WO2012165110A1 - Ferroelectric film and piezoelectric element provided therewith - Google Patents

Ferroelectric film and piezoelectric element provided therewith Download PDF

Info

Publication number
WO2012165110A1
WO2012165110A1 PCT/JP2012/061854 JP2012061854W WO2012165110A1 WO 2012165110 A1 WO2012165110 A1 WO 2012165110A1 JP 2012061854 W JP2012061854 W JP 2012061854W WO 2012165110 A1 WO2012165110 A1 WO 2012165110A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
ferroelectric film
film
piezoelectric
domain
Prior art date
Application number
PCT/JP2012/061854
Other languages
French (fr)
Japanese (ja)
Inventor
健児 馬渡
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2012165110A1 publication Critical patent/WO2012165110A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/1051Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/03Specific materials used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to a ferroelectric film made of a perovskite crystal and a piezoelectric element provided with the ferroelectric film.
  • piezoelectric materials such as Pb (Zr, Ti) O 3 have been used as electromechanical transducers for application to drive elements and sensors.
  • Such a piezoelectric body is expected to be applied to a MEMS (Micro Electro Mechanical Systems) element by being formed as a thin film on a substrate such as Si.
  • MEMS Micro Electro Mechanical Systems
  • the cost can be greatly reduced by manufacturing the elements at a high density on a relatively large Si wafer having a diameter of 6 inches or 8 inches, compared to single wafer manufacturing in which the elements are individually manufactured. it can.
  • the piezoelectric thin film and making the device MEMS the mechanical and electrical conversion efficiency is improved, and new added value such as improved sensitivity and characteristics of the device is also created.
  • a thermal sensor it is possible to increase measurement sensitivity by reducing thermal conductance due to MEMS, and in an inkjet head for a printer, high-definition patterning can be achieved by increasing the density of nozzles.
  • a crystal made of Pb, Zr, Ti, and O called PZT is often used. Since PZT exhibits a good piezoelectric effect when it has an ABO 3 type perovskite structure shown in FIG. 8, it needs to be a perovskite single phase.
  • the shape of the unit cell of the PZT crystal having the perovskite structure varies depending on the ratio of Ti and Zr, which are atoms entering the B site. That is, when Ti is large, the crystal lattice of PZT is tetragonal, and when Zr is large, the crystal lattice of PZT is rhombohedral.
  • the piezoelectric thin film When a piezoelectric thin film is used as a MEMS drive element, the piezoelectric thin film must be formed with a thickness of 3 to 5 ⁇ m in order to satisfy the required displacement generation force.
  • a chemical film-forming method such as a CVD method, a physical method such as a sputtering method or an ion plating method, and a liquid phase growth method such as a sol-gel method are known. It is important to find the conditions for obtaining a perovskite single phase film according to the film forming method.
  • a MEMS driving element with higher density and higher output has been demanded.
  • a ferroelectric film is required that can obtain a value (absolute value) of 150 [pm / V] or more as the value (absolute value) of the piezoelectric constant d 31 that is an index of piezoelectric characteristics. It is done.
  • the piezoelectric constant d 31 can be calculated by the following formula 1, which is disclosed in Non-Patent Document 1, for example.
  • Perovskite crystal materials such as PZT are ferroelectrics having spontaneous polarization Ps when no voltage is applied.
  • the polarization domain refers to a region where the directions of spontaneous polarization Ps are aligned.
  • the direction that the spontaneous polarization Ps can take varies depending on the shape of the unit cell of the crystal. If it is tetragonal, it is the ⁇ 100> axial direction, and if it is rhombohedral, it is the ⁇ 111> axial direction. Note that the ⁇ 100> axial direction collectively refers to [100], [010], [001] and a total of six equivalent directions opposite to these directions.
  • the ⁇ 111> axis direction collectively refers to [111], [ ⁇ 111], [1-11], [ ⁇ 1-11], and a total of eight equivalent directions opposite to these directions.
  • . 9A shows the direction of tetragonal spontaneous polarization Ps
  • FIG. 9B shows the direction of rhombohedral spontaneous polarization Ps.
  • a domain composed of the spontaneous polarization Ps in the [100] direction and the [010] direction and the opposite direction thereof is called an a-axis orientation domain
  • the spontaneous polarization in the [001] direction and the opposite direction thereof A domain composed of Ps is called a c-axis orientation domain.
  • the boundary between domains is called a domain wall.
  • domain walls There are two types of domain walls: 180 ° domain walls and non-180 ° domain walls.
  • the former 180 ° domain wall is the boundary between a domain in one direction and a domain in its inverted direction.
  • non-180 ° domain wall is a boundary between domains in directions other than 180 °.
  • a domain wall in which an a-axis orientation domain and a c-axis orientation domain are adjacent to each other in a tetragonal crystal can be given.
  • the domain wall at this time becomes a boundary between domains whose orientation directions are different from each other by 90 °.
  • FIG. 10 shows a piezoelectric strain ⁇ X1 when an electric field is applied in the c-axis direction to a tetragonal c-axis orientation domain, and the same electric field in the c-axis direction with respect to a tetragonal a-axis orientation domain.
  • the piezoelectric strain ⁇ X2 when applied is shown.
  • a thick black arrow indicates the polarization direction (the same applies to other drawings).
  • the 90 ° domain rotation from the a-axis direction to the c-axis direction is larger than the piezoelectric strain ⁇ X1 (normal piezoelectric strain) when an electric field is applied to the c-axis orientation domain in the c-axis direction. Since ⁇ X2 is generated, if such non-180 ° domain rotation can be efficiently generated, the piezoelectric characteristics can be improved.
  • Non-180 ° domain rotation is considered to occur by the following mechanism. As shown in FIG. 11, it is assumed that a domain 101 whose polarization direction is in the direction of electric field application and a non-180 ° domain 102 in a different direction are in contact with each other by a non-180 ° domain wall W. . When an electric field is applied, first, the domain 101 generates a normal piezoelectric strain, and is dragged by this strain, so that the polarization direction of the adjacent non-180 ° domain 102 is rotated in the electric field application direction via the non-180 ° domain wall W.
  • Non-180 ° domain rotation is caused to improve the piezoelectric characteristics.
  • the piezoelectric distortion is reversibly generated by applying / not applying an electric field, and non-180 ° domain rotation applies an electric field over a certain level (for example, 400 V / mm or more in FIG. 12). Occurs. At this time, the sum of the normal piezoelectric strain (true piezoelectric strain) due to the c-axis orientation domain and the piezoelectric strain due to non-180 ° domain rotation is observed as the total piezoelectric strain (electric field induced strain amount).
  • a thin film has a crystal grain size smaller than that of a bulk except in special cases such as an epitaxial film.
  • the crystal in a ferroelectric film formed on Si via a lower electrode such as Pt or Ir, the crystal has a columnar structure and the average crystal grain size is about 100 to 500 nm. If the crystal grain size is small, as shown in Non-Patent Document 2, the number of domains entering the crystal is reduced, and the number of domain walls is also reduced accordingly, which causes non-180 ° domain rotation. It becomes difficult. As a result, it becomes difficult to improve the piezoelectric characteristics.
  • FIG. 13A is a plan view showing a set of a plurality of crystal grains having different grain sizes
  • FIGS. 13B and 13C are small grain sizes included in the plurality of crystal grains.
  • FIGS. 13D and 13E are a plan view and a cross-sectional view of a crystal grain 201 (for example, a grain size of 0.3 ⁇ m or less).
  • FIGS. 13D and 13E show a crystal grain 202 having a large grain size included in the plurality of crystal grains. It is the top view and sectional drawing of (for example, a particle size of 1 micrometer or less).
  • the small crystal grains 201 constituting the thin film have fewer domains and domain walls than the large crystal grains 202.
  • the grain size of the crystal grain 201 is small, the number of non-180 ° domain walls W1 that are the starting point of non-180 ° domain rotation is extremely lower than that of the crystal grain 202, and the domain wall is 180 ° domain.
  • the wall W2 alone is used. For this reason, in a thin film having a small crystal grain size, it is difficult to improve the piezoelectric characteristics by causing non-180 ° domain rotation.
  • the thin film can be epitaxially grown using the crystal orientation of the substrate, or the crystal can be oriented due to the relationship between the stress of the substrate and the film.
  • a device for causing non-180 ° domain rotation in a thin film has been made by using these.
  • Patent Document 1 a ⁇ 100> -oriented tetragonal epitaxial film is grown on a substrate, and an a-axis orientation domain and a c-axis orientation domain are mixed in this epitaxial film, so that non-180 ° Domain rotation is caused to enhance the piezoelectric characteristics.
  • Non-Patent Document 3 discloses that the epitaxial film becomes a tetragonal single crystal even with the MPB composition.
  • Patent Document 2 a non-180 ° domain wall is obtained by obtaining an a-axis single alignment film in which the alignment axis is inclined from the vertical direction of the substrate using a special Si substrate in which the crystal plane of the substrate surface is inclined.
  • domain rotation is generated at a relatively low voltage.
  • JP 2008-218675 A (refer to claims 1 and 2, paragraphs [0019], [0020], [0026], etc.)
  • JP 2008-277672 A (refer to claims 1, 5, 6 and paragraphs [0039], [0062], [0063], [0068] to [0072], etc.)
  • the present invention has been made to solve the above-described problems, and its object is to efficiently generate non-180 ° domain rotation and obtain high piezoelectric characteristics without using a special substrate.
  • An object of the present invention is to provide a ferroelectric film that can be easily applied to MEMS and a piezoelectric element including the ferroelectric film.
  • a ferroelectric film according to one aspect of the present invention is a ferroelectric film made of a perovskite crystal, the crystal orientation is ⁇ 100> main orientation, rhombohedral and tetragonal crystals are mixed, and the tetragonal crystal In FIG.
  • a-axis orientation and c-axis orientation are mixed, and function F indicating ⁇ 100> peak by 2 ⁇ / ⁇ measurement of X-ray diffraction is expressed as tetragonal crystal with a-axis orientation, tetragonal crystal with c-axis orientation, rhomboid
  • the ratio of the integral values of F3 is 0.2 or more and 0.8 or less.
  • (A)-(c) is sectional drawing which shows the film-forming process of the PZT film
  • FIG. 7 is a cross-sectional view taken along line A-A ′ of FIG. 6. It is explanatory drawing which shows typically the crystal structure of PZT.
  • A) is explanatory drawing which shows the polarization direction of a tetragonal crystal
  • (b) is explanatory drawing which shows the polarization direction of a rhombohedral crystal. It is explanatory drawing which shows each piezoelectric distortion at the time of applying an electric field to a c-axis direction with respect to the tetragonal c-axis orientation domain and a-axis orientation domain.
  • FIG. 1A to FIG. 1C are cross-sectional views showing a process of forming a PZT film as a ferroelectric film of this example.
  • a thermal oxide film 2 made of, for example, SiO 2 having a thickness of about 100 nm is formed on a substrate 1 made of a single crystal Si wafer having a thickness of about 400 ⁇ m.
  • the substrate 1 may be a standard substrate having a thickness of 300 ⁇ m to 725 ⁇ m and a diameter of 3 inches to 8 inches.
  • the thermal oxide film 2 can be formed by exposing the substrate 1 to a high temperature of about 1200 ° C. in an oxygen atmosphere using a wet oxidation furnace.
  • an adhesion layer made of Ti having a thickness of about 20 nm and a Pt electrode layer having a thickness of about 100 nm are sequentially formed on the thermal oxide film 2.
  • the adhesion layer and the Pt electrode layer are collectively referred to as a lower electrode 3.
  • Ti and Pt are formed by sputtering, for example.
  • the sputtering conditions for Ti at this time were Ar flow rate: 20 sccm, pressure: 0.4 Pa, RF power applied to the target: 200 W, and the sputtering conditions for Pt were Ar flow rate: 20 sccm, pressure: 0.4 Pa, on the target Applied RF power: 150 W, substrate temperature: 530 ° C.
  • Pt becomes a film having ⁇ 111> orientation due to its self-orientation, it has a high crystallinity because it affects the quality of the PZT film formed on Pt.
  • the adhesion layer may be made of TiOx instead of Ti.
  • TiOx can also be formed by introducing reactive oxygen during Ti sputtering and forming a film by reactive sputtering, or heating at about 700 ° C. in an oxygen atmosphere in an RTA (Rapid Thermal Annealing) furnace after Ti film formation. It can also be formed by performing.
  • a PZT film 4 that is a ferroelectric film is formed on the substrate 1 with Pt by sputtering.
  • the formation method of the ferroelectric film is not limited to the sputtering method, but other physical film formation methods such as a pulse laser deposition (PLD) method and an ion plating method, and chemical film formation such as an MOCVD method and a sol-gel method. The law may be used.
  • a sputtering target having a Zr / Ti molar ratio of 52/48 having an MPB (Morphotropic Phase Boundary) composition was used.
  • Pb contained in the target is likely to be re-evaporated during high-temperature film formation, and the formed thin film tends to be Pb deficient. Therefore, it is desirable to add the Pb to the target in a larger amount than the stoichiometric ratio of the perovskite crystal.
  • the amount of Pb added is preferably 10 to 30% higher than the stoichiometric ratio, although it depends on the film formation temperature.
  • the PZT sputtering conditions were Ar flow rate: 25 sccm, O 2 flow rate: 0.4 sccm, pressure: 0.4 Pa, substrate temperature: 500 ° C., RF power: 500 W, and a PZT film 4 having a thickness of 5 ⁇ m was formed.
  • a PZT film 4 having an average particle diameter of 1 ⁇ m could be formed.
  • FIG. 2 shows the result of 2RD / ⁇ measurement of XRD (X-ray diffraction) for the PZT film 4 of Example 1.
  • intensity (diffraction intensity, reflection intensity) of the vertical axis
  • the crystal orientation of the PZT film 4 is the ⁇ 100> main orientation. I can say that.
  • the main orientation means that the orientation rate F measured by the Lotgering method is 80% or more and has crystal orientation.
  • the orientation rate F at this time is represented by the following formula.
  • F (%) (P ⁇ P 0 ) / (1 ⁇ P 0 ) ⁇ 100
  • P refers to the ratio of the total reflection intensity from the orientation plane to the total reflection intensity.
  • P I ⁇ 100> / [I ⁇ 100> + I ⁇ 110> + I ⁇ 111>]
  • P 0 P of the non-oriented sample.
  • F 0%
  • F 100%.
  • the orientation rate F was 100%.
  • the crystal orientation direction of the PZT film 4 is random, piezoelectric distortion may be canceled between adjacent crystals when a voltage is applied.
  • the crystal orientation of the PZT film 4 is the ⁇ 100> main orientation, and the crystal orientation directions are aligned in almost one direction, so that the piezoelectric strain is canceled between adjacent crystals when a voltage is applied. Can be suppressed, and the piezoelectric characteristics can be improved.
  • FIG. 3 shows that for the ⁇ 100> diffraction intensity peak (hereinafter referred to as ⁇ 100> peak) of the PZT film 4 by 2 ⁇ / ⁇ measurement of X-ray diffraction, fitting with a forked function is performed using dedicated software.
  • the results are shown in which the function F indicating the ⁇ 100> peak is divided into a plurality of functions F1, F2 and F3.
  • the functions F1, F2 and F3 are functions indicating the diffraction intensity of X-rays incident on the a-axis oriented tetragonal crystal, the c-axis oriented tetragonal crystal and the rhombohedral crystal, respectively.
  • the vertical axis of the graph showing the functions F1, F2 and F3 indicates the relative intensity of the function F with respect to the maximum intensity.
  • 2 ⁇ / ⁇ measurement of X-ray diffraction means that X-rays are incident on the sample at an angle ⁇ from the horizontal direction (at an angle ⁇ relative to the crystal plane) and reflected from the sample.
  • This is a technique for investigating an intensity change with respect to ⁇ by detecting X-rays having an angle of 2 ⁇ with respect to incident X-rays.
  • the surface spacing lace constant
  • the lattice constant in the a-axis direction is 4.04 angstroms
  • the lattice constant in the c-axis direction is 4.14 angstroms
  • the lattice constant of rhombohedral crystals is 4.07 angstroms. Therefore, the values of 2 ⁇ corresponding to the crystal structures are different from each other. Therefore, based on the 2 ⁇ value at which the diffraction intensity increases, it is determined whether the crystal structure of the sample on which the X-rays are incident is an a-axis oriented tetragonal crystal, a c-axis oriented tetragonal crystal, or a rhombohedral crystal. be able to.
  • FIG. 4 shows the integrated values (areas) of the functions F1, F2 and F3, respectively.
  • the sum of the integrated values of the three functions F1, F2 and F3 corresponding to the crystal structures of the a-axis oriented tetragonal crystal, the c-axis oriented tetragonal crystal and the rhombohedral crystal is 1.
  • the PZT film 4 includes both tetragonal crystals and rhombohedral crystals, and in the tetragonal crystals, a-axis orientation and c-axis orientation are mixed.
  • a 90 ° domain rotation from the a-axis direction to the c-axis direction, ie, non- A 180 [deg.] Domain rotation can be generated to produce a strain greater than the normal piezoelectric strain due to the c-axis oriented domain.
  • the lattice constant of Si used as the material of the substrate 1 is about 5.4 angstroms, which is much larger than the lattice constant of PZT described above, so it is clear that the PZT film 4 is not an epitaxial film. It is. Therefore, rhombohedral crystals and tetragonal crystals can be mixed in the PZT film 4, and the above-described effects can be obtained.
  • FIG. 5 shows a schematic configuration of the piezoelectric displacement meter.
  • the end of the piezoelectric element 10 is clamped with a fixed portion 11 so that the movable length of the cantilever is 10 mm, and a cantilever structure is formed.
  • a voltage of 0 V and a minimum voltage of ⁇ 20 V was applied to the lower electrode 3 at a frequency of 500 Hz, and the displacement of the end of the piezoelectric element 10 was observed with a laser Doppler vibrometer 13.
  • the piezoelectric displacement of the piezoelectric element 10 was 2.2 ⁇ m. From this piezoelectric displacement, the piezoelectric constant d 31 can be calculated using the following calculation formula disclosed in Non-Patent Document 1.
  • h s is the substrate thickness
  • s p elastic compliance of the thin film PZT is the elastic compliance of the substrate
  • L is the length of the cantilever
  • V is the applied voltage
  • Comparative piezoelectric constant d 31 since sufficient in comparison of the absolute value, in the following, demonstrate the value of piezoelectric constant d 31 in absolute value.
  • FIG. 4 also shows the value (absolute value) of the piezoelectric constant d 31 in this example.
  • Example 2 In this example, the PZT film 4 was formed on the wafer manufactured up to the lower electrode 3 as in Example 1 using the same target as in Example 1. However, among the sputtering conditions for the PZT film 4, only the O 2 flow rate was changed to 0.8 sccm, and the other conditions were the same as in Example 1 to form the PZT film 4. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
  • FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1. From the figure, it was found that in the PZT film 4 of this example, as in Example 1, a-axis oriented tetragonal crystals, c-axis oriented tetragonal crystals, and rhombohedral crystals were mixed. The piezoelectric constant d 31 was slightly lower than that in Example 1, but a relatively good value of 150 [pm / V].
  • Example 3 the PZT film 4 was formed by sputtering using the same target as in Example 1 on the wafer manufactured up to the lower electrode 3 as in Example 1.
  • the sputtering conditions at this time are Ar flow rate: 30 sccm, O 2 flow rate: 0.5 sccm, pressure: 0.9 Pa, substrate temperature: 550 ° C., RF power: 500 W.
  • the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
  • FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1.
  • the piezoelectric constant d 31 was slightly lower than that in Example 1, but was 153 [pm / V], which was a relatively good value similar to that in Example 2.
  • a PZT film 4 is formed under the same sputtering conditions as in Example 1, using a target having a Ti ratio that is several percent higher than that in Example 1 on the wafer manufactured up to the lower electrode 3 as in Example 1. Formed. By using such a target, it is possible to form the PZT film 4 in which the proportion of rhombohedral crystals is reduced. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
  • FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1.
  • the piezoelectric constant d 31 in this comparative example is 115 [pm / V], which is considerably lower than that in the first embodiment. This is because, compared with Example 1, the proportion of rhombohedral crystals contained in the PZT film 4 decreased, and the proportion of tetragonal crystals with c-axis orientation increased, so that the composition ratio deviated from the MPB composition. This is thought to be due to the fact that the domain rotation of ° does not occur efficiently.
  • Comparative Example 2 In this comparative example, the PZT film 4 was formed on the wafer manufactured up to the lower electrode 3 in the same manner as in Example 1, using the same target as in Comparative Example 1 and under the same sputtering conditions as in Example 2. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
  • FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1.
  • the piezoelectric constant d 31 in this comparative example was 100 [pm / V], which was even lower than that in Comparative example 1.
  • the ratio of a-axis-oriented tetragonal crystals contained in the PZT film 4 is decreased, and the ratio of c-axis-oriented tetragonal crystals is increased. This is thought to be due to an increase in the rate of piezoelectric strain and a decrease in the rate of piezoelectric strain using non-180 ° domain rotation from the a-axis direction to the c-axis direction.
  • a PZT film 4 is formed under the same sputtering conditions as in Example 1 using a target having a Zr ratio that is several percent higher than that in Example 1 on the wafer manufactured up to the lower electrode 3 as in Example 1. Formed. By using such a target, the PZT film 4 having an increased rhombohedral ratio can be formed. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
  • FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1.
  • the piezoelectric constant d 31 in this comparative example is 130 [pm / V], which is lower than that in Example 2. This is because when the proportion of rhombohedral crystals contained in the PZT film 4 increases too much, the a-axis orientation and the c-axis orientation are not mixed in the tetragonal crystal, and the effect of non-180 ° domain rotation cannot be obtained. It is considered that the piezoelectric characteristics are deteriorated.
  • the ratio of the integral value of the function F1 corresponding to the tetragonal crystal with the a-axis orientation to the sum of the integral values of the three functions F1, F2, and F3 is 0.4 or more and 0.00. It can be said that it is desirable to be 5 or less.
  • FIG. 6 is a plan view showing a configuration when the PZT film 4 of Examples 1 and 2 is applied to a diaphragm (diaphragm) as a piezoelectric element 10 ′ manufactured using the MEMS technology
  • FIG. FIG. 7 is a cross-sectional view taken along line AA ′ in FIG.
  • the piezoelectric element 10 ′ is configured by laminating a thermal oxide film 2, a lower electrode 3, a PZT film 4 as a ferroelectric film, and an upper electrode 5 in this order on a substrate 1.
  • the PZT film 4 is disposed in a necessary area of the substrate 1 in a two-dimensional staggered pattern.
  • a region corresponding to the formation region of the PZT film 4 in the substrate 1 is a recess 1a in which a part in the thickness direction is removed with a circular cross section, and the upper portion of the recess 1a in the substrate 1 (the bottom side of the recess 1a). ) Remains a thin plate-like region 1b.
  • the lower electrode 3 and the upper electrode 5 are connected to an external control circuit by wiring not shown.
  • the predetermined PZT film 4 By applying an electrical signal from the control circuit to the lower electrode 3 and the upper electrode 5 sandwiching the predetermined PZT film 4, only the predetermined PZT film 4 can be driven. That is, when a predetermined electric field is applied to the upper and lower electrodes of the PZT film 4, the PZT film 4 expands and contracts in the left-right direction, and the PZT film 4 and the region 1b of the substrate 1 are bent up and down by the bimetal effect. Therefore, when the recess 1a of the substrate 1 is filled with gas or liquid, the piezoelectric element 1 can be used as a pump, which is suitable for an inkjet head, for example.
  • the deformation amount of the PZT film 4 can be detected by detecting the charge amount of the predetermined PZT film 4 through the lower electrode 3 and the upper electrode 5. That is, when the PZT film 4 is vibrated by sound waves or ultrasonic waves, an electric field is generated between the upper and lower electrodes due to an effect opposite to that described above. By detecting the magnitude of the electric field and the frequency of the detection signal at this time, The element 1 can also be used as a sensor (ultrasonic sensor). Furthermore, since the PZT film 4 exhibits a pyroelectric effect, the piezoelectric element 1 can be used as a pyroelectric sensor (infrared sensor).
  • the piezoelectric element 1 can also be used as a frequency filter (surface acoustic wave filter) by using the piezoelectric effect of the PZT film 4, and the piezoelectric element 1 can be made non-volatile by using the PZT film 4 as a ferroelectric substance. It can also be used as a memory.
  • PZT has been described as an example of the constituent material of the ferroelectric film.
  • PZT is also expressed as Pb (Zr, Ti) O 3
  • Pb ions are included at the A site
  • Zr ions and Ti ions are present at the B site.
  • a lead-based metal oxide see FIG. 8).
  • Such a lead-based metal oxide exhibits a good piezoelectric characteristic by adopting a perovskite structure, and is therefore suitable for the ferroelectric film of the above-described embodiment.
  • an additive may be contained in at least one of the A site and the B site of PZT.
  • a lanthanoid metal containing Nd or La, or a metal ion of at least one of Sr and Bi can be considered.
  • the metal ion of at least any one of Nb, Ta, W, and Sb can be considered, for example.
  • ferroelectric film in which such an additive is added to PZT for example, PLZT ((Pb, La) (Zr, Ti) O 3 ), PSZT ((Pb, Sr) (Zr, Ti) O 3 ) , PNZT (Pb (Zr, Ti, Nb) O 3 ).
  • a metal oxide obtained by adding an additive to PZT exhibits a good piezoelectric characteristic by adopting a perovskite structure, and thus is suitable for the ferroelectric film of the above-described embodiment.
  • the ferroelectric film may be made of a lead-free metal oxide as long as it has a perovskite structure.
  • a lead-free metal oxide when the perovskite crystal is represented by the general formula ABO 3 , the A site contains at least one of Sr, Ba, and Bi metal ions, and the B site contains Ti ions or The thing containing Ta ion can be considered. Specifically, BST ((Ba, Sr) TiO 3 ) or SBT (SrBi 2 Ta 2 O 9 ) can be considered.
  • lead-free metal oxides such as BST and SBT exhibit a good piezoelectric characteristic by adopting a perovskite structure, they are suitable for a ferroelectric film of a piezoelectric element.
  • the ferroelectric film described above is a ferroelectric film made of a perovskite crystal, in which the crystal orientation is ⁇ 100> main orientation and rhombohedral and tetragonal crystals are mixed.
  • Axial orientation and c-axis orientation coexist, and the function F indicating the ⁇ 100> peak by 2 ⁇ / ⁇ measurement of X-ray diffraction is expressed as a tetragonal crystal with an a-axis orientation, a tetragonal crystal with a c-axis orientation, and a rhombohedral crystal.
  • the value ratio is 0.2 or more and 0.8 or less.
  • the crystal orientation is the ⁇ 100> main orientation and the crystal orientation directions are substantially aligned in one direction, piezoelectric distortion (piezoelectric displacement) is canceled between adjacent crystals when a voltage is applied. Can be suppressed.
  • the a-axis orientation and the c-axis orientation are mixed in the tetragonal crystal, a 90 ° domain rotation from the a-axis direction to the c-axis direction, that is, a non-180 ° domain rotation is caused.
  • a strain larger than the normal piezoelectric strain due to the axially oriented domain can be generated.
  • the function F indicating the ⁇ 100> peak by 2 ⁇ / ⁇ measurement of X-ray diffraction indicates the diffraction intensity of X-rays incident on each of an a-axis oriented tetragonal crystal, a c-axis oriented tetragonal crystal, and a rhombohedral crystal.
  • the ratio of the integral value of the function F3 corresponding to the rhombohedral crystal to the sum of the integral values of the three functions F1 to F3 is 0.2 or more and 0.8 or less.
  • a thin film such as a ferroelectric film can efficiently generate non-180 ° domain rotation and obtain high piezoelectric characteristics.
  • a special substrate a substrate whose surface crystal plane is inclined
  • the ratio is 0.4 or more and 0.5 or less, higher piezoelectric characteristics can be obtained with certainty.
  • the ferroelectric film described above is a lead-based metal oxide containing Pb ions at the A site and Zr ions and Ti ions at the B site when the perovskite crystal is represented by the general formula ABO 3 . Can be configured.
  • lead-based metal oxides such as PZT exhibit a good piezoelectric characteristic by adopting a perovskite structure, they are suitable for the ferroelectric film.
  • the metal oxide includes an additive at at least one of the A site and the B site, and the additive at the A site is at least one of a lanthanoid metal, Sr, and Bi. It is a metal ion, and the additive at the B site may be a metal ion of at least one of Nb, Ta, W, and Sb.
  • a metal oxide obtained by adding an additive to PZT is suitable for the ferroelectric film because it exhibits good piezoelectric characteristics by adopting a perovskite structure.
  • the ferroelectric film contains at least one of Sr, Ba, and Bi metal ions at the A site, and Ti ions or Ta ions at the B site. It may be composed of a lead-free metal oxide.
  • Lead-free metal oxides such as BST (barium strontium titanate) and SBT (strontium bismuth tantalate) exhibit good piezoelectric properties by adopting a perovskite structure, and are therefore suitable for the ferroelectric film. .
  • the piezoelectric element described above is a piezoelectric element in which a lower electrode, a ferroelectric film, and an upper electrode are laminated in this order on a substrate, and the ferroelectric film is composed of the ferroelectric film described above. Has been.
  • the above-described ferroelectric film does not require a special substrate to cause non-180 ° domain rotation, and can be easily applied to MEMS. Therefore, the ferroelectric film is high in a piezoelectric element manufactured using MEMS technology. Piezoelectric characteristics can be easily realized.
  • a thin film such as a ferroelectric film can efficiently cause non-180 ° domain rotation and obtain high piezoelectric characteristics.
  • the ferroelectric film can be easily applied to MEMS.
  • the present invention can be used in, for example, MEMS actuators (inkjet printers and projector actuators), MEMS sensors (pyroelectric sensors, ultrasonic sensors), frequency filters, and nonvolatile memories.
  • MEMS actuators injet printers and projector actuators
  • MEMS sensors pyroelectric sensors, ultrasonic sensors
  • frequency filters frequency filters
  • nonvolatile memories nonvolatile memories

Abstract

A ferroelectric film is produced from perovskite crystals. The crystalline orientation is a <100> main orientation, and rhombohedral crystals and tetragonal crystals are mixed. In the tetragonal crystals, an a-axis orientation and a c-axis orientation are mixed. When a function (F) indicating a <100> peak by the 2θ/θ measurement of X-ray diffraction is divided into functions (F1, F2, F3) indicating the diffraction intensities of X rays incident on the tetragonal crystals in the a-axis orientation, the tetragonal crystals in the c-axis orientation, and the rhombohedral crystals, respectively, the ratio of the integral value of the function (F3) corresponding to the rhombohedral crystals to the total of the integral values of the three functions (F1, F2, F3) is 0.2-0.8 inclusive.

Description

強誘電体膜およびそれを備えた圧電素子Ferroelectric film and piezoelectric element including the same
 本発明は、ペロブスカイト結晶からなる強誘電体膜と、その強誘電体膜を備えた圧電素子とに関するものである。 The present invention relates to a ferroelectric film made of a perovskite crystal and a piezoelectric element provided with the ferroelectric film.
 近年、駆動素子やセンサなどに応用するための機械電気変換素子として、Pb(Zr,Ti)Oなどの圧電体が用いられている。このような圧電体は、Si等の基板上に薄膜として形成することで、MEMS(Micro Electro Mechanical Systems)素子へ応用が期待されている。 In recent years, piezoelectric materials such as Pb (Zr, Ti) O 3 have been used as electromechanical transducers for application to drive elements and sensors. Such a piezoelectric body is expected to be applied to a MEMS (Micro Electro Mechanical Systems) element by being formed as a thin film on a substrate such as Si.
 MEMS素子の製造においては、フォトリソグラフィーなど半導体プロセス技術を用いた高精度な加工を適用できるため、素子の小型化や高密度化が可能となる。特に、直径6インチや直径8インチといった比較的大きなSiウェハ上に素子を高密度に一括で作製することにより、素子を個別に製造する枚葉製造に比べて、コストを大幅に低減することができる。 In the manufacture of MEMS elements, high-precision processing using semiconductor process technology such as photolithography can be applied, so that the elements can be miniaturized and densified. In particular, the cost can be greatly reduced by manufacturing the elements at a high density on a relatively large Si wafer having a diameter of 6 inches or 8 inches, compared to single wafer manufacturing in which the elements are individually manufactured. it can.
 また、圧電体の薄膜化やデバイスのMEMS化により、機械電気の変換効率が向上することで、デバイスの感度や特性が向上するといった新たな付加価値も生み出されている。例えば、熱センサでは、MEMS化による熱コンダクタンス低減により、測定感度を上げることが可能となり、プリンター用のインクジェットヘッドでは、ノズルの高密度化による高精細パターニングが可能となる。 In addition, by making the piezoelectric thin film and making the device MEMS, the mechanical and electrical conversion efficiency is improved, and new added value such as improved sensitivity and characteristics of the device is also created. For example, in a thermal sensor, it is possible to increase measurement sensitivity by reducing thermal conductance due to MEMS, and in an inkjet head for a printer, high-definition patterning can be achieved by increasing the density of nozzles.
 圧電体薄膜の材料としては、PZTと呼ばれるPb、Zr、Ti、Oからなる結晶を用いることが多い。PZTは、図8に示すABO型のペロブスカイト構造となるときに良好な圧電効果を発現するため、ペロブスカイト単相にする必要がある。ペロブスカイト構造を採るPZTの結晶の単位格子の形は、Bサイトに入る原子であるTiとZrとの比率によって変化する。つまり、Tiが多い場合には、PZTの結晶格子は正方晶となり、Zrが多い場合には、PZTの結晶格子は菱面体晶となる。ZrとTiとのモル比が52:48付近では、これらの結晶構造が両方とも存在し、このような組成比を採る相境界のことを、MPB(Morphotropic Phase Boundary)と呼ぶ。このMPB組成では、圧電定数、分極値、誘電率といった圧電特性の極大が得られることから、MPB組成の圧電体薄膜が積極的に利用されている。 As a material for the piezoelectric thin film, a crystal made of Pb, Zr, Ti, and O called PZT is often used. Since PZT exhibits a good piezoelectric effect when it has an ABO 3 type perovskite structure shown in FIG. 8, it needs to be a perovskite single phase. The shape of the unit cell of the PZT crystal having the perovskite structure varies depending on the ratio of Ti and Zr, which are atoms entering the B site. That is, when Ti is large, the crystal lattice of PZT is tetragonal, and when Zr is large, the crystal lattice of PZT is rhombohedral. When the molar ratio of Zr to Ti is around 52:48, both of these crystal structures exist, and the phase boundary that takes such a composition ratio is called MPB (Morphotropic Phase Boundary). In this MPB composition, since the maximum of piezoelectric characteristics such as piezoelectric constant, polarization value, and dielectric constant can be obtained, a piezoelectric thin film having an MPB composition is actively used.
 圧電体薄膜をMEMS駆動素子として用いる際には、必要な変位発生力を満たすために、3~5μmの厚みで圧電体薄膜を成膜しなければならない。圧電体薄膜をSiなどの基板上に成膜するには、CVD法など化学的成膜法、スパッタ法やイオンプレーティング法といった物理的な方法、ゾルゲル法など液相での成長法が知られており、成膜方法に応じてペロブスカイト単相の膜を得るための条件を見い出すことが重要である。 When a piezoelectric thin film is used as a MEMS drive element, the piezoelectric thin film must be formed with a thickness of 3 to 5 μm in order to satisfy the required displacement generation force. In order to form a piezoelectric thin film on a substrate such as Si, a chemical film-forming method such as a CVD method, a physical method such as a sputtering method or an ion plating method, and a liquid phase growth method such as a sol-gel method are known. It is important to find the conditions for obtaining a perovskite single phase film according to the film forming method.
 ところで、近年では、より高密度、高出力なMEMS駆動素子が求められている。このような駆動素子を実現するためには、圧電特性の指標である圧電定数d31の値(絶対値)で、150[pm/V]以上の値が得られるような強誘電体膜が求められる。なお、圧電定数d31は、後述する数1式によって算出することができるが、この算出式は例えば非特許文献1に開示されている。 By the way, in recent years, a MEMS driving element with higher density and higher output has been demanded. In order to realize such a drive element, a ferroelectric film is required that can obtain a value (absolute value) of 150 [pm / V] or more as the value (absolute value) of the piezoelectric constant d 31 that is an index of piezoelectric characteristics. It is done. Note that the piezoelectric constant d 31 can be calculated by the following formula 1, which is disclosed in Non-Patent Document 1, for example.
 そこで、圧電特性の高い強誘電体膜を実現するために、バルクで用いられている圧電特性向上策を薄膜に展開する検討が行われている。この圧電特性向上策の一つに、分極ドメインを制御して、非180°のドメイン回転を利用するというものがある。以下、詳細に説明する。 Therefore, in order to realize a ferroelectric film having high piezoelectric characteristics, studies are being made to develop piezoelectric characteristic improvement measures used in bulk into a thin film. One way to improve this piezoelectric property is to control the polarization domain and use non-180 ° domain rotation. This will be described in detail below.
 PZT等のペロブスカイト結晶材料は、電圧無印加時において自発分極Psを持つ強誘電体である。上記の分極ドメインとは、自発分極Psの方向が揃った領域のことを言う。自発分極Psの取り得る方向は、結晶の単位格子の形により変化し、正方晶であれば、<100>軸方向であり、菱面体晶であれば、<111>軸方向である。なお、<100>軸方向は、[100]、[010]、[001]およびこれらの逆方向の計6通りの等価な方向をまとめて指すものとする。また、<111>軸方向は、[111]、[-111]、[1-11]、[-1-11]およびこれらの逆方向の計8通りの等価な方向をまとめて指すものとする。ちなみに、図9(a)は、正方晶の自発分極Psの方向を示しており、図9(b)は、菱面体晶の自発分極Psの方向を示している。この中で、特に正方晶においては、[100]方向および[010]方向とその逆方向の自発分極Psからなるドメインを、a軸配向ドメインと呼び、[001]方向とその逆方向の自発分極Psからなるドメインを、c軸配向ドメインと呼ぶ。 Perovskite crystal materials such as PZT are ferroelectrics having spontaneous polarization Ps when no voltage is applied. The polarization domain refers to a region where the directions of spontaneous polarization Ps are aligned. The direction that the spontaneous polarization Ps can take varies depending on the shape of the unit cell of the crystal. If it is tetragonal, it is the <100> axial direction, and if it is rhombohedral, it is the <111> axial direction. Note that the <100> axial direction collectively refers to [100], [010], [001] and a total of six equivalent directions opposite to these directions. The <111> axis direction collectively refers to [111], [−111], [1-11], [−1-11], and a total of eight equivalent directions opposite to these directions. . 9A shows the direction of tetragonal spontaneous polarization Ps, and FIG. 9B shows the direction of rhombohedral spontaneous polarization Ps. Among them, particularly in the tetragonal crystal, a domain composed of the spontaneous polarization Ps in the [100] direction and the [010] direction and the opposite direction thereof is called an a-axis orientation domain, and the spontaneous polarization in the [001] direction and the opposite direction thereof. A domain composed of Ps is called a c-axis orientation domain.
 また、ドメインとドメインとの境界は、ドメイン壁と呼ばれる。このドメイン壁には、180°ドメイン壁と、非180°ドメイン壁との2種類が存在する。前者の180°ドメイン壁は、ある方向のドメインとその反転した方向のドメインとの境界である。一方、後者の非180°ドメイン壁は、180°以外の方向のドメイン同士の境界である。非180°ドメイン壁の例としては、正方晶において、a軸配向ドメインとc軸配向ドメインとが隣り合うドメイン壁が挙げられる。このときのドメイン壁は、配向方向が互いに90°異なるドメインの境界となる。 Also, the boundary between domains is called a domain wall. There are two types of domain walls: 180 ° domain walls and non-180 ° domain walls. The former 180 ° domain wall is the boundary between a domain in one direction and a domain in its inverted direction. On the other hand, the latter non-180 ° domain wall is a boundary between domains in directions other than 180 °. As an example of the non-180 ° domain wall, a domain wall in which an a-axis orientation domain and a c-axis orientation domain are adjacent to each other in a tetragonal crystal can be given. The domain wall at this time becomes a boundary between domains whose orientation directions are different from each other by 90 °.
 ところで、図10は、正方晶のc軸配向ドメインに対して、c軸方向に電界を印加した場合の圧電歪みΔX1と、正方晶のa軸配向ドメインに対して、c軸方向に同じ電界を印加した場合の圧電歪みΔX2とを示している。なお、同図において、黒塗りの太い矢印は、分極方向を示している(他の図面でも同じ)。a軸配向ドメインに対してc軸方向に電界を印加すると、a軸配向ドメインの分極方向がc軸方向に変化し、ドメイン方向が90°回転するという現象が生じる。このとき、a軸方向からc軸方向への90°ドメイン回転は、c軸配向ドメインに対してc軸方向に電界を印加したときの圧電歪みΔX1(通常の圧電歪み)に比べて大きな圧電歪みΔX2を生じるため、このような非180°のドメイン回転を効率よく生じさせることができれば、圧電特性を向上させることができる。 10 shows a piezoelectric strain ΔX1 when an electric field is applied in the c-axis direction to a tetragonal c-axis orientation domain, and the same electric field in the c-axis direction with respect to a tetragonal a-axis orientation domain. The piezoelectric strain ΔX2 when applied is shown. In the figure, a thick black arrow indicates the polarization direction (the same applies to other drawings). When an electric field is applied to the a-axis orientation domain in the c-axis direction, the polarization direction of the a-axis orientation domain changes to the c-axis direction, causing a phenomenon that the domain direction rotates by 90 °. At this time, the 90 ° domain rotation from the a-axis direction to the c-axis direction is larger than the piezoelectric strain ΔX1 (normal piezoelectric strain) when an electric field is applied to the c-axis orientation domain in the c-axis direction. Since ΔX2 is generated, if such non-180 ° domain rotation can be efficiently generated, the piezoelectric characteristics can be improved.
 ところが、非180°のドメイン回転による歪みを発生させるために必要なエネルギーは、通常の圧電歪みを生じさせる場合に比べて高く、仮にドメインがa軸配向単一の結晶ができたとしても、通常のデバイス駆動電圧では、非180°のドメイン回転を生じさせることはできない。その理由は以下の通りである。 However, the energy required to generate distortion due to non-180 ° domain rotation is higher than that in the case of generating normal piezoelectric distortion, and even if a single domain a-axis oriented crystal is formed, With the device drive voltage, non-180 ° domain rotation cannot be caused. The reason is as follows.
 非180°のドメイン回転は、以下のメカニズムで発生すると考えられている。図11に示すように、分極方向が電界印加方向を向いているドメイン101と、それとは異なる方向を向いている非180°ドメイン102とが、非180°ドメイン壁Wで接しているものとする。電界印加時には、まず、ドメイン101が通常の圧電歪みを生じ、この歪みに引きずられて、非180°ドメイン壁Wを介して隣接する非180°ドメイン102の分極方向が電界印加方向に回転する。このとき、非180°ドメイン壁Wを起点として、これに隣接する非180°ドメイン102内の結晶の分極方向が次々と回転し、非180°ドメイン壁Wが移動するように、非180°のドメイン回転が生じて行く。 Non-180 ° domain rotation is considered to occur by the following mechanism. As shown in FIG. 11, it is assumed that a domain 101 whose polarization direction is in the direction of electric field application and a non-180 ° domain 102 in a different direction are in contact with each other by a non-180 ° domain wall W. . When an electric field is applied, first, the domain 101 generates a normal piezoelectric strain, and is dragged by this strain, so that the polarization direction of the adjacent non-180 ° domain 102 is rotated in the electric field application direction via the non-180 ° domain wall W. At this time, starting from the non-180 ° domain wall W, the polarization direction of the crystal in the non-180 ° domain 102 adjacent to the non-180 ° domain wall W rotates one after another, and the non-180 ° domain wall W moves. Domain rotation occurs.
 そのため、バルクでは、異なる方向に自発分極Psを持つドメインを多数導入し、それぞれのドメインサイズを小さくすることで、非180°のドメイン回転の起点となる非180°ドメイン壁の密度を多くし、非180°のドメイン回転を生じさせて圧電特性を向上させている。 Therefore, in bulk, by introducing a large number of domains having spontaneous polarization Ps in different directions and reducing the size of each domain, the density of non-180 ° domain walls that are the starting point of non-180 ° domain rotation is increased, Non-180 ° domain rotation is caused to improve the piezoelectric characteristics.
 実際に、バルクのMPB組成のPZTでは、粒径数μmという比較的大きな結晶粒の中に、正方晶と菱面体晶とが混在しているため、同じ結晶構造が集まった領域内の非180°ドメインだけでなく、各領域間でも<100>方向のドメインと<111>方向のドメインとが複雑に混ざり合い、ドメインサイズが小さくなって非180°ドメイン壁の密度が高くなる。この結果、非180°のドメイン回転が効率よく生じて、良好な圧電特性が得られると考えられている。 Actually, in PZT having a bulk MPB composition, tetragonal crystals and rhombohedral crystals are mixed in a relatively large crystal grain having a particle size of several μm, so that non-180 in a region where the same crystal structure is gathered. In addition to the domain, the domain in the <100> direction and the domain in the <111> direction are mixed in a complex manner between the regions, the domain size is reduced, and the density of the non-180 ° domain walls is increased. As a result, it is considered that non-180 ° domain rotation occurs efficiently and good piezoelectric characteristics can be obtained.
 なお、図12に示すように、圧電歪みは、電界の印加/無印加によって可逆的に生じ、非180°のドメイン回転は、電界を一定以上(例えば図12では400V/mm以上)印加することで発生する。このとき、c軸配向ドメインによる通常の圧電歪み(真の圧電歪み)と、非180°のドメイン回転による圧電歪みとの和が、全体の圧電歪み(電界誘起歪み量)として観察される。 As shown in FIG. 12, the piezoelectric distortion is reversibly generated by applying / not applying an electric field, and non-180 ° domain rotation applies an electric field over a certain level (for example, 400 V / mm or more in FIG. 12). Occurs. At this time, the sum of the normal piezoelectric strain (true piezoelectric strain) due to the c-axis orientation domain and the piezoelectric strain due to non-180 ° domain rotation is observed as the total piezoelectric strain (electric field induced strain amount).
 しかし、一般に、薄膜は、エピタキシャル膜などの特別な場合を除き、バルクに比べて結晶粒径が小さい。例えば、Si上にPtやIrなどの下部電極を介して成膜された強誘電体膜では、結晶は柱状構造を採り、その結晶粒径の平均は100~500nm程度である。結晶粒径が小さいと、非特許文献2に示されているように、結晶内に入るドメインの数が少なくなり、それに伴いドメイン壁の数も少なくなるため、非180°ドメインの回転を生じさせることが困難となる。その結果、圧電特性を向上させることが困難となる。 However, in general, a thin film has a crystal grain size smaller than that of a bulk except in special cases such as an epitaxial film. For example, in a ferroelectric film formed on Si via a lower electrode such as Pt or Ir, the crystal has a columnar structure and the average crystal grain size is about 100 to 500 nm. If the crystal grain size is small, as shown in Non-Patent Document 2, the number of domains entering the crystal is reduced, and the number of domain walls is also reduced accordingly, which causes non-180 ° domain rotation. It becomes difficult. As a result, it becomes difficult to improve the piezoelectric characteristics.
 結晶粒径とドメイン壁の数との関係は、以下の図面を参照することで、より明らかになる。図13(a)は、粒径の異なる複数の結晶粒の集合を示す平面図であり、図13(b)および図13(c)は、上記複数の結晶粒に含まれる、粒径の小さい結晶粒201(例えば粒径0.3μm以下)の平面図および断面図であり、図13(d)および図13(e)は、上記複数の結晶粒に含まれる、粒径の大きい結晶粒202(例えば粒径1μm以下)の平面図および断面図である。これらより、薄膜を構成する小さい結晶粒201では、大きい結晶粒202に比べて、ドメインの数およびドメイン壁の数が少なくなっていることがわかる。特に、結晶粒201では、粒径が小さいために、非180°のドメイン回転の起点となる非180°ドメイン壁W1の数が結晶粒202に比べて極端に低下し、ドメイン壁が180°ドメイン壁W2のみで構成される場合もある。このため、結晶粒径の小さい薄膜では、非180°のドメイン回転を生じさせて、圧電特性を向上させることが困難となる。 The relationship between the crystal grain size and the number of domain walls will become clearer with reference to the following drawings. FIG. 13A is a plan view showing a set of a plurality of crystal grains having different grain sizes, and FIGS. 13B and 13C are small grain sizes included in the plurality of crystal grains. FIGS. 13D and 13E are a plan view and a cross-sectional view of a crystal grain 201 (for example, a grain size of 0.3 μm or less). FIGS. 13D and 13E show a crystal grain 202 having a large grain size included in the plurality of crystal grains. It is the top view and sectional drawing of (for example, a particle size of 1 micrometer or less). From these, it can be seen that the small crystal grains 201 constituting the thin film have fewer domains and domain walls than the large crystal grains 202. In particular, since the grain size of the crystal grain 201 is small, the number of non-180 ° domain walls W1 that are the starting point of non-180 ° domain rotation is extremely lower than that of the crystal grain 202, and the domain wall is 180 ° domain. In some cases, the wall W2 alone is used. For this reason, in a thin film having a small crystal grain size, it is difficult to improve the piezoelectric characteristics by causing non-180 ° domain rotation.
 一方、薄膜は、バルクとは異なり、基板の結晶方位を利用してエピタキシャル成長させたり、基板と膜の応力との関係などから結晶に配向性を持たせることができる。これらを利用して、薄膜において非180°のドメイン回転を生じさせるような工夫が、従来からなされてきている。 On the other hand, unlike the bulk, the thin film can be epitaxially grown using the crystal orientation of the substrate, or the crystal can be oriented due to the relationship between the stress of the substrate and the film. Conventionally, a device for causing non-180 ° domain rotation in a thin film has been made by using these.
 例えば、特許文献1では、<100>配向させた正方晶のエピタキシャル膜を基板上に成長させ、このエピタキシャル膜に、a軸配向ドメインとc軸配向ドメインとを混在させることで、非180°のドメイン回転を生じさせ、圧電特性を高めるようにしている。なお、エピタキシャル膜は基板の拘束を強く受けることから、非特許文献3では、エピタキシャル膜は、MPB組成であっても正方晶単晶になってしまうことが開示されている。また、特許文献2では、基板表面の結晶面が傾斜した特殊なSi基板を用いて、配向軸が基板垂直方向から傾いたa軸単一配向膜を得ることで、非180°ドメイン壁が無くても、比較的低電圧でドメイン回転を生じさせるようにしている。 For example, in Patent Document 1, a <100> -oriented tetragonal epitaxial film is grown on a substrate, and an a-axis orientation domain and a c-axis orientation domain are mixed in this epitaxial film, so that non-180 ° Domain rotation is caused to enhance the piezoelectric characteristics. Note that since the epitaxial film is strongly bound by the substrate, Non-Patent Document 3 discloses that the epitaxial film becomes a tetragonal single crystal even with the MPB composition. In Patent Document 2, a non-180 ° domain wall is obtained by obtaining an a-axis single alignment film in which the alignment axis is inclined from the vertical direction of the substrate using a special Si substrate in which the crystal plane of the substrate surface is inclined. However, domain rotation is generated at a relatively low voltage.
特開2008-218675号公報(請求項1、2、段落〔0019〕、〔0020〕、〔0026〕等参照)JP 2008-218675 A (refer to claims 1 and 2, paragraphs [0019], [0020], [0026], etc.) 特開2008-277672号公報(請求項1、5、6、段落〔0039〕、〔0062〕、〔0063〕、〔0068〕~〔0072〕等参照)JP 2008-277672 A (refer to claims 1, 5, 6 and paragraphs [0039], [0062], [0063], [0068] to [0072], etc.)
 ところが、上述したように、エピタキシャル膜は、MPB組成であっても正方晶単晶になってしまうため、特許文献1の構成では、正方晶と菱面体晶との異なる結晶構造を混在させることによる効果を得ることができない。つまり、異なる結晶構造を混在させて非180°ドメイン壁の密度を高くすることができず、非180°のドメイン回転を効率よく生じさせることができない。 However, as described above, since the epitaxial film becomes a tetragonal single crystal even with the MPB composition, in the configuration of Patent Document 1, different crystal structures of tetragonal crystals and rhombohedral crystals are mixed. The effect cannot be obtained. In other words, the density of non-180 ° domain walls cannot be increased by mixing different crystal structures, and non-180 ° domain rotation cannot be efficiently generated.
 また、特許文献2の構成では、特殊な基板を用いる必要があることから、後工程でMEMS加工を行う際に均一な加工が難しく、工程も煩雑になってしまうため、MEMSへの応用が困難となる。 Moreover, in the structure of patent document 2, since it is necessary to use a special board | substrate, when performing a MEMS process by a post process, since a uniform process is difficult and a process becomes complicated, the application to MEMS is difficult. It becomes.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、特殊な基板を用いることなく、非180°のドメイン回転を効率よく生じさせて、高い圧電特性を得ることができ、MEMSへの応用も容易となる強誘電体膜と、その強誘電体膜を備えた圧電素子とを提供することにある。 The present invention has been made to solve the above-described problems, and its object is to efficiently generate non-180 ° domain rotation and obtain high piezoelectric characteristics without using a special substrate. An object of the present invention is to provide a ferroelectric film that can be easily applied to MEMS and a piezoelectric element including the ferroelectric film.
 本発明の1側面による強誘電体膜は、ペロブスカイト結晶からなる強誘電体膜であって、結晶配向が<100>主配向で、菱面体晶と正方晶とが混在しており、前記正方晶において、a軸配向とc軸配向とが混在しており、X線回折の2θ/θ測定による<100>ピークを示す関数Fを、a軸配向の正方晶、c軸配向の正方晶、菱面体晶のそれぞれに入射したX線の回折強度を示す関数F1、F2およびF3に分けたときに、前記3つの関数F1、F2およびF3の積分値の合計に対する、前記菱面体晶に対応する関数F3の積分値の比が、0.2以上0.8以下である。 A ferroelectric film according to one aspect of the present invention is a ferroelectric film made of a perovskite crystal, the crystal orientation is <100> main orientation, rhombohedral and tetragonal crystals are mixed, and the tetragonal crystal In FIG. 5, a-axis orientation and c-axis orientation are mixed, and function F indicating <100> peak by 2θ / θ measurement of X-ray diffraction is expressed as tetragonal crystal with a-axis orientation, tetragonal crystal with c-axis orientation, rhomboid A function corresponding to the rhombohedral crystal with respect to the sum of integral values of the three functions F1, F2 and F3 when divided into functions F1, F2 and F3 indicating the diffraction intensities of X-rays incident on the respective rhombohedral crystals. The ratio of the integral values of F3 is 0.2 or more and 0.8 or less.
 上記構成によれば、強誘電体膜のような薄膜であっても、非180°のドメイン回転を効率よく生じさせて、高い圧電特性を得ることができる。 According to the above configuration, even a thin film such as a ferroelectric film can efficiently cause non-180 ° domain rotation and obtain high piezoelectric characteristics.
(a)~(c)は、本発明の一実施例に係る強誘電体膜としてのPZT膜の成膜工程を示す断面図である。(A)-(c) is sectional drawing which shows the film-forming process of the PZT film | membrane as a ferroelectric film based on one Example of this invention. 上記PZT膜に対するXRDの2θ/θ測定の結果を示すグラフである。It is a graph which shows the result of 2theta / theta measurement of XRD with respect to the said PZT film | membrane. 上記PZT膜の<100>ピークを示す関数を複数の関数に分けた結果を示すグラフである。It is a graph which shows the result of having divided the function which shows <100> peak of the PZT film into a plurality of functions. 本発明の各実施例および各比較例について、上記複数の関数の各々の積分値と、PZT膜の圧電定数とを示す説明図である。It is explanatory drawing which shows the integrated value of each of the said several function, and the piezoelectric constant of a PZT film | membrane about each Example and each comparative example of this invention. 圧電変位測定計の概略の構成を示す斜視図である。It is a perspective view which shows the schematic structure of a piezoelectric displacement measuring meter. 各実施例のPZT膜を備えた圧電素子の構成を示す平面図である。It is a top view which shows the structure of the piezoelectric element provided with the PZT film | membrane of each Example. 図6のA-A’線矢視断面図である。FIG. 7 is a cross-sectional view taken along line A-A ′ of FIG. 6. PZTの結晶構造を模式的に示す説明図である。It is explanatory drawing which shows typically the crystal structure of PZT. (a)は、正方晶の分極方向を示す説明図であり、(b)は、菱面体晶の分極方向を示す説明図である。(A) is explanatory drawing which shows the polarization direction of a tetragonal crystal, (b) is explanatory drawing which shows the polarization direction of a rhombohedral crystal. 正方晶のc軸配向ドメインおよびa軸配向ドメインに対して、c軸方向に電界を印加した場合のそれぞれの圧電歪みを示す説明図である。It is explanatory drawing which shows each piezoelectric distortion at the time of applying an electric field to a c-axis direction with respect to the tetragonal c-axis orientation domain and a-axis orientation domain. 非180°のドメイン回転のメカニズムを説明するための説明図である。It is explanatory drawing for demonstrating the mechanism of a non-180 degree domain rotation. PZTに印加される電界と観察される電界誘起歪み量との関係を示すグラフである。It is a graph which shows the relationship between the electric field applied to PZT, and the electric field induced distortion amount observed. (a)は、粒径の異なる複数の結晶粒の集合を示す平面図であり、(b)および(c)は、上記複数の結晶粒に含まれる、粒径の小さい結晶粒の平面図および断面図であり、(d)および(e)は、上記複数の結晶粒に含まれる、粒径の大きい結晶粒の平面図および断面図である。(A) is a plan view showing a set of a plurality of crystal grains having different grain sizes, and (b) and (c) are plan views of crystal grains having a small grain size included in the plurality of crystal grains. It is sectional drawing, (d) and (e) are the top view and sectional drawing of a crystal grain with a big particle size contained in the said several crystal grain.
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。まず、本実施形態のPZT膜の成膜方法について、実施例1および2として説明する。そして、実施例1および2との比較のため、比較例1~3についても併せて説明する。 An embodiment of the present invention will be described below with reference to the drawings. First, the PZT film forming method of this embodiment will be described as Examples 1 and 2. For comparison with Examples 1 and 2, Comparative Examples 1 to 3 will also be described.
 (実施例1)
 図1(a)~図1(c)は、本実施例の強誘電体膜としてのPZT膜の成膜工程を示す断面図である。まず、図1(a)に示すように、厚さ400μm程度の単結晶Siウェハからなる基板1に、例えば厚さ100nm程度のSiOからなる熱酸化膜2を形成する。なお、基板1としては、厚さが300μm~725μm、直径が3インチ~8インチなどの標準的なものでよい。また、熱酸化膜2は、ウェット酸化用熱炉を用い、基板1を酸素雰囲気中で1200℃程度の高温にさらすことで形成可能である。
Example 1
FIG. 1A to FIG. 1C are cross-sectional views showing a process of forming a PZT film as a ferroelectric film of this example. First, as shown in FIG. 1A, a thermal oxide film 2 made of, for example, SiO 2 having a thickness of about 100 nm is formed on a substrate 1 made of a single crystal Si wafer having a thickness of about 400 μm. The substrate 1 may be a standard substrate having a thickness of 300 μm to 725 μm and a diameter of 3 inches to 8 inches. The thermal oxide film 2 can be formed by exposing the substrate 1 to a high temperature of about 1200 ° C. in an oxygen atmosphere using a wet oxidation furnace.
 次に、図1(b)に示すように、熱酸化膜2上に、厚さ20nm程度のTiからなる密着層と、厚さ100nm程度のPt電極層とを順に形成する。この密着層およびPt電極層をまとめて下部電極3と呼ぶこととする。TiおよびPtは、例えばスパッタ法により成膜する。このときのTiのスパッタ条件は、Ar流量;20sccm、圧力;0.4Pa、ターゲットに印加するRFパワー;200Wであり、Ptのスパッタ条件は、Ar流量;20sccm、圧力;0.4Pa、ターゲットに印加するRFパワー;150W、基板温度;530℃である。Ptは、その自己配向性により<111>配向を有する膜となるが、Pt上に成膜するPZT膜の膜質に影響するため、高い結晶性を持つことが望ましい。 Next, as shown in FIG. 1B, an adhesion layer made of Ti having a thickness of about 20 nm and a Pt electrode layer having a thickness of about 100 nm are sequentially formed on the thermal oxide film 2. The adhesion layer and the Pt electrode layer are collectively referred to as a lower electrode 3. Ti and Pt are formed by sputtering, for example. The sputtering conditions for Ti at this time were Ar flow rate: 20 sccm, pressure: 0.4 Pa, RF power applied to the target: 200 W, and the sputtering conditions for Pt were Ar flow rate: 20 sccm, pressure: 0.4 Pa, on the target Applied RF power: 150 W, substrate temperature: 530 ° C. Although Pt becomes a film having <111> orientation due to its self-orientation, it has a high crystallinity because it affects the quality of the PZT film formed on Pt.
 なお、Tiは、後工程(例えばPZT膜の形成など)で高温にさらすと、Pt膜内に拡散して、Pt層の表面にヒロックを形成し、PZT膜の駆動電流のリークや、PZTの配向性劣化などの不具合を生じる恐れがある。そこで、これら不具合防止のために、密着層をTiではなく、TiOxとしてもよい。なお、TiOxは、Tiのスパッタ時に酸素を導入し、反応性スパッタによる成膜によって形成することもできるし、Ti成膜後にRTA(Rapid Thermal Annealing)炉により酸素雰囲気中で700℃程度の加熱を行うことで形成することもできる。 When Ti is exposed to a high temperature in a subsequent process (for example, formation of a PZT film), it diffuses into the Pt film, forming hillocks on the surface of the Pt layer, and leakage of the drive current of the PZT film, There is a risk of problems such as orientation degradation. Therefore, in order to prevent these problems, the adhesion layer may be made of TiOx instead of Ti. TiOx can also be formed by introducing reactive oxygen during Ti sputtering and forming a film by reactive sputtering, or heating at about 700 ° C. in an oxygen atmosphere in an RTA (Rapid Thermal Annealing) furnace after Ti film formation. It can also be formed by performing.
 次に、図1(c)に示すように、Pt付き基板1上に、スパッタ法により、強誘電体膜であるPZT膜4を形成する。なお、強誘電体膜の形成方法は、スパッタ法に限定されず、パルスレーザーデポジション(PLD)法やイオンプレーティング法などの他の物理成膜法、MOCVD法やゾルゲル法などの化学成膜法でもよい。 Next, as shown in FIG. 1C, a PZT film 4 that is a ferroelectric film is formed on the substrate 1 with Pt by sputtering. The formation method of the ferroelectric film is not limited to the sputtering method, but other physical film formation methods such as a pulse laser deposition (PLD) method and an ion plating method, and chemical film formation such as an MOCVD method and a sol-gel method. The law may be used.
 ここで、スパッタのターゲットには、Zr/Tiのモル比がMPB(Morphotropic Phase Boundary)組成である52/48となっているものを用いた。また、ターゲットに含まれるPbは、高温成膜時に再蒸発しやすく、形成された薄膜がPb不足になりやすいため、ペロブスカイト結晶の化学量論比よりも多めにターゲットに添加することが望ましい。例えば、Pbの添加量は、成膜温度にもよるが、化学量論比よりも10~30%増やすことが望ましい。 Here, a sputtering target having a Zr / Ti molar ratio of 52/48 having an MPB (Morphotropic Phase Boundary) composition was used. Further, Pb contained in the target is likely to be re-evaporated during high-temperature film formation, and the formed thin film tends to be Pb deficient. Therefore, it is desirable to add the Pb to the target in a larger amount than the stoichiometric ratio of the perovskite crystal. For example, the amount of Pb added is preferably 10 to 30% higher than the stoichiometric ratio, although it depends on the film formation temperature.
 PZTのスパッタ条件は、Ar流量;25sccm、O流量;0.4sccm、圧力;0.4Pa、基板温度;500℃、RFパワー;500Wとし、5μm厚のPZT膜4を形成した。このような条件で成膜することで、平均粒径が1μmのPZT膜4を形成することができた。 The PZT sputtering conditions were Ar flow rate: 25 sccm, O 2 flow rate: 0.4 sccm, pressure: 0.4 Pa, substrate temperature: 500 ° C., RF power: 500 W, and a PZT film 4 having a thickness of 5 μm was formed. By forming the film under such conditions, a PZT film 4 having an average particle diameter of 1 μm could be formed.
 図2は、実施例1のPZT膜4に対する、XRD(X線回折)の2θ/θ測定の結果を示している。なお、図2の縦軸の強度(回折強度、反射強度)は、1秒間あたりのX線の計数率(cps;count per second)で示している。また、2θ/θ測定の詳細については後述する。図2では、PZT膜4についての回折強度ピークは、<100>配向による1次および高次の反射によるピークしか見当たらないことから、PZT膜4の結晶配向は、<100>主配向であると言える。 FIG. 2 shows the result of 2RD / θ measurement of XRD (X-ray diffraction) for the PZT film 4 of Example 1. In addition, the intensity | strength (diffraction intensity, reflection intensity) of the vertical axis | shaft of FIG. 2 is shown by the count rate (cps; count per second) of the X-ray per second. Details of the 2θ / θ measurement will be described later. In FIG. 2, since the diffraction intensity peak for the PZT film 4 is found only in the primary and high-order reflection peaks due to the <100> orientation, the crystal orientation of the PZT film 4 is the <100> main orientation. I can say that.
 ここで、主配向とは、Lotgering法により測定される配向率Fが80%以上であり、結晶配向性を有していることを示す。このときの配向率Fは、以下の式で表される。
  F(%)=(P-P)/(1-P)×100
 ただし、Pは、配向面からの反射強度の合計と全反射強度の合計との比を指す。例えば、<100>配向の場合、
  P=I<100>/[I<100>+I<110>+I<111>]
である。また、Pは、無配向試料のPである。無配向試料では、F=0%であり、完全に配向した試料では、F=100%である。ちなみに、本実施例では、配向率Fは、100%であった。
Here, the main orientation means that the orientation rate F measured by the Lotgering method is 80% or more and has crystal orientation. The orientation rate F at this time is represented by the following formula.
F (%) = (P−P 0 ) / (1−P 0 ) × 100
However, P refers to the ratio of the total reflection intensity from the orientation plane to the total reflection intensity. For example, in the case of <100> orientation,
P = I <100> / [I <100> + I <110> + I <111>]
It is. P 0 is P of the non-oriented sample. In the non-oriented sample, F = 0%, and in the fully oriented sample, F = 100%. Incidentally, in this example, the orientation rate F was 100%.
 PZT膜4の結晶の配向方向がランダムであると、電圧印加時に、隣り合う結晶同士で圧電歪みが打ち消される場合がある。しかし、本実施例のように、PZT膜4の結晶配向が<100>主配向であり、結晶の配向方向がほぼ一方向に揃っているので、電圧印加時に隣り合う結晶同士で圧電歪みが打ち消されるのを抑えることができ、圧電特性を向上させることができる。 If the crystal orientation direction of the PZT film 4 is random, piezoelectric distortion may be canceled between adjacent crystals when a voltage is applied. However, as in this example, the crystal orientation of the PZT film 4 is the <100> main orientation, and the crystal orientation directions are aligned in almost one direction, so that the piezoelectric strain is canceled between adjacent crystals when a voltage is applied. Can be suppressed, and the piezoelectric characteristics can be improved.
 また、図3は、X線回折の2θ/θ測定によるPZT膜4の<100>回折強度ピーク(以下、<100>ピークと称する)に対して、フォークト関数によるフィッティングを専用のソフトウェアを用いて行い、<100>ピークを示す関数Fを、複数の関数F1、F2およびF3に分けた結果を示している。関数F1、F2およびF3は、a軸配向の正方晶、c軸配向の正方晶、菱面体晶のそれぞれに入射したX線の回折強度を示す関数である。なお、図3において、関数F1、F2およびF3を示すグラフの縦軸は、関数Fの最大強度に対する相対強度を示している。 Further, FIG. 3 shows that for the <100> diffraction intensity peak (hereinafter referred to as <100> peak) of the PZT film 4 by 2θ / θ measurement of X-ray diffraction, fitting with a forked function is performed using dedicated software. The results are shown in which the function F indicating the <100> peak is divided into a plurality of functions F1, F2 and F3. The functions F1, F2 and F3 are functions indicating the diffraction intensity of X-rays incident on the a-axis oriented tetragonal crystal, the c-axis oriented tetragonal crystal and the rhombohedral crystal, respectively. In FIG. 3, the vertical axis of the graph showing the functions F1, F2 and F3 indicates the relative intensity of the function F with respect to the maximum intensity.
 ここで、X線回折の2θ/θ測定とは、X線をサンプルに対して水平方向からθの角度で(結晶面に対してθの角度で)入射させ、サンプルから反射して出てくるX線のうち、入射X線に対して2θの角度のX線を検出することで、θに対する強度変化を調べる手法である。X線による回折では、ブラッグの条件(2dsinθ=nλ(λ:X線の波長、d:結晶の原子面間隔、n:整数))を満足するときに回折強度が高くなるが、そのときの結晶の面間隔(格子定数)と上記の2θとは対応関係にある。したがって、回折強度が高くなる2θの値に基づいて、X線が入射したサンプルの結晶構造を把握することができる。 Here, 2θ / θ measurement of X-ray diffraction means that X-rays are incident on the sample at an angle θ from the horizontal direction (at an angle θ relative to the crystal plane) and reflected from the sample. This is a technique for investigating an intensity change with respect to θ by detecting X-rays having an angle of 2θ with respect to incident X-rays. In X-ray diffraction, the diffraction intensity increases when the Bragg condition (2 d sin θ = nλ (λ: wavelength of X-ray, d: atomic plane spacing of crystal, n: integer)) is satisfied. There is a correspondence between the surface spacing (lattice constant) and the above 2θ. Therefore, based on the value of 2θ at which the diffraction intensity increases, the crystal structure of the sample on which the X-rays are incident can be grasped.
 例えば、PZTの正方晶において、a軸方向の格子定数は4.04オングストロームであり、c軸方向の格子定数は4.14オングストロームであり、菱面体晶の格子定数は、4.07オングストロームであるため、各結晶構造に対応する2θの値は相互に異なる。したがって、回折強度が高くなる2θの値に基づいて、X線が入射したサンプルの結晶構造が、a軸配向の正方晶、c軸配向の正方晶、菱面体晶のいずれであるかを判断することができる。 For example, in a PZT tetragonal crystal, the lattice constant in the a-axis direction is 4.04 angstroms, the lattice constant in the c-axis direction is 4.14 angstroms, and the lattice constant of rhombohedral crystals is 4.07 angstroms. Therefore, the values of 2θ corresponding to the crystal structures are different from each other. Therefore, based on the 2θ value at which the diffraction intensity increases, it is determined whether the crystal structure of the sample on which the X-rays are incident is an a-axis oriented tetragonal crystal, a c-axis oriented tetragonal crystal, or a rhombohedral crystal. be able to.
 図4は、関数F1、F2およびF3の積分値(面積)をそれぞれ示している。なお、ここでは、a軸配向の正方晶、c軸配向の正方晶、菱面体晶の各結晶構造に対応する3つの関数F1、F2およびF3の積分値の合計を1としている。この結果、本実施例では、PZT膜4は、正方晶と菱面体晶とを両方含み、さらに、正方晶においては、a軸配向とc軸配向とが混在していることが分かった。 FIG. 4 shows the integrated values (areas) of the functions F1, F2 and F3, respectively. Here, the sum of the integrated values of the three functions F1, F2 and F3 corresponding to the crystal structures of the a-axis oriented tetragonal crystal, the c-axis oriented tetragonal crystal and the rhombohedral crystal is 1. As a result, in this example, it was found that the PZT film 4 includes both tetragonal crystals and rhombohedral crystals, and in the tetragonal crystals, a-axis orientation and c-axis orientation are mixed.
 このように、本実施例では、PZT膜4の正方晶において、a軸配向とc軸配向とが混在しているので、a軸方向からc軸方向への90°のドメイン回転、すなわち、非180°のドメイン回転を生じさせて、c軸配向ドメインによる通常の圧電歪みよりも大きな歪みを生じさせることができる。 Thus, in the present embodiment, since the a-axis orientation and the c-axis orientation are mixed in the tetragonal crystal of the PZT film 4, a 90 ° domain rotation from the a-axis direction to the c-axis direction, ie, non- A 180 [deg.] Domain rotation can be generated to produce a strain greater than the normal piezoelectric strain due to the c-axis oriented domain.
 しかも、PZT膜4には菱面体晶と正方晶とが混在しているので、<111>方向のドメインと<100>方向のドメインとが複雑に混ざり合って、ドメインサイズが小さくなる。この結果、非180°ドメイン壁の密度が高くなり、非180°のドメイン回転を効率よく生じさせることができる。 In addition, since rhombohedral crystals and tetragonal crystals are mixed in the PZT film 4, the domains in the <111> direction and the domains in the <100> direction are mixed in a complicated manner, and the domain size is reduced. As a result, the density of non-180 ° domain walls increases, and non-180 ° domain rotation can be efficiently generated.
 なお、本実施例において、基板1の材料として用いたSiの格子定数は、約5.4オングストロームであり、上記したPZTの格子定数よりもかなり大きいため、PZT膜4がエピタキシャル膜でないことは明らかである。したがって、PZT膜4において、菱面体晶と正方晶とを混在させることは可能であり、これによって、上記の効果を得ることができる。 In this example, the lattice constant of Si used as the material of the substrate 1 is about 5.4 angstroms, which is much larger than the lattice constant of PZT described above, so it is clear that the PZT film 4 is not an epitaxial film. It is. Therefore, rhombohedral crystals and tetragonal crystals can be mixed in the PZT film 4, and the above-described effects can be obtained.
 次に、上記したPZT膜4の上に、例えばPtをスパッタして上部電極5(図6、図7参照)を形成し、圧電素子10(図5参照)を完成させた後、ウェハ中心から圧電素子10を分離して取り出し、圧電変位測定計によって圧電素子10の圧電変位を測定した。図5は、圧電変位測定計の概略の構成を示している。 Next, on the PZT film 4, for example, Pt is sputtered to form the upper electrode 5 (see FIGS. 6 and 7), and the piezoelectric element 10 (see FIG. 5) is completed. The piezoelectric element 10 was separated and taken out, and the piezoelectric displacement of the piezoelectric element 10 was measured with a piezoelectric displacement meter. FIG. 5 shows a schematic configuration of the piezoelectric displacement meter.
 この圧電変位測定計では、カンチレバーの可動長さが10mmになるように、圧電素子10の端部を固定部11でクランプして片持ち梁構造とし、関数発生器12により、上部電極5に最大0V、下部電極3に最小-20Vの電圧を500Hzの周波数にて印加し、圧電素子10の端部の変位をレーザードップラー振動計13によって観察した。その結果、この圧電素子10の圧電変位は、2.2μmであった。この圧電変位より、非特許文献1に開示された以下の算出式を用いて圧電定数d31を算出することができる。 In this piezoelectric displacement measuring instrument, the end of the piezoelectric element 10 is clamped with a fixed portion 11 so that the movable length of the cantilever is 10 mm, and a cantilever structure is formed. A voltage of 0 V and a minimum voltage of −20 V was applied to the lower electrode 3 at a frequency of 500 Hz, and the displacement of the end of the piezoelectric element 10 was observed with a laser Doppler vibrometer 13. As a result, the piezoelectric displacement of the piezoelectric element 10 was 2.2 μm. From this piezoelectric displacement, the piezoelectric constant d 31 can be calculated using the following calculation formula disclosed in Non-Patent Document 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、hは基板厚さ、sは薄膜PZTの弾性コンプライアンス、sは基板の弾性コンプライアンス、Lはカンチレバーの長さ、Vは印加電圧、δはカンチレバーの変位である。よって、h=400μm、s=90GPa、s=180GPa、L=10mmとすると、圧電定数d31=-175pm/Vであった。したがって、実施例1では、高い圧電特性が得られていることがわかる。なお、圧電定数d31の比較は、絶対値の比較で足りるため、以下では、圧電定数d31の値を絶対値で示すこととする。図4に、本実施例での圧電定数d31の値(絶対値)を併せて示す。 Here, h s is the substrate thickness, the s p elastic compliance of the thin film PZT, s s is the elastic compliance of the substrate, L is the length of the cantilever, V is the applied voltage, [delta] is the displacement of the cantilever. Therefore, when h s = 400 μm, s p = 90 GPa, s s = 180 GPa, and L = 10 mm, the piezoelectric constant d 31 = −175 pm / V. Therefore, in Example 1, it turns out that the high piezoelectric characteristic is acquired. In Comparative piezoelectric constant d 31, since sufficient in comparison of the absolute value, in the following, demonstrate the value of piezoelectric constant d 31 in absolute value. FIG. 4 also shows the value (absolute value) of the piezoelectric constant d 31 in this example.
 (実施例2)
 本実施例では、実施例1と同様に下部電極3まで作製したウェハ上に、実施例1と同様のターゲットを用いてPZT膜4を形成した。ただし、PZT膜4のスパッタ条件のうち、O流量のみを0.8sccmに変更し、その他の条件は、実施例1と同様にしてPZT膜4を形成した。その後、実施例1と同様に、PZT膜4の上に上部電極5を形成して圧電素子10を完成させた。
(Example 2)
In this example, the PZT film 4 was formed on the wafer manufactured up to the lower electrode 3 as in Example 1 using the same target as in Example 1. However, among the sputtering conditions for the PZT film 4, only the O 2 flow rate was changed to 0.8 sccm, and the other conditions were the same as in Example 1 to form the PZT film 4. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
 形成したPZT膜4および圧電素子10について、実施例1と同様に、XRDによる結晶構造評価と圧電変位測定とを行った結果を図4に示す。同図より、本実施例のPZT膜4では、実施例1と同様に、a軸配向の正方晶、c軸配向の正方晶、菱面体晶が混在していることが分かった。また、圧電定数d31は、実施例1に比べると少し下がったが、150[pm/V]と比較的良好な値を示した。 FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1. From the figure, it was found that in the PZT film 4 of this example, as in Example 1, a-axis oriented tetragonal crystals, c-axis oriented tetragonal crystals, and rhombohedral crystals were mixed. The piezoelectric constant d 31 was slightly lower than that in Example 1, but a relatively good value of 150 [pm / V].
 (実施例3)
 本実施例では、実施例1と同様に下部電極3まで作製したウェハ上に、実施例1と同様のターゲットを用い、スパッタ法によりPZT膜4を形成した。このときのスパッタ条件は、Ar流量;30sccm、O流量;0.5sccm、圧力;0.9Pa、基板温度;550℃、RFパワー;500Wである。その後、実施例1と同様に、PZT膜4の上に上部電極5を形成して圧電素子10を完成させた。
(Example 3)
In this example, the PZT film 4 was formed by sputtering using the same target as in Example 1 on the wafer manufactured up to the lower electrode 3 as in Example 1. The sputtering conditions at this time are Ar flow rate: 30 sccm, O 2 flow rate: 0.5 sccm, pressure: 0.9 Pa, substrate temperature: 550 ° C., RF power: 500 W. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
 形成したPZT膜4および圧電素子10について、実施例1と同様に、XRDによる結晶構造評価と圧電変位測定とを行った結果を図4に示す。圧電定数d31は、実施例1に比べると少し下がったが、153[pm/V]と、実施例2と同様の比較的良好な値を示した。 FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1. The piezoelectric constant d 31 was slightly lower than that in Example 1, but was 153 [pm / V], which was a relatively good value similar to that in Example 2.
 (比較例1)
 本比較例では、実施例1と同様に下部電極3まで作製したウェハ上に、実施例1よりも数%だけTi比率の多いターゲットを用い、実施例1と同様のスパッタ条件で、PZT膜4を形成した。このようなターゲットを用いることにより、菱面体晶の割合を減らしたPZT膜4を形成することができる。その後、実施例1と同様に、PZT膜4の上に上部電極5を形成して圧電素子10を完成させた。
(Comparative Example 1)
In this comparative example, a PZT film 4 is formed under the same sputtering conditions as in Example 1, using a target having a Ti ratio that is several percent higher than that in Example 1 on the wafer manufactured up to the lower electrode 3 as in Example 1. Formed. By using such a target, it is possible to form the PZT film 4 in which the proportion of rhombohedral crystals is reduced. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
 形成したPZT膜4および圧電素子10について、実施例1と同様に、XRDによる結晶構造評価と圧電変位測定とを行った結果を図4に示す。本比較例での圧電定数d31は、115[pm/V]であり、実施例1よりもかなり低い値であった。これは、実施例1に比べて、PZT膜4に含まれる菱面体晶の割合が減り、c軸配向の正方晶の割合が増えたことにより、組成比がMPB組成からずれたこと、非180°のドメイン回転が効率よく生じていないこと、によるものと考えられる。 FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1. The piezoelectric constant d 31 in this comparative example is 115 [pm / V], which is considerably lower than that in the first embodiment. This is because, compared with Example 1, the proportion of rhombohedral crystals contained in the PZT film 4 decreased, and the proportion of tetragonal crystals with c-axis orientation increased, so that the composition ratio deviated from the MPB composition. This is thought to be due to the fact that the domain rotation of ° does not occur efficiently.
 (比較例2)
 本比較例では、実施例1と同様に下部電極3まで作製したウェハ上に、比較例1と同様のターゲットを用い、実施例2と同様のスパッタ条件で、PZT膜4を形成した。その後、実施例1と同様に、PZT膜4の上に上部電極5を形成して圧電素子10を完成させた。
(Comparative Example 2)
In this comparative example, the PZT film 4 was formed on the wafer manufactured up to the lower electrode 3 in the same manner as in Example 1, using the same target as in Comparative Example 1 and under the same sputtering conditions as in Example 2. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
 形成したPZT膜4および圧電素子10について、実施例1と同様に、XRDによる結晶構造評価と圧電変位測定とを行った結果を図4に示す。本比較例での圧電定数d31は、100[pm/V]であり、比較例1よりもさらに低い値であった。これは、比較例1に比べて、PZT膜4に含まれるa軸配向の正方晶の割合が減り、c軸配向の正方晶の割合が増えたことにより、c軸配向の正方晶による通常の圧電歪みの割合が増加し、a軸方向からc軸方向への非180°のドメイン回転を利用した圧電歪みの割合が減少したことによるものと考えられる。 FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1. The piezoelectric constant d 31 in this comparative example was 100 [pm / V], which was even lower than that in Comparative example 1. Compared to Comparative Example 1, the ratio of a-axis-oriented tetragonal crystals contained in the PZT film 4 is decreased, and the ratio of c-axis-oriented tetragonal crystals is increased. This is thought to be due to an increase in the rate of piezoelectric strain and a decrease in the rate of piezoelectric strain using non-180 ° domain rotation from the a-axis direction to the c-axis direction.
 (比較例3)
 本比較例では、実施例1と同様に下部電極3まで作製したウェハ上に、実施例1よりも数%だけZr比率の多いターゲットを用い、実施例1と同様のスパッタ条件で、PZT膜4を形成した。このようなターゲットを用いることにより、菱面体晶の割合を増やしたPZT膜4を形成することができる。その後、実施例1と同様に、PZT膜4の上に上部電極5を形成して圧電素子10を完成させた。
(Comparative Example 3)
In this comparative example, a PZT film 4 is formed under the same sputtering conditions as in Example 1 using a target having a Zr ratio that is several percent higher than that in Example 1 on the wafer manufactured up to the lower electrode 3 as in Example 1. Formed. By using such a target, the PZT film 4 having an increased rhombohedral ratio can be formed. Thereafter, as in Example 1, the upper electrode 5 was formed on the PZT film 4 to complete the piezoelectric element 10.
 形成したPZT膜4および圧電素子10について、実施例1と同様に、XRDによる結晶構造評価と圧電変位測定とを行った結果を図4に示す。本比較例での圧電定数d31は、130[pm/V]であり、実施例2よりも低い値であった。これは、PZT膜4に含まれる菱面体晶の割合が増え過ぎると、正方晶において、a軸配向とc軸配向とが混在しなくなり、非180°のドメイン回転の効果が得られないため、圧電特性が低下しているものと考えられる。 FIG. 4 shows the results of crystal structure evaluation and piezoelectric displacement measurement by XRD for the formed PZT film 4 and piezoelectric element 10 as in Example 1. The piezoelectric constant d 31 in this comparative example is 130 [pm / V], which is lower than that in Example 2. This is because when the proportion of rhombohedral crystals contained in the PZT film 4 increases too much, the a-axis orientation and the c-axis orientation are not mixed in the tetragonal crystal, and the effect of non-180 ° domain rotation cannot be obtained. It is considered that the piezoelectric characteristics are deteriorated.
 以上の実施例1~3、比較例1~3の結果から、a軸配向の正方晶、c軸配向の正方晶、菱面体晶にそれぞれ対応する3つの関数F1、F2およびF3の積分値の合計に対する、菱面体晶に対応する関数F3の積分値の比が、0.2以上であれば、高い圧電特性を得ることができ、さらに0.4以上であれば、その効果を確実に得ることができると言える。また、上記の比の上限については、高い圧電特性を得る観点から、比較例3の0.94よりも小さく、かつ、実施例3の0.73に近いほうが望ましいと考えられるので、上記の比は、0.8以下であることが望ましく、0.5以下であることがさらに望ましいと言える。 From the results of Examples 1 to 3 and Comparative Examples 1 to 3, the integral values of the three functions F1, F2, and F3 corresponding to the a-axis oriented tetragonal crystal, the c-axis oriented tetragonal crystal, and the rhombohedral crystal, respectively. If the ratio of the integral value of the function F3 corresponding to the rhombohedral crystal to the total is 0.2 or more, high piezoelectric characteristics can be obtained, and if it is 0.4 or more, the effect is surely obtained. I can say that. The upper limit of the ratio is preferably smaller than 0.94 in Comparative Example 3 and close to 0.73 in Example 3 from the viewpoint of obtaining high piezoelectric characteristics. Is desirably 0.8 or less, and more desirably 0.5 or less.
 さらに、実施例1および2の結果から、3つの関数F1、F2およびF3の積分値の合計に対する、a軸配向の正方晶に対応する関数F1の積分値の比は、0.4以上0.5以下であることが望ましいと言える。 Furthermore, from the results of Examples 1 and 2, the ratio of the integral value of the function F1 corresponding to the tetragonal crystal with the a-axis orientation to the sum of the integral values of the three functions F1, F2, and F3 is 0.4 or more and 0.00. It can be said that it is desirable to be 5 or less.
 (PZT膜の応用例について)
 実施例1および2で示したPZT膜4は、表面の結晶面が傾斜した特殊な基板を用いることなく、上述したように通常のSiウェハを用いて形成することが可能であるため、MEMSへの応用も容易となる。以下、PZT膜4を、MEMS技術で作製される圧電素子に応用した例について説明する。
(Application examples of PZT films)
Since the PZT film 4 shown in Examples 1 and 2 can be formed using a normal Si wafer as described above without using a special substrate having a tilted surface crystal plane, the MEMS Application is also easy. Hereinafter, an example in which the PZT film 4 is applied to a piezoelectric element manufactured by the MEMS technology will be described.
 図6は、実施例1および2のPZT膜4を、MEMS技術を用いて作製される圧電素子10’として、ダイヤフラム(振動板)に応用したときの構成を示す平面図であり、図7は、図6のA-A’線矢視断面図である。圧電素子10’は、基板1上に、熱酸化膜2、下部電極3、強誘電体膜としてのPZT膜4、上部電極5をこの順で積層して構成されている。そして、PZT膜4は、基板1の必要な領域に、2次元の千鳥状に配置されている。 FIG. 6 is a plan view showing a configuration when the PZT film 4 of Examples 1 and 2 is applied to a diaphragm (diaphragm) as a piezoelectric element 10 ′ manufactured using the MEMS technology, and FIG. FIG. 7 is a cross-sectional view taken along line AA ′ in FIG. The piezoelectric element 10 ′ is configured by laminating a thermal oxide film 2, a lower electrode 3, a PZT film 4 as a ferroelectric film, and an upper electrode 5 in this order on a substrate 1. The PZT film 4 is disposed in a necessary area of the substrate 1 in a two-dimensional staggered pattern.
 また、基板1においてPZT膜4の形成領域に対応する領域は、厚さ方向の一部が断面円形で除去された凹部1aとなっており、基板1における凹部1aの上部(凹部1aの底部側)には、薄い板状の領域1bが残っている。下部電極3および上部電極5は、図示しない配線により、外部の制御回路と接続されている。 In addition, a region corresponding to the formation region of the PZT film 4 in the substrate 1 is a recess 1a in which a part in the thickness direction is removed with a circular cross section, and the upper portion of the recess 1a in the substrate 1 (the bottom side of the recess 1a). ) Remains a thin plate-like region 1b. The lower electrode 3 and the upper electrode 5 are connected to an external control circuit by wiring not shown.
 制御回路から、所定のPZT膜4を挟む下部電極3および上部電極5に電気信号を印加することにより、所定のPZT膜4のみを駆動することができる。つまり、PZT膜4の上下の電極に所定の電界を加えると、PZT膜4が左右方向に伸縮し、バイメタルの効果によってPZT膜4および基板1の領域1bが上下に湾曲する。したがって、基板1の凹部1aに気体や液体を充填すると、圧電素子1をポンプとして用いることができ、例えばインクジェットヘッドに好適となる。 By applying an electrical signal from the control circuit to the lower electrode 3 and the upper electrode 5 sandwiching the predetermined PZT film 4, only the predetermined PZT film 4 can be driven. That is, when a predetermined electric field is applied to the upper and lower electrodes of the PZT film 4, the PZT film 4 expands and contracts in the left-right direction, and the PZT film 4 and the region 1b of the substrate 1 are bent up and down by the bimetal effect. Therefore, when the recess 1a of the substrate 1 is filled with gas or liquid, the piezoelectric element 1 can be used as a pump, which is suitable for an inkjet head, for example.
 また、所定のPZT膜4の電荷量を下部電極3および上部電極5を介して検出することにより、PZT膜4の変形量を検出することもできる。つまり、音波や超音波により、PZT膜4が振動すると、上記と反対の効果によって上下の電極間に電界が発生するため、このときの電界の大きさや検出信号の周波数を検出することにより、圧電素子1をセンサ(超音波センサ)として用いることもできる。さらに、PZT膜4が焦電効果を発揮することで、圧電素子1を焦電センサ(赤外線センサ)として利用することもできる。 Further, the deformation amount of the PZT film 4 can be detected by detecting the charge amount of the predetermined PZT film 4 through the lower electrode 3 and the upper electrode 5. That is, when the PZT film 4 is vibrated by sound waves or ultrasonic waves, an electric field is generated between the upper and lower electrodes due to an effect opposite to that described above. By detecting the magnitude of the electric field and the frequency of the detection signal at this time, The element 1 can also be used as a sensor (ultrasonic sensor). Furthermore, since the PZT film 4 exhibits a pyroelectric effect, the piezoelectric element 1 can be used as a pyroelectric sensor (infrared sensor).
 その他、PZT膜4の圧電効果を利用することで、圧電素子1を周波数フィルタ(表面弾性波フィルタ)として利用することもでき、PZT膜4が強誘電体であることで、圧電素子1を不揮発性メモリとして利用することもできる。 In addition, the piezoelectric element 1 can also be used as a frequency filter (surface acoustic wave filter) by using the piezoelectric effect of the PZT film 4, and the piezoelectric element 1 can be made non-volatile by using the PZT film 4 as a ferroelectric substance. It can also be used as a memory.
 (強誘電体膜の構成材料について)
 以上では、強誘電体膜の構成材料として、PZTを例に挙げて説明した。PZTは、Pb(Zr,Ti)Oとも表現されることからわかるように、ペロブスカイト結晶を一般式ABOで表したときに、AサイトにPbイオンを含み、BサイトにZrイオンおよびTiイオンを含む、鉛系の金属酸化物である(図8参照)。このような鉛系の金属酸化物は、ペロブスカイト構造を採ることで良好な圧電特性を発揮するので、上述した実施例の強誘電体膜に好適となる。
(Constituent material of ferroelectric film)
In the above description, PZT has been described as an example of the constituent material of the ferroelectric film. As can be seen from the fact that PZT is also expressed as Pb (Zr, Ti) O 3 , when the perovskite crystal is represented by the general formula ABO 3 , Pb ions are included at the A site, and Zr ions and Ti ions are present at the B site. A lead-based metal oxide (see FIG. 8). Such a lead-based metal oxide exhibits a good piezoelectric characteristic by adopting a perovskite structure, and is therefore suitable for the ferroelectric film of the above-described embodiment.
 このとき、PZTのAサイトおよびBサイトの少なくとも一方に添加物が含まれていてもよい。Aサイトの添加物としては、例えば、NdやLaを含むランタノイド系金属、Sr、Biの少なくともいずれかの金属イオンを考えることができる。また、Bサイトの添加物としては、例えば、Nb、Ta、W、Sbの少なくともいずれかの金属イオンを考えることができる。このような添加物をPZTに加えた強誘電体膜としては、例えば、PLZT((Pb,La)(Zr,Ti)O)、PSZT((Pb,Sr)(Zr,Ti)O)、PNZT(Pb(Zr,Ti,Nb)O)などがある。 At this time, an additive may be contained in at least one of the A site and the B site of PZT. As an additive for the A site, for example, a lanthanoid metal containing Nd or La, or a metal ion of at least one of Sr and Bi can be considered. Moreover, as an additive of B site, the metal ion of at least any one of Nb, Ta, W, and Sb can be considered, for example. As a ferroelectric film in which such an additive is added to PZT, for example, PLZT ((Pb, La) (Zr, Ti) O 3 ), PSZT ((Pb, Sr) (Zr, Ti) O 3 ) , PNZT (Pb (Zr, Ti, Nb) O 3 ).
 PZTに添加物を加えた金属酸化物であっても、ペロブスカイト構造を採ることで良好な圧電特性を発揮するので、上述した実施例の強誘電体膜に好適となる。 Even a metal oxide obtained by adding an additive to PZT exhibits a good piezoelectric characteristic by adopting a perovskite structure, and thus is suitable for the ferroelectric film of the above-described embodiment.
 また、強誘電体膜は、ペロブスカイト構造を採るのであれば、非鉛系の金属酸化物で構成されてもよい。このような非鉛系の金属酸化物としては、ペロブスカイト結晶を一般式ABOで表したときに、AサイトにSr、Ba、Biの少なくともいずれかの金属イオンを含み、BサイトにTiイオンまたはTaイオンを含むものを考えることができる。具体的には、BST((Ba,Sr)TiO)やSBT(SrBiTa)などを考えることができる。 The ferroelectric film may be made of a lead-free metal oxide as long as it has a perovskite structure. As such a lead-free metal oxide, when the perovskite crystal is represented by the general formula ABO 3 , the A site contains at least one of Sr, Ba, and Bi metal ions, and the B site contains Ti ions or The thing containing Ta ion can be considered. Specifically, BST ((Ba, Sr) TiO 3 ) or SBT (SrBi 2 Ta 2 O 9 ) can be considered.
 BSTやSBTなどの非鉛系の金属酸化物も、ペロブスカイト構造を採ることで良好な圧電特性を発揮するので、圧電素子の強誘電体膜に好適となる。 Since lead-free metal oxides such as BST and SBT exhibit a good piezoelectric characteristic by adopting a perovskite structure, they are suitable for a ferroelectric film of a piezoelectric element.
 つまり、上記したPZT以外の材料(PZTに添加物を加えたものを含む)を用いて強誘電体膜を成膜した場合であっても、非180°のドメイン回転を効率よく生じさせて、高い圧電特性を得ることができ、強誘電体膜のMEMSへの応用も容易となる。 That is, even when a ferroelectric film is formed using a material other than the above-described PZT (including an additive added to PZT), non-180 ° domain rotation is efficiently generated, High piezoelectric characteristics can be obtained, and the ferroelectric film can be easily applied to MEMS.
 以上説明した強誘電体膜は、ペロブスカイト結晶からなる強誘電体膜であって、結晶配向が<100>主配向で、菱面体晶と正方晶とが混在しており、前記正方晶において、a軸配向とc軸配向とが混在しており、X線回折の2θ/θ測定による<100>ピークを示す関数Fを、a軸配向の正方晶、c軸配向の正方晶、菱面体晶のそれぞれに入射したX線の回折強度を示す関数F1、F2およびF3に分けたときに、前記3つの関数F1、F2およびF3の積分値の合計に対する、前記菱面体晶に対応する関数F3の積分値の比が、0.2以上0.8以下である。 The ferroelectric film described above is a ferroelectric film made of a perovskite crystal, in which the crystal orientation is <100> main orientation and rhombohedral and tetragonal crystals are mixed. Axial orientation and c-axis orientation coexist, and the function F indicating the <100> peak by 2θ / θ measurement of X-ray diffraction is expressed as a tetragonal crystal with an a-axis orientation, a tetragonal crystal with a c-axis orientation, and a rhombohedral crystal. Integration of the function F3 corresponding to the rhombohedral crystal with respect to the sum of the integration values of the three functions F1, F2 and F3 when divided into functions F1, F2 and F3 indicating the diffraction intensity of the incident X-rays. The value ratio is 0.2 or more and 0.8 or less.
 この構成によれば、結晶配向が<100>主配向であり、結晶の配向方向がほぼ一方向に揃っているので、電圧印加時に、隣り合う結晶同士で圧電歪み(圧電変位)が打ち消されるのを抑えることができる。また、正方晶において、a軸配向とc軸配向とが混在しているので、a軸方向からc軸方向への90°のドメイン回転、すなわち、非180°のドメイン回転を生じさせて、c軸配向のドメインによる通常の圧電歪みよりも大きな歪みを生じさせることができる。 According to this configuration, since the crystal orientation is the <100> main orientation and the crystal orientation directions are substantially aligned in one direction, piezoelectric distortion (piezoelectric displacement) is canceled between adjacent crystals when a voltage is applied. Can be suppressed. In addition, since the a-axis orientation and the c-axis orientation are mixed in the tetragonal crystal, a 90 ° domain rotation from the a-axis direction to the c-axis direction, that is, a non-180 ° domain rotation is caused. A strain larger than the normal piezoelectric strain due to the axially oriented domain can be generated.
 また、菱面体晶と正方晶とが混在しているので、<111>方向のドメインと<100>方向のドメインとが複雑に混ざり合って、ドメインサイズが小さくなり、非180°ドメイン壁の密度も高くなる。これにより、非180°のドメイン回転を効率よく生じさせることができる。 In addition, since rhombohedral crystals and tetragonal crystals are mixed, the <111> direction domain and the <100> direction domain are mixed in a complicated manner, the domain size is reduced, and the non-180 ° domain wall density is reduced. Also gets higher. Thereby, non-180 ° domain rotation can be efficiently generated.
 特に、X線回折の2θ/θ測定による<100>ピークを示す関数Fを、a軸配向の正方晶、c軸配向の正方晶、菱面体晶のそれぞれに入射したX線の回折強度を示す3つの関数F1~F3に分けたときに、3つの関数F1~F3の積分値の合計に対する、菱面体晶に対応する関数F3の積分値の比が、0.2以上0.8以下であることにより、非180°のドメイン回転を確実に生じさせて、高い圧電特性を得ることができる。 In particular, the function F indicating the <100> peak by 2θ / θ measurement of X-ray diffraction indicates the diffraction intensity of X-rays incident on each of an a-axis oriented tetragonal crystal, a c-axis oriented tetragonal crystal, and a rhombohedral crystal. When divided into the three functions F1 to F3, the ratio of the integral value of the function F3 corresponding to the rhombohedral crystal to the sum of the integral values of the three functions F1 to F3 is 0.2 or more and 0.8 or less. As a result, non-180 ° domain rotation can be reliably generated and high piezoelectric characteristics can be obtained.
 このように、強誘電体膜のような薄膜であっても、非180°のドメイン回転を効率よく生じさせて、高い圧電特性を得ることができる。また、ドメインを回転させるにあたって特殊な基板(表面の結晶面が傾斜した基板)を用いる必要もなく、強誘電体膜のMEMSへの応用も容易となる。 Thus, even a thin film such as a ferroelectric film can efficiently generate non-180 ° domain rotation and obtain high piezoelectric characteristics. In addition, it is not necessary to use a special substrate (a substrate whose surface crystal plane is inclined) when rotating the domain, and the application of the ferroelectric film to MEMS is facilitated.
 上記強誘電体膜において、前記の比が、0.4以上0.5以下であれば、より高い圧電特性を確実に得ることができる。 In the ferroelectric film, if the ratio is 0.4 or more and 0.5 or less, higher piezoelectric characteristics can be obtained with certainty.
 また、以上説明した強誘電体膜は、前記ペロブスカイト結晶を一般式ABOで表したときに、AサイトにPbイオンを含み、BサイトにZrイオンおよびTiイオンを含む、鉛系の金属酸化物で構成することができる。 The ferroelectric film described above is a lead-based metal oxide containing Pb ions at the A site and Zr ions and Ti ions at the B site when the perovskite crystal is represented by the general formula ABO 3 . Can be configured.
 PZTなどの鉛系の金属酸化物は、ペロブスカイト構造を採ることで良好な圧電特性を発揮するので、上記強誘電体膜に好適となる。 Since lead-based metal oxides such as PZT exhibit a good piezoelectric characteristic by adopting a perovskite structure, they are suitable for the ferroelectric film.
 また、上記強誘電体膜において、前記金属酸化物は、AサイトおよびBサイトの少なくとも一方に添加物を含んでおり、Aサイトの添加物は、ランタノイド系金属、Sr、Biの少なくともいずれかの金属イオンであり、Bサイトの添加物は、Nb、Ta、W、Sbの少なくともいずれかの金属イオンであってもよい。 In the above ferroelectric film, the metal oxide includes an additive at at least one of the A site and the B site, and the additive at the A site is at least one of a lanthanoid metal, Sr, and Bi. It is a metal ion, and the additive at the B site may be a metal ion of at least one of Nb, Ta, W, and Sb.
 PZTに添加物を加えた金属酸化物であっても、ペロブスカイト構造を採ることで良好な圧電特性を発揮するので、上記強誘電体膜に好適となる。 Even a metal oxide obtained by adding an additive to PZT is suitable for the ferroelectric film because it exhibits good piezoelectric characteristics by adopting a perovskite structure.
 また、上記強誘電体膜は、前記ペロブスカイト結晶を一般式ABOで表したときに、AサイトにSr、Ba、Biの少なくともいずれかの金属イオンを含み、BサイトにTiイオンまたはTaイオンを含む、非鉛系の金属酸化物で構成されていてもよい。 Further, when the perovskite crystal is represented by the general formula ABO 3 , the ferroelectric film contains at least one of Sr, Ba, and Bi metal ions at the A site, and Ti ions or Ta ions at the B site. It may be composed of a lead-free metal oxide.
 BST(チタン酸バリウムストロンチウム)やSBT(タンタル酸ストロンチウムビスマス)などの非鉛系の金属酸化物は、ペロブスカイト構造を採ることで良好な圧電特性を発揮するので、上記強誘電体膜に好適となる。 Lead-free metal oxides such as BST (barium strontium titanate) and SBT (strontium bismuth tantalate) exhibit good piezoelectric properties by adopting a perovskite structure, and are therefore suitable for the ferroelectric film. .
 また、以上説明した圧電素子は、基板上に、下部電極、強誘電体膜、上部電極をこの順で積層した圧電素子であって、前記強誘電体膜は、上述した強誘電体膜で構成されている。 The piezoelectric element described above is a piezoelectric element in which a lower electrode, a ferroelectric film, and an upper electrode are laminated in this order on a substrate, and the ferroelectric film is composed of the ferroelectric film described above. Has been.
 上述した強誘電体膜は、非180°のドメイン回転を生じさせるにあたって、特殊な基板を必要とせず、MEMSへの応用が容易になるので、MEMS技術を用いて作製される圧電素子において、高い圧電特性を容易に実現することができる。 The above-described ferroelectric film does not require a special substrate to cause non-180 ° domain rotation, and can be easily applied to MEMS. Therefore, the ferroelectric film is high in a piezoelectric element manufactured using MEMS technology. Piezoelectric characteristics can be easily realized.
 以上説明したように、強誘電体膜のような薄膜であっても、非180°のドメイン回転を効率よく生じさせて、高い圧電特性を得ることができる。しかも、特殊な基板を用いる必要がないことから、強誘電体膜のMEMSへの応用も容易となる。 As described above, even a thin film such as a ferroelectric film can efficiently cause non-180 ° domain rotation and obtain high piezoelectric characteristics. In addition, since it is not necessary to use a special substrate, the ferroelectric film can be easily applied to MEMS.
 本発明は、例えばMEMS用アクチュエータ(インクジェットプリンタやプロジェクタのアクチュエータ)、MEMSセンサ(焦電センサ、超音波センサ)、周波数フィルタ、不揮発性メモリに利用可能である。 The present invention can be used in, for example, MEMS actuators (inkjet printers and projector actuators), MEMS sensors (pyroelectric sensors, ultrasonic sensors), frequency filters, and nonvolatile memories.
   1   基板
   3   下部電極
   4   PZT膜(強誘電体膜)
   5   上部電極
  10   圧電素子
  10’  圧電素子
1 Substrate 3 Lower electrode 4 PZT film (ferroelectric film)
5 Upper electrode 10 Piezoelectric element 10 'Piezoelectric element

Claims (6)

  1.  ペロブスカイト結晶からなる強誘電体膜であって、
     結晶配向が<100>主配向で、菱面体晶と正方晶とが混在しており、
     前記正方晶において、a軸配向とc軸配向とが混在しており、
     X線回折の2θ/θ測定による<100>ピークを示す関数Fを、a軸配向の正方晶、c軸配向の正方晶、菱面体晶のそれぞれに入射したX線の回折強度を示す関数F1、F2およびF3に分けたときに、前記3つの関数F1、F2およびF3の積分値の合計に対する、前記菱面体晶に対応する関数F3の積分値の比が、0.2以上0.8以下であることを特徴とする強誘電体膜。
    A ferroelectric film made of a perovskite crystal,
    The crystal orientation is <100> main orientation, and rhombohedral and tetragonal crystals are mixed,
    In the tetragonal crystal, a-axis orientation and c-axis orientation are mixed,
    A function F1 indicating the diffraction intensity of X-rays incident on each of an a-axis oriented tetragonal crystal, a c-axis oriented tetragonal crystal, and a rhombohedral crystal is represented by a function F indicating a <100> peak by 2θ / θ measurement of X-ray diffraction. , F2 and F3, the ratio of the integral value of the function F3 corresponding to the rhombohedral crystal to the sum of the integral values of the three functions F1, F2 and F3 is 0.2 or more and 0.8 or less A ferroelectric film characterized by the following.
  2.  前記の比が、0.4以上0.5以下であることを特徴とする請求項1に記載の強誘電体膜。 2. The ferroelectric film according to claim 1, wherein the ratio is 0.4 or more and 0.5 or less.
  3.  前記ペロブスカイト結晶を一般式ABOで表したときに、AサイトにPbイオンを含み、BサイトにZrイオンおよびTiイオンを含む、鉛系の金属酸化物で構成されていることを特徴とする請求項1に記載の強誘電体膜。 When the perovskite crystal is represented by a general formula ABO 3 , the perovskite crystal is composed of a lead-based metal oxide containing Pb ions at the A site and Zr ions and Ti ions at the B site. Item 4. The ferroelectric film according to Item 1.
  4.  前記金属酸化物は、AサイトおよびBサイトの少なくとも一方に添加物を含んでおり、
     Aサイトの添加物は、ランタノイド系金属、Sr、Biの少なくともいずれかの金属イオンであり、
     Bサイトの添加物は、Nb、Ta、W、Sbの少なくともいずれかの金属イオンであることを特徴とする請求項3に記載の強誘電体膜。
    The metal oxide includes an additive in at least one of the A site and the B site,
    The additive at the A site is a metal ion of at least one of a lanthanoid metal, Sr, and Bi,
    4. The ferroelectric film according to claim 3, wherein the additive at the B site is a metal ion of at least one of Nb, Ta, W, and Sb.
  5.  前記ペロブスカイト結晶を一般式ABOで表したときに、AサイトにSr、Ba、Biの少なくともいずれかの金属イオンを含み、BサイトにTiイオンまたはTaイオンを含む、非鉛系の金属酸化物で構成されていることを特徴とする請求項1に記載の強誘電体膜。 When the perovskite crystal is represented by the general formula ABO 3 , a lead-free metal oxide containing at least one metal ion of Sr, Ba, Bi at the A site and Ti ion or Ta ion at the B site The ferroelectric film according to claim 1, comprising:
  6.  基板上に、下部電極、強誘電体膜、上部電極をこの順で積層した圧電素子であって、
     前記強誘電体膜は、請求項1に記載の強誘電体膜で構成されていることを特徴とする圧電素子。
    A piezoelectric element in which a lower electrode, a ferroelectric film, and an upper electrode are laminated in this order on a substrate,
    2. The piezoelectric element according to claim 1, wherein the ferroelectric film is composed of the ferroelectric film according to claim 1.
PCT/JP2012/061854 2011-05-31 2012-05-09 Ferroelectric film and piezoelectric element provided therewith WO2012165110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011122208 2011-05-31
JP2011-122208 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012165110A1 true WO2012165110A1 (en) 2012-12-06

Family

ID=47258974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061854 WO2012165110A1 (en) 2011-05-31 2012-05-09 Ferroelectric film and piezoelectric element provided therewith

Country Status (1)

Country Link
WO (1) WO2012165110A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199910A (en) * 2013-03-14 2014-10-23 株式会社リコー Piezoelectric thin film element and ink-jet recording head, and ink-jet image forming apparatus
JP2015038956A (en) * 2013-03-29 2015-02-26 三菱マテリアル株式会社 Pzt ferroelectric thin film and forming method thereof
WO2015064341A1 (en) * 2013-10-29 2015-05-07 コニカミノルタ株式会社 Piezoelectric element, inkjet head, inkjet printer and method for producing piezoelectric element
WO2016031134A1 (en) * 2014-08-29 2016-03-03 富士フイルム株式会社 Piezoelectric film, method for manufacturing for same, piezoelectric element, and liquid discharge device
CN111344876A (en) * 2017-11-13 2020-06-26 前进材料科技株式会社 Membrane structure and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029850A1 (en) * 2005-09-05 2007-03-15 Canon Kabushiki Kaisha Epitaxial oxide film, piezoelectric film, piezoelectric film element, and liquid delivery head and liquid delivery apparatus using piezoelectric element
JP2008094707A (en) * 2006-09-15 2008-04-24 Fujifilm Corp Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
JP2008218675A (en) * 2007-03-02 2008-09-18 Canon Inc Piezoelectric substance, piezoelectric element, and liquid discharge head and liquid discharge device using piezoelectric element
JP2008306164A (en) * 2007-04-26 2008-12-18 Fujifilm Corp Piezoelectric body, piezoelectric element, and liquid discharge apparatus
JP2010080813A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Piezoelectric film and method of manufacturing the same, piezoelectric device, and liquid discharge apparatus
JP2010182717A (en) * 2009-02-03 2010-08-19 Fujifilm Corp Piezoelectric material and method for producing the same, piezoelectric element, and liquid discharge device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029850A1 (en) * 2005-09-05 2007-03-15 Canon Kabushiki Kaisha Epitaxial oxide film, piezoelectric film, piezoelectric film element, and liquid delivery head and liquid delivery apparatus using piezoelectric element
JP2008094707A (en) * 2006-09-15 2008-04-24 Fujifilm Corp Perovskite oxide, process for producing the perovskite oxide, piezoelectric body, piezoelectric device, and liquid discharge device
JP2008218675A (en) * 2007-03-02 2008-09-18 Canon Inc Piezoelectric substance, piezoelectric element, and liquid discharge head and liquid discharge device using piezoelectric element
JP2008306164A (en) * 2007-04-26 2008-12-18 Fujifilm Corp Piezoelectric body, piezoelectric element, and liquid discharge apparatus
JP2010080813A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Piezoelectric film and method of manufacturing the same, piezoelectric device, and liquid discharge apparatus
JP2010182717A (en) * 2009-02-03 2010-08-19 Fujifilm Corp Piezoelectric material and method for producing the same, piezoelectric element, and liquid discharge device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199910A (en) * 2013-03-14 2014-10-23 株式会社リコー Piezoelectric thin film element and ink-jet recording head, and ink-jet image forming apparatus
US9586401B2 (en) 2013-03-14 2017-03-07 Ricoh Company, Ltd. Piezoelectric thin film element, inkjet recording head, and inkjet image-forming apparatus
JP2015038956A (en) * 2013-03-29 2015-02-26 三菱マテリアル株式会社 Pzt ferroelectric thin film and forming method thereof
US9251955B2 (en) 2013-03-29 2016-02-02 Mitsubishi Materials Corporation PZT-based ferroelectric thin film and method of forming the same
WO2015064341A1 (en) * 2013-10-29 2015-05-07 コニカミノルタ株式会社 Piezoelectric element, inkjet head, inkjet printer and method for producing piezoelectric element
JPWO2015064341A1 (en) * 2013-10-29 2017-03-09 コニカミノルタ株式会社 Piezoelectric element, inkjet head, inkjet printer, and method of manufacturing piezoelectric element
US9889652B2 (en) 2013-10-29 2018-02-13 Konica Minolta, Inc. Piezoelectric device, inkjet head, inkjet printer, and method of manufacturing piezoelectric device
WO2016031134A1 (en) * 2014-08-29 2016-03-03 富士フイルム株式会社 Piezoelectric film, method for manufacturing for same, piezoelectric element, and liquid discharge device
JPWO2016031134A1 (en) * 2014-08-29 2017-06-15 富士フイルム株式会社 Piezoelectric film and manufacturing method thereof, piezoelectric element, and liquid ejection device
US10011111B2 (en) 2014-08-29 2018-07-03 Fujifilm Corporation Piezoelectric film, production method thereof, piezoelectric element, and liquid discharge apparatus
CN111344876A (en) * 2017-11-13 2020-06-26 前进材料科技株式会社 Membrane structure and method for producing same
CN111344876B (en) * 2017-11-13 2023-10-17 日商爱伯压电对策股份有限公司 Film structure and method for producing same

Similar Documents

Publication Publication Date Title
JP5525143B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5817926B2 (en) Piezoelectric element
JP5311787B2 (en) Piezoelectric element and liquid discharge head
JP5056914B2 (en) Piezoelectric thin film element and piezoelectric thin film device
JP5599203B2 (en) Piezoelectric thin film, piezoelectric element, method for manufacturing piezoelectric element, liquid discharge head, and ultrasonic motor
JP5808262B2 (en) Piezoelectric element and piezoelectric device
JP6547418B2 (en) Piezoelectric element, piezoelectric actuator, piezoelectric sensor, hard disk drive, and ink jet printer
JP5790759B2 (en) Ferroelectric thin film and manufacturing method thereof
JP2010238856A (en) Piezoelectric element, and gyro sensor
JP5472549B1 (en) Piezoelectric element, piezoelectric device, inkjet head, and inkjet printer
WO2012165110A1 (en) Ferroelectric film and piezoelectric element provided therewith
EP2978034B1 (en) Piezoelectric element
US9620703B2 (en) Piezoelectric thin-film element, piezoelectric sensor and vibration generator
Shimizu et al. Large Piezoelectric Response in Lead-Free (Bi0. 5Na0. 5) TiO3-Based Perovskite Thin Films by Ferroelastic Domain Switching: Beyond the Morphotropic Phase Boundary Paradigm
JP6478023B2 (en) Piezoelectric element, piezoelectric actuator device, liquid jet head, liquid jet device and ultrasonic measurement device
JP4998652B2 (en) Ferroelectric thin film, ferroelectric thin film manufacturing method, piezoelectric element manufacturing method
JP5103790B2 (en) Piezoelectric thin film, element using piezoelectric thin film, and method for manufacturing piezoelectric thin film element
JP5835460B2 (en) Piezoelectric thin film, piezoelectric element, ink jet head, ink jet printer, and method for manufacturing piezoelectric thin film
JP2009049065A (en) Piezoelectric thin-film element
Kanda et al. Characteristics of Sputtered Lead Zirconate Titanate Thin Films with Different Layer Configurations and Large Thickness
Ishihama et al. Achieving High Piezoelectric Performance across a Wide Composition Range in Tetragonal (Bi, Na) TiO3–BaTiO3 Films for Micro-electromechanical Systems
WO2023042704A1 (en) Piezoelectric element, piezoelectric actuator, liquid droplet discharging head, liquid droplet discharging device, and ferroelectric memory
JP7067085B2 (en) Piezoelectric element and liquid discharge head
SNOOK et al. TRANSDUCER MATERIALS
JP2007281338A (en) Piezoelectric element and piezoelectric material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP