WO2012165247A1 - Illumination device, display device, and television receiving device - Google Patents

Illumination device, display device, and television receiving device Download PDF

Info

Publication number
WO2012165247A1
WO2012165247A1 PCT/JP2012/063149 JP2012063149W WO2012165247A1 WO 2012165247 A1 WO2012165247 A1 WO 2012165247A1 JP 2012063149 W JP2012063149 W JP 2012063149W WO 2012165247 A1 WO2012165247 A1 WO 2012165247A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
led
pair
arrangement
Prior art date
Application number
PCT/JP2012/063149
Other languages
French (fr)
Japanese (ja)
Inventor
泰守 黒水
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012165247A1 publication Critical patent/WO2012165247A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/009Positioning aspects of the light source in the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices.
  • a backlight device is separately required as a lighting device, and the backlight device is roughly classified into a direct type and an edge light type according to the mechanism.
  • an edge light type backlight device it is preferable to use an edge light type backlight device, and an example described in Patent Document 1 below is known.
  • An edge-light type backlight device may adopt a configuration in which a plurality of light sources are intermittently arranged in parallel along a light incident surface provided at an end portion of a light guide plate.
  • the following problem may occur.
  • the light quantity emitted from the plurality of light sources and incident on the light incident surface may be uneven due to the arrangement pattern and the non-arrangement pattern in the plurality of light sources intermittently arranged in parallel.
  • the distance between the light source and the light incident surface is narrowed in order to narrow the frame of the liquid crystal display device and the backlight device, the above-described problem of unevenness tends to become more prominent.
  • the present invention has been completed based on the above situation, and an object thereof is to suppress luminance unevenness.
  • the illuminating device of the present invention is a surface parallel to the alignment direction of the plurality of light sources arranged in a row intermittently, and arranged in an opposing manner with a space between the light sources.
  • a light guide plate having a light incident surface on which light from the light source is incident, a light output surface for emitting incident light, and a light output side of the light guide plate and the opposite side sandwich the light source.
  • a light directing unit that directs toward the non-arranged pattern side.
  • the light emitted from the plurality of light sources enters the light incident surface that is arranged in parallel with the light source arrangement direction and has an interval between the light sources, and then is guided. After being propagated through the light plate, the light is emitted from the light exit surface.
  • the amount of light incident on the light incident surface of the light guide plate may be uneven due to the arrangement pattern and the non-arrangement pattern in the plurality of light sources arranged intermittently, and in particular, the narrow frame in the illumination device. If the distance between the light source and the light incident surface is narrowed in order to reduce the size, the occurrence of unevenness tends to become more prominent.
  • the light directing unit that directs the light from the light source toward the non-arrangement pattern side of the light source follows the arrangement pattern of the light source on the surface facing at least one of the pair of light source sandwiching portions. Since the light is incident on the light incident surface, light that tends to be excessive in the light source arrangement pattern by the light directing unit, and light source non-arrangement pattern that tends to lack light. Can be directed to the side, thereby reducing the difference in the amount of light. Accordingly, the amount of light incident on the light incident surface of the light guide plate is made uniform regardless of the arrangement pattern and the non-arrangement pattern in the plurality of light sources arranged intermittently side by side, and unevenness hardly occurs. As a result, luminance unevenness is less likely to occur in the light emitted from the light exit surface of the light guide plate. In particular, this is also useful for narrowing the frame of the lighting device.
  • the light directing portion is disposed over the entire area of the light source arrangement pattern on the surface facing the light source in at least one of the pair of light source sandwiching portions. If it does in this way, the light which tends to become excessive by the light directing part distribute
  • the light directing portion is arranged in a range from the arrangement pattern of the light source to an end portion of the non-arrangement pattern of the light source on a surface facing the light source in at least one of the pair of light source sandwiching portions.
  • the light from the light source is directed toward the center of the non-arrangement pattern of the light source.
  • the amount of light from the light source is larger than the central portion of the light source non-arrangement pattern. Therefore, the luminance unevenness can be further suppressed by directing the light from the light source toward the central portion by the light directing portion at the end portion.
  • the light directing portion is disposed on a surface facing the light source in one of the pair of light source sandwiching portions. In this way, it is possible to sufficiently equalize the amount of light incident on the light incident surface by the light directing portion disposed on the surface facing the light source in one of the pair of light source sandwiching portions. As compared with the case where the light directing portions are respectively disposed on both of the pair of light source sandwiching portions, it is possible to cope with low cost.
  • the light directing unit is disposed on a light emitting side of the pair of light source sandwiching units with respect to the light source. In this way, after the light directed to the non-arranged pattern side of the light source by the light directing unit is directed to the side opposite to the light emitting side in the light source sandwiching portion arranged on the light emitting side with respect to the light source Reflected by the surface facing the light source in the light source sandwiching portion arranged on the side opposite to the light emitting side, or incident on the light incident surface and heading toward the surface of the light guide plate opposite to the light emitting side become.
  • the light directed to the non-placement pattern side of the light source by the light directing portion is incident on the light incident surface and is emitted as it is from the light exit surface, so that the luminance unevenness is less likely to occur in the emitted light.
  • One of the pair of light source sandwiching portions is a pressing member that presses the light guide plate from the light emitting side.
  • the light guide plate can be pressed from the light emission side as the pressing member is assembled, and the light source sandwiching portion of the pressing member can be arranged at an appropriate position with respect to the light source and the light guide plate. it can. Thereby, it is excellent in assembly workability.
  • One of the pair of light source sandwiching portions is a chassis that houses the light source and the light guide plate. In this way, when the light source and the light guide plate are accommodated in the chassis, the light source and the light guide plate are arranged at appropriate positions with respect to the light source sandwiching portion of the chassis. Thereby, it is excellent in assembly workability.
  • the light directing unit is disposed on a surface facing the light source in at least one of the pair of light source sandwiching portions and a surface facing the light source in the reflecting member.
  • the lens unit is configured to direct light toward the non-arrangement pattern side of the light source by reflecting the light from the light source with the reflecting member while refracting the light. If it does in this way, the light from a light source can be efficiently directed to the non-arrangement pattern side of a light source by the reflective member and lens part which constitute a light directing part.
  • the reflection member is formed with an opening that follows the non-arrangement pattern of the light source, and a low light reflectance portion having a relatively low light reflectance by the light source sandwiching portion exposed through the opening.
  • a high light reflectance portion having a relatively high light reflectance is constituted by the reflecting member.
  • the reflection member has an opening that follows the non-placement pattern of the light source, and the light that does not pass through the lens part described above is a low light reflectance part that is configured by the light source sandwiching part exposed through the opening. Therefore, the reflected light quantity of the light reflected there is suppressed. As a result, even if the reflected light from the low light reflectance portion is directed to the light source arrangement pattern side, it is possible to reduce the deterioration in the unevenness of the incident light quantity on the light incident surface due to the reflected light, resulting in uneven brightness. It is considered that it contributes to prevention. In addition, since the low light reflectance part and the high light reflectance part are configured by forming the opening in the reflecting member, the cost can be reduced compared to the case where the reflecting member is printed. can do.
  • a lens-attached sheet that extends along the arrangement direction of the light sources and has the lens portion is disposed on a surface of the reflecting member that faces the light sources. In this way, by arranging the lens-attached sheet on the surface of the reflecting member that faces the light source, the lens portion is arranged at an appropriate position, so that the workability is excellent.
  • the light directing portion extends along the arrangement direction of the light sources on a surface facing the light sources in at least one of the pair of light source sandwiching portions and guides light from the light sources.
  • the light guide member is refracted by the first refracting surface and a first refracting surface that refracts the light from the light source and directs it along the direction in which the light sources are arranged.
  • a second refracting surface is formed that further refracts light and directs the light toward the side facing the light guide member of the pair of light source sandwiching portions.
  • a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
  • the illumination device that supplies light to the display panel is less likely to cause uneven brightness in the emitted light, it is possible to realize display with excellent display quality.
  • a liquid crystal panel can be exemplified as the display panel.
  • Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • Exploded perspective view showing schematic configuration of liquid crystal display device Sectional drawing which shows the cross-sectional structure along the long side direction of a liquid crystal panel
  • the top view which shows arrangement
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • the upper side shown in FIG. 7 be a front side, and let the lower side of the figure be a back side.
  • the television receiver TV includes a liquid crystal display device 10 that is a display device, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, and power supply.
  • Power supply circuit board P a tuner (receiving unit) T capable of receiving a TV image signal, an image conversion circuit board VC for converting the TV image signal output from the tuner T into an image signal for the liquid crystal display device 10
  • a stand S a stand S.
  • the liquid crystal display device 10 has a horizontally long (longitudinal) rectangular shape (rectangular shape) as a whole, the long side direction is the horizontal direction (X-axis direction), and the short side direction is the vertical direction (Y-axis direction, vertical direction).
  • the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
  • the configuration of the liquid crystal panel 11 in the liquid crystal display device 10 will be described.
  • the liquid crystal panel 11 has a horizontally long (longitudinal) rectangular shape (rectangular shape) as a whole.
  • a pair of transparent (translucent) glass substrates 11a and 11b And a liquid crystal layer 11c containing liquid crystal, which is a substance whose optical characteristics change with application of an electric field.
  • the substrates 11a and 11b maintain a gap corresponding to the thickness of the liquid crystal layer. In the state, they are bonded together by a sealing agent (not shown).
  • polarizing plates 11d and 11e are attached to the outer surface sides of both the substrates 11a and 11b, respectively. Note that the long side direction of the liquid crystal panel 11 coincides with the X-axis direction, and the short side direction coincides with the Y-axis direction.
  • the front side is the CF substrate 11a
  • the back side is the array substrate 11b.
  • TFTs Thin Film Transistors
  • pixel electrodes 15 which are switching elements are matrixed.
  • a large number of gate wirings 16 and source wirings 17 are arranged around the TFTs 14 and the pixel electrodes 15 so as to surround the TFTs 14 and the pixel electrodes 15.
  • the pixel electrode 15 has a vertically long (longitudinal) rectangular shape (rectangular shape) in which the long side direction coincides with the Y-axis direction and the short side direction coincides with the X-axis direction. It consists of a transparent electrode such as (Zinc Oxide).
  • the gate wiring 16 and the source wiring 17 are connected to the gate electrode and the source electrode of the TFT 14, respectively, and the pixel electrode 15 is connected to the drain electrode of the TFT 14. Further, as shown in FIG. 3, an alignment film 18 for aligning liquid crystal molecules is provided on the TFT 14 and the pixel electrode 15 on the liquid crystal layer 11c side.
  • a terminal portion led out from the gate wiring 16 and the source wiring 17 is formed at an end portion of the array substrate 11b, and a driver component for driving a liquid crystal (not shown) is connected to the anisotropic conductive film (not shown).
  • ACF isotropic Conductive Film
  • the driver component for driving the liquid crystal is electrically connected to a display control circuit board (not shown) via various wiring boards.
  • This display control circuit board is connected to an image conversion circuit board VC (see FIG. 1) in the television receiver TV, and each wiring 16, 17 via a driver component based on an output signal from the image conversion circuit board VC. It is assumed that a drive signal is supplied to.
  • a color filter 19 in which the portions R, G, B, and Y are arranged in a matrix (matrix) is provided.
  • the color filter 19 according to the present embodiment includes a yellow colored portion Y in addition to a red colored portion R, a green colored portion G, and a blue colored portion B that are the three primary colors of light.
  • the colored portions R, G, B, and Y selectively transmit light of each corresponding color (each wavelength).
  • Each colored portion R, G, B, Y has a vertically long (longitudinal) rectangular shape (rectangular shape) in which the long side direction coincides with the Y-axis direction and the short side direction coincides with the X-axis direction, like the pixel electrode 15. I am doing.
  • a lattice-shaped light shielding layer (black matrix) BM is provided to prevent color mixing.
  • a counter electrode 20 and an alignment film 21 are sequentially stacked on the color filter 19 on the CF substrate 11 a on the liquid crystal layer 11 c side.
  • the colored portions R, G, B, and Y constituting the color filter 19 will be described in detail.
  • the colored portions R, G, B, and Y are arranged in a matrix with the X-axis direction as the row direction and the Y-axis direction as the column direction.
  • Y have the same dimension in the column direction (Y-axis direction), but the dimension in the row direction (X-axis direction) is different for each colored portion R, G, B, Y.
  • the colored portions R, G, B, and Y are arranged in the row direction in the order of the red colored portion R, the green colored portion G, the blue colored portion B, and the yellow colored portion Y from the left side shown in FIG.
  • the red colored portion R and the blue colored portion B in the row direction are relatively larger than the yellow colored portion Y and the green colored portion G in the row direction. It is said. That is, the colored portions R and B having relatively large dimensions in the row direction and the colored portions G and Y having relatively small dimensions in the row direction are alternately and repeatedly arranged in the row direction. Thereby, the area of the red coloring part R and the blue coloring part B is made larger than the areas of the green coloring part G and the yellow coloring part Y. The areas of the blue colored portion B and the red colored portion R are equal to each other. Similarly, the areas of the green colored portion G and the yellow colored portion Y are equal to each other. 3 and 5 show a case where the areas of the red colored portion R and the blue colored portion B are about 1.6 times the areas of the yellow colored portion Y and the green colored portion G. Show.
  • the dimension in the row direction (X-axis direction) of the pixel electrode 15 varies from column to column. . That is, among the pixel electrodes 15, the size and area in the row direction of the pixel electrode 15 that overlaps with the red color portion R and the blue color portion B are the same as those in the row direction of the pixel electrode 15 that overlaps with the yellow color portion Y and the green color portion G. It is relatively larger than the size and area.
  • the gate wirings 16 are all arranged at an equal pitch, while the source wirings 17 are arranged at two different pitches depending on the dimensions of the pixel electrodes 15 in the row direction.
  • the liquid crystal display device 10 uses the liquid crystal panel 11 including the color filter 19 including the four colored portions R, G, B, and Y, as shown in FIG.
  • the television receiver TV is provided with a dedicated image conversion circuit board VC. That is, the image conversion circuit board VC converts the television image signal output from the tuner T into an image signal of each color of blue, green, red, and yellow, and outputs the generated image signal of each color to the display control circuit board. can do. Based on this image signal, the display control circuit board drives the TFTs 14 corresponding to the pixels of each color in the liquid crystal panel 11 via the wirings 16 and 17, and transmits the colored portions R, G, B, and Y of each color. The amount of light can be appropriately controlled.
  • the backlight device 12 includes a chassis 22 having a substantially box shape having an opening (light emitting portion) that opens toward the front side (the liquid crystal panel 11 side), and an opening of the chassis 22. And a group of optical members 23 arranged in a covering manner. Further, in the chassis 22, an LED 24 that is a light source, an LED substrate 25 on which the LED 24 is mounted, a light guide plate 26 that guides light from the LED 24 and guides it to the optical member 23 (the liquid crystal panel 11), and a light guide. A frame (pressing member) 27 for pressing the optical plate 26 from the front side is provided.
  • the backlight device 12 is a so-called edge light type (side light type) in which the LEDs 24 mounted on the LED substrate 25 are arranged at both ends of the light guide plate 26, respectively.
  • the edge light type backlight device 12 is integrally assembled to the liquid crystal panel 11 by a bezel 13 having a frame shape, thereby constituting the liquid crystal display device 10.
  • the chassis 22 is made of metal, and includes a bottom plate 22a having a horizontally long rectangular shape as in the liquid crystal panel 11, and side plates 22b rising from the outer ends of the respective sides of the bottom plate 22a. As a whole, it has a shallow, generally box shape that opens toward the front side.
  • the chassis 22 (bottom plate 22a) has a long side direction that matches the X-axis direction (horizontal direction), and a short side direction that matches the Y-axis direction (vertical direction). Further, the frame 27 and the bezel 13 can be screwed to the side plate 22b.
  • the optical member 23 has a horizontally long rectangular shape in a plan view, like the liquid crystal panel 11 and the chassis 22.
  • the optical member 23 is placed on the front side (light emitting side) of the light guide plate 26 and is interposed between the liquid crystal panel 11 and the light guide plate 26.
  • the optical member 23 includes a diffusion plate 23a disposed on the back side and an optical sheet 23b disposed on the front side.
  • the diffusing plate 23a has a structure in which a large number of diffusing particles are dispersed in a substrate made of a substantially transparent resin having a predetermined thickness and has a function of diffusing transmitted light.
  • the optical sheet 23b has a sheet shape that is thinner than the diffusion plate 23a, and three optical sheets 23b are stacked. Specific types of the optical sheet 23b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used. 7 to 10, the illustration of the optical member 23 is simplified.
  • the frame 27 is formed in a horizontally long frame shape (frame shape) extending along the outer peripheral edge portions of the optical member 23 and the light guide plate 26 as a whole.
  • the outer peripheral edge of the light guide plate 26 can be pressed from the front side over the entire circumference.
  • the frame 27 is made of a synthetic resin and has a light shielding property by having a surface with, for example, a black color.
  • the frame 27 protrudes from the outer peripheral end of the pressing base 27a toward the back side and surrounds the side plate 22b of the chassis 22 from the outside (externally fitted). ) It is composed of a peripheral wall portion 27b that forms a short cylindrical shape.
  • the holding base portion 27a has a pair of short side portions and long side portions, and a pair of long side portions of the holding base portion 27a and a pair of first light source sandwiching portions 27c sandwiching the LED 24 with the bottom plate 22a of the chassis 22; Is done.
  • the front side surfaces of the pair of first light source sandwiching portions 27c that is, the surfaces facing the LEDs 24 (the surfaces facing the LEDs 24, the surfaces receiving the light from the LEDs 24, and the surfaces exposed to the light from the LEDs 24) are shown in FIGS.
  • a pair of first reflection sheets 28 that reflect light are respectively attached.
  • the first reflection sheet 28 is made of a synthetic resin and has a white surface with excellent light reflectivity.
  • the first reflection sheet 28 has a size that extends over almost the entire length of the long side portion (first light source sandwiching portion 27 c) of the frame 27, and is in direct contact with the end portion of the light guide plate 26 on the LED 24 side.
  • the above-described end portion (the end portion having the light incident surface 26b) of the light guide plate 26 and the LED substrate 25 (including the LED 24) are collectively covered from the front side.
  • the frame 27 can receive the outer peripheral end of the liquid crystal panel 11 from the back side. The detailed configuration of the first reflection sheet 28 will be described later.
  • the LED 24 is mounted on the LED substrate 25 and is a so-called top type in which a surface opposite to the mounting surface with respect to the LED 25 is a light emitting surface.
  • the LED 24 includes an LED chip that emits blue light as a light emission source, and includes a green phosphor and a red phosphor as phosphors that emit light when excited by blue light.
  • the LED 24 has a configuration in which an LED chip made of, for example, an InGaN-based material is sealed with a resin material on a substrate portion fixed to the LED substrate 25.
  • the LED chip mounted on the substrate part has a main emission wavelength in the range of 420 nm to 500 nm, that is, in the blue wavelength region, and can emit blue light (blue monochromatic light) with excellent color purity. Is done.
  • a specific main emission wavelength of the LED chip for example, 451 nm is preferable.
  • the resin material that seals the LED chip is excited by the blue phosphor emitted from the LED chip and the green phosphor that emits green light by being excited by the blue light emitted from the LED chip. And a red phosphor emitting red light is dispersed and blended at a predetermined ratio.
  • the LED 24 is made up of blue light (blue component light) emitted from these LED chips, green light (green component light) emitted from the green phosphor, and red light (red component light) emitted from the red phosphor. Is capable of emitting light of a predetermined color as a whole, for example, white or blueish white. Since yellow light is obtained by synthesizing the green component light from the green phosphor and the red component light from the red phosphor, the LED 24 includes the blue component light and the yellow component from the LED chip. It can be said that it also has the light of.
  • the chromaticity of the LED 24 varies depending on, for example, the absolute value or relative value of the content of the green phosphor and the red phosphor, and accordingly the content of the green phosphor and the red phosphor is adjusted as appropriate. Thus, the chromaticity of the LED 24 can be adjusted.
  • the green phosphor has a main emission peak in the green wavelength region of 500 nm to 570 nm
  • the red phosphor has a main emission peak in the red wavelength region of 600 nm to 780 nm. It is said.
  • the green phosphor and the red phosphor provided in the LED 24 will be described in detail.
  • ⁇ -SiAlON which is a kind of sialon phosphor
  • the sialon-based phosphor is a substance in which a part of silicon atoms of silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms with oxygen atoms, that is, a nitride.
  • a sialon-based phosphor that is a nitride is superior in luminous efficiency and durability as compared with other phosphors made of, for example, sulfides or oxides.
  • “excellent in durability” specifically means that, even when exposed to high-energy excitation light from an LED chip, the luminance does not easily decrease over time.
  • rare earth elements eg, Tb, Yg, Ag, etc.
  • ⁇ -SiAlON which is a kind of sialon-based phosphor, has a general formula Si6-zAlzOzN8-z: Eu (z indicates a solid solution amount) or (Si, Al) in which aluminum and oxygen are dissolved in ⁇ -type silicon nitride crystal. ) 6 (O, N) 8: A substance represented by Eu.
  • the ⁇ -SiAlON for example, Eu (europium) is used as an activator, and thereby the color purity of green light, which is emitted light, is particularly high. It is extremely useful in adjusting On the other hand, as the red phosphor, it is preferable to use casoon, which is a kind of cascading phosphor.
  • Cousin-based phosphors are nitrides containing calcium atoms (Ca), aluminum atoms (Al), silicon atoms (Si), and nitrogen atoms (N). For example, other phosphors made of sulfides, oxides, etc. In comparison, it is excellent in luminous efficiency and durability.
  • the cascading phosphor uses rare earth elements (for example, Tb, Yg, Ag, etc.) as an activator.
  • Casun which is a kind of cousin phosphor, uses Eu (europium) as an activator and is represented by the composition formula CaAlSiN3: Eu.
  • the LED substrate 25 has an elongated plate shape extending along the long side direction of the chassis 22 (X-axis direction, the longitudinal direction of the light incident surface 26b of the light guide plate 26).
  • the main plate surface is accommodated in the chassis 22 in a posture parallel to the X-axis direction and the Z-axis direction, that is, in a posture orthogonal to the plate surfaces of the liquid crystal panel 11 and the light guide plate 26 (optical member 23).
  • the LED boards 25 are arranged in pairs corresponding to both ends on the long side in the chassis 22, and are attached to the inner surfaces of the side plates 22b on the long side.
  • the LED 24 having the above-described configuration is surface-mounted on the main plate surface of the LED substrate 25 and on the inner side, that is, the surface facing the light guide plate 26 side (the surface facing the light guide plate 26).
  • a plurality of LEDs 24 are arranged in a line (linearly) in parallel on the mounting surface of the LED substrate 25 along the length direction (X-axis direction) with a predetermined interval. That is, it can be said that a plurality of LEDs 24 are intermittently arranged in parallel along the long side direction at both ends on the long side of the backlight device 12.
  • the arrangement direction of the LEDs 24 coincides with the length direction (X-axis direction) of the LED substrate 25.
  • each LED 24 Since the pair of LED substrates 25 are housed in the chassis 22 in such a posture that the mounting surfaces of the LEDs 24 are opposed to each other, the light emitting surfaces of the LEDs 24 respectively mounted on the LED substrates 25 are opposed to each other, The optical axis of each LED 24 substantially coincides with the Y-axis direction.
  • the base material of the LED substrate 25 is made of a metal such as an aluminum material same as that of the chassis 22, and a wiring pattern (not shown) made of a metal film such as a copper foil is formed on the surface thereof via an insulating layer.
  • a wiring pattern (not shown) made of a metal film such as a copper foil is formed on the surface thereof via an insulating layer.
  • the outermost surface is formed with a reflective layer (not shown) that exhibits white light with excellent light reflectivity.
  • the LEDs 24 arranged in parallel on the LED substrate 25 are connected in series by this wiring pattern.
  • insulating materials such as a ceramic.
  • the light guide plate 26 is made of a synthetic resin material (for example, acrylic resin such as PMMA, polycarbonate, etc.) having a refractive index higher than air and substantially transparent (excellent translucency).
  • the light guide plate 26 has a horizontally long rectangular shape as seen in a plan view like the liquid crystal panel 11 and the chassis 22, and the long side direction is the X axis direction and the short side direction. Respectively agree with the Y-axis direction.
  • the light guide plate 26 is disposed in the chassis 22 immediately below the liquid crystal panel 11 and the optical member 23, and a pair of LED substrates 25 disposed at both ends of the long side of the chassis 22. The Y-axis direction is interposed between them.
  • the alignment direction of the LED 24 (LED substrate 25) and the light guide plate 26 matches the Y-axis direction, while the alignment direction of the optical member 23 (liquid crystal panel 11) and the light guide plate 26 matches the Z-axis direction. It is assumed that both directions are orthogonal to each other.
  • the light guide plate 26 introduces the light emitted from the LED 24 in the Y-axis direction, and rises and emits the light toward the optical member 23 side (Z-axis direction) while propagating the light inside.
  • the light guide plate 26 has a substantially flat plate shape extending along the bottom plate 22 a of the chassis 22 and the plate surfaces of the optical member 23. It is assumed to be parallel to the Y-axis direction.
  • the surface facing the front side is a light emitting surface 26 a that emits internal light toward the optical member 23 and the liquid crystal panel 11.
  • both end surfaces on the long side that are long in the X-axis direction, that is, along the direction in which the LEDs 24 are arranged, are respectively connected to the LED 24 (LED substrate 25) and a predetermined length.
  • Each light incident surface 26b is a surface parallel to the X-axis direction (alignment direction of the LEDs 24) and the Z-axis direction, that is, the main plate surface of the LED substrate 25, and is a surface substantially orthogonal to the light emitting surface 26a.
  • the alignment direction of the LED 24 and the light incident surface 26b coincides with the Y-axis direction and is parallel to the light emitting surface 26a.
  • a predetermined space is held between the light incident surface 26 b of the light guide plate 26 and the LED 24, and a portion of the bottom plate 22 a of the chassis 22 facing the space, that is, on the frame 27 side.
  • the portion that sandwiches the LED 24 with the first light source sandwiching portion 27c is the second light source sandwiching portion 22c.
  • a pair of the second light source sandwiching portions 22c is arranged according to the arrangement of the pair of first light source sandwiching portions 27c and the pair of LEDs 24 (LED substrate 25). Light is reflected on the surface on the front side of the pair of second light source sandwiching portions 22c, that is, the surface facing the LED 24 (the surface facing the LED 24, the surface receiving the light from the LED 24, the surface exposed to the light from the LED 24).
  • a pair of second reflection sheets 29 are respectively attached. That is, the space held between the LED 24 and the LED 24 and the light incident surface 26b includes the first reflection sheet 28 arranged on the front side (light emission side of the light guide plate 26) and the back side (light emission of the light guide plate 26). Sandwiched between the second reflection sheet 29 disposed on the opposite side). As a result, the light emitted from the LED 24 is repeatedly reflected between the reflecting sheets 28 and 29, and thus efficiently enters the light incident surface 26b.
  • the second reflection sheet 29 is made of a synthetic resin, like the first reflection sheet 28, and has a white surface with excellent light reflectivity. Further, the second reflection sheet 29 has a size capable of sandwiching the end portion having the light incident surface 26b of the LED substrate 25 and the light guide plate 26 in addition to the LED 24 with the first reflection sheet 28. Have.
  • the surface of the light guide plate 26 opposite to the light output surface 26a (the surface facing the bottom plate 22a of the chassis 22 and the surface received by the bottom plate 22a of the chassis 22) 26c reflects the light in the light guide plate 26 to the front side.
  • a light guide reflection sheet 30 that can be raised is provided so as to cover the entire area.
  • the light guide reflection sheet 30 is disposed between the bottom plate 22 a of the chassis 22 and the light guide plate 26.
  • the light guide reflection sheet 30 is made of a synthetic resin, like the first reflection sheet 28 and the second reflection sheet 29 described above, and has a white surface with excellent light reflectivity.
  • At least one of the light exit surface 26a and the opposite surface 26c of the light guide plate 26 has a reflection part (not shown) for reflecting internal light or a scattering part (not shown) for scattering internal light.
  • a reflection part for reflecting internal light
  • a scattering part for scattering internal light.
  • the color filter 19 of the liquid crystal panel 11 includes a yellow colored portion in addition to the colored portions R, G, and B, which are the three primary colors of light, as shown in FIGS. Since Y is included, the color gamut of the display image displayed by the transmitted light is expanded, so that it is possible to realize display with excellent color reproducibility. In addition, since the light transmitted through the yellow colored portion Y has a wavelength close to the peak of visibility, the human eye tends to perceive brightly even with a small amount of energy. Thereby, even if it suppresses the output of LED24 which the backlight apparatus 12 has, sufficient brightness
  • the display image of the liquid crystal panel 11 tends to be yellowish as a whole.
  • the chromaticity in the LED 24 is adjusted to a blue color that is a complementary color of yellow, thereby correcting the chromaticity in the display image.
  • the LED 24 of the backlight device 12 has the main emission wavelength in the blue wavelength region and the highest light emission intensity in the blue wavelength region. ing.
  • the area ratio of the blue colored portion B constituting the color filter 19 is set to be relatively larger than that of the green colored portion G and the yellow colored portion Y, whereby the color filter
  • the 19 transmitted light can contain more blue light which is a complementary color of yellow.
  • the brightness of the red light among the light emitted from the liquid crystal panel 11 is lowered. This is because, in the four primary color type liquid crystal panel 11, compared to the three primary color type, the number of subpixels constituting one pixel increases from three to four, so the area of each subpixel decreases. It is presumed that the brightness of the red light is particularly lowered due to this.
  • the area ratio of the red colored portion R constituting the color filter 19 is set to be relatively larger than that of the green colored portion G and the yellow colored portion Y, whereby the color filter
  • the transmitted light of 19 can contain a larger amount of red light, so that it is possible to suppress a decrease in lightness of the red light caused by the color filter 19 having four colors.
  • the LED 24 faces the LED 24 in the first light source sandwiching portion 27c disposed on the front side (light emitting side of the light guide plate 26).
  • the lens unit 31 On the surface (the surface facing the LED 24, the surface receiving the light from the LED 24, the surface exposed to the light from the LED 24), as shown in FIG. 9, in addition to the first reflection sheet 28 described above, the lens unit 31.
  • the lens-attached sheet (lens sheet, prism sheet) 32 having the above-mentioned is arranged, and the light from the LED 24 is converted into the non-arrangement pattern of the LED 24 by the first reflection sheet 28 and the lens portion 31 formed on the lens-attached sheet 32.
  • a light directing unit 33 is configured to direct to the side.
  • the light directing portion 33 is arranged on the surface facing the LED 24 in the first light source sandwiching portion 27c so as to follow the arrangement pattern of the LED 24, and can direct the light from the LED 24 toward the non-arrangement pattern side of the LED 24. It is possible.
  • the “LED 24 arrangement pattern” herein refers to a light source arrangement area that is an arrangement range of the LEDs 24 in the X-axis direction, that is, the arrangement direction of the LEDs 24 (light sources that overlap with the LEDs 24 in the arrangement direction of the LEDs 24 (the positional relationship is the same)).
  • Superimposition area) LA is an arrangement range of the LEDs 24 in the X-axis direction, that is, the arrangement direction of the LEDs 24 (light sources that overlap with the LEDs 24 in the arrangement direction of the LEDs 24 (the positional relationship is the same)).
  • Superimposition area) LA is a light source non-arrangement region that is a range in which the LEDs 24 are not arranged in the arrangement direction of the LEDs 24 (light sources that do not overlap with the LEDs 24 in the arrangement direction of the LEDs 24).
  • Non-overlapping area) LN is a light source non-arrangement region that is a range in which the LEDs 24 are not arranged in the arrangement direction of the LEDs 24 (light
  • the region located between the LEDs 24 adjacent to each other in the arrangement direction of the LEDs 24 and the both ends in the arrangement direction of the LEDs 24 are arranged.
  • a region that is shifted toward the ends of the pair of LEDs 24 (on the side opposite to the LED 24 adjacent to the center) is included.
  • the first reflection sheet 28 disposed in the first light source sandwiching portion 27 c of the frame 27 follows a light source non-arrangement region LN that is a non-arrangement pattern of the LEDs 24.
  • the opening 28a is partially formed. Therefore, the first reflection sheet 28 remains in a form that follows the light source arrangement area LA that is the arrangement pattern of the LEDs 24, and the light directing portion 33 that follows the light source arrangement area LA is formed by the non-formation portion of the opening 28a. It is configured.
  • a plurality of openings 28a are intermittently arranged in parallel along the extending direction (X-axis direction) in the first reflecting sheet 28, and the arrangement interval is associated with the arrangement interval of the LEDs 24.
  • the plurality of openings 28 a are formed in the first reflection sheet 28 so as to be positioned between the LEDs 24 adjacent to each other in the X-axis direction (the arrangement direction of the LEDs 24), and are arranged so as to be alternately arranged with the LEDs 24. ing. Accordingly, the opening 28a is in a positional relationship overlapping with a part of the light source non-arrangement region LN on the surface of the first light source sandwiching portion 27c facing the LED 24 in the X-axis direction.
  • the non-formation part (remaining part) of the opening part 28a in the 1st reflection sheet 28 corresponds with the arrangement
  • a sheet 32 with a lens having a lens portion 31 is attached to the surface of the first reflective sheet 28 facing the LED 24 as shown in FIGS.
  • the lens-attached sheet 32 is made of a synthetic resin material (for example, PET) having a refractive index higher than that of air and substantially transparent (exceeding translucency), and is formed on the first reflective sheet 28 (first light source sandwiching portion 27c).
  • a sheet base material 34 having a sheet shape extending along the surface and a surface of the sheet base material 34 facing the LED 24 (a surface opposite to the first reflection sheet 28 side) and refracting light. It is composed of a possible lens part 31.
  • the sheet base material 34 has substantially the same size as the first reflection sheet 28 (first light source sandwiching portion 27c) in a plan view, and has a longitudinal shape in which the arrangement direction of the LEDs 24 is the long side direction. .
  • the sheet base material 34 covers each opening 28a in the first reflective sheet 28 from the back side (the LED 24 side).
  • a plurality of lens units 31 are intermittently arranged in parallel along the X-axis direction (the alignment direction of the LEDs 24) in the sheet base material 34, and the arrangement in the X-axis direction is performed.
  • the lens part 31 has a positional relationship overlapping the light source arrangement area LA on the surface of the first light source sandwiching part 27c facing the LED 24.
  • the lens portion 31 is disposed at a position overlapping the non-formation portion of the opening 28a in the first reflection sheet 28 having the above-described configuration in a plan view, that is, a position following the light source arrangement area LA.
  • the light directing portion 33 is configured together with the non-formation portion of the opening 28 a in the reflection sheet 28.
  • the lens portion 31 has a dimension in the X-axis direction that is substantially equal to the same dimension of the first reflective sheet 28 where the opening 28a is not formed.
  • the number of lens units 31 is equal to the number of LEDs 24 in parallel as shown in FIGS.
  • the lens unit 31 includes a plurality of unit lenses (unit prisms) 31 a having a substantially triangular cross-section cut along the X-axis direction along the X-axis direction.
  • the configuration is arranged in parallel.
  • Each unit prism 31a constituting the lens unit 31 has a pair of inclined surfaces facing the LED 24, and each of the pair of inclined surfaces is in the X-axis direction (the LED 24 arrangement direction) and the Z-axis direction (the LED 24 and each of the LED 24). It is inclined with respect to both of the light source sandwiching portions 22c and 27c.
  • the lens unit 31 (unit prism 31a) is configured to extend along the Y-axis direction, that is, the alignment direction of the LED 24 and the light incident surface 26b. Therefore, the lens unit 31 angles the light from the LED 24 mainly in the X-axis direction and the Z-axis direction, but hardly angulates in the Y-axis direction. Then, when the light from the sheet base material 34 (first reflection sheet 28) exits the lens unit 31, the lens unit 31 refracts the light at the inclined surface of each unit lens 31a that is an interface. And has a light condensing action to advance in parallel with the Z-axis direction.
  • the lens unit 31 refracts the light at the inclined surface of each unit lens 31a that is an interface, thereby widening the X-axis direction. Has a light diffusing action.
  • the lens portion 31 having the above-described configuration is disposed on the surface of the sheet base material 34 that faces the LED 24, so that the lens portion 31 is interposed between the first reflective sheet 28 and the LED 24. It can be said that it is arranged. Accordingly, the light traveling from the LED 24 toward the front side, that is, the first light source sandwiching portion 27c side is first refracted by being incident on the lens portion 31, and then reflected by the first reflecting sheet 28, whereby the back side, that is, the second side. The light travels toward the light source sandwiching portion 22c.
  • the light reflected by the first reflection sheet 28 is refracted by the lens unit 31 at a previous stage and is given a predetermined angle so as to be diffused at a wide angle, at least a part of the light is not disposed. It is assumed that it goes to the area LN. That is, at least a part of the light emitted from the LED 24 and existing in the light source arrangement area LA is refracted by the lens unit 31 and then reflected by the first reflection sheet 28 so as to be directed to the light source non-arrangement area LN. It has become.
  • the light directing portion 33 (the portion where the opening portion 28a is not formed in the lens portion 31 and the first reflection sheet 28) is centered in the X-axis direction with the LED 24 (light source arrangement region LA).
  • the dimension W1 in the X-axis direction in the light directing unit 33 is relatively larger than the same dimension W2 in the LED 24 (light source arrangement area LA). Therefore, the light directing section 33 is formed wider in the X-axis direction than the light source arrangement area LA, and in addition to the entire area of the light source arrangement area LA, an end portion in the X-axis direction in the adjacent light source arrangement area LN. It can be said that it is arranged to reach the range.
  • the light directing unit 33 is further extended from the light source arrangement area LA to the light source non-arrangement area LN side and is arranged over a part of the light source non-arrangement area LN.
  • the opening portion 28a of the first reflection sheet 28 disposed between the adjacent light directing portions 33 has a central position in the X-axis direction that is coincident with the same central position in the light source non-arrangement region LN. There is no.
  • the dimension (interval between adjacent light directing parts 33) W3 in the X-axis direction in the opening 28a is relatively smaller than the same dimension W4 in the light source non-arrangement region LN.
  • the opening 28a is formed to be narrower in the X-axis direction than the light source non-arrangement region LN, and is disposed at the center in the X-axis direction of the light source non-arrangement region LN, and has both ends in the X-axis direction. It can be said that it is not arranged in the department.
  • the light directing portion 33 and the opening 28a are symmetrical with respect to the X-axis direction. Accordingly, the light directing portion 33 overlaps the same dimension at each end on the light source arrangement area LA side in a pair of light source non-arrangement areas LN adjacent to the light source arrangement area LA on both sides in the X-axis direction. It is arranged like this. Further, as shown in FIGS.
  • the lens part 31 and the opening part 28a constituting the light directing part 33 have a dimension in the Y-axis direction, that is, the alignment direction of the LED 24 and the light incident surface 26b. 25, the distance between the LED 24 mounting surface and the light incident surface 26b of the light guide plate 26 is substantially equal.
