WO2012165367A1 - Administration device, administration method, and administration program - Google Patents

Administration device, administration method, and administration program Download PDF

Info

Publication number
WO2012165367A1
WO2012165367A1 PCT/JP2012/063603 JP2012063603W WO2012165367A1 WO 2012165367 A1 WO2012165367 A1 WO 2012165367A1 JP 2012063603 W JP2012063603 W JP 2012063603W WO 2012165367 A1 WO2012165367 A1 WO 2012165367A1
Authority
WO
WIPO (PCT)
Prior art keywords
management
product
process data
inspection
management level
Prior art date
Application number
PCT/JP2012/063603
Other languages
French (fr)
Japanese (ja)
Inventor
潤 三上
佐藤 淳一
靖浩 稲益
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012165367A1 publication Critical patent/WO2012165367A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a management device, a management method, and a management program, and more particularly to a management device, a management method, and a management program for manufacturing management.
  • CIM Computer Integrated Manufacturing
  • a management device such as a server manages each production device.
  • processing is performed in lot units by a manufacturing apparatus or an inspection apparatus as a production apparatus.
  • various parameter information is transmitted from each production apparatus to the management apparatus.
  • this parameter information for example, if the production apparatus is an inspection apparatus, it corresponds to various measurement results such as the number of defects in a lot and film thickness, and if it is a manufacturing apparatus, the processing time, the amount of material used, the remaining amount, Various manufacturing conditions (temperature, pressure, etc.) are applicable.
  • This information is also referred to as process data in the following description.
  • the inspection frequency is often fixed for each model.
  • the present invention has been made in view of such problems, and provides a management apparatus, a management method, and a management program capable of improving manufacturing quality and improving yield in a CIM system. It is an object.
  • the management device includes a first process device and a second process device disposed downstream of the first process device in the product transfer direction.
  • a manufacturing system including a plurality of process devices, a management device for managing the plurality of process devices, communicating with each of the plurality of process devices, and processing products from each of the plurality of process devices
  • An acquisition unit for acquiring process data that is a value related to a predetermined parameter in the process, a management level to which the process data from the first process apparatus belongs, and a second disposed downstream of the first process apparatus.
  • a storage unit for storing a correspondence relationship with the control value of the process device; and process data from the first process device relating to a product of a predetermined lot
  • a specifying unit for specifying a management level to be performed, a determining unit for determining a control value for a product of a predetermined lot in the second process device based on the specified management level, and the determined control
  • a control unit for controlling processing of a product of a predetermined lot in the second process apparatus using the value.
  • the determination unit stores the boundary value of the management level as a threshold value, and determines the management level to which the process data belongs by comparing the value indicated by the process data from the first process device with the threshold value. .
  • the first process device is a manufacturing device
  • the second process device is an inspection device
  • the determination unit is based on a management level to which process data relating to a product of a predetermined lot from the manufacturing device belongs.
  • the inspection frequency of the product of a predetermined lot is determined as a control value in the inspection apparatus.
  • the management level is set stepwise from the normal production possible range in the manufacturing apparatus, and the storage unit is a management level to which the management level to which the process data from the manufacturing apparatus belongs is separated from the normal production possible range.
  • the correspondence relationship in which the inspection frequency of the inspection apparatus increases is stored.
  • a management method includes a plurality of process devices including a first process device and a second process device disposed downstream of the first process device in the product conveyance direction.
  • a process for managing a plurality of process devices in a manufacturing system including the steps of: obtaining from the first process device process data that is a value relating to a predetermined parameter in processing a product of a predetermined lot; Identifying the management level to which the process data from the first process device belongs, the management level to which the process data from the first process device belongs, and the second process device arranged downstream of the first process device
  • the storage device storing the correspondence relationship with the control value of the second process device is accessed based on the specified management level. Comprising of determining a control value for the product lot, and controlling the processing of products of a given lot of the second process device by using the determined control value.
  • the management program includes a plurality of processes including a first process device and a second process device disposed downstream of the first process device in the product conveyance direction.
  • a program for causing a management apparatus electrically connected to a plurality of process apparatuses to execute a process for managing the plurality of process apparatuses wherein A step of acquiring process data which is a value relating to a predetermined parameter in the processing of the product, a step of specifying a management level to which the process data from the first process device belongs, and a management to which the process data from the first process device belongs
  • a step of acquiring process data which is a value relating to a predetermined parameter in the processing of the product
  • a step of specifying a management level to which the process data from the first process device belongs and a management to which the process data from the first process device belongs
  • the correspondence relationship between the level and the control value of the second process device arranged downstream of the first process device A step of determining a control value for a product of a predetermined lot in
  • the manufacturing quality can be improved and the yield can be improved.
  • FIG. 1 It is a figure which shows the specific example of a structure of the CIM (Computer Integrated Manufacturing) system concerning embodiment. It is a figure showing the outline
  • CIM Computer Integrated Manufacturing
  • FIG. 6A It is a figure which shows the specific example of determination of the inspection frequency using the response
  • FIG. 1 is a diagram illustrating a specific example of a configuration of a CIM (Computer Integrated Manufacturing) system 1 according to the present embodiment.
  • CIM Computer Integrated Manufacturing
  • the CIM system 1 includes a plurality of process devices for performing process processing step by step.
  • the process apparatus includes manufacturing apparatuses 20A, 20B,..., 20N for manufacturing products in stages provided for each manufacturing process, and an inspection for inspecting manufactured products provided for each inspection process. Including devices 30A, 30B,..., 30N.
  • the manufacturing apparatuses 20A, 20B,..., 20N are representatively referred to as the manufacturing apparatus 20, and the inspection apparatuses 30A, 30B,.
  • the CIM system 1 further includes a storage device 50 for storing and storing information necessary for management in the database 51, and a management device 10 for managing these process devices.
  • the CIM system 1 is provided with a production line 40 for proceeding with production and inspection while conveying products.
  • a product such as a robot (not shown) is arranged, so that the product is transported in a predetermined order (direction) from the upstream side to the downstream side.
  • the manufacturing apparatuses 20A, 20B,..., 20N are arranged on the production line 40 in this order from the upstream side, and produce products in stages. Thereafter, the inspection devices 30A, 30B,..., 30N are arranged in this order from the upstream side to the downstream side of the manufacturing devices 20A, 20B,. As the production line 40 transports the product from the upstream side to the downstream side, the product is transported to the inspection device 30N that performs the final inspection.
  • the manufacturing apparatuses 20A, 20B,..., 20N are arranged in series in this order from the upstream side, and the inspection apparatuses 30A, 30B,.
  • An example is shown that is arranged in series.
  • each arrangement of the manufacturing apparatus 20 and each arrangement of the inspection apparatus 30 is not limited to the example of FIG.
  • FIG. 7 is a diagram showing another specific example of the configuration of the CIM system 1, but only the production line is shown without representing the management device and the storage device in order to facilitate the explanation.
  • the configuration of the CIM system 1 is not limited to the one in which the manufacturing apparatus and the inspection apparatus are regularly arranged in order as shown in FIG. 1.
  • the apparatus and the inspection apparatus may be arranged irregularly (for example, alternately).
  • the CIM system 1 naturally includes an arrangement as shown in FIG. 7 and FIG. 8, and the CIM system 1 includes a first manufacturing apparatus 20 that is directly or second relative to the second manufacturing apparatus 20.
  • a system is assumed that is indirectly upstream and whose manufacturing process affects the manufacturing in the second manufacturing apparatus 20.
  • the management device 10 can communicate with the manufacturing device 20 and the inspection device 30. This communication may be wireless communication or wired communication such as a LAN (Local Area Network).
  • LAN Local Area Network
  • management device 10 can access the storage device 50, and reads information stored in the database 51 to manage the manufacturing device 20 and the inspection device 30.
  • the storage device 50 is a separate device from the management device 10.
  • the configuration illustrated in FIG. 1 is an example, and the storage device 50 manages the storage device 50. It may be included in the device 10.
  • management apparatus 10 may be included in any manufacturing apparatus 20 or inspection apparatus 30.
  • the management device 10 has, as a device configuration, a CPU (Central Processing Unit) 11 for controlling the entire device, a memory 12 for storing a program executed by the CPU 11, and the like.
  • An HDD (Hard Disk Drive) 13 for storing information necessary for management, and a communication interface (I / F) 14 for communicating with the manufacturing apparatus 20, the inspection apparatus 30, and the storage apparatus 50 are included.
  • This device configuration is an example and is similar to the configuration of a general computer or server. Therefore, the management apparatus 10 may include other configurations.
  • a storage device conforming to SSD (Solid State Drive) or other standards may be used instead of or in addition to the HDD as the storage device.
  • FIG. 2 is a diagram showing an outline of the operation in the CIM system 1.
  • the manufacturing apparatus 20 manages the lot number M as the lot information and process data in step S12. It transmits to the apparatus 10.
  • the process data refers to various parameter information as a processing result when a product is processed (manufactured or inspected) for each lot by the manufacturing apparatus 20 or the inspection apparatus 30.
  • the process data in the manufacturing apparatus 20 Processing time, amount of material used, remaining amount, various manufacturing conditions (temperature, pressure, etc.) are applicable, and the process data in the inspection apparatus 30 includes various measurement results such as the number of defects and film thickness in the lot. , Etc.
  • Lot information (lot number) is generally read using a bar code or the like.
  • the manufacturing apparatus 20 includes a reading device (not shown), the manufacturing apparatus 20 reads it and manages it together with the process data. Transmit to device 10.
  • a conveyance device (not shown) on the production line 40 may be provided with a reading device for reading lot information, and the conveyance device may transmit the data to the manufacturing device 20 as the process progresses.
  • the manufacturing apparatus 20 transmits the lot information received from the transport apparatus to the management apparatus 10 together with the process data that is the processing result of the own apparatus.
  • step S21 the management apparatus 10 determines the inspection frequency in the inspection apparatus 30 of the product of the lot number M based on the process data received from the manufacturing apparatus 20, and the inspection determined as the lot number M in step S22. The frequency is transmitted to the inspection device 30.
  • the inspection apparatus 30 that has received this information inspects the product of the lot number M in step S31 according to the received inspection frequency, and sends the inspection result as process data together with the lot number M to the management apparatus 10 in step S32. Send.
  • FIG. 3 is a block diagram illustrating a specific example of a functional configuration of the management apparatus 10 for executing the above operation.
  • Each function shown in FIG. 3 is mainly formed on the CPU 11 when the CPU 11 of the management apparatus 10 reads and executes a program stored in the memory 12, but at least a part of the functions are illustrated. May be realized by a hardware configuration such as an electric circuit.
  • the management apparatus 10 receives a process data input unit 101 for receiving input of process data transmitted from the manufacturing apparatus 20 via the communication I / F 14, and transmits the input process data to the communication I / F.
  • a process data input unit 101 for receiving input of process data transmitted from the manufacturing apparatus 20 via the communication I / F 14, and transmits the input process data to the communication I / F.
  • the storage unit 102 for executing the process for executing the process stored in the database 51 of the storage device 50 via F14 and a threshold value to be described later, and to compare the process data with the threshold value.
  • An inspection data input unit 106 for receiving input of inspection data that is process data transmitted from the inspection device 30 via the communication I / F 14;
  • An analysis unit 107 for analyzing the input inspection data, a management unit 108 for performing manufacturing management by feeding back the analysis result to the manufacturing apparatus 20 via the communication I / F 14, and an inspection for performing a final inspection
  • a calculation unit 109 for calculating the yield from the analysis result of the inspection data from the apparatus 30N.
  • the process data input unit 101 accepts input of a lot number together with process data from the manufacturing apparatus 20.
  • the storage unit 102 stores the lot number in association with the process data in the database 51 of the storage device 50 for each manufacturing apparatus 20.
  • the comparison unit 103 stores a threshold value of a value (hereinafter, process data value) indicated by process data from the manufacturing apparatus 20 in advance for each manufacturing apparatus 20.
  • This threshold value is a threshold value for classifying process data values into management levels.
  • the management level is also referred to as a management level.
  • the threshold value may be specified for each manufacturing apparatus 20 or may be specified for each manufacturing parameter in the manufacturing apparatus 20.
  • FIG. 4 is a diagram illustrating a specific example of the relationship between the threshold value stored in the comparison unit 103 and the management level.
  • comparison unit 103 stores threshold values Th1 to Th4.
  • the range defined by Th2 to Th3 indicates a range of process data values (normal production possible range) in which normal production is possible in the manufacturing apparatus 20 concerned.
  • the range specified by Th3 to Th4 indicates the range of control level 1 that is adjacent to the normal production range on the higher process data value side, and the range specified by Th4 is the value of process data value.
  • the management level 2 range adjacent to the management level 1 range is indicated.
  • the range defined by Th1 to Th2 indicates the range of the management level 1 that is adjacent to the normal production possible range on the lower side of the process data value, and the range defined by ⁇ Th1 is the process data value. Indicates a management level 2 range adjacent to the management level 1 range on the lower side.
  • the comparison unit 103 reads the process data associated with the lot number to be compared from the database 51 and compares it with the stored threshold values Th1 to Th4, thereby specifying the management level corresponding to the lot number. .
  • the comparison unit 103 sets the management level to which the most process data among them belongs to the management level corresponding to the lot number.
  • the management level to which the average value of the values indicated by the process data belongs may be specified as the management level corresponding to the lot number.
  • the determination unit 104 stores a correspondence between the management level and the inspection frequency in the inspection apparatus 30 in advance.
  • the correspondence between the management level and the inspection frequency in the inspection device 30 may be stored in the HDD 13 or the like, and the determination unit 104 may read the correspondence.
  • the determination unit 104 reads the inspection frequency in the inspection device 30 according to the management level related to the lot number specified by the comparison unit 103, thereby inspecting the product associated with the lot number in the inspection device 30. Determine the frequency.
  • the CIM system 1 includes a plurality of inspection devices 30A, 30B,... 30N as the inspection device 30, correspondence between inspection frequencies and management levels is stored for each inspection device.
  • the determination unit 104 may determine the inspection frequency for each inspection device.
  • the inspection frequency of the product associated with the lot number in the inspection device 30A is notified to the inspection device 30A before the inspection device 30A starts the inspection of the product associated with the lot number. Is done.
  • an apparatus for extracting a product for inspection from a product conveyed along the production line 40 such as a loading robot (not shown) provided in the inspection apparatus 30A
  • the lot is extracted in accordance with the number of extractions according to the notification.
  • the product associated with is extracted for inspection by the inspection apparatus 30A.
  • the inspection apparatus 30 performs inspection at the notified inspection frequency, and inspection data that is the inspection result is transmitted as process data to the management apparatus 10.
  • the analysis unit 107 analyzes the inspection data and obtains an analysis result based on a relational expression stored in advance.
  • FIG. 5 is a flowchart showing the flow of operations executed by the management apparatus 10. The operation shown in the flowchart of FIG. 5 is realized by the CPU 11 of the management apparatus 10 reading and executing a program stored in the memory 12.
  • CPU 11 stores the received process data in database 51 of storage device 50 in step S ⁇ b> 113. Store.
  • step S105 When manufacturing of the product of the lot number is completed in the manufacturing apparatus 20 and transmission of process data associated with the lot number is completed (YES in step S105), the CPU 11 associates with the lot number in step S107. Management level is determined using process data.
  • step S105 if the CPU 11 stores the number of products for each lot number in advance, the number of process data received in step S101 is counted using a counter (not shown). By detecting that the count value reaches the number of stored process data, it is possible to detect the completion of reception of process data related to the lot number. Alternatively, the CPU 11 monitors data representing the lot number transmitted from the manufacturing apparatus 20 in association with the process data, and when the lot number changes, reception of the process data associated with the previous lot number is completed. May be detected.
  • step S107 the CPU 11 determines the management level of the process data associated with the lot number by comparing the value indicated by the process data with the boundary value of the management level used as a threshold value stored in advance.
  • step S109 the CPU 11 determines the inspection frequency stored corresponding to the management level determined in step S107 as the inspection frequency in the inspection apparatus 30 for the product of the lot number, and corresponds in step S111. The inspection device 30 is notified.
  • the inspection frequency in the inspection apparatus 30 is set corresponding to the change in the process data in the manufacturing apparatus 20. That is, when the value indicated by the process data in the manufacturing apparatus 20 is classified into management levels and the inspection frequency is set for each management category, and the management level of the process data in the manufacturing apparatus 20 changes, the changed management level The inspection frequency corresponding to is set. Thereby, manufacturing quality will be improved. In addition, the yield can be improved.
  • the inspection frequency is determined by specifying the management level by paying attention to the process data from one of the plurality of manufacturing apparatuses 20A, 20B,... 20N.
  • the inspection frequency may be determined by a combination of process data from each of the plurality of manufacturing apparatuses 20A, 20B,.
  • FIG. 6A is a diagram showing a specific example of the correspondence between the process data from the manufacturing apparatus and the inspection frequency in the modified example.
  • the threshold value indicating the normal state is defined such that the value of process data in manufacturing apparatus 20A is less than 80, and the value of process data in manufacturing apparatus 20B is less than 0.4.
  • the inspection frequency of the inspection apparatus 30 is defined as 1/10.
  • the value of process data in the manufacturing apparatus 20A is 80 or more
  • the value of process data in the manufacturing apparatus 20B is 0.4 or more
  • the first threshold value the value of process data in the manufacturing apparatus 20A is 110 or more
  • a process data value of 0.9 or more in the manufacturing apparatus 20B is defined as the second threshold value.
  • 1/5 is defined as the inspection frequency when the value of the process data in each of the manufacturing apparatuses 20A and 20B is at a management level between the first threshold value and the second threshold value
  • the total number is defined as the inspection frequency when the management level is equal to or higher than the second threshold.
  • the inspection frequency corresponding to the management level to which all of the process data values of the manufacturing apparatuses 20A and 20B belong may be determined as the inspection frequency of the product of the lot number, and each of these process data belongs.
  • the management level farthest from the normal state may be determined as the inspection frequency of the product of the lot number.
  • the management apparatus 10 stores the threshold value as shown in FIG. 6A and the inspection frequency for each management level, and specifies the inspection frequency based on the process data associated with a lot number from the manufacturing apparatuses 20A and 20B. To do.
  • FIG. 6B is a diagram showing a specific example of determination of the inspection frequency using FIG. 6A.
  • the inspection frequency of the products of these lot numbers Is determined to be 1/10.
  • the inspection frequency of the product of lot number 5 is determined to be 1/5.
  • the values of the process data of the manufacturing apparatus 20A associated with the lot numbers 3 and 4 belong to the normal state and the management level between the first threshold value and the second threshold value, respectively.
  • the value of the process data of the manufacturing apparatus 20B belongs to a management level equal to or higher than the second threshold value. Therefore, in this case, the inspection frequency of the products having these lot numbers is determined as the total number.
  • the inspection frequency is determined by a combination of process data values for each manufacturing apparatus, but the inspection frequency is determined by a combination of the process data from the manufacturing apparatus 20 and the process data from the inspection apparatus 30. It may be determined.
  • Such a method for determining the inspection frequency is assumed in the following cases. That is, as the process data from the manufacturing apparatus 20A, the remaining amount of a certain material used in manufacturing by the manufacturing apparatus 20A can be mentioned. At this time, the remaining amount of the material represented by the process data is close to the replacement time, and the amount of the material used for the product of the lot number in the inspection device 30A is just below the predetermined manufacturing condition.
  • process data indicating an inspection result indicating a certain situation is obtained, there is a possibility that a defective product due to a shortage of the material or a non-defective product with poor quality that is very close to the defective product may occur after the next step.
  • the management apparatus 10 determines the inspection frequency in the inspection apparatus 30B of the next process higher (more) than usual based on the combination of these process data. This makes it possible to detect defects early. In addition, the replacement time of the material of the manufacturing apparatus 20A is reviewed.
  • the inspection frequency may be determined based on the management level to which each process data belongs. That is, the management device 10 stores in advance the correspondence between the combination of the management levels and the inspection frequency for each type of process data, and a plurality of types of process data for a product with a lot number from one manufacturing device 20 are stored. Once obtained, the inspection frequency may be determined according to the combination of management levels to which the respective process data belongs.
  • the management apparatus 10 determines the inspection frequency in the inspection apparatus 30 based on the process data from the manufacturing apparatus 20 and the inspection apparatus 30.
  • the control value determined by the management device 10 is not limited to the inspection frequency in the inspection device 30.
  • the management apparatus 10 uses the CIM as control values such as the manufacturing speed in the manufacturing apparatus 20, the material replacement frequency (as in the above example), the inspection sample replacement frequency in the inspection apparatus 30, and the like.
  • the control value of each device included in the system 1 may be determined.
  • the management device 10 since the production proceeds while the product is transported from the upstream side to the downstream side along the production line 40, the management device 10 receives the process data from the upstream device. On the basis of the control value, the control value in the downstream apparatus may be determined.
  • the management apparatus 10 determines, in advance, for each apparatus for which a control value is determined, a management level (or a combination of management levels) to which the process data from the upstream apparatus belongs, and the control value.
  • a management level or a combination of management levels
  • the correspondence with the control value of the device is stored, and when the process data from the upstream device for the product of a certain lot number is obtained, according to the management level (or combination of management levels) to which the process data belongs Control values (for example, inspection frequency, manufacturing speed, etc.) of the device are determined.
  • the manufacturing quality in the CIM system 1 can be improved, and the yield can be improved.
  • a program for causing a computer to execute the operation in the management apparatus 10 described above is stored on a computer-readable recording medium such as a flexible disk attached to the computer, a CD-ROM (Compact Disk-Read Only Memory), a ROM (Read Only Memory), a RAM (Random Access Memory), and a memory card. And can be provided as a program product. Alternatively, the program can be provided by being recorded on a recording medium such as a hard disk built in the computer. A program can also be provided by downloading via a network.
  • the program according to the present invention is a program module that is provided as a part of a computer operating system (OS) and calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. Also good. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. A program that does not include such a module can also be included in the program according to the present invention.
  • OS computer operating system
  • the program according to the present invention may be provided by being incorporated in a part of another program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program. Such a program incorporated in another program can also be included in the program according to the present invention.
  • the provided program product is installed in a program storage unit such as a hard disk and executed.
  • the program product includes the program itself and a recording medium on which the program is recorded.

