염소산나트륨 용액으로 처리된 막의 시스템 운전 시간에 따른 염제거율의 변화를 나타내는 그래프이다. 도 6은 이염화아이소시아누르산나트륨 용액으로 처리된 막의 시스템 운전 시간에 따른 염제거율의 변화를 나타내는 그래프이다.5 is a graph showing the change in the salt removal rate with the system operating time of the membrane treated with sodium hypochlorite solution. 6 is a graph showing the change in the salt removal rate according to the system operation time of the membrane treated with sodium isocyanur dichloride solution.
각 도면에서 ●와 실선으로 표시된 그래프는 소독제 처리를 하지 않은 역삼투막을 사용한 경우에 대한 결과를 나타낸다. ■로 표시된 그래프는 막을 1시간 동안 소독 용액으로 처리한 경우에 대한 결과를 나타내고 ▲로 표시된 그래프는 막을 2시간 동안 소독 용액으로 처리한 경우에 대한 결과를 나타내며 ◆로 표시된 그래프는 막을 3시간 동안 소독 용액으로 처리한 경우에 대한 결과를 나타낸다. 두 가지 용액으로 소독 처리가 된 막들의 성능을 비교 분석하기 위하여 동일한 조건으로 실험이 수행되었다.In each figure, the graphs marked with 와 and solid line show the results for the case of using the reverse osmosis membrane without the disinfectant treatment. The graph marked with ■ shows the result when the membrane was treated with the disinfecting solution for 1 hour, and the graph marked with ▲ shows the result when the membrane was treated with the disinfecting solution for 2 hours, and the graph marked with ◆ shows the disinfection of the membrane for 3 hours. The result about the case with the solution is shown. Experiments were performed under the same conditions to compare and analyze the performance of membranes sterilized with both solutions.
도 3 및 5에서 ■로 표시된 그래프는 유효 염소 5000 mg/L의 차아염소산나트륨 용액으로 1시간 처리된 막을 120 시간 동안 도 1과 같은 시스템에서 운전하였을 때에 변화하는 성능을 나타내고 ▲, ◆로 표시된 그래프는 각각 2시간, 3시간 동안 처리된 막의 성능의 평가를 나타낸다. 같은 방식으로 도 4 및 6의 그래프는 유효 염소 5000 mg/L의 이염화아이소시아누르산나트륨 용액으로 처리 된 막의 성능 평가 결과이며, 마찬가지로 ■, ▲, ◆는 각각 1시간, 2시간, 그리고 3시간 동안 막 처리를 수행한 경우에 대한 것이다. 도 2에서는 막의 성능 중 투과 수량을 나타낸다. In Figures 3 and 5, the graphs marked with ■ show the changing performance when the membrane treated with effective chlorine 5000 mg / L sodium hypochlorite solution for 1 hour was operated in the system as shown in Figure 1 for 120 hours. Represents an evaluation of the performance of the membrane treated for 2 and 3 hours, respectively. In the same manner, the graphs of FIGS. 4 and 6 show the results of performance evaluation of membranes treated with 5000 mg / L of sodium isocyanuric dichloride solution of effective chlorine. When the membrane treatment was carried out for a time. 2 shows the water permeation rate of the performance of the membrane.
도 3 및 4에서, 염 제거율이 유지되는 조건 하에서 투과 수량이 많을수록 같은 시간동안 처리되는 물의 양이 많기 때문에 더 좋다고 말할 수 있다. 도 5 및 6에서는 막의 성능 중 염의 제거율을 나타낸다. 염 제거율은 해수나 기수에 포함된 염이 막에 의해 제거된 양을 의미하며 제거율이 높을수록 좋은 성능의 막이라고 할 수 있다. 투과 수량과 염 제거율은 모두 높아야 그 성능이 좋다고 할 수 있는데 실제 공정에서는 투과 수량이 높아지면 염 제거율이 떨어지고, 염 제거율이 높아지면 투과 수량이 떨어지는 등 함께 높이기 어려운 조작이기 때문에 적절한 조건에서 두 가지의 성능을 만족하는 공정 조건에서 시스템이 운전된다.In Figures 3 and 4, it can be said that the more the permeate amount under the condition that the salt removal rate is maintained, the better because there is a greater amount of water to be treated during the same time. 5 and 6 show the rate of salt removal in the performance of the membrane. Salt removal rate means the amount of salt contained in seawater or brackish water removed by the membrane. The higher the removal rate, the better the membrane. The performance is good when both the permeate quantity and the salt removal rate are high, but in the actual process, it is difficult to increase the salt removal rate when the permeate quantity is high and the permeate quantity is low when the salt removal rate is high. The system is operated under process conditions that meet performance.
도 3 및 4를 살펴보면, 이염화아이소시아누르산나트륨 용액으로 처리된 막의 성능(도 4)은 차아염소산나트륨 용액으로 처리된 막의 성능(도 3)보다 시간에 따른 투과수량의 변화가 적은 것을 볼 수 있다. 차아염소산나트륨 용액으로 처리된 막의 성능 변화를 볼 때 막의 소독 직 후 투과 수량이 급격히 감소했다가 시스템 운전 시간이 늘어날수록 점점 증가한다. 또한 소독제 처리 시간이 길수록 투과 수량의 증가율이 높으며 3시간 처리 된 막의 경우는 처음 투과 수량을 넘어 약 1.3배까지 그 양이 증가하는 것을 볼 수 있다. 반면, 아무처리 되지 않은 막과 비교하였을 때 이염화아이소시아누르산나트륨 용액으로 처리된 막 성능의 경우는 차아염소산나트륨 용액으로 처리 된 막보다 그 차이가 현저히 작으며 투과 수량 역시 염소 처리되지 않은 막과 비슷한 양상으로 감소되는 것을 볼 수 있는데 이것은 염에 의한 막의 파울링 현상에서 나타나는 투과수량의 감소로 보인다.3 and 4, the performance of the membrane treated with sodium isocyanuric dichloride solution (FIG. 4) shows that the change in the amount of permeate with time is smaller than the performance of the membrane treated with sodium hypochlorite solution (FIG. 3). Can be. In view of the change in performance of membranes treated with sodium hypochlorite solution, the permeate yield decreased sharply after disinfection of the membrane and then increased with increasing system operating time. In addition, the longer the disinfectant treatment time, the higher the rate of permeation increase, and in the case of the membrane treated for 3 hours, the amount increased by about 1.3 times beyond the initial permeate. On the other hand, the membrane performance treated with sodium isocyanate dichloride solution was significantly smaller than that treated with sodium hypochlorite solution compared to the untreated membrane, and the permeate amount was also not chlorine treated. It can be seen that the decrease is similar to the decrease in permeated water in fouling of the membrane by salt.
도 5 및 6에서 보이는 염 제거율에서도 이염화아이소시아누르산나트륨 용액으로 처리된 막의 성능이 훨씬 높게 측정되었다. 차아염소산나트륨 용액으로 처리 된 막의 염 제거율을 나타내는 도 5의 경우 막의 소독이 끝난 직후부터 이미 성능이 저하 된 것이 관찰 되었고, 그 후 운전 시간이 지날수록 염 제거율은 점점 감소하여 3시간 처리 된 막은 120 시간의 운전 시간으로 약 20%의 염제거율 감소를 나타내었다. 반면, 이염화아이소시아누르산나트륨 용액으로 처리된 막의 경우 도 6에 나타난 바와 같이 막의 염 제거율은 오랜 시스템 운전시간 동안 거의 동일하게 유지되었다.Even in the salt removal rates shown in FIGS. 5 and 6, the performance of membranes treated with sodium isocyanur dichloride solution was much higher. In FIG. 5, which shows the salt removal rate of the membrane treated with sodium hypochlorite solution, it was observed that the performance had already decreased immediately after the disinfection of the membrane. After that, the salt removal rate gradually decreased, and the membrane treated for 3 hours was 120 The run time of time resulted in a reduction in salt removal rate of about 20%. On the other hand, in the case of membranes treated with sodium isocyanuric dichloride solution, the salt removal rate of the membranes remained almost the same for a long system operation time as shown in FIG. 6.
차아염소산나트륨 용액으로 처리된 막은 높은 투과수량에도 불구하고 낮은 염 제거율을 보이기 때문에 소독제에 의한 막의 표면 손상으로 인하여 막을 통과하는 물의 양은 많아 졌으나 물 뿐만이 아니라 유입수의 염 까지도 모두 빠져나온다는 것을 알 수 있다.Membrane treated with sodium hypochlorite solution shows low salt removal rate in spite of high permeated water, so it can be seen that the amount of water passing through the membrane is increased due to surface damage of the membrane by disinfectant, but not only water but also salt of influent.
이상과 같은 성능평가 결과로부터 이염화아이소시아누르산나트륨 용액을 소독제로 사용한 여과막이 기존에 사용되는 차아염소산나트륨 용액으로 처리 된 여과막보다 성능 유지에 우월하다는 것과 이로부터 이염화아이소시아누르산나트륨 용액이 막에 끼친 영향이 적다는 것을 알 수 있다.From the results of the above performance evaluation, the filter membrane using sodium isocyanate dichloride solution as a disinfectant is superior to the performance maintaining the filter membrane treated with sodium hypochlorite solution, which is used. It can be seen that the effect on the film is small.
상술한 바와 같이 본 발명의 실시예에 의하면, 막에 손상은 거의 주지 않으면서 유효염소의 농도가 보다 오랫동안 유지되어 안정하고 지속적인 소독이 가능한 이염화아이소시아누르산염 용액을 이용하여 막을 세척하는 방법이 제공된다. 특히, 아이소시아누르산염 원료는 고체상으로 존재하여 보존이 편리하고 물에 대한 용해도가 높아 활용이 용이한데다가 값도 비싸지 않아 경제적이다. 또한 물속과 상온에서 비교적 안정한 염소의 농도를 유지하므로 미생물의 소독과 멸균 효과가 오랫동안 지속될 수 있다. 무엇보다도 아이소시아누르산염을 소독제로 사용하여 세척된 막은 오랜 시스템 운전 상태에서도 염의 제거율이 높게 유지되며 투과수량은 매우 안정하다.As described above, according to an embodiment of the present invention, a method of washing a membrane using an isocyanuric dichloride solution capable of maintaining stable concentrations of effective chlorine for a longer period of time with little damage to the membrane and allowing stable and continuous disinfection is provided. Is provided. In particular, the isocyanurate raw material is in a solid phase, which is convenient for preservation, high solubility in water, easy to use, and inexpensive, and therefore economical. In addition, since it maintains a relatively stable concentration of chlorine in water and room temperature, the disinfection and sterilization effect of microorganisms can be maintained for a long time. Above all, membranes cleaned using isocyanurate as a disinfectant have a high salt removal rate and a stable permeate rate even during long system operation.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to a preferred embodiment of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (11)

  1. 아이소시아누르산을 포함하는 용액으로 여과막을 소독하는 단계를 포함하는 여과막의 세척 방법.A method of cleaning a filtration membrane comprising disinfecting the filtration membrane with a solution containing isocyanuric acid.
  2. 제1항에 있어서, 상기 여과막은 역삼투막, 정삼투막, 나노여과막, 한외여과막 및 정밀여과막 중 적어도 하나인 것을 특징으로 하는 세척 방법.The method of claim 1, wherein the filtration membrane is at least one of a reverse osmosis membrane, an forward osmosis membrane, a nanofiltration membrane, an ultrafiltration membrane, and a microfiltration membrane.
  3. 제2항에 있어서, 상기 여과막은 폴리아마이드계 역삼투막인 것을 특징으로 하는 세척 방법.The washing method according to claim 2, wherein the filtration membrane is a polyamide reverse osmosis membrane.
  4. 제1항에 있어서, 상기 아이소시아누르산을 포함하는 용액은 파우더 및 펠렛을 포함하는 아이소시아누르산염 고체상을 물에 용해시켜 얻어지는 것임을 특징으로 하는 세척 방법.The method according to claim 1, wherein the solution comprising isocyanuric acid is obtained by dissolving an isocyanurate solid phase including powder and pellets in water.
  5. 제4항에 있어서, 상기 아이소시아누르산염은 이염화아이소시아누르산나트륨, 이염화아이소시아누르산칼륨, 삼염화아이소시아누르산나트륨 및 삼염화아이소시아누르산칼륨으로 이루어진 군에서 선택된 적어도 하나인 것을 특징으로 하는 세척 방법.The method of claim 4, wherein the isocyanurate is at least one selected from the group consisting of sodium isocyanur dichloride, potassium isocyanur dichloride, sodium isocyanur trichloride and potassium isocyanur trichloride. Characterized by a washing method.
  6. 제1항에 있어서, 상기 여과막은 해수 또는 기수의 담수화, 정수, 하수 처리 및 폐수 처리를 포함하는 수처리 공정에 사용되는 것임을 특징으로 하는 세척 방법.The method of claim 1, wherein the filtration membrane is used in a water treatment process including desalination of seawater or brackish water, water purification, sewage treatment, and wastewater treatment.
  7. 제1항에 있어서, 상기 여과막을 소독하는 단계는 전처리 공정 중에 아이소시아누르산을 포함하는 용액을 주입하는 방식, 상기 전처리 공정의 수행후 유입수가 공급되기 전에 또는 유입수가 공급되는 중에 아이소시아누르산을 포함하는 용액을 주입하는 방식, 및 상기 여과막을 상기 아이소시아누르산을 포함하는 용액에 담그거나 용액을 순환시키는 방식중 어느 하나의 방식으로 수행되는 것을 특징으로 하는 세척 방법.The method of claim 1, wherein the sterilizing of the filtration membrane is performed by injecting a solution containing isocyanuric acid during the pretreatment process, before the influent water is supplied after the pretreatment process is performed or while the influent is supplied. Method of injecting a solution comprising a, and the method of immersing the filtration membrane in the solution containing the isocyanuric acid or circulating the solution, characterized in that carried out in any one of the manner.
  8. 제7항에 있어서, 상기 여과막을 상기 아이소시아누르산을 포함하는 용액에 담그거나 용액을 순환시키는 방식으로 소독하는 단계를 수행한 이후에, 상기 여과막을 증류수로 세정하는 단계를 더 수행하는 것을 특징으로 하는 세척 방법.The method of claim 7, wherein after performing the step of disinfecting the filtration membrane in a solution containing the isocyanuric acid or circulating the solution, the step of washing the filtration membrane with distilled water is further performed. Washing method.
  9. 제1항에 있어서, 상기 소독하는 단계를 수행하기 전에, 상기 여과막의 투과 수량의 안정화를 위하여 일정 시간 동안 물을 공급하는 컴팩션 단계를 더 수행하는 것을 특징으로 하는 세척 방법.The washing method according to claim 1, further comprising performing a compaction step of supplying water for a predetermined time to stabilize the permeate amount of the filtration membrane before performing the sterilizing step.
  10. 제9항에 있어서, 상기 컴팩션 단계에서 막에 가해지는 압력은 200 내지 800 psig 범위인 것을 특징으로 하는 세척 방법.10. The method of claim 9, wherein the pressure applied to the membrane in the compaction step is in the range of 200 to 800 psig.
  11. 제1항에 있어서, 상기 여과막을 소독하는 단계를 통하여 상기 여과막에 부착된 미생물의 불활성화 및 바이오파울링의 제어가 이루어지는 것을 특징으로 하는 세척 방법.The method of claim 1, wherein the microfiltration is inactivated and biofouling is controlled by disinfecting the filtration membrane.
PCT/KR2012/000726 2011-05-27 2012-01-31 Method for washing a filtration membrane using a novel disinfectant WO2012165748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110050798A KR20120132148A (en) 2011-05-27 2011-05-27 Method of cleaning membrane using novel disinfectant
KR10-2011-0050798 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012165748A1 true WO2012165748A1 (en) 2012-12-06

Family

ID=47259562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000726 WO2012165748A1 (en) 2011-05-27 2012-01-31 Method for washing a filtration membrane using a novel disinfectant

Country Status (2)

Country Link
KR (1) KR20120132148A (en)
WO (1) WO2012165748A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105060585A (en) * 2015-07-31 2015-11-18 浙江至美环境科技有限公司 Portable multiuse emergency drinking water treatment apparatus and treatment technology thereof
KR20180065787A (en) * 2016-12-08 2018-06-18 금오공과대학교 산학협력단 Cleaning method for reuse of waste reverse osmosis membrane
CN110898674A (en) * 2019-11-29 2020-03-24 江苏大储宝环境科技有限公司 Water purifier reverse osmosis membrane cleaning agent and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427797B1 (en) * 2013-05-20 2014-10-07 엘지전자 주식회사 Maintenance cleaning method of filtration membrane for water treatment and water treatment system for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095941A (en) * 2000-09-26 2002-04-02 Nitto Denko Corp Composite reverse osmosis membrane
KR20040036280A (en) * 2002-10-24 2004-04-30 김응수 Pharmaceutical composition for disinfection effect comprising chloroisocyanic acid
JP2008246424A (en) * 2007-03-30 2008-10-16 Kuraray Co Ltd Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus
JP2009112929A (en) * 2007-11-05 2009-05-28 Metawater Co Ltd Moving type washing apparatus of membrane filtration apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095941A (en) * 2000-09-26 2002-04-02 Nitto Denko Corp Composite reverse osmosis membrane
KR20040036280A (en) * 2002-10-24 2004-04-30 김응수 Pharmaceutical composition for disinfection effect comprising chloroisocyanic acid
JP2008246424A (en) * 2007-03-30 2008-10-16 Kuraray Co Ltd Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus
JP2009112929A (en) * 2007-11-05 2009-05-28 Metawater Co Ltd Moving type washing apparatus of membrane filtration apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105060585A (en) * 2015-07-31 2015-11-18 浙江至美环境科技有限公司 Portable multiuse emergency drinking water treatment apparatus and treatment technology thereof
CN105060585B (en) * 2015-07-31 2017-09-08 浙江至美环境科技有限公司 A kind of portable multi-purpose device for treating emergency drinking water and handling process
KR20180065787A (en) * 2016-12-08 2018-06-18 금오공과대학교 산학협력단 Cleaning method for reuse of waste reverse osmosis membrane
CN110898674A (en) * 2019-11-29 2020-03-24 江苏大储宝环境科技有限公司 Water purifier reverse osmosis membrane cleaning agent and preparation method thereof

Also Published As

Publication number Publication date
KR20120132148A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
US20060032823A1 (en) Disinfection of reverse osmosis membrane
JP5691519B2 (en) Fresh water generation method
JP6486920B2 (en) Composition and method for inhibiting biofouling of membrane separation apparatus
EP2106387B1 (en) Method to control reverse osmosis membrane biofouling in drinking water production
EP1834691B1 (en) Washing method and apparatus of separation membrane
US10118131B2 (en) Method for preventing microbial growth on a filtration membrane
Moser et al. Comparison of hybrid ultrafiltration-osmotic membrane bioreactor and conventional membrane bioreactor for oil refinery effluent treatment
JP2008183510A (en) Purified water production method and apparatus
JP2009240902A (en) Water treating method and water treating apparatus
CN104014247A (en) Sterilization method capable of preventing reverse osmosis membrane from being polluted and plugged by microbe
WO2012165748A1 (en) Method for washing a filtration membrane using a novel disinfectant
WO2011125764A1 (en) Treatment method using reverse osmosis membrane
JP2009183825A (en) Water treatment apparatus
Maeda Roles of sulfites in reverse osmosis (RO) plants and adverse effects in RO operation
JP7367181B2 (en) Water recovery system and water recovery method
JP3641854B2 (en) Reverse osmosis membrane separation method and reverse osmosis membrane separation device
WO2007069558A1 (en) Process and apparatus for modifying separation membrane and separation membranes modified by the process
JP2021006335A (en) Oxidation risk evaluation method of separation membrane in separation membrane plant and fresh water generator
JP2007237016A (en) Seawater filtering method
WO2013129111A1 (en) Water production method
Fujioka et al. Application of stabilized hypobromite for controlling membrane fouling and N-nitrosodimethylamine formation
JP2018114471A (en) Water treatment system
JPH11179173A (en) Operation method of membrane separator and membrane separator
WO2023074267A1 (en) Water treatment method and water treatment system
KR20140045812A (en) Process for cleaning a filtration membrane and bio-fouling preventing material for the filtration membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793157

Country of ref document: EP

Kind code of ref document: A1