WO2012164777A1 - Resin product having laminated metal films and method for producing same - Google Patents

Resin product having laminated metal films and method for producing same Download PDF

Info

Publication number
WO2012164777A1
WO2012164777A1 PCT/JP2011/079634 JP2011079634W WO2012164777A1 WO 2012164777 A1 WO2012164777 A1 WO 2012164777A1 JP 2011079634 W JP2011079634 W JP 2011079634W WO 2012164777 A1 WO2012164777 A1 WO 2012164777A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal film
sample
resin
film
resin product
Prior art date
Application number
PCT/JP2011/079634
Other languages
French (fr)
Japanese (ja)
Inventor
土永賢治
岡田東洋司
竹政克弥
Original Assignee
上原ネームプレート工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上原ネームプレート工業株式会社 filed Critical 上原ネームプレート工業株式会社
Publication of WO2012164777A1 publication Critical patent/WO2012164777A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Definitions

  • the present invention relates to a resin product obtained by laminating a metal film on a soft resin substrate, and particularly to a resin product suitable for interior and exterior parts such as automobiles.
  • emblems for vehicles For interior and exterior parts such as automobiles, for example, emblems for vehicles, many resin products having a metal film are used. These vehicle emblems are required to have excellent design, visibility, and weather resistance. In addition to the excellent design and visibility, the emblem used for the cover with a built-in air bag for the vehicle is deformed because it is placed in a harsh interior environment such as under hot weather and exposed to direct sunlight. Higher weather resistance is required than the weather resistance required for emblems used outside normal vehicles so as not to cause discoloration and the like.
  • a soft resin is mainly used for the base material.
  • a metal film in which an aluminum film is formed by a vacuum deposition method or a sputtering method has been introduced into the market.
  • a method of forming a metal film on a soft resin substrate a method of forming a chromium film by vacuum deposition after applying an undercoat on the soft resin substrate has been proposed (Patent Document). 1).
  • a molded product of a soft resin is soft, so that when external force is applied and it deforms greatly, a relatively large crack that is visible to the naked eye is formed on a hard metal film made of chromium. Since many occur, there is a problem that the metallic luster is easily lost. Furthermore, there is a problem in that the environment inside the vehicle under the sun is easily deformed such as deformation and discoloration, and the required weather resistance cannot be obtained.
  • the present invention maintains a metallic luster even when greatly deformed by an external force, is excellent in design and visibility, and is deformed, discolored, etc. even in a harsh environment such as in a car under hot weather. It is an object of the present invention to provide a resin product that is hardly deteriorated and has excellent weather resistance and a method for producing the same.
  • the present inventors have begun to improve single-layer coatings of various metals in order to solve the problems of the prior art.
  • the single-layer film is devised, it has not been possible to obtain a resin product having sufficient weather resistance while suppressing the generation of relatively large cracks. Therefore, the present inventors have formed a chromium film that is hard and contributes to weather resistance on the soft resin base material, and that is relatively prone to cracking.
  • a new idea of providing another metal layer (film) having a buffer function between the resin substrate and the chromium film has been reached.
  • the metal film in the resin product in which the metal film is formed on the soft resin base material, is formed in at least two layers on the soft resin base material.
  • the first metal film as the lower layer is formed from at least one of tin, indium or zinc
  • the second metal film as the upper layer is formed from chromium.
  • the first metal film and the second metal film are formed by a sputtering method, and the thickness of the first metal film is 10 to 50 nm. 2. The resin product according to claim 1, wherein the thickness of the two metal film is 10 to 30 nm.
  • the present invention is the resin product according to claim 1 or 2, wherein the soft resin base material is made of a soft polyester resin.
  • this invention provided the undercoat layer which has a polyester urethane resin as a main component between the said soft resin base material and the said 1st metal film as described in Claim 4.
  • the resin product according to any one of 1 to 3.
  • this invention provided the topcoat layer which has an acrylic urethane resin as a main component on the said 2nd metal membrane
  • this invention is a manufacturing method of the resin product which forms a metal membrane
  • the soft resin base material is made of a soft polyester resin.
  • An extremely excellent resin product and a manufacturing method thereof can be provided.
  • FIG. 1 shows a first embodiment of the resin product of the present invention.
  • the resin product 1 of the present invention is a resin product in which a first metal film 3 and a second metal film 4 are formed in this order on a soft resin substrate 2 and the soft resin substrate 2.
  • the resin used for the soft resin substrate 2 examples include a polyester resin, a polyvinyl chloride resin, a polyvinyl acetate resin, a polyethylene resin, an olefin elastomer resin, and a styrene elastomer resin.
  • a soft polyester resin is used. preferable. This is because the soft polyester resin is flexible after molding and has high durability, and is therefore suitable as a base material for automobile interior and exterior parts, for example, vehicle emblems.
  • plate material, a sheet material, a film material, etc. are mentioned.
  • the metal used for the first metal film 3 is a metal selected from at least one of tin, indium, and zinc. These tin, indium and zinc are excellent in spreadability, and these metals are easy to form a discontinuous film having an island-like structure at the time of film formation.
  • the second metal film 4 is laminated, the first metal film 3
  • the second metal film 4 is less susceptible to relatively large cracks that can be visually recognized. Since only minute cracks are generated, it is presumed that the second metal film 4 is less likely to lose its metallic luster and can obtain high designability and visibility.
  • tin, indium, and zinc that form the first metal film 3 also have glitter, even if a relatively large crack occurs in the second metal film 4, the crack can be made inconspicuous. It is assumed that high designability and visibility can be maintained.
  • the soft resin base material 2 is less likely to be directly affected by the external environment, and is unlikely to undergo alterations such as deformation and discoloration. Inferred.
  • sputtering methods include bipolar sputtering, multipolar sputtering, high frequency sputtering, magnetron sputtering, and the like, but these methods are not particularly limited.
  • the film thickness of the first metal film 3 is preferably 10 to 50 nm. If the film thickness is less than 10 nm, it is difficult to form an island-like discontinuous film, so that the role as a buffer layer may not be sufficiently achieved, and a relatively large crack tends to occur in the second metal film 4. There is. On the other hand, when the film thickness exceeds 50 nm, the spreadability of the first metal film 3 becomes difficult to be exhibited, and the second metal film 4 also tends to crack.
  • Chromium is used as a metal for forming the second metal film 4.
  • Chromium has a beautiful metallic luster and can form a hard film, making it difficult to scratch, difficult to oxidize, and high corrosion resistance, making it suitable for use in resin products that require excellent design, high visibility, and weather resistance. Because.
  • sputtering methods include bipolar sputtering, multipolar sputtering, high frequency sputtering, magnetron sputtering, and the like, but these methods are not particularly limited.
  • the thickness of the second metal film 4 is preferably 10 to 30 nm.
  • the film thickness is less than 10 nm, since the film thickness is thin, the weather resistance under severe conditions such as under hot weather tends to decrease.
  • the film thickness exceeds 30 nm, there is a tendency that relatively large cracks are likely to occur due to the original hardness of chromium.
  • an undercoat layer 5 is provided on the soft resin base material 2 and the soft resin base material 2.
  • the first metal film 3 and the second metal film 4 can be formed in this order, and the top coat layer 6 can be provided on the second metal film 4.
  • the resin used for the undercoat layer 5 is generally easy to handle in the form of paint, and polyurethane resin paint, acrylic urethane resin paint, polyester urethane resin paint, etc. can be used, but polyester having excellent flexibility and toughness It is preferable to use a paint mainly composed of a urethane resin.
  • the undercoat layer 5 is provided, the unevenness on the surface of the soft resin base material 2 can be smoothed, and the adhesion between the soft resin base material 2 and the first metal film 3 can be improved. It can be formed efficiently.
  • polyester urethane resin coating material As an example of the said polyester urethane resin coating material, what was synthesize
  • the polyester polyol of the polyester urethane resin coating used in the present invention it is preferable to use one having both ends of cyclohexanedimethanol represented by the following general formula (1).
  • a leveling agent composed of a silicon system represented by the following general formula (2) with the polyester polyol. It is because the surface tension of the coating film surface can be made uniform and the coating film surface can be smoothed by blending the leveling agent. Moreover, it is because the hydrophilicity of a coating film falls and the improvement of the weather resistance of a resin product is aimed at by this.
  • the leveling agent is generally blended in the range of 0.01 to 2 parts by weight with respect to 100 parts by weight of the polyester polyol.
  • the blending amount is less than 0.01 parts by weight, the effect of making the coating film surface uniform is hardly exhibited, and when it exceeds 2 parts by weight, bleeding out of the leveling agent may be observed on the coating film surface.
  • various compounding agents generally used in coatings can be added in conventional amounts as needed.
  • the compounding agent include a diluent or thickener for adjusting the viscosity of the paint, a colorant such as a pigment or dye, a curing catalyst for accelerating the curing reaction between the main agent and the curing agent, and a filler. .
  • a hexamethylene diisocyanate-based isocyanate compound having three or more functional groups can be used as the isocyanate compound that is a curing agent for the polyester urethane resin paint.
  • the hexamethylene diisocyanate isocyanate compound having three or more functional groups is an isocyanate compound having three or more functional groups synthesized using hexamethylene diisocyanate as a starting material.
  • the isocyanate compound has two functional groups or less, the crosslinking density of the formed coating film tends to decrease.
  • hexamethylene diisocyanate-based isocyanate compound having three or more functional groups as the curing agent include hexamethylene diisocyanate burette type or isocyanurate type isocyanate compounds.
  • the same trifunctional or higher functional isocyanate compound starting from xylylene diisocyanate or tolylene diisocyanate can also be used.
  • a coating film using an isocyanate compound is superior in terms of weather resistance.
  • the polyester urethane resin paint is prepared by blending the curing agent with the main agent, and the blending amount thereof is 0.8 to 1.5 isocyanate groups in the curing agent with respect to 1 mol of hydroxyl groups in the main agent.
  • the molar range is preferred.
  • additives generally used in paints for example, antifoaming agents, reaction accelerators, tackifiers and the like may be added in conventional amounts.
  • organic solvents such as alcohols, ketones, esters, hydrocarbons, and aromatic hydrocarbons can be used alone or in a timely manner.
  • the polyester urethane resin paint is applied by various general methods such as spray coating, dip coating, roller coating, electrostatic coating, and the like. And a coating film can be formed by hardening-processing on appropriate temperature conditions.
  • the thickness of the undercoat layer 5 is preferably 5 to 30 ⁇ m, more preferably 10 to 18 ⁇ m. When the thickness is less than 5 ⁇ m, the coating film is thin, so that when the first metal film is formed, irregularities on the surface of the soft resin substrate appear and the coating surface tends to be difficult to be uniform. Moreover, when the thickness of the coating film exceeds 30 ⁇ m, the gloss of the metal film tends to be lowered.
  • the resin used for the top coat layer 6 is generally easy to handle in the form of paint, and polyurethane resin paint, polyester urethane resin paint, acrylic urethane resin paint, etc. can be used, but highly transparent acrylic urethane resin paint. Is preferably used. This is because the second metal film 4 can be protected from the external environment without impairing the design and visibility because it is transparent.
  • the acrylic urethane resin paint one synthesized by reacting an acrylic polyol having two or more hydroxyl groups as a main agent with a diisocyanate compound as a curing agent can be used.
  • the acrylic polyol is a resin obtained by copolymerizing an aliphatic, alicyclic or aromatic vinyl monomer with a hydroxyl group-containing acrylic monomer such as hydroxyethyl acrylate or hydroxyethyl methacrylate. Can be used.
  • an ultraviolet absorber to the acrylic polyol in order to improve the weather resistance of the resin product.
  • ultraviolet absorbers include benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
  • the ultraviolet absorber is generally blended in an amount of 1 to 10 parts by weight, preferably 1 to 5 parts by weight per 100 parts by weight of the acrylic polyol. When the blending amount is less than 1 part by weight, the effect of improving ultraviolet resistance is not sufficient, and when it exceeds 10 parts by weight, bleeding out of the UV absorber may be observed on the coating film surface.
  • the acrylic polyol which is the main component of the acrylic urethane resin paint
  • various compounding agents generally used in the paint can be added to the main agent in an appropriate conventional amount as necessary.
  • the compounding agent include a diluent or thickener for adjusting the viscosity of the paint, a colorant such as a pigment or dye, a curing catalyst for accelerating the curing reaction between the main agent and the curing agent, and a filler.
  • the isocyanate compound that is a curing agent for the acrylic urethane resin may be a diisocyanate compound used in a general polyurethane resin. Can do.
  • the acrylic urethane resin paint is prepared by blending the curing agent with the main agent.
  • the blending amount of the acrylic urethane resin paint is 0.8 to 1 isocyanate group in the curing agent with respect to 1 mol of hydroxyl group in the main agent.
  • the range is preferably 5 mol.
  • additives generally used in paints for example, antifoaming agents, reaction accelerators, tackifiers and the like may be added in conventional amounts.
  • a coloring agent such as a pigment or a dye may be used.
  • organic solvents such as alcohols, ketones, esters, hydrocarbons, and aromatic hydrocarbons can be used alone or in a timely manner.
  • the acrylic urethane resin paint is applied by various general methods such as spray coating, dip coating, roller coating, electrostatic coating, and the like. And a coating film can be formed by hardening-processing on appropriate temperature conditions.
  • the thickness of the top coat layer 6 is preferably 5 to 30 ⁇ m, more preferably 10 to 18 ⁇ m. When the thickness is less than 5 ⁇ m, the thickness of the coating film is thin, so the smoothness of the metallic luster tends to decrease due to unevenness of the coating film. On the other hand, when the thickness exceeds 30 ⁇ m, the glossiness of the metallic coating decreases due to the thick coating film. Because there is a tendency to.
  • the polyester urethane resin coating for the undercoat layer adjusted according to the formulation of Table 4 above is a soft polyester resin (bending elastic modulus 120 ⁇ 6 MPa, crystal melting point 215 ⁇ ) using a spindle coating line spray coating device (manufactured by Asahi Sunac Corporation). 3 ° C, melt flow index (2160 g) 17 ⁇ 1 g / 10 min (230 ° C)) sprayed under conditions of 100 g / min paint discharge, 0.20 MPa discharge pressure, and 0.07 MPa pattern pressure Application was performed. After coating, it was dried at 110 ° C. for 30 minutes. After drying, the thickness of the cross-section of the obtained molded product was measured using a microscope (Keyence Corporation, laser microscope VK8700). The thickness of the undercoat layer 5 was 15 ⁇ m.
  • Second step formation of metal film
  • Conditions for the soft polyester resin molded article formed with the undercoat layer 5 formed in the first step are as follows: a first metal film 3 made of tin and then a second metal film 4 made of chromium by sputtering. Formed. Note that a batch type sputtering apparatus (SPV-9045 manufactured by ULVAC) was used for forming the metal film.
  • the film thickness of the formed first and second metal films was measured using a fluorescent X-ray analyzer (manufactured by JEOL Ltd., JSX-3100R2).
  • the film thickness of the first metal film made of tin was 20 nm
  • the second metal film layer made of chromium was 20 nm.
  • the main agent is formulated according to the formulation shown in Table 5 below
  • the curing agent is formulated according to the formulation shown in Table 6 below
  • Table 7 below. The additive was adjusted according to the formulation shown in.
  • the acrylic polyol A was added to 100 parts of xylene under a nitrogen gas stream in a four-necked flask equipped with a stirrer, a thermometer, a condenser, a monomer supply pump, and a nitrogen gas introduction tube, and heated to 90 ° C.
  • the acrylic polyol B was heated to 90 ° C. by adding 100 parts of xylene under a nitrogen gas stream to a four-necked flask equipped with a stirrer, a thermometer, a condenser, a monomer supply pump, and a nitrogen gas introduction tube.
  • Anti-settling agent C was added to 340 parts of dimer acid and 160 parts of dimeramine (2: 1 molar ratio) in a 1000 ml flask equipped with a stirrer, thermometer, water test tube and nitrogen inlet, and heated to 180 ° C. And reacted for 6 hours.
  • To 500 parts of the obtained polyamide 52 parts of dimethylaminopropylamine (molar ratio 1: 1.7) was added, and the mixture was heated to 180 ° C. and reacted for 6 hours.
  • the obtained reactive organism was a reddish brown high viscosity liquid.
  • a mixed solvent (1: 1) of methyl normal amyl ketone and normal butanol was added to the obtained reaction product to adjust the nonvolatile content to 50%.
  • the number average molecular weight of the reaction product was 1700 in terms of standard polystyrene as a result of measurement by gel permeation chromatography.
  • topcoat layer 6 (Coating formation of topcoat layer 6)
  • the acrylic urethane resin paint for the top coat layer adjusted according to the formulation of Table 8 above is applied onto the soft resin base material that has undergone the first step and the second step using a spindle coating line spray coating apparatus (manufactured by Asahi Sunac Corporation). Spray coating was performed under the conditions of a paint discharge rate of 145 g / min, a discharge pressure of 0.30 MPa, and a pattern pressure of 0.07 MPa.
  • the thickness of the coating film was adjusted to 15 ⁇ m. After coating, it was dried at 110 ° C. for 35 minutes. After drying, the thickness of the obtained substrate cross section was measured using a laser microscope (VK8700, manufactured by Keyence Corporation).
  • the thickness of the top coat layer 6 was 15 ⁇ m.
  • Sample 1 was prepared through the first to third steps. When the appearance of the obtained sample 1 was visually observed, the metallic luster was very good, and the occurrence of relatively large cracks was not observed.
  • Sample 2 was prepared in the same manner as in Sample 1 except that the thickness of the first metal film 3 made of tin was adjusted to 50 nm with respect to the second step of the method of creating Sample 1. Created. When the appearance of the obtained sample 2 was visually observed, the metallic luster was extremely good, and the occurrence of relatively large cracks was not observed.
  • Sample 3 was prepared in the same manner as in Sample 1 except that the thickness of the second metal film 4 made of chromium was adjusted to 30 nm with respect to the second step of the method of creating Sample 1. Created. When the appearance of the obtained sample 3 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
  • Sample 4 was prepared in the same manner as in Sample 1 except that the thickness of the first metal film 3 made of tin was adjusted to 10 nm with respect to the second step of the method of creating Sample 1. Created. When the appearance of the obtained sample 4 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
  • the sample 5 was prepared in the same manner as the sample 1 except that the film thickness of the second metal film 4 made of chromium was adjusted to 10 nm with respect to the second step of the sample 1 production method. Created. When the appearance of the obtained sample 5 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
  • Sample 6 For the second step of the method for preparing Sample 1, the metal for forming the first metal film 3 was changed from tin to indium, and the thickness was adjusted to 20 nm. Sample 6 was prepared in the same manner as the method. At that time, the conditions for forming the first metal film 3 made of indium were as follows. Target metal Indium purity 99.99% or more DC power 2.5Kw Sputtering gas Argon Sputtering gas pressure 2.75 ⁇ 10 ⁇ 3 Pa When the appearance of the obtained sample 6 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
  • Sample 7 was prepared in the same manner as the method. At that time, the conditions for forming the first metal film 3 made of zinc were as follows. Target metal Zinc purity 99.99% or more DC power 2.5Kw Sputtering gas Argon Sputtering gas pressure 2.75 ⁇ 10 ⁇ 3 Pa When the appearance of the obtained sample 7 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
  • Sample 8 was prepared in the same manner as in Sample 1 except that the thickness of the first metal film 3 made of tin was adjusted to 55 nm with respect to the second step of the sample 1 production method. Created. When the appearance of the obtained sample 8 was visually observed, the metallic luster was very good, but the occurrence of relatively large cracks was partially observed.
  • Sample 9 was prepared in the same manner as in Sample 1 except that the second metal film 4 made of chromium was adjusted to have a thickness of 35 nm with respect to the second step of the sample 1 production method. Created. When the appearance of the obtained sample 9 was visually observed, the metallic luster was very good, but the occurrence of relatively large cracks was partially observed.
  • the sample 10 was prepared in the same manner as the sample 1 except that the thickness of the first metal film 3 made of tin was adjusted to 5 nm with respect to the second step of the sample 1 production method. Created. When the appearance of the obtained sample 10 was visually observed, the metallic luster was extremely good, but the occurrence of relatively large cracks was partially observed.
  • the sample 11 was prepared in the same manner as the sample 1 except that the film thickness of the second metal film 4 made of chromium was adjusted to 5 nm with respect to the second step of the sample 1 preparation method. Created. When the appearance of the obtained sample 11 was observed with the naked eye, the metallic luster was extremely good, and the occurrence of relatively large cracks was not observed.
  • Sample 12 For the second step of the method for preparing Sample 1, the metal for forming the first metal film 3 is changed from tin to lead and the film thickness is adjusted to 20 nm. Sample 12 was prepared in the same manner as the method. At that time, the formation conditions of the first metal film 3 made of lead were as follows. Target metal Lead purity 99.99% or more DC power 2.5Kw Sputtering gas Argon Sputtering gas pressure 2.75 ⁇ 10 ⁇ 3 Pa When the appearance of the obtained sample 12 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
  • Sample sample 13 For the second step of the method for preparing Sample 1, the metal for forming the first metal film 3 was changed from tin to bismuth and the film thickness was adjusted to 20 nm. Sample 13 was prepared in the same manner as the method. At that time, the conditions for forming the first metal film 3 made of bismuth were as follows. Target metal Bismuth purity 99.99% or more DC power 2.5Kw Sputtering gas Argon Sputtering gas pressure 2.75 ⁇ 10 ⁇ 3 Pa When the appearance of the obtained sample 13 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
  • Sample sample 14 For the second step of the sample 1 preparation method, a single metal film consisting only of tin is formed and the film thickness is adjusted to 40 nm. Sample 14 was prepared in the same manner as above. At that time, the formation conditions of the single metal film of tin were the same as the conditions for forming the first metal film 3 made of tin in the second step of the preparation method of Sample 1. When the appearance of the obtained sample 14 was visually observed, the metallic luster was good and the generation of relatively large cracks was not observed.
  • Sample sample 15 Similar to the sample preparation method, except that a single metal film made of only chromium is formed for the second step of the preparation method of the sample 1 and the film thickness is adjusted to 40 nm. Sample 15 was prepared by the method described above. At that time, the formation conditions of the chromium single metal film were the same as the conditions for forming the second metal film 4 made of chromium in the second step of the preparation method of Sample 1. When the appearance of the obtained sample 15 was visually observed, the metallic luster was very good, but the occurrence of relatively large cracks was partially observed.
  • Sample 16 For the second step of the sample 1 production method, a single metal film made only of aluminum is to be formed, and the film thickness is adjusted to 40 nm. Sample 16 was obtained in the same manner as above. At that time, the conditions for forming a single aluminum metal film were as follows. Target metal Aluminum purity 99.99% or more DC power 1.3Kw Sputtering gas Argon Sputtering gas pressure 2.75 ⁇ 10 ⁇ 3 Pa When the appearance of the obtained sample 16 was visually observed, the metallic luster was good and the occurrence of relatively large cracks was not observed.
  • Sample sample 17 The method for preparing Sample 1 is the same as the method for preparing Sample 1, except that a single metal film made only of indium is formed and the film thickness is adjusted to 40 nm. Sample 17 was prepared in the same manner as above. At that time, the formation conditions of the indium single metal film were the same as the conditions for forming the first metal film 3 made of indium in the second step of the preparation method of the sample 6. When the appearance of the obtained sample 17 was visually observed, the metallic luster was good and the occurrence of relatively large cracks was not observed.
  • Sample sample 20 For the second step of the sample 19 production method, a single metal film consisting only of chromium is formed on the metal film, except that the film thickness is adjusted to 40 nm. Sample 20 was prepared in the same manner as Sample 19 was prepared. At that time, the conditions for forming the single metal film of chromium were the same as the conditions for forming the second metal film 4 made of chromium in the second step of the preparation method of Sample 19. When the appearance of the obtained sample 20 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
  • Sample sample 21 For the second step of the method for preparing the sample 19, a single metal film made of only aluminum is formed, and the method for preparing the sample 19 is adjusted except that the film thickness is adjusted to 40 nm. Sample 21 was prepared in the same manner as above. At that time, the conditions for forming the aluminum single metal film were as follows. Target metal Aluminum purity 99.99% or more Vacuum degree 0.03Pa or less Argon gas flow rate 90sccm When the appearance of the obtained sample 21 was visually observed, the metallic luster was good and the generation of relatively large cracks was not observed.
  • (Weather resistance test 2) Among the samples 1 to 21, the samples other than the samples 8, 9, 10 and 15 were subjected to a weather resistance test under conditions more severe than the weather resistance test 1 in the following manner.
  • (A) Test method Each sample was loaded for 120 hours in a thermo-hygrostat (manufactured by ESPEC, SH241) adjusted to a temperature of 90 ° C. and a relative humidity of 95%, thereby performing an applied load treatment. The appearance of each sample before and after the loading treatment was visually observed.
  • the first metal film 3 is formed with tin to a thickness of 10 to 50 nm by a sputtering method
  • the second metal film 4 is a film with a thickness of 5 to 30 nm with chromium by a sputtering method. It is understood that the resin product 1 (samples 1 to 5 and 11) formed with a large thickness maintains an excellent appearance even after the weather resistance test, and is excellent in weather resistance.
  • the first metal film 3 is formed to a thickness of 20 nm with any of indium, zinc, lead or bismuth by sputtering
  • the second metal film 4 is chromium with a thickness of 20 nm by sputtering. It is understood that the resin product 1 (samples 6, 7, 12, and 13) formed in the film thickness is excellent in weather resistance because the appearance is maintained very well even after the weather resistance test.
  • the first metal film 3 was formed to a thickness of 20 nm with tin by the vacuum evaporation method
  • the second metal film 4 was formed to a thickness of 20 nm with chromium by the vacuum evaporation method. It is understood that the appearance of the resin product 1 (sample 19) is extremely excellent even after the weather resistance test and is excellent in weather resistance.
  • the resin film 1 in which the metal film is a single layer, and the metal film is formed by sputtering to have a film thickness of 40 nm with any of tin, aluminum, indium, or zinc. 16, 17, 18), the appearance is maintained very well even after the weather resistance test, and it is understood that the weather resistance is excellent.
  • the resin film 1 in which the metal film is a single layer and the metal film is formed with aluminum to a thickness of 40 nm by the vacuum deposition method is as follows. It is understood that the appearance is maintained very well and the weather resistance is excellent.
  • the first metal film 3 is formed with a thickness of 10 to 50 nm with tin by the sputtering method
  • the second metal film 4 is formed with chromium with a thickness of 10 to 50 nm by the sputtering method.
  • the resin product 1 (samples 2 to 5) formed to a film thickness of 30 nm maintains a good appearance even after the weather resistance test, and is excellent in weather resistance.
  • the thicknesses of the first metal film 3 and the second metal film 4 are both 20 nm (Sample 1), the appearance is maintained very well even after the weather resistance test, and the weather resistance is very high. It is understood that it is excellent.
  • the first metal film 3 is formed to a film thickness of 20 nm with either indium or zinc by the sputtering method
  • the second metal film 4 is formed to a film thickness of 20 nm with chromium by the sputtering method. It is understood that the formed resin product 1 (samples 6 and 7) maintains an excellent appearance even after the weather resistance test, and is excellent in weather resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided is a resin product which maintains superior design and visibility, and has weather resistance such that the resin product is not prone to degradation such as deformation and discoloration, even when exposed to a high temperature and direct rays of the sun, such as in a vehicle under the blazing sun. Also provided is a method for producing the resin product. The present invention relates to a resin product (1) comprising a soft resin substrate (2) on which metal films are formed, wherein at least two layers of the metal films are formed on the soft resin substrate (2), the lower layer defining a first metal film (3) formed by at least one selected from tin, indium, or zinc, and the upper layer defining a second metal film (4) formed by chrome. The present invention also relates to a method for producing the resin product (1), wherein the first metal film (3) and the second metal film (4) are formed by a sputtering method.

Description

金属皮膜を積層した樹脂製品及びその製造方法Resin product laminated with metal film and method for producing the same
 本発明は、軟質樹脂基材上に金属皮膜を積層した樹脂製品、特に自動車等の内外装部品に好適な樹脂製品に関するものである。 The present invention relates to a resin product obtained by laminating a metal film on a soft resin substrate, and particularly to a resin product suitable for interior and exterior parts such as automobiles.
 自動車等の内外装部品、例えば車両用エンブレムには、金属皮膜を有する樹脂製品が多く使用されている。これらの車両用エンブレムには、優れた意匠性と視認性、及び耐候性が要求される。
さらに車両用エアバックが内蔵されているカバーに使用されるエンブレムは、優れた意匠性と視認性に加え、炎天下など高温かつ直射日光に曝されるような厳しい車内環境におかれるため、変形、変色等の変質を起こしにくいように、通常の車外に用いられるエンブレムに求められる耐候性よりも、さらに高い耐候性が要求されている。
For interior and exterior parts such as automobiles, for example, emblems for vehicles, many resin products having a metal film are used. These vehicle emblems are required to have excellent design, visibility, and weather resistance.
In addition to the excellent design and visibility, the emblem used for the cover with a built-in air bag for the vehicle is deformed because it is placed in a harsh interior environment such as under hot weather and exposed to direct sunlight. Higher weather resistance is required than the weather resistance required for emblems used outside normal vehicles so as not to cause discoloration and the like.
 また、前記のエアバックのカバーに使用されるエンブレムは、エアバックが作動し急に膨らんだ際の衝撃で破損すると危険なため、その基材には主に軟質樹脂が採用されている。
 このような軟質樹脂を基材とするエンブレムとしては、金属皮膜として真空蒸着法あるいはスパッタリング法により、アルミニウム皮膜が形成されたものが市場導入されている。さらには、軟質樹脂基材上に金属皮膜を形成する方法としては、軟質樹脂基材上にアンダーコートを施してから真空蒸着法等によってクロム皮膜を形成させるという方法が提案されている(特許文献1)。
Moreover, since the emblem used for the cover of the air bag is dangerous if it is damaged by an impact when the air bag is activated and suddenly inflates, a soft resin is mainly used for the base material.
As an emblem based on such a soft resin, a metal film in which an aluminum film is formed by a vacuum deposition method or a sputtering method has been introduced into the market. Furthermore, as a method of forming a metal film on a soft resin substrate, a method of forming a chromium film by vacuum deposition after applying an undercoat on the soft resin substrate has been proposed (Patent Document). 1).
特開平10-36968号公報JP 10-36968 A
 しかしながら、従来の金属皮膜を有する樹脂製品では、軟質樹脂の成形品は柔らかいので、外力が加わり大きく変形した場合には、クロムからなる硬い金属皮膜に、肉眼で視認できる程度の比較的大きなクラックが多数生じるため、金属光沢が失われ易いという問題があった。
さらに炎天下の車内環境では変形、変色等の変質を起こし易く、求められる耐候性を得ることができないという問題点があった。
However, in a resin product having a conventional metal film, a molded product of a soft resin is soft, so that when external force is applied and it deforms greatly, a relatively large crack that is visible to the naked eye is formed on a hard metal film made of chromium. Since many occur, there is a problem that the metallic luster is easily lost.
Furthermore, there is a problem in that the environment inside the vehicle under the sun is easily deformed such as deformation and discoloration, and the required weather resistance cannot be obtained.
 本発明は上記の問題点を解決すべく、外力により大きく変形した場合でも金属光沢が維持されて、意匠性及び視認性に優れ、また炎天下の車内のような厳しい環境下でも、変形、変色等の変質を起こし難く、耐候性に極めて優れた樹脂製品及びその製造方法を提供することを目的とする。 In order to solve the above problems, the present invention maintains a metallic luster even when greatly deformed by an external force, is excellent in design and visibility, and is deformed, discolored, etc. even in a harsh environment such as in a car under hot weather. It is an object of the present invention to provide a resin product that is hardly deteriorated and has excellent weather resistance and a method for producing the same.
 本発明者らは、開発当初、前記先行技術の問題点を解決すべく、各種金属の単層皮膜の改良に着手した。しかし、単層皮膜ではいかに工夫しても、比較的大きなクラックの発生を抑制しつつ、かつ十分な耐候性を有する樹脂製品を得ることはできなかった。
 そこで本発明者らは、軟質樹脂基材上に、硬く耐候性に寄与する半面、比較的大きなクラックが生じ易いクロム皮膜を形成しつつも、そのクロム皮膜を単独で使用するのではなく、軟質樹脂基材とクロム皮膜との間に、緩衝的機能を持つ他の金属層(皮膜)を設けるという新規な着想に至った。さらに、金属層の厚さの最適条件を見出すべく鋭意研究の結果、意匠性及び視認性に優れ、また炎天下の車内のような厳しい環境下でも、変形、変色等の変質を起こし難い本発明の樹脂製品とその製造方法を完成した。
At the beginning of development, the present inventors have begun to improve single-layer coatings of various metals in order to solve the problems of the prior art. However, no matter how the single-layer film is devised, it has not been possible to obtain a resin product having sufficient weather resistance while suppressing the generation of relatively large cracks.
Therefore, the present inventors have formed a chromium film that is hard and contributes to weather resistance on the soft resin base material, and that is relatively prone to cracking. A new idea of providing another metal layer (film) having a buffer function between the resin substrate and the chromium film has been reached. Furthermore, as a result of earnest research to find the optimum conditions for the thickness of the metal layer, it is excellent in design and visibility, and it is difficult to cause alteration such as deformation, discoloration, etc. even in a severe environment such as in a car under hot weather. A resin product and its manufacturing method were completed.
 すなわち、本発明は、請求項1に記載の通り、軟質樹脂基材上に金属皮膜が形成された樹脂製品において、前記金属皮膜は前記軟質樹脂基材上に少なくとも上下二層に形成されており、下層である第1金属皮膜はスズ、インジウム又は亜鉛のうち少なくともいずれか1つから形成され、上層である第2金属皮膜はクロムから形成されなることを特徴とする樹脂製品である。 That is, according to the present invention, in the resin product in which the metal film is formed on the soft resin base material, the metal film is formed in at least two layers on the soft resin base material. The first metal film as the lower layer is formed from at least one of tin, indium or zinc, and the second metal film as the upper layer is formed from chromium.
 また、本発明は、請求項2に記載の通り、前記第1金属皮膜及び前記第2金属皮膜はスパッタリング法により形成され、前記第1金属皮膜の厚さは10~50nmであって、前記第2金属皮膜の厚さは10~30nmであることを特徴とする請求項1に記載の樹脂製品である。 Further, according to the present invention, the first metal film and the second metal film are formed by a sputtering method, and the thickness of the first metal film is 10 to 50 nm. 2. The resin product according to claim 1, wherein the thickness of the two metal film is 10 to 30 nm.
 また、本発明は、請求項3に記載の通り、前記軟質樹脂基材は軟質ポリエステル樹脂からなることを特徴とする請求項1又は2に記載の樹脂製品である。 Moreover, the present invention is the resin product according to claim 1 or 2, wherein the soft resin base material is made of a soft polyester resin.
 また、本発明は、請求項4に記載の通り、前記軟質樹脂基材と前記第1金属皮膜との間にポリエステルウレタン樹脂を主成分とするアンダーコート層を設けたことを特徴とする請求項1乃至3のいずれかに記載の樹脂製品である。 Moreover, this invention provided the undercoat layer which has a polyester urethane resin as a main component between the said soft resin base material and the said 1st metal film as described in Claim 4. The resin product according to any one of 1 to 3.
 また、本発明は、請求項5に記載の通り、前記第2金属皮膜の上にアクリルウレタン樹脂を主成分とするトップコート層を設けたことを特徴とする請求項1乃至4いずれかに記載の樹脂製品である。 Moreover, this invention provided the topcoat layer which has an acrylic urethane resin as a main component on the said 2nd metal membrane | film | coat, as described in Claim 5. It is a resin product.
 また、本発明は、請求項6に記載の通り、軟質樹脂基材上に金属皮膜を形成する樹脂製品の製造方法において、前記軟質樹脂基材の上にスパッタリング法によってスズ、インジウム又は亜鉛のうち少なくともいずれか1つからなる第1金属皮膜を形成する工程と、該第1金属皮膜の上にスパッタリング法によってクロムからなる第2金属皮膜を形成する工程を含む樹脂製品の製造方法である。 Moreover, this invention is a manufacturing method of the resin product which forms a metal membrane | film | coat on a soft resin base material as described in Claim 6, Among the tin, indium, or zinc by sputtering method on the said soft resin base material. It is a method for producing a resin product, including a step of forming a first metal film made of at least one and a step of forming a second metal film made of chromium on the first metal film by a sputtering method.
 また、本発明は、請求項7に記載の通り、前記軟質樹脂基材は軟質ポリエステル樹脂からなることを特徴とする請求項6に記載の樹脂製品の製造方法である。 Further, according to the present invention, as set forth in claim 7, the soft resin base material is made of a soft polyester resin.
 本発明の樹脂製品及びその製造方法によれば、軟質樹脂基材上に金属皮膜が形成された樹脂製品であって、外力が加わって大きく変形した場合でも金属光沢が維持されて、優れた意匠性と視認性を実現し、また、通常の車両用エンブレムなどに求められる耐候性はもちろんのこと、炎天下の車内のような厳しい環境下でも、変形、変色等の変質を起こし難く、耐候性に極めて優れた樹脂製品及びその製造方法を提供することができる。 According to the resin product of the present invention and the method for producing the same, a resin product in which a metal film is formed on a soft resin base material, and the metallic luster is maintained even when the external force is applied and the metal film is largely deformed, an excellent design. In addition to the weather resistance required for ordinary vehicle emblems, it is difficult to cause deformation, discoloration, etc. even in harsh environments such as in a car under hot weather. An extremely excellent resin product and a manufacturing method thereof can be provided.
本発明の第1の実施形態に関する樹脂製品の断面図である。It is sectional drawing of the resin product regarding the 1st Embodiment of this invention. 本発明の第2の実施形態に関する樹脂製品の断面図である。It is sectional drawing of the resin product regarding the 2nd Embodiment of this invention.
 以下、添付の図面を参照して、本発明の実施の形態の説明を行うが、本発明の趣旨に反しない限り、本発明はこれらの実施の形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited to these embodiments unless it is contrary to the gist of the present invention.
 本発明の樹脂製品の第1の実施形態を図1に示す。本発明の樹脂製品1は、軟質樹脂基材2、該軟質樹脂基材2上に、第1金属皮膜3と第2金属皮膜4がこの順番で形成されている樹脂製品である。 FIG. 1 shows a first embodiment of the resin product of the present invention. The resin product 1 of the present invention is a resin product in which a first metal film 3 and a second metal film 4 are formed in this order on a soft resin substrate 2 and the soft resin substrate 2.
 軟質樹脂基材2に用いられる樹脂としては、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリエチレン樹脂、オレフィン系エラストマー樹脂、スチレン系エラストマー樹脂などあるが、本発明においては、軟質ポリエステル樹脂が好ましい。軟質ポリエステル樹脂は、成形後も柔軟性があり、かつ耐久性が高いので、自動車内外装部品、例えば車両用エンブレムの基材として適しているからである。なお、軟質樹脂基材2の形態としては、特に限定されないが、成形品、板材、シート材、フィルム材などが挙げられる。 Examples of the resin used for the soft resin substrate 2 include a polyester resin, a polyvinyl chloride resin, a polyvinyl acetate resin, a polyethylene resin, an olefin elastomer resin, and a styrene elastomer resin. In the present invention, a soft polyester resin is used. preferable. This is because the soft polyester resin is flexible after molding and has high durability, and is therefore suitable as a base material for automobile interior and exterior parts, for example, vehicle emblems. In addition, as a form of the soft resin base material 2, although it does not specifically limit, a molded article, a board | plate material, a sheet material, a film material, etc. are mentioned.
 第1金属皮膜3に用いる金属は、スズ、インジウム、亜鉛のうち少なくともいずれか1つから選ばれる金属である。これらスズ、インジウム、亜鉛は、展延性に優れ、また、これらの金属は皮膜形成時に島状構造の不連続膜を形成し易く、第2金属皮膜4を積層した場合に、第1金属皮膜3が緩衝層の役割を果たすようになり、樹脂製品1に外力が加わり大きく変形した場合にも、第2金属皮膜4には、肉眼で視認できるような比較的大きなクラックが生じ難く、主には、微細なクラックしか生じないため、第2金属皮膜4は、金属光沢を失い難く高い意匠性と視認性を得ることができるものと推察される。 The metal used for the first metal film 3 is a metal selected from at least one of tin, indium, and zinc. These tin, indium and zinc are excellent in spreadability, and these metals are easy to form a discontinuous film having an island-like structure at the time of film formation. When the second metal film 4 is laminated, the first metal film 3 However, even when an external force is applied to the resin product 1 and the resin product 1 is greatly deformed, the second metal film 4 is less susceptible to relatively large cracks that can be visually recognized. Since only minute cracks are generated, it is presumed that the second metal film 4 is less likely to lose its metallic luster and can obtain high designability and visibility.
また、第1金属皮膜3を形成するスズ、インジウム、亜鉛も光輝性を有することから、たとえ第2金属皮膜4に比較的大きなクラックが発生したとしても、クラックを目立たせないようにできるので、高い意匠性と視認性を保持することができるものと推察される。 In addition, since tin, indium, and zinc that form the first metal film 3 also have glitter, even if a relatively large crack occurs in the second metal film 4, the crack can be made inconspicuous. It is assumed that high designability and visibility can be maintained.
 さらに、樹脂製品1は、第2金属皮膜4に比較的大きなクラックが生じ難いことから、軟質樹脂基材2が外部環境の影響を直接受け難くなり、変形、変色等の変質が生じ難いものと推察される。 Furthermore, since the resin product 1 is less likely to cause relatively large cracks in the second metal film 4, the soft resin base material 2 is less likely to be directly affected by the external environment, and is unlikely to undergo alterations such as deformation and discoloration. Inferred.
 第1金属皮膜3を形成するために用いられる方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、対向加熱蒸着法、高周波誘導加熱蒸着法、電子ビーム加熱蒸着法などの一般的な蒸着法があるが、スパッタリング法を用いることが好ましい。スパッタリング法によれば、膜厚のコントロールが容易であり、均一かつ収率よく形成できるからである。なお、スパッタリング法には、2極スパッタ、多極スパッタ、高周波スパッタ、マグネトロンスパッタ等があるが、特にこれらの方法を限定するものではない。 General methods such as vacuum deposition, sputtering, ion plating, counter heating deposition, high frequency induction heating deposition, and electron beam heating deposition are used as methods for forming the first metal film 3. Although there is a method, it is preferable to use a sputtering method. This is because according to the sputtering method, the film thickness can be easily controlled, and the film can be formed uniformly and with high yield. Sputtering methods include bipolar sputtering, multipolar sputtering, high frequency sputtering, magnetron sputtering, and the like, but these methods are not particularly limited.
 また、第1金属皮膜3の膜厚は、10~50nmが好ましい。膜厚が10nm未満だと島状の不連続膜が形成され難いため、緩衝層としての役割を十分に果たすことができない場合があり、第2金属皮膜4に比較的大きなクラックが発生し易い傾向がある。他方、膜厚が50nmを越えると、第1金属皮膜3の展延性が発揮され難くなり、やはり第2金属皮膜4にクラックが発生し易い傾向がある。 The film thickness of the first metal film 3 is preferably 10 to 50 nm. If the film thickness is less than 10 nm, it is difficult to form an island-like discontinuous film, so that the role as a buffer layer may not be sufficiently achieved, and a relatively large crack tends to occur in the second metal film 4. There is. On the other hand, when the film thickness exceeds 50 nm, the spreadability of the first metal film 3 becomes difficult to be exhibited, and the second metal film 4 also tends to crack.
 次に、第2金属皮膜4を形成する金属としてクロムを用いる。クロムは金属光沢が美しく、硬い皮膜を形成できるため傷付き難く、酸化し難く耐食性が高いことから、優れた意匠性と視認性の高さと耐候性を求められる樹脂製品への使用に適しているからである。 Next, chromium is used as a metal for forming the second metal film 4. Chromium has a beautiful metallic luster and can form a hard film, making it difficult to scratch, difficult to oxidize, and high corrosion resistance, making it suitable for use in resin products that require excellent design, high visibility, and weather resistance. Because.
 第2金属皮膜4を形成するために用いられる方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、対向加熱蒸着法、高周波誘導加熱蒸着法、電子ビーム加熱蒸着法などの一般的な蒸着法があるが、スパッタリング法を用いることが好ましい。スパッタリング法によれば、第1金属皮膜3との密着性を高くでき、また膜厚のコントロールが容易であり、均一かつ収率よく形成できるからである。なお、スパッタリング法には、2極スパッタ、多極スパッタ、高周波スパッタ、マグネトロンスパッタ等があるが、特にこれらの方法を限定するものではない。 General methods such as vacuum deposition, sputtering, ion plating, counter heating deposition, high frequency induction heating deposition, and electron beam heating deposition are used as methods for forming the second metal film 4. Although there is a method, it is preferable to use a sputtering method. This is because according to the sputtering method, the adhesiveness with the first metal film 3 can be enhanced, the film thickness can be easily controlled, and the film can be formed uniformly and with high yield. Sputtering methods include bipolar sputtering, multipolar sputtering, high frequency sputtering, magnetron sputtering, and the like, but these methods are not particularly limited.
 また、第2金属皮膜4の膜厚は、10~30nmが好ましい。膜厚が10nm未満だと膜厚が薄いため、炎天下などの厳しい条件での耐候性が低下する傾向がある。他方、膜厚が30nmを越えると、クロム本来の硬さによって比較的大きなクラックが発生し易くなる傾向がある。 Further, the thickness of the second metal film 4 is preferably 10 to 30 nm. When the film thickness is less than 10 nm, since the film thickness is thin, the weather resistance under severe conditions such as under hot weather tends to decrease. On the other hand, if the film thickness exceeds 30 nm, there is a tendency that relatively large cracks are likely to occur due to the original hardness of chromium.
 本発明の樹脂製品の第2の実施形態としては、図2に示すように、軟質樹脂基材2、該軟質樹脂基材2上に、アンダーコート層5を設け、該アンダーコート層5の上に、第1金属皮膜3と第2金属皮膜4をこの順番で形成し、該第2金属皮膜4の上にトップコート層6を設けることができる。 As a second embodiment of the resin product of the present invention, as shown in FIG. 2, an undercoat layer 5 is provided on the soft resin base material 2 and the soft resin base material 2. In addition, the first metal film 3 and the second metal film 4 can be formed in this order, and the top coat layer 6 can be provided on the second metal film 4.
 アンダーコート層5に用いる樹脂としては、一般に塗料形態のものが扱い易く、ポリウレタン樹脂塗料、アクリルウレタン樹脂塗料、ポリエステルウレタン樹脂塗料等を用いることができるが、すぐれた柔軟性と強靭性を有するポリエステルウレタン樹脂を主成分とする塗料を用いることが好ましい。
アンダーコート層5を設けると、軟質樹脂基材2の表面の凹凸を平滑化し、軟質樹脂基材2と第1金属皮膜3との密着性を高めることができ、さらに、第1金属皮膜3を効率よく形成できるようになる。
The resin used for the undercoat layer 5 is generally easy to handle in the form of paint, and polyurethane resin paint, acrylic urethane resin paint, polyester urethane resin paint, etc. can be used, but polyester having excellent flexibility and toughness It is preferable to use a paint mainly composed of a urethane resin.
When the undercoat layer 5 is provided, the unevenness on the surface of the soft resin base material 2 can be smoothed, and the adhesion between the soft resin base material 2 and the first metal film 3 can be improved. It can be formed efficiently.
 前記ポリエステルウレタン樹脂塗料の例としては、主剤である水酸基を2つ以上有するポリエステルポリオールと、硬化剤であるジイソシアネート化合物を反応させて合成されたものを用いることができる。
本発明で用いるポリエステルウレタン樹脂塗料のポリエステルポリオールとしては、下記一般式(1)であらわされるシクロヘキサンジメタノールを両末端に有するものを用いることが好ましい。
As an example of the said polyester urethane resin coating material, what was synthesize | combined by making the polyester polyol which has two or more hydroxyl groups which are main ingredients, and the diisocyanate compound which is a hardening | curing agent can be used.
As the polyester polyol of the polyester urethane resin coating used in the present invention, it is preferable to use one having both ends of cyclohexanedimethanol represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、前記ポリエステルポリオールには、下記一般式(2)で示されるシリコン系からなるレベリング剤を配合することが好ましい。レべリング剤を配合することにより、塗膜表面の表面張力を均一化し、塗膜表面を滑らかにできるからである。また、塗膜の親水性が低下し、これによって樹脂製品の耐候性の向上が図られるからである。 In addition, it is preferable to blend a leveling agent composed of a silicon system represented by the following general formula (2) with the polyester polyol. It is because the surface tension of the coating film surface can be made uniform and the coating film surface can be smoothed by blending the leveling agent. Moreover, it is because the hydrophilicity of a coating film falls and the improvement of the weather resistance of a resin product is aimed at by this.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記レベリング剤は、一般に、前記ポリエステルポリオール100重量部に対して0.01~2重量部の範囲で配合される。配合量が0.01重量部未満だと塗膜表面を均一にする効果が現れ難く、2重量部を超えると塗膜表面にレベリング剤のブリードアウトが認められる場合がある。 The leveling agent is generally blended in the range of 0.01 to 2 parts by weight with respect to 100 parts by weight of the polyester polyol. When the blending amount is less than 0.01 parts by weight, the effect of making the coating film surface uniform is hardly exhibited, and when it exceeds 2 parts by weight, bleeding out of the leveling agent may be observed on the coating film surface.
 前記ポリエステルウレタン樹脂塗料の主剤である上記ポリエステルポリオールには、さらに塗料に一般的に用いられている種々の配合剤を、必要に応じて適宜、慣用量で加えることができる。配合剤の具体例としては、塗料粘度を調整するための稀釈剤ないし増粘剤、顔料ないしは染料等の着色剤、主剤と硬化剤の硬化反応を促進させるための硬化触媒、充填材等である。 In the polyester polyol, which is the main component of the polyester urethane resin coating, various compounding agents generally used in coatings can be added in conventional amounts as needed. Specific examples of the compounding agent include a diluent or thickener for adjusting the viscosity of the paint, a colorant such as a pigment or dye, a curing catalyst for accelerating the curing reaction between the main agent and the curing agent, and a filler. .
 前記ポリエステルウレタン樹脂塗料の硬化剤であるイソシアネート化合物としては、3官能基以上のヘキサメチレンジイソシアネート系イソシアネート化合物を用いることができる。ここで3官能基以上のヘキサメチレンジイソシアネート系イソシアネート化合物とは、ヘキサメチレンジイソシアネートを出発原料として合成された3官能基以上のイソシアネート化合物である。該イソシアネート化合物が2官能基もしくはそれ以下の場合には、形成される塗膜の架橋密度が低下する傾向がある。 As the isocyanate compound that is a curing agent for the polyester urethane resin paint, a hexamethylene diisocyanate-based isocyanate compound having three or more functional groups can be used. Here, the hexamethylene diisocyanate isocyanate compound having three or more functional groups is an isocyanate compound having three or more functional groups synthesized using hexamethylene diisocyanate as a starting material. When the isocyanate compound has two functional groups or less, the crosslinking density of the formed coating film tends to decrease.
 前記硬化剤である3官能基以上を有するヘキサメチレンジイソシアネート系イソシアネート化合物の具体例としては、ヘキサメチレンジイソシアネートのビューレットタイプもしくはイソシアヌレートタイプイソシアネート化合物が挙げられる。
また、一般には、キシリレンジイソシアネートもしくはトリレンジイソシアネートを出発原料とする同様の3官能基以上のイソシアネート化合物も使用可能であるが、これらのイソシアネート化合物を用いた塗膜よりも、前記ヘキサメチレンジイソシアネート系イソシアネート化合物を用いた塗膜の方が、耐候性の面で優れている。
Specific examples of the hexamethylene diisocyanate-based isocyanate compound having three or more functional groups as the curing agent include hexamethylene diisocyanate burette type or isocyanurate type isocyanate compounds.
In general, the same trifunctional or higher functional isocyanate compound starting from xylylene diisocyanate or tolylene diisocyanate can also be used. A coating film using an isocyanate compound is superior in terms of weather resistance.
 前記ポリエステルウレタン樹脂塗料は、前記主剤に前記硬化剤を配合して調製されるが、その配合量は、主剤中の水酸基1モルに対して硬化剤中のイソシアネート基が0.8~1.5モルの範囲とすることが好ましい。 The polyester urethane resin paint is prepared by blending the curing agent with the main agent, and the blending amount thereof is 0.8 to 1.5 isocyanate groups in the curing agent with respect to 1 mol of hydroxyl groups in the main agent. The molar range is preferred.
 また、必要に応じて、塗料に一般的に用いられている種々の添加剤、例えば、消泡剤、反応促進剤、粘着付与剤などを慣用量加えても良い。なお主剤及び硬化剤の安定性を保つためアルコール類、ケトン類、エステル類、炭化水素類、芳香族炭化水素類などの有機溶剤を適時、単独でも複数でも使用することができる。  If necessary, various additives generally used in paints, for example, antifoaming agents, reaction accelerators, tackifiers and the like may be added in conventional amounts. In order to maintain the stability of the main agent and the curing agent, organic solvents such as alcohols, ketones, esters, hydrocarbons, and aromatic hydrocarbons can be used alone or in a timely manner. *
 前記ポリエステルウレタン樹脂塗料によるアンダーコート層5の形成方法としては、該ポリエステルウレタン樹脂塗料を、一般的な種々の方法、例えば、スプレー塗り、浸漬塗り、ローラーコート、静電塗装等の塗布手段で塗布し、適宜の温度条件で硬化処理することによって塗膜を形成することができる。
アンダーコート層5の厚さは5~30μmが好ましく、さらに10~18μmが好ましい。5μm未満の場合塗膜が薄いため、第1金属皮膜を形成した際に軟質樹脂基材表面の凹凸が現れて、塗装表面が均一になり難い傾向がある。また、塗膜の厚さが30μmを越えると、金属皮膜の光沢が低下する傾向がある。
As a method for forming the undercoat layer 5 with the polyester urethane resin paint, the polyester urethane resin paint is applied by various general methods such as spray coating, dip coating, roller coating, electrostatic coating, and the like. And a coating film can be formed by hardening-processing on appropriate temperature conditions.
The thickness of the undercoat layer 5 is preferably 5 to 30 μm, more preferably 10 to 18 μm. When the thickness is less than 5 μm, the coating film is thin, so that when the first metal film is formed, irregularities on the surface of the soft resin substrate appear and the coating surface tends to be difficult to be uniform. Moreover, when the thickness of the coating film exceeds 30 μm, the gloss of the metal film tends to be lowered.
 次にトップコート層6に用いる樹脂としては、一般に塗料形態のものが扱い易く、ポリウレタン樹脂塗料、ポリエステルウレタン樹脂塗料、アクリルウレタン樹脂塗料等を用いることができるが、透明性が高いアクリルウレタン樹脂塗料を用いることが好ましい。透明であるから意匠性と視認性を損なうことなく、第2金属皮膜4を外部環境から保護することができるからである。 Next, the resin used for the top coat layer 6 is generally easy to handle in the form of paint, and polyurethane resin paint, polyester urethane resin paint, acrylic urethane resin paint, etc. can be used, but highly transparent acrylic urethane resin paint. Is preferably used. This is because the second metal film 4 can be protected from the external environment without impairing the design and visibility because it is transparent.
 前記アクリルウレタン樹脂塗料の例としては、主剤である水酸基を2つ以上有するアクリルポリオールと、硬化剤であるジイソシアネート化合物を反応させて合成されたものを用いることができる。本発明で用いるアクリルウレタン樹脂塗料では、アクリルポリオールとしては脂肪族、脂環族もしくは芳香族ビニル系モノマーに、水酸基含有アクリル系モノマー、例えばヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート等を共重合させた樹脂を用いることができる。 As an example of the acrylic urethane resin paint, one synthesized by reacting an acrylic polyol having two or more hydroxyl groups as a main agent with a diisocyanate compound as a curing agent can be used. In the acrylic urethane resin coating used in the present invention, the acrylic polyol is a resin obtained by copolymerizing an aliphatic, alicyclic or aromatic vinyl monomer with a hydroxyl group-containing acrylic monomer such as hydroxyethyl acrylate or hydroxyethyl methacrylate. Can be used.
 また、前記アクリルポリオールには、樹脂製品の耐候性を向上させるため、紫外線吸収剤を配合することが好ましい。紫外線吸収剤の例として、ベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤などが挙げられる。 In addition, it is preferable to add an ultraviolet absorber to the acrylic polyol in order to improve the weather resistance of the resin product. Examples of ultraviolet absorbers include benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
 前記紫外線吸収剤は、一般に、前記アクリルポリオール100重量部に対して1~10重量部、好ましくは1~5重量部の範囲で配合される。配合量が1重量部未満であると耐紫外線の向上効果が十分ではなく、10重量部を超えると塗膜表面に紫外線吸収剤のブリードアウトが認められる場合がある。 The ultraviolet absorber is generally blended in an amount of 1 to 10 parts by weight, preferably 1 to 5 parts by weight per 100 parts by weight of the acrylic polyol. When the blending amount is less than 1 part by weight, the effect of improving ultraviolet resistance is not sufficient, and when it exceeds 10 parts by weight, bleeding out of the UV absorber may be observed on the coating film surface.
 前記アクリルウレタン樹脂塗料の主剤である上記アクリルポリオールには、さらに塗料に一般的に用いられている種々の配合剤を、必要に応じて適宜、慣用量で主剤中に加えることができる。配合剤の具体例としては、塗料粘度を調整するための稀釈剤ないし増粘剤、顔料ないしは染料等の着色剤、主剤と硬化剤の硬化反応を促進させるための硬化触媒、充填材等である。 In the acrylic polyol, which is the main component of the acrylic urethane resin paint, various compounding agents generally used in the paint can be added to the main agent in an appropriate conventional amount as necessary. Specific examples of the compounding agent include a diluent or thickener for adjusting the viscosity of the paint, a colorant such as a pigment or dye, a curing catalyst for accelerating the curing reaction between the main agent and the curing agent, and a filler. .
 次に、前記アクリルウレタン樹脂の硬化剤であるイソシアネート化合物としては、一般的なポリウレタン樹脂に用いられるジイソシアネート化合物で良く、例えば、イソシアネート型ポリイソシアネート、ビューレット型ポリイソシアネート、ヘキサメチレンジイソシアネート等を用いることができる。 Next, the isocyanate compound that is a curing agent for the acrylic urethane resin may be a diisocyanate compound used in a general polyurethane resin. Can do.
 前記アクリルウレタン樹脂塗料は、前記主剤に対して前記硬化剤を配合して調製されるが、その配合量は、主剤中の水酸基1モルに対して硬化剤中のイソシアネート基が0.8~1.5モルの範囲とするのが好ましい。 The acrylic urethane resin paint is prepared by blending the curing agent with the main agent. The blending amount of the acrylic urethane resin paint is 0.8 to 1 isocyanate group in the curing agent with respect to 1 mol of hydroxyl group in the main agent. The range is preferably 5 mol.
 また、必要に応じて、塗料に一般的に用いられている種々の添加剤、例えば、消泡剤、反応促進剤、粘着付与剤などを慣用量加えても良い。また、透明性が損なわれない範囲であれば、顔料、染料等の着色剤の添加もなんら差し支えない。なお、主剤及び硬化剤の安定性を保つためアルコール類、ケトン類、エステル類、炭化水素類、芳香族炭化水素類などの有機溶剤を適時、単独でも複数でも使用することができる。  If necessary, various additives generally used in paints, for example, antifoaming agents, reaction accelerators, tackifiers and the like may be added in conventional amounts. Moreover, as long as the transparency is not impaired, the addition of a coloring agent such as a pigment or a dye may be used. In order to maintain the stability of the main agent and the curing agent, organic solvents such as alcohols, ketones, esters, hydrocarbons, and aromatic hydrocarbons can be used alone or in a timely manner. *
 前記アクリルウレタン樹脂塗料によるトップコート層6の形成方法としては、該アクリルウレタン樹脂塗料を、一般的な種々の方法、例えば、スプレー塗り、浸漬塗り、ローラーコート、静電塗装等の塗布手段で塗布し、適宜の温度条件で硬化処理することによって塗膜を形成することができる。
トップコート層6の厚さは5~30μmが好ましく、さらに10~18μmが好ましい。5μm未満の場合、塗膜の厚さが薄いため、塗膜のムラによって金属光沢の平滑感が低下する傾向があり、他方、30μmを越えると、塗膜が厚いため金属皮膜の光沢感が低下する傾向があるからである。
As a method of forming the topcoat layer 6 with the acrylic urethane resin paint, the acrylic urethane resin paint is applied by various general methods such as spray coating, dip coating, roller coating, electrostatic coating, and the like. And a coating film can be formed by hardening-processing on appropriate temperature conditions.
The thickness of the top coat layer 6 is preferably 5 to 30 μm, more preferably 10 to 18 μm. When the thickness is less than 5 μm, the thickness of the coating film is thin, so the smoothness of the metallic luster tends to decrease due to unevenness of the coating film. On the other hand, when the thickness exceeds 30 μm, the glossiness of the metallic coating decreases due to the thick coating film. Because there is a tendency to.
(サンプル1の作成)
  第1工程(アンダーコート層5の形成)
 軟質樹脂基材表面に塗布するアンダーコート層用のポリエステルウレタン樹脂塗料について、下記表1に示す処方で主剤を、下記表2に示す処方で硬化剤を、下記表3に示す処方で塗布助剤を調製した。
(Create sample 1)
First step (formation of undercoat layer 5)
About the polyester urethane resin paint for the undercoat layer applied on the surface of the soft resin base material, the main agent is formulated in the following Table 1, the curing agent is formulated in the following Table 2, and the coating aid is formulated in the following Table 3. Was prepared.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 次に、下記表4に示す割合で、主剤、硬化剤及び塗布助剤を混合し、ポリエステルウレタン樹脂を主成分とするアンダーコート層用塗料を得た。 Next, the base agent, the curing agent and the coating aid were mixed at the ratio shown in Table 4 below to obtain an undercoat layer coating material mainly composed of a polyester urethane resin.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (アンダーコート層5の塗布形成)
 上記表4の処方で調整されたアンダーコート層用ポリエステルウレタン樹脂塗料を、スピンドル塗装ラインスプレー塗装装置(旭サナック社製)を用いて、軟質ポリエステル樹脂(曲げ弾性率120±6MPa、結晶融点215±3℃、メルトフローインデックス(2160g)17±1g/10分(230℃))の成形品上に、塗料の吐出量が100g/分、吐出圧0.20MPa、パターン圧0.07MPaの条件でスプレー塗布を行った。塗布後、110℃で30分間乾燥させた。乾燥後、得られた成形品断面の厚さを顕微鏡(キーエンス社製、レーザー顕微鏡VK8700)を用いて測定を行った。アンダーコート層5の厚さは15μmであった。
(Coating formation of undercoat layer 5)
The polyester urethane resin coating for the undercoat layer adjusted according to the formulation of Table 4 above is a soft polyester resin (bending elastic modulus 120 ± 6 MPa, crystal melting point 215 ±) using a spindle coating line spray coating device (manufactured by Asahi Sunac Corporation). 3 ° C, melt flow index (2160 g) 17 ± 1 g / 10 min (230 ° C)) sprayed under conditions of 100 g / min paint discharge, 0.20 MPa discharge pressure, and 0.07 MPa pattern pressure Application was performed. After coating, it was dried at 110 ° C. for 30 minutes. After drying, the thickness of the cross-section of the obtained molded product was measured using a microscope (Keyence Corporation, laser microscope VK8700). The thickness of the undercoat layer 5 was 15 μm.
 第2工程(金属皮膜の形成)
 第1工程で形成したアンダーコート層5を形成した軟質ポリエステル樹脂成形品に、スパッタリング法により、スズからなる第1金属皮膜3を、次にクロムからなる第2金属皮膜4をそれぞれ下記に示す条件にて形成した。なお、金属皮膜の形成にはバッチ式スパッタリング装置(アルバック社製SPV-9045)を用いた。
Second step (formation of metal film)
Conditions for the soft polyester resin molded article formed with the undercoat layer 5 formed in the first step are as follows: a first metal film 3 made of tin and then a second metal film 4 made of chromium by sputtering. Formed. Note that a batch type sputtering apparatus (SPV-9045 manufactured by ULVAC) was used for forming the metal film.
 (第1金属皮膜3の形成条件)
 ターゲット金属       スズ純度99.99%以上
 DC電力          1.5Kw
 スパッタリングガス     アルゴン
 スパッタリングガス圧    2.75×10-3Pa
 
 (第2金属皮膜4の形成条件)
 ターゲット金属       クロム純度99.8%以上
 DC電力          6.0Kw
 スパッタリングガス     アルゴン
 スパッタリングガス圧    2.75×10-3Pa
 
(Formation conditions of the first metal film 3)
Target metal Tin purity 99.99% or more DC power 1.5Kw
Sputtering gas Argon Sputtering gas pressure 2.75 × 10 −3 Pa

(Conditions for forming second metal film 4)
Target metal Chromium purity 99.8% or more DC power 6.0Kw
Sputtering gas Argon Sputtering gas pressure 2.75 × 10 −3 Pa
 形成された第1及び第2金属皮膜の膜厚を蛍光X線分析装置(日本電子社製、JSX-3100R2)を用いて測定した。スズからなる第1金属皮膜の膜厚は20nm、クロムからなる第2金属皮膜層は20nmであった。 The film thickness of the formed first and second metal films was measured using a fluorescent X-ray analyzer (manufactured by JEOL Ltd., JSX-3100R2). The film thickness of the first metal film made of tin was 20 nm, and the second metal film layer made of chromium was 20 nm.
 第3工程(トップコート層6の形成)
 第1工程及び第2工程を経た成形品の表面に塗布するトップコート層用アクリルウレタン樹脂塗料について、下記表5に示す処方で主剤を、下記表6で示す処方で硬化剤を、下記表7で示す処方で添加剤を調整した。
Third step (formation of topcoat layer 6)
About the acrylic urethane resin coating for topcoat layer applied to the surface of the molded product that has undergone the first step and the second step, the main agent is formulated according to the formulation shown in Table 5 below, the curing agent is formulated according to the formulation shown in Table 6 below, and Table 7 below. The additive was adjusted according to the formulation shown in.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 前記アクリルポリオールAは、攪拌装置、温度計、コンデンサー、モノマー供給ポンプ、窒素ガス導入管を備えた4つ口フラスコに、窒素ガス気流下、キシレン100部を加え、90℃に昇温した後、メタクリル酸メチル54部、4-メタクリロイルオキシー1、2、2、6,6-ペンタメチルピペリジン2部、メタクリル酸2-ヒドロキシエチル15部、メタクリル酸2部、メタクリル酸nブチル27部及び、α、α‘-アゾビスイソブチロニトリル1.2部からなる溶液を3時間で等速滴下し、さらに90℃で1時間保持した後、α、α‘-アゾビスイソブチロニトリルを0.2部ずつ30分間隔で3回添加し、さらに90℃で1時間保持した後、酢酸ブチル50部を添加し重合を終了させることによって得られた。なお、アクリルポリオールAの数平均分子量はゲル浸透クロマトグラフィーで測定した結果、標準ポリエステル換算で11000相当であった。 The acrylic polyol A was added to 100 parts of xylene under a nitrogen gas stream in a four-necked flask equipped with a stirrer, a thermometer, a condenser, a monomer supply pump, and a nitrogen gas introduction tube, and heated to 90 ° C. 54 parts of methyl methacrylate, 2 parts of 4-methacryloyloxy-1,2,2,6,6-pentamethylpiperidine, 15 parts of 2-hydroxyethyl methacrylate, 2 parts of methacrylic acid, 27 parts of nbutyl methacrylate and α, A solution comprising 1.2 parts of α′-azobisisobutyronitrile was added dropwise at a constant rate over 3 hours, and the mixture was further maintained at 90 ° C. for 1 hour, and then α, α′-azobisisobutyronitrile was added in 0.2%. It was obtained by adding three times at 30 minute intervals and holding at 90 ° C. for 1 hour, and then adding 50 parts of butyl acetate to terminate the polymerization. In addition, as a result of measuring the number average molecular weight of the acrylic polyol A by gel permeation chromatography, it was 11000 equivalent in standard polyester conversion.
 また、前記アクリルポリオールBは、攪拌装置、温度計、コンデンサー、モノマー供給ポンプ、窒素ガス導入管を備えた4つ口フラスコに、窒素ガス気流下、キシレン100部を加え、90℃に昇温した後、メタクリル酸メチル60部、4-メタクリロイルオキシー1、2、2、6,6-ペンタメチルピペリジン5部、メタクリル酸2-ヒドロキシエチル15部、メタクリル酸2部、メタクリル酸nブチル18部及び、α、α‘-アゾビスイソブチロニトリル1.2部からなる溶液を3時間で等速滴下し、さらに90℃で1時間保持した後、α、α‘-アゾビスイソブチロニトリルを0.2部ずつ30分間隔で3回添加し、さらに90℃で1時間保持した後、酢酸ブチル50部を添加し重合を終了させることによって得られた。なお、アクリルポリオールBの数平均分子量はゲル浸透クロマトグラフィーで測定した結果、標準ポリエステル換算で13000相当であった。 The acrylic polyol B was heated to 90 ° C. by adding 100 parts of xylene under a nitrogen gas stream to a four-necked flask equipped with a stirrer, a thermometer, a condenser, a monomer supply pump, and a nitrogen gas introduction tube. Thereafter, 60 parts of methyl methacrylate, 5 parts of 4-methacryloyloxy-1,2,2,6,6-pentamethylpiperidine, 15 parts of 2-hydroxyethyl methacrylate, 2 parts of methacrylic acid, 18 parts of nbutyl methacrylate, A solution consisting of 1.2 parts of α, α′-azobisisobutyronitrile was added dropwise at a constant rate over 3 hours, and the mixture was further maintained at 90 ° C. for 1 hour, and then α, α′-azobisisobutyronitrile was added to 0%. .2 parts were added three times at 30-minute intervals, and further maintained at 90 ° C. for 1 hour, and then 50 parts of butyl acetate was added to terminate the polymerization. In addition, as a result of measuring the number average molecular weight of the acrylic polyol B by gel permeation chromatography, it was 13000 equivalent in standard polyester conversion.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 沈降防止剤Cは、攪拌装置、温度計、検水管及び窒素導入口を備えた1000mlのフラスコに、ダイマー酸340部とダイマージアミン160部(モル比2:1)を加え、180℃に加温して6時間反応させた。得られたポリアミド500部にジメチルアミノプロピルアミン52部(モル比1:1.7)を加え、180℃に加温して6時間反応を行なった。得られた反応性生物は赤褐色の高粘度液体であった。得られた反応生成物にメチルノルマルアミルケトンとノルマルブタノールの混合溶剤(1:1)を添加し、不揮発分が50%となる様に調整した。なお、反応生成物の数平均分子量はゲル浸透クロマトグラフィーで測定した結果、標準ポリスチレン換算で1700であった。 Anti-settling agent C was added to 340 parts of dimer acid and 160 parts of dimeramine (2: 1 molar ratio) in a 1000 ml flask equipped with a stirrer, thermometer, water test tube and nitrogen inlet, and heated to 180 ° C. And reacted for 6 hours. To 500 parts of the obtained polyamide, 52 parts of dimethylaminopropylamine (molar ratio 1: 1.7) was added, and the mixture was heated to 180 ° C. and reacted for 6 hours. The obtained reactive organism was a reddish brown high viscosity liquid. A mixed solvent (1: 1) of methyl normal amyl ketone and normal butanol was added to the obtained reaction product to adjust the nonvolatile content to 50%. The number average molecular weight of the reaction product was 1700 in terms of standard polystyrene as a result of measurement by gel permeation chromatography.
 次に、下記表8で示す処方で主剤、硬化剤及び添加剤を混合して、アクリルウレタン樹脂を主成分とするトップコート層用塗料を得た。 Next, the base agent, the curing agent, and the additive were mixed according to the formulation shown in Table 8 below to obtain a topcoat layer coating material mainly composed of an acrylic urethane resin.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(トップコート層6の塗布形成)
 上記表8の処方で調整されたトップコート層用アクリルウレタン樹脂塗料を、スピンドル塗装ラインスプレー塗布装置(旭サナック社製)を用いて、第1工程及び第2工程を経た軟質樹脂基材上に、塗料の吐出量が145g/分、吐出圧0.30MPa、パターン圧0.07MPaの条件でスプレー塗布を行った。塗膜の厚さは15μmになるように調整した。塗布後、110℃で35分間乾燥させた。乾燥後、得られた基材断面の厚さをレーザー顕微鏡(キーエンス社製、VK8700)を用いて測定を行った。トップコート層6の厚さは15μmであった。
(Coating formation of topcoat layer 6)
The acrylic urethane resin paint for the top coat layer adjusted according to the formulation of Table 8 above is applied onto the soft resin base material that has undergone the first step and the second step using a spindle coating line spray coating apparatus (manufactured by Asahi Sunac Corporation). Spray coating was performed under the conditions of a paint discharge rate of 145 g / min, a discharge pressure of 0.30 MPa, and a pattern pressure of 0.07 MPa. The thickness of the coating film was adjusted to 15 μm. After coating, it was dried at 110 ° C. for 35 minutes. After drying, the thickness of the obtained substrate cross section was measured using a laser microscope (VK8700, manufactured by Keyence Corporation). The thickness of the top coat layer 6 was 15 μm.
 以上の第1工程から第3工程を経てサンプル1を作成した。
 得られたサンプル1の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
Sample 1 was prepared through the first to third steps.
When the appearance of the obtained sample 1 was visually observed, the metallic luster was very good, and the occurrence of relatively large cracks was not observed.
(サンプル2の作成)
 前記サンプル1の作成方法の第2工程に対して、スズからなる第1金属皮膜3の膜厚が50nmになるように調整した以外には前記サンプル1の作成方法と同様の方法でサンプル2を作成した。
得られたサンプル2の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 2)
Sample 2 was prepared in the same manner as in Sample 1 except that the thickness of the first metal film 3 made of tin was adjusted to 50 nm with respect to the second step of the method of creating Sample 1. Created.
When the appearance of the obtained sample 2 was visually observed, the metallic luster was extremely good, and the occurrence of relatively large cracks was not observed.
(サンプル3の作成)
 前記サンプル1の作成方法の第2工程に対して、クロムからなる第2金属皮膜4の膜厚が30nmになるように調整した以外には前記サンプル1の作成方法と同様の方法でサンプル3を作成した。
得られたサンプル3の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 3)
Sample 3 was prepared in the same manner as in Sample 1 except that the thickness of the second metal film 4 made of chromium was adjusted to 30 nm with respect to the second step of the method of creating Sample 1. Created.
When the appearance of the obtained sample 3 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
(サンプル4の作成)
 前記サンプル1の作成方法の第2工程に対して、スズからなる第1金属皮膜3の膜厚が10nmになるように調整した以外には前記サンプル1の作成方法と同様の方法でサンプル4を作成した。
得られたサンプル4の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 4)
Sample 4 was prepared in the same manner as in Sample 1 except that the thickness of the first metal film 3 made of tin was adjusted to 10 nm with respect to the second step of the method of creating Sample 1. Created.
When the appearance of the obtained sample 4 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
(サンプル5の作成)
 前記サンプル1の作成方法の第2工程に対して、クロムからなる第2金属皮膜4の膜厚が10nmになるように調整した以外には前記サンプル1の作成方法と同様の方法でサンプル5を作成した。
得られたサンプル5の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 5)
The sample 5 was prepared in the same manner as the sample 1 except that the film thickness of the second metal film 4 made of chromium was adjusted to 10 nm with respect to the second step of the sample 1 production method. Created.
When the appearance of the obtained sample 5 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
(サンプル6の作成)
 前記サンプル1の作成方法の第2工程に対して、第1金属皮膜3を形成する金属をスズからインジウムに変え、その膜厚が20nmになるように調整した以外には、前記サンプル1の作成方法と同様の方法でサンプル6を作成した。その際、インジウムからなる第1金属皮膜3の形成条件は、下記の通りとした。
 ターゲット金属       インジウム純度99.99%以上
 DC電力          2.5Kw
 スパッタリングガス     アルゴン
 スパッタリングガス圧    2.75×10-3Pa
 
得られたサンプル6の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 6)
For the second step of the method for preparing Sample 1, the metal for forming the first metal film 3 was changed from tin to indium, and the thickness was adjusted to 20 nm. Sample 6 was prepared in the same manner as the method. At that time, the conditions for forming the first metal film 3 made of indium were as follows.
Target metal Indium purity 99.99% or more DC power 2.5Kw
Sputtering gas Argon Sputtering gas pressure 2.75 × 10 −3 Pa

When the appearance of the obtained sample 6 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
(サンプル7の作成)
 前記サンプル1の作成方法の第2工程に対して、第1金属皮膜3を形成する金属をスズから亜鉛に変え、その膜厚が20nmになるように調整した以外には、前記サンプル1の作成方法と同様の方法でサンプル7を作成した。その際、亜鉛からなる第1金属皮膜3の形成条件は、下記の通りとした。
 ターゲット金属       亜鉛純度99.99%以上
 DC電力          2.5Kw
 スパッタリングガス     アルゴン
 スパッタリングガス圧    2.75×10-3Pa
 
得られたサンプル7の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 7)
For the second step of the method for preparing Sample 1, the metal for forming the first metal film 3 was changed from tin to zinc, and the thickness was adjusted to 20 nm. Sample 7 was prepared in the same manner as the method. At that time, the conditions for forming the first metal film 3 made of zinc were as follows.
Target metal Zinc purity 99.99% or more DC power 2.5Kw
Sputtering gas Argon Sputtering gas pressure 2.75 × 10 −3 Pa

When the appearance of the obtained sample 7 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
(サンプル8の作成)
 前記サンプル1の作成方法の第2工程に対して、スズからなる第1金属皮膜3の膜厚が55nmになるように調整した以外には前記サンプル1の作成方法と同様の方法でサンプル8を作成した。
得られたサンプル8の外観を目視により観察したところ、金属光沢は極めて良好であったが、部分的に比較的大きなクラックの発生が認められた。
(Create sample 8)
Sample 8 was prepared in the same manner as in Sample 1 except that the thickness of the first metal film 3 made of tin was adjusted to 55 nm with respect to the second step of the sample 1 production method. Created.
When the appearance of the obtained sample 8 was visually observed, the metallic luster was very good, but the occurrence of relatively large cracks was partially observed.
(サンプル9の作成)
 前記サンプル1の作成方法の第2工程に対して、クロムからなる第2金属皮膜4の膜厚が35nmになるように調整した以外には前記サンプル1の作成方法と同様の方法でサンプル9を作成した。
得られたサンプル9の外観を目視により観察したところ、金属光沢は極めて良好であったが、部分的に比較的大きなクラックの発生が認められた。
(Create sample 9)
Sample 9 was prepared in the same manner as in Sample 1 except that the second metal film 4 made of chromium was adjusted to have a thickness of 35 nm with respect to the second step of the sample 1 production method. Created.
When the appearance of the obtained sample 9 was visually observed, the metallic luster was very good, but the occurrence of relatively large cracks was partially observed.
(サンプル10の作成)
 前記サンプル1の作成方法の第2工程に対して、スズからなる第1金属皮膜3の膜厚が5nmになるように調整した以外には前記サンプル1の作成方法と同様の方法でサンプル10を作成した。
得られたサンプル10の外観を目視により観察したところ、金属光沢は極めて良好であったが、部分的に比較的大きなクラックの発生が認められた。
(Create sample 10)
The sample 10 was prepared in the same manner as the sample 1 except that the thickness of the first metal film 3 made of tin was adjusted to 5 nm with respect to the second step of the sample 1 production method. Created.
When the appearance of the obtained sample 10 was visually observed, the metallic luster was extremely good, but the occurrence of relatively large cracks was partially observed.
(サンプル11の作成)
 前記サンプル1の作成方法の第2工程に対して、クロムからなる第2金属皮膜4の膜厚が5nmになるように調整した以外には前記サンプル1の作成方法と同様の方法でサンプル11を作成した。
 得られたサンプル11の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 11)
The sample 11 was prepared in the same manner as the sample 1 except that the film thickness of the second metal film 4 made of chromium was adjusted to 5 nm with respect to the second step of the sample 1 preparation method. Created.
When the appearance of the obtained sample 11 was observed with the naked eye, the metallic luster was extremely good, and the occurrence of relatively large cracks was not observed.
(サンプル12の作成)
 前記サンプル1の作成方法の第2工程に対して、第1金属皮膜3を形成する金属をスズから鉛に変え、その膜厚が20nmになるように調整した以外には、前記サンプル1の作成方法と同様の方法でサンプル12を作成した。その際、鉛からなる第1金属皮膜3の形成条件は、下記の通りとした。
 ターゲット金属       鉛純度99.99%以上
 DC電力          2.5Kw
 スパッタリングガス     アルゴン
 スパッタリングガス圧    2.75×10-3Pa
 
 得られたサンプル12の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 12)
For the second step of the method for preparing Sample 1, the metal for forming the first metal film 3 is changed from tin to lead and the film thickness is adjusted to 20 nm. Sample 12 was prepared in the same manner as the method. At that time, the formation conditions of the first metal film 3 made of lead were as follows.
Target metal Lead purity 99.99% or more DC power 2.5Kw
Sputtering gas Argon Sputtering gas pressure 2.75 × 10 −3 Pa

When the appearance of the obtained sample 12 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
(サンプル13の作成)
 前記サンプル1の作成方法の第2工程に対して、第1金属皮膜3を形成する金属をスズからビスマスに変え、その膜厚が20nmになるように調整した以外には、前記サンプル1の作成方法と同様の方法でサンプル13を作成した。その際、ビスマスからなる第1金属皮膜3の形成条件は、下記の通りとした。
 ターゲット金属       ビスマス純度99.99%以上
 DC電力          2.5Kw
 スパッタリングガス     アルゴン
 スパッタリングガス圧    2.75×10-3Pa
 
 得られたサンプル13の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 13)
For the second step of the method for preparing Sample 1, the metal for forming the first metal film 3 was changed from tin to bismuth and the film thickness was adjusted to 20 nm. Sample 13 was prepared in the same manner as the method. At that time, the conditions for forming the first metal film 3 made of bismuth were as follows.
Target metal Bismuth purity 99.99% or more DC power 2.5Kw
Sputtering gas Argon Sputtering gas pressure 2.75 × 10 −3 Pa

When the appearance of the obtained sample 13 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
(サンプル14の作成)
 前記サンプル1の作成方法の第2工程に対して、スズのみからなる単一の金属皮膜を形成するものとし、その膜厚が40nmになるように調整した以外には、前記サンプル1の作成方法と同様の方法でサンプル14を作成した。その際、スズ単一の金属皮膜の形成条件は、前記サンプル1の作成方法の第2工程のスズからなる第1金属皮膜3を形成する条件と同様とした。
 得られたサンプル14の外観を目視により観察したところ、金属光沢が良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 14)
For the second step of the sample 1 preparation method, a single metal film consisting only of tin is formed and the film thickness is adjusted to 40 nm. Sample 14 was prepared in the same manner as above. At that time, the formation conditions of the single metal film of tin were the same as the conditions for forming the first metal film 3 made of tin in the second step of the preparation method of Sample 1.
When the appearance of the obtained sample 14 was visually observed, the metallic luster was good and the generation of relatively large cracks was not observed.
(サンプル15の作成)
 前記サンプル1の作成方法の第2工程に対して、クロムのみからなる単一の金属皮膜を形成するものとし、その膜厚が40nmになるように調整した以外には、前記サンプル作成方法と同様の方法でサンプル15を作成した。その際、クロム単一の金属皮膜の形成条件は、前記サンプル1の作成方法の第2工程のクロムからなる第2金属皮膜4を形成する条件と同様とした。
得られたサンプル15の外観を目視により観察したところ、金属光沢は極めて良好であったが、部分的に比較的大きなクラックの発生が認められた。
(Create sample 15)
Similar to the sample preparation method, except that a single metal film made of only chromium is formed for the second step of the preparation method of the sample 1 and the film thickness is adjusted to 40 nm. Sample 15 was prepared by the method described above. At that time, the formation conditions of the chromium single metal film were the same as the conditions for forming the second metal film 4 made of chromium in the second step of the preparation method of Sample 1.
When the appearance of the obtained sample 15 was visually observed, the metallic luster was very good, but the occurrence of relatively large cracks was partially observed.
(サンプル16の作成)
 前記サンプル1の作成方法の第2工程に対して、アルミニウムのみからなる単一の金属皮膜を形成するものとし、その膜厚が40nmになるように調整した以外には、前記サンプル1の作成方法と同様の方法でサンプル16を得た。その際、アルミニウム単一の金属皮膜の形成条件は、下記の通りとした。
 ターゲット金属       アルミニウム純度99.99%以上
 DC電力          1.3Kw
 スパッタリングガス     アルゴン
 スパッタリングガス圧    2.75×10-3Pa
 
 得られたサンプル16の外観を目視により観察したところ、金属光沢が良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 16)
For the second step of the sample 1 production method, a single metal film made only of aluminum is to be formed, and the film thickness is adjusted to 40 nm. Sample 16 was obtained in the same manner as above. At that time, the conditions for forming a single aluminum metal film were as follows.
Target metal Aluminum purity 99.99% or more DC power 1.3Kw
Sputtering gas Argon Sputtering gas pressure 2.75 × 10 −3 Pa

When the appearance of the obtained sample 16 was visually observed, the metallic luster was good and the occurrence of relatively large cracks was not observed.
(サンプル17の作成)
 前記サンプル1の作成方法の第2工程に対して、インジウムのみからなる単一の金属皮膜を形成するものし、その膜厚が40nmになるように調整した以外には、前記サンプル1の作成方法と同様の方法でサンプル17を作成した。その際、インジウム単一の金属皮膜の形成条件は、前記サンプル6の作成方法の第2工程のインジウムからなる第1金属皮膜3を形成する条件と同様とした。
 得られたサンプル17の外観を目視により観察したところ、金属光沢が良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 17)
The method for preparing Sample 1 is the same as the method for preparing Sample 1, except that a single metal film made only of indium is formed and the film thickness is adjusted to 40 nm. Sample 17 was prepared in the same manner as above. At that time, the formation conditions of the indium single metal film were the same as the conditions for forming the first metal film 3 made of indium in the second step of the preparation method of the sample 6.
When the appearance of the obtained sample 17 was visually observed, the metallic luster was good and the occurrence of relatively large cracks was not observed.
(サンプル18の作成)
 前記サンプル1の作成方法の第2工程に対して、亜鉛のみからなる単一の金属皮膜を形成するものとし、その膜厚が40nmになるように調整した以外には、前記サンプル1の作成方法と同様の方法でサンプル18を得た。その際、亜鉛単一の金属皮膜の形成条件は、前記サンプル7の作成方法の第2工程の亜鉛からなる第1金属皮膜3を形成する条件と同様とした。
 得られたサンプル18の外観を目視により観察したところ、金属光沢が良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 18)
For the second step of the method for preparing Sample 1, a method for preparing Sample 1 except that a single metal film made of only zinc is formed and the film thickness is adjusted to 40 nm. Sample 18 was obtained in the same manner as above. At that time, the formation conditions of the zinc single metal film were the same as the conditions for forming the first metal film 3 made of zinc in the second step of the preparation method of Sample 7.
When the appearance of the obtained sample 18 was visually observed, the metallic luster was good and the occurrence of relatively large cracks was not observed.
(サンプル19の作成)
 前記サンプル1の作成方法の第2工程に対して、スズからなる第1金属皮膜3とクロムからなる第2金属皮膜4を、それぞれ下記に示す条件による真空蒸着法によって形成するものとし、それぞれの金属皮膜の膜厚が20nmになるように調整した。これ以外は、前記サンプル1の作成方法と同様の方法でサンプル19を作成した。その際、真空蒸着装置はアルバック社製EBA-2000を用いた。
 (第1金属皮膜3の形成条件)
 ターゲット金属       スズ純度99.99%以上
 真空度           0.03Pa以下
 アルゴンガス流量      90sccm      
 
 (第2金属皮膜の形成条件)
 ターゲット金属       クロム純度99.99%以上
 真空度           0.03Pa以下
 アルゴンガス流量      90sccm      
 
 得られたサンプル19の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 19)
The second metal film 3 made of tin and the second metal film 4 made of chromium are formed by a vacuum vapor deposition method under the conditions shown below for the second step of the production method of the sample 1, respectively. The thickness of the metal film was adjusted to 20 nm. Except this, Sample 19 was prepared in the same manner as Sample 1 was prepared. At that time, EBA-2000 manufactured by ULVAC was used as the vacuum deposition apparatus.
(Formation conditions of the first metal film 3)
Target metal Tin purity 99.99% or more Vacuum degree 0.03Pa or less Argon gas flow rate 90sccm

(Conditions for forming the second metal film)
Target metal Chromium purity 99.99% or more Vacuum degree 0.03Pa or less Argon gas flow rate 90sccm

When the appearance of the obtained sample 19 was observed with the naked eye, the metallic luster was extremely good, and the occurrence of relatively large cracks was not observed.
(サンプル20の作成)
 前記サンプル19の作成方法の第2工程に対して、金属皮膜に対して、クロムのみからなる単一の金属皮膜を形成するものし、その膜厚が40nmになるように調整した以外には前記サンプル19の作成方法と同様にサンプル20を作成した。その際、クロム単一の金属皮膜の形成条件は、前記サンプル19の作成方法の第2工程のクロムからなる第2金属皮膜4を形成する条件と同様とした。
得られたサンプル20の外観を目視により観察したところ、金属光沢が極めて良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 20)
For the second step of the sample 19 production method, a single metal film consisting only of chromium is formed on the metal film, except that the film thickness is adjusted to 40 nm. Sample 20 was prepared in the same manner as Sample 19 was prepared. At that time, the conditions for forming the single metal film of chromium were the same as the conditions for forming the second metal film 4 made of chromium in the second step of the preparation method of Sample 19.
When the appearance of the obtained sample 20 was visually observed, the metallic luster was extremely good, and generation of relatively large cracks was not observed.
(サンプル21の作成)
 前記サンプル19の作成方法の第2工程に対して、アルミニウムのみからなる単一の金属皮膜を形成するものとし、その膜厚が40nmになるように調整した以外には、前記サンプル19の作成方法と同様の方法でサンプル21を作成した。その際、アルミニウム単一金属皮膜の形成条件は、下記の通りとした。
 ターゲット金属       アルミニウム純度99.99%以上
 真空度           0.03Pa以下
 アルゴンガス流量      90sccm      
 
 得られたサンプル21の外観を目視により観察したところ、金属光沢が良好であり、また、比較的大きなクラックの発生は認められなかった。
(Create sample 21)
For the second step of the method for preparing the sample 19, a single metal film made of only aluminum is formed, and the method for preparing the sample 19 is adjusted except that the film thickness is adjusted to 40 nm. Sample 21 was prepared in the same manner as above. At that time, the conditions for forming the aluminum single metal film were as follows.
Target metal Aluminum purity 99.99% or more Vacuum degree 0.03Pa or less Argon gas flow rate 90sccm

When the appearance of the obtained sample 21 was visually observed, the metallic luster was good and the generation of relatively large cracks was not observed.
(耐候性試験1)
 前記サンプル1~21のうち、サンプル8、9、10及び15を除く各サンプルについて、下記の要領にて耐候性試験を行った。
 (a)試験方法
 各サンプルを、温度50℃及び相対湿度95%に調整した恒温恒湿機(ESPEC社製、SH241)に500時間収容することにより、加負荷処理を行なった。
 各サンプルの加負荷処理の前後のものについて、それらの外観を目視により観察した。
(b)評価方法
 各サンプルの加負荷処理の前後における外観変化の状態を、表9に示す評価基準に基づき5段階に評価した。評価結果を表10に示す。
(Weather resistance test 1)
Of the samples 1 to 21, the samples other than samples 8, 9, 10 and 15 were subjected to a weather resistance test in the following manner.
(A) Test method Each sample was loaded for 500 hours in a thermo-hygrostat (manufactured by ESPEC, SH241) adjusted to a temperature of 50 ° C. and a relative humidity of 95%, thereby performing an applied load treatment.
The appearance of each sample before and after the loading treatment was visually observed.
(B) Evaluation method The appearance change state of each sample before and after the load treatment was evaluated in five stages based on the evaluation criteria shown in Table 9. Table 10 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(耐候性試験2)
 前記サンプル1~21のうち、サンプル8、9、10及び15を除く各サンプルについて、下記の要領にて、前記耐候性試験1よりも厳しい条件の耐候性試験を行った。
 (a)試験方法
 各サンプルを、温度90℃及び相対湿度95%に調整した恒温恒湿機(ESPEC社製、SH241)に120時間収容することにより、加負荷処理を行なった。
 各サンプルの加負荷処理の前後のものについて、それらの外観を目視により観察した。
 (b)評価方法
 前記耐候性試験1の評価方法と同じく、各サンプルの加負荷処理の前後における外観変化の状態を、表9に示す評価基準に基づき5段階に評価した。評価結果を表10に示す。
(Weather resistance test 2)
Among the samples 1 to 21, the samples other than the samples 8, 9, 10 and 15 were subjected to a weather resistance test under conditions more severe than the weather resistance test 1 in the following manner.
(A) Test method Each sample was loaded for 120 hours in a thermo-hygrostat (manufactured by ESPEC, SH241) adjusted to a temperature of 90 ° C. and a relative humidity of 95%, thereby performing an applied load treatment.
The appearance of each sample before and after the loading treatment was visually observed.
(B) Evaluation Method Similar to the evaluation method of the weather resistance test 1, the appearance change state of each sample before and after the load treatment was evaluated in five stages based on the evaluation criteria shown in Table 9. Table 10 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表10に示す耐候性試験1の結果より、第1金属皮膜3がスパッタリング法によりスズで10~50nmの膜厚に形成され、かつ第2金属皮膜4がスパッタリング法によりクロムで5~30nmの膜厚に形成された樹脂製品1(サンプル1~5、11)が、耐候性試験後においても外観が極めて良好に維持されており、耐候性に優れていることが理解される。 From the results of the weather resistance test 1 shown in Table 10, the first metal film 3 is formed with tin to a thickness of 10 to 50 nm by a sputtering method, and the second metal film 4 is a film with a thickness of 5 to 30 nm with chromium by a sputtering method. It is understood that the resin product 1 (samples 1 to 5 and 11) formed with a large thickness maintains an excellent appearance even after the weather resistance test, and is excellent in weather resistance.
 同じく耐候性試験1の結果より、第1金属皮膜3がスパッタリング法によりインジウム、亜鉛、鉛又はビスマスのいずれかで20nmの膜厚に形成され、かつ第2金属皮膜4がスパッタリング法によりクロムで20nmの膜厚に形成された樹脂製品1(サンプル6、7、12、13)が、耐候性試験後においても外観が極めて良好に維持されており、耐候性に優れていることが理解される。 Similarly, from the results of the weather resistance test 1, the first metal film 3 is formed to a thickness of 20 nm with any of indium, zinc, lead or bismuth by sputtering, and the second metal film 4 is chromium with a thickness of 20 nm by sputtering. It is understood that the resin product 1 (samples 6, 7, 12, and 13) formed in the film thickness is excellent in weather resistance because the appearance is maintained very well even after the weather resistance test.
 同じく耐候性試験1の結果より、第1金属皮膜3が真空蒸着法によりスズで20nmの膜厚に形成され、かつ第2金属皮膜4が真空蒸着法によりクロムで20nmの膜厚に形成された樹脂製品1(サンプル19)が、耐候性試験後においても外観が極めて良好に維持されており、耐候性に優れていることが理解される。 Similarly, from the results of the weather resistance test 1, the first metal film 3 was formed to a thickness of 20 nm with tin by the vacuum evaporation method, and the second metal film 4 was formed to a thickness of 20 nm with chromium by the vacuum evaporation method. It is understood that the appearance of the resin product 1 (sample 19) is extremely excellent even after the weather resistance test and is excellent in weather resistance.
 同じく耐候性試験1の結果より、金属皮膜が単一層であり、その金属皮膜がスパッタリング法により、スズ、アルミニウム、インジウム又は亜鉛のいずれかで40nmの膜厚に形成された樹脂製品1(サンプル14、16、17、18)が、耐候性試験後においても外観が極めて良好に維持されており、耐候性に優れていることが理解される。 Similarly, from the result of the weather resistance test 1, the resin film 1 (sample 14) in which the metal film is a single layer, and the metal film is formed by sputtering to have a film thickness of 40 nm with any of tin, aluminum, indium, or zinc. 16, 17, 18), the appearance is maintained very well even after the weather resistance test, and it is understood that the weather resistance is excellent.
 同じく耐候性試験1の結果より、金属皮膜が単一層であり、その金属皮膜が真空蒸着法により、アルミニウムで40nmの膜厚に形成された樹脂製品1(サンプル21)が、耐候性試験後においても外観が極めて良好に維持されており、耐候性に優れていることが理解される。 Similarly, from the results of the weather resistance test 1, the resin film 1 (sample 21) in which the metal film is a single layer and the metal film is formed with aluminum to a thickness of 40 nm by the vacuum deposition method is as follows. It is understood that the appearance is maintained very well and the weather resistance is excellent.
次に、表10に示す耐候性試験2の結果より、第1金属皮膜3がスパッタリング法によりスズで10~50nmの膜厚に形成され、かつ第2金属皮膜4がスパッタリング法によりクロムで10~30nmの膜厚に形成された樹脂製品1(サンプル2~5)が、耐候性試験後においても外観が良好に維持されており、耐候性に優れていることが理解される。
特に、第1金属皮膜3及び第2金属皮膜4の膜厚が、ともに20nmの場合には(サンプル1)、耐候性試験後においても外観が極めて良好に維持されており、耐候性に非常に優れていることが理解される。
Next, from the results of the weather resistance test 2 shown in Table 10, the first metal film 3 is formed with a thickness of 10 to 50 nm with tin by the sputtering method, and the second metal film 4 is formed with chromium with a thickness of 10 to 50 nm by the sputtering method. It is understood that the resin product 1 (samples 2 to 5) formed to a film thickness of 30 nm maintains a good appearance even after the weather resistance test, and is excellent in weather resistance.
In particular, when the thicknesses of the first metal film 3 and the second metal film 4 are both 20 nm (Sample 1), the appearance is maintained very well even after the weather resistance test, and the weather resistance is very high. It is understood that it is excellent.
 同じく耐候性試験2の結果より、第1金属皮膜3がスパッタリング法によりインジウム又は亜鉛のいずれかで20nmの膜厚に形成され、かつ第2金属皮膜4がスパッタリング法によりクロムで20nmの膜厚に形成された樹脂製品1(サンプル6、7)が、耐候性試験後においても外観が良好に維持されており、耐候性に優れていることが理解される。 Similarly, from the results of the weather resistance test 2, the first metal film 3 is formed to a film thickness of 20 nm with either indium or zinc by the sputtering method, and the second metal film 4 is formed to a film thickness of 20 nm with chromium by the sputtering method. It is understood that the formed resin product 1 (samples 6 and 7) maintains an excellent appearance even after the weather resistance test, and is excellent in weather resistance.
 1  樹脂製品
 2  軟質樹脂基材
 3  第1金属皮膜
 4  第2金属皮膜
 5  アンダーコート層
 6  トップコート層

 
DESCRIPTION OF SYMBOLS 1 Resin product 2 Soft resin base material 3 1st metal film 4 2nd metal film 5 Undercoat layer 6 Topcoat layer

Claims (7)

  1.  軟質樹脂基材上に金属皮膜が形成された樹脂製品において、前記金属皮膜は前記軟質樹脂基材上に少なくとも上下二層に形成されており、下層である第1金属皮膜はスズ、インジウム又は亜鉛のうち少なくともいずれか1つから形成され、上層である第2金属皮膜はクロムから形成されてなることを特徴とする樹脂製品。 In a resin product in which a metal film is formed on a soft resin substrate, the metal film is formed in at least two layers on the soft resin substrate, and the first metal film as a lower layer is tin, indium or zinc A resin product, wherein the second metal film, which is an upper layer, is formed from chromium.
  2.  前記第1金属皮膜及び前記第2金属皮膜はスパッタリング法により形成され、前記第1金属皮膜の厚さは10~50nmであって、前記第2金属皮膜の厚さは10~30nmであることを特徴とする請求項1に記載の樹脂製品。 The first metal film and the second metal film are formed by sputtering, and the thickness of the first metal film is 10 to 50 nm, and the thickness of the second metal film is 10 to 30 nm. The resin product according to claim 1, wherein
  3.  前記軟質樹脂基材は軟質ポリエステル樹脂からなることを特徴とする請求項1又は2に記載の樹脂製品。 3. The resin product according to claim 1, wherein the soft resin base material is made of a soft polyester resin.
  4.  前記軟質樹脂基材と前記第1金属皮膜との間にポリエステルウレタン樹脂を主成分とするアンダーコート層を設けたことを特徴とする請求項1乃至3のいずれかに記載の樹脂製品。 4. The resin product according to claim 1, wherein an undercoat layer mainly comprising a polyester urethane resin is provided between the soft resin substrate and the first metal film.
  5.  前記第2金属皮膜の上にアクリルウレタン樹脂を主成分とするトップコート層を設けたことを特徴とする請求項1乃至4のいずれかに記載の樹脂製品。 The resin product according to any one of claims 1 to 4, wherein a top coat layer mainly composed of an acrylic urethane resin is provided on the second metal film.
  6.  軟質樹脂基材上に金属皮膜を形成する樹脂製品の製造方法において、前記軟質樹脂基材の上にスパッタリング法によってスズ、インジウム又は亜鉛のうち少なくともいずれか1つからなる第1金属皮膜を形成する工程と、該第1金属皮膜の上にスパッタリング法によってクロムからなる第2金属皮膜を形成する工程を含む樹脂製品の製造方法。 In the method of manufacturing a resin product in which a metal film is formed on a soft resin base material, a first metal film made of at least one of tin, indium, and zinc is formed on the soft resin base material by a sputtering method. The manufacturing method of the resin product including the process and the process of forming the 2nd metal film which consists of chromium by sputtering method on this 1st metal film.
  7.  前記軟質樹脂基材は軟質ポリエステル樹脂からなることを特徴とする請求項6に記載の樹脂製品の製造方法。
     

     
    The method for producing a resin product according to claim 6, wherein the soft resin base material is made of a soft polyester resin.


PCT/JP2011/079634 2011-05-31 2011-12-21 Resin product having laminated metal films and method for producing same WO2012164777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011121607A JP5539264B2 (en) 2011-05-31 2011-05-31 Manufacturing method of resin product laminated with metal film
JP2011-121607 2011-05-31

Publications (1)

Publication Number Publication Date
WO2012164777A1 true WO2012164777A1 (en) 2012-12-06

Family

ID=47258657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079634 WO2012164777A1 (en) 2011-05-31 2011-12-21 Resin product having laminated metal films and method for producing same

Country Status (2)

Country Link
JP (1) JP5539264B2 (en)
WO (1) WO2012164777A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036968A (en) * 1996-07-22 1998-02-10 Marui Kogyo Kk Formation ov vacuum plating coating film having metallic luster on soft synthetic resin
JP2007162125A (en) * 2005-11-21 2007-06-28 Toyoda Gosei Co Ltd Resin product and process for producing the same, and process for forming metal film
JP2009006612A (en) * 2007-06-28 2009-01-15 Nissha Printing Co Ltd Decorative sheet, method for producing decorative sheet, and method for producing decorative molding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036968A (en) * 1996-07-22 1998-02-10 Marui Kogyo Kk Formation ov vacuum plating coating film having metallic luster on soft synthetic resin
JP2007162125A (en) * 2005-11-21 2007-06-28 Toyoda Gosei Co Ltd Resin product and process for producing the same, and process for forming metal film
JP2009006612A (en) * 2007-06-28 2009-01-15 Nissha Printing Co Ltd Decorative sheet, method for producing decorative sheet, and method for producing decorative molding

Also Published As

Publication number Publication date
JP2012245762A (en) 2012-12-13
JP5539264B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
TWI434902B (en) Coating composition for metal thin film and glistening composite film formed by said composition
TWI686314B (en) Laminated film for decoration of three-dimensional molded products for vacuum forming, manufacturing method thereof, and three-dimensional molded product decoration method
JP6127363B2 (en) Active energy ray-curable resin composition and laminate using the same
TWI687307B (en) Laminated film for decoration of 3-dimensional molded product, its manufacturing method and 3-dimensional decoration method
JP6663474B1 (en) Clear coating composition and method for forming clear coating film
JP5889291B2 (en) Coating composition and coating film forming method
JP2012081742A (en) Laminate
JP6599654B2 (en) 3D molded product decorative laminated film for vacuum forming, 3D molded product decoration method and decorative molded body
JP6037485B2 (en) Thermal and photo-curable coating composition and coating film forming method
JP2012126760A (en) Active energy ray-curable composition, laminate, and window and solar cell having the laminate
TW201239050A (en) Coating composition of hard coating for metal substrate and compact
CN106103602B (en) Active energy line curing resin composition and car headlamp lens
JP6075614B2 (en) COATING COMPOSITION AND METHOD FOR PRODUCING LAMINATE
AU2007241111B2 (en) Adhesion-promoting compositions and methods of promoting adhesion between a coating and a substrate
JP2013215887A (en) Metallic plastic and method of coating plastic
JP2013127043A (en) Lower layer formation paint used as base coat of hard coat layer, and laminate formed by application of the lower layer formation paint
JP5539264B2 (en) Manufacturing method of resin product laminated with metal film
JP5685505B2 (en) Coating film for metal plating
KR20170132555A (en) The Primer Painting Composition Applied To The Surface Of Chromium Coating And The Method Of Manufacturing Therefor
JP3782670B2 (en) Curable composition for coating, coated article, outer plate for automobile, and active energy ray-curable composition
JP2011020104A (en) Multilayered coating film forming method and multilayered coating film
JP6321766B1 (en) Rubber elastic body formed with silver mirror film layer and method for producing the same
JP5342457B2 (en) Multi-layer coating formation method
JP7254012B2 (en) Exterior parts for automobiles and method for manufacturing exterior parts for automobiles
JP6700961B2 (en) Clear steel plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866856

Country of ref document: EP

Kind code of ref document: A1