  • the opening 28a is formed in the first reflection sheet 28, a part of the surface facing the LED 24 in the first light source sandwiching portion 27c to which the first reflection sheet 28 is attached is shown in FIG. And as shown in FIG. 9, it exposes to the LED24 side through the opening part 28a. Since the light source reflectance of the first light source sandwiching portion 27c is relatively lower than that of the first reflection sheet 28, the LED 24 passes through the opening 28a in the surface facing the LED 24 in the first light source sandwiching portion 27c. The portion exposed to the side is the low light reflectance portion 35. That is, the formation range of the opening 28 a in the first reflection sheet 28 coincides with the formation range of the low light reflectance portion 35.
  • the low light reflectivity portion 35 is constituted by a part of the frame 27, and the surface color thereof is black. Therefore, the light reflectivity is close to 0% (for example, 0% to 0%). 10% range).
  • the non-formation part of the opening part 28a which comprises the light directing part 33 among the 1st reflection sheets 28 becomes relatively higher in light reflectivity than the 1st light source clamping part 27c exposed through the opening part 28a. This constitutes the high light reflectance portion 36. Since the high light reflectance portion 36 is composed of the first reflection sheet 28 having a white surface, the light reflectance is a value close to 100% (for example, a range of 90% to 100%).
  • the low light reflectance part 35 is in a positional relationship overlapping with a part of the light source non-arrangement region LN on the surface of the first light source sandwiching part 27c facing the LED 24 in the X-axis direction, whereby the low light reflectance part 35 is a light source. It will be arranged in a part of the non-arrangement region LN.
  • the high light reflectance part 36 is in a positional relationship overlapping with the light source arrangement area LA on the surface of the first light source sandwiching part 27c facing the LED 24 in the X-axis direction, and further, a pair adjacent to the light source arrangement area LA.
  • the light source non-arrangement region LN has a positional relationship that overlaps with the end portion.
  • the low light reflectance portion 35 and the high light reflectance portion 36 are alternately arranged in parallel along the X-axis direction on the surface facing the LED 24 of the first light source sandwiching portion 27c.
  • the black portion as the low light reflectance portion 31 and the white portion as the high light reflectance portion 32 are alternately and repeatedly arranged in the X-axis direction through the substantially transparent sheet 34 with the lens. It has a stripe shape.
  • each LED 24 When each LED 24 is turned on, the light emitted from each LED 24 enters the light incident surface 26b of the light guide member 26 as shown in FIG. Although a predetermined space is held between the LED 24 and the light incident surface 26b, the space is sandwiched between the first reflective sheet 28 on the front side and the second reflective sheet 29 on the back side. Accordingly, the light from the LED 24 is repeatedly reflected between the reflecting sheets 28 and 29, and thus efficiently enters the light incident surface 26b.
  • the light incident on the light incident surface 26 b is reflected by the light guide reflection sheet 30, propagates through the light guide member 26, is emitted from the light exit surface 26 a, and then passes through each optical member 23.
  • the liquid crystal panel 11 is reached.
  • the light amount incident on the light incident surface 26b of the light guide plate 26 may be uneven depending on the arrangement pattern and the non-arrangement pattern in the plurality of LEDs 24 arranged intermittently. That is, a relatively large amount of light emitted from the LED 24 is incident on a portion of the light incident surface 26b that directly faces the LED 24, in other words, the light source arrangement region LA that overlaps the LED 24 with respect to the arrangement direction of the LEDs 24. Is relatively lightly incident on a portion that does not directly face, in other words, in the light source non-arrangement region LN that does not overlap the LED 24 in the arrangement direction of the LEDs 24 (see FIG. 6).
  • unevenness occurs in the amount of light incident on the light incident surface 26b, which may cause uneven brightness in the emitted light emitted from the light exit surface 26a.
  • the interval between the LED 24 and the light incident surface 26b is narrowed in order to narrow the frame of the liquid crystal display device 10 and the backlight device 12, the light from the LED 24 directly enters the light incident surface 26b. Since the light is incident, the above-described unevenness tends to become more prominent.
  • narrowing the frame means to narrow the width of the frame portion which is a non-light emitting portion in the liquid crystal display device 10 and the backlight device 12, and this frame portion includes the LED 24, the LED substrate 25, And since the edge part which has the light-incidence surface 26b in the light-guide plate 26 is distribute
  • light from the LED 24 is applied to the surface facing the LED 24 in the first light source sandwiching portion 27 c among the pair of light source sandwiching portions 22 c and 27 c sandwiching the LED 24.
  • a light directing portion 33 that directs toward the light source non-arrangement region LN that is the non-arrangement pattern of the LED 24 is arranged following the light source arrangement region LA that is the arrangement pattern of the LED 24.
  • a lens-equipped sheet 32 having a lens portion 31 that is in a positional relationship overlapping with the light source arrangement region LA.
  • the light directing unit 33 is configured by the lens unit 31 and the first reflection sheet 28. According to such a configuration, the light existing in the light source arrangement area LA out of the light from the LED 24 is transmitted by the light directing unit 33 following the light source arrangement area LA before entering the light incident surface 26b. At least a part thereof is directed to the light source non-arrangement region LN side. Specifically, in the light source arrangement area LA, the light traveling from the LED 24 to the front side is first incident on the lens unit 31 that constitutes the light directing unit 33 as shown in FIG. Refracted so as to diffuse at a wide angle in the X-axis direction. The light angled by the lens unit 31 travels through the sheet base material 34 and then is reflected by the surface of the first reflection sheet 28 so that at least a part of the light is not disposed outside the light source arrangement area LA. The process proceeds toward the area LN.
  • the light parallel to the Z-axis direction from the LED 24 toward the first light source sandwiching part 27c is reflected by the first reflection sheet 28 and is directly parallel to the Z-axis direction. Since it goes to the LED 24 side, the amount of light in the light source arrangement area LA tends to be excessive.
  • the light parallel to the Z-axis direction from the LED 24 toward the first light source sandwiching portion 27c is refracted by the lens portion 31 and then reflected by the first reflecting sheet 28.
  • the light directing portion 33 is disposed on the surface of the first light source sandwiching portion 27c facing the LED 24 over the entire light source arrangement region LA and further to the end of the adjacent light source non-arrangement region LN. Therefore, light that tends to be excessive in the entire light source arrangement area LA can be more efficiently directed to the light source non-arrangement area LN side by the light directing section 33, and at the center side in the light source non-arrangement area LN. In contrast, even at the end portion where the light amount is relatively large, the light directing portion 33 can efficiently direct the light toward the center portion side, so that unevenness in the incident light amount on the light incident surface 26b is less likely to occur.
  • the light directing portion 33 is disposed on the first light source sandwiching portion 27 c disposed on the front side of the LED 24, that is, on the light emitting surface 26 a side of the light guide plate 26, no light source is disposed by the light directing portion 33.
  • the light directed to the region LN side is directed to the back side, that is, the side opposite to the light emitting surface 26a side, and then reflected by the surface (second reflection sheet 29) facing the LED 24 in the second light source sandwiching portion 22c.
  • the light is incident on the light incident surface 26b and travels toward the surface 26c of the light guide plate 26 opposite to the light emitting surface 26a side.
  • the light directed to the light source non-arrangement region LN side by the light directing unit 33 enters the light incident surface 26b and is emitted as it is from the light emitting surface 26a.
  • the first reflective sheet 28 is formed with an opening 28a that follows the light source non-arrangement region LN, so that the portion exposed to the LED 24 through the opening 28a in the first light source sandwiching portion 27c is low. Since the first reflective sheet 28 constituting the light directing unit 33 is the high light reflectivity unit 36 in contrast to the light reflectivity unit 35, light is emitted from the LED 24 toward the first light source sandwiching unit 27c.
  • the light is irradiated to the low light reflectance unit 35 in the light source non-arrangement region LN, and is reflected there.
  • the amount of light is suppressed very slightly. Since the light reflected by the low light reflectivity part 35 existing in the light source non-arrangement area LN may be directed to the light source arrangement area LA, the light source arrangement area LA and the light source are suppressed by suppressing the amount of light. This is suitable for reducing the difference in the amount of light that may occur with the non-arrangement region LN, and thus the unevenness in the amount of incident light on the light incident surface 26b is further less likely to occur. As described above, unevenness in luminance is less likely to occur in the outgoing light from the light outgoing surface 26a of the light guide plate 26. In particular, it is useful for narrowing the frame of the liquid crystal display device 10 and the backlight device 12.
  • the backlight device (illumination device) 12 includes a plurality of LEDs (light sources) 24 arranged intermittently side by side, and a surface parallel to the direction in which the LEDs 24 are arranged, and the LED 24.
  • a light guide plate 26 having a light incident surface 26b on which light from the LED 24 is incident and a light exit surface 26a for emitting the incident light, and the light of the light guide plate 26, which are arranged to face each other with an interval therebetween.
  • the LED 24 is disposed on a surface facing the LED 24 in at least one of the pair of light source sandwiching portions 22c and 27c and the pair of light source sandwiching portions 22c and 27c that are disposed so as to sandwich the LED 24 from the emission side and the opposite side. It is arranged following the pattern (light source arrangement area LA) and directs the light from the LED 24 toward the non-placement pattern (light source non-placement area LN) side of the LED 24. And a light directing portion 33.
  • the light incident surface 26b which is arranged in parallel with the arrangement direction of the LEDs 24 and having an interval between the LEDs 24, After propagating through the light guide plate 26, the light is emitted from the light exit surface 26a.
  • the amount of light incident on the light incident surface 26b of the light guide plate 26 may be uneven depending on the arrangement pattern and the non-arrangement pattern in the plurality of LEDs 24 that are intermittently arranged side by side.
  • the distance between the LED 24 and the light incident surface 26b is narrowed in order to narrow the frame, the occurrence of unevenness tends to become more prominent.
  • the light directing portion 33 that directs the light from the LED 24 toward the non-arrangement pattern side of the LED 24 on the surface facing the LED 24 in at least one of the pair of light source sandwiching portions 22c and 27c. Since the light is arranged in accordance with the arrangement pattern, the light directing unit 33 causes the light that tends to be excessive in the arrangement pattern of the LED 24 until the light from the LED 24 enters the light incident surface 26b. It is possible to direct the LED 24 toward the non-arranged pattern side, thereby reducing the difference in light amount.
  • the amount of light incident on the light incident surface 26b of the light guide plate 26 is made uniform regardless of the arrangement pattern and the non-arrangement pattern in the plurality of LEDs 24 that are intermittently arranged side by side, and unevenness hardly occurs. Thereby, luminance unevenness is less likely to occur in the outgoing light from the light outgoing surface 26a of the light guide plate 26.
  • the backlight device 12 is useful for narrowing the frame.
  • the light directing section 33 is arranged over the entire arrangement pattern of the LEDs 24 on the surface facing the LEDs 24 in at least one of the pair of light source sandwiching sections 22c and 27c. If it does in this way, the light which tends to become excessive by the light directing part 33 distribute
  • the light directing portion 33 is arranged in a range from the arrangement pattern of the LED 24 to the end portion of the non-arrangement pattern of the LED 24 on the surface facing the LED 24 in at least one of the pair of light source sandwiching portions 22c and 27c.
  • the light from the LED 24 is directed to the center side in the non-arrangement pattern of the LED 24. If it does in this way, compared with the center part of the non-arrangement pattern of LED24 in the edge part of the non-arrangement pattern of LED24 in the surface facing LED24 in at least any one of a pair of light source clamping parts 22c and 27c, it is LED24. Since the amount of light emitted from the LED 24 is relatively large, it is possible to further suppress uneven brightness by directing the light from the LED 24 toward the central portion by the light directing portion 33 at the end portion.
  • the light directing portion 33 is disposed on a surface facing the LED 24 in one of the pair of light source sandwiching portions 22c and 27c. In this way, it is possible to sufficiently equalize the amount of light incident on the light incident surface 26b by the light directing portion 33 disposed on the surface facing the LED 24 in one of the pair of light source sandwiching portions 22c and 27c. . As compared with the case where the light directing portions are arranged on both of the pair of light source sandwiching portions 22c and 27c, it is possible to cope with low cost.
  • the light directing portion 33 is disposed on the light emitting portion of the pair of light source sandwiching portions 22c and 27c that is disposed on the light emitting side with respect to the LED 24.
  • the light directed to the non-arranged pattern side of the LED 24 by the light directing portion 33 is opposite to the light emitting side.
  • the light source sandwiching portions 22c and 27c arranged on the side opposite to the light emitting side the light is reflected on the surface facing the LED 24, or is incident on the light incident surface 26b to be out of the light guide plate 26. It goes to the opposite side. Accordingly, it is avoided that the light directed to the non-arrangement pattern side of the LED 24 by the light directing unit 33 is incident on the light incident surface 26b and is emitted as it is from the light emitting surface 26a. It becomes difficult.
  • one of the pair of light source sandwiching portions 22c and 27c is a frame (pressing member) 27 that presses the light guide plate 26 from the light emitting side.
  • the frame 27 is assembled, the light guide plate 26 can be pressed from the light emitting side, and the light source sandwiching portion 27c of the frame 27 is disposed at an appropriate position with respect to the LED 24 and the light guide plate 26. can do. Thereby, it is excellent in assembly workability.
  • one of the pair of light source sandwiching portions 22c and 27c is a chassis 22 that houses the LED 24 and the light guide plate 26.
  • the LED 24 and the light guide plate 26 are arranged at appropriate positions with respect to the light source sandwiching portion 22 c of the chassis 22. Thereby, it is excellent in assembly workability.
  • the light directing unit 33 includes a first reflecting sheet (reflecting member) 28 disposed on a surface facing the LED 24 in at least one of the pair of light source sandwiching portions 22c and 27c, and the LED 24 in the first reflecting sheet 28.
  • the lens portion 31 is arranged on the opposite surface and is directed toward the non-arrangement pattern side of the LED 24 by reflecting the light from the LED 24 with the first reflection sheet 28 while refracting the light. If it does in this way, the light from LED24 can be efficiently directed to the non-arrangement pattern side of LED24 by the 1st reflective sheet 28 and lens part 31 which constitute light directing part 33.
  • the opening part 28a which follows the non-arrangement pattern of LED24 is formed in the 1st reflective sheet 28, and the low light reflectance part with a relatively low light reflectance by the light source clamping part 27c exposed through the opening part 28a.
  • the first reflection sheet 28 constitutes a high light reflectance portion 36 having a relatively high light reflectance.
  • the reflecting member is formed with the opening portion 28a that follows the non-arrangement pattern of the LED 24, and the light that does not pass through the lens portion 31 described above is formed by the light source sandwiching portion 27c that is exposed through the opening portion 28a. Since the light reflectance part 35 is irradiated, the amount of reflected light of the light reflected there is suppressed. Thereby, even if the reflected light from the low light reflectance portion 35 is directed to the arrangement pattern side of the LED 24, it is possible to reduce the unevenness of the incident light amount on the light incident surface 26b due to the reflected light, and as a result It is considered to contribute to prevention of uneven brightness.
  • the low-light-reflectance part 35 and the high-light-reflectivity part 36 are comprised by forming the opening part 28a in the 1st reflective sheet 28, it compares with the case where it respond
  • a lens-equipped sheet 32 that extends along the direction in which the LEDs 24 are arranged and has a lens portion 31 is disposed. In this way, by arranging the lens-equipped sheet 32 on the surface of the first reflective sheet 28 facing the LED 24, the lens unit 31 is arranged at an appropriate position, so that the workability is excellent.
  • the lens unit 131 constituting the light directing unit 133 according to the present embodiment includes a plurality of unit lenses having a semicircular cross-sectional shape cut along the X-axis direction (LED 24 arrangement direction).
  • 131a is a so-called cylindrical lens. That is, it can be said that the lens-attached sheet 132 according to the present embodiment is a lenticular lens sheet.
  • the lens unit 131 having such a configuration has its light on the arc-shaped surface of each unit lens 131a that is an interface. Is refracted so as to advance in parallel with the Z-axis direction.
  • the lens unit 131 refracts the light at the arc-shaped surface of each unit lens 131a that is an interface, so that the X-axis direction is It has a light diffusing action that diffuses to a wide angle.
  • Embodiment 3 of the present invention will be described with reference to FIG.
  • a light guide member 37 is used instead of the lens-equipped sheet 32 described in the first embodiment.
  • action, and effect as above-mentioned Embodiment 1 is abbreviate
  • the light guide member 37 is disposed on a surface of the first light source sandwiching portion 27 c that faces the LED 24, and has a longitudinal length that extends along the first light source sandwiching portion 27 c. It has a substantially flat plate shape.
  • the first reflection sheet 28 and the lens-equipped sheet 32 described in the first embodiment are removed from the first light source sandwiching portion 27c.
  • the light guide member 37 is made of a synthetic resin material (for example, acrylic resin such as PMMA or polycarbonate) having a refractive index higher than that of air and substantially transparent (excellent translucency), and the material is the same as that of the light guide plate 26. It is said.
  • a first refracting surface 37a that refracts the light from the LED 24 and directs it along the X-axis direction (the direction in which the LEDs 24 are arranged) is provided on the surface of the light guide member 37 on the front side (first light source sandwiching portion 27c side).
  • a second refracting surface 37b for further refracting the light refracted by the first refracting surface 37a toward the back side is formed on the surface on the back side (LED 24 side).
  • the light guide member 37 constitutes the light directing portion 233.
  • the first refracting surface 37a is arranged in the light source arrangement region LA in the X-axis direction, while the second refracting surface 37b is arranged in the light source non-arrangement region LN.
  • Each of the first refracting surface 37a and the second refracting surface 37b has an isosceles triangular cross section cut along the X-axis direction, and is inclined with respect to both the X-axis direction and the Z-axis direction. Yes.
  • the first refracting surface 37a and the second refracting surface 37b are in a positional relationship in which most of the first refracting surface 37b and the second refracting surface 37b are overlapped with each other in the Z-axis direction. Can be refracted by the second refracting surface 37b and converted into light parallel to the Z-axis direction.
  • Light emitted from the LED 24 toward the first light source sandwiching portion 27c in the light source arrangement area LA is incident on the light guide member 37 and then refracted by the first refracting surface 37a to be parallel to the X-axis direction. Directed to the non-arrangement region LN.
  • the light propagating through the light guide member 37 and entering the light source non-arrangement region LN is refracted by the second refracting surface 37b, so that it is parallel to the Z-axis direction, that is, the second light source sandwiching portion 22c ( It proceeds to the second reflecting sheet 29) side.
  • the light existing in the light source arrangement area LA which tends to have an excessive amount of light, can be distributed to the light source non-arrangement area LN where the light quantity tends to be insufficient, and thus the amount of light incident on the light incident surface 26b of the light guide plate 26. It becomes difficult to produce unevenness.
  • interval between LED24, in the light guide member 37 by adjusting the relative positional relationship about the X-axis direction of the 1st refractive surface 37a and the 2nd refractive surface 37b suitably, It can be easily dealt with.
  • the light directing portion 233 extends along the alignment direction of the LEDs 24 on the surface facing the LEDs 24 in at least one of the pair of light source sandwiching portions 22c and 27c.
  • the light guide member 37 is configured to guide the light from the first light-reflecting surface 37a that refracts the light from the LED 24 and directs it along the alignment direction of the LEDs 24, and the first light-reflecting surface 37a.
  • a second refracting surface 37b is formed that further refracts the light refracted by the refracting surface 37a and directs the light to the side facing the light guide member 37 of the pair of light source sandwiching portions 22c and 27c.
  • the light from the LED 24 is refracted by the first refracting surface 37a and the second refracting surface 37b of the light guide member 37 that constitutes the light directing unit 233, so that the light is efficiently disposed in the non-arrangement pattern of the LED 24. Can be directed to the side.
  • Embodiment 4 A fourth embodiment of the present invention will be described with reference to FIG. In this Embodiment 4, what changed the formation range of the light directing part 333 from above-mentioned Embodiment 1 is shown. In addition, the overlapping description about the same structure, an effect
  • the light directing portion 333 has a dimension W5 in the X-axis direction, that is, the LED 24 arrangement direction. Is the same size as the dimension W2 in the X-axis direction in the LED 24 and the light source arrangement area LA.
  • the dimension W6 in the X-axis direction in the opening 328a of the first reflection sheet 328 is the same as the dimension W4 in the X-axis direction in the light source non-arrangement region LN.
  • the light directing portion 333 is disposed over the entire light source arrangement region LA, whereas the opening 328a disposed between the adjacent light directing portions 333 is provided in the light source non-arrangement region LN. Distributed throughout.
  • a fifth embodiment of the present invention will be described with reference to FIG.
  • a configuration in which the formation range of the light directing portion 433 is further changed from the above-described fourth embodiment is shown.
  • the light directing portion 433 As shown in FIG. 16, the light directing portion 433 according to the present embodiment (the portion where the opening portion 428a is not formed in the lens portion 431 and the first reflection sheet 428) has a dimension W7 in the X-axis direction, that is, the LED 24 arrangement direction. Is smaller than the dimension W2 in the X-axis direction in the LED 24 and the light source arrangement area LA. On the other hand, the dimension W8 in the X-axis direction in the opening 428a of the first reflection sheet 428 is larger than the dimension W4 in the X-axis direction in the light source non-arrangement region LN.
  • the light directing unit 433 is arranged so as to overlap only a part of the light source arrangement region LA (the central part in the arrangement direction of the LEDs 24), whereas the adjacent light directing units 433 are arranged.
  • the opening 428a disposed therebetween is disposed over the entire light source non-arrangement region LN.
  • Embodiment 6 of the present invention will be described with reference to FIG.
  • the first reflective sheet 528 is changed from the first embodiment.
  • the first reflection sheet 528 according to the present embodiment is configured such that the opening 28a described in the first embodiment is not formed, as shown in FIG. That is, the surface facing the LED 24 in the first light source sandwiching portion 527c according to the present embodiment is covered almost entirely by the first reflection sheet 528, and is not exposed to the LED 24 side. Therefore, also in the light source non-arrangement region LN, light can be efficiently reflected by the first reflection sheet 528 similarly to the light source arrangement region LA.
  • a seventh embodiment of the present invention will be described with reference to FIG.
  • a light directing reflection portion 38 is provided instead of the first reflection sheet 28 from the first embodiment, and the lens-equipped sheet 32 is removed.
  • a light directing reflecting portion 38 is provided on the surface of the first light source sandwiching portion 627 c according to the present embodiment that faces the LED 24 as shown in FIG.
  • the light directing reflecting portion 38 is made of a material having a white surface with excellent light reflectivity, and is integrally formed on the surface of the first light source sandwiching portion 627c facing the LED 24 by printing or the like.
  • the light-directed reflecting section 38 has a cross-sectional shape cut along the X-axis direction to form a substantially triangular base, and has a convex shape with a central portion protruding toward the LED 24 in the X-axis direction.
  • the light directing reflection portion 38 has a pair of inclined surfaces 38a facing the LED 24, and the pair of inclined surfaces 38a do not face the LED 24, and the adjacent light source non-arrangement region LN side in the X-axis direction. It is suitable. Therefore, the light traveling from the LED 24 toward the first light source sandwiching portion 627c is reflected by the inclined surface 38a of the light directing reflecting portion 38 disposed along the light source placement region LA, and is directed toward the light source non-placement region LN. Is done.
  • the light existing in the light source arrangement area LA which tends to have an excessive amount of light, can be distributed to the light source non-arrangement area LN where the light quantity tends to be insufficient, and thus the amount of light incident on the light incident surface 26b of the light guide plate 26. It becomes difficult to produce unevenness.
  • the specific shape of the light reflection surface in the light directing reflection unit 38 can be changed in addition to the inclined surface 38a, and for example, an arcuate surface or a curved surface can be used.
  • the light-directing reflecting portion 738 is a concave shape whose central portion is retracted toward the first light source sandwiching portion 727c in the X-axis direction.
  • the right-side inclined surface 738a shown in FIG. 19 is not disposed adjacent to the left side of the same figure with respect to the light source arrangement region LA where the light-directing reflection unit 738 exists.
  • the inclined surface 738a on the left side of the figure faces the light source non-arrangement region LN side adjacent to the right side of the figure.
  • the light traveling from the LED 24 toward the first light source sandwiching portion 727c is reflected by the inclined surface 738a of the light directing reflection portion 738 disposed along the light source arrangement region LA, and thus directed toward the light source non-arrangement region LN. Is done.
  • the specific shape of the light reflecting surface in the light directing reflecting portion 738 can be changed in addition to the inclined surface 738a, and for example, an arcuate surface or a curved surface can be used.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the arrangement order of the colored portions R, G, B, and Y in the color filter can be changed as appropriate.
  • the present invention includes an arrangement in which the colored portion B, the green colored portion G, the red colored portion R, and the yellow colored portion Y are arranged in this order along the X-axis direction.
  • the colored portions R, G, B, and Y in the color filter are red colored portions R and green colored portions G from the left side of the drawing.
  • the present invention also includes an arrangement in which the yellow colored portion Y and the blue colored portion B are arranged in this order along the X-axis direction.
  • the colored portions R, G, B, and Y in the color filter are red colored portions R and yellow from the left side of the drawing.
  • the present invention also includes an arrangement in which the colored portion Y, the green colored portion G, and the blue colored portion B are arranged in this order along the X-axis direction.
  • the three primary colors of light, red (R), green (G), and blue (B) are added to yellow (Y) as the colored portion of the color filter.
  • Y yellow
  • a cyan colored portion C may be added instead of the yellow colored portion.
  • the color filter has four colored portions.
  • the transparent color does not color transmitted light at the installation position of the yellow colored portion.
  • the portion T may be provided.
  • the transparent portion T has substantially the same transmittance for all wavelengths at least in the visible light, so that the transmitted light is not colored into a specific color.
  • the four colored portions R, G, B, and Y constituting the color filter are illustrated as being arranged in the row direction.
  • the four colored portions R are arranged.
  • G, B, and Y may be arranged in a matrix.
  • the four colored portions R, G, B, and Y are arranged in a matrix with the X-axis direction as the row direction and the Y-axis direction as the column direction.
  • the colored portions R, G, B, and Y arranged in adjacent rows are in the column direction (Y The dimensions in the axial direction are different from each other.
  • the red colored portion R and the blue colored portion B are arranged adjacent to each other in the row direction, whereas the row having a relatively small size in the column direction.
  • the green colored portion G and the yellow colored portion Y are arranged adjacent to each other in the row direction.
  • the first colored row R and the blue colored portion B are alternately arranged in the row direction, the first row having a relatively large dimension in the column direction, the green colored portion G, and the yellow colored portion Y.
  • the first row having a relatively large dimension in the column direction
  • the green colored portion G and the yellow colored portion Y.
  • the area of the red coloring part R and the blue coloring part B is made larger than the areas of the green coloring part G and the yellow coloring part Y.
  • the green colored portion G is arranged adjacent to the red colored portion R in the column direction
  • the yellow colored portion Y is arranged adjacent to the blue colored portion B in the column direction. Yes.
  • the dimensions in the column direction of the pixel electrodes 115 arranged in adjacent rows are different. That is, the area of each pixel electrode 115 that overlaps with the red colored portion R or the blue colored portion B is larger than the area of the pixel electrode 115 that overlaps with the yellow colored portion Y or the green colored portion G. .
  • the film thicknesses of the colored portions R, G, B, and Y are all equal.
  • the source wirings 117 are all arranged at an equal pitch, while the gate wirings 116 are arranged at two different pitches according to the dimensions of the pixel electrodes 115 in the column direction. 25 and 26 show a case where the areas of the red colored portion R and the blue colored portion B are about 1.6 times the areas of the yellow colored portion Y and the green colored portion G. Show.
  • the yellow colored portion Y is arranged adjacent to the red colored portion R in the column direction with respect to the color filter. It is also possible to adopt a configuration in which the green colored portion G is arranged adjacent to the colored portion B in the column direction.
  • the color portions R, G, B, and Y constituting the color filter are illustrated with different area ratios.
  • the areas of the colored portions R, G, B, and Y are exemplified. It is also possible to adopt a configuration in which the ratio is made equal.
  • the colored portions R, G, B, and Y are arranged in a matrix with the X-axis direction as the row direction and the Y-axis direction as the column direction.
  • the dimensions in the row direction (X-axis direction) in R, G, B, and Y are all the same, and the dimensions in the column direction (Y-axis direction) are all the same.
  • the areas of the colored portions R, G, B, and Y are all equal.
  • the color filter is configured as described above, in the array substrate, as shown in FIG. 29, the dimension in the row direction of each pixel electrode 215 facing each colored portion R, G, B, Y is shown in FIG.
  • the dimensions in the column direction are all equal, so that all the pixel electrodes 215 have the same shape and the same area.
  • the gate wiring 216 and the source wiring 217 are all arranged at an equal pitch.
  • the color filter has four colored portions. However, as shown in FIG. 30, the yellow colored portion is omitted, and red (R), which is the primary color of light. , Green (G), and blue (B) are also included in the present invention. In this case, it is preferable to make the area ratios of the colored portions R, G, and B equal.
  • the structure related to the pixel has been described using the simplified drawings (FIGS. 4 and 5). However, in addition to the structure disclosed in these drawings, the specific structure related to the pixel is changed. Is possible.
  • the present invention can also be applied to a structure in which one pixel is divided into a plurality of sub-pixels and the sub-pixels are driven so as to have different gradation values, so-called multi-pixel driving is performed.
  • one pixel PX is composed of a pair of sub-pixels SPX
  • the pair of sub-pixels SPX is composed of a pair of adjacent pixel electrodes with the gate wiring 102 interposed therebetween. 100.
  • the TFT 101 includes a gate electrode 101a constituted by a part of the gate wiring 102, a source electrode 101b constituted by a pair of branch lines branched from the source wiring 103 and disposed on the gate electrode 101a, and the gate electrode 101a. And a drain electrode 101c arranged between the pair of source electrodes 101b, and arranged in the direction (Y-axis direction) of the pair of sub-pixels SPX forming one pixel PX on the gate wiring 102. A pair is lined up along.
  • the drain electrode 101c of the TFT 101 is connected to the other end side of the drain wiring 104 having a contact portion 104a connected to the pixel electrode 100 on one end side.
  • the contact portion 104a and the pixel electrode 100 are connected through a contact hole CH formed in an interlayer insulating film (not shown) interposed therebetween, and have the same potential.
  • the auxiliary capacitance wiring 105 is arranged at the end opposite to the gate wiring 102 side so as to overlap each other in plan view, and the pixel on which the auxiliary capacitance wiring 105 overlaps. A capacitance is formed with the electrode 100.
  • the pair of pixel electrodes 100 constituting one pixel PX forms a capacitance with different auxiliary capacitance lines 105.
  • Each in-pixel auxiliary capacitance line 108 is connected to each auxiliary capacitance line 105 arranged on the side opposite to the gate line 101 side by a connection line 109, thereby having the same potential as each auxiliary capacitance line 105. ing.
  • the in-pixel auxiliary capacitance line 108 having the same potential as that of the auxiliary capacitance line 105 is superimposed on the plane and forms a capacitance with each contact portion 104a having the same potential as each pixel electrode 100.
  • the scanning signal and the data signal are supplied from the common gate wiring 102 and the source wiring 103 to the pair of TFTs 101, respectively, while the pair of pixel electrodes 100 and the pair of contact portions connected thereto.
  • the voltage value charged to each sub-pixel SPX, that is, the gradation value is different from each other.
  • so-called multi-pixel driving can be performed, and good viewing angle characteristics can be obtained.
  • the coloring portions R, G, B, and Y of the color filter 106 that faces the pixel electrode 100 and the pixel electrode 100 are as follows. It is supposed to be configured. That is, as shown in FIG. 32, the color filter 106 includes four colored portions R, G, B, and Y. From the left side of the drawing, the yellow colored portion Y, the red colored portion R, and the green colored portion. G and blue colored portion B are repeatedly arranged in parallel along the X-axis direction in this order. Each of the colored portions R, G, B, and Y is partitioned by a light shielding layer (black matrix) 107.
  • black matrix black matrix
  • the light shielding layer 107 overlaps with the gate wiring 102, the source wiring 103, and the auxiliary capacitance wiring 105 in a plan view. Are arranged in a substantially lattice pattern.
  • the yellow colored portion Y and the green colored portion G have substantially the same dimensions in the X-axis direction (the parallel direction of the colored portions R, G, B, and Y).
  • the red colored portion R and the blue colored portion B are relatively larger in dimensions in the X-axis direction than the yellow colored portion Y and the green colored portion G (for example, 1.3 times to 1). About 4 times).
  • the red colored portion R has a slightly larger dimension in the X-axis direction than the blue colored portion B.
  • the pixel electrodes 100 are approximately equal in size in the Y-axis direction, but the dimensions in the X-axis direction are the colored portions R, G, B of the color filter 106 facing each other. , Y corresponding to the size of Y.
  • the light directing portion is arranged in the first light source sandwiching portion on the light emitting surface side out of the pair of light source sandwiching portions.
  • a light directing unit may be arranged in the second light source sandwiching unit. Moreover, you may make it arrange
  • the light directing unit is symmetric with respect to the LED arrangement direction, but the light directing unit is also asymmetric with respect to the LED arrangement direction. It is.
  • the light directing unit is associated with all the light source arrangement regions, but the light directing unit is associated with only a part of each light source arrangement region. Those arranged in this manner are also included in the present invention. Specifically, it is possible to adopt a configuration in which the light directing units are arranged at unequal pitches in the LED arrangement direction.
  • the light directing units have the same dimensions in the LED alignment direction.
  • the present invention also includes light directing units having different dimensions in the LED alignment direction. include.
  • the specific shape of the lens portion formed on the lens-attached sheet can be changed as appropriate.
  • the present invention includes a configuration in which the lens portion has a dot shape on the lens forming surface of the sheet base material. In that case, it is possible to two-dimensionally arrange the dot-shaped lens portions on the lens forming surface of the sheet base material.
  • the low light reflectance portion and the high light reflectance portion are formed by forming the opening in the first reflection sheet. Even if the low light reflectivity part and the high light reflectivity part are formed by printing a high light reflectivity material with a high light reflectivity on the surface of the sheet base material having a light property at a position overlapping the lens part in plan view. I do not care. In that case, it is also possible to form the high light reflectance material by means such as coating or metal vapor deposition on a light-transmitting sheet base material.
  • the low light reflectance portion and the high light reflectance portion are formed by forming the opening in the first reflection sheet.
  • the low light reflectance part and the high light reflectance part may be formed by printing the low light reflectance material on the surface of the first reflection sheet that does not have a part in a position where the lens part is not superimposed in plan view.
  • the low light reflectance material can be formed on the first reflective sheet by means such as coating or metal vapor deposition.
  • the low light reflectance portion and the high light reflectance portion are configured by attaching the first reflection sheet to the first light source sandwiching portion. It is also possible to directly print or apply the high light reflectance material to the printed portion or the coated portion as a high light reflectance portion and to form the non-printed portion or the non-coated portion as a low light reflectance portion.
  • the low light reflectance part and the high light reflectance are provided in the second light source sandwiching part (part of the chassis) on the side opposite to the light emitting surface side of the pair of light source sandwiching parts.
  • the present invention can be similarly applied when forming the portion.
  • the green phosphor that emits green light and the red phosphor that emits red light is used as the phosphor used in the LED is shown.
  • yellow that emits yellow light is used.
  • the fluorescent substance independently is also contained in this invention.
  • the yellow phosphor for example, ⁇ -SiAlON, which is a kind of SiAlON phosphor, is preferably used.
  • the specific substance names of the phosphors of the respective colors can be appropriately changed other than those already described.
  • an LED chip that emits blue light in a single color and a type of LED that emits substantially white light using a phosphor is used.
  • the present invention includes an LED chip that incorporates an LED chip that emits ultraviolet light and that emits substantially white light using a phosphor.
  • the phosphor it is preferable to use three colors: a blue phosphor that emits blue light, a green phosphor that emits green light, and a red phosphor that emits red light. The color of the phosphor can be changed as appropriate.
  • an LED chip that emits blue light in a single color and a LED that emits substantially white light using a phosphor is used.
  • red light, green light, and blue light are used.
  • the present invention also includes an LED using a type of LED that incorporates three types of LED chips each emitting light in a single color.
  • the present invention includes an LED using a type of LED in which three types of LED chips each emitting C (cyan), M (magenta), and Y (yellow) are monochromatic. In this case, the chromaticity of the LED can be adjusted by appropriately controlling the amount of current to each LED chip during lighting.
  • the LED is used as the light source, but other light sources such as an organic EL can be used.
  • a TFT is used as a switching element of a liquid crystal display device.
  • the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)).
  • a switching element other than TFT for example, a thin film diode (TFD)
  • the present invention can also be applied to a liquid crystal display device for monochrome display.
  • liquid crystal display device using the liquid crystal panel as the display panel has been exemplified, but the present invention can also be applied to a display device using another type of display panel.
  • the television receiver provided with the tuner is exemplified, but the present invention is also applicable to a display device that does not include the tuner.
  • the light guide plate has a flat plate shape, and the light output surface and the opposite surface (surface facing the chassis) are used in parallel.
  • the light guide plate having a wedge shape in cross section and the light emitting surface and the opposite surface are not included in the present invention.
  • the light exit surface of the light guide plate is parallel to the bottom plate of the chassis, whereas the surface opposite to the light exit surface of the light guide plate is inclined with respect to the bottom plate and the light exit surface. can do.
  • the surface opposite to the light exit surface of the light guide plate is parallel to the bottom plate of the chassis, whereas the light exit surface of the light guide plate is opposite to the surface opposite to the bottom plate and the light exit surface. It is possible to adopt an inclined shape.
  • a pair of LED substrates are arranged at the ends of both long sides of the light guide plate.
  • the LED substrates are both short sides of the light guide plate. What is arranged in a pair at the end of the side is also included in the present invention.
  • the present invention includes one in which only one end of one long side or one short side of the light guide plate is disposed.
  • a light guide plate having a wedge-shaped cross section as described in (30) above is used. Is possible.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 22 ... Chassis, 22c ... 1st light source clamping part (Light source sandwiching portion), 24 ... LED (light source), 26 ... light guide plate, 26a ... light emitting surface, 26b ... light incident surface, 27 ... frame (pressing member), 27c, 527c, 627c, 727c ... second light source sandwiching portion (light source sandwiching portion), 28, 328, 428, 528 ... first reflecting sheet (reflecting member), 28a, 328a, 428a ... opening, 29 ...
  • 2nd reflection sheet (reflection member), 31, 131, 331, 431, ... lens part, 32, 132 ... sheet with lens, 33, 233, 333, 433 ... light directing part, 35 ... low light reflectance part, 36 ... high light reflectance part, 37 ... light guide member, 37a ... first refractive surface, 37b ... second refractive surface, 3 ... light directing reflecting portion (light directivity portion), (arrangement pattern of the light source) LA ... light source installation area, LN ... source blank region (non-arrangement pattern of the light source), TV ... television receiver apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Planar Illumination Modules (AREA)