Abstract

When a lot (M) product process is carried out in a process device which is included in a CIM system (S11), an administration device acquires process data which is a value relating to a prescribed parameter in the process (S12). The administration device stores a correspondence relation between an administration level which is associated with the process data and a control value of a process device which is positioned downstream from the process device, specifies an administration level which is associated with the process data relating to the lot (M) product, and, on the basis of the administration level, determines a control value for the product of the lot at the downstream process device (S21).

Description

管理装置、管理方法、および管理プログラムManagement device, management method, and management program
 この発明は管理装置、管理方法、および管理プログラムに関し、特に、製造管理を行なうための管理装置、管理方法、および管理プログラムに関する。 The present invention relates to a management device, a management method, and a management program, and more particularly to a management device, a management method, and a management program for manufacturing management.
 生産システムとしてCIM(Computer Integrated Manufacturing)が広く用いられている。CIMシステムでは、サーバ等の管理装置が各生産装置を管理している。 CIM (Computer Integrated Manufacturing) is widely used as a production system. In the CIM system, a management device such as a server manages each production device.
 液晶パネルなどの工業製品を製造する過程においては、生産装置としての製造装置や検査装置によってロット単位で処理が実行される。CIMシステムでは、各生産装置から管理装置に対して各種パラメータ情報が送信される。このパラメータ情報として、たとえば生産装置が検査装置であれば、ロット内の欠陥数、膜厚等の各種計測結果などが該当し、製造装置であれば、処理時間、材料の使用量、残量、各種製造条件(温度、圧力、等々)などが該当する。この情報を、以降の説明においてプロセスデータとも称する。 In the process of manufacturing industrial products such as liquid crystal panels, processing is performed in lot units by a manufacturing apparatus or an inspection apparatus as a production apparatus. In the CIM system, various parameter information is transmitted from each production apparatus to the management apparatus. As this parameter information, for example, if the production apparatus is an inspection apparatus, it corresponds to various measurement results such as the number of defects in a lot and film thickness, and if it is a manufacturing apparatus, the processing time, the amount of material used, the remaining amount, Various manufacturing conditions (temperature, pressure, etc.) are applicable. This information is also referred to as process data in the following description.
 管理装置において生産装置からのプロセスデータが変化したことが検出されると、歩留まりに与える影響が不明な場合には通常フローで流動する以外に方法がない。 When it is detected in the management device that the process data from the production device has changed, there is no other way than flowing in the normal flow when the influence on the yield is unknown.
 また、検査頻度については機種ごとに固定されている場合が多い。 Also, the inspection frequency is often fixed for each model.
特表2007-501517号公報Special table 2007-501517
 本来、歩留まり確保の観点からは、プロセスパラメータの変化が検出されると検査頻度を増加させて最終検査にて歩留まり計上する前に仕上がりを確認する、または工程フローを変更する、などの対処が必要と考えられる。 Originally, from the viewpoint of securing yield, it is necessary to increase the inspection frequency when a change in process parameters is detected, and check the finish before counting the yield in the final inspection or change the process flow. it is conceivable that.
 しかしながら、現状のCIMシステムでは管理装置にこのような機能が搭載されていないために上記のような管理が実現されず、書面にて工程内へアナウンスする、などの、管理者に頼る管理がなされているのが実情である。 However, in the current CIM system, since such a function is not installed in the management device, the above management is not realized, and management depending on the administrator such as announcement in the process in writing is performed. It is the actual situation.
 本発明はこのような問題に鑑みてなされたものであって、CIMシステムにおいて、製造品質を向上させ、かつ、歩留まりを改善することが可能な管理装置、管理方法、および管理プログラムを提供することを目的としている。 The present invention has been made in view of such problems, and provides a management apparatus, a management method, and a management program capable of improving manufacturing quality and improving yield in a CIM system. It is an object.
 上記目的を達成するために、本発明のある局面に従うと、管理装置は、第1のプロセス装置と製品の搬送方向に第1のプロセス装置よりも下流側に配置された第2のプロセス装置とを含んだ複数のプロセス装置を含む製造システムにおいて、複数のプロセス装置を管理するための管理装置であって、複数のプロセス装置のそれぞれと通信して、複数のプロセス装置のそれぞれから、製品の処理における所定のパラメータに関する値であるプロセスデータを取得するための取得部と、第1のプロセス装置からのプロセスデータの属する管理レベルと、第1のプロセス装置よりも下流側に配置された第2のプロセス装置の制御値との対応関係を記憶するための記憶部と、所定のロットの製品に関する第1のプロセス装置からのプロセスデータの属する管理レベルを特定するための特定部と、特定された管理レベルに基づいて、第2のプロセス装置での所定のロットの製品についての制御値を決定するための決定部と、決定された制御値を用いて第2のプロセス装置での所定のロットの製品の処理を制御するための制御部とを備える。 In order to achieve the above object, according to one aspect of the present invention, the management device includes a first process device and a second process device disposed downstream of the first process device in the product transfer direction. In a manufacturing system including a plurality of process devices, a management device for managing the plurality of process devices, communicating with each of the plurality of process devices, and processing products from each of the plurality of process devices An acquisition unit for acquiring process data that is a value related to a predetermined parameter in the process, a management level to which the process data from the first process apparatus belongs, and a second disposed downstream of the first process apparatus. A storage unit for storing a correspondence relationship with the control value of the process device; and process data from the first process device relating to a product of a predetermined lot A specifying unit for specifying a management level to be performed, a determining unit for determining a control value for a product of a predetermined lot in the second process device based on the specified management level, and the determined control And a control unit for controlling processing of a product of a predetermined lot in the second process apparatus using the value.
 好ましくは、決定部は、管理レベルの境界値をしきい値として記憶し、第1のプロセス装置からのプロセスデータの示す値としきい値とを比較することでプロセスデータの属する管理レベルを決定する。 Preferably, the determination unit stores the boundary value of the management level as a threshold value, and determines the management level to which the process data belongs by comparing the value indicated by the process data from the first process device with the threshold value. .
 好ましくは、第1のプロセス装置は製造装置であって、第2のプロセス装置は検査装置であって、決定部は、製造装置からの所定のロットの製品に関するプロセスデータの属する管理レベルに基づいて、検査装置での制御値として所定のロットの製品の検査頻度を決定する。 Preferably, the first process device is a manufacturing device, the second process device is an inspection device, and the determination unit is based on a management level to which process data relating to a product of a predetermined lot from the manufacturing device belongs. The inspection frequency of the product of a predetermined lot is determined as a control value in the inspection apparatus.
 より好ましくは、管理レベルは製造装置での通常生産可能範囲から段階的に設定されており、記憶部は、製造装置からのプロセスデータの属する管理レベルが通常生産可能範囲から離れた管理レベルであるほど、検査装置での検査頻度が高くなる対応関係を記憶している。 More preferably, the management level is set stepwise from the normal production possible range in the manufacturing apparatus, and the storage unit is a management level to which the management level to which the process data from the manufacturing apparatus belongs is separated from the normal production possible range. The correspondence relationship in which the inspection frequency of the inspection apparatus increases is stored.
 本発明の他の局面に従うと、管理方法は、第1のプロセス装置と製品の搬送方向に第1のプロセス装置よりも下流側に配置された第2のプロセス装置とを含んだ複数のプロセス装置を含む製造システムにおいて、複数のプロセス装置を管理する方法であって、第1のプロセス装置から、所定のロットの製品の処理における所定のパラメータに関する値であるプロセスデータを取得するステップと、第1のプロセス装置からのプロセスデータの属する管理レベルを特定するステップと、第1のプロセス装置からのプロセスデータの属する管理レベルと、第1のプロセス装置よりも下流側に配置された第2のプロセス装置の制御値との対応関係を記憶する記憶装置にアクセスして、特定された管理レベルに基づいて、第2のプロセス装置での所定のロットの製品についての制御値を決定するステップと、決定された制御値を用いて第2のプロセス装置での所定のロットの製品の処理を制御するステップとを備える。 According to another aspect of the present invention, a management method includes a plurality of process devices including a first process device and a second process device disposed downstream of the first process device in the product conveyance direction. A process for managing a plurality of process devices in a manufacturing system including the steps of: obtaining from the first process device process data that is a value relating to a predetermined parameter in processing a product of a predetermined lot; Identifying the management level to which the process data from the first process device belongs, the management level to which the process data from the first process device belongs, and the second process device arranged downstream of the first process device The storage device storing the correspondence relationship with the control value of the second process device is accessed based on the specified management level. Comprising of determining a control value for the product lot, and controlling the processing of products of a given lot of the second process device by using the determined control value.
 本発明のさらに他の局面に従うと、管理プログラムは、第1のプロセス装置と製品の搬送方向に第1のプロセス装置よりも下流側に配置された第2のプロセス装置とを含んだ複数のプロセス装置を含む製造システムにおいて、複数のプロセス装置と電気的に接続された管理装置に複数のプロセス装置を管理する処理を実行させるためのプログラムであって、第1のプロセス装置から、所定のロットの製品の処理における所定のパラメータに関する値であるプロセスデータを取得するステップと、第1のプロセス装置からのプロセスデータの属する管理レベルを特定するステップと、第1のプロセス装置からのプロセスデータの属する管理レベルと、第1のプロセス装置よりも下流側に配置された第2のプロセス装置の制御値との対応関係を記憶する記憶装置にアクセスして、特定された管理レベルに基づいて、第2のプロセス装置での所定のロットの製品についての制御値を決定するステップと、決定された制御値を用いて第2のプロセス装置での所定のロットの製品の処理を制御するステップとを管理装置に実行させる。 According to still another aspect of the present invention, the management program includes a plurality of processes including a first process device and a second process device disposed downstream of the first process device in the product conveyance direction. In a manufacturing system including an apparatus, a program for causing a management apparatus electrically connected to a plurality of process apparatuses to execute a process for managing the plurality of process apparatuses, wherein A step of acquiring process data which is a value relating to a predetermined parameter in the processing of the product, a step of specifying a management level to which the process data from the first process device belongs, and a management to which the process data from the first process device belongs The correspondence relationship between the level and the control value of the second process device arranged downstream of the first process device A step of determining a control value for a product of a predetermined lot in the second process device based on the specified management level by accessing the storage device to be stored, and a second using the determined control value And a step of controlling the processing of a product of a predetermined lot in the process apparatus.
 この発明によると、CIMシステムにおいて、製造品質を向上させ、かつ、歩留まりを改善することができる。 According to the present invention, in the CIM system, the manufacturing quality can be improved and the yield can be improved.
実施の形態にかかるCIM(Computer Integrated Manufacturing)システムの構成の具体例を示す図である。It is a figure which shows the specific example of a structure of the CIM (Computer Integrated Manufacturing) system concerning embodiment. 実施の形態にかかるCIMシステムでの動作の概要を表わした図である。It is a figure showing the outline | summary of operation | movement in the CIM system concerning embodiment. CIMシステムに含まれる管理装置の機能構成の具体例を示すブロック図である。It is a block diagram which shows the specific example of a function structure of the management apparatus contained in a CIM system. 管理装置の比較部に記憶されているしきい値と管理レベルとの関係の具体例を表わす図である。It is a figure showing the specific example of the relationship between the threshold value and management level which are memorize | stored in the comparison part of the management apparatus. 管理装置で実行される動作の流れを表わすフローチャートである。It is a flowchart showing the flow of the operation | movement performed with a management apparatus. 変形例における製造装置からのプロセスデータと検査頻度との対応の具体例を表わす図である。It is a figure showing the specific example of a response | compatibility with the process data from the manufacturing apparatus in a modification, and inspection frequency. 図6Aの対応を用いた検査頻度の決定の具体例を示す図である。It is a figure which shows the specific example of determination of the inspection frequency using the response | compatibility of FIG. 6A. CIMシステムの構成の他の具体例を示す図である。It is a figure which shows the other specific example of a structure of a CIM system. 図7の構成のCIMシステムでのプロセス処理の流れを表わした図である。It is a figure showing the flow of the process processing in the CIM system of the structure of FIG. CIMシステムの構成の他の具体例を示す図である。It is a figure which shows the other specific example of a structure of a CIM system.
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same.
 <システム構成>
 図1は、本実施の形態にかかるCIM(Computer Integrated Manufacturing)システム1の構成の具体例を示す図である。
<System configuration>
FIG. 1 is a diagram illustrating a specific example of a configuration of a CIM (Computer Integrated Manufacturing) system 1 according to the present embodiment.
 図1を参照して、CIMシステム1は、段階的にプロセス処理を行なうための複数のプロセス装置を含む。 Referring to FIG. 1, the CIM system 1 includes a plurality of process devices for performing process processing step by step.
 プロセス装置は、製造プロセスごとに設けられた、段階的に製品を製造するための製造装置20A,20B,…,20Nと、検査プロセスごとに設けられた、製造された製品を検査するための検査装置30A,30B,…,30Nとを含む。なお、製造装置20A,20B,…,20Nを代表させて製造装置20と称し、検査装置30A,30B,…,30Nを代表させて検査装置30と称する。 The process apparatus includes manufacturing apparatuses 20A, 20B,..., 20N for manufacturing products in stages provided for each manufacturing process, and an inspection for inspecting manufactured products provided for each inspection process. Including devices 30A, 30B,..., 30N. The manufacturing apparatuses 20A, 20B,..., 20N are representatively referred to as the manufacturing apparatus 20, and the inspection apparatuses 30A, 30B,.
 CIMシステム1は、さらに、管理に必要な情報をデータベース51に記載して記憶するための記憶装置50と、これらプロセス装置を管理するための管理装置10とを含む。 The CIM system 1 further includes a storage device 50 for storing and storing information necessary for management in the database 51, and a management device 10 for managing these process devices.
 CIMシステム1には、製品を搬送しながら製造および検査を進めるための製造ライン40が設けられる。製造ライン40では、図示しないロボット等の運搬装置が配置されることによって、予め規定された上流側から下流側の順(方向)に製品が運搬される。 The CIM system 1 is provided with a production line 40 for proceeding with production and inspection while conveying products. In the production line 40, a product such as a robot (not shown) is arranged, so that the product is transported in a predetermined order (direction) from the upstream side to the downstream side.
 製造装置20A,20B,…,20Nは製造ライン40上に上流側からこの順に配置されて、順に段階的に製品を製造する。その後、製造ライン40の製造装置20A,20B,…,20Nよりも下流側に検査装置30A,30B,…,30Nが上流側からこの順に配置されて、製造後の製品をそれぞれ検査する。製造ライン40が上流側から下流側に製品を運搬することで、最終検査を行なう検査装置30Nまで製品が運搬される。 The manufacturing apparatuses 20A, 20B,..., 20N are arranged on the production line 40 in this order from the upstream side, and produce products in stages. Thereafter, the inspection devices 30A, 30B,..., 30N are arranged in this order from the upstream side to the downstream side of the manufacturing devices 20A, 20B,. As the production line 40 transports the product from the upstream side to the downstream side, the product is transported to the inspection device 30N that performs the final inspection.
 なお、図1の例では、製造装置20A,20B,…,20Nが上流側からこの順に直列に配置され、それよりも下流側に、検査装置30A,30B,…,30Nが上流側からこの順に直列に配置されている例が示されている。しかしながら、製造装置20のそれぞれの配置や検査装置30それぞれの配置は図1の例に限定されない。たとえば、図7に示されたように、いわゆるジョブショップ型と呼ばれるような配置がなされて、図8に表わされたような順で製造および検査が行なわれる場合もある。なお、図7はCIMシステム1の構成の他の具体例を示す図であるが、説明を容易にするために管理装置および記憶装置を表わさず、生産ラインのみ示したものである。 In the example of FIG. 1, the manufacturing apparatuses 20A, 20B,..., 20N are arranged in series in this order from the upstream side, and the inspection apparatuses 30A, 30B,. An example is shown that is arranged in series. However, each arrangement of the manufacturing apparatus 20 and each arrangement of the inspection apparatus 30 is not limited to the example of FIG. For example, as shown in FIG. 7, there is a case where the so-called job shop type is arranged, and manufacturing and inspection are performed in the order shown in FIG. FIG. 7 is a diagram showing another specific example of the configuration of the CIM system 1, but only the production line is shown without representing the management device and the storage device in order to facilitate the explanation.
 また、CIMシステム1の構成は、製造装置と検査装置とが図1のように順に規則的に配置されるものに限定されず、他の例として、たとえば図9に示されたように、製造装置と検査装置とが不規則に(たとえば交互に)並べて配置されるようなものであってもよい。 Further, the configuration of the CIM system 1 is not limited to the one in which the manufacturing apparatus and the inspection apparatus are regularly arranged in order as shown in FIG. 1. As another example, for example, as shown in FIG. The apparatus and the inspection apparatus may be arranged irregularly (for example, alternately).
 CIMシステム1は図7、図8に示されたような配置も当然に含むものであって、CIMシステム1としては、第1の製造装置20が第2の製造装置20に対して直接にまたは間接的に上流側にあって、その製造プロセスが第2の製造装置20での製造に影響を及ぼすようなシステムが想定される。 The CIM system 1 naturally includes an arrangement as shown in FIG. 7 and FIG. 8, and the CIM system 1 includes a first manufacturing apparatus 20 that is directly or second relative to the second manufacturing apparatus 20. A system is assumed that is indirectly upstream and whose manufacturing process affects the manufacturing in the second manufacturing apparatus 20.
 管理装置10は、製造装置20および検査装置30とそれぞれ通信可能である。この通信は、無線通信であってもよいし、LAN(Local Area Network)などの有線での通信であってもよい。 The management device 10 can communicate with the manufacturing device 20 and the inspection device 30. This communication may be wireless communication or wired communication such as a LAN (Local Area Network).
 また、管理装置10は記憶装置50にアクセス可能であって、データベース51に記憶されている情報を読み出して製造装置20および検査装置30の管理を行なう。 Further, the management device 10 can access the storage device 50, and reads information stored in the database 51 to manage the manufacturing device 20 and the inspection device 30.
 なお、図1の例では、記憶装置50が管理装置10とは別体の装置であることが示されているが、図1で表わされた構成は一例であって、記憶装置50が管理装置10に含まれていてもよい。 In the example of FIG. 1, it is shown that the storage device 50 is a separate device from the management device 10. However, the configuration illustrated in FIG. 1 is an example, and the storage device 50 manages the storage device 50. It may be included in the device 10.
 さらには、いずれかの製造装置20、または検査装置30に管理装置10が含まれていてもよい。 Furthermore, the management apparatus 10 may be included in any manufacturing apparatus 20 or inspection apparatus 30.
 <装置構成>
 さらに図1を参照して、管理装置10は、装置構成として、当該装置全体を制御するためのCPU(Central Processing Unit)11と、CPU11で実行されるプログラムなどを記憶するためのメモリ12と、管理に必要な情報などを記憶するためのHDD(Hard Disk Drive)13と、製造装置20、検査装置30および記憶装置50と通信するための通信インタフェース(I/F)14とを含む。
<Device configuration>
Further, referring to FIG. 1, the management device 10 has, as a device configuration, a CPU (Central Processing Unit) 11 for controlling the entire device, a memory 12 for storing a program executed by the CPU 11, and the like. An HDD (Hard Disk Drive) 13 for storing information necessary for management, and a communication interface (I / F) 14 for communicating with the manufacturing apparatus 20, the inspection apparatus 30, and the storage apparatus 50 are included.
 この装置構成は一例であって、一般的なコンピュータやサーバの構成と同様である。従って、管理装置10にはこの他の構成が含まれていてもよい。たとえば、記憶装置としてHDDに替えて、または加えてSSD(Solid State Drive)やその他の規格に準じた記憶装置を用いてもよい。 This device configuration is an example and is similar to the configuration of a general computer or server. Therefore, the management apparatus 10 may include other configurations. For example, a storage device conforming to SSD (Solid State Drive) or other standards may be used instead of or in addition to the HDD as the storage device.
 <動作概要>
 図2は、CIMシステム1での動作の概要を表わした図である。
<Overview of operation>
FIG. 2 is a diagram showing an outline of the operation in the CIM system 1.
 図2を参照して、ステップS11で製造装置20において、あるロット番号Mの製品が製造されると、ステップS12で製造装置20は、そのロット情報としてのロット番号Mと、プロセスデータとを管理装置10に対して送信する。 With reference to FIG. 2, when a product of a certain lot number M is manufactured in the manufacturing apparatus 20 in step S11, the manufacturing apparatus 20 manages the lot number M as the lot information and process data in step S12. It transmits to the apparatus 10.
 ここでプロセスデータとは、製造装置20や検査装置30でロットごとに製品を処理(製造、検査)した際の処理結果としての各種パラメータ情報を指し、たとえば製造装置20でのプロセスデータとしては、処理時間、材料の使用量、残量、各種製造条件(温度、圧力、等)などが該当し、検査装置30でのプロセスデータとしては、当該ロット内の欠陥数、膜厚等の各種計測結果、などが該当する。 Here, the process data refers to various parameter information as a processing result when a product is processed (manufactured or inspected) for each lot by the manufacturing apparatus 20 or the inspection apparatus 30. For example, as the process data in the manufacturing apparatus 20, Processing time, amount of material used, remaining amount, various manufacturing conditions (temperature, pressure, etc.) are applicable, and the process data in the inspection apparatus 30 includes various measurement results such as the number of defects and film thickness in the lot. , Etc.
 ロット情報(ロット番号)は一般的にはバーコード等を利用して読み取ることが行なわれており、製造装置20が図示しない読取装置を備える場合には製造装置20が読み取って上記プロセスデータと共に管理装置10に送信する。 Lot information (lot number) is generally read using a bar code or the like. When the manufacturing apparatus 20 includes a reading device (not shown), the manufacturing apparatus 20 reads it and manages it together with the process data. Transmit to device 10.
 なお、製造ライン40上の図示しない搬送装置等がロット情報を読み取るための読取装置を備えて読み取り、そのデータを当該搬送装置が工程の進捗に伴って製造装置20まで伝達してもよい。この場合、製造装置20は、運搬装置から受け取ったロット情報に自装置での処理結果であるプロセスデータと共に管理装置10に送信する。 Note that a conveyance device (not shown) on the production line 40 may be provided with a reading device for reading lot information, and the conveyance device may transmit the data to the manufacturing device 20 as the process progresses. In this case, the manufacturing apparatus 20 transmits the lot information received from the transport apparatus to the management apparatus 10 together with the process data that is the processing result of the own apparatus.
 ステップS21で管理装置10は、製造装置20から受信したプロセスデータに基づいて、ロット番号Mの製品の、検査装置30での検査頻度を決定し、ステップS22でそのロット番号Mと決定された検査頻度とを検査装置30に対して送信する。 In step S21, the management apparatus 10 determines the inspection frequency in the inspection apparatus 30 of the product of the lot number M based on the process data received from the manufacturing apparatus 20, and the inspection determined as the lot number M in step S22. The frequency is transmitted to the inspection device 30.
 この情報を受信した検査装置30では、受信した検査頻度に従ってステップS31でロット番号Mの製品の検査を実施し、ステップS32でそのロット番号Mと共にプロセスデータとしての検査結果を管理装置10に対して送信する。 The inspection apparatus 30 that has received this information inspects the product of the lot number M in step S31 according to the received inspection frequency, and sends the inspection result as process data together with the lot number M to the management apparatus 10 in step S32. Send.
 <機能構成>
 図3は、上記動作を実行するための管理装置10の機能構成の具体例を示すブロック図である。図3で表わされた各機能は、管理装置10のCPU11がメモリ12に記憶されているプログラムを読み出して実行することで、主に、CPU11上に形成されるものであるが、少なくとも一部が電気回路等のハードウェア構成にて実現されてもよい。
<Functional configuration>
FIG. 3 is a block diagram illustrating a specific example of a functional configuration of the management apparatus 10 for executing the above operation. Each function shown in FIG. 3 is mainly formed on the CPU 11 when the CPU 11 of the management apparatus 10 reads and executes a program stored in the memory 12, but at least a part of the functions are illustrated. May be realized by a hardware configuration such as an electric circuit.
 図3を参照して、管理装置10は、通信I/F14を介して製造装置20から送信されたプロセスデータの入力を受け付けるためのプロセスデータ入力部101と、入力されたプロセスデータを通信I/F14を介して記憶装置50のデータベース51に格納する処理を実行する処理を実行するための格納部102と、後述するしきい値を予め記憶しておき、プロセスデータとしきい値とを比較するための比較部103と、その比較結果に基づいて検査装置30での検査頻度を決定するための決定部104と、決定された検査頻度を対応する検査装置30に対して通知するための通知部105と、通信I/F14を介して検査装置30から送信されたプロセスデータである検査データの入力を受け付けるための検査データ入力部106と、入力された検査データを解析するための解析部107と、解析結果を通信I/F14を介して製造装置20にフィードバックすることで製造管理を行なうための管理部108と、最終検査を実施する検査装置30Nからの検査データの解析結果から歩留まりを算出するための算出部109とを含む。 Referring to FIG. 3, the management apparatus 10 receives a process data input unit 101 for receiving input of process data transmitted from the manufacturing apparatus 20 via the communication I / F 14, and transmits the input process data to the communication I / F. In order to store the storage unit 102 for executing the process for executing the process stored in the database 51 of the storage device 50 via F14 and a threshold value to be described later, and to compare the process data with the threshold value. Comparison unit 103, a determination unit 104 for determining an inspection frequency in the inspection device 30 based on the comparison result, and a notification unit 105 for notifying the corresponding inspection device 30 of the determined inspection frequency. An inspection data input unit 106 for receiving input of inspection data that is process data transmitted from the inspection device 30 via the communication I / F 14; An analysis unit 107 for analyzing the input inspection data, a management unit 108 for performing manufacturing management by feeding back the analysis result to the manufacturing apparatus 20 via the communication I / F 14, and an inspection for performing a final inspection And a calculation unit 109 for calculating the yield from the analysis result of the inspection data from the apparatus 30N.
 プロセスデータ入力部101は、製造装置20からのプロセスデータと共にロット番号の入力も受け付ける。格納部102は、製造装置20ごとに、プロセスデータにロット番号を関連付けて記憶装置50のデータベース51に格納する。 The process data input unit 101 accepts input of a lot number together with process data from the manufacturing apparatus 20. The storage unit 102 stores the lot number in association with the process data in the database 51 of the storage device 50 for each manufacturing apparatus 20.
 比較部103は、製造装置20ごとに、予め、当該製造装置20からのプロセスデータの示す値(以下、プロセスデータ値)のしきい値を記憶している。このしきい値は、プロセスデータ値を、管理用のレベルに分類するためのしきい値である。以降の説明において、管理用のレベルを管理レベルとも称する。 The comparison unit 103 stores a threshold value of a value (hereinafter, process data value) indicated by process data from the manufacturing apparatus 20 in advance for each manufacturing apparatus 20. This threshold value is a threshold value for classifying process data values into management levels. In the following description, the management level is also referred to as a management level.
 しきい値は、製造装置20ごとに規定されていてもよいし、さらに、当該製造装置20での製造パラメータごとに規定されていてもよい。 The threshold value may be specified for each manufacturing apparatus 20 or may be specified for each manufacturing parameter in the manufacturing apparatus 20.
 図4は、比較部103に記憶されているしきい値と管理レベルとの関係の具体例を表わす図である。図4を参照して、一例として、比較部103はしきい値Th1~Th4を記憶している。 FIG. 4 is a diagram illustrating a specific example of the relationship between the threshold value stored in the comparison unit 103 and the management level. Referring to FIG. 4, as an example, comparison unit 103 stores threshold values Th1 to Th4.
 Th2~Th3で規定される範囲は、当該製造装置20において通常生産が可能とされるプロセスデータ値の範囲(通常生産可能範囲)を指す。Th3~Th4で規定される範囲はプロセスデータ値の値が高い側に通常生産可能範囲に隣接する範囲である管理レベル1の範囲を指し、Th4~で規定される範囲はプロセスデータ値の値が高い側に管理レベル1の範囲に隣接する管理レベル2の範囲を指す。 The range defined by Th2 to Th3 indicates a range of process data values (normal production possible range) in which normal production is possible in the manufacturing apparatus 20 concerned. The range specified by Th3 to Th4 indicates the range of control level 1 that is adjacent to the normal production range on the higher process data value side, and the range specified by Th4 is the value of process data value. On the higher side, the management level 2 range adjacent to the management level 1 range is indicated.
 同様に、Th1~Th2で規定される範囲はプロセスデータ値の値が低い側に通常生産可能範囲に隣接する範囲である管理レベル1の範囲を指し、~Th1で規定される範囲はプロセスデータ値の値が低い側に管理レベル1の範囲に隣接する管理レベル2の範囲を指す。 Similarly, the range defined by Th1 to Th2 indicates the range of the management level 1 that is adjacent to the normal production possible range on the lower side of the process data value, and the range defined by ~ Th1 is the process data value. Indicates a management level 2 range adjacent to the management level 1 range on the lower side.
 比較部103は、データベース51から比較対象とするロット番号に関連付けられたプロセスデータを読み出し、記憶しているしきい値Th1~Th4と比較することで、そのロット番号に対応した管理レベルを特定する。 The comparison unit 103 reads the process data associated with the lot number to be compared from the database 51 and compares it with the stored threshold values Th1 to Th4, thereby specifying the management level corresponding to the lot number. .
 図4に示されるように、ロット番号に関連付けられたプロセスデータが複数ある場合、比較部103は、それらのうちのもっとも多くのプロセスデータの属している管理レベルを当該ロット番号に対応した管理レベルと特定してもよいし、これらプロセスデータの示す値の平均値の属している管理レベルを当該ロット番号に対応した管理レベルと特定してもよい。 As shown in FIG. 4, when there are a plurality of process data associated with a lot number, the comparison unit 103 sets the management level to which the most process data among them belongs to the management level corresponding to the lot number. Alternatively, the management level to which the average value of the values indicated by the process data belongs may be specified as the management level corresponding to the lot number.
 決定部104は、予め、管理レベルと検査装置30での検査頻度との対応を記憶している。または、管理レベルと検査装置30での検査頻度との対応がHDD13などに記憶されており、決定部104が読み出してもよい。決定部104は、比較部103で特定された当該ロット番号に関連した管理レベルに応じた検査装置30での検査頻度を読み出すことで、このロット番号に関連付けられた製品の検査装置30での検査頻度を決定する。 The determination unit 104 stores a correspondence between the management level and the inspection frequency in the inspection apparatus 30 in advance. Alternatively, the correspondence between the management level and the inspection frequency in the inspection device 30 may be stored in the HDD 13 or the like, and the determination unit 104 may read the correspondence. The determination unit 104 reads the inspection frequency in the inspection device 30 according to the management level related to the lot number specified by the comparison unit 103, thereby inspecting the product associated with the lot number in the inspection device 30. Determine the frequency.
 図1に表わされたように、CIMシステム1に検査装置30として複数の検査装置30A,30B,…30Nが含まれる場合、検査装置ごとに管理レベルとの検査頻度の対応が記憶されており、決定部104は検査装置ごとに検査頻度を決定するようにしてもよい。 As shown in FIG. 1, when the CIM system 1 includes a plurality of inspection devices 30A, 30B,... 30N as the inspection device 30, correspondence between inspection frequencies and management levels is stored for each inspection device. The determination unit 104 may determine the inspection frequency for each inspection device.
 ここでは、たとえば、検査装置30Aが当該ロット番号に関連付けられた製品の検査を開始するよりも以前に検査装置30Aに対して検査装置30Aでの当該ロット番号に関連付けられた製品の検査頻度が通知される。これにより、検査装置30Aに備えられた図示しないローディングロボット等の、製造ライン40に沿って搬送されてきた製品から検査用に製品を抜き取るための装置において、上記通知に従った抜き取り数で当該ロットに関連付けられた製品が検査装置30Aでの検査用に抜き取られる。 Here, for example, the inspection frequency of the product associated with the lot number in the inspection device 30A is notified to the inspection device 30A before the inspection device 30A starts the inspection of the product associated with the lot number. Is done. Thereby, in an apparatus for extracting a product for inspection from a product conveyed along the production line 40, such as a loading robot (not shown) provided in the inspection apparatus 30A, the lot is extracted in accordance with the number of extractions according to the notification. The product associated with is extracted for inspection by the inspection apparatus 30A.
 検査装置30では通知された検査頻度にて検査が実施され、その検査結果である検査データがプロセスデータとして管理装置10に対して送信される。解析部107は検査データを解析し、予め記憶されている関係式などに基づいて解析結果を得る。 The inspection apparatus 30 performs inspection at the notified inspection frequency, and inspection data that is the inspection result is transmitted as process data to the management apparatus 10. The analysis unit 107 analyzes the inspection data and obtains an analysis result based on a relational expression stored in advance.
 <動作フロー>
 図5は、管理装置10で実行される動作の流れを表わすフローチャートである。図5のフローチャートに表わされた動作は、管理装置10のCPU11がメモリ12に記憶されているプログラムを読み出して実行することで実現される。
<Operation flow>
FIG. 5 is a flowchart showing the flow of operations executed by the management apparatus 10. The operation shown in the flowchart of FIG. 5 is realized by the CPU 11 of the management apparatus 10 reading and executing a program stored in the memory 12.
 図5を参照して、製造装置20からあるロット番号の製品の製造に伴ってプロセスデータを受信すると(ステップS101でYES)、ステップS113でCPU11は受信したプロセスデータを記憶装置50のデータベース51に格納する。 Referring to FIG. 5, when process data is received from the manufacturing apparatus 20 as a product of a certain lot number is manufactured (YES in step S <b> 101), CPU 11 stores the received process data in database 51 of storage device 50 in step S <b> 113. Store.
 製造装置20にて当該ロット番号の製品の製造が完了し、当該ロット番号に関連付けられたプロセスデータの送信が完了すると(ステップS105でYES)、ステップS107でCPU11は、当該ロット番号に関連付けられたプロセスデータを用いて管理レベルの判定を行なう。なお、上記ステップS105では、CPU11が予めロット番号ごとに製品数を記憶している場合には、図示しないカウンタを用いて上記ステップS101で受信したプロセスデータの数をカウントしておくことで、そのカウント値が記憶しているプロセスデータの数に達したことを検出して当該ロット番号に関連したプロセスデータの受信の完了を検出することができる。または、CPU11はプロセスデータに関連付けて製造装置20から送信されるロット番号を表わすデータを監視しておき、当該ロット番号が変化した際に、先のロット番号に関連付けられたプロセスデータの受信の完了を検出するようにしてもよい。 When manufacturing of the product of the lot number is completed in the manufacturing apparatus 20 and transmission of process data associated with the lot number is completed (YES in step S105), the CPU 11 associates with the lot number in step S107. Management level is determined using process data. In step S105, if the CPU 11 stores the number of products for each lot number in advance, the number of process data received in step S101 is counted using a counter (not shown). By detecting that the count value reaches the number of stored process data, it is possible to detect the completion of reception of process data related to the lot number. Alternatively, the CPU 11 monitors data representing the lot number transmitted from the manufacturing apparatus 20 in association with the process data, and when the lot number changes, reception of the process data associated with the previous lot number is completed. May be detected.
 ステップS107でCPU11は、プロセスデータの示す値と予め記憶しているしきい値として用いる管理レベルの境界値とを比較することで、当該ロット番号と関連付けられたプロセスデータの管理レベルを判定する。そして、ステップS109でCPU11は、上記ステップS107で判定された管理レベルに対応して記憶されている検査頻度を、当該ロット番号の製品の検査装置30での検査頻度として決定し、ステップS111で対応した検査装置30に対して通知する。 In step S107, the CPU 11 determines the management level of the process data associated with the lot number by comparing the value indicated by the process data with the boundary value of the management level used as a threshold value stored in advance. In step S109, the CPU 11 determines the inspection frequency stored corresponding to the management level determined in step S107 as the inspection frequency in the inspection apparatus 30 for the product of the lot number, and corresponds in step S111. The inspection device 30 is notified.
 <実施の形態の効果>
 管理装置10で以上の動作が行なわれることで、CIMシステム1では、製造装置20でのプロセスデータの変化に対応して検査装置30での検査頻度が設定される。すなわち、製造装置20でのプロセスデータの示す値を管理レベルに区分して管理区分ごと検査頻度が設定して、製造装置20でのプロセスデータの管理レベルが変化した場合に、変化後の管理レベルに対応した検査頻度が設定されることになる。これにより、製造品質が向上されることになる。また、歩留まりを改善させることができる。
<Effect of Embodiment>
By performing the above operation in the management apparatus 10, in the CIM system 1, the inspection frequency in the inspection apparatus 30 is set corresponding to the change in the process data in the manufacturing apparatus 20. That is, when the value indicated by the process data in the manufacturing apparatus 20 is classified into management levels and the inspection frequency is set for each management category, and the management level of the process data in the manufacturing apparatus 20 changes, the changed management level The inspection frequency corresponding to is set. Thereby, manufacturing quality will be improved. In addition, the yield can be improved.
 <変形例>
 なお、上の例では、複数の製造装置20A,20B,…20Nのうちの1つの製造装置20からのプロセスデータに着目して管理レベルを特定して検査頻度を決定するものとしている。
<Modification>
In the above example, the inspection frequency is determined by specifying the management level by paying attention to the process data from one of the plurality of manufacturing apparatuses 20A, 20B,... 20N.
 しかしながら、CIMシステム1が図1に示されたように製造ライン40によって複数の製造装置20A,20B,…20Nに順に製品が搬送されながら製造が進み、その後に検査装置30での検査が行なわれる構成である場合、複数の製造装置20A,20B,…20Nのそれぞれからのプロセスデータの組み合わせによって検査頻度を決定するようにしてもよい。 However, as the CIM system 1 is shown in FIG. 1, the production progresses while the products are sequentially conveyed to the plurality of production apparatuses 20A, 20B,... 20N by the production line 40, and then the inspection by the inspection apparatus 30 is performed. In the case of the configuration, the inspection frequency may be determined by a combination of process data from each of the plurality of manufacturing apparatuses 20A, 20B,.
 図6Aは、変形例における製造装置からのプロセスデータと検査頻度との対応の具体例を表わす図である。図6Aを参照して、一例として、正常状態を表わすしきい値としては製造装置20Aでのプロセスデータの値が80未満、製造装置20Bでのプロセスデータの値が0.4未満と規定され、その場合の検査装置30での検査頻度が1/10と規定されている。さらに、製造装置20Aでのプロセスデータの値が80以上、製造装置20Bでのプロセスデータの値が0.4以上が第1のしきい値、製造装置20Aでのプロセスデータの値が110以上、製造装置20Bでのプロセスデータの値が0.9以上が第2のしきい値と規定されている。そして、各製造装置20A,20Bでのプロセスデータの値が第1のしきい値を超えて第2のしきい値までの間の管理レベルにある場合の検査頻度として1/5が規定され、第2のしきい値以上の管理レベルにある場合の検査頻度として全数が規定されている。 FIG. 6A is a diagram showing a specific example of the correspondence between the process data from the manufacturing apparatus and the inspection frequency in the modified example. With reference to FIG. 6A, as an example, the threshold value indicating the normal state is defined such that the value of process data in manufacturing apparatus 20A is less than 80, and the value of process data in manufacturing apparatus 20B is less than 0.4. In this case, the inspection frequency of the inspection apparatus 30 is defined as 1/10. Furthermore, the value of process data in the manufacturing apparatus 20A is 80 or more, the value of process data in the manufacturing apparatus 20B is 0.4 or more, the first threshold value, the value of process data in the manufacturing apparatus 20A is 110 or more, A process data value of 0.9 or more in the manufacturing apparatus 20B is defined as the second threshold value. Then, 1/5 is defined as the inspection frequency when the value of the process data in each of the manufacturing apparatuses 20A and 20B is at a management level between the first threshold value and the second threshold value, The total number is defined as the inspection frequency when the management level is equal to or higher than the second threshold.
 この場合、製造装置20A,20Bのプロセスデータの値のすべてが属している管理レベルに対応した検査頻度を当該ロット番号の製品の検査頻度と決定してもよいし、これらプロセスデータのそれぞれが属している管理レベルのうちの、正常状態から最も遠い管理レベルを当該ロット番号の製品の検査頻度と決定してもよい。 In this case, the inspection frequency corresponding to the management level to which all of the process data values of the manufacturing apparatuses 20A and 20B belong may be determined as the inspection frequency of the product of the lot number, and each of these process data belongs. Of the management levels, the management level farthest from the normal state may be determined as the inspection frequency of the product of the lot number.
 管理装置10は、図6Aのようなしきい値と、管理レベルごとの検査頻度とを記憶しておき、製造装置20A,20Bからのあるロット番号に関連付けられたプロセスデータに基づいて検査頻度を特定する。 The management apparatus 10 stores the threshold value as shown in FIG. 6A and the inspection frequency for each management level, and specifies the inspection frequency based on the process data associated with a lot number from the manufacturing apparatuses 20A and 20B. To do.
 図6Bは、図6Aを用いた検査頻度の決定の具体例を示す図である。図6Bを参照して、ロット番号1,2,6のそれぞれに関連付けられた製造装置20A,20Bのプロセスデータの値の組み合わせは、いずれも正常状態にあるため、これらロット番号の製品の検査頻度が1/10と決定される。 FIG. 6B is a diagram showing a specific example of determination of the inspection frequency using FIG. 6A. With reference to FIG. 6B, since the combinations of the values of the process data of the manufacturing apparatuses 20A and 20B associated with the lot numbers 1, 2, and 6 are all in the normal state, the inspection frequency of the products of these lot numbers Is determined to be 1/10.
 一方、ロット番号5に関連付けられた製造装置20Bのプロセスデータの値は正常状態であるものの、製造装置20Aのプロセスデータの値は第1のしきい値を超えて第2のしきい値までの間の管理レベルに属している。そのため、この場合、ロット番号5の製品の検査頻度が1/5と決定される。 On the other hand, although the value of the process data of the manufacturing apparatus 20B associated with the lot number 5 is normal, the value of the process data of the manufacturing apparatus 20A exceeds the first threshold value and reaches the second threshold value. Belongs to the management level between. Therefore, in this case, the inspection frequency of the product of lot number 5 is determined to be 1/5.
 同様に、ロット番号3,4に関連付けられた製造装置20Aのプロセスデータの値はそれぞれ、正常状態、第1のしきい値を超えて第2のしきい値までの間の管理レベルに属しているものの、製造装置20Bのプロセスデータの値は第2のしきい値以上の管理レベルに属している。そのため、この場合、これらロット番号の製品の検査頻度が全数と決定される。 Similarly, the values of the process data of the manufacturing apparatus 20A associated with the lot numbers 3 and 4 belong to the normal state and the management level between the first threshold value and the second threshold value, respectively. However, the value of the process data of the manufacturing apparatus 20B belongs to a management level equal to or higher than the second threshold value. Therefore, in this case, the inspection frequency of the products having these lot numbers is determined as the total number.
 なお、この例では、製造装置ごとのプロセスデータの値の組み合わせによって検査頻度が決定されるものであるが、製造装置20からのプロセスデータと検査装置30からのプロセスデータとの組み合わせによって検査頻度が決定されてもよい。 In this example, the inspection frequency is determined by a combination of process data values for each manufacturing apparatus, but the inspection frequency is determined by a combination of the process data from the manufacturing apparatus 20 and the process data from the inspection apparatus 30. It may be determined.
 このような検査頻度の決定方法は、次のような場合に想定される。すなわち、製造装置20Aからプロセスデータとして、当該製造装置20Aでの製造にて用いられるある材料の残量が挙げられる。このとき、プロセスデータで表わされる材料の残量が交換時期に近い状態であり、かつ、検査装置30Aで当該ロット番号の製品に用いられているその材料の量が予め決められた製造条件ぎりぎりであることを表わす検査結果を示すプロセスデータが得られた場合、次工程以降、その材料の不足による不良、または良品でも不良に非常に近い品位の悪い製品が発生する可能性がある。そのため、この場合管理装置10はこれらプロセスデータの組み合わせに基づいて、次工程の検査装置30Bにおける検査頻度を通常より高く(多く)決定する。これにより、不良を早期発見することが可能となる。また、製造装置20Aのその材料の交換時期が見直されることになる。 Such a method for determining the inspection frequency is assumed in the following cases. That is, as the process data from the manufacturing apparatus 20A, the remaining amount of a certain material used in manufacturing by the manufacturing apparatus 20A can be mentioned. At this time, the remaining amount of the material represented by the process data is close to the replacement time, and the amount of the material used for the product of the lot number in the inspection device 30A is just below the predetermined manufacturing condition. When process data indicating an inspection result indicating a certain situation is obtained, there is a possibility that a defective product due to a shortage of the material or a non-defective product with poor quality that is very close to the defective product may occur after the next step. Therefore, in this case, the management apparatus 10 determines the inspection frequency in the inspection apparatus 30B of the next process higher (more) than usual based on the combination of these process data. This makes it possible to detect defects early. In addition, the replacement time of the material of the manufacturing apparatus 20A is reviewed.
 さらに他の例として、一つの製造装置から複数の種類(パラメータ)のプロセスデータが得られる場合、それぞれのプロセスデータの属する管理レベルに基づいて検査頻度を決定してもよい。すなわち、管理装置10は、予めプロセスデータの種類ごとに、管理レベルの組み合わせと検査頻度との対応を記憶しており、1つの製造装置20からあるロット番号の製品についての複数種類のプロセスデータが得られると、それぞれのプロセスデータの属する管理レベルの組み合わせに応じて検査頻度を決定するようにしてもよい。 As yet another example, when multiple types (parameters) of process data are obtained from a single manufacturing apparatus, the inspection frequency may be determined based on the management level to which each process data belongs. That is, the management device 10 stores in advance the correspondence between the combination of the management levels and the inspection frequency for each type of process data, and a plurality of types of process data for a product with a lot number from one manufacturing device 20 are stored. Once obtained, the inspection frequency may be determined according to the combination of management levels to which the respective process data belongs.
 これにより、より品質に影響を与える種類のプロセスデータに関しては検査頻度を上げ、あまり品質に影響を与えない種類のプロセスデータについては(たとえ通常の生産レベルから多少外れることがあっても)検査頻度を変えな、という検査頻度を設定することが可能となり、歩留まりの向上と製造効率の向上とを両立させることが可能となる。 This increases the inspection frequency for types of process data that affect quality more, and the inspection frequency for types of process data that do not significantly affect quality (even if they may deviate slightly from normal production levels). Therefore, it is possible to set an inspection frequency of “not changing” and to achieve both improvement in yield and improvement in manufacturing efficiency.
 なお、以上の例では、管理装置10は製造装置20や検査装置30からのプロセスデータに基づいて検査装置30での検査頻度を決定するものとしている。しかしながら、管理装置10が決定する制御値は検査装置30での検査頻度に限定されない。 In the above example, the management apparatus 10 determines the inspection frequency in the inspection apparatus 30 based on the process data from the manufacturing apparatus 20 and the inspection apparatus 30. However, the control value determined by the management device 10 is not limited to the inspection frequency in the inspection device 30.
 他の例として、管理装置10は制御値として、製造装置20での製造速度や(上述の例のような)材料の取り換え頻度、検査装置30での検査用試料の取り換え頻度、などの、CIMシステム1に含まれるそれぞれの装置の制御値を決定するようにしてもよい。 As another example, the management apparatus 10 uses the CIM as control values such as the manufacturing speed in the manufacturing apparatus 20, the material replacement frequency (as in the above example), the inspection sample replacement frequency in the inspection apparatus 30, and the like. The control value of each device included in the system 1 may be determined.
 この場合、図1に示されるように、CIMシステム1では製造ライン40に沿って上流側から下流側へ製品が運搬されながら製造が進むため、管理装置10は、上流側の装置からのプロセスデータに基づいて、それよりも下流側の装置での制御値を決定するようにしてよい。 In this case, as shown in FIG. 1, in the CIM system 1, since the production proceeds while the product is transported from the upstream side to the downstream side along the production line 40, the management device 10 receives the process data from the upstream device. On the basis of the control value, the control value in the downstream apparatus may be determined.
 具体的には、管理装置10は、予め、制御値を決定する装置ごとに、それよりも上流側の装置からのプロセスデータの属する管理レベル(または管理レベルの組み合わせ)と当制御値を決定する装置の制御値との対応を記憶しており、あるロット番号の製品についての上流側の装置からのプロセスデータが得られると、そのプロセスデータの属する管理レベル(あるいは管理レベルの組み合わせ)に応じて当該装置の制御値(たとえば検査頻度、製造速度等)を決定する。 Specifically, the management apparatus 10 determines, in advance, for each apparatus for which a control value is determined, a management level (or a combination of management levels) to which the process data from the upstream apparatus belongs, and the control value. The correspondence with the control value of the device is stored, and when the process data from the upstream device for the product of a certain lot number is obtained, according to the management level (or combination of management levels) to which the process data belongs Control values (for example, inspection frequency, manufacturing speed, etc.) of the device are determined.
 これにより、CIMシステム1における製造品質を向上させることができ、また、歩留まりを向上させることができる。 Thereby, the manufacturing quality in the CIM system 1 can be improved, and the yield can be improved.
 さらに、上述の管理装置10での動作をコンピュータに実行させるためのプログラムを提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD-ROM(Compact Disk-Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)およびメモリカードなどのコンピュータ読み取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。 Furthermore, it is possible to provide a program for causing a computer to execute the operation in the management apparatus 10 described above. Such a program is stored on a computer-readable recording medium such as a flexible disk attached to the computer, a CD-ROM (Compact Disk-Read Only Memory), a ROM (Read Only Memory), a RAM (Random Access Memory), and a memory card. And can be provided as a program product. Alternatively, the program can be provided by being recorded on a recording medium such as a hard disk built in the computer. A program can also be provided by downloading via a network.
 なお、本発明にかかるプログラムは、コンピュータのオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プログラム自体には上記モジュールが含まれずOSと協働して処理が実行される。このようなモジュールを含まないプログラムも、本発明にかかるプログラムに含まれ得る。 The program according to the present invention is a program module that is provided as a part of a computer operating system (OS) and calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. Also good. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. A program that does not include such a module can also be included in the program according to the present invention.
 また、本発明にかかるプログラムは他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他のプログラムと協働して処理が実行される。このような他のプログラムに組込まれたプログラムも、本発明にかかるプログラムに含まれ得る。 Further, the program according to the present invention may be provided by being incorporated in a part of another program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program. Such a program incorporated in another program can also be included in the program according to the present invention.
 提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストールされて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記録された記録媒体とを含む。 The provided program product is installed in a program storage unit such as a hard disk and executed. The program product includes the program itself and a recording medium on which the program is recorded.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 CIMシステム、10 管理装置、11 CPU、12 メモリ、13 HDD、14 通信I/F、20,20A,20B,… 20N 製造装置、30,30A,30B,… 30N 検査装置、40 製造ライン、50 記憶装置、51 データベース、101 プロセスデータ入力部、102 格納部、103 比較部、104 決定部、105 通知部、106 検査データ入力部、107 解析部、108 管理部、109 算出部。 1 CIM system, 10 management device, 11 CPU, 12 memory, 13 HDD, 14 communication I / F, 20, 20A, 20B, ... 20N manufacturing device, 30, 30A, 30B, ... 30N inspection device, 40 manufacturing line, 50 Storage device, 51 database, 101 process data input unit, 102 storage unit, 103 comparison unit, 104 determination unit, 105 notification unit, 106 inspection data input unit, 107 analysis unit, 108 management unit, 109 calculation unit.

Claims (6)

  1.  第1のプロセス装置と製品の搬送方向に前記第1のプロセス装置よりも下流側に配置された第2のプロセス装置とを含んだ複数のプロセス装置を含む製造システムにおいて、前記複数のプロセス装置を管理するための管理装置であって、
     前記複数のプロセス装置のそれぞれと通信して、前記複数のプロセス装置のそれぞれから、製品の処理における所定のパラメータに関する値であるプロセスデータを取得するための取得部と、
     前記第1のプロセス装置からのプロセスデータの属する管理レベルと、前記第1のプロセス装置よりも下流側に配置された前記第2のプロセス装置の制御値との対応関係を記憶するため記憶部と、
     所定のロットの製品に関する前記第1のプロセス装置からのプロセスデータの属する管理レベルを特定するための特定部と、
     前記特定された管理レベルに基づいて、前記第2のプロセス装置での前記所定のロットの製品についての制御値を決定するための決定部と、
     前記決定された制御値を用いて前記第2のプロセス装置での前記所定のロットの製品の処理を制御するための制御部とを備える、管理装置。
    In a manufacturing system including a plurality of process devices including a first process device and a second process device disposed downstream of the first process device in a product conveyance direction, the plurality of process devices are A management device for managing,
    An acquisition unit for communicating with each of the plurality of process devices to acquire process data that is a value related to a predetermined parameter in processing of a product from each of the plurality of process devices;
    A storage unit for storing a correspondence relationship between a management level to which process data from the first process device belongs and a control value of the second process device arranged downstream of the first process device; ,
    A specifying unit for specifying a management level to which process data from the first process device relating to a product of a predetermined lot belongs;
    A determining unit for determining a control value for the product of the predetermined lot in the second process apparatus based on the specified management level;
    And a control unit configured to control processing of the product of the predetermined lot in the second process apparatus using the determined control value.
  2.  前記決定部は、管理レベルの境界値をしきい値として記憶し、前記第1のプロセス装置からのプロセスデータの示す値と前記しきい値とを比較することで、前記プロセスデータの属する管理レベルを決定する、請求項1に記載の管理装置。 The determination unit stores the boundary value of the management level as a threshold value, and compares the value indicated by the process data from the first process device with the threshold value, thereby managing the management level to which the process data belongs. The management device according to claim 1, wherein
  3.  前記第1のプロセス装置は製造装置であって、
     前記第2のプロセス装置は検査装置であって、
     前記決定部は、前記製造装置からの前記所定のロットの製品に関する前記プロセスデータの属する管理レベルに基づいて、前記検査装置での制御値として前記所定のロットの製品の検査頻度を決定する、請求項1または2に記載の管理装置。
    The first process apparatus is a manufacturing apparatus,
    The second process device is an inspection device,
    The determination unit determines an inspection frequency of the product of the predetermined lot as a control value in the inspection device based on a management level to which the process data related to the product of the predetermined lot from the manufacturing device belongs. Item 3. The management device according to Item 1 or 2.
  4.  前記管理レベルは前記製造装置での通常生産可能範囲から段階的に設定されており、
     前記記憶部は、前記製造装置からのプロセスデータの属する管理レベルが前記通常生産可能範囲から離れた管理レベルであるほど、前記検査装置での検査頻度が高くなる対応関係を記憶している、請求項3に記載の管理装置。
    The management level is set in stages from the normal production possible range in the manufacturing apparatus,
    The storage unit stores a correspondence relationship in which the inspection frequency in the inspection apparatus increases as the management level to which the process data from the manufacturing apparatus belongs is a management level that is farther from the normal production possible range. Item 4. The management device according to Item 3.
  5.  第1のプロセス装置と製品の搬送方向に前記第1のプロセス装置よりも下流側に配置された第2のプロセス装置とを含んだ複数のプロセス装置を含む製造システムにおいて、前記複数のプロセス装置を管理する方法であって、
     前記第1のプロセス装置から、所定のロットの製品の処理における所定のパラメータに関する値であるプロセスデータを取得するステップと、
     前記第1のプロセス装置からのプロセスデータの属する管理レベルを特定するステップと、
     前記第1のプロセス装置からのプロセスデータの属する管理レベルと、前記第1のプロセス装置よりも下流側に配置された前記第2のプロセス装置の制御値との対応関係を記憶する記憶装置にアクセスして、前記特定された管理レベルに基づいて、前記第2のプロセス装置での前記所定のロットの製品についての制御値を決定するステップと、
     前記決定された制御値を用いて前記第2のプロセス装置での前記所定のロットの製品の処理を制御するステップとを備える、管理方法。
    In a manufacturing system including a plurality of process devices including a first process device and a second process device disposed downstream of the first process device in a product conveyance direction, the plurality of process devices are A method of managing,
    Obtaining process data which is a value relating to a predetermined parameter in processing a product of a predetermined lot from the first process device;
    Identifying a management level to which process data from the first process device belongs;
    Access to a storage device that stores a correspondence relationship between a management level to which process data from the first process device belongs and a control value of the second process device arranged downstream of the first process device And determining a control value for the product of the predetermined lot in the second process device based on the specified management level;
    Controlling the processing of the product of the predetermined lot in the second process apparatus using the determined control value.
  6.  第1のプロセス装置と製品の搬送方向に前記第1のプロセス装置よりも下流側に配置された第2のプロセス装置とを含んだ複数のプロセス装置を含む製造システムにおいて、前記複数のプロセス装置と電気的に接続された管理装置に前記複数のプロセス装置を管理する処理を実行させるためのプログラムであって、
     前記第1のプロセス装置から、所定のロットの製品の処理における所定のパラメータに関する値であるプロセスデータを取得するステップと、
     前記第1のプロセス装置からのプロセスデータの属する管理レベルを特定するステップと、
     前記第1のプロセス装置からのプロセスデータの属する管理レベルと、前記第1のプロセス装置よりも下流側に配置された前記第2のプロセス装置の制御値との対応関係を記憶する記憶装置にアクセスして、前記特定された管理レベルに基づいて、前記第2のプロセス装置での前記所定のロットの製品についての制御値を決定するステップと、
     前記決定された制御値を用いて前記第2のプロセス装置での前記所定のロットの製品の処理を制御するステップとを前記管理装置に実行させる、管理プログラム。
    In a manufacturing system including a plurality of process devices including a first process device and a second process device disposed downstream of the first process device in a product transfer direction, the plurality of process devices; A program for causing an electrically connected management device to execute processing for managing the plurality of process devices,
    Obtaining process data which is a value relating to a predetermined parameter in processing a product of a predetermined lot from the first process device;
    Identifying a management level to which process data from the first process device belongs;
    Access to a storage device that stores a correspondence relationship between a management level to which process data from the first process device belongs and a control value of the second process device arranged downstream of the first process device And determining a control value for the product of the predetermined lot in the second process device based on the specified management level;
    A management program for causing the management device to execute a step of controlling processing of the product of the predetermined lot in the second process device using the determined control value.
PCT/JP2012/063603 2011-06-03 2012-05-28 Administration device, administration method, and administration program WO2012165367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-125073 2011-06-03
JP2011125073 2011-06-03

Publications (1)

Publication Number Publication Date
WO2012165367A1 true WO2012165367A1 (en) 2012-12-06

Family

ID=47259223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063603 WO2012165367A1 (en) 2011-06-03 2012-05-28 Administration device, administration method, and administration program

Country Status (1)

Country Link
WO (1) WO2012165367A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015134426A (en) * 2014-01-16 2015-07-27 大日本印刷株式会社 Obverse-reverse collation inspection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130589A (en) * 1993-11-05 1995-05-19 Hitachi Ltd Production process control method
JPH11170144A (en) * 1997-12-09 1999-06-29 Hitachi Ltd Semiconductor production system
JP2007501517A (en) * 2003-08-04 2007-01-25 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Dynamic measurement sampling method and system for performing the same
JP2009140044A (en) * 2007-12-04 2009-06-25 Renesas Technology Corp Manufacturing device abnormality inspection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130589A (en) * 1993-11-05 1995-05-19 Hitachi Ltd Production process control method
JPH11170144A (en) * 1997-12-09 1999-06-29 Hitachi Ltd Semiconductor production system
JP2007501517A (en) * 2003-08-04 2007-01-25 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Dynamic measurement sampling method and system for performing the same
JP2009140044A (en) * 2007-12-04 2009-06-25 Renesas Technology Corp Manufacturing device abnormality inspection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015134426A (en) * 2014-01-16 2015-07-27 大日本印刷株式会社 Obverse-reverse collation inspection system

Similar Documents

Publication Publication Date Title
CN103413771B (en) The work dispatching method of wafer acceptance test board
US7640126B2 (en) Combine-information processing apparatus, method for processing combine-information, program, and recording medium
CA2844140C (en) Manufacturing quality inspection and analytics system
EP3665462B1 (en) Identification of air leaks in a compressed air system using a plurality of current measurement sensors
EP2492767B1 (en) Inspection system, management server, inspection apparatus and method for managing inspection data
CN111340250A (en) Equipment maintenance device, method and computer readable storage medium
CN101620566A (en) Dynamic random testing method
US20140278234A1 (en) Method and a system for a statistical equivalence test
CN105607566B (en) A kind of self-adapting regulation method of production material
CN106612216A (en) Method and apparatus of detecting website access exception
CN112579640A (en) Method and apparatus for production anomaly detection
CN114429256A (en) Data monitoring method and device, electronic equipment and storage medium
KR101998972B1 (en) Method of analyzing and visualizing the cause of process failure by deriving the defect occurrence index by variable sections
WO2022237266A1 (en) Method, apparatus and device for determining vehicle maintenance information, and medium
US20200150628A1 (en) Defect detection during an automated production process
WO2012165367A1 (en) Administration device, administration method, and administration program
CN113128797A (en) Method and device for monitoring abnormal business indexes
US20230213911A1 (en) Method and device for testing product, computer device and readable storage medium
CN110910061A (en) Material management method, material management system, storage medium and electronic equipment
CN115147236A (en) Processing method, processing device and electronic equipment
CN109063218A (en) A kind of control method and system of statistic processes
CN105759748A (en) Semiconductor production machine hardware performance dynamic monitoring system and monitoring method
JP3267580B2 (en) Data processing method and apparatus, information storage medium
CN103971194A (en) Apparatus and method for generating bill of inspection material
TWI754304B (en) Defect analyzing method and device, electronic device, and computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP