WO2012164405A2 - Introduction of an insulating buffer layer in multilayer with electro - optic layer - Google Patents

Introduction of an insulating buffer layer in multilayer with electro - optic layer Download PDF

Info

Publication number
WO2012164405A2
WO2012164405A2 PCT/IB2012/001514 IB2012001514W WO2012164405A2 WO 2012164405 A2 WO2012164405 A2 WO 2012164405A2 IB 2012001514 W IB2012001514 W IB 2012001514W WO 2012164405 A2 WO2012164405 A2 WO 2012164405A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin film
electrode
film layer
optical thin
Prior art date
Application number
PCT/IB2012/001514
Other languages
French (fr)
Korean (ko)
Other versions
WO2012164405A3 (en
Inventor
마리린 구이루-비리
스테파니 데쀼띠에
세바스찬 모루지옹
박용화
Original Assignee
유니버시티 렌 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유니버시티 렌 1 filed Critical 유니버시티 렌 1
Publication of WO2012164405A2 publication Critical patent/WO2012164405A2/en
Publication of WO2012164405A3 publication Critical patent/WO2012164405A3/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/05Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect with ferro-electric properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0311Structural association of optical elements, e.g. lenses, polarizers, phase plates, with the crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions

Definitions

  • Embodiments of the present invention relate to an optical image shutter and a method of manufacturing the same.
  • the optical shutter has a function of transmitting or blocking an optical image containing information according to a control signal.
  • Optical shutters are optical models widely used in imaging devices such as cameras.
  • An optical shutter of the semiconductor substrate 10 has been proposed as an optical shutter capable of providing such a fast shutter opening and closing time. Since semiconductor-based optical shutters form electro-optical materials in thin films, they can function as optical shutters even at low voltages. Conductor-based optical shutter technology is being studied.
  • the present disclosure provides an optical image shutter capable of reducing leakage current and a method of manufacturing the same.
  • An optical image shutter includes: an all-optical thin film layer whose refractive index changes according to an electric field; First and second electrodes spaced apart from each other with the all-optical thin film layer interposed therebetween; And an anti-conduction layer disposed in at least one region between the first electrode and the all-optical thin film layer and between the second electrode and the all-optical thin film layer to prevent current from flowing into the all-optical thin film layer.
  • the all-optical thin film layer is KT ai — x Nb x 0 3 (0 ⁇ x ⁇ l) (KTN), LiNb0 3 (LN), Pb (Zr (V x Ti x ) 0 3 (0 ⁇ x ⁇ l) ( PZT) and DAST (4-dimethylamino-N-methy? 4 st i lbazol ium).
  • the current prevention layer may be formed of an insulating material.
  • the lattice constant of the insulating material may be similar to the lattice constant of the all-optical thin film worm.
  • the current prevention layer may be formed of at least one of Zr02, Ti02, MgO, SrTi03, A1203, Hf02, NbO, Si02 and Si3N4. And a buffer layer disposed under the first electrode. A substrate disposed under the buffer layer; And a reflective layer disposed on the second electrode. In addition, the substrate may be a crystalline substrate.
  • the substrate is formed of at least one of Si, GaAs, and Sapphire.
  • the first electrode may be formed of a material including at least one of Pt, Cu, Ag, Ir, Ru, Al, Au.
  • first reflective layer disposed under the first electrode
  • substrate disposed under the first reflective layer
  • second reflector disposed on the second electrode
  • the substrate may be a transparent amorphous substrate, and the first electrode may be formed of a transparent conductive oxide or a transparent oxide semiconductor.
  • the first electrode may be formed of SrTi0 3 or ZnO-based material.
  • the reflectance of the second reflecting layer may be the same as the reflectance of the first reflecting layer.
  • a method of manufacturing an optical image shutter according to one type of the present invention forming a first electrode on the first reflective layer; Forming an all-optical thin film layer on which the refractive index changes according to an electric field on the first electrode; Forming a second electrode on the all-optical thin film layer; Forming a reflective layer on the second electrode; including, Inflow of current into the all-optical thin film layer in at least one step before and after forming the all-optical thin film layer Forming a conductive prevention layer to prevent the; may include.
  • a method of manufacturing an optical image shutter according to another type of the present invention forming a sacrificial layer on a crystalline substrate; Forming a first reflective layer on the sacrificial layer; Forming a first electrode on the first reflective layer; Forming an all-optical thin film layer on the first electrode, the refractive index of which is changed according to an electric field; Forming a second electrode on the all-optical thin film layer; Forming a second reflective layer on the second electrode; Bonding the second reflective layer onto the transparent substrate by flip-chip bonding; And removing the regenerative layer to separate the crystalline substrate on the first reflective layer, wherein at least one of before and after forming the all-optical thin film layer is introduced into the all-optical thin film layer.
  • Forming an anti-conduction layer to prevent further includes.
  • the crystalline all-optical thin film layer may be formed at a low temperature by using a low-cost transparent substrate such as a glass substrate, a cost reduction and a yield improvement effect may be obtained.
  • the optical image shutter can have a small thickness as a result.
  • the anti-energization layer similar to the lattice constant of the all-optical thin film layer is used, it is possible to prevent cracking of the all-optical thin film layer and the anti-electric layer.
  • the disclosed optical image shutters can be made large in area and can be utilized as shutters for cameras and shutters for flat displays.
  • 1 to 3 are cross-sectional views showing the structure of a transmissive optical image shutter according to an embodiment of the present invention.
  • 4A to 4D illustrate a method of manufacturing a transmissive optical image shutter according to an embodiment of the present invention.
  • 5 to 7 are cross-sectional views showing the structure of a reflective optical image shutter according to an embodiment of the present invention.
  • 1 to 3 are cross-sectional views showing the structure of the transmissive optical image shutters 100, 101, and 102 according to one embodiment of the present invention.
  • the transmissive light image shutters 100, 101, and 102 are disposed on the engine 10, the substrate 10 and reflect the light of a specific wavelength band 11.
  • First and second electrodes 12 and 15 disposed spaced apart between the first and second reflective layers 11 and 16 about the layer 14 to apply an electric field to the all-optical thin film layer 14, and then the first and second electrodes 12 and 15.
  • An anti-conduction layer disposed between at least one of the electrode 12 and the all-light thin film layer 14 and between the second electrode 15 and the all-light thin film layer 14 to prevent current from flowing into the all-light thin film layer 14. (13, 17).
  • the substrate 10 may be made of a transparent amorphous material, for example, glass, so that light can be transmitted.
  • the first and second reflective layers 11 and 16 may be formed to have high reflectivity for light of a specific wavelength band by alternately stacking two or more kinds of transparent dielectric thin films having different refractive indices.
  • a layer having simultaneous transmission and reflection characteristics of light such as a thin metal, can be used as the first and second reflective layers 11 and 16.
  • the first reflective layer 11 and the second reflective layer 16 may be formed of the same material and have the same structure. For example, the reflectances of the first and second reflective layers 11 and 16 may be the same, and each may be greater than or equal to 97%.
  • incident light resonates between the first reflective layer 11 and the second reflective layer 16 with the all-light thin film layer 14 in the center, and only light having a narrow wavelength band corresponding to the resonance mode may be transmitted. Therefore, the structure including the first reflective layer 11, the all-light thin film layer 14, and the second reflective layer 16 serves as a Fabry-Perot filter having controllable short wavelength transmission characteristics.
  • the wavelength band of the transmitted light can be controlled according to the refractive index and the thickness of the all-light thin film layer 14.
  • the light transmitted through the transmission type optical image shutters 100, 101, and 102 is, for example, an imaging device using a CCD or CMOS image sensor (Fig. Not shown).
  • the all-optical thin film layer 14 may be made of a material having an electro-optical effect in which the refraction changes according to the magnitude of the applied electric field.
  • a material of this all-optical thin film layer 14 for example, KTa ⁇ NbA ⁇ lKKTN), LiNb0 3 (LN), Pb (Zr0i-
  • the first and second electrodes 12 and 15 may be formed of the same material or different materials for applying an electric field to the all-optical thin film layer 14. E.g,
  • the first electrode 12 may be a transparent metal oxide made of a material similar to the lattice constant of the all-optical thin film layer 14. Since the all-optical thin film layer 14, such as KTN, can be grown only on the already crystallized substrate 10, it becomes difficult to use an amorphous substrate such as glass, which can be mass-produced at low cost, as a substrate. In addition, even when using a crystallized substrate such as Si, GaAs, A1 2 0 3 , MgO, SrTi0 3, etc., the all-optical thin film layer 14 can be formed by a high silver process of about 70 C.
  • a crystallized substrate such as Si, GaAs, A1 2 0 3 , MgO, SrTi0 3, etc.
  • the first electrode 12 is made of a crystalline material of transparent conductive oxide (TC0) that can be crystallized at a low temperature of 300 ° C or lower regardless of the lattice constant of the underlying layer. ).
  • the first electrode 12 may be adjusted to have a lattice constant similar to the lattice constant of the all-light thin film layer 14 to facilitate crystallization of the all-light thin film layer 14.
  • the lattice constant of the first electrode 12 may be adjusted so that the lattice mismatch with the lattice constant of the all-optical thin film layer 14 is within 20% or within 10%.
  • the material usable as this first electrode 12 may be SrTi3 ⁇ 4.
  • SrTi0 3 has the same perovskite structure as KTN, and the lattice constant is also similar to that of KTN.
  • ZnO can also be easily crystallized at low temperatures below 300 ° C., regardless of the crystallinity of the substrate 10.
  • ZnO can easily adjust the lattice constant by doping, and the electrical conductivity can be easily improved through doping.
  • ZnO may be doped with A1 or Ga to control the lattice constant and to improve the electrical conductivity. At this time, the doping concentration of A1 or Ga may be about 1 mol% ⁇ Al or Ga ⁇ 5 mol%. Accordingly, ZnO based materials may also be used to form the first electrode 12.
  • the system material can be used as the first electrode 12.
  • the first electrode 12 by changing the composition of Al, In, Ga, Sn, the first electrode 12 It is possible to adjust the lattice constants and electrical conductivity to the desired values.
  • the first electrode 12 is formed by the ZnO / Ag / ⁇ structure in which Ag, which is a metal having excellent electrical conductivity, is formed between the ZnO-based materials in the form of a thin film, the first electrode 12 is formed of a single ZnO.
  • Conductivity can be further improved.
  • a relatively low temperature may be formed of affection produced balls in (e. G., Up to about 30CTC)
  • the electro-optic thin film layer (14) Crystallinity can also be improved.
  • the second electrode 15 may be formed of a general transparent metal oxide, for example, ITOGndium Tin Oxide, AZO (Alurainium Zinc Oxide), IZOQndium Zinc Oxide (SnO), Sn ((Tin oxide), or ln 2 0 3 .
  • the second electrode 15 may also be formed of the same material as the material of the first electrode 12.
  • the energization preventing layers 13 and 17 prevent electrical conduction between at least one of the first and second electrodes 12 and 15 and the all-light thin film layer 14.
  • the optical image shutters should measure the size of the imaging surface of the CCD or CMOS sensor.
  • the aperture of the optical image shutter should have a size similar to that of the active area of the CCD or CMOS sensor, for example, a large aperture of about 1 cm diagonal.
  • Deposition of the all-optical thin film layer 14 having such a large aperture on the first electrode 12 may result in defects on the all-optical thin film layer 14 .
  • Electrical conduction may be generated between the second electrode 12 positioned or the second electrode 15 positioned above and the all-light thin film layer 14. In addition, the electric current may generate a short to reach breakdown. All. Therefore, it is necessary to insert an energization prevention layer which prevents electricity supply between the all-light thin film layer 14 and an electrode.
  • the anti-current layers 13 and 17 may be formed of an insulating material including at least one of Zr0 2 , Ti0 2 , MgO, Ce0 2 , A1 2 0 3 , Hf0 2 , NbO, Si3 ⁇ 4, and Si 3 N 4 .
  • the type of the insulating material of the anti-conduction layer 13 and 17 may vary depending on the material properties of the all-light thin film layer 14.
  • the energization prevention layers 13 and 17 may use an insulation material similar to the lattice constant of the all-light thin film layer 14.
  • MgO having a lattice constant similar to the lattice constant of KTN can be used as the anti-energization layers 13 and 17.
  • the anti-energization layers 13 and 17 may be disposed between the first electrode 12 and the all-optical thin film layer 14 as shown in FIG. 1, and the all-optical thin film layer 14 and the low) as shown in FIG. 2. It may be disposed between the two electrodes (15). In addition, it may be disposed between the first electrode 12 and the all-light thin film layer 14 and between the all-light thin film layer 14 and the second electrode 15 as shown in FIG. 3.
  • the all-optical thin film layer 14 is composed of KTN
  • Table 1 below shows Si3 ⁇ 4, MgO and all-optical thin films available as the anti-energization layers 13 and 17. Table showing the physical characteristics of KTN available as layer 14.
  • MgO has an effect of increasing the applied electric field of KTN by more than two times, because the dielectric constant is about twice that of Si0 2 .
  • the coefficient of thermal expansion of MgO is closer to KTN than that of Si3 ⁇ 4, and the stress due to the change in silver that can occur during the process is relatively smaller than that of Si0 2 .
  • MgO is used as the current preventing layer 13, 17, cracking of the MgO or KTN layer can be prevented.
  • the diffuser may cause a doping effect that contributes to the reduction of the dielectric loss. Therefore, there is an effect that the leakage current (leakage current) is reduced.
  • Equation 1 The center wavelength of the optical image shutter is determined according to the refractive index and thickness of the all-light thin film layer 14 as shown in Equation 1 below. [Equation 1]
  • the electro-optical effect refers to the effect of changing the refraction of the electro-thin film layer 14 when the electric field is applied to the electro-thin film layer 14, there are the Pockel effect (Kockel effect) and Kerr effect (Kerr effect).
  • the refractive index change ⁇ ' may be expressed as a function of the voltage difference V applied to the first and second electrodes 12 and 15 as shown in Equation 2. [Equation 2]
  • the light transmission characteristics of the optical image shutter can be changed by adjusting the voltage difference applied to the first and second electrodes 12 and 15. For example, if light having a center wavelength of about 850 nm can pass through the optical image shutter before the electric field is applied to the all-optical thin film layer 14, when a voltage of 20 V is applied to the upper and lower portions of the all-optical thin film battery 14, An electric field is generated in the all-optical thin film layer 14, thereby changing the refraction. Then, the light having an exaggeration of about 870 nm may pass through the optical image shutter while the transmission characteristic of the optical image shutter is changed.
  • 850 nm and 870 nm which are transmitted wavelengths, are merely exemplary, and the transmission exaggeration can be adjusted according to the refractive index and thickness of the all-optical thin film layer 14 and the design of the first and second reflective layers.
  • the light transmission characteristics before and after the electric field is applied to the all-optical thin film layer 14 are changed, so that the optical image shutter may serve as a shutter for electrically controlling light having a specific wavelength band.
  • Deposition of each layer included in the transmissive optical image shutters 100, 101, and 102 may use chemical vapor deposition, sputtering, or PLEKPulsed Laser Deposion.
  • the glass substrate 10 is an amorphous substrate while the first reflective layer is a crystalline material. Crystallization to (10) may be difficult.
  • a portion of the formed transmissive light micro shutter is bonded to a transparent substrate 10 such as glass by flip-chip bonding. It is also possible.
  • 4A-4D illustrate a method of manufacturing an optical image shutter in this manner.
  • a regenerative layer 21, a second reflective layer 16, and a second electrode 15 are sequentially formed on a crystalline substrate 20 such as Si or GaAs. Since the crystalline substrate 20 will be removed later, it is not necessary to be transparent, but only a material having excellent crystallinity. Then, the second reflective layer 16 and the second electrode 15 are applied as described above. Then, on the second electrode 15, the all-optical thin film layer 14, the energization preventing layer 13, and the first electrode ( 12) and the first reflective layer 11 can be formed continuously.
  • the all-optical thin film layer 14 may be formed to a thickness of, for example, 3 ⁇ 4m or less.
  • the first reflective layer 11 is bonded onto a transparent substrate 10 such as glass, for example using a flip-chip bonding technique, and a regenerative layer (as shown in FIG. 4C). If 21 is removed, the crystalline substrate 20 is separated from the first reflective layer 11. Then, the transmissive optical image shutter 100 having the structure as shown in FIG. 4D may be finally formed.
  • a transparent substrate 10 such as glass
  • a regenerative layer as shown in FIG. 4C
  • an anti-conduction layer 13 is formed between the all-light thin film layer 14 and the first electrode 12, but the all-light thin film dancing 14 and the second electrode are provided.
  • An energization preventing layer 17 may be formed between the layers 15.
  • energization is performed between the all-optical thin film layer 14 and the first electrode 12 and between the all-optical thin film charge 14 and the second electrode 15.
  • Protective layers 13 and 17 may be formed.
  • the reflective optical image shutter 300 includes a substrate 30, a buffer layer disposed on the substrate 30 ( 31, the first electrode 32 disposed on the buffer layer 31, the anti-conduction layers 33 and 37 disposed on the first electrode 32, and the all-light thin film layer 34 disposed on the anti-conduction layers 33 and 37. ), A second electrode 35 disposed on the all-optical thin film layer 34, and a reflective layer 36 disposed on the second electrode 35.
  • the reflective optical image shutter 300 shown in FIG. 5 is reflective, it is not necessary to use a transparent substrate.
  • the reflective optical image shutter 300 may use a crystalline substrate 30 such as Si or GaAs.
  • the buffer layer 31 is a layer for crystallizing the first electrode 32 on the substrate 31 and has a thermal expansion coefficient between the thermal expansion coefficient of the first electrode 32 and the thermal expansion coefficient of the substrate 30. It can be formed of a material.
  • the buffer layer 31 may be formed of at least one or more of oxides such as Si3 ⁇ 4, P 2 O 5 , Ti0 2 , Li 2 O, BaO, and the like.
  • the first electrode 31 may be an opaque material in order to operate in the reflective type.
  • the first electrode 32 has a high electrical conductivity It may be a metal material including at least one of Pt, Cu, kg, Ir, Ru, Al, and Au having a reflectance.
  • the reflectance of the first electrode 32 may be, for example, about 90% or more.
  • the anti-current layer 33 may be formed of an insulating material including at least one of Zr0 2 , Ti0 2) MgO, Ce0 2) A1 2 0 3 , Hf0 2) NbO, Si0 2 , and Si 3 N 4 .
  • the kind of the insulating material of the current prevention layer 33 may vary depending on the material properties of the all-light thin film layer 34.
  • the current prevention layer 33 may use an insulating material similar to the lattice constant of the all-light thin film layer 34.
  • MgO having a lattice constant similar to the lattice constant of KTN can be used as the energization preventing layer 33.
  • the all-optical thin film layer 34 may be made of a material having an electro-optical effect in which the refractive index is changed according to the magnitude of the applied electric field.
  • KTa t — x Nb x 0 3 (0 ⁇ x ⁇ l) (KTN), LiNb0 3 (LN), Pb (Zr0i- x Ti x ) 0 Crystals such as 3 (0 ⁇ x ⁇ l) (PZT) and DAST (4-dimethylamino-N-methyl-4 st lblbolium) may be used.
  • the second electrode 35 is a common transparent metal oxide, for example ITO lndium Tin Oxide), AZO (Aluminum Zinc Oxide), IZO (Indium Zinc Oxide), Sn0 2 (Tin oxide) or ln 2 0 3 It can be formed.
  • Reflective layer 36 may have a low reflectance, for example, about 503 ⁇ 4 Bengal Therefore, the incident light resonates with Fabry-Per between the first electrode 31 and the reflective layer 36, and finally outputs to the reflective layer 36 having a relatively low reflectance.
  • the reflective layer 36 may be formed to have reflectivity for light of a specific wavelength band by alternately stacking two or more kinds of transparent dielectric thin films having different refractive indices. Meanwhile, the anti-energization insects 33 and 37 may be disposed between the photoelectric thin film layer 34 and the second electrode 35, as shown in FIGS. 6 and 7.
  • the reflective optical image shutters 300, 301, and 302 illustrated in FIGS. 5 to 7 may deposit the buffer layer 31 on the substrate 30 by flip-chip bonding.
  • the current prevention layer 33 and / or 37 and the all-light thin film layer 34 may be deposited by a PLD deposition process. Accordingly, the reflective optical image shutters 300, 301, and 302 may be sequentially stacked on the substrate 30 in the order of the buffer layer 31 and the first electrode 32.
  • a low-cost transparent substrate such as a glass substrate may be used to form a crystalline all-optical thin film worm at low temperature. Therefore, cost reduction and yield improvement effect can be obtained in manufacturing the optical image shutter.
  • the all-optical crystal can be formed in the form of a thin film on the glass substrate, the resulting optical image shutter can have a small thickness.
  • the total thickness can be 100 / zm to 1mm, or less than 100 except for the substrate.
  • the current prevention layer prevents the inflow of current between the all-light thin film layer and the electrodes, not only can the leakage current be reduced, but also the use of the anti-electric layer similar to the lattice constant of the all-light thin film layer, It can prevent cracking.
  • Optical image shutters using these crystalline all-optical thin film layers can have very fast shutter opening and closing speeds of several ns and can be large-area, which is why shutters are used in various optical devices such as cameras, flat panel displays, optical modulators, 3D cameras, and LADARs. Can be used as
  • Substrate 11 Low U reflective layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides an optical image shutter and a method of fabricating the same. An optical image shutter according to the present invention comprises: an electro-optical thin film layer whose refractive index changes according to an electric field; first and second electrodes separately arranged with the electro-optical thin film layer positioned therebetween; and an electric current prevention layer which is placed in at least one of the areas between the first electrode and the electro-optical thin film layer, and between the second electrode and the electro-optical thin film layer, and which prevents an electric current from flowing into the electro-optical thin film layer.

Description

【명세서】  【Specification】
【발명의 명칭]  [Name of invention]
광 이미지 셔터 및 그 제조 방법 {Optical image shutter and method of fabricating the same}  Optical image shutter and its manufacturing method {Optical image shutter and method of fabricating the same}
【기술분야】  Technical Field
본 발명의 실시예는 광 이미지 셔터 및 그 제조 방법에 관한 것이다.  Embodiments of the present invention relate to an optical image shutter and a method of manufacturing the same.
【배경기술】  Background Art
'광 셔터 (optical shutter)는 정보를 담고 있는 광 이미지 (optical image)를 제어 신호에 따라 투과 또는 차단하는 기능을 갖는다. 광 셔터는 카메라 등과 같은 촬상용 장치에 널리 사용되는 광학 모들이다. The optical shutter has a function of transmitting or blocking an optical image containing information according to a control signal. Optical shutters are optical models widely used in imaging devices such as cameras.
최근, 카메라가 3차원 입체 이미지를 획득하기 위해 피사체의 거리 정보를 측정하는 기술이 연구되고 있다. 거리의 측정을 위해서 LEDCLight Emitting Diode) 또는 UXLaser Diode)를 이용하여 피사체에 특정 과장 (예컨대, 850皿의 근적외선) 의 광을 투사하고, 피사체로부터 반사된 광 이미지를 셔터링 한 후, 촬상소자를 통 해 이미지를 획득한다. 그리고 획득된 이미지에 대한 일련의 처리 과정을 거쳐 거 리 정보를 얻는다. 이 과정에서, 거리에 따른 빛의 이동 시간올 정확히 식별하기 위해 수 ns 정도의 빠른 셔터 개폐 시간이 필요하다.  Recently, a technique for measuring distance information of a subject to obtain a 3D stereoscopic image by a camera has been studied. To measure the distance, use a LEDCLight Emitting Diode or UXLaser Diode to project light of a certain exaggeration (e.g., near infrared of 850) onto the subject, shutter the light image reflected from the subject, and then pass it through the image pickup device. Get the image. The distance information is then obtained through a series of processing on the acquired image. In this process, a fast shutter opening and closing time of several ns is required to accurately identify the light travel time according to the distance.
이렇게 빠른 셔터 개폐 시간을 제공할 수 있는 광 셔터로서 반도체 기판 (10) 의 광 셔터가 제시되고 있다. 반도체 기반의 광 셔터는 전광 (electro-optical) 물 질을 박막으로 형성하기 때문에 낮은 전압에서도 광 셔터 기능을 할 수 있어서, 반 도체 기반의 광셔터 (Optical Shutter) 기술이 연구되고 있다. An optical shutter of the semiconductor substrate 10 has been proposed as an optical shutter capable of providing such a fast shutter opening and closing time. Since semiconductor-based optical shutters form electro-optical materials in thin films, they can function as optical shutters even at low voltages. Conductor-based optical shutter technology is being studied.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 개시는 누설 전류를 감소시킬 수 있는 광 이미지 셔터 및 그 제조 방법을 제공한다.  The present disclosure provides an optical image shutter capable of reducing leakage current and a method of manufacturing the same.
【과제의 해결 수단】 본 발명의 일 유형에 따르는 광 이미지 셔터는, 전기장에 따라 굴절율이 변 하는 전광 박막층; 상기 전광 박막층을 사이에 두고 이격 배치된 제 1 및 제 2 전극; 및 상기 제 1 전극과 상기 전광 박막층의 사이 및 상기 제 2 전극 및 상기 전광 박막 층의 사이 중 적어도 하나의 영역에 배치되어 상기 전광 박막층으로의 전류 유입을 방지하는 통전 방지층;를 포함한다.  [Technical Solution] An optical image shutter according to one type of the present invention includes: an all-optical thin film layer whose refractive index changes according to an electric field; First and second electrodes spaced apart from each other with the all-optical thin film layer interposed therebetween; And an anti-conduction layer disposed in at least one region between the first electrode and the all-optical thin film layer and between the second electrode and the all-optical thin film layer to prevent current from flowing into the all-optical thin film layer.
그리고, 상기 전광 박막층은 KTaixNbx03(0≤x≤l)(KTN), LiNb03(LN), Pb(Zr(V xTix)03(0<x<l)(PZT) 및 DAST(4-dimethylamino-N-methy卜 4 st i lbazol ium) 중에서 적어도 하나의 물질을 포함할수 있다. And, the all-optical thin film layer is KT aix Nb x 0 3 (0 ≦ x ≦ l) (KTN), LiNb0 3 (LN), Pb (Zr (V x Ti x ) 0 3 (0 <x <l) ( PZT) and DAST (4-dimethylamino-N-methy? 4 st i lbazol ium).
또한, 상기 통전 방지층은 절연 물질로 형성될 수 있다.  In addition, the current prevention layer may be formed of an insulating material.
그리고, 상기 절연 물질의 격자 상수는 상기 전광 박막충의 격자 상수와 유 사할 수 있다.  In addition, the lattice constant of the insulating material may be similar to the lattice constant of the all-optical thin film worm.
또한, 상기 통전 방지층은 Zr02, Ti02, MgO, SrTi03, A1203, Hf02, NbO, Si02 및 Si3N4중 적어도 하나로 이루어질 수 있다. 그리고, 상기 제 1 전극의 하부에 배치되는 버퍼층; 상기 버퍼층의 하부에 배 치되는 기판; 및 상기 제 2 전극의 상부에 배치되는 반사층;를 더 포함할 수 있다. 또한, 상기 기판은 결정성 기판일 수 있다. In addition, the current prevention layer may be formed of at least one of Zr02, Ti02, MgO, SrTi03, A1203, Hf02, NbO, Si02 and Si3N4. And a buffer layer disposed under the first electrode. A substrate disposed under the buffer layer; And a reflective layer disposed on the second electrode. In addition, the substrate may be a crystalline substrate.
그리고, 상기 기판은 Si 및 GaAs, Sapphire 중 적어도 하나로 형성되고. 상 기 제 1 전극은 Pt, Cu, Ag, Ir, Ru, Al, Au 중 적어도 하나를 포함하는 물질로 형 성될 수 있다.  The substrate is formed of at least one of Si, GaAs, and Sapphire. The first electrode may be formed of a material including at least one of Pt, Cu, Ag, Ir, Ru, Al, Au.
또한, 상기 제 1 전극의 하부에 배치되는 제 1 반사층; 상기 제 1 반사층의 하 부에 배치되는 기판; 및 상기 제 2 전극의 상부에 배치되는 제 2 반사충;를 더 포함 할 수 있다.  In addition, a first reflective layer disposed under the first electrode; A substrate disposed under the first reflective layer; And a second reflector disposed on the second electrode.
그리고, 상기 기판은 투명한 비정질 기판이고, 상기 제 1 전극은 투명 전도성 산화물 또는 투명 산화물 반도체로 형성될 수 있다.  The substrate may be a transparent amorphous substrate, and the first electrode may be formed of a transparent conductive oxide or a transparent oxide semiconductor.
또한, 상기 제 1 전극은 SrTi03또는 ZnO 계 물질로 형성될 수 있다. 그리고, 제 2 반사층의 반사율은 상기 제 1 반사층의 반사율과 같을 수 있다. 한편, 본 발명의 일 유형에 따르는 광 이미지 셔터의 제조 방법은, 제 1 반사 층 위에 제 1 전극을 형성하는 단계; 상기 제 1 전극 위에 전기장에 따라 굴절율이 변하는 전광 박막층올 형성하는 단계; 상기 전광 박막층 위에 제 2 전극을 형성하는 단계;상기 제 2 전극위에 반사층을 형성하는 단계;를 포함하고,상기 전광 박막층의 형선 전 및 형성 후 단계 중 적어도 하나의 단계에 상기 전광 박막층으로의 전류 유입을 방지하는 통전 방지층을 형성하는 단계;를 포함할수 있다. 한편, 본 발명의 다른 유형에 따르는 광 이미지 셔터의 제조 방법은, 결정질 기판 위에 희생층을 형성하는 단계; 상기 희생층 위에 제 1 반사층을 형성하는 단 계 ; 상기 제 1 반사층 위에 제 1 전극을 형성하는 단계; 상기 제 1 전극위에 전기장에 따라 굴절률이 변화하는 전광 박막층을 형성하는 단계; 상기 전광 박막층위에 제 2 전극을 형성하는 단계 ; 상기 제 2 전극위에 제 2 반사층을 형성하는 단계 ; 플립-칩 본딩 방식으로 투명 기판위에 상기 제 2 반사층을 접합하는 단계; 및 상기 회생층 을 제거하여 상기 제 1 반사층 위의 상기 결정질 기판을 떼어내는 단계;를 포함하 고, 상기 전광 박막층의 형선 전 및 형성 후 단계 중 적어도 하나의 단계에 상기 전광 박막층으로의 전류 유입을 방지하는 통전 방지층을 형성하는 단계;를 더 포함 한다. In addition, the first electrode may be formed of SrTi0 3 or ZnO-based material. The reflectance of the second reflecting layer may be the same as the reflectance of the first reflecting layer. On the other hand, a method of manufacturing an optical image shutter according to one type of the present invention, forming a first electrode on the first reflective layer; Forming an all-optical thin film layer on which the refractive index changes according to an electric field on the first electrode; Forming a second electrode on the all-optical thin film layer; Forming a reflective layer on the second electrode; including, Inflow of current into the all-optical thin film layer in at least one step before and after forming the all-optical thin film layer Forming a conductive prevention layer to prevent the; may include. On the other hand, a method of manufacturing an optical image shutter according to another type of the present invention, forming a sacrificial layer on a crystalline substrate; Forming a first reflective layer on the sacrificial layer; Forming a first electrode on the first reflective layer; Forming an all-optical thin film layer on the first electrode, the refractive index of which is changed according to an electric field; Forming a second electrode on the all-optical thin film layer; Forming a second reflective layer on the second electrode; Bonding the second reflective layer onto the transparent substrate by flip-chip bonding; And removing the regenerative layer to separate the crystalline substrate on the first reflective layer, wherein at least one of before and after forming the all-optical thin film layer is introduced into the all-optical thin film layer. Forming an anti-conduction layer to prevent; further includes.
【발명의 효과】  【Effects of the Invention】
본 개시의 일 실시예에 따른 광 이미지 셔터는 유리 기판 등과 같은 저가의 투명한 기판을 사용하여 저온에서 결정질의 전광 박막층을 형성할 수 있기 때문에 원가 절감 및 수율 향상 효과를 얻을 수 있다.  In the optical image shutter according to the exemplary embodiment of the present disclosure, since the crystalline all-optical thin film layer may be formed at a low temperature by using a low-cost transparent substrate such as a glass substrate, a cost reduction and a yield improvement effect may be obtained.
또한, 유리 기판위에 전광 결정을 박막의 형태로 형성할 수 있기 때문에, 결 과적으로 광 이미지 셔터는 작은 두께를 가질 수 있다.  In addition, since the all-optical crystal can be formed in the form of a thin film on the glass substrate, the optical image shutter can have a small thickness as a result.
그리고, 전광 박막층과 전극들 사이에 전류의 유입을 방지하는 통전 방지층 을 형성하기 때문에 누설 전류를 감소시킬 수 있다.  In addition, since an anti-conduction layer is formed between the all-light thin film layer and the electrodes, the leakage current can be reduced.
뿐만 아니라, 전광 박막층의 격자 상수와 유사한 통전 방지층을사용하기 때 문에 전광 박막층 및 통전 방지층의 균열을 방지할수 있다. 더욱이, 개시된 광 이미지 셔터는 대면적화가 가능하여 카메라용 셔터 및 평 판 디스플레이용 셔터로도 활용이 가능하다. In addition, since the anti-energization layer similar to the lattice constant of the all-optical thin film layer is used, it is possible to prevent cracking of the all-optical thin film layer and the anti-electric layer. Furthermore, the disclosed optical image shutters can be made large in area and can be utilized as shutters for cameras and shutters for flat displays.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 내지 도 3은 본 발명의 일 실시예에 따른 투과형 광 이미지 셔터의 구 조를 나타내는 단면도이다.  1 to 3 are cross-sectional views showing the structure of a transmissive optical image shutter according to an embodiment of the present invention.
도 4a 내지 도 4d는 본 발명의 일 실시예에 따른 투과형 광 이미지 셔터를 제조하는 방법을 도시한 도면이다.  4A to 4D illustrate a method of manufacturing a transmissive optical image shutter according to an embodiment of the present invention.
도 5 내지 도 7은 본 발명의 일 실시예에 따른 반사형 광 이미지 셔터의 구 조를 나타내는 단면도이다.  5 to 7 are cross-sectional views showing the structure of a reflective optical image shutter according to an embodiment of the present invention.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 일 실시예에 따른 광 이미지 셔터 및 그 제조 방법을 첨부 된 도면을 참조하여 설명한다 . 첨부된 도면에 도시된 층이나 영역들의 폭 및 두께 는 명세서의 명확성을 위해 다소 과장되게 도시될 수 있다. 상세한 설명 전체에 걸 쳐 동일한 참조번호는 동일한 구성요소들을 나타낸다.  Hereinafter, an optical image shutter and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to the accompanying drawings. The width and thickness of the layers or regions shown in the accompanying drawings may be shown somewhat exaggerated for clarity. Throughout the description, like reference numerals refer to like elements.
첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다.  With reference to the accompanying drawings will be described embodiments of the present invention;
도 1 내지 도 3은 본 발명의 일 실시예에 따른 투과형 광 이미지 셔터 (100, 101, 102) 의 구조를 나타내는 단면도이다. 도 1.내지 3를 참조하면, 투과형 광 이 미지 셔터 (100, 101, 102)는 기관 (10), 기판 (10) 위에 배치되며 특정 파장 대역의 광을 반사시키는 제 1 및 제 2 반사층 (11, 16), 제 1 및 제 2 반사층 (11, 16) 사이에 배치되며 전기장에 따라 굴절율이 변하는 결정질의 전광 박막층 (14), 전광 박막 층 (14)을 중심으로 제 1 및 제 2 반사층 (11, 16) 사이에 이격 배치되어 전광 박막 층 (14)에 전기장을 인가시키는 제 1 및 제 2 전극 (12, 15), 그리고, 제 1 전극 (12)과 전광 박막층 (14)의 사이 및 제 2 전극 (15)과 전광 박막층 (14)의 사이 중 적어도 하 나의 영역에 배치되어 전광 박막층 (14)으로의 전류 유입을 방지하는 통전 방지 층 (13, 17)를 포함한다. 1 to 3 are cross-sectional views showing the structure of the transmissive optical image shutters 100, 101, and 102 according to one embodiment of the present invention. 1 to 3, the transmissive light image shutters 100, 101, and 102 are disposed on the engine 10, the substrate 10 and reflect the light of a specific wavelength band 11. 16, crystalline all-optical thin film layer 14, all-optical thin film disposed between the first and second reflective layers 11 and 16, the refractive index of which varies with electric field First and second electrodes 12 and 15 disposed spaced apart between the first and second reflective layers 11 and 16 about the layer 14 to apply an electric field to the all-optical thin film layer 14, and then the first and second electrodes 12 and 15. An anti-conduction layer disposed between at least one of the electrode 12 and the all-light thin film layer 14 and between the second electrode 15 and the all-light thin film layer 14 to prevent current from flowing into the all-light thin film layer 14. (13, 17).
기판 (10)은 광이 투과될 수 있도록 투명한 비정질 물질, 예를 들어, 유리 등 으로 이루어질 수 있다.  The substrate 10 may be made of a transparent amorphous material, for example, glass, so that light can be transmitted.
제 1 및 제 2 반사층 (11, 16)은 굴절를이 서로 다른 두 종류 이상의 투명한 유 전체 박막을 번갈아 적층함으로써 특정 파장 대역의 광에 대해 높은 반사도를 갖도 록 형성될 수 있다. 또한, 유전체 박막 대신에 얇은 금속 등과 같이 빛의 투과 및 반사 특성을 동시에 갖는 층을 제 1 및 제 2 반사층 (11, 16)으로서 사용할 수 있다. 제 1 반사층 (11)과 제 2 반사층 (16)은 동일한 물질로 동일한 구조로 형성될 수 있다. 예를 들어, 제 1 및 제 2 반사층 (11, 16)의 반사율은 동일할 수 있으며, 각각 97% 이상일 수 있다. 그러면 입사광은 전광 박막층 (14)을 가운데 두고 제 1 반사 층 (11)과 제 2 반사층 (16) 사이에서 공진하며, 공진 모드에 해당하는 좁은 파장 대 역의 광만이 투과될 수 있다. 따라서, 제 1 반사층 (11), 전광 박막층 (14) 및 제 2 반 사층 (16)을 포함하는 구조는 제어 가능한 단파장 투과 특성을 갖는 패브리 -페로 필 터 (Fabry-Perot filter)의 역할을 한다. 투과되는 광의 파장 대역은 전광 박막 층 (14)의 굴절률과 두께에 따라 제어될 수 있다. 투과형 광 이미지 셔터 (100, 101, 102)를 투과한 광은 예를 들어 CCD 또는 CMOS 이미지 센서를 사용하는 촬상소자 (도 시되지 않음)에서 촬영될 수 있다. The first and second reflective layers 11 and 16 may be formed to have high reflectivity for light of a specific wavelength band by alternately stacking two or more kinds of transparent dielectric thin films having different refractive indices. In addition, instead of the dielectric thin film, a layer having simultaneous transmission and reflection characteristics of light, such as a thin metal, can be used as the first and second reflective layers 11 and 16. The first reflective layer 11 and the second reflective layer 16 may be formed of the same material and have the same structure. For example, the reflectances of the first and second reflective layers 11 and 16 may be the same, and each may be greater than or equal to 97%. Then, incident light resonates between the first reflective layer 11 and the second reflective layer 16 with the all-light thin film layer 14 in the center, and only light having a narrow wavelength band corresponding to the resonance mode may be transmitted. Therefore, the structure including the first reflective layer 11, the all-light thin film layer 14, and the second reflective layer 16 serves as a Fabry-Perot filter having controllable short wavelength transmission characteristics. The wavelength band of the transmitted light can be controlled according to the refractive index and the thickness of the all-light thin film layer 14. The light transmitted through the transmission type optical image shutters 100, 101, and 102 is, for example, an imaging device using a CCD or CMOS image sensor (Fig. Not shown).
전광 박막층 (14)은 인가된 전기장의 크기에 따라 굴절를이 변하는 전광효 과 (Electro-Optical effect)를 갖는 물질로 이루어질 수 있다. 이러한 전광 박막 층 (14)의 물질로는, 예를 들어, KTa^NbA ^^^lKKTN), LiNb03(LN), Pb(Zr0i- The all-optical thin film layer 14 may be made of a material having an electro-optical effect in which the refraction changes according to the magnitude of the applied electric field. As a material of this all-optical thin film layer 14, for example, KTa ^ NbA ^^^ lKKTN), LiNb0 3 (LN), Pb (Zr0i-
Jix)03(0<x<l)(PZT)) DAST ( 4-d i me t hy 1 am i no-N-me t hy 1 -4 st i lbazol ium) 등의 결정 을 이용할 수 있다. 전광 박막층 (14)의 전광 효과를 향상시키기 위해서는 전광 박 막층 (14)의 결정성과 방향성을 제어하는 것이 중요하다. 예를 들어, KTN의 경우에 , 전광 효과를 위해서 전광 박막층 (14)은 a=3.9A의 격자 상수를 갖는 사방정 계 (Perovskite material)의 구조를 갖을 수 있다. Ji x ) 0 3 (0 <x <l) (PZT) ) A crystal such as DAST (4-di me t hy 1 am i no-N-me t hy 1 -4 st i lbazol ium) can be used. It is important to control the crystallinity and directivity of the all-light thin film layer 14 in order to improve the all-light effect of the all-light thin film layer 14. For example, in the case of KTN, the all-optical thin film layer 14 may have a structure of a perovskite material having a lattice constant of a = 3.9 A for the all-optical effect.
제 1 및 제 2 전극 (12, 15)은 전광 박막층 (14)에 전기장을 인가하기 위한 것으 로 동일한 물질로 형성될 수 있거나 다른 물질로 형성될 수 있다. 예를 들어,  The first and second electrodes 12 and 15 may be formed of the same material or different materials for applying an electric field to the all-optical thin film layer 14. E.g,
예를 들어, 제 1 전극 (12)은 전광 박막층 (14)의 격자 상수와 유사한 물질로 이루어진 투명 금속 산화물일 수 있다. KTN과 같은 전광 박막층 (14)은 이미 결정화 된 기판 (10)에서만 결정 박막 성장이 가능하기 때문에 낮은 원가로 대량 생산이 가 능한 유리와 같은 비정질 기판을 기판으로서 사용하기 어렵게 된다. 또한, Si, GaAs, A1203, MgO, SrTi03 등과 같은 결정화된 기판을 사용하더라도, 약 70( C 정도 의 고은 공정으로 전광 박막층 (14)을 형성할 수 있다. 그러나, 이러한 고온 공정은 유전체 박막으로 된 제 1 반사층 (11)과 제 2 반사층 (16)의 굴절를 변화 등과 같은 특 성 변화를 초래할 수 있다. 그리하여, 전광 박막층 (14)을 형성하기 전에, 하부층의 격자 상수에 관계 없 이 300°C 이하의 저온에서 결정화될 수 있는 투명 전도성 산화물 (transparent conductive oxide; TC0)의 결정질 물질로 제 1 전극 (12)을 형성한다. 제 1 전극 (12) 은 전광 박막층 (14)의 결정화를 용이하게 하기 위하여, 전광 박막층 (14)의 격자 상 수와유사한 격자 상수를 갖도록 조절될 수 있다. For example, the first electrode 12 may be a transparent metal oxide made of a material similar to the lattice constant of the all-optical thin film layer 14. Since the all-optical thin film layer 14, such as KTN, can be grown only on the already crystallized substrate 10, it becomes difficult to use an amorphous substrate such as glass, which can be mass-produced at low cost, as a substrate. In addition, even when using a crystallized substrate such as Si, GaAs, A1 2 0 3 , MgO, SrTi0 3, etc., the all-optical thin film layer 14 can be formed by a high silver process of about 70 C. However, such a high temperature process It is possible to cause a characteristic change such as a change in the refraction of the first reflective layer 11 and the second reflective layer 16 made of a dielectric thin film. Thus, before the formation of the all-optical thin film layer 14, the first electrode 12 is made of a crystalline material of transparent conductive oxide (TC0) that can be crystallized at a low temperature of 300 ° C or lower regardless of the lattice constant of the underlying layer. ). The first electrode 12 may be adjusted to have a lattice constant similar to the lattice constant of the all-light thin film layer 14 to facilitate crystallization of the all-light thin film layer 14.
예를 들어, 전광 박막층 (14)의 격자 상수와의 격자 부정합이 20% 이내 또는 10% 이내가 되도록 제 1 전극 (12)의 격자 상수가 조절될 수 있다. 이러한 제 1 전 극 (12)으로 사용가능한 물질은 SrTi¾일 수 있다. SrTi03는 KTN과 동일한 사방정 계 (Perovskite)의 구조를 가지며, 격자상수도 또한 KTN과 유사하다. For example, the lattice constant of the first electrode 12 may be adjusted so that the lattice mismatch with the lattice constant of the all-optical thin film layer 14 is within 20% or within 10%. The material usable as this first electrode 12 may be SrTi¾. SrTi0 3 has the same perovskite structure as KTN, and the lattice constant is also similar to that of KTN.
한편, 투명 산화물 반도체인 ZnO 계의 물질도 격자 상수가 a=3.3A로서 KTN 의 격자 상수와 유사하다. ZnO도 역시 기판 (10)의 결정성과 관계 없이 300°C 이하 의 저온에서 쉽게 결정화될 수 있다. 또한, ZnO는 도핑에 의해 격자 상수를 쉽게 조절할 수 있으며 전기전도도도 도핑을 통해 쉽게 향상시킬 수 있다. 예를 들어, 격자 상수의 조절 및 전기전도도의 향상을 위하여 ZnO에 A1이나 Ga을 도핑할 수 있 다.. 이때 A1이나 Ga의 도핑 농도는 lmol% < Al or Ga < 5mol% 정도일 수 있다. 따라서, ZnO 계 물질도 제 1 전극 (12)올 형성하기 위해 이용될 수 있다. On the other hand, the ZnO-based material, which is a transparent oxide semiconductor, also has a lattice constant of a = 3.3 A, similar to the lattice constant of KTN. ZnO can also be easily crystallized at low temperatures below 300 ° C., regardless of the crystallinity of the substrate 10. In addition, ZnO can easily adjust the lattice constant by doping, and the electrical conductivity can be easily improved through doping. For example, ZnO may be doped with A1 or Ga to control the lattice constant and to improve the electrical conductivity. At this time, the doping concentration of A1 or Ga may be about 1 mol% <Al or Ga <5 mol%. Accordingly, ZnO based materials may also be used to form the first electrode 12.
또한, Al-In-Zn-0, In-Ga-Zn-0, Sn-Ga-Zn-0, Sn-Al-Zn-0등과 같이 3가지 또 는 4가지 조성을 갖는 3성분계 또는 4성분계의 ZnO 계 물질을 제 1 전극 (12)으로 이 용할 수 있다. 이 경우, Al, In, Ga, Sn의 조성을 변화시킴으로써, 제 1 전극 (12)의 격자 상수 및 전기전도도를 원하는 값으로 조절하는 것이 가능하다. 또한, ΖηΟ 계 물질 사이에 전기전도도가 우수한 금속인 Ag를 박막 형태로 개재한 ZnO/Ag/ΖηΟ 구 조로 제 1 전극 (12)을 형성하면 , 단일 ZnO로 된 제 1 전극 (12)에 비하여 전기전도도 가 더욱 향상될 수 있다. 이러한 방식으로 제 1 전극 (12)을 형성하고 그 다음에 · 전 광 박막층 (14)을 형성하면, 상대적으로 저온 (예컨대, 약 30CTC 이하)에서 제조 공 정이 이루어질 수 있으며, 전광 박막층 (14)의 결정성도 역시 향상될 수 있다. In addition, three- or four-component ZnO having three or four compositions such as Al-In-Zn-0, In-Ga-Zn-0, Sn-Ga-Zn-0, Sn-Al-Zn-0, etc. The system material can be used as the first electrode 12. In this case, by changing the composition of Al, In, Ga, Sn, the first electrode 12 It is possible to adjust the lattice constants and electrical conductivity to the desired values. In addition, when the first electrode 12 is formed by the ZnO / Ag / ΖηΟ structure in which Ag, which is a metal having excellent electrical conductivity, is formed between the ZnO-based materials in the form of a thin film, the first electrode 12 is formed of a single ZnO. Conductivity can be further improved. When in this manner to form the first electrode 12 to form the next, before the optical thin film layer 14, a relatively low temperature may be formed of affection produced balls in (e. G., Up to about 30CTC), the electro-optic thin film layer (14) Crystallinity can also be improved.
그리고, 제 2 전극 (15)은 일반적인 투명 금속 산화물, 예를 들어, ITOGndium Tin Oxide) , AZO(Alurainium Zinc Oxide) , IZOQndium Zinc Oxide) , Sn( (Tin oxide) 또는 ln203 등으로 형성될 수 있다. 물론 제 2 전극 (15)도 제 1 전극 (12)의 물질과 동 일한 물질로 형성될 수 있다ᅳ The second electrode 15 may be formed of a general transparent metal oxide, for example, ITOGndium Tin Oxide, AZO (Alurainium Zinc Oxide), IZOQndium Zinc Oxide (SnO), Sn ((Tin oxide), or ln 2 0 3 . Of course, the second electrode 15 may also be formed of the same material as the material of the first electrode 12.
통전 방지층 (13, 17)은 제 1 및 제 2 전극 (12, 15) 중 적어도 하나와 전광 박 막층 (14)간의 전기적 통전을 방지한다. 광 이미지 셔터는 CCD 또는 CMOS 센서의 촬 상면의 크기에 대웅하여야 한다. 이를 위해 광 이미지 셔터의 구경은 CCD또는 CMOS 센서의 액티브 영역 (Active Area)의 크기와 유사한 크기, 예를 들어, 대각 lcm 내외의 큰 구경을 갖어야 한다. 이와 같은 큰 구경을 갖는 전광 박막층 (14)을 제 1 전극 (12)에 증착하게 되면 전광 박막층 (14)상에 결점 (defect)이 존재할 수 있 다ᅳ 이러한 결점은 전광 박막층 (14)의 아래에 위치한 제 전극 (12) 또는 위에 위치 한 제 2 전극 (15)과 전광 박막층 (14)간의 전기적 통전올 발생시킬 수 있다. 그리고, 상기한 전기적 통전은 쇼트를 발생시켜 브레이크다운 (breakdown)에 도달할 수도 있 다. 따라서 전광 박막층 (14)과 전극 사이에 통전을 방지시키는 통전 방치층을 삽입 할 필요가 있다. The energization preventing layers 13 and 17 prevent electrical conduction between at least one of the first and second electrodes 12 and 15 and the all-light thin film layer 14. The optical image shutters should measure the size of the imaging surface of the CCD or CMOS sensor. For this purpose, the aperture of the optical image shutter should have a size similar to that of the active area of the CCD or CMOS sensor, for example, a large aperture of about 1 cm diagonal. Deposition of the all-optical thin film layer 14 having such a large aperture on the first electrode 12 may result in defects on the all-optical thin film layer 14 . Electrical conduction may be generated between the second electrode 12 positioned or the second electrode 15 positioned above and the all-light thin film layer 14. In addition, the electric current may generate a short to reach breakdown. All. Therefore, it is necessary to insert an energization prevention layer which prevents electricity supply between the all-light thin film layer 14 and an electrode.
통전 방지층 (13, 17)은 Zr02, Ti02, MgO, Ce02, A1203, Hf02, NbO, Si¾, Si3N4 중 적어도 하나를 포함하는 절연 물질로 형성될 수 있다. 그리고, 통전 방지층 (13, 17)의 절연 물질은 전광 박막층 (14)의 물질 특성에 따라 그 종류가 달라질 수 있 다. 예를 들어, 통전 방지층 (13, 17)은 전광 박막층 (14)의 격자 상수와 유사한 절 연 물질을 사용할 수 있다. 그리하여, 전광 박막층 (14)으로 KTN을 사용하는 경우, KTN의 격자 상수와 유사한 격자 상수를 갖는 MgO을 통전 방지층 (13, 17)으로 이용 할 수 있다. KTN의 격자 상수가 a=3.3A일 때, 격자 상수가 a=4.2lA인 MgO을 통전 방지층 (13, 17)으로 이용할수 있다. The anti-current layers 13 and 17 may be formed of an insulating material including at least one of Zr0 2 , Ti0 2 , MgO, Ce0 2 , A1 2 0 3 , Hf0 2 , NbO, Si¾, and Si 3 N 4 . In addition, the type of the insulating material of the anti-conduction layer 13 and 17 may vary depending on the material properties of the all-light thin film layer 14. For example, the energization prevention layers 13 and 17 may use an insulation material similar to the lattice constant of the all-light thin film layer 14. Thus, when KTN is used as the all-optical thin film layer 14, MgO having a lattice constant similar to the lattice constant of KTN can be used as the anti-energization layers 13 and 17. When the lattice constant of KTN is a = 3.3A, MgO having a lattice constant of a = 4.2A can be used as the current prevention layer (13, 17).
통전 방지층 (13, 17)은 도 1에 도시된 바와 같이 제 1 전극 (12)과 전광 박막 층 (14) 사이에 배치될 수도 있고, 도 2에 도시된 바와 같이 전광 박막층 (14)과 저)2 전극 (15)사이에 배치되는 배치될 수 있다. 뿐만 아니라, 도 3에 도시된 바와 같이 제 1 전극 (12)과 전광 박막층 (14) 사이 및 전광 박막층 (14)과 제 2 전극 (15) 사이에 배치될 수 있다.  The anti-energization layers 13 and 17 may be disposed between the first electrode 12 and the all-optical thin film layer 14 as shown in FIG. 1, and the all-optical thin film layer 14 and the low) as shown in FIG. 2. It may be disposed between the two electrodes (15). In addition, it may be disposed between the first electrode 12 and the all-light thin film layer 14 and between the all-light thin film layer 14 and the second electrode 15 as shown in FIG. 3.
한편, 전광 박막층 (14)이 KTN으로 구성될 경우, 통전 방지층 (13, 17)으로 Si¾보다는 MgO를 사용하는 것이 통전 방지효과가 보다 크다: 왜냐하면, MgO와 KTN 의 결정상수가 유사하여 동일 기판 (10)상에 조밀한 결정박막 증착이 가능하기 때문 이다. 하기 표 1은 통전 방지층 (13, 17)으로 이용가능한 Si¾, MgO과 전광 박막 층 (14)으로 이용가능한 KTN의 물리적 특징을 도시한 표이다. On the other hand, when the all-optical thin film layer 14 is composed of KTN, it is more effective to use MgO than Si¾ as the current prevention layer 13 and 17: because the crystal constants of MgO and KTN are similar, so that the same substrate ( 10) dense crystal thin film deposition is possible. Table 1 below shows Si¾, MgO and all-optical thin films available as the anti-energization layers 13 and 17. Table showing the physical characteristics of KTN available as layer 14.
【표 1】
Figure imgf000013_0001
Table 1
Figure imgf000013_0001
표 1에 도시된 바와 같이, Si02 및 MgO는 7eV 이상의 에너지 밴드갭을 가 므로 절연성이 우수하다. 또한 MgO는 Si02 대비 유전율이 2배 가량 우수하여 KTN의 인가 전계를 2배 이상 높일 수 있는 효과가 있다. 그리고, MgO의 열팽창계수는 Si¾ 에 비해 KTN에 더 가까워 공정중 발생가능한 은도 변화에 의한 웅력이 Si02에 비해 상대적으로 작다. 그리하여 통전 방지층 (13, 17)으로 MgO를 사용하면, MgO또는 KTN 층의 균열을 방지할 수 있다. 뿐만 아니라, MgO의 디퓨전 (diffusion)이 KTN에서 발 생한다면, 디퓨견은 유전 손실의 감소에 기여하는 도핑 효과를 초래할 수 있다. 그 리하여 누설 전류 (leakage current)가 감소되는 효과가 있다. As shown in Table 1, since Si0 2 and MgO have an energy bandgap of 7 eV or more, insulation is excellent. In addition, MgO has an effect of increasing the applied electric field of KTN by more than two times, because the dielectric constant is about twice that of Si0 2 . In addition, the coefficient of thermal expansion of MgO is closer to KTN than that of Si¾, and the stress due to the change in silver that can occur during the process is relatively smaller than that of Si0 2 . Thus, when MgO is used as the current preventing layer 13, 17, cracking of the MgO or KTN layer can be prevented. In addition, if the diffusion of MgO occurs in KTN, the diffuser may cause a doping effect that contributes to the reduction of the dielectric loss. Therefore, there is an effect that the leakage current (leakage current) is reduced.
한편, 광 이미지 셔터의 동작 원리는 다음과 같다. 광 이미지 셔터의 중심 파장 는 하기 수학식 1과 같이 전광 박막층 (14)의 굴절률과 두께에 따라 결정 된다. 【수학식 1] On the other hand, the operation principle of the optical image shutter is as follows. The center wavelength of the optical image shutter is determined according to the refractive index and thickness of the all-light thin film layer 14 as shown in Equation 1 below. [Equation 1]
Figure imgf000014_0001
여기서 ra은 양의 정수이고, n과 d는 각각 전광 박막층 (14)의 굴절률과 두께 이다. 한편, 전광 효과는 전광 박막층 (14)에 전계를 인가하면 전광 박막층 (14)의 굴절를이 변화하는 효과를 의미하는데, 포켈 효과 (Pockel effect) 및 커 효과 (Kerr effect)등이 있다. 커 효과를 고려하면 굴절률 변화값 (η')은 수학식 2와 같이 제 1 및 제 2 전극 (12, 15)에 가해지는 전압차 V의 함수로 나타낼 수 있다. 【수학식 2】
Figure imgf000014_0001
Where ra is a positive integer and n and d are the refractive index and thickness of the all-optical thin film layer 14, respectively. On the other hand, the electro-optical effect refers to the effect of changing the refraction of the electro-thin film layer 14 when the electric field is applied to the electro-thin film layer 14, there are the Pockel effect (Kockel effect) and Kerr effect (Kerr effect). In consideration of the Kerr effect, the refractive index change η 'may be expressed as a function of the voltage difference V applied to the first and second electrodes 12 and 15 as shown in Equation 2. [Equation 2]
Figure imgf000014_0002
Figure imgf000014_0002
여기서 12는 전광 박막층 (14)의 커계수 (Kerr efficient)로서, KTN인 경 Where 12 is the Kerr efficient of the all-optical thin film layer 14, and is KTN.
^12=-0.0018μ?^2/ V2 ^ 12 = -0.0018 μ? ^ 2 / V 2
우 커계수는 이다. 즉 전광 박막충 (14)의 아래 및 위에 배치된 제 1 및 제 2 전극 (12, 15)에 전압올 인가하면 전광 효과에 의해 전광 박막층 (14)의 굴절률이 변화하고 그에 따라서 수학식 1에서 정의된 광이미지 셔터 의 증심파장도 하기 수학식 3과 같이 변하게 된다. 【수학식 3】 Wu is the coefficient. In other words, when a voltage is applied to the first and second electrodes 12 and 15 disposed below and above the all-optical thin film charger 14, the refractive index of the all-optical thin film layer 14 is changed by the all-optical effect and accordingly, is defined by Equation 1 The increasing wavelength of the optical image shutter is changed as shown in Equation 3 below. [Equation 3]
' m ' , ' m ' ,
c =-— η a c = -— η a
c 2 따라서 제 1 및 제 2 전극 (12, 15)에 인가하는 전압차를 조절하여 광 이미지 셔터의 광투과 특성을 변화시킬 수 있다. 예를 들어, 전광 박막층 (14)에 전기장이 인가되기 전에는 약 850nm의 중심 파장을 갖는 광이 광 이미지 셔터를 통과할 수 았다면, 전광 박막충 (14)의 상하부에 20V의 전압이 인가되는 경우, 전광 박막 층 (14)내에 전기장이 발생하게 되어 굴절를이 변화한다. 그러면, 광 이미지 셔터의 투과 특성이 변하면서 약 870nm의 증심 과장을 갖는 광이 광 이미지 셔터를 통과할 수도 있다. 여기서, 투과되는 파장인 850nm, 870nm 은 단지 예시적인 것으로, 전광 박막층 (14)의 굴절를 및 두께와 제 1 및 제 2 반사층의 설계에 따라 투과 과장의 조절이 가능하다. 전광 박막층 (14)에 전기장이 인가되기 전과 인가된 후의 광투과 특성이 변경되어 광 이미지 셔터는 특정파장 대역을 갖는 광을 전기적으로 제어하 는 셔터의 역할을 할수 있다.  c 2 Therefore, the light transmission characteristics of the optical image shutter can be changed by adjusting the voltage difference applied to the first and second electrodes 12 and 15. For example, if light having a center wavelength of about 850 nm can pass through the optical image shutter before the electric field is applied to the all-optical thin film layer 14, when a voltage of 20 V is applied to the upper and lower portions of the all-optical thin film battery 14, An electric field is generated in the all-optical thin film layer 14, thereby changing the refraction. Then, the light having an exaggeration of about 870 nm may pass through the optical image shutter while the transmission characteristic of the optical image shutter is changed. Here, 850 nm and 870 nm, which are transmitted wavelengths, are merely exemplary, and the transmission exaggeration can be adjusted according to the refractive index and thickness of the all-optical thin film layer 14 and the design of the first and second reflective layers. The light transmission characteristics before and after the electric field is applied to the all-optical thin film layer 14 are changed, so that the optical image shutter may serve as a shutter for electrically controlling light having a specific wavelength band.
투과형 광 이미지 셔터 (100, 101, 102)에 포함된 각 층의 증착은 화학기상증 착, 스퍼터링, PLEKPulsed Laser Deposion) 방법 등을 사용할 수 있다. 그러나 투 과형 광 이미지 셔터 (100, 101, 102)에 유리 기판 (10)올 사용하는 경우, 유리 기 판 (10)은 비결정 기판인 반면 제 1 반사층은 결정성 물질이므로, 제 1 반사충이 유리 기판 (10)에 결정화하기 어려을 수 있다. 이와 같은 경우, 결정성이 좋은 기판 (10) 을 사용하여 제 1 반사층, 제 1 전극 (12), 통전 방지층 (13, 17), 전광 박막층 (14), 제 2 전극 (15) 및 제 2 반사층을 순차적으로 형성한 후에, 상기 형성된 투광성 광 이 미시 셔터의 일부를 플립-칩 본딩 (flip-chip bonding) 기법으로 유리와 같은 투명 기판 (10)에 접합하는 것도 가능하다. 도 4a 내지 도 4d는 이러한 방식으로 광 이미 지 셔터를 제조하는 방법을 도시하고 있다. Deposition of each layer included in the transmissive optical image shutters 100, 101, and 102 may use chemical vapor deposition, sputtering, or PLEKPulsed Laser Deposion. However, when the glass substrate 10 is used for the transmissive optical image shutters 100, 101, and 102, the glass substrate 10 is an amorphous substrate while the first reflective layer is a crystalline material. Crystallization to (10) may be difficult. In such a case, the first reflective layer, the first electrode 12, the current prevention layer 13, 17, the all-light thin film layer 14, After sequentially forming the second electrode 15 and the second reflective layer, a portion of the formed transmissive light micro shutter is bonded to a transparent substrate 10 such as glass by flip-chip bonding. It is also possible. 4A-4D illustrate a method of manufacturing an optical image shutter in this manner.
먼저, 도 4a를 참조하면, Si 이나 GaAs와 같은 결정성 기판 (20) 위에 회생 층 (21), 제 2 반사층 (16) 및 제 2 전극 (15)을 차례로 형성한다. 결정성 기판 (20)은 이후에 제거될 것이기 때문에 반드시 투명할 필요는 없으며, 단지 결정성이 우수한 물질로 이루어지면 된다. 그리고, 제 2 반사층 (16) 및 제 2 전극 (15)에 대해서는 앞 서 설명한 그대로 적용된다ᅳ 그런 후, 제 2 전극 (15) 위에 전광 박막층 (14), 통전 방지층 (13), 제 1 전극 (12) 및 제 1 반사층 (11)을 계속하여 형성할 수 있다. 여기서, 전광 박막층 (14)은 예를 들어 ¾m또는 그 이하의 두께로 형성될 수 있다.  First, referring to FIG. 4A, a regenerative layer 21, a second reflective layer 16, and a second electrode 15 are sequentially formed on a crystalline substrate 20 such as Si or GaAs. Since the crystalline substrate 20 will be removed later, it is not necessary to be transparent, but only a material having excellent crystallinity. Then, the second reflective layer 16 and the second electrode 15 are applied as described above. Then, on the second electrode 15, the all-optical thin film layer 14, the energization preventing layer 13, and the first electrode ( 12) and the first reflective layer 11 can be formed continuously. Here, the all-optical thin film layer 14 may be formed to a thickness of, for example, ¾m or less.
다음으로 도 4b를 참조하면, 예를 들어 플립-칩 본딩 기법을 이용하여 제 1 반사층 (11)을 유리와 같은 투명한 기판 (10) 위에 접합한다ᅳ 그리고, 도 4c에 도시 된 바와 같이 회생층 (21)을 제거하면, 결정성 기판 (20)이 제 1 반사층 (11)으로부터 떨어지게 된다. 그러면 최종적으로 도 4d와 같은 구조의 투과형 광 이미지 셔 터 (100)가 형성될 수 있다.  Referring next to FIG. 4B, the first reflective layer 11 is bonded onto a transparent substrate 10 such as glass, for example using a flip-chip bonding technique, and a regenerative layer (as shown in FIG. 4C). If 21 is removed, the crystalline substrate 20 is separated from the first reflective layer 11. Then, the transmissive optical image shutter 100 having the structure as shown in FIG. 4D may be finally formed.
도 4d에 도시된 투과형 광 이미지 셔터 (100)의 경우, 통전 방지층 (13)이 전 광 박막층 (14) 및 제 1 전극 (12) 사이에 형성되지만, 전광 박막춤 (14)과 제 2 전 극 (15) 사이에 통전 방지층 (17)이 형성될 수도 있다. 뿐만 아니라, 전광 박막 층 (14)과 제 1 전극 (12) 사이 및 전광 박막충 (14)과 제 2 전극 (15) 사이 모두에 통전 방지층 (13, 17)이 형성될 수 있다. -In the case of the transmission type optical image shutter 100 shown in FIG. 4D, an anti-conduction layer 13 is formed between the all-light thin film layer 14 and the first electrode 12, but the all-light thin film dancing 14 and the second electrode are provided. An energization preventing layer 17 may be formed between the layers 15. In addition, energization is performed between the all-optical thin film layer 14 and the first electrode 12 and between the all-optical thin film charge 14 and the second electrode 15. Protective layers 13 and 17 may be formed. -
. 지금까지는 투과형 광 이미지 셔터 (100, 101, 102)에 대해 설명하였지만, 위 에서 설명한 것과 동일한 구조로 반사형 광 이미지 셔터를 구성하는 것도 가능하 다" · ' ' 도 5는 본 발명의 일 실시예에 따른 반사형 광 이미지 셔터 (300, 301, 302) 의 구조를 나타내는 단면도이다. 도 5를 참조하면, 반사형 광 이미지 셔터 (300)는 기판 (30), 기판 (30) 위에 배치된 버퍼층 (31), 버퍼층 (31) 위에 배치된 제 1 전 극 (32), 제 1 전극 (32) 위에 배치된 통전 방지층 (33, 37), 통전 방지층 (33, 37) 위 에 배치된 전광 박막층 (34), 전광 박막층 (34) 위에 배치된 제 2 전극 (35) 및 제 2 전극 (35) 위에 배치된 반사층 (36)을 포함할 수 있다. . So far has been described for a transmission-type optical image shutter (100, 101, 102), and to also possible to configure the reflective optical image shutter with the same structure as that described in the above "," "Figure 5 is one embodiment of the present invention Is a cross-sectional view showing the structure of the reflective optical image shutters 300, 301, and 302. Referring to Fig. 5, the reflective optical image shutter 300 includes a substrate 30, a buffer layer disposed on the substrate 30 ( 31, the first electrode 32 disposed on the buffer layer 31, the anti-conduction layers 33 and 37 disposed on the first electrode 32, and the all-light thin film layer 34 disposed on the anti-conduction layers 33 and 37. ), A second electrode 35 disposed on the all-optical thin film layer 34, and a reflective layer 36 disposed on the second electrode 35.
도 5에 도시된 반사형 광 이미지 셔터 (300)는 반사형이기 때문에, 투명한 기 판을 사용할 필요가 없다. 예를 들어 반사형 광 이미지 셔터 (300)는 Si이나 GaAs와 같은 결정성 기판 (30)을 사용할 수 있다.  Since the reflective optical image shutter 300 shown in FIG. 5 is reflective, it is not necessary to use a transparent substrate. For example, the reflective optical image shutter 300 may use a crystalline substrate 30 such as Si or GaAs.
그리고, 버퍼층 (31)은 제 1 전극 (32)을 기판 (31)위에 결정화하기 위한 층으로 서, 제 1 전극 (32)의 열팽창 계수와 기판 (30)의 열팽창 계수 사이의 열 팽창 계수를 갖는 물질로 형성될 수 있다. 예를 i어, 버퍼층 (31)은 Si¾, P205, Ti02, Li20, BaO 등의 산화물 중.적어도 하나 이상의 물질로 형성될 수 있다. The buffer layer 31 is a layer for crystallizing the first electrode 32 on the substrate 31 and has a thermal expansion coefficient between the thermal expansion coefficient of the first electrode 32 and the thermal expansion coefficient of the substrate 30. It can be formed of a material. For example, the buffer layer 31 may be formed of at least one or more of oxides such as Si¾, P 2 O 5 , Ti0 2 , Li 2 O, BaO, and the like.
또한, 반사형 광 이미지 셔터 (200)의 경우, 반사형으로 동작하기 위해 제 1 전극 (31)은 불투명한 물질일 수 있다. 그리고, 제 1 전극 (32)은 높은 전기 전도성과 반사율을 갖는 Pt, Cu, kg, Ir, Ru, Al, Au 중 적어도 하나를 포함하는 금속 물질 일 수 있다. 제 1 전극 (32)의 반사율은, 예를 들어, 약 90%이상일 수 있다ᅳ In addition, in the case of the reflective optical image shutter 200, the first electrode 31 may be an opaque material in order to operate in the reflective type. And, the first electrode 32 has a high electrical conductivity It may be a metal material including at least one of Pt, Cu, kg, Ir, Ru, Al, and Au having a reflectance. The reflectance of the first electrode 32 may be, for example, about 90% or more.
통전 방지층 (33)은 Zr02, Ti02) MgO, Ce02) A1203, Hf02) NbO, Si02, Si3N4중 적어도 하나를 포함하는 절연 물질로 형성될 수 있다. 그리고, 통전 방지층 (33)의 절연 물질은 전광 박막층 (34)의 물질 특성에 따라 그 종류가 달라질 수 있다. 예를 들어, 통전 방지층 (33)은 전광 박막층 (34)의 격자 상수와 유사한 절연 물질을 사용 할 수 있다. 그리하여, 전광 박막층 (34)으로 KTN을 사용하는 경우, KTN의 격자 상 수와 유사한 격자 상수를 갖는 MgO을 통전 방지층 (33)으로 이용할 수 있다.. KTN의 격자 상수가 a=3.3A일 때, 격자 상수가 a=4.2lA인 MgO을 통전 방지층 (33)으로 이 용할 수 있다. The anti-current layer 33 may be formed of an insulating material including at least one of Zr0 2 , Ti0 2) MgO, Ce0 2) A1 2 0 3 , Hf0 2) NbO, Si0 2 , and Si 3 N 4 . In addition, the kind of the insulating material of the current prevention layer 33 may vary depending on the material properties of the all-light thin film layer 34. For example, the current prevention layer 33 may use an insulating material similar to the lattice constant of the all-light thin film layer 34. Thus, when KTN is used as the all-optical thin film layer 34, MgO having a lattice constant similar to the lattice constant of KTN can be used as the energization preventing layer 33. When the lattice constant of KTN is a = 3.3A, MgO having a lattice constant of a = 4.2 lA can be used as the current prevention layer 33.
전광 박막층 (34)은 인가된 전기장의 크기에 따라 굴절률이 변하는 전광효 과 (Electro-Optical effect)를 갖는 물질로 이루어질 수 있다. 이러한 전광 박막 층 (34)의 물질로는, 예를 들어, KTatxNbx03(0<x<l)(KTN), LiNb03(LN), Pb(Zr0i- xTix)03(0<x<l)(PZT), DAST(4-dimethylamino-N-methyl-4 st i lbazol ium) 등의 결정 을 이용할 수 있다. 전광 박막층 (34)의 전광 효과를 향상시키기 위해서는 전광 박 막층 (34)의 결정성과 방향성을 제어하는 것이 중요하다. 예를 들어, KTN의 경우에, 전광 효과를 위해서 전광 박막층 (34)은 a=3.9A의 격자 상수를 갖는 사방정 계 (Perovskite material)의 구조를 갖을 수 있다. The all-optical thin film layer 34 may be made of a material having an electro-optical effect in which the refractive index is changed according to the magnitude of the applied electric field. As the material of this all-optical thin film layer 34, for example, KTa tx Nb x 0 3 (0 <x <l) (KTN), LiNb0 3 (LN), Pb (Zr0i- x Ti x ) 0 Crystals such as 3 (0 <x <l) (PZT) and DAST (4-dimethylamino-N-methyl-4 st lblbolium) may be used. It is important to control the crystallinity and directivity of the all-light thin film layer 34 in order to improve the all-light effect of the all-light thin film layer 34. For example, in the case of KTN, the all-optical thin film layer 34 may have a structure of a perovskite material having a lattice constant of a = 3.9 A for the all-optical effect.
제 2 전극 (35)은 일반적인 투명 금속 산화물, 예를 들어, ITO lndium Tin Oxide) , AZO(Aluminium Zinc Oxide) , IZO( Indium Zinc Oxide) , Sn02(Tin oxide) 또 는 ln203등으로 형성될 수 있다. 반사층 (36)은 낮은 반사율, 예를 들어, 약 50¾» 정도일 수 있다. 따라서, 입 사광은 제 1 전극 (31)과 반사층 (36) 사이에서 패브리 -페로 공진을 하며, 최종적으로 는 반사율이 상대적으로 낮은 반사층 (36)으로 출력된다. 반사층 (36)은 굴절를이 서 로 다른 두 종류 이상의 투명한 유전체 박막을 번갈아 적층함으로써 특정 파장 대 역의 광에 대해 반사도를 갖도록 형성될 수 있다. 한편, 통전 방지충 (33, 37)은 도 6 및 도 7에 도시된 바와 같이, 광전 박막 층 (34)과 제 2 전극 (35)사이에도 배치될 수 있다. The second electrode 35 is a common transparent metal oxide, for example ITO lndium Tin Oxide), AZO (Aluminum Zinc Oxide), IZO (Indium Zinc Oxide), Sn0 2 (Tin oxide) or ln 2 0 3 It can be formed. Reflective layer 36 may have a low reflectance, for example, about 50¾ ». Therefore, the incident light resonates with Fabry-Per between the first electrode 31 and the reflective layer 36, and finally outputs to the reflective layer 36 having a relatively low reflectance. The reflective layer 36 may be formed to have reflectivity for light of a specific wavelength band by alternately stacking two or more kinds of transparent dielectric thin films having different refractive indices. Meanwhile, the anti-energization insects 33 and 37 may be disposed between the photoelectric thin film layer 34 and the second electrode 35, as shown in FIGS. 6 and 7.
도 5 내지 도 7에 도시된 반사형 광 이미지 셔터 (300, 301, 302)는 플립-칩 본딩 기법으로 버퍼층 (31)을 기판 (30)에 증착시킬 수 있다. 그리고, 통전 방지 층 (33 및 /또는 37) 및 전광 박막층 (34)는 PLD 증착 공정으로 증착할 수 있다. 따라 서, 반사형 광 이미지 셔터 (300, 301, 302)는 기판 (30) 위에 버퍼층 (31), 제 1 전 극 (32) 둥의 순서로 순차적으로 적층될 수 있다.  The reflective optical image shutters 300, 301, and 302 illustrated in FIGS. 5 to 7 may deposit the buffer layer 31 on the substrate 30 by flip-chip bonding. In addition, the current prevention layer 33 and / or 37 and the all-light thin film layer 34 may be deposited by a PLD deposition process. Accordingly, the reflective optical image shutters 300, 301, and 302 may be sequentially stacked on the substrate 30 in the order of the buffer layer 31 and the first electrode 32.
전술한 바와 같이, 본 발명에 따르면 유리 기판 등과 같은 저가의 투명한 기 판을 사용하여 저온에서 결정질의 전광 박막충을 형성할 수 있다. 따라서, 광 이미 지 셔터를 제조하는 데 있어서 원가 절감 및 수율 향상 효과를 얻을 수 있다. 또 한, 유리 기판 위에 전광 결정을 박막의 형태로 형성할 수 있기 때문에, 결과적인 광 이미지 셔터는 작은 두께를 가질 수 있다ᅳ 예를 들어, 제조된 광 이미지 셔터의 총 두께는 100/zm내지 1mm, 기판을 제외하면 100 이하가 될 수 있다. 또한, 전광 박막층과 전극들 사이에 전류의 유입을 방지하는 통전 방지층을 형성하기 때문에 누설 전류를 감소시킬 수 있을 뿐만 아니라, 전광 박막층의 격자 상수와 유사한 통전 방지층을 사용하기 때문에 전광 박막층 및 통전 방지층의 균열 을 방지할수 있다. As described above, according to the present invention, a low-cost transparent substrate such as a glass substrate may be used to form a crystalline all-optical thin film worm at low temperature. Therefore, cost reduction and yield improvement effect can be obtained in manufacturing the optical image shutter. In addition, since the all-optical crystal can be formed in the form of a thin film on the glass substrate, the resulting optical image shutter can have a small thickness. The total thickness can be 100 / zm to 1mm, or less than 100 except for the substrate. In addition, since the current prevention layer prevents the inflow of current between the all-light thin film layer and the electrodes, not only can the leakage current be reduced, but also the use of the anti-electric layer similar to the lattice constant of the all-light thin film layer, It can prevent cracking.
이러한 결정질의 전광 박막층을 이용한 광 이미지 셔터는 수 ns의 매우 빠른 셔터 개폐 속도를 가질 수 있으며 대면적화가 가능하기 때문에, 카메라, 평판 디스 플레이, 광변조기, 3D 카메라, LADAR 등과 같은 다양한 광학 장치에서 셔터로서 사 용될 수 있다.  Optical image shutters using these crystalline all-optical thin film layers can have very fast shutter opening and closing speeds of several ns and can be large-area, which is why shutters are used in various optical devices such as cameras, flat panel displays, optical modulators, 3D cameras, and LADARs. Can be used as
지금까지, 본 발명의 이해를 돕기 위하여 광 이미지 셔터 및 그 제조 방법에 대한 예시적인 실시예가 설명되고 첨부된 도면에 도시되었다. 그러나, 이러한 실시 예는 단지 본 발명을 예시하기 위한 것이고 이를 제한하지 않는다는 점이 이해되어 야 할 것이다. 그리고 본 발명은 도시되고 설명된 설명에 국한되지 않는다는 점이 이해되어야 할 것이다. 이는 다양한 다른 변형이 본 기술분야에서 통상의 지식을 가진 자에게 일어날수 있기 때문이다.  Thus far, exemplary embodiments of the optical image shutter and its manufacturing method have been described and illustrated in the accompanying drawings in order to facilitate understanding of the present invention. It should be understood, however, that such embodiments are merely illustrative of the invention and do not limit it. And it is to be understood that the invention is not limited to the illustrated and described description. This is because a variety of other variations may occur to those skilled in the art.
【부호의 설명】  [Explanation of code]
10, 30 : 기판 11 : 저 U반사층  10, 30: Substrate 11: Low U reflective layer
12, 32 : 제 1 전극 13, 17, 33, 37 : 통전 방지층  12, 32: first electrode 13, 17, 33, 37: energization prevention layer
14, 34 : 전광 박막층 15, 35 : 제 2 전극  14, 34: all-light thin film layer 15, 35: second electrode
16 : 제 2 반사층 31 : 버퍼층 16: second reflection layer 31: buffer layer
61· 61

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
전기장에 따라 굴절율이 변하는 전광 박막층;  An all-light thin film layer having a refractive index changed according to an electric field;
상기 전광 박막층을 사이에 두고 이격 배치된 제 1 및 제 2 전극; 및  First and second electrodes spaced apart from each other with the all-optical thin film layer interposed therebetween; And
상기 제 1 전극과 상기 전광 박막층의 사이 및 상기 제 2 전극 및 상기 전광 박막층의 사이 증 적어도 하나의 영역에 배치되어 상기 전광 박막층으로의 전류 유 입을 방지하는 통전 방지층;를 포함하는 광 이미지 셔터.  And an anti-energization layer disposed in at least one region between the first electrode and the all-optical thin film layer and between the second electrode and the all-optical thin film layer to prevent current from flowing into the all-optical thin film layer.
【청구항 2]  [Claim 2]
제 1항에 있어서, .  The method of claim 1, wherein.
.상기 전광 박막층은 KTai-xNbxO3(0<x<l)(KTN), LiNb03(LN), Pb(ZrO!-xTix)03(0The electro-optic thin film layer is KTai- x Nb x O 3 (0 <x <l) (KTN), LiNb0 3 (LN), Pb (ZrO -! X Ti x) 0 3 (0
<x<l)(PZT) 및 DAST(4-dimethylamino-N-methyl-4 st i lbazol ium) 중에서 적어도 하나의 물질을 포함하는 광 이미지 셔터. An optical image shutter comprising at least one of <x <l) (PZT) and DAST (4-dimethylamino-N-methyl-4 sti lbazol ium).
【청구항 3】  [Claim 3]
제 1항에 있어서, .  The method of claim 1, wherein.
상기 통전 방지층은 절연 물질로 형성된 광 이미지 셔터.  And the anti-conduction layer is formed of an insulating material.
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 절연 물질희 격자 상수는 상기 전광 박막층의 격자 상수와 유사한 광 이미지 셔터. And the lattice constant of the insulating material is similar to the lattice constant of the all-optical thin film layer.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 통전 방지층은 Zr02( Ti02, MgO, SrTi03, A1203, Hf02, NbO, Si02 및 Si3N4중 적어도 하나로 이루어진 광 이미지 셔터. The energization prevention layer is Zr02 ( Ti02, MgO, SrTi03, A1203, Hf02, NbO, Si02 and Si3N4 optical image shutter.
【청구항 6】  [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 제 1 전극의 하부에 배치되는 배치되는 버퍼층;  A buffer layer disposed under the first electrode;
상기 버퍼층의 하부에 배치되는 기판; 및  A substrate disposed under the buffer layer; And
상기 제 2 전극의 상부에 배치되는 반사층;를 더 포함하는 광 이미지 셔터.  And a reflective layer disposed over the second electrode.
【청구항 7】 [Claim 7]
제 6항에 있어서,  The method of claim 6,
상기 기판은 결정성 기판인 광 이미지 셔터.  And the substrate is a crystalline substrate.
【청구항 8]  [Claim 8]
제 7항에 있어서,  The method of claim 7, wherein
상기 기판은 Si, GaAs 및 Sapphire 중 적어도 하나로 형성되고, 상기 저 U전 극은 Pt, Cu, Ag,- Ir, Ru, Al , Au 중 적어도 하나로 형성된 광 이미지 셔터.  And the substrate is formed of at least one of Si, GaAs, and Sapphire, and the low U electrode is formed of at least one of Pt, Cu, Ag, Ir, Ru, Al, Au.
【청구항 9】  [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 제 1 전극의 하부에 배치되는 제 1 반사층;  A first reflective layer disposed under the first electrode;
상기 제 1 반사층의 하부에 배치되는 기판; 및 상기 제 2 전극의 상부에 배치되는 게 2 반사층;를 더 포함하는 광 이미지 셔 터. A substrate disposed under the first reflective layer; And And a second reflecting layer disposed on the second electrode.
【청구항 10]  [Claim 10]
제 9항에 있어서,  The method of claim 9,
상기 기판은 투명한 비정질 기판이고, 상기 제 1 전극은 투명 전도성 산화물 또는 투명 산화물 반도체로 형성된 광 이미지 셔터.  And the substrate is a transparent amorphous substrate, and the first electrode is formed of a transparent conductive oxide or a transparent oxide semiconductor.
【청구항 11】  [Claim 11]
제 10항에 있어서,  The method of claim 10,
상기 제 1 전극은 SrTi03 또는 ZnO 계 물질로 형성되는 광 이미지 셔터. And the first electrode is formed of SrTi0 3 or ZnO-based material.
【청구항 12] [Claim 12]
제 9항에 있어서,  The method of claim 9,
제 2 반사층의 반사율은 상기 제 1 반사층의 반사율과 같은 광 이미지 셔터.  The reflectance of the second reflecting layer is equal to the reflectance of the first reflecting layer.
【청구항 13】 [Claim 13]
제 1 반사층 위에 제 1 전극을 형성하는 단계 ;  Forming a first electrode on the first reflective layer;
상기 제 1 전극 위에 전기장에 따라 굴절율이 변하는 전광 박막층을 형성하는 단계;  Forming an all-optical thin film layer on the first electrode whose refractive index changes in accordance with an electric field;
상기 전광 박막층 위에 제 2 전극을 형성하는 단계 ;  Forming a second electrode on the all-optical thin film layer;
상기 제 2 전극위에 반사층을 형성하는 단계 ;를 포함하고,  Forming a reflective layer on the second electrode;
상기 전광 박막층의 형선 전 및 형성 후 단계 중 적어도 하나의 단계에 상기 전광 박막층으로의 전류 유입올 방지하는 통전 방지층을 형성하는 단계;를 포함하 는 광 이미지 셔터 제조 방법. At least one of the steps before and after forming the all-optical thin film layer Forming an anti-conduction layer to prevent the current flowing into the all-optical thin film layer; Optical image shutter manufacturing method comprising a.
【청구항 14】  [Claim 14]
결정질 기판 위에 회생층을 형성하는 단계;  Forming a regenerative layer on the crystalline substrate;
상기 회생층 위에 제 1 반사층을 형성하는 단계;  Forming a first reflective layer on the regenerative layer;
상기 제 1 반사층 위에 제 1 전극을 형성하는 단계 ;  Forming a first electrode on the first reflective layer;
상기 제 1 전극위에 전기장에 따라 굴절률이 변화하는 전광 박막층올 형성하 는 단계 ;  Forming an all-optical thin film layer on the first electrode, the refractive index of which is changed in accordance with an electric field;
상기 전광 박막층위에 제 2 전극을 형성하는 단계;  Forming a second electrode on the all-optical thin film layer;
상기 제 2 전극위에 제 2 반사층을 형성하는 단계 ;  Forming a second reflective layer on the second electrode;
플립-칩 본딩 방식으로 투명 기판위에 상기 제 2 반사층을 접합하는 단계; 상기 회생층을 제거하여 상기 제 1 반사층 위의 상기 결정질 기판을 떼어내 는 단계 ;를 포함하고,  Bonding the second reflective layer onto the transparent substrate by flip-chip bonding; Removing the regenerative layer to separate the crystalline substrate on the first reflective layer;
상기 전광 박막층의 형선 전 및 형성 후 단계 중 적어도 하나의 단계에 상기 전광 박막층으로의 전류 유입을 방지하는 통전 방지층을 형성하는 단계;를 더 포함 하는 광 이미지 셔터 제조 방법 .  And forming an anti-conduction layer for preventing current from flowing into the all-optical thin film layer in at least one of before and after forming the all-optical thin film layer.
PCT/IB2012/001514 2011-05-30 2012-05-30 Introduction of an insulating buffer layer in multilayer with electro - optic layer WO2012164405A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0051668 2011-05-30
KR1020110051668A KR101912718B1 (en) 2011-05-30 2011-05-30 Optical image shutter and method of fabricating the same

Publications (2)

Publication Number Publication Date
WO2012164405A2 true WO2012164405A2 (en) 2012-12-06
WO2012164405A3 WO2012164405A3 (en) 2013-02-21

Family

ID=46845781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/001514 WO2012164405A2 (en) 2011-05-30 2012-05-30 Introduction of an insulating buffer layer in multilayer with electro - optic layer

Country Status (2)

Country Link
KR (1) KR101912718B1 (en)
WO (1) WO2012164405A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696776A (en) * 2019-03-12 2019-04-30 京东方科技集团股份有限公司 Light modulation panel and its control method, display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086257B1 (en) * 2018-10-26 2020-03-06 유민기 Color changing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD124848A1 (en) * 1975-07-24 1977-03-16 Hans Jehmlich DEVICE FOR LIGHT CURRENT CONTROL
US6093242A (en) * 1996-08-05 2000-07-25 Ut-Battelle, Llc Anisotropy-based crystalline oxide-on-semiconductor material
US5993544A (en) * 1998-03-30 1999-11-30 Neocera, Inc. Non-linear optical thin film layer system
US6888661B1 (en) * 2002-06-13 2005-05-03 Cheetah Omni, Llc Square filter function tunable optical devices
JP2005037762A (en) * 2003-07-17 2005-02-10 Sun Tec Kk Optical element, tunable optical filter, optical add drop module, and tunable light source
WO2009005561A2 (en) * 2007-05-02 2009-01-08 Massachusetts Institute Of Technology Optical devices having controlled nonlinearity
KR101603778B1 (en) * 2009-01-19 2016-03-25 삼성전자주식회사 Optical image shutter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696776A (en) * 2019-03-12 2019-04-30 京东方科技集团股份有限公司 Light modulation panel and its control method, display device
US11592704B2 (en) 2019-03-12 2023-02-28 Beijing Boe Display Technology Co., Ltd. Dimming panel, control method thereof, and display device

Also Published As

Publication number Publication date
KR20120133146A (en) 2012-12-10
KR101912718B1 (en) 2018-10-29
WO2012164405A3 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
US8289606B2 (en) Optical image shutter and method of manufacturing the same
US20100180941A1 (en) Antireflection film of solar cell, solar cell, and method of manufacturing solar cell
CN1864091A (en) Tunable optical filter with heater on a cte-matched transparent substrate
US20140124806A1 (en) Light Emitter with Coating Layers
US7314673B2 (en) Thin film infrared transparent conductor
US20160147125A1 (en) Electronic devices wth transparent conducting electrodes, and methods of manufacture thereof
US20200365751A1 (en) Colored filter assemblies for highly-efficient and angle-robust photovoltaic devices
WO2020066930A1 (en) Piezoelectric device, and piezoelectric device manufacturing method
EP3465782B1 (en) Transparent piezoelectric device and method for manufacturing the same
US10914638B2 (en) Pyroelectric sensor
WO2012164405A2 (en) Introduction of an insulating buffer layer in multilayer with electro - optic layer
CN102947947B (en) Photo-electric conversion device
TWI668850B (en) Light detecting film, light detecting device, light detecting display device and preparation method of photosensitive diode
CN112596281A (en) Spatial light modulator and method for manufacturing the same
US11401467B2 (en) Display device using two-dimensional phase transition material and method for manufacturing same
US20140360575A1 (en) Colored solar cell device
CN111653631B (en) Hot electron photodetector with working wavelength independent of incident light angle and manufacturing method
US20210325759A1 (en) Optical element and electronic apparatus
JP6656469B2 (en) Optical components
KR20150055168A (en) A silicon solar cell
JP2000056344A (en) Optical waveguide element and production of the same
JP4506088B2 (en) Manufacturing method of optical element
JP2003021850A (en) Waveguide type optical control device and its manufacturing method
KR20110081596A (en) Optical image shutter and method of fabricating the same
JP4412796B2 (en) Manufacturing method of optical waveguide element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758887

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758887

Country of ref document: EP

Kind code of ref document: A2