Abstract

This backlight device (12) is provided with: multiple LEDs (24) arranged side by side intermittently; a light guide plate (26) having a light entrance surface (26b) into which light enters from the LEDs (24) and which, parallel with the arrangement direction of the LEDs (24), is arranged oppositely from the LEDs (24) while maintaining a distance therefrom, and having a light exit surface (26a) which emits the light entering the light entrance surface (26b); a pair of light source sandwiching units (22c, 27c) arranged on both sides of the LEDs (24), on the side of the light exit surface (26a) of the light guide plate (26) and the side opposite of said light exit surface (26a); and light directing units (33) which are arranged, in accordance with the arrangement pattern of the LEDs (24) (light source arrangement area LA), on the surface opposite of the LEDs (24) of at least one of the pair of light source sandwiching units (22c, 27c), and which direct light from the LEDs (24) towards the non-arrangement pattern of LEDs (24) (the light source non-arrangement area LN).

Description

照明装置、表示装置、及びテレビ受信装置Lighting device, display device, and television receiver
 本発明は、照明装置、表示装置、及びテレビ受信装置に関する。 The present invention relates to a lighting device, a display device, and a television receiver.
 近年、テレビ受信装置をはじめとする画像表示装置の表示素子は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型の表示パネルに移行しつつあり、画像表示装置の薄型化を可能としている。液晶表示装置は、これに用いる液晶パネルが自発光しないため、別途に照明装置としてバックライト装置を必要としており、バックライト装置はその機構によって直下型とエッジライト型とに大別されている。液晶表示装置の一層の薄型化を実現するには、エッジライト型のバックライト装置を用いるのが好ましく、その一例として下記特許文献1に記載されたものが知られている。 In recent years, the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices. Since the liquid crystal panel used for the liquid crystal display device does not emit light by itself, a backlight device is separately required as a lighting device, and the backlight device is roughly classified into a direct type and an edge light type according to the mechanism. In order to further reduce the thickness of the liquid crystal display device, it is preferable to use an edge light type backlight device, and an example described in Patent Document 1 below is known.
特開2002-116440号公報JP 2002-116440 A
(発明が解決しようとする課題)
 エッジライト型のバックライト装置では、導光板の端部に設けられた光入射面沿って間欠的に複数の光源を並列配置する構成を採る場合があるが、その場合次の問題が生じる可能性がある。すなわち、複数の光源から発せられて光入射面に入射される光量には、間欠的に並列する複数の光源における配置パターン及び非配置パターンによってムラが生じるおそれがあった。特に、液晶表示装置及びバックライト装置の狭額縁化を図るべく、光源と光入射面との間の間隔を狭くした場合に上記したムラの問題がより顕著になる傾向にあった。
(Problems to be solved by the invention)
An edge-light type backlight device may adopt a configuration in which a plurality of light sources are intermittently arranged in parallel along a light incident surface provided at an end portion of a light guide plate. In this case, the following problem may occur. There is. That is, the light quantity emitted from the plurality of light sources and incident on the light incident surface may be uneven due to the arrangement pattern and the non-arrangement pattern in the plurality of light sources intermittently arranged in parallel. In particular, when the distance between the light source and the light incident surface is narrowed in order to narrow the frame of the liquid crystal display device and the backlight device, the above-described problem of unevenness tends to become more prominent.
 本発明は上記のような事情に基づいて完成されたものであって、輝度ムラを抑制することを目的とする。 The present invention has been completed based on the above situation, and an object thereof is to suppress luminance unevenness.
(課題を解決するための手段)
 本発明の照明装置は、間欠的に並んで配される複数の光源と、前記光源の並び方向に並行する面であって前記光源との間に間隔を保有しつつ対向状に配されるとともに前記光源からの光が入射される光入射面、及び入射した光を出射させる光出射面を有する導光板と、前記導光板の光出射側とその反対側とから前記光源を挟み込む形で配される一対の光源挟み部と、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面に、前記光源の配置パターンに倣って配されるとともに、前記光源からの光を前記光源の非配置パターン側へ指向させる光指向部とを備える。
(Means for solving problems)
The illuminating device of the present invention is a surface parallel to the alignment direction of the plurality of light sources arranged in a row intermittently, and arranged in an opposing manner with a space between the light sources. A light guide plate having a light incident surface on which light from the light source is incident, a light output surface for emitting incident light, and a light output side of the light guide plate and the opposite side sandwich the light source. A pair of light source sandwiching portions and a surface of at least one of the pair of light source sandwiching portions facing the light source, following the arrangement pattern of the light sources, and transmitting light from the light sources to the light sources. And a light directing unit that directs toward the non-arranged pattern side.
 このようにすれば、複数の光源から発せられた光は、光源の並び方向に並行していて光源との間に間隔を保有しつつ対向状に配される光入射面に入射した後、導光板内を伝播されてから、光出射面から出射される。ここで、導光板の光入射面に入射される光量には、間欠的に並んで配される複数の光源における配置パターン及び非配置パターンによってムラが生じるおそれがあり、特に当該照明装置における狭額縁化を図るべく、光源と光入射面との間の間隔を狭くした場合にムラの発生がより顕著となる傾向にある。 In this way, the light emitted from the plurality of light sources enters the light incident surface that is arranged in parallel with the light source arrangement direction and has an interval between the light sources, and then is guided. After being propagated through the light plate, the light is emitted from the light exit surface. Here, the amount of light incident on the light incident surface of the light guide plate may be uneven due to the arrangement pattern and the non-arrangement pattern in the plurality of light sources arranged intermittently, and in particular, the narrow frame in the illumination device. If the distance between the light source and the light incident surface is narrowed in order to reduce the size, the occurrence of unevenness tends to become more prominent.
 その点、本発明では、一対の光源挟み部の少なくともいずれか一方における光源と対向する面に、光源からの光を光源の非配置パターン側へ指向させる光指向部が光源の配置パターンに倣って配されているから、光源からの光が光入射面に入射するまでの間に、光指向部によって光源の配置パターンにおいて過剰になりがちな光を、光が不足しがちな光源の非配置パターン側へ指向させることができ、それにより光量の差を軽減することができる。従って、導光板の光入射面に入射される光量は、間欠的に並んで配される複数の光源における配置パターン及び非配置パターンによらず均一化されてムラが生じ難くなる。これにより、導光板の光出射面からの出射光にも輝度ムラが生じ難くなる。特に、当該照明装置の狭額縁化を図る上でも有用となる。 In that respect, in the present invention, the light directing unit that directs the light from the light source toward the non-arrangement pattern side of the light source follows the arrangement pattern of the light source on the surface facing at least one of the pair of light source sandwiching portions. Since the light is incident on the light incident surface, light that tends to be excessive in the light source arrangement pattern by the light directing unit, and light source non-arrangement pattern that tends to lack light. Can be directed to the side, thereby reducing the difference in the amount of light. Accordingly, the amount of light incident on the light incident surface of the light guide plate is made uniform regardless of the arrangement pattern and the non-arrangement pattern in the plurality of light sources arranged intermittently side by side, and unevenness hardly occurs. As a result, luminance unevenness is less likely to occur in the light emitted from the light exit surface of the light guide plate. In particular, this is also useful for narrowing the frame of the lighting device.
 本発明の実施態様として、次の構成が好ましい。
(1)前記光指向部は、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面において、前記光源の配置パターンの全域にわたって配されている。このようにすれば、光源の配置パターンの全域にわたって配される光指向部によって過剰になりがちな光を一層効率的に光源の非配置パターン側へ指向させることができる。これにより、輝度ムラをより効果的に抑制することができる。
The following configuration is preferable as an embodiment of the present invention.
(1) The light directing portion is disposed over the entire area of the light source arrangement pattern on the surface facing the light source in at least one of the pair of light source sandwiching portions. If it does in this way, the light which tends to become excessive by the light directing part distribute | arranged over the whole region of the arrangement pattern of a light source can be more efficiently directed to the non-arrangement pattern side of a light source. Thereby, luminance unevenness can be more effectively suppressed.
(2)前記光指向部は、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面において、前記光源の配置パターンから前記光源の非配置パターンの端部に至る範囲に配されるとともに、前記光源からの光を前記光源の非配置パターンにおける中央部側へ指向させている。このようにすれば、一対の光源挟み部の少なくともいずれか一方における光源と対向する面において、光源の非配置パターンの端部では、光源の非配置パターンの中央部に比べると、光源からの光量が相対的に多いことから、上記端部にて光指向部によって光源からの光を上記中央部側へ指向させることで、さらなる輝度ムラの抑制を図ることができる。 (2) The light directing portion is arranged in a range from the arrangement pattern of the light source to an end portion of the non-arrangement pattern of the light source on a surface facing the light source in at least one of the pair of light source sandwiching portions. In addition, the light from the light source is directed toward the center of the non-arrangement pattern of the light source. In this way, at the end of the light source non-arrangement pattern on the surface facing the light source in at least one of the pair of light source sandwiching portions, the amount of light from the light source is larger than the central portion of the light source non-arrangement pattern. Therefore, the luminance unevenness can be further suppressed by directing the light from the light source toward the central portion by the light directing portion at the end portion.
(3)前記光指向部は、前記一対の光源挟み部のうちの一方における前記光源と対向する面に配されている。このようにすれば、一対の光源挟み部のうちの一方における光源と対向する面に配した光指向部によって光入射面に入射する光量の均一化を十分に図ることができる。仮に光指向部を一対の光源挟み部の双方にそれぞれ配した場合に比べると、低コストでの対応が可能になる。 (3) The light directing portion is disposed on a surface facing the light source in one of the pair of light source sandwiching portions. In this way, it is possible to sufficiently equalize the amount of light incident on the light incident surface by the light directing portion disposed on the surface facing the light source in one of the pair of light source sandwiching portions. As compared with the case where the light directing portions are respectively disposed on both of the pair of light source sandwiching portions, it is possible to cope with low cost.
(4)前記光指向部は、前記一対の光源挟み部のうち、前記光源に対して光出射側に配されるものに配されている。このようにすれば、光源に対して光出射側に配される光源挟み部において、光指向部により光源の非配置パターン側へ指向された光は、光出射側とは反対側へ向かった後、光出射側とは反対側に配された光源挟み部における光源と対向する面にて反射されたり、光入射面に入射されて導光板のうち光出射側とは反対側の面へ向かうことになる。従って、光指向部によって光源の非配置パターン側へ指向された光が光入射面に入射してそのまま光出射面から出射することが回避されるから、出射光に輝度ムラが一層生じ難くなる。 (4) The light directing unit is disposed on a light emitting side of the pair of light source sandwiching units with respect to the light source. In this way, after the light directed to the non-arranged pattern side of the light source by the light directing unit is directed to the side opposite to the light emitting side in the light source sandwiching portion arranged on the light emitting side with respect to the light source Reflected by the surface facing the light source in the light source sandwiching portion arranged on the side opposite to the light emitting side, or incident on the light incident surface and heading toward the surface of the light guide plate opposite to the light emitting side become. Accordingly, it is avoided that the light directed to the non-placement pattern side of the light source by the light directing portion is incident on the light incident surface and is emitted as it is from the light exit surface, so that the luminance unevenness is less likely to occur in the emitted light.
(5)前記一対の光源挟み部のうちの一方が、前記導光板を光出射側から押さえる押さえ部材である。このようにすれば、押さえ部材の組み付けに伴って、導光板を光出射側から押さえることができるとともに、押さえ部材が有する光源挟み部を光源及び導光板に対して適切な位置に配することができる。これにより、組み付け作業性に優れる。 (5) One of the pair of light source sandwiching portions is a pressing member that presses the light guide plate from the light emitting side. In this way, the light guide plate can be pressed from the light emission side as the pressing member is assembled, and the light source sandwiching portion of the pressing member can be arranged at an appropriate position with respect to the light source and the light guide plate. it can. Thereby, it is excellent in assembly workability.
(6)前記一対の光源挟み部のうちの一方が、前記光源及び前記導光板を収容するシャーシである。このようにすれば、シャーシに光源及び導光板を収容すると、シャーシが有する光源挟み部に対して光源及び導光板が適切な位置に配される。これにより、組み付け作業性に優れる。 (6) One of the pair of light source sandwiching portions is a chassis that houses the light source and the light guide plate. In this way, when the light source and the light guide plate are accommodated in the chassis, the light source and the light guide plate are arranged at appropriate positions with respect to the light source sandwiching portion of the chassis. Thereby, it is excellent in assembly workability.
(7)前記光指向部は、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面に配される反射部材と、前記反射部材における前記光源と対向する面に配されるとともに前記光源からの光を屈折させつつ前記反射部材にて反射させることで、前記光源の非配置パターン側へと指向させるレンズ部とから構成されている。このようにすれば、光指向部を構成する反射部材及びレンズ部によって光源からの光を効率的に光源の非配置パターン側へ指向させることができる。 (7) The light directing unit is disposed on a surface facing the light source in at least one of the pair of light source sandwiching portions and a surface facing the light source in the reflecting member. The lens unit is configured to direct light toward the non-arrangement pattern side of the light source by reflecting the light from the light source with the reflecting member while refracting the light. If it does in this way, the light from a light source can be efficiently directed to the non-arrangement pattern side of a light source by the reflective member and lens part which constitute a light directing part.
(8)前記反射部材には、前記光源の非配置パターンに倣う開口部が形成されており、前記開口部を通して露出する前記光源挟み部によって光反射率が相対的に低い低光反射率部が構成されるのに対し、前記反射部材によって光反射率が相対的に高い高光反射率部が構成されている。このようにすれば、光指向部が配された光源挟み部における光源と対向する面において、光源の非配置パターンに倣う部分には、光源からの光がレンズ部を介さずに照射される場合があり、そこで反射された光は、光源の配置パターン側へ指向する可能性がある。その場合でも、反射部材には光源の非配置パターンに倣う開口部が形成されており、上記したレンズ部を介さない光は、開口部を通して露出する光源挟み部によって構成される低光反射率部に照射されることになるから、そこで反射された光の反射光量が抑制される。これにより、低光反射率部による反射光が光源の配置パターン側へ指向したとしても、その反射光によって光入射面における入射光量のムラが悪化するのを軽減することができ、結果として輝度ムラの防止に資するものとされる。また、反射部材に開口部を形成することで、低光反射率部及び高光反射率部が構成されるから、仮に反射部材に印刷などを施すことで対応した場合に比べると、低コストで対応することができる。 (8) The reflection member is formed with an opening that follows the non-arrangement pattern of the light source, and a low light reflectance portion having a relatively low light reflectance by the light source sandwiching portion exposed through the opening. In contrast, a high light reflectance portion having a relatively high light reflectance is constituted by the reflecting member. In this case, when the light source sandwiched portion in which the light directing portion is disposed faces the portion facing the non-placement pattern of the light source on the surface facing the light source, the light from the light source is irradiated without passing through the lens portion. There is a possibility that the light reflected there will be directed to the arrangement pattern side of the light source. Even in such a case, the reflection member has an opening that follows the non-placement pattern of the light source, and the light that does not pass through the lens part described above is a low light reflectance part that is configured by the light source sandwiching part exposed through the opening. Therefore, the reflected light quantity of the light reflected there is suppressed. As a result, even if the reflected light from the low light reflectance portion is directed to the light source arrangement pattern side, it is possible to reduce the deterioration in the unevenness of the incident light quantity on the light incident surface due to the reflected light, resulting in uneven brightness. It is considered that it contributes to prevention. In addition, since the low light reflectance part and the high light reflectance part are configured by forming the opening in the reflecting member, the cost can be reduced compared to the case where the reflecting member is printed. can do.
(9)前記反射部材における前記光源と対向する面には、前記光源の並び方向に沿って延在するとともに前記レンズ部を有するレンズ付きシートが配されている。このようにすれば、レンズ付きシートを反射部材における光源と対向する面に配することで、レンズ部が適切な位置に配されるので、作業性に優れる。 (9) A lens-attached sheet that extends along the arrangement direction of the light sources and has the lens portion is disposed on a surface of the reflecting member that faces the light sources. In this way, by arranging the lens-attached sheet on the surface of the reflecting member that faces the light source, the lens portion is arranged at an appropriate position, so that the workability is excellent.
(10)前記光指向部は、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面において前記光源の並び方向に沿って延在するとともに前記光源からの光を導光する導光部材からなるものとされ、前記導光部材には、前記光源からの光を屈折させて前記光源の並び方向に沿って向かわせる第1屈折面と、前記第1屈折面にて屈折された光をさらに屈折させて前記一対の光源挟み部のうち当該導光部材と対向する側へ向かわせる第2屈折面とが形成されている。このようにすれば、光指向部を構成する導光部材における第1屈折面及び第2屈折面によって光源からの光を屈折させることで、光を効率的に光源の非配置パターン側へ指向させることができる。 (10) The light directing portion extends along the arrangement direction of the light sources on a surface facing the light sources in at least one of the pair of light source sandwiching portions and guides light from the light sources. The light guide member is refracted by the first refracting surface and a first refracting surface that refracts the light from the light source and directs it along the direction in which the light sources are arranged. A second refracting surface is formed that further refracts light and directs the light toward the side facing the light guide member of the pair of light source sandwiching portions. If it does in this way, light will be efficiently directed to the non-arrangement pattern side of a light source by refracting light from a light source by the 1st refracting surface and the 2nd refracting surface in a light guide member which constitutes a light directing part. be able to.
 次に、上記課題を解決するために、本発明の表示装置は、上記記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える。 Next, in order to solve the above problem, a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
 このような表示装置によると、表示パネルに対して光を供給する照明装置が、出射光に輝度ムラが生じ難いものであるため、表示品質の優れた表示を実現することが可能となる。 According to such a display device, since the illumination device that supplies light to the display panel is less likely to cause uneven brightness in the emitted light, it is possible to realize display with excellent display quality.
 前記表示パネルとしては液晶パネルを例示することができる。このような表示装置は液晶表示装置として、種々の用途、例えばテレビやパソコンのディスプレイ等に適用でき、特に大型画面用として好適である。 A liquid crystal panel can be exemplified as the display panel. Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
(発明の効果)
 本発明によれば、輝度ムラを抑制することができる。
(The invention's effect)
According to the present invention, luminance unevenness can be suppressed.
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention. 液晶表示装置の概略構成を示す分解斜視図Exploded perspective view showing schematic configuration of liquid crystal display device 液晶パネルの長辺方向に沿った断面構成を示す断面図Sectional drawing which shows the cross-sectional structure along the long side direction of a liquid crystal panel アレイ基板の平面構成を示す拡大平面図Enlarged plan view showing the planar configuration of the array substrate CF基板の平面構成を示す拡大平面図Enlarged plan view showing the planar configuration of the CF substrate 液晶表示装置に備わるバックライト装置におけるシャーシと導光板とLED基板との配置構成を示す平面図The top view which shows arrangement | positioning structure of the chassis in the backlight apparatus with which a liquid crystal display device is equipped, a light-guide plate, and an LED board. 図6のvii-vii線断面図Vii-vii sectional view of FIG. 図6のviii-xiii線断面図Viii-xiii sectional view of FIG. 図7及び図8のix-ix線断面図Sectional view taken along line ix-ix in FIGS. 7 and 8 図6のx-x線断面図Xx sectional view of FIG. 液晶表示装置に備わるバックライト装置におけるフレームの底面図Bottom view of a frame in a backlight device provided in a liquid crystal display device 図9における光指向部の要部拡大図The main part enlarged view of the light directing part in FIG. 本発明の実施形態2に係る光指向部の要部拡大断面図The principal part expanded sectional view of the light directing part which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る光指向部の要部拡大断面図The principal part expanded sectional view of the light directing part which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る光指向部の要部拡大断面図The principal part expanded sectional view of the light directing part which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る光指向部の要部拡大断面図The principal part expanded sectional view of the light directing part which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る光指向部の要部拡大断面図The principal part expanded sectional view of the light directing part which concerns on Embodiment 6 of this invention. 本発明の実施形態7に係る光指向部の要部拡大断面図The principal part expanded sectional view of the light directing part which concerns on Embodiment 7 of this invention. 本発明の実施形態8に係る光指向部の要部拡大断面図The principal part expanded sectional view of the light directing part which concerns on Embodiment 8 of this invention. 本発明の他の実施形態(1)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (1) of the present invention. 本発明の他の実施形態(2)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (2) of the present invention. 本発明の他の実施形態(3)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (3) of the present invention. 本発明の他の実施形態(4)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (4) of the present invention. 本発明の他の実施形態(5)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (5) of the present invention. 本発明の他の実施形態(6)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (6) of the present invention. 本発明の他の実施形態(6)に係るアレイ基板の平面構成を示す拡大平面図The enlarged plan view which shows the plane structure of the array substrate which concerns on other embodiment (6) of this invention. 本発明の他の実施形態(7)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (7) of the present invention. 本発明の他の実施形態(8)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (8) of the present invention. 本発明の他の実施形態(8)に係るアレイ基板の平面構成を示す拡大平面図The enlarged plan view which shows the plane structure of the array substrate which concerns on other embodiment (8) of this invention. 本発明の他の実施形態(11)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (11) of the present invention. 本発明の他の実施形態(12)に係るアレイ基板の平面構成を示す拡大平面図The enlarged plan view which shows the plane structure of the array board | substrate which concerns on other embodiment (12) of this invention. 本発明の他の実施形態(12)に係るCF基板の平面構成を示す拡大平面図An enlarged plan view showing a planar configuration of a CF substrate according to another embodiment (12) of the present invention.
 <実施形態1>
 本発明の実施形態1を図1から図12によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、図7に示す上側を表側とし、同図下側を裏側とする。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the liquid crystal display device 10 is illustrated. In addition, a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing. Moreover, let the upper side shown in FIG. 7 be a front side, and let the lower side of the figure be a back side.
(テレビ受信装置)
 本実施形態に係るテレビ受信装置TVは、図1に示すように、表示装置である液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネットCa,Cbと、電力供給のための電源回路基板Pと、テレビ画像信号を受信可能なチューナー(受信部)Tと、チューナーTから出力されたテレビ画像信号を当該液晶表示装置10用の画像信号に変換する画像変換回路基板VCと、スタンドSとを備えて構成される。液晶表示装置10は、全体として横長(長手)の方形状(矩形状)をなし、長辺方向を水平方向(X軸方向)と、短辺方向を垂直方向(Y軸方向、鉛直方向)とそれぞれほぼ一致させた状態で収容されている。この液晶表示装置10は、図2に示すように、表示パネルである液晶パネル11と、外部光源であるバックライト装置(照明装置)12とを備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。
(TV receiver)
As shown in FIG. 1, the television receiver TV according to the present embodiment includes a liquid crystal display device 10 that is a display device, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, and power supply. Power supply circuit board P, a tuner (receiving unit) T capable of receiving a TV image signal, an image conversion circuit board VC for converting the TV image signal output from the tuner T into an image signal for the liquid crystal display device 10 And a stand S. The liquid crystal display device 10 has a horizontally long (longitudinal) rectangular shape (rectangular shape) as a whole, the long side direction is the horizontal direction (X-axis direction), and the short side direction is the vertical direction (Y-axis direction, vertical direction). They are housed in a state of almost matching each other. As shown in FIG. 2, the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
(液晶パネル)
 液晶表示装置10における液晶パネル11の構成について説明する。液晶パネル11は、全体として横長(長手)の方形状(矩形状)をなしており、図3に示すように、一対の透明な(透光性を有する)ガラス製の基板11a,11bと、両基板11a,11b間に介在し、電界印加に伴って光学特性が変化する物質である液晶を含む液晶層11cとを備え、両基板11a,11bが液晶層の厚さ分のギャップを維持した状態で図示しないシール剤によって貼り合わせられている。また、両基板11a,11bの外面側には、それぞれ偏光板11d,11eが貼り付けられている。なお、液晶パネル11における長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致している。
(LCD panel)
The configuration of the liquid crystal panel 11 in the liquid crystal display device 10 will be described. The liquid crystal panel 11 has a horizontally long (longitudinal) rectangular shape (rectangular shape) as a whole. As shown in FIG. 3, a pair of transparent (translucent) glass substrates 11a and 11b, And a liquid crystal layer 11c containing liquid crystal, which is a substance whose optical characteristics change with application of an electric field. The substrates 11a and 11b maintain a gap corresponding to the thickness of the liquid crystal layer. In the state, they are bonded together by a sealing agent (not shown). Further, polarizing plates 11d and 11e are attached to the outer surface sides of both the substrates 11a and 11b, respectively. Note that the long side direction of the liquid crystal panel 11 coincides with the X-axis direction, and the short side direction coincides with the Y-axis direction.
 両基板11a,11bのうち表側(正面側)がCF基板11aとされ、裏側(背面側)がアレイ基板11bとされる。アレイ基板11bの内面、つまり液晶層11c側(CF基板11aとの対向面側)の面には、図4に示すように、スイッチング素子であるTFT(Thin Film Transistor)14及び画素電極15がマトリクス状(行列状)に多数個並列して設けられるとともに、これらTFT14及び画素電極15の周りには、格子状をなすゲート配線16及びソース配線17が取り囲むようにして配設されている。画素電極15は、長辺方向をY軸方向に、短辺方向をX軸方向にそれぞれ一致させた縦長(長手)の方形状(矩形状)をなしており、ITO(Indium Tin Oxide)或いはZnO(Zinc Oxide)といった透明電極からなる。ゲート配線16とソース配線17とがそれぞれTFT14のゲート電極とソース電極とに接続され、画素電極15がTFT14のドレイン電極に接続されている。また、TFT14及び画素電極15の液晶層11c側には、図3に示すように、液晶分子を配向するための配向膜18が設けられている。アレイ基板11bにおける端部には、ゲート配線16及びソース配線17から引き回された端子部が形成されており、この端子部には、図示しない液晶駆動用のドライバ部品が異方性導電膜(ACF:Anisotropic Conductive Film)を介して圧着接続され、さらにはその液晶駆動用のドライバ部品が各種配線基板などを介して図示しない表示制御回路基板に電気的に接続されている。この表示制御回路基板は、テレビ受信装置TVにおける画像変換回路基板VC(図1参照)に接続されるとともに同画像変換回路基板VCからの出力信号に基づいてドライバ部品を介して各配線16,17に駆動信号を供給するものとされる。 Among the substrates 11a and 11b, the front side (front side) is the CF substrate 11a, and the back side (back side) is the array substrate 11b. As shown in FIG. 4, on the inner surface of the array substrate 11b, that is, the surface on the liquid crystal layer 11c side (the surface facing the CF substrate 11a), TFTs (Thin Film Transistors) 14 and pixel electrodes 15 which are switching elements are matrixed. A large number of gate wirings 16 and source wirings 17 are arranged around the TFTs 14 and the pixel electrodes 15 so as to surround the TFTs 14 and the pixel electrodes 15. The pixel electrode 15 has a vertically long (longitudinal) rectangular shape (rectangular shape) in which the long side direction coincides with the Y-axis direction and the short side direction coincides with the X-axis direction. It consists of a transparent electrode such as (Zinc Oxide). The gate wiring 16 and the source wiring 17 are connected to the gate electrode and the source electrode of the TFT 14, respectively, and the pixel electrode 15 is connected to the drain electrode of the TFT 14. Further, as shown in FIG. 3, an alignment film 18 for aligning liquid crystal molecules is provided on the TFT 14 and the pixel electrode 15 on the liquid crystal layer 11c side. A terminal portion led out from the gate wiring 16 and the source wiring 17 is formed at an end portion of the array substrate 11b, and a driver component for driving a liquid crystal (not shown) is connected to the anisotropic conductive film (not shown). ACF (Anisotropic Conductive Film) is connected by crimping, and the driver component for driving the liquid crystal is electrically connected to a display control circuit board (not shown) via various wiring boards. This display control circuit board is connected to an image conversion circuit board VC (see FIG. 1) in the television receiver TV, and each wiring 16, 17 via a driver component based on an output signal from the image conversion circuit board VC. It is assumed that a drive signal is supplied to.
 一方、CF基板11aの内面、つまり液晶層11c側(アレイ基板11bとの対向面側)の面には、図5に示すように、アレイ基板11b側の各画素に対応して多数個の着色部R,G,B,Yをマトリクス状(行列状)に配列してなるカラーフィルタ19が設けられている。そして、本実施形態に係るカラーフィルタ19は、光の三原色である赤色の着色部R,緑色の着色部G,青色の着色部Bに加えて、黄色の着色部Yを有するものとされ、各着色部R,G,B,Yが対応した各色(各波長)の光を選択的に透過するものとされる。各着色部R,G,B,Yは、画素電極15と同様に長辺方向をY軸方向に、短辺方向をX軸方向にそれぞれ一致させた縦長(長手)の方形状(矩形状)をなしている。各着色部R,G,B,Y間には、混色を防ぐため、格子状の遮光層(ブラックマトリクス)BMが設けられている。CF基板11aにおけるカラーフィルタ19の液晶層11c側には、図3に示すように、対向電極20及び配向膜21が順次積層して設けられている。 On the other hand, on the inner surface of the CF substrate 11a, that is, the surface on the liquid crystal layer 11c side (the surface facing the array substrate 11b), as shown in FIG. 5, a large number of colored portions corresponding to the respective pixels on the array substrate 11b side. A color filter 19 in which the portions R, G, B, and Y are arranged in a matrix (matrix) is provided. The color filter 19 according to the present embodiment includes a yellow colored portion Y in addition to a red colored portion R, a green colored portion G, and a blue colored portion B that are the three primary colors of light. The colored portions R, G, B, and Y selectively transmit light of each corresponding color (each wavelength). Each colored portion R, G, B, Y has a vertically long (longitudinal) rectangular shape (rectangular shape) in which the long side direction coincides with the Y-axis direction and the short side direction coincides with the X-axis direction, like the pixel electrode 15. I am doing. Between the colored portions R, G, B, and Y, a lattice-shaped light shielding layer (black matrix) BM is provided to prevent color mixing. As shown in FIG. 3, a counter electrode 20 and an alignment film 21 are sequentially stacked on the color filter 19 on the CF substrate 11 a on the liquid crystal layer 11 c side.
 カラーフィルタ19を構成する各着色部R,G,B,Yの配置及び大きさについて詳しく説明する。各着色部R,G,B,Yは、図5に示すように、X軸方向を行方向とし、Y軸方向を列方向として行列状に配列されており、各着色部R,G,B,Yにおける列方向(Y軸方向)の寸法は全て同一とされるものの、行方向(X軸方向)の寸法については各着色部R,G,B,Yによって異なるものとされる。詳しくは、各着色部R,G,B,Yは、図5に示す左側から赤色の着色部R、緑色の着色部G、青色の着色部B、黄色の着色部Yの順で行方向に沿って並べられており、このうち赤色の着色部R及び青色の着色部Bの行方向の寸法が、黄色の着色部Y及び緑色の着色部Gの行方向の寸法よりも相対的に大きなものとされる。つまり、行方向の寸法が相対的に大きな着色部R,Bと、行方向の寸法が相対的に小さな着色部G,Yとが行方向について交互に繰り返し配されていることになる。これにより、赤色の着色部R及び青色の着色部Bの面積は、緑色の着色部G及び黄色の着色部Yの面積よりも大きなものとされている。青色の着色部Bと赤色の着色部Rとの面積は、互いに等しいものとされる。同様に緑色の着色部Gと黄色の着色部Yとの面積は、互いに等しいものとされる。なお、図3及び図5では、赤色の着色部R及び青色の着色部Bの面積が、黄色の着色部Y及び緑色の着色部Gの面積の約1.6倍程度とされる場合を図示している。 The arrangement and size of the colored portions R, G, B, and Y constituting the color filter 19 will be described in detail. As shown in FIG. 5, the colored portions R, G, B, and Y are arranged in a matrix with the X-axis direction as the row direction and the Y-axis direction as the column direction. , Y have the same dimension in the column direction (Y-axis direction), but the dimension in the row direction (X-axis direction) is different for each colored portion R, G, B, Y. Specifically, the colored portions R, G, B, and Y are arranged in the row direction in the order of the red colored portion R, the green colored portion G, the blue colored portion B, and the yellow colored portion Y from the left side shown in FIG. Among them, the red colored portion R and the blue colored portion B in the row direction are relatively larger than the yellow colored portion Y and the green colored portion G in the row direction. It is said. That is, the colored portions R and B having relatively large dimensions in the row direction and the colored portions G and Y having relatively small dimensions in the row direction are alternately and repeatedly arranged in the row direction. Thereby, the area of the red coloring part R and the blue coloring part B is made larger than the areas of the green coloring part G and the yellow coloring part Y. The areas of the blue colored portion B and the red colored portion R are equal to each other. Similarly, the areas of the green colored portion G and the yellow colored portion Y are equal to each other. 3 and 5 show a case where the areas of the red colored portion R and the blue colored portion B are about 1.6 times the areas of the yellow colored portion Y and the green colored portion G. Show.
 カラーフィルタ19が上記のような構成とされるのに伴い、アレイ基板11bにおいては、図4に示すように、画素電極15における行方向(X軸方向)の寸法が列によって異なるものとされる。すなわち、各画素電極15のうち、赤色の着色部R及び青色の着色部Bと重畳するものの行方向の寸法及び面積は、黄色の着色部Y及び緑色の着色部Gと重畳するものの行方向の寸法及び面積よりも相対的に大きなものとされる。また、ゲート配線16については、全て等ピッチで配列されているのに対し、ソース配線17については、画素電極15の行方向の寸法に応じて2通りのピッチで配列されている。 As the color filter 19 is configured as described above, in the array substrate 11b, as shown in FIG. 4, the dimension in the row direction (X-axis direction) of the pixel electrode 15 varies from column to column. . That is, among the pixel electrodes 15, the size and area in the row direction of the pixel electrode 15 that overlaps with the red color portion R and the blue color portion B are the same as those in the row direction of the pixel electrode 15 that overlaps with the yellow color portion Y and the green color portion G. It is relatively larger than the size and area. The gate wirings 16 are all arranged at an equal pitch, while the source wirings 17 are arranged at two different pitches depending on the dimensions of the pixel electrodes 15 in the row direction.
 上記のように本実施形態に係る液晶表示装置10は、4色の着色部R,G,B,Yからなるカラーフィルタ19を備える液晶パネル11を用いていることから、図1に示すように、テレビ受信装置TVにおいては専用の画像変換回路基板VCを備えるものとされる。すなわち、この画像変換回路基板VCは、チューナーTから出力されたテレビ画像信号を青色、緑色、赤色、黄色の各色の画像信号に変換し、生成された各色の画像信号を表示制御回路基板に出力することができる。この画像信号に基づいて表示制御回路基板は、各配線16,17を介して液晶パネル11における各色の画素に対応したTFT14を駆動し、各色の着色部R,G,B,Yを透過する透過光量を適宜制御できるものとされる。 As described above, since the liquid crystal display device 10 according to the present embodiment uses the liquid crystal panel 11 including the color filter 19 including the four colored portions R, G, B, and Y, as shown in FIG. The television receiver TV is provided with a dedicated image conversion circuit board VC. That is, the image conversion circuit board VC converts the television image signal output from the tuner T into an image signal of each color of blue, green, red, and yellow, and outputs the generated image signal of each color to the display control circuit board. can do. Based on this image signal, the display control circuit board drives the TFTs 14 corresponding to the pixels of each color in the liquid crystal panel 11 via the wirings 16 and 17, and transmits the colored portions R, G, B, and Y of each color. The amount of light can be appropriately controlled.
(バックライト装置)
 続いて、液晶表示装置10におけるバックライト装置12の構成について説明する。バックライト装置12は、図2に示すように、表側(液晶パネル11側)に向けて開口する開口部(光出射部)を有した略箱型をなすシャーシ22と、シャーシ22の開口部を覆う形で配される光学部材23群とを備える。さらに、シャーシ22内には、光源であるLED24と、LED24が実装されたLED基板25と、LED24からの光を導光して光学部材23(液晶パネル11)へと導く導光板26と、導光板26を表側から押さえるフレーム(押さえ部材)27とが備えられる。そして、このバックライト装置12は、導光板26の両端部にそれぞれLED基板25に実装されたLED24が配されてなる、いわゆるエッジライト型(サイドライト型)とされている。このエッジライト型のバックライト装置12は、枠状をなすベゼル13によって液晶パネル11に対して一体的に組み付けられ、それにより液晶表示装置10を構成している。
(Backlight device)
Next, the configuration of the backlight device 12 in the liquid crystal display device 10 will be described. As shown in FIG. 2, the backlight device 12 includes a chassis 22 having a substantially box shape having an opening (light emitting portion) that opens toward the front side (the liquid crystal panel 11 side), and an opening of the chassis 22. And a group of optical members 23 arranged in a covering manner. Further, in the chassis 22, an LED 24 that is a light source, an LED substrate 25 on which the LED 24 is mounted, a light guide plate 26 that guides light from the LED 24 and guides it to the optical member 23 (the liquid crystal panel 11), and a light guide. A frame (pressing member) 27 for pressing the optical plate 26 from the front side is provided. The backlight device 12 is a so-called edge light type (side light type) in which the LEDs 24 mounted on the LED substrate 25 are arranged at both ends of the light guide plate 26, respectively. The edge light type backlight device 12 is integrally assembled to the liquid crystal panel 11 by a bezel 13 having a frame shape, thereby constituting the liquid crystal display device 10.
(シャーシ)
 シャーシ22は、金属製とされ、図7及び図10に示すように、液晶パネル11と同様に横長の方形状をなす底板22aと、底板22aの各辺の外端からそれぞれ立ち上がる側板22bとからなり、全体としては表側に向けて開口した浅い略箱型をなしている。シャーシ22(底板22a)は、その長辺方向がX軸方向(水平方向)と一致し、短辺方向がY軸方向(鉛直方向)と一致している。また、側板22bには、フレーム27及びベゼル13がねじ止め可能とされる。
(Chassis)
As shown in FIGS. 7 and 10, the chassis 22 is made of metal, and includes a bottom plate 22a having a horizontally long rectangular shape as in the liquid crystal panel 11, and side plates 22b rising from the outer ends of the respective sides of the bottom plate 22a. As a whole, it has a shallow, generally box shape that opens toward the front side. The chassis 22 (bottom plate 22a) has a long side direction that matches the X-axis direction (horizontal direction), and a short side direction that matches the Y-axis direction (vertical direction). Further, the frame 27 and the bezel 13 can be screwed to the side plate 22b.
(光学部材)
 光学部材23は、図2に示すように、液晶パネル11及びシャーシ22と同様に平面に視て横長の方形状をなしている。光学部材23は、導光板26の表側(光出射側)に載せられていて液晶パネル11と導光板26との間に介在して配される。光学部材23は、裏側に配される拡散板23aと、表側に配される光学シート23bとから構成される。拡散板23aは、所定の厚みを持つほぼ透明な樹脂製で板状をなす基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。光学シート23bは、拡散板23aと比べると板厚が薄いシート状をなしており、3枚が積層して配されている。具体的な光学シート23bの種類としては、例えば拡散シート、レンズシート、反射型偏光シートなどがあり、これらの中から適宜に選択して使用することが可能である。なお、図7から図10では、光学部材23の図示を簡略化している。
(Optical member)
As shown in FIG. 2, the optical member 23 has a horizontally long rectangular shape in a plan view, like the liquid crystal panel 11 and the chassis 22. The optical member 23 is placed on the front side (light emitting side) of the light guide plate 26 and is interposed between the liquid crystal panel 11 and the light guide plate 26. The optical member 23 includes a diffusion plate 23a disposed on the back side and an optical sheet 23b disposed on the front side. The diffusing plate 23a has a structure in which a large number of diffusing particles are dispersed in a substrate made of a substantially transparent resin having a predetermined thickness and has a function of diffusing transmitted light. The optical sheet 23b has a sheet shape that is thinner than the diffusion plate 23a, and three optical sheets 23b are stacked. Specific types of the optical sheet 23b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used. 7 to 10, the illustration of the optical member 23 is simplified.
(フレーム)
 フレーム27は、図2及び図11に示すように、全体として光学部材23及び導光板26の外周縁部に沿って延在する横長な枠状(額縁状)に形成されており、光学部材23及び導光板26の外周縁部をほぼ全周にわたって表側から押さえることが可能とされる。このフレーム27は、合成樹脂製とされるとともに、表面が例えば黒色を呈する形態とされることで、遮光性を有するものとされる。詳しくは、フレーム27は、平面に視て横長な枠状をなす押さえ基部27aと、押さえ基部27aの外周端から裏側へ向けて突出するとともにシャーシ22の側板22bを外側から取り囲む(外嵌される)短角筒状をなす周壁部27bとから構成されている。押さえ基部27aは、短辺部分及び長辺部分を一対ずつ有しており、このうち一対の長辺部分が、シャーシ22の底板22aとの間でLED24を挟む一対の第1光源挟み部27cとされる。一対の第1光源挟み部27cにおける表側の面、つまりLED24と対向する面(LED24と向き合う面、LED24からの光を受ける面、LED24からの光に曝される面)には、図7及び図8に示すように、光を反射させる一対の第1反射シート28がそれぞれ取り付けられている。第1反射シート28は、合成樹脂製とされ、表面が光の反射性に優れた白色を呈するものとされる。第1反射シート28は、フレーム27の長辺部分(第1光源挟み部27c)におけるほぼ全長にわたって延在する大きさを有しており、導光板26におけるLED24側の端部に直接当接されるとともに導光板26の上記端部(光入射面26bを有する端部)とLED基板25(LED24を含む)とを一括して表側から覆うものとされる。また、フレーム27は、液晶パネル11における外周端部を裏側から受けることができる。なお、第1反射シート28の詳しい構成などについては後に改めて説明する。
(flame)
As shown in FIGS. 2 and 11, the frame 27 is formed in a horizontally long frame shape (frame shape) extending along the outer peripheral edge portions of the optical member 23 and the light guide plate 26 as a whole. In addition, the outer peripheral edge of the light guide plate 26 can be pressed from the front side over the entire circumference. The frame 27 is made of a synthetic resin and has a light shielding property by having a surface with, for example, a black color. Specifically, the frame 27 protrudes from the outer peripheral end of the pressing base 27a toward the back side and surrounds the side plate 22b of the chassis 22 from the outside (externally fitted). ) It is composed of a peripheral wall portion 27b that forms a short cylindrical shape. The holding base portion 27a has a pair of short side portions and long side portions, and a pair of long side portions of the holding base portion 27a and a pair of first light source sandwiching portions 27c sandwiching the LED 24 with the bottom plate 22a of the chassis 22; Is done. The front side surfaces of the pair of first light source sandwiching portions 27c, that is, the surfaces facing the LEDs 24 (the surfaces facing the LEDs 24, the surfaces receiving the light from the LEDs 24, and the surfaces exposed to the light from the LEDs 24) are shown in FIGS. As shown in FIG. 8, a pair of first reflection sheets 28 that reflect light are respectively attached. The first reflection sheet 28 is made of a synthetic resin and has a white surface with excellent light reflectivity. The first reflection sheet 28 has a size that extends over almost the entire length of the long side portion (first light source sandwiching portion 27 c) of the frame 27, and is in direct contact with the end portion of the light guide plate 26 on the LED 24 side. In addition, the above-described end portion (the end portion having the light incident surface 26b) of the light guide plate 26 and the LED substrate 25 (including the LED 24) are collectively covered from the front side. Further, the frame 27 can receive the outer peripheral end of the liquid crystal panel 11 from the back side. The detailed configuration of the first reflection sheet 28 will be described later.
(LED)
 LED24は、図7に示すように、LED基板25上に実装されるとともにLED25に対する実装面とは反対側の面が発光面となる、いわゆるトップ型とされる。LED24は、発光源として青色光を発するLEDチップを備えるとともに、青色光により励起して発光する蛍光体として、緑色蛍光体と赤色蛍光体とを備えている。詳しくは、LED24は、LED基板25に固着される基板部上に例えばInGaN系の材料からなるLEDチップを樹脂材により封止した構成とされる。基板部に実装されるLEDチップは、主発光波長が420nm~500nmの範囲、つまり青色の波長領域に存するものとされ、色純度に優れた青色光(青色の単色光)を発することが可能とされる。具体的なLEDチップの主発光波長としては、例えば451nmが好ましい。その一方、LEDチップを封止する樹脂材には、LEDチップから発せられた青色光により励起されることで緑色光を発する緑色蛍光体と、LEDチップから発せられた青色光により励起されることで赤色光を発する赤色蛍光体とが所定の割合でもって分散配合されている。これらLEDチップから発せられる青色光(青色成分の光)と、緑色蛍光体から発せられる緑色光(緑色成分の光)と、赤色蛍光体から発せられる赤色光(赤色成分の光)とにより、LED24は、全体として所定の色、例えば白色や青色味を帯びた白色などの光を発することが可能とされる。なお、緑色蛍光体からの緑色成分の光と、赤色蛍光体からの赤色成分の光との合成により黄色光が得られることから、このLED24は、LEDチップからの青色成分の光と、黄色成分の光とを併せ持っている、とも言える。このLED24の色度は、例えば緑色蛍光体及び赤色蛍光体における含有量の絶対値や相対値に応じて変化するものとされるため、これら緑色蛍光体及び赤色蛍光体の含有量を適宜調整することでLED24の色度を調整することが可能とされる。なお、本実施形態では、緑色蛍光体は、500nm以上570nm以下の緑色波長領域に主発光ピークを有するものとされ、赤色蛍光体は、600nm以上780nm以下の赤色波長領域に主発光ピークを有するものとされる。
(LED)
As shown in FIG. 7, the LED 24 is mounted on the LED substrate 25 and is a so-called top type in which a surface opposite to the mounting surface with respect to the LED 25 is a light emitting surface. The LED 24 includes an LED chip that emits blue light as a light emission source, and includes a green phosphor and a red phosphor as phosphors that emit light when excited by blue light. Specifically, the LED 24 has a configuration in which an LED chip made of, for example, an InGaN-based material is sealed with a resin material on a substrate portion fixed to the LED substrate 25. The LED chip mounted on the substrate part has a main emission wavelength in the range of 420 nm to 500 nm, that is, in the blue wavelength region, and can emit blue light (blue monochromatic light) with excellent color purity. Is done. As a specific main emission wavelength of the LED chip, for example, 451 nm is preferable. On the other hand, the resin material that seals the LED chip is excited by the blue phosphor emitted from the LED chip and the green phosphor that emits green light by being excited by the blue light emitted from the LED chip. And a red phosphor emitting red light is dispersed and blended at a predetermined ratio. The LED 24 is made up of blue light (blue component light) emitted from these LED chips, green light (green component light) emitted from the green phosphor, and red light (red component light) emitted from the red phosphor. Is capable of emitting light of a predetermined color as a whole, for example, white or blueish white. Since yellow light is obtained by synthesizing the green component light from the green phosphor and the red component light from the red phosphor, the LED 24 includes the blue component light and the yellow component from the LED chip. It can be said that it also has the light of. The chromaticity of the LED 24 varies depending on, for example, the absolute value or relative value of the content of the green phosphor and the red phosphor, and accordingly the content of the green phosphor and the red phosphor is adjusted as appropriate. Thus, the chromaticity of the LED 24 can be adjusted. In this embodiment, the green phosphor has a main emission peak in the green wavelength region of 500 nm to 570 nm, and the red phosphor has a main emission peak in the red wavelength region of 600 nm to 780 nm. It is said.
 続いて、LED24に備えられる緑色蛍光体及び赤色蛍光体について詳しく説明する。緑色蛍光体としては、サイアロン系蛍光体の一種であるβ-SiAlONを用いるのが好ましい。サイアロン系蛍光体は、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質、つまり窒化物である。窒化物であるサイアロン系蛍光体は、例えば硫化物や酸化物などからなる他の蛍光体に比べると、発光効率に優れるとともに耐久性に優れている。ここで言う「耐久性に優れる」とは、具体的には、LEDチップからの高いエネルギーの励起光に曝されても経時的に輝度低下が生じ難いことなどを意味する。サイアロン系蛍光体には、付活剤として希土類元素(例えばTb,Yg,Agなど)が用いられる。サイアロン系蛍光体の一種であるβ-SiAlONは、β型窒化ケイ素結晶にアルミニウムと酸素とが固溶した一般式Si6-zAlzOzN8-z:Eu(zは固溶量を示す)または(Si,Al)6(O,N)8:Euにより表される物質である。本実施形態に係るβ-SiAlONには、付活剤として例えばEu(ユーロピウム)が用いられており、それにより発光光である緑色光の色純度が特に高いものとされるので、LED24の色度を調整する上で極めて有用である。一方、赤色蛍光体としては、カズン系蛍光体の一種であるカズンを用いるのが好ましい。カズン系蛍光体は、カルシウム原子(Ca)、アルミニウム原子(Al)、ケイ素原子(Si)、窒素原子(N)を含む窒化物であり、例えば硫化物や酸化物などからなる他の蛍光体に比べると、発光効率に優れるとともに耐久性に優れている。カズン系蛍光体は、付活剤として希土類元素(例えばTb,Yg,Agなど)が用いられる。カズン系蛍光体の一種であるカズンは、付活剤としてEu(ユーロピウム)が用いられるとともに、組成式CaAlSiN3:Euにより示される。 Subsequently, the green phosphor and the red phosphor provided in the LED 24 will be described in detail. As the green phosphor, β-SiAlON, which is a kind of sialon phosphor, is preferably used. The sialon-based phosphor is a substance in which a part of silicon atoms of silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms with oxygen atoms, that is, a nitride. A sialon-based phosphor that is a nitride is superior in luminous efficiency and durability as compared with other phosphors made of, for example, sulfides or oxides. Here, “excellent in durability” specifically means that, even when exposed to high-energy excitation light from an LED chip, the luminance does not easily decrease over time. For sialon phosphors, rare earth elements (eg, Tb, Yg, Ag, etc.) are used as activators. Β-SiAlON, which is a kind of sialon-based phosphor, has a general formula Si6-zAlzOzN8-z: Eu (z indicates a solid solution amount) or (Si, Al) in which aluminum and oxygen are dissolved in β-type silicon nitride crystal. ) 6 (O, N) 8: A substance represented by Eu. In the β-SiAlON according to the present embodiment, for example, Eu (europium) is used as an activator, and thereby the color purity of green light, which is emitted light, is particularly high. It is extremely useful in adjusting On the other hand, as the red phosphor, it is preferable to use casoon, which is a kind of cascading phosphor. Cousin-based phosphors are nitrides containing calcium atoms (Ca), aluminum atoms (Al), silicon atoms (Si), and nitrogen atoms (N). For example, other phosphors made of sulfides, oxides, etc. In comparison, it is excellent in luminous efficiency and durability. The cascading phosphor uses rare earth elements (for example, Tb, Yg, Ag, etc.) as an activator. Casun, which is a kind of cousin phosphor, uses Eu (europium) as an activator and is represented by the composition formula CaAlSiN3: Eu.
(LED基板)
 LED基板25は、図2及び図6に示すように、シャーシ22の長辺方向(X軸方向、導光板26における光入射面26bの長手方向)に沿って延在する細長い板状をなすとともに、その主板面をX軸方向及びZ軸方向に並行した姿勢、つまり液晶パネル11及び導光板26(光学部材23)の板面と直交させた姿勢でシャーシ22内に収容されている。LED基板25は、シャーシ22内における長辺側の両端部に対応して一対配されるとともに、長辺側の両側板22bにおける内面にそれぞれ取り付けられている。LED基板25の主板面であって内側、つまり導光板26側を向いた面(導光板26との対向面)には、上記した構成のLED24が表面実装されている。LED24は、LED基板25の実装面において、その長さ方向(X軸方向)に沿って複数が所定の間隔を空けつつ一列に(直線的に)並列配置されている。つまり、LED24は、バックライト装置12における長辺側の両端部においてそれぞれ長辺方向に沿って複数ずつ間欠的に並列配置されていると言える。なお、LED24の並び方向は、LED基板25の長さ方向(X軸方向)と一致していることになる。一対のLED基板25は、LED24の実装面が互いに対向状をなす姿勢でシャーシ22内に収容されているので、両LED基板25にそれぞれ実装された各LED24の発光面が対向状をなすとともに、各LED24における光軸がY軸方向とほぼ一致する。
(LED board)
As shown in FIGS. 2 and 6, the LED substrate 25 has an elongated plate shape extending along the long side direction of the chassis 22 (X-axis direction, the longitudinal direction of the light incident surface 26b of the light guide plate 26). The main plate surface is accommodated in the chassis 22 in a posture parallel to the X-axis direction and the Z-axis direction, that is, in a posture orthogonal to the plate surfaces of the liquid crystal panel 11 and the light guide plate 26 (optical member 23). The LED boards 25 are arranged in pairs corresponding to both ends on the long side in the chassis 22, and are attached to the inner surfaces of the side plates 22b on the long side. The LED 24 having the above-described configuration is surface-mounted on the main plate surface of the LED substrate 25 and on the inner side, that is, the surface facing the light guide plate 26 side (the surface facing the light guide plate 26). A plurality of LEDs 24 are arranged in a line (linearly) in parallel on the mounting surface of the LED substrate 25 along the length direction (X-axis direction) with a predetermined interval. That is, it can be said that a plurality of LEDs 24 are intermittently arranged in parallel along the long side direction at both ends on the long side of the backlight device 12. The arrangement direction of the LEDs 24 coincides with the length direction (X-axis direction) of the LED substrate 25. Since the pair of LED substrates 25 are housed in the chassis 22 in such a posture that the mounting surfaces of the LEDs 24 are opposed to each other, the light emitting surfaces of the LEDs 24 respectively mounted on the LED substrates 25 are opposed to each other, The optical axis of each LED 24 substantially coincides with the Y-axis direction.
 また、LED基板25の基材は、シャーシ22と同じアルミ系材料などの金属製とされ、その表面に絶縁層を介して銅箔などの金属膜からなる配線パターン(図示せず)が形成され、さらには最外表面には、光の反射性に優れた白色を呈する反射層(図示せず)が形成された構成とされる。この配線パターンによりLED基板25上に並列配置された各LED24同士が直列に接続されている。なお、LED基板25の基材に用いる材料としては、セラミックなどの絶縁材料を用いることも可能である。 The base material of the LED substrate 25 is made of a metal such as an aluminum material same as that of the chassis 22, and a wiring pattern (not shown) made of a metal film such as a copper foil is formed on the surface thereof via an insulating layer. In addition, the outermost surface is formed with a reflective layer (not shown) that exhibits white light with excellent light reflectivity. The LEDs 24 arranged in parallel on the LED substrate 25 are connected in series by this wiring pattern. In addition, as a material used for the base material of LED board 25, it is also possible to use insulating materials, such as a ceramic.
(導光板)
 導光板26は、屈折率が空気よりも高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばPMMAなどのアクリル樹脂やポリカーボネートなど)からなる。導光板26は、図2及び図6に示すように、液晶パネル11及びシャーシ22と同様に平面に視て横長の方形状をなしており、その長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致している。導光板26は、図7に示すように、シャーシ22内において液晶パネル11及び光学部材23の直下位置に配されており、シャーシ22における長辺側の両端部に配された一対のLED基板25間にY軸方向について挟み込まれる形で配されている。従って、LED24(LED基板25)と導光板26との並び方向がY軸方向と一致するのに対して、光学部材23(液晶パネル11)と導光板26との並び方向がZ軸方向と一致しており、両並び方向が互いに直交するものとされる。そして、導光板26は、LED24からY軸方向に向けて発せられた光を導入するとともに、その光を内部で伝播させつつ光学部材23側(Z軸方向)へ向くよう立ち上げて出射させる機能を有する。
(Light guide plate)
The light guide plate 26 is made of a synthetic resin material (for example, acrylic resin such as PMMA, polycarbonate, etc.) having a refractive index higher than air and substantially transparent (excellent translucency). As shown in FIGS. 2 and 6, the light guide plate 26 has a horizontally long rectangular shape as seen in a plan view like the liquid crystal panel 11 and the chassis 22, and the long side direction is the X axis direction and the short side direction. Respectively agree with the Y-axis direction. As shown in FIG. 7, the light guide plate 26 is disposed in the chassis 22 immediately below the liquid crystal panel 11 and the optical member 23, and a pair of LED substrates 25 disposed at both ends of the long side of the chassis 22. The Y-axis direction is interposed between them. Therefore, the alignment direction of the LED 24 (LED substrate 25) and the light guide plate 26 matches the Y-axis direction, while the alignment direction of the optical member 23 (liquid crystal panel 11) and the light guide plate 26 matches the Z-axis direction. It is assumed that both directions are orthogonal to each other. The light guide plate 26 introduces the light emitted from the LED 24 in the Y-axis direction, and rises and emits the light toward the optical member 23 side (Z-axis direction) while propagating the light inside. Have
 導光板26は、図6及び図7に示すように、シャーシ22の底板22a及び光学部材23の各板面に沿って延在する略平板状をなしており、その主板面がX軸方向及びY軸方向に並行するものとされる。導光板26の主板面のうち、表側を向いた面が内部の光を光学部材23及び液晶パネル11に向けて出射させる光出射面26aとなっている。導光板26における主板面に対して隣り合う外周端面のうち、X軸方向、つまりLED24の並び方向に沿って長手状をなす長辺側の両端面は、それぞれLED24(LED基板25)と所定の間隔を空けて対向状をなしており、これらがLED24から発せられた光が入射される一対の光入射面26bとなっている。各光入射面26bは、X軸方向(LED24の並び方向)及びZ軸方向、つまりLED基板25の主板面に沿って並行する面とされ、光出射面26aに対して略直交する面とされる。また、LED24と光入射面26bとの並び方向は、Y軸方向と一致しており、光出射面26aに並行している。 As shown in FIGS. 6 and 7, the light guide plate 26 has a substantially flat plate shape extending along the bottom plate 22 a of the chassis 22 and the plate surfaces of the optical member 23. It is assumed to be parallel to the Y-axis direction. Of the main plate surface of the light guide plate 26, the surface facing the front side is a light emitting surface 26 a that emits internal light toward the optical member 23 and the liquid crystal panel 11. Of the outer peripheral end surfaces adjacent to the main plate surface of the light guide plate 26, both end surfaces on the long side that are long in the X-axis direction, that is, along the direction in which the LEDs 24 are arranged, are respectively connected to the LED 24 (LED substrate 25) and a predetermined length. They are opposed to each other with a space therebetween, and these form a pair of light incident surfaces 26b on which the light emitted from the LEDs 24 is incident. Each light incident surface 26b is a surface parallel to the X-axis direction (alignment direction of the LEDs 24) and the Z-axis direction, that is, the main plate surface of the LED substrate 25, and is a surface substantially orthogonal to the light emitting surface 26a. The Further, the alignment direction of the LED 24 and the light incident surface 26b coincides with the Y-axis direction and is parallel to the light emitting surface 26a.
 導光板26の光入射面26bとLED24との間には、図7に示すように、所定の空間が保有されており、シャーシ22の底板22aのうち上記空間に臨む部分、つまりフレーム27側の第1光源挟み部27cとの間でLED24を挟む部分が、第2光源挟み部22cとされる。第2光源挟み部22cは、一対の第1光源挟み部27c及び一対のLED24群(LED基板25)の配置に応じて一対配されている。一対の第2光源挟み部22cにおける表側の面、つまりLED24と対向する面(LED24と向き合う面、LED24からの光を受ける面、LED24からの光に曝される面)には、光を反射させる一対の第2反射シート29がそれぞれ取り付けられている。つまり、LED24及びLED24と光入射面26bとの間に保有される空間は、その表側(導光板26の光出射側)に配された第1反射シート28と、裏側(導光板26の光出射側とは反対側)に配された第2反射シート29とによって挟み込まれている。これにより、LED24から発せられた光は、両反射シート28,29間で繰り返し反射されることになり、もって光入射面26bに対して効率的に入射される。第2反射シート29は、第1反射シート28と同様に、合成樹脂製とされ、表面が光の反射性に優れた白色を呈するものとされる。また、第2反射シート29は、第1反射シート28との間で、LED24に加えてLED基板25及び導光板26のうち光入射面26bを有する端部をも挟み込むことが可能な大きさを有している。 As shown in FIG. 7, a predetermined space is held between the light incident surface 26 b of the light guide plate 26 and the LED 24, and a portion of the bottom plate 22 a of the chassis 22 facing the space, that is, on the frame 27 side. The portion that sandwiches the LED 24 with the first light source sandwiching portion 27c is the second light source sandwiching portion 22c. A pair of the second light source sandwiching portions 22c is arranged according to the arrangement of the pair of first light source sandwiching portions 27c and the pair of LEDs 24 (LED substrate 25). Light is reflected on the surface on the front side of the pair of second light source sandwiching portions 22c, that is, the surface facing the LED 24 (the surface facing the LED 24, the surface receiving the light from the LED 24, the surface exposed to the light from the LED 24). A pair of second reflection sheets 29 are respectively attached. That is, the space held between the LED 24 and the LED 24 and the light incident surface 26b includes the first reflection sheet 28 arranged on the front side (light emission side of the light guide plate 26) and the back side (light emission of the light guide plate 26). Sandwiched between the second reflection sheet 29 disposed on the opposite side). As a result, the light emitted from the LED 24 is repeatedly reflected between the reflecting sheets 28 and 29, and thus efficiently enters the light incident surface 26b. The second reflection sheet 29 is made of a synthetic resin, like the first reflection sheet 28, and has a white surface with excellent light reflectivity. Further, the second reflection sheet 29 has a size capable of sandwiching the end portion having the light incident surface 26b of the LED substrate 25 and the light guide plate 26 in addition to the LED 24 with the first reflection sheet 28. Have.
 導光板26における光出射面26aとは反対側の面(シャーシ22の底板22aと対向する面、シャーシ22の底板22aによって受けられる面)26cには、導光板26内の光を反射して表側へ立ち上げることが可能な導光反射シート30がその全域を覆う形で設けられている。言い換えると、導光反射シート30は、シャーシ22の底板22aと導光板26との間に挟まれた形で配されている。導光反射シート30は、既述した第1反射シート28及び第2反射シート29と同様に、合成樹脂製とされ、表面が光の反射性に優れた白色を呈するものとされる。なお、導光板26における光出射面26aまたはその反対側の面26cの少なくともいずれか一方には、内部の光を反射させる反射部(図示せず)または内部の光を散乱させる散乱部(図示せず)が所定の面内分布を持つようパターニングされており、それにより光出射面26aからの出射光が面内において均一な分布となるよう制御されている。 The surface of the light guide plate 26 opposite to the light output surface 26a (the surface facing the bottom plate 22a of the chassis 22 and the surface received by the bottom plate 22a of the chassis 22) 26c reflects the light in the light guide plate 26 to the front side. A light guide reflection sheet 30 that can be raised is provided so as to cover the entire area. In other words, the light guide reflection sheet 30 is disposed between the bottom plate 22 a of the chassis 22 and the light guide plate 26. The light guide reflection sheet 30 is made of a synthetic resin, like the first reflection sheet 28 and the second reflection sheet 29 described above, and has a white surface with excellent light reflectivity. It should be noted that at least one of the light exit surface 26a and the opposite surface 26c of the light guide plate 26 has a reflection part (not shown) for reflecting internal light or a scattering part (not shown) for scattering internal light. Are patterned so as to have a predetermined in-plane distribution, whereby the light emitted from the light exit surface 26a is controlled to have a uniform distribution in the plane.
(液晶パネルの4原色化、及びカラーフィルタの着色部の面積比率を異ならせることの意義)
 なお、既述した通り本実施形態に係る液晶パネル11のカラーフィルタ19は、図3及び図5に示すように、光の三原色である各着色部R,G,Bに加えて黄色の着色部Yを有しているので、透過光により表示される表示画像の色域が拡張されており、もって色再現性に優れた表示を実現できるものとされる。しかも、黄色の着色部Yを透過した光は、視感度のピークに近い波長を有することから、人間の目には少ないエネルギーでも明るく知覚される傾向とされる。これにより、バックライト装置12が有するLED24の出力を抑制しても十分な輝度を得ることができることとなり、LED24の消費電力を低減でき、もって環境性能にも優れる、といった効果が得られる。
(Significance of making the liquid crystal panel four primary colors and changing the area ratio of the colored part of the color filter)
As described above, the color filter 19 of the liquid crystal panel 11 according to the present embodiment includes a yellow colored portion in addition to the colored portions R, G, and B, which are the three primary colors of light, as shown in FIGS. Since Y is included, the color gamut of the display image displayed by the transmitted light is expanded, so that it is possible to realize display with excellent color reproducibility. In addition, since the light transmitted through the yellow colored portion Y has a wavelength close to the peak of visibility, the human eye tends to perceive brightly even with a small amount of energy. Thereby, even if it suppresses the output of LED24 which the backlight apparatus 12 has, sufficient brightness | luminance can be obtained, the power consumption of LED24 can be reduced, and the effect that it is excellent also in environmental performance is acquired.
 その一方、上記のような4原色タイプの液晶パネル11を用いると、液晶パネル11の表示画像が全体として黄色味を帯び易くなる傾向とされる。これを回避するため、本実施形態に係るバックライト装置12では、LED24における色度が黄色の補色である青色気味に調整されており、それにより表示画像における色度を補正するようにしている。このこともあって、既述したようにバックライト装置12が有するLED24は、主発光波長が青色の波長領域に存するものとされ、青色の波長領域に存する光の発光強度が最も高いものとされている。 On the other hand, when the four primary color type liquid crystal panel 11 as described above is used, the display image of the liquid crystal panel 11 tends to be yellowish as a whole. In order to avoid this, in the backlight device 12 according to the present embodiment, the chromaticity in the LED 24 is adjusted to a blue color that is a complementary color of yellow, thereby correcting the chromaticity in the display image. For this reason, as described above, the LED 24 of the backlight device 12 has the main emission wavelength in the blue wavelength region and the highest light emission intensity in the blue wavelength region. ing.
 上記のようにLED24における色度を調整するに際しては、その色度を白色から青色に近づけるほど、その発光光の輝度が低下する傾向にあることが本願発明者の研究により判明した。そこで、本実施形態においては、カラーフィルタ19を構成する青色の着色部Bの面積比率を緑色の着色部G及び黄色の着色部Yよりも相対的に大きくするようにしており、それによりカラーフィルタ19の透過光に、黄色の補色である青色光をより多く含ませることができる。これにより、表示画像の色度を補正すべくLED24の色度を調整する上で、LED24の色度をそれほど青色気味に調整する必要がなくなり、もって色度調整に伴うLED24の輝度低下が抑制することが可能とされる。 When adjusting the chromaticity of the LED 24 as described above, it has been found by the inventor's research that the luminance of the emitted light tends to decrease as the chromaticity is made closer to white to blue. Therefore, in the present embodiment, the area ratio of the blue colored portion B constituting the color filter 19 is set to be relatively larger than that of the green colored portion G and the yellow colored portion Y, whereby the color filter The 19 transmitted light can contain more blue light which is a complementary color of yellow. Thereby, in adjusting the chromaticity of the LED 24 to correct the chromaticity of the display image, it is not necessary to adjust the chromaticity of the LED 24 so as to be blue so that the luminance reduction of the LED 24 due to the chromaticity adjustment is suppressed. It is possible.
 さらには、本願発明者の研究によれば、4原色タイプの液晶パネル11を用いると、液晶パネル11の出射光のうち特に赤色光の明度が低下することが判明している。これは、4原色タイプの液晶パネル11では、3原色タイプのものに比べると、1つの画素を構成するサブ画素が3つから4つに増加するため、個々のサブ画素の面積は減少し、それに起因して特に赤色光の明度が低下している、と推考される。そこで、本実施形態においては、カラーフィルタ19を構成する赤色の着色部Rの面積比率を緑色の着色部G及び黄色の着色部Yよりも相対的に大きくするようにしており、それによりカラーフィルタ19の透過光に赤色光をより多く含ませることができ、もってカラーフィルタ19の4色化に伴って生じる赤色光の明度低下を抑制することができる。 Furthermore, according to the research of the inventors of the present application, it has been found that when the four primary color type liquid crystal panel 11 is used, the brightness of the red light among the light emitted from the liquid crystal panel 11 is lowered. This is because, in the four primary color type liquid crystal panel 11, compared to the three primary color type, the number of subpixels constituting one pixel increases from three to four, so the area of each subpixel decreases. It is presumed that the brightness of the red light is particularly lowered due to this. Therefore, in the present embodiment, the area ratio of the red colored portion R constituting the color filter 19 is set to be relatively larger than that of the green colored portion G and the yellow colored portion Y, whereby the color filter The transmitted light of 19 can contain a larger amount of red light, so that it is possible to suppress a decrease in lightness of the red light caused by the color filter 19 having four colors.
(本実施形態の要部に係る構成についての説明)
 さて、LED24をZ軸方向について表側と裏側とから挟み込む一対の光源挟み部22c,27cのうち、表側(導光板26の光出射側)に配される第1光源挟み部27cにおけるLED24と対向する面(LED24と向き合う面、LED24からの光を受ける面、LED24からの光に曝される面)には、図9に示すように、既述した第1反射シート28に加えて、レンズ部31を有するレンズ付きシート(レンズシート、プリズムシート)32が配されており、この第1反射シート28と、レンズ付きシート32に形成されたレンズ部31とによってLED24からの光をLED24の非配置パターン側へ指向させる光指向部33が構成されている。この光指向部33は、第1光源挟み部27cにおけるLED24との対向面において、LED24の配置パターンに倣う形で配されており、LED24からの光をLED24の非配置パターン側へ指向させることが可能とされている。ここで言う「LED24の配置パターン」とは、X軸方向、つまりLED24の並び方向に関する各LED24の配置範囲である光源配置領域(LED24の並び方向について各LED24と重なり合う(位置関係が一致する)光源重畳領域)LAのことである。一方、「LED24の非配置パターン」とは、LED24の並び方向に関して各LED24が配置されない範囲である光源非配置領域(LED24の並び方向について各LED24とは重なり合わない(位置関係が一致しない)光源非重畳領域)LNのことである。また、上記した光源非配置領域LNには、光源挟み部22c,27cにおけるLED24との対向面において、LED24の並び方向について隣り合うLED24間に位置する領域と、LED24の並び方向について両端に配された一対のLED24に対して端寄り(中央寄りに隣り合うLED24側とは反対側)にずれた領域とが含まれる。
(Description of the configuration according to the main part of the present embodiment)
Of the pair of light source sandwiching portions 22c and 27c that sandwich the LED 24 from the front side and the back side in the Z-axis direction, the LED 24 faces the LED 24 in the first light source sandwiching portion 27c disposed on the front side (light emitting side of the light guide plate 26). On the surface (the surface facing the LED 24, the surface receiving the light from the LED 24, the surface exposed to the light from the LED 24), as shown in FIG. 9, in addition to the first reflection sheet 28 described above, the lens unit 31. The lens-attached sheet (lens sheet, prism sheet) 32 having the above-mentioned is arranged, and the light from the LED 24 is converted into the non-arrangement pattern of the LED 24 by the first reflection sheet 28 and the lens portion 31 formed on the lens-attached sheet 32. A light directing unit 33 is configured to direct to the side. The light directing portion 33 is arranged on the surface facing the LED 24 in the first light source sandwiching portion 27c so as to follow the arrangement pattern of the LED 24, and can direct the light from the LED 24 toward the non-arrangement pattern side of the LED 24. It is possible. The “LED 24 arrangement pattern” herein refers to a light source arrangement area that is an arrangement range of the LEDs 24 in the X-axis direction, that is, the arrangement direction of the LEDs 24 (light sources that overlap with the LEDs 24 in the arrangement direction of the LEDs 24 (the positional relationship is the same)). Superimposition area) LA. On the other hand, the “non-arrangement pattern of LEDs 24” is a light source non-arrangement region that is a range in which the LEDs 24 are not arranged in the arrangement direction of the LEDs 24 (light sources that do not overlap with the LEDs 24 in the arrangement direction of the LEDs 24). Non-overlapping area) LN. Further, in the light source non-arrangement region LN described above, on the surface facing the LED 24 in the light source sandwiching portions 22c and 27c, the region located between the LEDs 24 adjacent to each other in the arrangement direction of the LEDs 24 and the both ends in the arrangement direction of the LEDs 24 are arranged. A region that is shifted toward the ends of the pair of LEDs 24 (on the side opposite to the LED 24 adjacent to the center) is included.
 詳しくは、フレーム27が有する第1光源挟み部27cに配される第1反射シート28には、図9及び図11に示すように、LED24の非配置パターンである光源非配置領域LNに倣う形態の開口部28aが部分的に形成されている。従って、第1反射シート28は、LED24の配置パターンである光源配置領域LAに倣う形態で残存されており、この開口部28aの非形成部分によって光源配置領域LAに倣う形態の光指向部33が構成されている。詳しくは、開口部28aは、第1反射シート28においてその延在方向(X軸方向)に沿って複数が間欠的に並列して配されており、その配列間隔がLED24の配列間隔に対応付けられたものとされている。つまり、複数の開口部28aは、X軸方向(LED24の並び方向)について隣り合うLED24の間に位置するよう第1反射シート28に形成されていて、各LED24と交互に並ぶような配置とされている。従って、開口部28aは、X軸方向について第1光源挟み部27cのLED24との対向面における光源非配置領域LNの一部と重なり合う位置関係にある。一方、第1反射シート28における開口部28aの非形成部分(残存部分)は、X軸方向(LED24の並び方向)についての配置が、複数のLED24におけるX軸方向についての配置と一致している。従って、第1反射シート28における開口部28aの非形成部分は、第1光源挟み部27cのLED24との対向面における光源配置領域LAと重なり合う位置関係にある。 Specifically, as shown in FIGS. 9 and 11, the first reflection sheet 28 disposed in the first light source sandwiching portion 27 c of the frame 27 follows a light source non-arrangement region LN that is a non-arrangement pattern of the LEDs 24. The opening 28a is partially formed. Therefore, the first reflection sheet 28 remains in a form that follows the light source arrangement area LA that is the arrangement pattern of the LEDs 24, and the light directing portion 33 that follows the light source arrangement area LA is formed by the non-formation portion of the opening 28a. It is configured. Specifically, a plurality of openings 28a are intermittently arranged in parallel along the extending direction (X-axis direction) in the first reflecting sheet 28, and the arrangement interval is associated with the arrangement interval of the LEDs 24. It is supposed to have been. In other words, the plurality of openings 28 a are formed in the first reflection sheet 28 so as to be positioned between the LEDs 24 adjacent to each other in the X-axis direction (the arrangement direction of the LEDs 24), and are arranged so as to be alternately arranged with the LEDs 24. ing. Accordingly, the opening 28a is in a positional relationship overlapping with a part of the light source non-arrangement region LN on the surface of the first light source sandwiching portion 27c facing the LED 24 in the X-axis direction. On the other hand, as for the non-formation part (remaining part) of the opening part 28a in the 1st reflection sheet 28, arrangement | positioning about the X-axis direction (arrangement direction of LED24) corresponds with the arrangement | positioning about the X-axis direction in several LED24. . Therefore, the non-formation part of the opening part 28a in the 1st reflection sheet 28 has the positional relationship which overlaps with the light source arrangement area | region LA in the surface facing LED24 of the 1st light source clamping part 27c.
 第1反射シート28のうちLED24と対向する面には、図9及び図11に示すように、レンズ部31を有するレンズ付きシート32が取り付けられている。レンズ付きシート32は、屈折率が空気よりも高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばPETなど)からなり、第1反射シート28(第1光源挟み部27c)に沿って延在するシート状をなすシート基材34と、シート基材34におけるLED24と対向する面(第1反射シート28側とは反対側の面)に形成されるとともに光を屈折させることが可能なレンズ部31とから構成されている。シート基材34は、平面に視て第1反射シート28(第1光源挟み部27c)とほぼ同じ大きさを有しており、LED24の並び方向を長辺方向とした長手状をなしている。シート基材34は、第1反射シート28における各開口部28aを裏側(LED24側)から覆うものとされる。 A sheet 32 with a lens having a lens portion 31 is attached to the surface of the first reflective sheet 28 facing the LED 24 as shown in FIGS. The lens-attached sheet 32 is made of a synthetic resin material (for example, PET) having a refractive index higher than that of air and substantially transparent (exceeding translucency), and is formed on the first reflective sheet 28 (first light source sandwiching portion 27c). A sheet base material 34 having a sheet shape extending along the surface and a surface of the sheet base material 34 facing the LED 24 (a surface opposite to the first reflection sheet 28 side) and refracting light. It is composed of a possible lens part 31. The sheet base material 34 has substantially the same size as the first reflection sheet 28 (first light source sandwiching portion 27c) in a plan view, and has a longitudinal shape in which the arrangement direction of the LEDs 24 is the long side direction. . The sheet base material 34 covers each opening 28a in the first reflective sheet 28 from the back side (the LED 24 side).
 レンズ部31は、図9に示すように、シート基材34において、X軸方向(LED24の並び方向)に沿って間欠的に複数が並列して配置されており、そのX軸方向についての配置が、複数のLED24におけるX軸方向についての配置と一致している。従って、レンズ部31は、第1光源挟み部27cのLED24との対向面における光源配置領域LAと重なり合う位置関係にある。言い換えると、レンズ部31は、上記した構成の第1反射シート28における開口部28aの非形成部分と平面に視て重畳する位置、つまり光源配置領域LAに倣う位置に配されており、第1反射シート28における開口部28aの非形成部分と共に光指向部33を構成している。また、レンズ部31は、X軸方向についての寸法が第1反射シート28における開口部28aの非形成部分の同寸法とほぼ等しいものとされる。また、レンズ部31の設置数は、図6及び図11に示すように、LED24の並列数と一致している。 As shown in FIG. 9, a plurality of lens units 31 are intermittently arranged in parallel along the X-axis direction (the alignment direction of the LEDs 24) in the sheet base material 34, and the arrangement in the X-axis direction is performed. However, it corresponds to the arrangement of the plurality of LEDs 24 in the X-axis direction. Therefore, the lens part 31 has a positional relationship overlapping the light source arrangement area LA on the surface of the first light source sandwiching part 27c facing the LED 24. In other words, the lens portion 31 is disposed at a position overlapping the non-formation portion of the opening 28a in the first reflection sheet 28 having the above-described configuration in a plan view, that is, a position following the light source arrangement area LA. The light directing portion 33 is configured together with the non-formation portion of the opening 28 a in the reflection sheet 28. In addition, the lens portion 31 has a dimension in the X-axis direction that is substantially equal to the same dimension of the first reflective sheet 28 where the opening 28a is not formed. In addition, the number of lens units 31 is equal to the number of LEDs 24 in parallel as shown in FIGS.
 詳しくは、レンズ部31は、図12に示すように、レンズ付きシート32をX軸方向に沿って切断した断面形状が略三角形の単位レンズ(単位プリズム)31aを複数、X軸方向に沿って並列配置した構成とされている。レンズ部31をなす各単位プリズム31aは、LED24側に臨む傾斜面を一対ずつ有しており、これら一対ずつの各傾斜面がX軸方向(LED24の並び方向)及びZ軸方向(LED24と各光源挟み部22c,27cとの並び方向)の双方に対して傾斜状をなしている。レンズ部31(単位プリズム31a)は、Y軸方向、つまりLED24と光入射面26bとの並び方向に沿って延びる形態とされている。従って、レンズ部31は、LED24からの光を主にX軸方向及びZ軸方向について角度付けするものの、Y軸方向については殆ど角度付けすることがないものとされる。そして、レンズ部31は、シート基材34(第1反射シート28)側からの光がレンズ部31を出射する際に、界面である各単位レンズ31aの傾斜面にてその光を屈折させることでZ軸方向に並行するよう進行させる集光作用を有している。逆に、このレンズ部31は、LED24側からの光がレンズ部31に入射する際には、界面である各単位レンズ31aの傾斜面にてその光を屈折させることで、X軸方向について広角に拡散させる光拡散作用を有している。 Specifically, as shown in FIG. 12, the lens unit 31 includes a plurality of unit lenses (unit prisms) 31 a having a substantially triangular cross-section cut along the X-axis direction along the X-axis direction. The configuration is arranged in parallel. Each unit prism 31a constituting the lens unit 31 has a pair of inclined surfaces facing the LED 24, and each of the pair of inclined surfaces is in the X-axis direction (the LED 24 arrangement direction) and the Z-axis direction (the LED 24 and each of the LED 24). It is inclined with respect to both of the light source sandwiching portions 22c and 27c. The lens unit 31 (unit prism 31a) is configured to extend along the Y-axis direction, that is, the alignment direction of the LED 24 and the light incident surface 26b. Therefore, the lens unit 31 angles the light from the LED 24 mainly in the X-axis direction and the Z-axis direction, but hardly angulates in the Y-axis direction. Then, when the light from the sheet base material 34 (first reflection sheet 28) exits the lens unit 31, the lens unit 31 refracts the light at the inclined surface of each unit lens 31a that is an interface. And has a light condensing action to advance in parallel with the Z-axis direction. Conversely, when the light from the LED 24 is incident on the lens unit 31, the lens unit 31 refracts the light at the inclined surface of each unit lens 31a that is an interface, thereby widening the X-axis direction. Has a light diffusing action.
 上記した構成のレンズ部31は、図9及び図12に示すように、シート基材34におけるLED24と対向する面に配されているので、第1反射シート28とLED24との間に介在する形で配されていると言える。従って、LED24から表側、つまり第1光源挟み部27c側へ向かう光は、まずレンズ部31に入射することで屈折された後、第1反射シート28によって反射されることで、裏側、つまり第2光源挟み部22c側へ向けて進行するものとされる。この第1反射シート28によって反射される光は、その前段階でレンズ部31によって屈折されることで広角に拡散されるよう所定の角度付けされていることから、少なくともその一部が光源非配置領域LNに向かうものとされる。すなわち、LED24から発せられて光源配置領域LAに存する光の少なくとも一部は、レンズ部31によって屈折されてから第1反射シート28によって反射されることで、光源非配置領域LNへ指向されるようになっている。これにより、光量が過剰になりがちな光源配置領域LA側から、光量が不足しがちな光源非配置領域LN側へと光の一部を振り分けることが可能とされている。なお、図12では、LED24からの光のうち、光指向部33によって光源配置領域LAから光源非配置領域LNへ指向される光の軌跡を矢線によって例示している。 As shown in FIGS. 9 and 12, the lens portion 31 having the above-described configuration is disposed on the surface of the sheet base material 34 that faces the LED 24, so that the lens portion 31 is interposed between the first reflective sheet 28 and the LED 24. It can be said that it is arranged. Accordingly, the light traveling from the LED 24 toward the front side, that is, the first light source sandwiching portion 27c side is first refracted by being incident on the lens portion 31, and then reflected by the first reflecting sheet 28, whereby the back side, that is, the second side. The light travels toward the light source sandwiching portion 22c. Since the light reflected by the first reflection sheet 28 is refracted by the lens unit 31 at a previous stage and is given a predetermined angle so as to be diffused at a wide angle, at least a part of the light is not disposed. It is assumed that it goes to the area LN. That is, at least a part of the light emitted from the LED 24 and existing in the light source arrangement area LA is refracted by the lens unit 31 and then reflected by the first reflection sheet 28 so as to be directed to the light source non-arrangement area LN. It has become. Thereby, it is possible to distribute a part of the light from the light source arrangement area LA side where the light quantity tends to be excessive to the light source non-arrangement area LN side where the light quantity tends to be insufficient. In FIG. 12, of the light from the LED 24, the trajectory of light directed from the light source arrangement area LA to the light source non-arrangement area LN by the light directing unit 33 is illustrated by an arrow line.
 光指向部33(レンズ部31及び第1反射シート28における開口部28aの非形成部分)は、図9及び図12に示すように、X軸方向についての中央位置がLED24(光源配置領域LA)における同中央位置と一致していて同心状をなしている。その上で、光指向部33におけるX軸方向についての寸法W1は、LED24(光源配置領域LA)における同寸法W2よりも相対的に大きくなっている。従って、光指向部33は、光源配置領域LAよりもX軸方向について幅広に形成されるとともに、光源配置領域LAの全域に加えて、隣り合う光源非配置領域LNにおけるX軸方向についての端部に至る範囲にまで配されていると言える。言い換えると、光指向部33は、光源配置領域LAからさらに光源非配置領域LN側に拡張されて光源非配置領域LNの一部にわたって配されている。一方、隣り合う光指向部33の間に配される第1反射シート28の開口部28aは、X軸方向についての中央位置が光源非配置領域LNにおける同中央位置と一致していて同心状をなしている。その上で、開口部28aにおけるX軸方向についての寸法(隣り合う光指向部33間の間隔)W3は、光源非配置領域LNにおける同寸法W4よりも相対的に小さくなっている。つまり、開口部28aは、光源非配置領域LNよりもX軸方向について幅狭に形成されるとともに、光源非配置領域LNのうちX軸方向の中央部に配されていて、X軸方向の両端部には配されていないと言える。光指向部33及び開口部28aは、X軸方向について対称形状をなしている。従って、光指向部33は、光源配置領域LAに対してX軸方向について両側方に隣り合う一対の光源非配置領域LNにおける上記光源配置領域LA側の各端部に対してそれぞれ同じ寸法ずつ重なり合うような配置とされている。また、光指向部33を構成するレンズ部31及び開口部28aは、図8及び図11に示すように、Y軸方向、つまりLED24と光入射面26bとの並び方向についての寸法が、LED基板25におけるLED24の実装面と、導光板26の光入射面26bとの間の間隔とほぼ等しいものとされる。 As shown in FIGS. 9 and 12, the light directing portion 33 (the portion where the opening portion 28a is not formed in the lens portion 31 and the first reflection sheet 28) is centered in the X-axis direction with the LED 24 (light source arrangement region LA). Concentric with the same central position in FIG. In addition, the dimension W1 in the X-axis direction in the light directing unit 33 is relatively larger than the same dimension W2 in the LED 24 (light source arrangement area LA). Therefore, the light directing section 33 is formed wider in the X-axis direction than the light source arrangement area LA, and in addition to the entire area of the light source arrangement area LA, an end portion in the X-axis direction in the adjacent light source arrangement area LN. It can be said that it is arranged to reach the range. In other words, the light directing unit 33 is further extended from the light source arrangement area LA to the light source non-arrangement area LN side and is arranged over a part of the light source non-arrangement area LN. On the other hand, the opening portion 28a of the first reflection sheet 28 disposed between the adjacent light directing portions 33 has a central position in the X-axis direction that is coincident with the same central position in the light source non-arrangement region LN. There is no. In addition, the dimension (interval between adjacent light directing parts 33) W3 in the X-axis direction in the opening 28a is relatively smaller than the same dimension W4 in the light source non-arrangement region LN. That is, the opening 28a is formed to be narrower in the X-axis direction than the light source non-arrangement region LN, and is disposed at the center in the X-axis direction of the light source non-arrangement region LN, and has both ends in the X-axis direction. It can be said that it is not arranged in the department. The light directing portion 33 and the opening 28a are symmetrical with respect to the X-axis direction. Accordingly, the light directing portion 33 overlaps the same dimension at each end on the light source arrangement area LA side in a pair of light source non-arrangement areas LN adjacent to the light source arrangement area LA on both sides in the X-axis direction. It is arranged like this. Further, as shown in FIGS. 8 and 11, the lens part 31 and the opening part 28a constituting the light directing part 33 have a dimension in the Y-axis direction, that is, the alignment direction of the LED 24 and the light incident surface 26b. 25, the distance between the LED 24 mounting surface and the light incident surface 26b of the light guide plate 26 is substantially equal.
 上記したように第1反射シート28には、開口部28aが形成されているので、第1反射シート28が取り付けられた第1光源挟み部27cにおけるLED24と対向する面の一部は、図8及び図9に示すように、開口部28aを通してLED24側に露出している。この第1光源挟み部27cは、第1反射シート28に比べると、光反射率が相対的に低くなっているので、第1光源挟み部27cにおけるLED24との対向面のうち開口部28aを通してLED24側に露出する部分が低光反射率部35とされる。つまり、第1反射シート28における開口部28aの形成範囲が低光反射率部35の形成範囲と一致することになる。なお、この低光反射率部35は、フレーム27の一部により構成され、その表面の色が黒色を呈するものとされていることから、光反射率が0%に近い値(例えば0%~10%の範囲)となっている。一方、第1反射シート28のうち、光指向部33を構成する開口部28aの非形成部分は、開口部28aを通して露出した第1光源挟み部27cよりも光反射率が相対的に高くなっており、ここが高光反射率部36を構成している。この高光反射率部36は、表面が白色を呈する第1反射シート28によって構成されていることから、光反射率が100%に近い値(例えば90%~100%の範囲)となっている。 As described above, since the opening 28a is formed in the first reflection sheet 28, a part of the surface facing the LED 24 in the first light source sandwiching portion 27c to which the first reflection sheet 28 is attached is shown in FIG. And as shown in FIG. 9, it exposes to the LED24 side through the opening part 28a. Since the light source reflectance of the first light source sandwiching portion 27c is relatively lower than that of the first reflection sheet 28, the LED 24 passes through the opening 28a in the surface facing the LED 24 in the first light source sandwiching portion 27c. The portion exposed to the side is the low light reflectance portion 35. That is, the formation range of the opening 28 a in the first reflection sheet 28 coincides with the formation range of the low light reflectance portion 35. The low light reflectivity portion 35 is constituted by a part of the frame 27, and the surface color thereof is black. Therefore, the light reflectivity is close to 0% (for example, 0% to 0%). 10% range). On the other hand, the non-formation part of the opening part 28a which comprises the light directing part 33 among the 1st reflection sheets 28 becomes relatively higher in light reflectivity than the 1st light source clamping part 27c exposed through the opening part 28a. This constitutes the high light reflectance portion 36. Since the high light reflectance portion 36 is composed of the first reflection sheet 28 having a white surface, the light reflectance is a value close to 100% (for example, a range of 90% to 100%).
 低光反射率部35は、X軸方向について第1光源挟み部27cのLED24との対向面における光源非配置領域LNの一部と重なり合う位置関係にあり、それにより低光反射率部35が光源非配置領域LNの一部に配されることになる。一方、高光反射率部36は、X軸方向について第1光源挟み部27cのLED24との対向面における光源配置領域LAと重なり合う位置関係にあり、さらにはその光源配置領域LAに対して隣り合う一対の光源非配置領域LNにおける端部とも重なり合う位置関係にある。低光反射率部35と高光反射率部36とは、第1光源挟み部27cのLED24との対向面においてX軸方向に沿って交互に並列して配されており、平面に視ると、図11に示すように、ほぼ透明なレンズ付きシート34を通して、低光反射率部31である黒色部分と、高光反射率部32である白色部分とがX軸方向について交互に繰り返し配列されて白黒の縞状を呈している。 The low light reflectance part 35 is in a positional relationship overlapping with a part of the light source non-arrangement region LN on the surface of the first light source sandwiching part 27c facing the LED 24 in the X-axis direction, whereby the low light reflectance part 35 is a light source. It will be arranged in a part of the non-arrangement region LN. On the other hand, the high light reflectance part 36 is in a positional relationship overlapping with the light source arrangement area LA on the surface of the first light source sandwiching part 27c facing the LED 24 in the X-axis direction, and further, a pair adjacent to the light source arrangement area LA. The light source non-arrangement region LN has a positional relationship that overlaps with the end portion. The low light reflectance portion 35 and the high light reflectance portion 36 are alternately arranged in parallel along the X-axis direction on the surface facing the LED 24 of the first light source sandwiching portion 27c. As shown in FIG. 11, the black portion as the low light reflectance portion 31 and the white portion as the high light reflectance portion 32 are alternately and repeatedly arranged in the X-axis direction through the substantially transparent sheet 34 with the lens. It has a stripe shape.
(本実施形態の要部に係る作用及び効果についての説明)
 上記のような構成の液晶表示装置10の電源をONすると、図示しない制御回路により液晶パネル11の駆動が制御されるとともに、図示しない電力供給基板からの駆動電力がLED基板25の各LED24に供給されることでその駆動が制御される。各LED24からの光は、導光部材26により導光されることで、光学部材23を介して液晶パネル11に照射され、もって液晶パネル11に所定の画像が表示される。以下、バックライト装置12に係る作用について詳しく説明する。
(Description of functions and effects according to the main part of the present embodiment)
When the power supply of the liquid crystal display device 10 having the above configuration is turned on, the drive of the liquid crystal panel 11 is controlled by a control circuit (not shown), and driving power from a power supply board (not shown) is supplied to each LED 24 of the LED board 25. As a result, the drive is controlled. The light from each LED 24 is guided by the light guide member 26, so that the liquid crystal panel 11 is irradiated through the optical member 23, and a predetermined image is displayed on the liquid crystal panel 11. Hereinafter, the operation of the backlight device 12 will be described in detail.
 各LED24を点灯させると、各LED24から出射した光は、図7に示すように、導光部材26における光入射面26bに入射する。これらLED24と光入射面26bとの間には、所定の空間が保有されているものの、その空間は表側の第1反射シート28と裏側の第2反射シート29とにより挟み込まれている。従って、LED24からの光は両反射シート28,29の間で繰り返し反射されることで効率的に光入射面26bに入射される。光入射面26bに入射した光は、導光反射シート30により反射されるなどして導光部材26内を伝播した後、光出射面26aから出射され、その後各光学部材23を透過してから液晶パネル11に達する。 When each LED 24 is turned on, the light emitted from each LED 24 enters the light incident surface 26b of the light guide member 26 as shown in FIG. Although a predetermined space is held between the LED 24 and the light incident surface 26b, the space is sandwiched between the first reflective sheet 28 on the front side and the second reflective sheet 29 on the back side. Accordingly, the light from the LED 24 is repeatedly reflected between the reflecting sheets 28 and 29, and thus efficiently enters the light incident surface 26b. The light incident on the light incident surface 26 b is reflected by the light guide reflection sheet 30, propagates through the light guide member 26, is emitted from the light exit surface 26 a, and then passes through each optical member 23. The liquid crystal panel 11 is reached.
 ここで、導光板26の光入射面26bに入射される光量には、間欠的に並んで配される複数のLED24における配置パターン及び非配置パターンによってムラが生じるおそれがある。つまり、LED24から発せられた光は、光入射面26bにおいて、LED24と正対する部分、言い換えるとLED24の並び方向に関してLED24と重なり合う光源配置領域LAには、相対的に多く入射されるものの、LED24とは正対しない部分、言い換えるとLED24の並び方向に関してLED24と重なり合わない光源非配置領域LNには、相対的に少なく入射される(図6を参照)。このため、光入射面26bに入射される光量にムラが生じ、それにより光出射面26aから出射される出射光にも輝度ムラが生じるおそれがある。特に液晶表示装置10及びバックライト装置12の狭額縁化を図るべく、LED24と光入射面26bとの間の間隔を狭くした場合には、LED24からの光がより直接的に光入射面26bに入射することになるため、上記したムラの発生がより顕著になる傾向にある。なお、ここでいう「狭額縁化」とは、液晶表示装置10及びバックライト装置12における非発光部分である額縁部分の幅を狭くすることであり、この額縁部分にはLED24、LED基板25、及び導光板26における光入射面26bを有する端部が配されていることから、上記のような問題が生じ得るものとされる。 Here, the light amount incident on the light incident surface 26b of the light guide plate 26 may be uneven depending on the arrangement pattern and the non-arrangement pattern in the plurality of LEDs 24 arranged intermittently. That is, a relatively large amount of light emitted from the LED 24 is incident on a portion of the light incident surface 26b that directly faces the LED 24, in other words, the light source arrangement region LA that overlaps the LED 24 with respect to the arrangement direction of the LEDs 24. Is relatively lightly incident on a portion that does not directly face, in other words, in the light source non-arrangement region LN that does not overlap the LED 24 in the arrangement direction of the LEDs 24 (see FIG. 6). For this reason, unevenness occurs in the amount of light incident on the light incident surface 26b, which may cause uneven brightness in the emitted light emitted from the light exit surface 26a. In particular, when the interval between the LED 24 and the light incident surface 26b is narrowed in order to narrow the frame of the liquid crystal display device 10 and the backlight device 12, the light from the LED 24 directly enters the light incident surface 26b. Since the light is incident, the above-described unevenness tends to become more prominent. Here, “narrowing the frame” means to narrow the width of the frame portion which is a non-light emitting portion in the liquid crystal display device 10 and the backlight device 12, and this frame portion includes the LED 24, the LED substrate 25, And since the edge part which has the light-incidence surface 26b in the light-guide plate 26 is distribute | arranged, it is supposed that the above problems may arise.
 そこで、本実施形態では、図7から図9に示すように、LED24を挟み込む一対の光源挟み部22c,27cのうち、第1光源挟み部27cにおけるLED24との対向面に、LED24からの光をLED24の非配置パターンである光源非配置領域LN側へ指向させる光指向部33がLED24の配置パターンである光源配置領域LAに倣って配されている。具体的には、第1光源挟み部27cにおけるLED24との対向面に取り付けられた第1反射シート28には、光源配置領域LAと重なり合う位置関係とされたレンズ部31を有するレンズ付きシート32が配されており、レンズ部31と第1反射シート28とによって光指向部33が構成されている。このような構成によれば、LED24からの光のうち光源配置領域LAに存する光は、光入射面26bに入射するまでの間に、光源配置領域LAに倣って配される光指向部33によって少なくともその一部が光源非配置領域LN側へと指向される。詳細には、光源配置領域LAにおいてLED24から表側へ向かう光は、図12に示すように、まず光指向部33を構成するレンズ部31に入射することでその各単位レンズ31aが有する各傾斜面にてX軸方向について広角に拡散するよう屈折される。レンズ部31によって角度付けされた光は、シート基材34内を進行してから第1反射シート28の表面にて反射されることで、少なくともその一部が光源配置領域LA外の光源非配置領域LNへ向けて進行されることになる。 Therefore, in the present embodiment, as shown in FIGS. 7 to 9, light from the LED 24 is applied to the surface facing the LED 24 in the first light source sandwiching portion 27 c among the pair of light source sandwiching portions 22 c and 27 c sandwiching the LED 24. A light directing portion 33 that directs toward the light source non-arrangement region LN that is the non-arrangement pattern of the LED 24 is arranged following the light source arrangement region LA that is the arrangement pattern of the LED 24. Specifically, on the first reflection sheet 28 attached to the surface facing the LED 24 in the first light source sandwiching portion 27c, a lens-equipped sheet 32 having a lens portion 31 that is in a positional relationship overlapping with the light source arrangement region LA. The light directing unit 33 is configured by the lens unit 31 and the first reflection sheet 28. According to such a configuration, the light existing in the light source arrangement area LA out of the light from the LED 24 is transmitted by the light directing unit 33 following the light source arrangement area LA before entering the light incident surface 26b. At least a part thereof is directed to the light source non-arrangement region LN side. Specifically, in the light source arrangement area LA, the light traveling from the LED 24 to the front side is first incident on the lens unit 31 that constitutes the light directing unit 33 as shown in FIG. Refracted so as to diffuse at a wide angle in the X-axis direction. The light angled by the lens unit 31 travels through the sheet base material 34 and then is reflected by the surface of the first reflection sheet 28 so that at least a part of the light is not disposed outside the light source arrangement area LA. The process proceeds toward the area LN.
 ここで、仮にレンズ部が存在しない場合には、LED24から第1光源挟み部27cへ向けてZ軸方向に並行する光は、第1反射シート28により反射されてそのままZ軸方向に並行しつつLED24側へ向かうこととなるため、光源配置領域LA内の光量が過剰になりがちとされる。これに対して、本実施形態では、上記したように、LED24から第1光源挟み部27cへ向けてZ軸方向に並行する光が、レンズ部31により屈折されてから第1反射シート28により反射されることで、Z軸方向及びX軸方向に対して斜め方向に進行することになるから、少なくともその一部については光源配置領域LA外に出て、光源非配置領域LNへと向かうことになる。これにより、光源配置領域LAにおいて過剰になりがちな光の一部を、光源非配置領域LN側に振り分けることができ、それにより両領域LA,LN間で生じ得る光量の差を軽減することができる。従って、導光板26の光入射面26bに入射される光量は、間欠的に並んで配される複数のLED24における光源配置領域LA及び光源非配置領域LNによらず均一化されてムラが生じ難くなる。 Here, if there is no lens part, the light parallel to the Z-axis direction from the LED 24 toward the first light source sandwiching part 27c is reflected by the first reflection sheet 28 and is directly parallel to the Z-axis direction. Since it goes to the LED 24 side, the amount of light in the light source arrangement area LA tends to be excessive. In contrast, in the present embodiment, as described above, the light parallel to the Z-axis direction from the LED 24 toward the first light source sandwiching portion 27c is refracted by the lens portion 31 and then reflected by the first reflecting sheet 28. As a result, it proceeds in an oblique direction with respect to the Z-axis direction and the X-axis direction, so that at least a part thereof goes out of the light source arrangement area LA and heads toward the light source non-arrangement area LN. Become. As a result, part of the light that tends to be excessive in the light source arrangement area LA can be distributed to the light source non-arrangement area LN side, thereby reducing the difference in light quantity that can occur between the areas LA and LN. it can. Accordingly, the amount of light incident on the light incident surface 26b of the light guide plate 26 is made uniform regardless of the light source arrangement area LA and the light source non-arrangement area LN in the plurality of LEDs 24 that are intermittently arranged side by side. Become.
 しかも、光指向部33は、第1光源挟み部27cにおけるLED24との対向面において、光源配置領域LAの全域にわたり、さらには隣り合う光源非配置領域LNの端部に至る範囲に配されていることから、光源配置領域LAの全域において過剰になりがちな光を光指向部33により一層効率的に光源非配置領域LN側へ指向させることができるとともに、光源非配置領域LNにおいて中央部側に比べて光量が相対的に多い端部においても、光指向部33により効率的に中央部側へ指向させることができるので、光入射面26bの入射光量にムラがより生じ難くなる。さらには、光指向部33は、LED24に対して表側、つまり導光板26の光出射面26a側に配された第1光源挟み部27cに配されているから、光指向部33により光源非配置領域LN側に指向された光は、裏側、つまり光出射面26a側とは反対側に向かった後、第2光源挟み部22cにおけるLED24と対向する面(第2反射シート29)にて反射されたり、光入射面26bに入射されて導光板26のうち光出射面26a側とは反対側の面26cへ向かうことになる。従って、光指向部33によって光源非配置領域LN側に指向された光が光入射面26bに入射してそのまま光出射面26aから出射することが回避される。その上、第1反射シート28には、光源非配置領域LNに倣う形態の開口部28aが形成されることで、第1光源挟み部27cのうち開口部28aを通してLED24側に露出する部分が低光反射率部35とされるのに対し、光指向部33を構成する第1反射シート28が高光反射率部36とされているから、LED24から第1光源挟み部27c側へ向かう光に光指向部33を構成するレンズ部31を介さない光が存在していても、その光は、光源非配置領域LNに存する低光反射率部35に照射されることになるから、そこで反射される光量はごく僅かに抑制される。光源非配置領域LNに存する低光反射率部35にて反射された光は、光源配置領域LA側へ指向する可能性があることから、その光量を抑制することで、光源配置領域LAと光源非配置領域LNとの間に生じ得る光量の差を軽減する上で好適となり、もって光入射面26bの入射光量にムラがより一層生じ難くなる。以上により、導光板26の光出射面26aからの出射光に輝度ムラが生じ難くなる。特に、液晶表示装置10及びバックライト装置12の狭額縁化を図る上でも有用となる。 Moreover, the light directing portion 33 is disposed on the surface of the first light source sandwiching portion 27c facing the LED 24 over the entire light source arrangement region LA and further to the end of the adjacent light source non-arrangement region LN. Therefore, light that tends to be excessive in the entire light source arrangement area LA can be more efficiently directed to the light source non-arrangement area LN side by the light directing section 33, and at the center side in the light source non-arrangement area LN. In contrast, even at the end portion where the light amount is relatively large, the light directing portion 33 can efficiently direct the light toward the center portion side, so that unevenness in the incident light amount on the light incident surface 26b is less likely to occur. Furthermore, since the light directing portion 33 is disposed on the first light source sandwiching portion 27 c disposed on the front side of the LED 24, that is, on the light emitting surface 26 a side of the light guide plate 26, no light source is disposed by the light directing portion 33. The light directed to the region LN side is directed to the back side, that is, the side opposite to the light emitting surface 26a side, and then reflected by the surface (second reflection sheet 29) facing the LED 24 in the second light source sandwiching portion 22c. Alternatively, the light is incident on the light incident surface 26b and travels toward the surface 26c of the light guide plate 26 opposite to the light emitting surface 26a side. Therefore, it is avoided that the light directed to the light source non-arrangement region LN side by the light directing unit 33 enters the light incident surface 26b and is emitted as it is from the light emitting surface 26a. In addition, the first reflective sheet 28 is formed with an opening 28a that follows the light source non-arrangement region LN, so that the portion exposed to the LED 24 through the opening 28a in the first light source sandwiching portion 27c is low. Since the first reflective sheet 28 constituting the light directing unit 33 is the high light reflectivity unit 36 in contrast to the light reflectivity unit 35, light is emitted from the LED 24 toward the first light source sandwiching unit 27c. Even if there is light that does not pass through the lens unit 31 constituting the directing unit 33, the light is irradiated to the low light reflectance unit 35 in the light source non-arrangement region LN, and is reflected there. The amount of light is suppressed very slightly. Since the light reflected by the low light reflectivity part 35 existing in the light source non-arrangement area LN may be directed to the light source arrangement area LA, the light source arrangement area LA and the light source are suppressed by suppressing the amount of light. This is suitable for reducing the difference in the amount of light that may occur with the non-arrangement region LN, and thus the unevenness in the amount of incident light on the light incident surface 26b is further less likely to occur. As described above, unevenness in luminance is less likely to occur in the outgoing light from the light outgoing surface 26a of the light guide plate 26. In particular, it is useful for narrowing the frame of the liquid crystal display device 10 and the backlight device 12.
 以上説明したように本実施形態のバックライト装置(照明装置)12は、間欠的に並んで配される複数のLED(光源)24と、LED24の並び方向に並行する面であってLED24との間に間隔を保有しつつ対向状に配されるとともにLED24からの光が入射される光入射面26b、及び入射した光を出射させる光出射面26aを有する導光板26と、導光板26の光出射側とその反対側とからLED24を挟み込む形で配される一対の光源挟み部22c,27cと、一対の光源挟み部22c,27cの少なくともいずれか一方におけるLED24と対向する面に、LED24の配置パターン(光源配置領域LA)に倣って配されるとともに、LED24からの光をLED24の非配置パターン(光源非配置領域LN)側へ指向させる光指向部33とを備える。 As described above, the backlight device (illumination device) 12 according to the present embodiment includes a plurality of LEDs (light sources) 24 arranged intermittently side by side, and a surface parallel to the direction in which the LEDs 24 are arranged, and the LED 24. A light guide plate 26 having a light incident surface 26b on which light from the LED 24 is incident and a light exit surface 26a for emitting the incident light, and the light of the light guide plate 26, which are arranged to face each other with an interval therebetween. The LED 24 is disposed on a surface facing the LED 24 in at least one of the pair of light source sandwiching portions 22c and 27c and the pair of light source sandwiching portions 22c and 27c that are disposed so as to sandwich the LED 24 from the emission side and the opposite side. It is arranged following the pattern (light source arrangement area LA) and directs the light from the LED 24 toward the non-placement pattern (light source non-placement area LN) side of the LED 24. And a light directing portion 33.
 このようにすれば、複数のLED24から発せられた光は、LED24の並び方向に並行していてLED24との間に間隔を保有しつつ対向状に配される光入射面26bに入射した後、導光板26内を伝播されてから、光出射面26aから出射される。ここで、導光板26の光入射面26bに入射される光量には、間欠的に並んで配される複数のLED24における配置パターン及び非配置パターンによってムラが生じるおそれがあり、特に当該照明装置における狭額縁化を図るべく、LED24と光入射面26bとの間の間隔を狭くした場合にムラの発生がより顕著となる傾向にある。 In this way, after the light emitted from the plurality of LEDs 24 is incident on the light incident surface 26b which is arranged in parallel with the arrangement direction of the LEDs 24 and having an interval between the LEDs 24, After propagating through the light guide plate 26, the light is emitted from the light exit surface 26a. Here, the amount of light incident on the light incident surface 26b of the light guide plate 26 may be uneven depending on the arrangement pattern and the non-arrangement pattern in the plurality of LEDs 24 that are intermittently arranged side by side. When the distance between the LED 24 and the light incident surface 26b is narrowed in order to narrow the frame, the occurrence of unevenness tends to become more prominent.
 その点、本実施形態では、一対の光源挟み部22c,27cの少なくともいずれか一方におけるLED24と対向する面に、LED24からの光をLED24の非配置パターン側へ指向させる光指向部33がLED24の配置パターンに倣って配されているから、LED24からの光が光入射面26bに入射するまでの間に、光指向部33によってLED24の配置パターンにおいて過剰になりがちな光を、光が不足しがちなLED24の非配置パターン側へ指向させることができ、それにより光量の差を軽減することができる。従って、導光板26の光入射面26bに入射される光量は、間欠的に並んで配される複数のLED24における配置パターン及び非配置パターンによらず均一化されてムラが生じ難くなる。これにより、導光板26の光出射面26aからの出射光にも輝度ムラが生じ難くなる。特に、当該バックライト装置12の狭額縁化を図る上でも有用となる。 In this regard, in the present embodiment, the light directing portion 33 that directs the light from the LED 24 toward the non-arrangement pattern side of the LED 24 on the surface facing the LED 24 in at least one of the pair of light source sandwiching portions 22c and 27c. Since the light is arranged in accordance with the arrangement pattern, the light directing unit 33 causes the light that tends to be excessive in the arrangement pattern of the LED 24 until the light from the LED 24 enters the light incident surface 26b. It is possible to direct the LED 24 toward the non-arranged pattern side, thereby reducing the difference in light amount. Accordingly, the amount of light incident on the light incident surface 26b of the light guide plate 26 is made uniform regardless of the arrangement pattern and the non-arrangement pattern in the plurality of LEDs 24 that are intermittently arranged side by side, and unevenness hardly occurs. Thereby, luminance unevenness is less likely to occur in the outgoing light from the light outgoing surface 26a of the light guide plate 26. In particular, the backlight device 12 is useful for narrowing the frame.
 また、光指向部33は、一対の光源挟み部22c,27cの少なくともいずれか一方におけるLED24と対向する面において、LED24の配置パターンの全域にわたって配されている。このようにすれば、LED24の配置パターンの全域にわたって配される光指向部33によって過剰になりがちな光を一層効率的にLED24の非配置パターン側へ指向させることができる。これにより、輝度ムラをより効果的に抑制することができる。 Further, the light directing section 33 is arranged over the entire arrangement pattern of the LEDs 24 on the surface facing the LEDs 24 in at least one of the pair of light source sandwiching sections 22c and 27c. If it does in this way, the light which tends to become excessive by the light directing part 33 distribute | arranged over the whole region of the arrangement pattern of LED24 can be directed to the non-arrangement pattern side of LED24 more efficiently. Thereby, luminance unevenness can be more effectively suppressed.
 また、光指向部33は、一対の光源挟み部22c,27cの少なくともいずれか一方におけるLED24と対向する面において、LED24の配置パターンからLED24の非配置パターンの端部に至る範囲に配されるとともに、LED24からの光をLED24の非配置パターンにおける中央部側へ指向させている。このようにすれば、一対の光源挟み部22c,27cの少なくともいずれか一方におけるLED24と対向する面において、LED24の非配置パターンの端部では、LED24の非配置パターンの中央部に比べると、LED24からの光量が相対的に多いことから、上記端部にて光指向部33によってLED24からの光を上記中央部側へ指向させることで、さらなる輝度ムラの抑制を図ることができる。 Further, the light directing portion 33 is arranged in a range from the arrangement pattern of the LED 24 to the end portion of the non-arrangement pattern of the LED 24 on the surface facing the LED 24 in at least one of the pair of light source sandwiching portions 22c and 27c. The light from the LED 24 is directed to the center side in the non-arrangement pattern of the LED 24. If it does in this way, compared with the center part of the non-arrangement pattern of LED24 in the edge part of the non-arrangement pattern of LED24 in the surface facing LED24 in at least any one of a pair of light source clamping parts 22c and 27c, it is LED24. Since the amount of light emitted from the LED 24 is relatively large, it is possible to further suppress uneven brightness by directing the light from the LED 24 toward the central portion by the light directing portion 33 at the end portion.
 また、光指向部33は、一対の光源挟み部22c,27cのうちの一方におけるLED24と対向する面に配されている。このようにすれば、一対の光源挟み部22c,27cのうちの一方におけるLED24と対向する面に配した光指向部33によって光入射面26bに入射する光量の均一化を十分に図ることができる。仮に光指向部を一対の光源挟み部22c,27cの双方にそれぞれ配した場合に比べると、低コストでの対応が可能になる。 Further, the light directing portion 33 is disposed on a surface facing the LED 24 in one of the pair of light source sandwiching portions 22c and 27c. In this way, it is possible to sufficiently equalize the amount of light incident on the light incident surface 26b by the light directing portion 33 disposed on the surface facing the LED 24 in one of the pair of light source sandwiching portions 22c and 27c. . As compared with the case where the light directing portions are arranged on both of the pair of light source sandwiching portions 22c and 27c, it is possible to cope with low cost.
 また、光指向部33は、一対の光源挟み部22c,27cのうち、LED24に対して光出射側に配されるものに配されている。このようにすれば、LED24に対して光出射側に配される光源挟み部22c,27cにおいて、光指向部33によりLED24の非配置パターン側へ指向された光は、光出射側とは反対側へ向かった後、光出射側とは反対側に配された光源挟み部22c,27cにおけるLED24と対向する面にて反射されたり、光入射面26bに入射されて導光板26のうち光出射側とは反対側の面へ向かうことになる。従って、光指向部33によってLED24の非配置パターン側へ指向された光が光入射面26bに入射してそのまま光出射面26aから出射することが回避されるから、出射光に輝度ムラが一層生じ難くなる。 Further, the light directing portion 33 is disposed on the light emitting portion of the pair of light source sandwiching portions 22c and 27c that is disposed on the light emitting side with respect to the LED 24. In this way, in the light source sandwiching portions 22c and 27c arranged on the light emitting side with respect to the LED 24, the light directed to the non-arranged pattern side of the LED 24 by the light directing portion 33 is opposite to the light emitting side. The light source sandwiching portions 22c and 27c arranged on the side opposite to the light emitting side, the light is reflected on the surface facing the LED 24, or is incident on the light incident surface 26b to be out of the light guide plate 26. It goes to the opposite side. Accordingly, it is avoided that the light directed to the non-arrangement pattern side of the LED 24 by the light directing unit 33 is incident on the light incident surface 26b and is emitted as it is from the light emitting surface 26a. It becomes difficult.
 また、一対の光源挟み部22c,27cのうちの一方が、導光板26を光出射側から押さえるフレーム(押さえ部材)27である。このようにすれば、フレーム27の組み付けに伴って、導光板26を光出射側から押さえることができるとともに、フレーム27が有する光源挟み部27cをLED24及び導光板26に対して適切な位置に配することができる。これにより、組み付け作業性に優れる。 Further, one of the pair of light source sandwiching portions 22c and 27c is a frame (pressing member) 27 that presses the light guide plate 26 from the light emitting side. In this way, as the frame 27 is assembled, the light guide plate 26 can be pressed from the light emitting side, and the light source sandwiching portion 27c of the frame 27 is disposed at an appropriate position with respect to the LED 24 and the light guide plate 26. can do. Thereby, it is excellent in assembly workability.
 また、一対の光源挟み部22c,27cのうちの一方が、LED24及び導光板26を収容するシャーシ22である。このようにすれば、シャーシ22にLED24及び導光板26を収容すると、シャーシ22が有する光源挟み部22cに対してLED24及び導光板26が適切な位置に配される。これにより、組み付け作業性に優れる。 Further, one of the pair of light source sandwiching portions 22c and 27c is a chassis 22 that houses the LED 24 and the light guide plate 26. In this way, when the LED 24 and the light guide plate 26 are accommodated in the chassis 22, the LED 24 and the light guide plate 26 are arranged at appropriate positions with respect to the light source sandwiching portion 22 c of the chassis 22. Thereby, it is excellent in assembly workability.
 また、光指向部33は、一対の光源挟み部22c,27cの少なくともいずれか一方におけるLED24と対向する面に配される第1反射シート(反射部材)28と、第1反射シート28におけるLED24と対向する面に配されるとともにLED24からの光を屈折させつつ第1反射シート28にて反射させることで、LED24の非配置パターン側へと指向させるレンズ部31とから構成されている。このようにすれば、光指向部33を構成する第1反射シート28及びレンズ部31によってLED24からの光を効率的にLED24の非配置パターン側へ指向させることができる。 The light directing unit 33 includes a first reflecting sheet (reflecting member) 28 disposed on a surface facing the LED 24 in at least one of the pair of light source sandwiching portions 22c and 27c, and the LED 24 in the first reflecting sheet 28. The lens portion 31 is arranged on the opposite surface and is directed toward the non-arrangement pattern side of the LED 24 by reflecting the light from the LED 24 with the first reflection sheet 28 while refracting the light. If it does in this way, the light from LED24 can be efficiently directed to the non-arrangement pattern side of LED24 by the 1st reflective sheet 28 and lens part 31 which constitute light directing part 33.
 また、第1反射シート28には、LED24の非配置パターンに倣う開口部28aが形成されており、開口部28aを通して露出する光源挟み部27cによって光反射率が相対的に低い低光反射率部35が構成されるのに対し、第1反射シート28によって光反射率が相対的に高い高光反射率部36が構成されている。このようにすれば、光指向部33が配された光源挟み部27cにおけるLED24と対向する面において、LED24の非配置パターンに倣う部分には、LED24からの光がレンズ部を介さずに照射される場合があり、そこで反射された光は、LED24の配置パターン側へ指向する可能性がある。その場合でも、反射部材にはLED24の非配置パターンに倣う開口部28aが形成されており、上記したレンズ部31を介さない光は、開口部28aを通して露出する光源挟み部27cによって構成される低光反射率部35に照射されることになるから、そこで反射された光の反射光量が抑制される。これにより、低光反射率部35による反射光がLED24の配置パターン側へ指向したとしても、その反射光によって光入射面26bにおける入射光量のムラが悪化するのを軽減することができ、結果として輝度ムラの防止に資するものとされる。また、第1反射シート28に開口部28aを形成することで、低光反射率部35及び高光反射率部36が構成されるから、仮に反射部材に印刷などを施すことで対応した場合に比べると、低コストで対応することができる。 Moreover, the opening part 28a which follows the non-arrangement pattern of LED24 is formed in the 1st reflective sheet 28, and the low light reflectance part with a relatively low light reflectance by the light source clamping part 27c exposed through the opening part 28a. In contrast, the first reflection sheet 28 constitutes a high light reflectance portion 36 having a relatively high light reflectance. In this way, on the surface facing the LED 24 in the light source sandwiching portion 27c in which the light directing portion 33 is disposed, the portion that follows the non-arrangement pattern of the LED 24 is irradiated with the light from the LED 24 without passing through the lens portion. The light reflected there may be directed to the arrangement pattern side of the LED 24. Even in such a case, the reflecting member is formed with the opening portion 28a that follows the non-arrangement pattern of the LED 24, and the light that does not pass through the lens portion 31 described above is formed by the light source sandwiching portion 27c that is exposed through the opening portion 28a. Since the light reflectance part 35 is irradiated, the amount of reflected light of the light reflected there is suppressed. Thereby, even if the reflected light from the low light reflectance portion 35 is directed to the arrangement pattern side of the LED 24, it is possible to reduce the unevenness of the incident light amount on the light incident surface 26b due to the reflected light, and as a result It is considered to contribute to prevention of uneven brightness. Moreover, since the low-light-reflectance part 35 and the high-light-reflectivity part 36 are comprised by forming the opening part 28a in the 1st reflective sheet 28, it compares with the case where it respond | corresponds by printing on a reflective member temporarily. And can be handled at low cost.
 また、第1反射シート28におけるLED24と対向する面には、LED24の並び方向に沿って延在するとともにレンズ部31を有するレンズ付きシート32が配されている。このようにすれば、レンズ付きシート32を第1反射シート28におけるLED24と対向する面に配することで、レンズ部31が適切な位置に配されるので、作業性に優れる。 Further, on the surface of the first reflective sheet 28 that faces the LEDs 24, a lens-equipped sheet 32 that extends along the direction in which the LEDs 24 are arranged and has a lens portion 31 is disposed. In this way, by arranging the lens-equipped sheet 32 on the surface of the first reflective sheet 28 facing the LED 24, the lens unit 31 is arranged at an appropriate position, so that the workability is excellent.
 <実施形態2>
 本発明の実施形態2を図13によって説明する。この実施形態2では、レンズ部131の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the configuration of the lens unit 131 is changed. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る光指向部133を構成するレンズ部131は、図13に示すように、X軸方向(LED24の並び方向)に沿って切断した断面形状が半円形状をなす複数の単位レンズ131aから構成されており、いわゆるシリンドリカルレンズとされる。つまり、本実施形態に係るレンズ付きシート132は、レンチキュラーレンズシートであると言える。このような構成のレンズ部131は、シート基材134(第1反射シート28)側からの光がレンズ部131を出射する際に、界面である各単位レンズ131aの円弧状面にてその光を屈折させることでZ軸方向に並行するよう進行させる集光作用を有している。逆に、このレンズ部131は、LED24側からの光がレンズ部131に入射する際には、界面である各単位レンズ131aの円弧状面にてその光を屈折させることで、X軸方向について広角に拡散させる光拡散作用を有している。 As shown in FIG. 13, the lens unit 131 constituting the light directing unit 133 according to the present embodiment includes a plurality of unit lenses having a semicircular cross-sectional shape cut along the X-axis direction (LED 24 arrangement direction). 131a is a so-called cylindrical lens. That is, it can be said that the lens-attached sheet 132 according to the present embodiment is a lenticular lens sheet. When the light from the sheet base material 134 (the first reflection sheet 28) exits the lens unit 131, the lens unit 131 having such a configuration has its light on the arc-shaped surface of each unit lens 131a that is an interface. Is refracted so as to advance in parallel with the Z-axis direction. Conversely, when the light from the LED 24 is incident on the lens unit 131, the lens unit 131 refracts the light at the arc-shaped surface of each unit lens 131a that is an interface, so that the X-axis direction is It has a light diffusing action that diffuses to a wide angle.
 <実施形態3>
 本発明の実施形態3を図14によって説明する。この実施形態3では、上記した実施形態1に記載したレンズ付きシート32に代えて導光部材37を用いたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 3>
Embodiment 3 of the present invention will be described with reference to FIG. In the third embodiment, a light guide member 37 is used instead of the lens-equipped sheet 32 described in the first embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る導光部材37は、図14に示すように、第1光源挟み部27cにおけるLED24と対向する面に配されており、第1光源挟み部27cに沿って延在する長手の略平板状をなしている。なお、第1光源挟み部27cからは、上記した実施形態1に記載した第1反射シート28及びレンズ付きシート32が除去されている。導光部材37は、屈折率が空気よりも高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばPMMAなどのアクリル樹脂やポリカーボネートなど)からなり、その材料は導光板26と同じとされる。導光部材37のうち、表側(第1光源挟み部27c側)の面には、LED24からの光を屈折させてX軸方向(LED24の並び方向)に沿って向かわせる第1屈折面37aが形成されているのに対し、裏側(LED24側)の面には、第1屈折面37aにて屈折された光をさらに屈折させて裏側へ向かわせる第2屈折面37bが形成されており、これにより導光部材37が光指向部233を構成している。このうち、第1屈折面37aは、X軸方向について光源配置領域LAに配されるのに対し、第2屈折面37bは、光源非配置領域LNに配されている。第1屈折面37a及び第2屈折面37bは、いずれもX軸方向に沿って切断した断面形状が二等辺三角形状をなしていて、X軸方向及びZ軸方向の双方に対して傾斜している。第1屈折面37a及び第2屈折面37bは、Z軸方向について互いに大部分同士が重なり合う位置関係にあり、それにより第1屈折面37aにて屈折されてX軸方向に並行しつつ進行する光を、第2屈折面37bにて屈折させてZ軸方向に並行する光に変換することが可能とされる。 As shown in FIG. 14, the light guide member 37 according to the present embodiment is disposed on a surface of the first light source sandwiching portion 27 c that faces the LED 24, and has a longitudinal length that extends along the first light source sandwiching portion 27 c. It has a substantially flat plate shape. The first reflection sheet 28 and the lens-equipped sheet 32 described in the first embodiment are removed from the first light source sandwiching portion 27c. The light guide member 37 is made of a synthetic resin material (for example, acrylic resin such as PMMA or polycarbonate) having a refractive index higher than that of air and substantially transparent (excellent translucency), and the material is the same as that of the light guide plate 26. It is said. A first refracting surface 37a that refracts the light from the LED 24 and directs it along the X-axis direction (the direction in which the LEDs 24 are arranged) is provided on the surface of the light guide member 37 on the front side (first light source sandwiching portion 27c side). On the other hand, on the surface on the back side (LED 24 side), a second refracting surface 37b for further refracting the light refracted by the first refracting surface 37a toward the back side is formed. Thus, the light guide member 37 constitutes the light directing portion 233. Among these, the first refracting surface 37a is arranged in the light source arrangement region LA in the X-axis direction, while the second refracting surface 37b is arranged in the light source non-arrangement region LN. Each of the first refracting surface 37a and the second refracting surface 37b has an isosceles triangular cross section cut along the X-axis direction, and is inclined with respect to both the X-axis direction and the Z-axis direction. Yes. The first refracting surface 37a and the second refracting surface 37b are in a positional relationship in which most of the first refracting surface 37b and the second refracting surface 37b are overlapped with each other in the Z-axis direction. Can be refracted by the second refracting surface 37b and converted into light parallel to the Z-axis direction.
 本実施形態に係る作用について説明する。光源配置領域LAにおいてLED24から発せられて第1光源挟み部27c側へ向かう光は、導光部材37に入射してから、第1屈折面37aにて屈折されてX軸方向に並行しつつ光源非配置領域LNへと指向される。導光部材37内を伝播して光源非配置領域LNに進入した光は、第2屈折面37bにて屈折されることで、Z軸方向に並行しつつ裏側、つまり第2光源挟み部22c(第2反射シート29)側へ進行される。これにより、光量が過剰になりがちな光源配置領域LAに存する光を、光量が不足しがちな光源非配置領域LN側に振り分けることができ、もって導光板26の光入射面26bに入射する光量にムラが生じ難くなる。なお、LED24間の配列間隔を変更する場合には、導光部材37において、第1屈折面37a及び第2屈折面37bのX軸方向についての相対的な位置関係を適宜に調整することで、容易に対処することが可能である。 The operation according to this embodiment will be described. Light emitted from the LED 24 toward the first light source sandwiching portion 27c in the light source arrangement area LA is incident on the light guide member 37 and then refracted by the first refracting surface 37a to be parallel to the X-axis direction. Directed to the non-arrangement region LN. The light propagating through the light guide member 37 and entering the light source non-arrangement region LN is refracted by the second refracting surface 37b, so that it is parallel to the Z-axis direction, that is, the second light source sandwiching portion 22c ( It proceeds to the second reflecting sheet 29) side. Thereby, the light existing in the light source arrangement area LA, which tends to have an excessive amount of light, can be distributed to the light source non-arrangement area LN where the light quantity tends to be insufficient, and thus the amount of light incident on the light incident surface 26b of the light guide plate 26. It becomes difficult to produce unevenness. In addition, when changing the arrangement | positioning space | interval between LED24, in the light guide member 37, by adjusting the relative positional relationship about the X-axis direction of the 1st refractive surface 37a and the 2nd refractive surface 37b suitably, It can be easily dealt with.
 以上説明したように本実施形態によれば、光指向部233は、一対の光源挟み部22c,27cの少なくともいずれか一方におけるLED24と対向する面においてLED24の並び方向に沿って延在するとともにLED24からの光を導光する導光部材37からなるものとされ、導光部材37には、LED24からの光を屈折させてLED24の並び方向に沿って向かわせる第1屈折面37aと、第1屈折面37aにて屈折された光をさらに屈折させて一対の光源挟み部22c,27cのうち当該導光部材37と対向する側へ向かわせる第2屈折面37bとが形成されている。このようにすれば、光指向部233を構成する導光部材37における第1屈折面37a及び第2屈折面37bによってLED24からの光を屈折させることで、光を効率的にLED24の非配置パターン側へ指向させることができる。 As described above, according to the present embodiment, the light directing portion 233 extends along the alignment direction of the LEDs 24 on the surface facing the LEDs 24 in at least one of the pair of light source sandwiching portions 22c and 27c. The light guide member 37 is configured to guide the light from the first light-reflecting surface 37a that refracts the light from the LED 24 and directs it along the alignment direction of the LEDs 24, and the first light-reflecting surface 37a. A second refracting surface 37b is formed that further refracts the light refracted by the refracting surface 37a and directs the light to the side facing the light guide member 37 of the pair of light source sandwiching portions 22c and 27c. In this way, the light from the LED 24 is refracted by the first refracting surface 37a and the second refracting surface 37b of the light guide member 37 that constitutes the light directing unit 233, so that the light is efficiently disposed in the non-arrangement pattern of the LED 24. Can be directed to the side.
 <実施形態4>
 本発明の実施形態4を図15によって説明する。この実施形態4では、上記した実施形態1から光指向部333の形成範囲を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 4>
A fourth embodiment of the present invention will be described with reference to FIG. In this Embodiment 4, what changed the formation range of the light directing part 333 from above-mentioned Embodiment 1 is shown. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る光指向部333(レンズ部331及び第1反射シート328における開口部328aの非形成部分)は、図15に示すように、X軸方向、つまりLED24の並び方向についての寸法W5が、LED24及び光源配置領域LAにおけるX軸方向についての寸法W2と同じ大きさとされている。これに対し、第1反射シート328の開口部328aにおけるX軸方向についての寸法W6は、光源非配置領域LNにおけるX軸方向についての寸法W4と同じ大きさとされている。このように本実施形態では、光指向部333は、光源配置領域LAの全域にわたって配されるのに対し、隣り合う光指向部333間に配される開口部328aは、光源非配置領域LNの全域にわたって配される。 As shown in FIG. 15, the light directing portion 333 according to the present embodiment (the portion where the opening 328a is not formed in the lens portion 331 and the first reflection sheet 328) has a dimension W5 in the X-axis direction, that is, the LED 24 arrangement direction. Is the same size as the dimension W2 in the X-axis direction in the LED 24 and the light source arrangement area LA. On the other hand, the dimension W6 in the X-axis direction in the opening 328a of the first reflection sheet 328 is the same as the dimension W4 in the X-axis direction in the light source non-arrangement region LN. As described above, in the present embodiment, the light directing portion 333 is disposed over the entire light source arrangement region LA, whereas the opening 328a disposed between the adjacent light directing portions 333 is provided in the light source non-arrangement region LN. Distributed throughout.
 <実施形態5>
 本発明の実施形態5を図16によって説明する。この実施形態5では、上記した実施形態4からさらに光指向部433の形成範囲を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 5>
A fifth embodiment of the present invention will be described with reference to FIG. In the fifth embodiment, a configuration in which the formation range of the light directing portion 433 is further changed from the above-described fourth embodiment is shown. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る光指向部433(レンズ部431及び第1反射シート428における開口部428aの非形成部分)は、図16に示すように、X軸方向、つまりLED24の並び方向についての寸法W7が、LED24及び光源配置領域LAにおけるX軸方向についての寸法W2よりも小さいものとされる。これに対し、第1反射シート428の開口部428aにおけるX軸方向についての寸法W8は、光源非配置領域LNにおけるX軸方向についての寸法W4よりも大きなものとされる。このように本実施形態では、光指向部433は、光源配置領域LAの一部(LED24の並び方向についての中央部)に対してのみ重なり合う配置とされるのに対し、隣り合う光指向部433間に配される開口部428aは、光源非配置領域LNの全域にわたって配される。 As shown in FIG. 16, the light directing portion 433 according to the present embodiment (the portion where the opening portion 428a is not formed in the lens portion 431 and the first reflection sheet 428) has a dimension W7 in the X-axis direction, that is, the LED 24 arrangement direction. Is smaller than the dimension W2 in the X-axis direction in the LED 24 and the light source arrangement area LA. On the other hand, the dimension W8 in the X-axis direction in the opening 428a of the first reflection sheet 428 is larger than the dimension W4 in the X-axis direction in the light source non-arrangement region LN. As described above, in the present embodiment, the light directing unit 433 is arranged so as to overlap only a part of the light source arrangement region LA (the central part in the arrangement direction of the LEDs 24), whereas the adjacent light directing units 433 are arranged. The opening 428a disposed therebetween is disposed over the entire light source non-arrangement region LN.
 <実施形態6>
 本発明の実施形態6を図17によって説明する。この実施形態6では、上記した実施形態1から第1反射シート528の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 6>
Embodiment 6 of the present invention will be described with reference to FIG. In the sixth embodiment, the first reflective sheet 528 is changed from the first embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る第1反射シート528は、図17に示すように、実施形態1に記載した開口部28aが形成されていない構成とされている。つまり、本実施形態に係る第1光源挟み部527cにおけるLED24と対向する面は、第1反射シート528によってほぼ全域にわたって覆われていて、LED24側に露出することが避けられている。従って、光源非配置領域LNにおいても、光源配置領域LAと同様に第1反射シート528によって光を効率的に反射させることができる。 The first reflection sheet 528 according to the present embodiment is configured such that the opening 28a described in the first embodiment is not formed, as shown in FIG. That is, the surface facing the LED 24 in the first light source sandwiching portion 527c according to the present embodiment is covered almost entirely by the first reflection sheet 528, and is not exposed to the LED 24 side. Therefore, also in the light source non-arrangement region LN, light can be efficiently reflected by the first reflection sheet 528 similarly to the light source arrangement region LA.
 <実施形態7>
 本発明の実施形態7を図18によって説明する。この実施形態7では、上記した実施形態1から第1反射シート28に代えて光指向反射部38を設けるとともにレンズ付きシート32を除去したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Embodiment 7>
A seventh embodiment of the present invention will be described with reference to FIG. In the seventh embodiment, a light directing reflection portion 38 is provided instead of the first reflection sheet 28 from the first embodiment, and the lens-equipped sheet 32 is removed. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る第1光源挟み部627cにおけるLED24と対向する面には、図18に示すように、光源配置領域LAに倣う配置の光指向反射部38が設けられている。光指向反射部38は、表面が光の反射性に優れた白色を呈する材料からなるものとされ、第1光源挟み部627cにおけるLED24と対向する面に対して印刷などによって一体形成されている。光指向反射部38は、X軸方向に沿って切断した断面形状が略三角形台をなしており、X軸方向について中央部がLED24側に突出する凸型とされる。光指向反射部38は、LED24に臨む一対の傾斜面38aを有しており、この一対の両傾斜面38aがLED24とは正対せず、X軸方向について隣り合う光源非配置領域LN側を向いている。従って、LED24から第1光源挟み部627c側へ向かう光は、光源配置領域LAに倣って配された光指向反射部38の傾斜面38aによって反射されることで、光源非配置領域LN側へ指向される。これにより、光量が過剰になりがちな光源配置領域LAに存する光を、光量が不足しがちな光源非配置領域LN側に振り分けることができ、もって導光板26の光入射面26bに入射する光量にムラが生じ難くなる。なお、光指向反射部38における光反射面の具体的な形状は、傾斜面38a以外にも変更可能であり、例えば円弧状面や湾曲面とすることも可能である。 As shown in FIG. 18, a light directing reflecting portion 38 is provided on the surface of the first light source sandwiching portion 627 c according to the present embodiment that faces the LED 24 as shown in FIG. The light directing reflecting portion 38 is made of a material having a white surface with excellent light reflectivity, and is integrally formed on the surface of the first light source sandwiching portion 627c facing the LED 24 by printing or the like. The light-directed reflecting section 38 has a cross-sectional shape cut along the X-axis direction to form a substantially triangular base, and has a convex shape with a central portion protruding toward the LED 24 in the X-axis direction. The light directing reflection portion 38 has a pair of inclined surfaces 38a facing the LED 24, and the pair of inclined surfaces 38a do not face the LED 24, and the adjacent light source non-arrangement region LN side in the X-axis direction. It is suitable. Therefore, the light traveling from the LED 24 toward the first light source sandwiching portion 627c is reflected by the inclined surface 38a of the light directing reflecting portion 38 disposed along the light source placement region LA, and is directed toward the light source non-placement region LN. Is done. Thereby, the light existing in the light source arrangement area LA, which tends to have an excessive amount of light, can be distributed to the light source non-arrangement area LN where the light quantity tends to be insufficient, and thus the amount of light incident on the light incident surface 26b of the light guide plate 26. It becomes difficult to produce unevenness. In addition, the specific shape of the light reflection surface in the light directing reflection unit 38 can be changed in addition to the inclined surface 38a, and for example, an arcuate surface or a curved surface can be used.
 <実施形態8>
 本発明の実施形態8を図19によって説明する。この実施形態8では、上記した実施形態7から光指向反射部738の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
<Eighth embodiment>
An eighth embodiment of the present invention will be described with reference to FIG. In the eighth embodiment, a configuration in which the configuration of the light directing reflection unit 738 is changed from the above-described seventh embodiment. In addition, the overlapping description about the same structure, an effect | action, and effect as above-mentioned Embodiment 1 is abbreviate | omitted.
 本実施形態に係る光指向反射部738は、図19に示すように、X軸方向について中央部が第1光源挟み部727c側に引っ込む凹型とされている。光指向反射部738が有する一対の傾斜面738aのうち、図19に示す右側の傾斜面738aは、当該光指向反射部738が存する光源配置領域LAに対して同図左側に隣り合う光源非配置領域LN側を向いているのに対し、同図左側の傾斜面738aは、同図右側に隣り合う光源非配置領域LN側を向いている。従って、LED24から第1光源挟み部727c側へ向かう光は、光源配置領域LAに倣って配された光指向反射部738の傾斜面738aによって反射されることで、光源非配置領域LN側へ指向される。なお、光指向反射部738における光反射面の具体的な形状は、傾斜面738a以外にも変更可能であり、例えば円弧状面や湾曲面とすることも可能である。 As shown in FIG. 19, the light-directing reflecting portion 738 according to the present embodiment is a concave shape whose central portion is retracted toward the first light source sandwiching portion 727c in the X-axis direction. Of the pair of inclined surfaces 738a included in the light-directing reflection unit 738, the right-side inclined surface 738a shown in FIG. 19 is not disposed adjacent to the left side of the same figure with respect to the light source arrangement region LA where the light-directing reflection unit 738 exists. In contrast to the region LN side, the inclined surface 738a on the left side of the figure faces the light source non-arrangement region LN side adjacent to the right side of the figure. Accordingly, the light traveling from the LED 24 toward the first light source sandwiching portion 727c is reflected by the inclined surface 738a of the light directing reflection portion 738 disposed along the light source arrangement region LA, and thus directed toward the light source non-arrangement region LN. Is done. In addition, the specific shape of the light reflecting surface in the light directing reflecting portion 738 can be changed in addition to the inclined surface 738a, and for example, an arcuate surface or a curved surface can be used.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態以外にも、カラーフィルタにおける各着色部R,G,B,Yの並び順は適宜に変更可能であり、例えば図20に示すように、同図左側から青色の着色部B、緑色の着色部G、赤色の着色部R、黄色の着色部Yの順でX軸方向に沿って並ぶ配列としたものも本発明に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In addition to the above-described embodiments, the arrangement order of the colored portions R, G, B, and Y in the color filter can be changed as appropriate. For example, as shown in FIG. The present invention includes an arrangement in which the colored portion B, the green colored portion G, the red colored portion R, and the yellow colored portion Y are arranged in this order along the X-axis direction.
 (2)上記した(1)以外にも、例えば、図21に示すように、カラーフィルタにおける各着色部R,G,B,Yが同図左側から赤色の着色部R、緑色の着色部G、黄色の着色部Y、青色の着色部B、の順でX軸方向に沿って並ぶ配列としたものも本発明に含まれる。 (2) In addition to the above (1), for example, as shown in FIG. 21, the colored portions R, G, B, and Y in the color filter are red colored portions R and green colored portions G from the left side of the drawing. The present invention also includes an arrangement in which the yellow colored portion Y and the blue colored portion B are arranged in this order along the X-axis direction.
 (3)上記した(1)及び(2)以外にも、例えば、図22に示すように、カラーフィルタにおける各着色部R,G,B,Yが同図左側から赤色の着色部R、黄色の着色部Y、緑色の着色部G、青色の着色部B、の順でX軸方向に沿って並ぶ配列としたものも本発明に含まれる。 (3) In addition to the above (1) and (2), for example, as shown in FIG. 22, the colored portions R, G, B, and Y in the color filter are red colored portions R and yellow from the left side of the drawing. The present invention also includes an arrangement in which the colored portion Y, the green colored portion G, and the blue colored portion B are arranged in this order along the X-axis direction.
 (4)上記した各実施形態では、カラーフィルタの着色部として光の三原色である赤色(R),緑色(G),青色(B)に、黄色(Y)を加えたものを示したが、図23に示すように、黄色の着色部に代えてシアン色の着色部Cを加えるようにしてもよい。 (4) In each of the above-described embodiments, the three primary colors of light, red (R), green (G), and blue (B) are added to yellow (Y) as the colored portion of the color filter. As shown in FIG. 23, a cyan colored portion C may be added instead of the yellow colored portion.
 (5)上記した各実施形態では、カラーフィルタの着色部を4色としたものを示したが、図24に示すように、黄色の着色部の設置位置に透過光を着色することがない透明部Tを設けるようにしても構わない。透明部Tは、少なくとも可視光線における全波長に対する透過率がほぼ等しくなっており、それにより透過光を特定の色に着色することがないものとされる。 (5) In each of the above-described embodiments, the color filter has four colored portions. However, as shown in FIG. 24, the transparent color does not color transmitted light at the installation position of the yellow colored portion. The portion T may be provided. The transparent portion T has substantially the same transmittance for all wavelengths at least in the visible light, so that the transmitted light is not colored into a specific color.
 (6)上記した各実施形態では、カラーフィルタを構成する4色の各着色部R,G,B,Yが行方向に沿って並ぶ構成のものを例示したが、4色の各着色部R,G,B,Yが行列状に並ぶ構成とすることも可能である。具体的には、4色の各着色部R,G,B,Yは、図25に示すように、X軸方向を行方向とし、Y軸方向を列方向として行列状に並べられており、各着色部R,G,B,Yにおける行方向(X軸方向)の寸法は全て同一とされるものの、隣り合う行に配された着色部R,G,B,Y同士は列方向(Y軸方向)の寸法が互いに異なるものとされる。そして、相対的に列方向の寸法が大きな行には、赤色の着色部R及び青色の着色部Bが行方向に隣り合って配されるのに対し、相対的に列方向の寸法が小さな行には、緑色の着色部G及び黄色の着色部Yが行方向に隣り合って配されている。つまり、赤色の着色部R及び青色の着色部Bが行方向について交互に配されてなる、列方向の寸法が相対的に大きな第1の行と、緑色の着色部G及び黄色の着色部Yが行方向について交互に配されてなる、列方向の寸法が相対的に小さな第2の行とが列方向に交互に繰り返し配されていることになる。これにより、赤色の着色部R及び青色の着色部Bの面積は、緑色の着色部G及び黄色の着色部Yの面積よりも大きなものとされている。また、赤色の着色部Rに対して緑色の着色部Gが列方向に隣り合って配されており、青色の着色部Bに対して黄色の着色部Yが列方向に隣り合って配されている。 (6) In each of the above-described embodiments, the four colored portions R, G, B, and Y constituting the color filter are illustrated as being arranged in the row direction. However, the four colored portions R are arranged. , G, B, and Y may be arranged in a matrix. Specifically, as shown in FIG. 25, the four colored portions R, G, B, and Y are arranged in a matrix with the X-axis direction as the row direction and the Y-axis direction as the column direction. Although the dimensions in the row direction (X-axis direction) in each of the colored portions R, G, B, and Y are all the same, the colored portions R, G, B, and Y arranged in adjacent rows are in the column direction (Y The dimensions in the axial direction are different from each other. In a row having a relatively large dimension in the column direction, the red colored portion R and the blue colored portion B are arranged adjacent to each other in the row direction, whereas the row having a relatively small size in the column direction. The green colored portion G and the yellow colored portion Y are arranged adjacent to each other in the row direction. In other words, the first colored row R and the blue colored portion B are alternately arranged in the row direction, the first row having a relatively large dimension in the column direction, the green colored portion G, and the yellow colored portion Y. Are alternately arranged in the row direction, and second rows having relatively small dimensions in the column direction are alternately arranged in the column direction. Thereby, the area of the red coloring part R and the blue coloring part B is made larger than the areas of the green coloring part G and the yellow coloring part Y. Further, the green colored portion G is arranged adjacent to the red colored portion R in the column direction, and the yellow colored portion Y is arranged adjacent to the blue colored portion B in the column direction. Yes.
 カラーフィルタを上記のような構成とするのに伴い、アレイ基板においては、図26に示すように、隣り合う行に配された各画素電極115の列方向の寸法が異なるものとされる。すなわち、各画素電極115のうち、赤色の着色部Rまたは青色の着色部Bと重畳するものの面積は、黄色の着色部Yまたは緑色の着色部Gと重畳するものの面積よりも大きなものとされる。各着色部R,G,B,Yの膜厚は、全て等しいものとされる。また、ソース配線117については、全て等ピッチで配列されているのに対し、ゲート配線116については、画素電極115の列方向の寸法に応じて2通りのピッチで配列されている。なお、図25及び図26では、赤色の着色部R及び青色の着色部Bの面積が、黄色の着色部Y及び緑色の着色部Gの面積の約1.6倍程度とされる場合を図示している。 As the color filter is configured as described above, in the array substrate, as shown in FIG. 26, the dimensions in the column direction of the pixel electrodes 115 arranged in adjacent rows are different. That is, the area of each pixel electrode 115 that overlaps with the red colored portion R or the blue colored portion B is larger than the area of the pixel electrode 115 that overlaps with the yellow colored portion Y or the green colored portion G. . The film thicknesses of the colored portions R, G, B, and Y are all equal. The source wirings 117 are all arranged at an equal pitch, while the gate wirings 116 are arranged at two different pitches according to the dimensions of the pixel electrodes 115 in the column direction. 25 and 26 show a case where the areas of the red colored portion R and the blue colored portion B are about 1.6 times the areas of the yellow colored portion Y and the green colored portion G. Show.
 (7)上記した(6)のさらなる変形例として、図27に示すように、カラーフィルタに関して赤色の着色部Rに対して黄色の着色部Yが列方向に隣り合って配されており、青色の着色部Bに対して緑色の着色部Gが列方向に隣り合って配された構成とすることも可能である。 (7) As a further modification of the above (6), as shown in FIG. 27, the yellow colored portion Y is arranged adjacent to the red colored portion R in the column direction with respect to the color filter. It is also possible to adopt a configuration in which the green colored portion G is arranged adjacent to the colored portion B in the column direction.
 (8)上記した各実施形態では、カラーフィルタを構成する各着色部R,G,B,Yの面積比率が異なる構成のものを例示したが、各着色部R,G,B,Yの面積比率を等しくする構成とすることも可能である。具体的には、各着色部R,G,B,Yは、図28に示すように、X軸方向を行方向とし、Y軸方向を列方向として行列状に配列されており、各着色部R,G,B,Yにおける行方向(X軸方向)の寸法が互いに全て同一とされるとともに、列方向(Y軸方向)の寸法についても互いに全て同一とされる。従って、各着色部R,G,B,Yの面積は、全て等しいものとされる。カラーフィルタを上記のような構成とするのに伴い、アレイ基板においては、図29に示すように、各着色部R,G,B,Yと対向状をなす各画素電極215における行方向の寸法が全て等しく、且つ列方向の寸法が全て等しくなっており、それにより全ての画素電極215が同一形状とされるとともに同一面積とされる。また、ゲート配線216及びソース配線217は、それぞれ全て等ピッチで配列されている。 (8) In each of the above-described embodiments, the color portions R, G, B, and Y constituting the color filter are illustrated with different area ratios. However, the areas of the colored portions R, G, B, and Y are exemplified. It is also possible to adopt a configuration in which the ratio is made equal. Specifically, as shown in FIG. 28, the colored portions R, G, B, and Y are arranged in a matrix with the X-axis direction as the row direction and the Y-axis direction as the column direction. The dimensions in the row direction (X-axis direction) in R, G, B, and Y are all the same, and the dimensions in the column direction (Y-axis direction) are all the same. Accordingly, the areas of the colored portions R, G, B, and Y are all equal. As the color filter is configured as described above, in the array substrate, as shown in FIG. 29, the dimension in the row direction of each pixel electrode 215 facing each colored portion R, G, B, Y is shown in FIG. Are all equal and the dimensions in the column direction are all equal, so that all the pixel electrodes 215 have the same shape and the same area. The gate wiring 216 and the source wiring 217 are all arranged at an equal pitch.
 (9)上記した(8)において、各着色部R,G,B,Yの配列を上記した(1)から(3)と同様にすることも可能である。 (9) In the above (8), the arrangement of the colored portions R, G, B, and Y can be the same as (1) to (3) described above.
 (10)上記した(6)及び(8)に、上記した(4)または(5)にて説明した構成をそれぞれ適用することも可能である。 (10) The configuration described in (4) or (5) above can also be applied to (6) and (8) above.
 (11)上記した各実施形態では、カラーフィルタの着色部を4色としたものを示したが、図30に示すように、黄色の着色部を省略し、光の三原色である赤色(R),緑色(G),青色(B)のみとしたものも本発明に含まれる。この場合、各着色部R,G,Bの面積比率を等しくするのが好ましい。 (11) In each of the above-described embodiments, the color filter has four colored portions. However, as shown in FIG. 30, the yellow colored portion is omitted, and red (R), which is the primary color of light. , Green (G), and blue (B) are also included in the present invention. In this case, it is preferable to make the area ratios of the colored portions R, G, and B equal.
 (12)上記した各実施形態では、画素に関する構造について簡略化した図面(図4及び図5)を用いて説明したが、これらの図面で開示した構造以外にも画素に関する具体的な構造を変更することが可能である。例えば、1つの画素を複数の副画素に分割してそれらの副画素を階調値が互いに異なるよう駆動する、いわゆるマルチ画素駆動を行う構造としたものにも本発明は適用可能である。その具体的な構成としては、図31に示すように、1つの画素PXを一対の副画素SPXにより構成するとともに、その一対の副画素SPXを、ゲート配線102を挟んで隣り合う一対の画素電極100により構成する。一方、ゲート配線102上には、一対の画素電極100に対応して一対のTFT101を形成する。TFT101は、ゲート配線102の一部により構成されるゲート電極101aと、ソース配線103から分岐されてゲート電極101a上に配される一対の分岐線により構成されるソース電極101bと、ゲート電極101a上に配され且つ一対のソース電極101b間に挟まれる配置のドレイン電極101cとから構成されており、ゲート配線102上において1つの画素PXをなす一対の副画素SPXの並び方向(Y軸方向)に沿って一対が並んで配されている。TFT101のうちドレイン電極101cには、一端側に画素電極100と接続されるコンタクト部104aを有するドレイン配線104の他端側が接続されている。コンタクト部104aと画素電極100とは、両者の間に介在する層間絶縁膜(図示せず)に開口形成されたコンタクトホールCHを通して接続され、相互が同電位となっている。その一方、一対の画素電極100において、ゲート配線102側とは反対側の端部には、それぞれ補助容量配線105が平面視重畳する形で配されており、この補助容量配線105が重畳する画素電極100との間で容量を形成している。つまり、1つの画素PXを構成する一対の画素電極100は、互いに異なる補助容量配線105との間で容量を形成していることになる。さらには、ゲート配線101と各補助容量配線105との間には、ゲート配線101及び補助容量配線105に並行するとともに各画素電極100及び各コンタクト部104aを横切る形の画素内補助容量配線108がそれぞれ形成されている。各画素内補助容量配線108は、ゲート配線101側とは反対側に配された各補助容量配線105に対してそれぞれ接続配線109によって接続されることで、各補助容量配線105と同電位とされている。従って、補助容量配線105と同電位である画素内補助容量配線108は、平面に視て重畳し且つ各画素電極100と同電位である各コンタクト部104aとの間で容量を形成している。そして、駆動に際しては、一対のTFT101に対してそれぞれ共通のゲート配線102及びソース配線103から走査信号及びデータ信号を供給するのに対し、一対の画素電極100及びそれらに接続された一対のコンタクト部104aとそれぞれ重畳する各補助容量配線105及び各画素内補助容量配線108には互いに異なる信号(電位)を供給することで、各副画素SPXに充電される電圧値、つまり階調値を互いに異ならせることができる。これにより、いわゆるマルチ画素駆動を行うことができ、良好な視野角特性を得ることができる。 (12) In each of the above-described embodiments, the structure related to the pixel has been described using the simplified drawings (FIGS. 4 and 5). However, in addition to the structure disclosed in these drawings, the specific structure related to the pixel is changed. Is possible. For example, the present invention can also be applied to a structure in which one pixel is divided into a plurality of sub-pixels and the sub-pixels are driven so as to have different gradation values, so-called multi-pixel driving is performed. Specifically, as shown in FIG. 31, one pixel PX is composed of a pair of sub-pixels SPX, and the pair of sub-pixels SPX is composed of a pair of adjacent pixel electrodes with the gate wiring 102 interposed therebetween. 100. On the other hand, a pair of TFTs 101 is formed on the gate wiring 102 corresponding to the pair of pixel electrodes 100. The TFT 101 includes a gate electrode 101a constituted by a part of the gate wiring 102, a source electrode 101b constituted by a pair of branch lines branched from the source wiring 103 and disposed on the gate electrode 101a, and the gate electrode 101a. And a drain electrode 101c arranged between the pair of source electrodes 101b, and arranged in the direction (Y-axis direction) of the pair of sub-pixels SPX forming one pixel PX on the gate wiring 102. A pair is lined up along. The drain electrode 101c of the TFT 101 is connected to the other end side of the drain wiring 104 having a contact portion 104a connected to the pixel electrode 100 on one end side. The contact portion 104a and the pixel electrode 100 are connected through a contact hole CH formed in an interlayer insulating film (not shown) interposed therebetween, and have the same potential. On the other hand, in the pair of pixel electrodes 100, the auxiliary capacitance wiring 105 is arranged at the end opposite to the gate wiring 102 side so as to overlap each other in plan view, and the pixel on which the auxiliary capacitance wiring 105 overlaps. A capacitance is formed with the electrode 100. That is, the pair of pixel electrodes 100 constituting one pixel PX forms a capacitance with different auxiliary capacitance lines 105. Further, between the gate wiring 101 and each auxiliary capacitance wiring 105, there is an in-pixel auxiliary capacitance wiring 108 which is parallel to the gate wiring 101 and auxiliary capacitance wiring 105 and crosses each pixel electrode 100 and each contact portion 104a. Each is formed. Each in-pixel auxiliary capacitance line 108 is connected to each auxiliary capacitance line 105 arranged on the side opposite to the gate line 101 side by a connection line 109, thereby having the same potential as each auxiliary capacitance line 105. ing. Accordingly, the in-pixel auxiliary capacitance line 108 having the same potential as that of the auxiliary capacitance line 105 is superimposed on the plane and forms a capacitance with each contact portion 104a having the same potential as each pixel electrode 100. In driving, the scanning signal and the data signal are supplied from the common gate wiring 102 and the source wiring 103 to the pair of TFTs 101, respectively, while the pair of pixel electrodes 100 and the pair of contact portions connected thereto. By supplying different signals (potentials) to each auxiliary capacitance line 105 and each pixel auxiliary capacitance line 108 that overlap each of 104a, the voltage value charged to each sub-pixel SPX, that is, the gradation value is different from each other. Can be made. Thereby, so-called multi-pixel driving can be performed, and good viewing angle characteristics can be obtained.
 ところで、上記のようなマルチ画素駆動を行う画素構造において、画素電極100、及び画素電極100に対して対向状をなすカラーフィルタ106の各着色部R,G,B,Yは、次のような構成とされる。すなわち、カラーフィルタ106は、図32に示すように、4色の着色部R,G,B,Yにより構成され、同図左側から黄色の着色部Y、赤色の着色部R、緑色の着色部G、青色の着色部Bの順でX軸方向に沿って繰り返し並列配置されている。各着色部R,G,B,Yは、遮光層(ブラックマトリクス)107によって仕切られており、遮光層107は、平面に視てゲート配線102、ソース配線103及び補助容量配線105と重畳する範囲に略格子状に配されている。各着色部R,G,B,Yのうち、黄色の着色部Y及び緑色の着色部Gは、X軸方向(着色部R,G,B,Yの並列方向)の寸法が互いにほぼ等しいのに対し、赤色の着色部R及び青色の着色部Bは、X軸方向の寸法が黄色の着色部Y及び緑色の着色部Gよりも相対的に大きくなっている(例えば1.3倍から1.4倍程度)。さらに詳しくは、赤色の着色部Rは、X軸方向の寸法が青色の着色部Bよりも僅かに大きくなっている。なお、各画素電極100は、図31に示すように、Y軸方向の寸法については互いにほぼ等しい大きさとされるものの、X軸方向の寸法は対向するカラーフィルタ106の着色部R,G,B,Yの大きさに対応した大きさとされる。 By the way, in the pixel structure that performs multi-pixel driving as described above, the coloring portions R, G, B, and Y of the color filter 106 that faces the pixel electrode 100 and the pixel electrode 100 are as follows. It is supposed to be configured. That is, as shown in FIG. 32, the color filter 106 includes four colored portions R, G, B, and Y. From the left side of the drawing, the yellow colored portion Y, the red colored portion R, and the green colored portion. G and blue colored portion B are repeatedly arranged in parallel along the X-axis direction in this order. Each of the colored portions R, G, B, and Y is partitioned by a light shielding layer (black matrix) 107. The light shielding layer 107 overlaps with the gate wiring 102, the source wiring 103, and the auxiliary capacitance wiring 105 in a plan view. Are arranged in a substantially lattice pattern. Among the colored portions R, G, B, and Y, the yellow colored portion Y and the green colored portion G have substantially the same dimensions in the X-axis direction (the parallel direction of the colored portions R, G, B, and Y). On the other hand, the red colored portion R and the blue colored portion B are relatively larger in dimensions in the X-axis direction than the yellow colored portion Y and the green colored portion G (for example, 1.3 times to 1). About 4 times). More specifically, the red colored portion R has a slightly larger dimension in the X-axis direction than the blue colored portion B. As shown in FIG. 31, the pixel electrodes 100 are approximately equal in size in the Y-axis direction, but the dimensions in the X-axis direction are the colored portions R, G, B of the color filter 106 facing each other. , Y corresponding to the size of Y.
 (13)上記した各実施形態では、一対の光源挟み部のうち、光出射面側の第1光源挟み部に光指向部を配したものを示したが、光出射面側とは反対側の第2光源挟み部に光指向部を配するようにしてもよい。また、第1光源挟み部及び第2光源挟み部の双方に、それぞれ光指向部を配するようにしても構わない。 (13) In each of the above-described embodiments, the light directing portion is arranged in the first light source sandwiching portion on the light emitting surface side out of the pair of light source sandwiching portions. A light directing unit may be arranged in the second light source sandwiching unit. Moreover, you may make it arrange | position a light directing part to both the 1st light source clamping part and the 2nd light source clamping part, respectively.
 (14)上記した各実施形態では、光指向部がLEDの並び方向について対称形状とされたものを示したが、光指向部がLEDの並び方向について非対称形状とされるものも本発明に含まれる。 (14) In each of the above-described embodiments, the light directing unit is symmetric with respect to the LED arrangement direction, but the light directing unit is also asymmetric with respect to the LED arrangement direction. It is.
 (15)上記した各実施形態では、光指向部が各光源配置領域の全てに対して対応付けて配されたものを示したが、光指向部が各光源配置領域の一部にのみ対応付けて配されるようにしたものも本発明に含まれる。具体的には、光指向部がLEDの並び方向について不等ピッチ配列される構成を採ることができる。 (15) In each of the above-described embodiments, the light directing unit is associated with all the light source arrangement regions, but the light directing unit is associated with only a part of each light source arrangement region. Those arranged in this manner are also included in the present invention. Specifically, it is possible to adopt a configuration in which the light directing units are arranged at unequal pitches in the LED arrangement direction.
 (16)上記した各実施形態では、各光指向部におけるLEDの並び方向についての寸法が全て等しいものを示したが、LEDの並び方向についての寸法が互いに異なる光指向部を有するものも本発明に含まれる。 (16) In each of the above-described embodiments, the light directing units have the same dimensions in the LED alignment direction. However, the present invention also includes light directing units having different dimensions in the LED alignment direction. include.
 (17)上記した実施形態1,2以外にも、レンズ付きシートに形成するレンズ部の具体的な形状は適宜に変更可能である。例えば、レンズ部がシート基材のレンズ形成面において、点状をなす形態とされるものも本発明に含まれる。その場合、点状をなすレンズ部をシート基材のレンズ形成面において二次元的に並列配置することが可能である。 (17) Besides the first and second embodiments, the specific shape of the lens portion formed on the lens-attached sheet can be changed as appropriate. For example, the present invention includes a configuration in which the lens portion has a dot shape on the lens forming surface of the sheet base material. In that case, it is possible to two-dimensionally arrange the dot-shaped lens portions on the lens forming surface of the sheet base material.
 (18)上記した各実施形態では、第1反射シートに開口部を形成することで、低光反射率部及び高光反射率部を形成した場合を示したが、それ以外にも、例えば、透光性を有するシート基材の表面において、レンズ部と平面視重畳する位置に光反射率が高い高光反射率材料を印刷することで、低光反射率部及び高光反射率部を形成しても構わない。その場合、高光反射率材料を、透光性を有するシート基材に対して塗布やメタル蒸着等の手段によって形成することも可能である。 (18) In each of the above-described embodiments, the case where the low light reflectance portion and the high light reflectance portion are formed by forming the opening in the first reflection sheet has been described. Even if the low light reflectivity part and the high light reflectivity part are formed by printing a high light reflectivity material with a high light reflectivity on the surface of the sheet base material having a light property at a position overlapping the lens part in plan view. I do not care. In that case, it is also possible to form the high light reflectance material by means such as coating or metal vapor deposition on a light-transmitting sheet base material.
 (19)上記した(18)の変形例として、シート基材に、光の吸収性に優れた光吸収性材料を用いることも可能である。光吸収性基材としては、表面が黒色を呈する合成樹脂製のものが好ましい。 (19) As a modification of the above (18), it is also possible to use a light-absorbing material excellent in light absorption for the sheet base material. As a light absorptive base material, the thing made from the synthetic resin whose surface exhibits black is preferable.
 (20)上記した各実施形態では、第1反射シートに開口部を形成することで、低光反射率部及び高光反射率部を形成した場合を示したが、それ以外にも、例えば、開口部を有さない第1反射シートの表面において、レンズ部を平面視重畳しない位置に低光反射率材料を印刷することで、低光反射率部及び高光反射率部を形成しても構わない。その場合、低光反射率材料を、第1反射シートに対して塗布やメタル蒸着等の手段によって形成することも可能である。 (20) In each of the above-described embodiments, the case where the low light reflectance portion and the high light reflectance portion are formed by forming the opening in the first reflection sheet has been described. The low light reflectance part and the high light reflectance part may be formed by printing the low light reflectance material on the surface of the first reflection sheet that does not have a part in a position where the lens part is not superimposed in plan view. . In that case, the low light reflectance material can be formed on the first reflective sheet by means such as coating or metal vapor deposition.
 (21)上記した各実施形態では、第1光源挟み部に第1反射シートを取り付けることで、低光反射率部及び高光反射率部を構成したものを示したが、例えば第1光源挟み部に高光反射率材料を直接印刷または塗布することで、その印刷部分または塗布部分を高光反射率部とし、非印刷部分または非塗布部分を低光反射率部とすることも可能である。 (21) In each of the above-described embodiments, the low light reflectance portion and the high light reflectance portion are configured by attaching the first reflection sheet to the first light source sandwiching portion. It is also possible to directly print or apply the high light reflectance material to the printed portion or the coated portion as a high light reflectance portion and to form the non-printed portion or the non-coated portion as a low light reflectance portion.
 (22)上記した(21)の構成は、一対の光源挟み部のうち、光出射面側とは反対側の第2光源挟み部(シャーシの一部)に低光反射率部及び高光反射率部を形成する際にも同様に適用可能である。 (22) In the configuration of (21), the low light reflectance part and the high light reflectance are provided in the second light source sandwiching part (part of the chassis) on the side opposite to the light emitting surface side of the pair of light source sandwiching parts. The present invention can be similarly applied when forming the portion.
 (23)上記した各実施形態では、LEDに用いる蛍光体として、緑色光を発光する緑色蛍光体及び赤色光を発光する赤色蛍光体を用いた場合を示したが、例えば黄色光を発光する黄色蛍光体を単独で用いたものも本発明に含まれる。黄色蛍光体としては、例えばSiAlON系蛍光体の一種であるα-SiAlONを用いるのが好ましい。それ以外にも、緑色蛍光体及び赤色蛍光体に、黄色蛍光体を加えて3種類の蛍光体を用いることも可能である。さらには、緑色蛍光体及び黄色蛍光体を用い、赤色蛍光体を用いない構成とすることも可能である。なお、各色の蛍光体の具体的な物質名については、既述したもの以外にも適宜に変更可能である。 (23) In each of the above-described embodiments, the case where the green phosphor that emits green light and the red phosphor that emits red light is used as the phosphor used in the LED is shown. For example, yellow that emits yellow light is used. What used the fluorescent substance independently is also contained in this invention. As the yellow phosphor, for example, α-SiAlON, which is a kind of SiAlON phosphor, is preferably used. In addition, it is also possible to use three types of phosphors by adding a yellow phosphor to a green phosphor and a red phosphor. Furthermore, it is possible to employ a configuration in which a green phosphor and a yellow phosphor are used and no red phosphor is used. In addition, the specific substance names of the phosphors of the respective colors can be appropriately changed other than those already described.
 (24)上記した各実施形態では、青色光を単色発光するLEDチップを内蔵し、蛍光体によって略白色光を発光するタイプのLEDを用いた場合を示したが、可視光線における紫色光または近紫外線を発するLEDチップを内蔵し、蛍光体によって略白色光を発光するタイプのLEDを用いたものも本発明に含まれる。この場合、蛍光体としては、青色光を発光する青色蛍光体、緑色光を発光する緑色蛍光体、赤色光を発光する赤色蛍光体の3色を用いるのが好ましいが、それ以外にも使用する蛍光体の色は適宜に変更可能である。 (24) In each of the above-described embodiments, an LED chip that emits blue light in a single color and a type of LED that emits substantially white light using a phosphor is used. The present invention includes an LED chip that incorporates an LED chip that emits ultraviolet light and that emits substantially white light using a phosphor. In this case, as the phosphor, it is preferable to use three colors: a blue phosphor that emits blue light, a green phosphor that emits green light, and a red phosphor that emits red light. The color of the phosphor can be changed as appropriate.
 (25)上記した各実施形態では、青色光を単色発光するLEDチップを内蔵し、蛍光体によって略白色光を発光するタイプのLEDを用いた場合を示したが、赤色光、緑色光、青色光をそれぞれ単色発光する3種類のLEDチップを内蔵したタイプのLEDを用いたものも本発明に含まれる。それ以外にも、C(シアン),M(マゼンタ),Y(イエロー)をそれぞれ単色発光する3種類のLEDチップを内蔵したタイプのLEDを用いたものも本発明に含まれる。この場合、点灯に際して各LEDチップへの電流量を適宜制御することで、LEDの色度を調整することができる。 (25) In each of the above-described embodiments, an LED chip that emits blue light in a single color and a LED that emits substantially white light using a phosphor is used. However, red light, green light, and blue light are used. The present invention also includes an LED using a type of LED that incorporates three types of LED chips each emitting light in a single color. In addition, the present invention includes an LED using a type of LED in which three types of LED chips each emitting C (cyan), M (magenta), and Y (yellow) are monochromatic. In this case, the chromaticity of the LED can be adjusted by appropriately controlling the amount of current to each LED chip during lighting.
 (26)上記した各実施形態では、光源としてLEDを用いたものを示したが、有機ELなどの他の光源を用いることも可能である。 (26) In the above-described embodiments, the LED is used as the light source, but other light sources such as an organic EL can be used.
 (27)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。 (27) In each of the embodiments described above, a TFT is used as a switching element of a liquid crystal display device. However, the present invention can also be applied to a liquid crystal display device using a switching element other than TFT (for example, a thin film diode (TFD)). In addition to the liquid crystal display device for display, the present invention can also be applied to a liquid crystal display device for monochrome display.
 (28)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。 (28) In each of the above-described embodiments, the liquid crystal display device using the liquid crystal panel as the display panel has been exemplified, but the present invention can also be applied to a display device using another type of display panel.
 (29)上記した各実施形態では、チューナーを備えたテレビ受信装置を例示したが、チューナーを備えない表示装置にも本発明は適用可能である。 (29) In each of the above-described embodiments, the television receiver provided with the tuner is exemplified, but the present invention is also applicable to a display device that does not include the tuner.
 (30)上記した各実施形態では、導光板が平板状をなしていて光出射面とその反対側の面(シャーシとの対向面)とが並行する形態のものを用いた場合を示したが、例えば導光板が断面楔形をなしていて光出射面とその反対側の面とが並行しない形態のものも本発明に含まれる。その場合、導光板の光出射面がシャーシの底板に対して並行するのに対して、導光板の光出射面とは反対側の面が底板及び光出射面に対して傾斜状をなす形態とすることができる。その他にも、導光板の光出射面とは反対側の面がシャーシの底板に対して並行するのに対して、導光板の光出射面が底板及び光出射面とは反対側の面に対して傾斜状をなす形態とすることができる。 (30) In each of the embodiments described above, the light guide plate has a flat plate shape, and the light output surface and the opposite surface (surface facing the chassis) are used in parallel. For example, the light guide plate having a wedge shape in cross section and the light emitting surface and the opposite surface are not included in the present invention. In that case, the light exit surface of the light guide plate is parallel to the bottom plate of the chassis, whereas the surface opposite to the light exit surface of the light guide plate is inclined with respect to the bottom plate and the light exit surface. can do. In addition, the surface opposite to the light exit surface of the light guide plate is parallel to the bottom plate of the chassis, whereas the light exit surface of the light guide plate is opposite to the surface opposite to the bottom plate and the light exit surface. It is possible to adopt an inclined shape.
 (31)上記した各実施形態では、LED基板(LED)が導光板における両長辺側の端部に一対配されるものを示したが、例えばLED基板(LED)が導光板における両短辺側の端部に一対配されるものも本発明に含まれる。 (31) In each of the above-described embodiments, a pair of LED substrates (LEDs) are arranged at the ends of both long sides of the light guide plate. For example, the LED substrates (LEDs) are both short sides of the light guide plate. What is arranged in a pair at the end of the side is also included in the present invention.
 (32)上記した(31)以外にも、LED基板(LED)を導光板における両長辺及び両短辺の各端部に対して一対ずつ配したものや、逆にLED基板(LED)を導光板における一方の長辺または一方の短辺の端部に対してのみ1つ配したものも本発明に含まれる。LED基板を導光板における一方の長辺または一方の長辺の端部に対してのみ1つ配した構成のものにおいては、上記した(30)に記載した断面形状が楔形の導光板を用いることが可能である。 (32) In addition to the above (31), a pair of LED substrates (LEDs) arranged with respect to the ends of both long sides and short sides of the light guide plate, and conversely LED substrates (LEDs). The present invention includes one in which only one end of one long side or one short side of the light guide plate is disposed. In the configuration in which one LED substrate is disposed only on one long side or the end of one long side of the light guide plate, a light guide plate having a wedge-shaped cross section as described in (30) above is used. Is possible.
 10...液晶表示装置(表示装置)、11...液晶パネル(表示パネル)、12...バックライト装置(照明装置)、22...シャーシ、22c...第1光源挟み部(光源挟み部)、24...LED(光源)、26...導光板、26a...光出射面、26b...光入射面、27...フレーム(押さえ部材)、27c,527c,627c,727c...第2光源挟み部(光源挟み部)、28,328,428,528...第1反射シート(反射部材)、28a,328a,428a...開口部、29...第2反射シート(反射部材)、31,131,331,431,...レンズ部、32,132...レンズ付きシート、33,233,333,433...光指向部、35...低光反射率部、36...高光反射率部、37...導光部材、37a...第1屈折面、37b...第2屈折面、38...光指向反射部(光指向部)、LA...光源配置領域(光源の配置パターン)、LN...光源非配置領域(光源の非配置パターン)、TV...テレビ受信装置 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illumination device), 22 ... Chassis, 22c ... 1st light source clamping part (Light source sandwiching portion), 24 ... LED (light source), 26 ... light guide plate, 26a ... light emitting surface, 26b ... light incident surface, 27 ... frame (pressing member), 27c, 527c, 627c, 727c ... second light source sandwiching portion (light source sandwiching portion), 28, 328, 428, 528 ... first reflecting sheet (reflecting member), 28a, 328a, 428a ... opening, 29 ... 2nd reflection sheet (reflection member), 31, 131, 331, 431, ... lens part, 32, 132 ... sheet with lens, 33, 233, 333, 433 ... light directing part, 35 ... low light reflectance part, 36 ... high light reflectance part, 37 ... light guide member, 37a ... first refractive surface, 37b ... second refractive surface, 3 ... light directing reflecting portion (light directivity portion), (arrangement pattern of the light source) LA ... light source installation area, LN ... source blank region (non-arrangement pattern of the light source), TV ... television receiver apparatus

Claims (14)

  1.  間欠的に並んで配される複数の光源と、
     前記光源の並び方向に並行する面であって前記光源との間に間隔を保有しつつ対向状に配されるとともに前記光源からの光が入射される光入射面、及び入射した光を出射させる光出射面を有する導光板と、
     前記導光板の光出射側とその反対側とから前記光源を挟み込む形で配される一対の光源挟み部と、
     前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面に、前記光源の配置パターンに倣って配されるとともに、前記光源からの光を前記光源の非配置パターン側へ指向させる光指向部とを備える照明装置。
    A plurality of light sources arranged intermittently side by side;
    A surface that is parallel to the direction in which the light sources are arranged, is arranged in an opposing manner with a space between the light sources, and a light incident surface on which light from the light sources is incident, and emits the incident light A light guide plate having a light exit surface;
    A pair of light source sandwiching portions arranged in a manner to sandwich the light source from the light emitting side of the light guide plate and the opposite side;
    Light that is arranged following the arrangement pattern of the light source on the surface facing the light source in at least one of the pair of light source sandwiching portions, and that directs the light from the light source toward the non-arrangement pattern side of the light source A lighting device comprising a directivity unit.
  2.  前記光指向部は、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面において、前記光源の配置パターンの全域にわたって配されている請求項1記載の照明装置。 The illuminating device according to claim 1, wherein the light directing unit is arranged over the entire area of the arrangement pattern of the light source on a surface facing the light source in at least one of the pair of light source sandwiching units.
  3.  前記光指向部は、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面において、前記光源の配置パターンから前記光源の非配置パターンの端部に至る範囲に配されるとともに、前記光源からの光を前記光源の非配置パターンにおける中央部側へ指向させている請求項2記載の照明装置。 The light directing portion is arranged in a range from the light source arrangement pattern to an end portion of the light source non-arrangement pattern on a surface facing the light source in at least one of the pair of light source sandwiching portions, The lighting device according to claim 2, wherein the light from the light source is directed toward the center of the non-arrangement pattern of the light source.
  4.  前記光指向部は、前記一対の光源挟み部のうちの一方における前記光源と対向する面に配されている請求項1から請求項3のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 3, wherein the light directing unit is disposed on a surface facing the light source in one of the pair of light source sandwiching units.
  5.  前記光指向部は、前記一対の光源挟み部のうち、前記光源に対して光出射側に配されるものに配されている請求項4記載の照明装置。 The illuminating device according to claim 4, wherein the light directing portion is arranged on a light emitting side of the pair of light source sandwiching portions with respect to the light source.
  6.  前記一対の光源挟み部のうちの一方が、前記導光板を光出射側から押さえる押さえ部材である請求項1から請求項5のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 5, wherein one of the pair of light source sandwiching portions is a pressing member that presses the light guide plate from a light emitting side.
  7.  前記一対の光源挟み部のうちの一方が、前記光源及び前記導光板を収容するシャーシである請求項1から請求項6のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 6, wherein one of the pair of light source sandwiching portions is a chassis that houses the light source and the light guide plate.
  8.  前記光指向部は、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面に配される反射部材と、前記反射部材における前記光源と対向する面に配されるとともに前記光源からの光を屈折させつつ前記反射部材にて反射させることで、前記光源の非配置パターン側へと指向させるレンズ部とから構成されている請求項1から請求項7のいずれか1項に記載の照明装置。 The light directing section is disposed on a surface facing the light source in at least one of the pair of light source sandwiching sections, and is disposed on a surface facing the light source in the reflecting member and from the light source. 8. The lens unit according to claim 1, further comprising: a lens unit configured to direct light toward the non-arrangement pattern side of the light source by refracting light of the light source and reflecting the light by the reflecting member. Lighting device.
  9.  前記反射部材には、前記光源の非配置パターンに倣う開口部が形成されており、
     前記開口部を通して露出する前記光源挟み部によって光反射率が相対的に低い低光反射率部が構成されるのに対し、前記反射部材によって光反射率が相対的に高い高光反射率部が構成されている請求項8記載の照明装置。
    The reflection member is formed with an opening that follows the non-arrangement pattern of the light source,
    The light source sandwiching portion exposed through the opening portion constitutes a low light reflectance portion having a relatively low light reflectance, whereas the reflecting member constitutes a high light reflectance portion having a relatively high light reflectance. The lighting device according to claim 8.
  10.  前記反射部材における前記光源と対向する面には、前記光源の並び方向に沿って延在するとともに前記レンズ部を有するレンズ付きシートが配されている請求項8または請求項9記載の照明装置。 The lighting device according to claim 8 or 9, wherein a sheet with a lens that extends along a direction in which the light sources are arranged and has the lens portion is disposed on a surface of the reflecting member that faces the light sources.
  11.  前記光指向部は、前記一対の光源挟み部の少なくともいずれか一方における前記光源と対向する面において前記光源の並び方向に沿って延在するとともに前記光源からの光を導光する導光部材からなるものとされ、
     前記導光部材には、前記光源からの光を屈折させて前記光源の並び方向に沿って向かわせる第1屈折面と、前記第1屈折面にて屈折された光をさらに屈折させて前記一対の光源挟み部のうち当該導光部材と対向する側へ向かわせる第2屈折面とが形成されている請求項1から請求項7のいずれか1項に記載の照明装置。
    The light directing unit extends from a light guide member that guides light from the light source while extending along a direction in which the light sources are arranged on a surface facing the light source in at least one of the pair of light source sandwiching units. It is supposed to be
    The light guide member has a first refracting surface that refracts light from the light source and directs the light along a direction in which the light sources are arranged, and further refracts light refracted by the first refracting surface. The lighting device according to any one of claims 1 to 7, wherein a second refracting surface that is directed toward a side facing the light guide member in the light source sandwiching portion is formed.
  12.  請求項1から請求項11のいずれか1項に記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える表示装置。 A display device comprising: the illumination device according to any one of claims 1 to 11; and a display panel that performs display using light from the illumination device.
  13.  前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルとされる請求項12記載の表示装置。 13. The display device according to claim 12, wherein the display panel is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
  14.  請求項12または請求項13に記載された表示装置を備えるテレビ受信装置。 A television receiver comprising the display device according to claim 12 or 13.
PCT/JP2012/063149 2011-05-30 2012-05-23 Illumination device, display device, and television receiving device WO2012165247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-120994 2011-05-30
JP2011120994 2011-05-30

Publications (1)

Publication Number Publication Date
WO2012165247A1 true WO2012165247A1 (en) 2012-12-06

Family

ID=47259106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063149 WO2012165247A1 (en) 2011-05-30 2012-05-23 Illumination device, display device, and television receiving device

Country Status (1)

Country Link
WO (1) WO2012165247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3270037A4 (en) * 2015-03-09 2019-04-24 Sharp Kabushiki Kaisha Lighting device, display device, and television receiving device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243522A (en) * 2004-02-27 2005-09-08 Minebea Co Ltd Planar lighting system
JP2007080595A (en) * 2005-09-13 2007-03-29 Nec Corp Lighting device and display device
JP2007324027A (en) * 2006-06-02 2007-12-13 Sony Corp Backlight device, liquid crystal display device, and electronic apparatus using liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243522A (en) * 2004-02-27 2005-09-08 Minebea Co Ltd Planar lighting system
JP2007080595A (en) * 2005-09-13 2007-03-29 Nec Corp Lighting device and display device
JP2007324027A (en) * 2006-06-02 2007-12-13 Sony Corp Backlight device, liquid crystal display device, and electronic apparatus using liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3270037A4 (en) * 2015-03-09 2019-04-24 Sharp Kabushiki Kaisha Lighting device, display device, and television receiving device

Similar Documents

Publication Publication Date Title
US7460196B2 (en) Backlight device for liquid crystal display and method of fabricating the same
JP5416270B2 (en) Display device and television receiver
US20070189037A1 (en) Backlight device of liquid crystal display device and method of fabricating the same
US9016923B2 (en) Lighting device, display device, and television receiver
US8939597B2 (en) Illumination device, display device, and television reception device
US20120249885A1 (en) Lighting device, display device and television receiver
EP3270036A1 (en) Illumination device, display device, and television receiver
JP2010020097A (en) Liquid crystal display device
WO2012128064A1 (en) Illumination device, display device, and television reception device
US20140009695A1 (en) Illumination device, display device, and television reception device
US20150168774A1 (en) Display device and television receiver
WO2012128077A1 (en) Illumination device, display device, and television reception device
WO2011074352A1 (en) Display device and television receiver
WO2011122122A1 (en) Display apparatus and television receiver apparatus
WO2011092953A1 (en) Lighting device, display device, and television receiver device
KR20120065753A (en) Liquid crystal display device
WO2011077864A1 (en) Illumination device, display device, and television receiver
US9476577B2 (en) Lighting device, display device, and television reception device
WO2012128076A1 (en) Illumination device, display device, and television reception device
WO2012128063A1 (en) Illumination device, display device, and television receiver device
WO2012165247A1 (en) Illumination device, display device, and television receiving device
WO2012133036A1 (en) Illumination device, display device, and television reception device
KR20140082203A (en) Liquid crystal display device
WO2012165249A1 (en) Illumination device, display device, and television reception device
KR101833506B1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP