WO2012163125A1 - Method and system for channel information feedback - Google Patents

Method and system for channel information feedback Download PDF

Info

Publication number
WO2012163125A1
WO2012163125A1 PCT/CN2012/072146 CN2012072146W WO2012163125A1 WO 2012163125 A1 WO2012163125 A1 WO 2012163125A1 CN 2012072146 W CN2012072146 W CN 2012072146W WO 2012163125 A1 WO2012163125 A1 WO 2012163125A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
matrix
rotation
channel information
base station
Prior art date
Application number
PCT/CN2012/072146
Other languages
French (fr)
Chinese (zh)
Inventor
姜静
郁光辉
朱常青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012163125A1 publication Critical patent/WO2012163125A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • H04L2025/03808Transmission of equaliser coefficients

Abstract

Disclosed are a method and system for channel information feedback capable of decomposing a pre-coding matrix to be fed back into a product of a plurality of Givens rotation matrices, each rotation matrix corresponding to a rotation angle; the corresponding rotation angles of the decomposed rotation matrices being fed back. The method and the system of the present invention are a channel compression and quantization feedback solution based on Givens transform and can use continuous Givens rotations to convert a pre-coding matrix to be fed back into a finite angular value, and a base station can use these fed back and quantized angles to re-establish a channel matrix, thereby calculating a pre-coding vector to effectively reduce feedback overheads. Regarding conventional scalar quantization, the present invention is able to effectively reduce the amount of quantization elements, thereby reducing the feedback amount; and regarding vector quantization, as it is only necessary to perform a decomposition and quantization operation, it is possible to effectively reduce system complexities while guaranteeing system performance.

Description

一种信道信息反馈方法和系统 技术领域  Channel information feedback method and system
本发明涉及通信领域, 具体涉及一种信道信息反馈方法和系统。 背景技术  The present invention relates to the field of communications, and in particular, to a channel information feedback method and system. Background technique
协作多点传输(CoMP )技术可以有效提高系统的频率利用率, 能够通 过小区间的协作处理有效抑制用户间干扰。 然而随着天线数的增加以及多 小区的合作, 用户需要同时反馈本地小区及其协作小区的信道信息, 反馈 量很大。 因此用户对估计得到的信道状态信息(CSI )进行量化压缩, 然后 将量化后的比特信息反馈给基站。 基站根据反馈得到的量化信息重构信道, 设计预编码矩阵。 这样可以通过小区间协作来有效抑制多用户间干扰, 提 高小区的边缘吞吐量和平均吞吐量。  Cooperative Multipoint Transmission (CoMP) technology can effectively improve the frequency utilization of the system, and can effectively suppress inter-user interference through coordinated processing between cells. However, as the number of antennas increases and the cooperation of multiple cells, the user needs to simultaneously feed back the channel information of the local cell and its coordinated cell, and the amount of feedback is large. Therefore, the user performs quantization and compression on the estimated channel state information (CSI), and then feeds back the quantized bit information to the base station. The base station reconstructs the channel according to the quantized information obtained by the feedback, and designs a precoding matrix. This can effectively suppress inter-user interference through inter-cell cooperation, and improve the edge throughput and average throughput of the cell.
传统的信道量化压缩方案主要分为两种: 标量量化和矢量量化。 标量 量化中的一种方法是将矩阵中的每个元素量化为固定数目的比特; 另外一 种方法是对信道协方差矩阵的对角元素和上三角元素进行固定数目比特的 量化。 标量量化与需要量化的元素个数有很大关系, 当需要量化的元素数 目较多时, 需要较大的反馈量。 矢量量化可以有效减少反馈量, 其思想为: 首先从预定码本中选择到达用户能量最大的码字, 然后反馈码字索引。 相 对标量量化而言, 矢量量化可以有效减少量化比特的数目, 提高系统性能。 然而在 CoMP系统中, 因为需要对每个小区的码本进行联合优化搜索, 因 此在很大程度上增加了系统复杂度。 发明内容  Traditional channel quantization compression schemes are mainly divided into two types: scalar quantization and vector quantization. One method in scalar quantization is to quantize each element in the matrix to a fixed number of bits; another method is to quantize the diagonal elements and upper triangular elements of the channel covariance matrix by a fixed number of bits. Scalar quantization has a lot to do with the number of elements that need to be quantized. When the number of elements to be quantized is large, a large amount of feedback is needed. Vector quantization can effectively reduce the amount of feedback. The idea is: First, select the codeword that reaches the user's maximum energy from the predetermined codebook, and then feed back the codeword index. For relative scalar quantization, vector quantization can effectively reduce the number of quantization bits and improve system performance. However, in the CoMP system, system complexity is greatly increased because of the need for joint optimization search for the codebook of each cell. Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种信道信息反馈方法和系统, 在保证系统性能的基础上有效降低系统复杂度。 In view of this, the main object of the present invention is to provide a channel information feedback method and system, Effectively reduce system complexity based on system performance.
为达到上述目的, 本发明的技术方案是这样实现的:  In order to achieve the above object, the technical solution of the present invention is achieved as follows:
一种信道信息反馈方法, 包括:  A channel information feedback method includes:
将需要反馈的预编码矩阵分解为多个 Givens旋转矩阵的乘积, 每个旋 转矩阵只与旋转角度有关; 反馈完成分解的所述旋转矩阵的相应旋转角度。
Figure imgf000004_0001
个 值和
The precoding matrix that needs feedback is decomposed into a product of a plurality of Givens rotation matrices, each rotation matrix being only related to the rotation angle; and the corresponding rotation angle of the rotation matrix that completes the decomposition is fed back.
Figure imgf000004_0001
Value and
个 ^值。 ^ value.
其中, 的取值范围为 [02 ], ^的取值范围为 [0/2]; Where, the value range is [ 0 , 2 ], and the range of ^ is [ 0 , /2 ];
分别用不同的比特数量化。  Differentiate with different bits.
其中, 反馈的所述旋转角度以反馈矩阵的形式表示, 该反馈矩阵的格 式为: V =Vi NJ; The rotation angle of the feedback is expressed in the form of a feedback matrix, and the format of the feedback matrix is: V = [ V i NJ;
其中, 是终端至第一个协作基站的信道信息反馈矩阵, v2是终端至 第二个协作基站的信道信息反馈矩阵, VN是终端至第 N个协作基站的信道 信息反馈矩阵。 The channel information feedback matrix of the terminal to the first coordinated base station, v 2 is a channel information feedback matrix of the terminal to the second coordinated base station, and V N is a channel information feedback matrix of the terminal to the Nth cooperative base station.
其中, 每个信道信息反馈矩阵采用和单小区相同的反馈格式; 或者, 以第一个反馈矩阵为基准, 后 N-1个反馈矩阵依次以差分的形式反馈。 一种信道信息反馈系统, 包括分解单元、 反馈单元; 其中,  Each channel information feedback matrix adopts the same feedback format as the single cell; or, based on the first feedback matrix, the backward N-1 feedback matrices are sequentially fed back in the form of a difference. A channel information feedback system, comprising a decomposition unit and a feedback unit; wherein
所述分解单元, 用于将需要反馈的预编码矩阵分解为多个 Givens旋转 矩阵的乘积, 每个旋转矩阵只与旋转角度有关;  The decomposition unit is configured to decompose a precoding matrix that needs feedback into a product of a plurality of Givens rotation matrices, each rotation matrix being only related to a rotation angle;
所述反馈单元, 用于反馈由所述分解单元完成分解的所述旋转矩阵的 相应旋转角度。 Τ,υ, n7 '=1 2^=;+1 '个 值和 i=i U个 值。 The feedback unit is configured to feed back a corresponding rotation angle of the rotation matrix that is decomposed by the decomposition unit. Τ,υ, n 7 '=1 2^ =; +1 'values and i=i U values.
其中, 的取值范围为 [0, 2 ], ^的取值范围为 [0/2]; 和 ^分别用不同的比特数量化。 Where, the value range is [0, 2 ], and the range of ^ is [ 0 , /2 ]; And ^ are quantized with different bits.
其中, 所述反馈单元反馈的所述旋转角度以反馈矩阵的形式表示, 该 反馈矩阵的格式为: ¥ =【 v2,..., VN】; The rotation angle fed back by the feedback unit is expressed in the form of a feedback matrix. The format of the feedback matrix is: ¥ =[ v 2 ,..., V N 】;
其中, 是终端至第一个协作基站的信道信息反馈矩阵, v2是终端至 第二个协作基站的信道信息反馈矩阵, VN是终端至第 N个协作基站的信道 信息反馈矩阵。 The channel information feedback matrix of the terminal to the first coordinated base station, v 2 is a channel information feedback matrix of the terminal to the second coordinated base station, and V N is a channel information feedback matrix of the terminal to the Nth cooperative base station.
其中, 每个信道信息反馈矩阵采用和单小区相同的反馈格式; 或者, 以第一个反馈矩阵为基准, 后 N-1个反馈矩阵依次以差分的形式反馈。 可见, 本发明的信道信息反馈技术是一种基于 Givens变换的信道压缩 量化反馈方案。 可以通过连续 Given旋转将 M维矢量 ^变换为只有一个非 零元素的矢量, 进而可以利用连续 Givens旋转将需要反馈的预编码矩阵转 换为有限的角度值, 基站可以利用这些反馈回的量化角度重建信道矩阵, 进而计算预编码矢量, 可以有效降低反馈开销。 相对于传统的标量量化, 本发明可以有效减少量化元素的数目, 从而减少反馈量; 而相对于矢量量 化, 因为只需要进行分解量化操作, 不需要联合优化搜索, 因此可以在保 证系统性能的情况下有效降低系统复杂度。 附图说明  Each channel information feedback matrix adopts the same feedback format as the single cell; or, based on the first feedback matrix, the backward N-1 feedback matrices are sequentially fed back in the form of a difference. It can be seen that the channel information feedback technique of the present invention is a channel compression quantization feedback scheme based on Givens transform. The M-dimensional vector can be transformed into a vector with only one non-zero element by continuous Given rotation, and the pre-coding matrix that needs feedback can be converted into a finite angle value by continuous Givens rotation, and the base station can reconstruct the quantized angle by using these feedbacks. The channel matrix, and thus the precoding vector, can effectively reduce the feedback overhead. Compared with the traditional scalar quantization, the present invention can effectively reduce the number of quantized elements and thus reduce the amount of feedback; whereas with respect to vector quantization, since only the decomposition quantization operation is required, joint optimization search is not required, and thus the system performance can be guaranteed. Effectively reduce system complexity. DRAWINGS
图 1为 CoMP的系统模型;  Figure 1 shows the system model of CoMP;
图 2为本发明实施例的信道信息反馈流程简图;  2 is a schematic diagram of a channel information feedback process according to an embodiment of the present invention;
图 3为本发明实施例的信道信息反馈系统图。 具体实施方式  FIG. 3 is a diagram of a channel information feedback system according to an embodiment of the present invention. detailed description
在实际应用中, 可以提出一种基于吉闻思 Givens旋转的信道压缩量化 反馈方案。 预编码矩阵通过相关变换可以分解为一系列 Givens旋转矩阵乘 积的形式, 且每个旋转矩阵只与旋转角度有关。 这样只需量化每个旋转角 度, 发送端利用反馈信息就可以得到相应的 Givens旋转矩阵, 以重构信道 矩阵。 可见, 反馈内容是 Given旋转矩阵相关的旋转角度, 可以用固定数 目的比特量化有限的旋转角度。 然后, 基站端利用从反馈链路得到的量化 旋转角度重构信道, 并计算预编码矩阵。 相对于传统的标量量化, 本方案 可以有效减少量化元素的数目, 从而减少反馈量; 而相对于矢量量化, 因 为只需要进行分解量化操作, 不需要联合优化搜索, 因此可以在保证系统 性能的基础上有效降低系统复杂度。 In practical applications, a channel compression quantization feedback scheme based on Gwyneth Givens rotation can be proposed. The precoding matrix can be decomposed into a series of Givens rotation matrix products by correlation transformation, and each rotation matrix is only related to the rotation angle. This only needs to quantify each rotation angle Degree, the sender can use the feedback information to get the corresponding Givens rotation matrix to reconstruct the channel matrix. It can be seen that the feedback content is the rotation angle associated with the Given rotation matrix, and a finite rotation angle can be quantized with a fixed number of bits. Then, the base station reconstructs the channel using the quantized rotation angle obtained from the feedback link, and calculates a precoding matrix. Compared with the traditional scalar quantization, this scheme can effectively reduce the number of quantized elements and reduce the amount of feedback. Compared with vector quantization, because only the decomposition and quantization operations need to be performed, there is no need to jointly optimize the search, so it can guarantee the performance of the system. Effectively reduce system complexity.
在多小区多用户联合传输场景下的系统模型中, 假设系统中有两个基 站( eNB ) 1和 eNB2,共同为两个用户设备( UE ) 1和 UE 2进行协作传输, 如图 1所示。 所述基站的天线数均为 M, UE天线数均为 N。  In the system model of the multi-cell multi-user joint transmission scenario, it is assumed that there are two base stations (eNBs) 1 and eNB2 in the system, which jointly perform coordinated transmission for two user equipments (UE) 1 and UE 2, as shown in FIG. . The number of antennas of the base station is M, and the number of UE antennas is N.
基站 eNBj (j=l, 2)到 UEi (i=l, 2) 的信道为 ^'eU 。 这里假设 UE可通过下行参考信号, 估计得到两个基站到 UE的精确信道矩阵信息。 在本系统中, 可以用 和^分别表示 UE 1和 UE 2的线性预编码矩阵, 则 接收信号可以用下式表示:The channel of the base station eNBj (j=l, 2) to UEi (i=l, 2) is ^' eU . It is assumed here that the UE can estimate the accurate channel matrix information of the two base stations to the UE through the downlink reference signal. In the present system, the linear precoding matrix of UE 1 and UE 2 can be represented by and respectively, and the received signal can be expressed by the following formula:
Ί =H11 1x1 + H12 2x2 + «1 所述 ^和^分别是发送给 UE 1和 UE 2的数据符号, ηι和 表示接收 端的加性高斯零均值白噪声 (噪声方差为 2 )。 用户端为 MRC (最大比合 并)接收机, 则用户端接收信道比可以表示为:
Figure imgf000006_0001
Ί =H 11 1 x 1 + H 12 2 x 2 + « 1 The ^ and ^ are the data symbols sent to UE 1 and UE 2, respectively, η ι and the additive Gaussian zero-mean white noise representing the receiving end (noise variance) For 2 ). The client is an MRC (Maximum Ratio Combining) receiver, and the UE receiving channel ratio can be expressed as:
Figure imgf000006_0001
其中 {1, , {1,2}且 。 UE速率可以用下式表示:Where {1, , {1, 2 } and. The UE rate can be expressed as:
=log2(l + /j) (3) =log 2 (l + /j) (3)
由 UE的对称性可以得到系统的和速率:  The sum rate of the system can be obtained by the symmetry of the UE:
C = R!+R2 (4) 假设 UE 1反馈的预编码向量为 1和 2 , UE 2反馈的预编码向量为 2 和 ,上述预编码向量分别对应本地道矩阵和协作信道矩阵的右奇异矩阵。 在协作波束成形场景下, 若采用迫零预编码, 则上式中预编码矢量为: C = R!+R 2 (4) It is assumed that the precoding vectors fed back by UE 1 are 1 and 2, and the precoding vectors fed back by UE 2 are 2 and the precoding vectors respectively correspond to the right singular matrix of the local track matrix and the cooperative channel matrix. In the cooperative beamforming scenario, if zero-forcing precoding is used, the precoding vector in the above equation is:
F = null (ΐ^ 2i ) x s J {ΐ^ 11 x « w/Z (ΐ^ 2i )} F = null (ΐ^ 2i ) x s J {ΐ^ 11 x « w/Z (ΐ^ 2i )}
Figure imgf000007_0001
Figure imgf000007_0001
其中 表示矩阵 A的零空间, 表示矩阵 A的主奇异值对应 的特征空间。  Where is the null space of matrix A, which represents the feature space corresponding to the main singular value of matrix A.
取二维矢量 =[ ¾f , 并取 x的幅角 i^^tan^ ), 则有 Given矩 阵:
Figure imgf000007_0002
Take the two-dimensional vector = [ 3⁄4f , and take the angle of x i ^ ^ tan ^ ), then there is a Given matrix:
Figure imgf000007_0002
那么 , G^X相当于在 X-y平面内将 X顺时针旋转角度 ^后落在 X轴上, 且旋转后矢量的模保持不变, 即:
Figure imgf000007_0003
Then, G^X is equivalent to rotating the X clockwise by an angle of ^ in the X -y plane and then falling on the X-axis, and the modulus of the vector after rotation remains unchanged, namely:
Figure imgf000007_0003
Givens矩阵可以扩展为单位矩阵的秩 2修正矩阵:  The Givens matrix can be extended to the rank 2 correction matrix of the identity matrix:
0 0 0 0  0 0 0 0
0 cos ψι 0 sin¾^ . 0 0 cos ψ ι 0 sin3⁄4^ . 0
0 0 I 0 0  0 0 I 0 0
0 -sin^/ . 0 cos ψΊ j 0 0 -sin^ / . 0 cos ψΊ j 0
0 0 0 0 」MxM ( § ) 可以旋转矢量 χ = [ ι ¾ … 的第 和第 Ζ个元素, 0 0 0 0 ”MxM ( § ) can rotate the vector χ = [ ι 3⁄4 ... of the first and third elements,
[χ]! = Λ/ + [χ],=0 , 而 X的其余位置元素不变。 这样就可以通过一次 Givens旋转消去 的一个元素, 通过多次旋转可消去多个元素。 若取 1, Z依次取 23,···,Μ , 就可将 J变换为: ,„ Givens Rotation for -1 times . , 2 m [χ] ! = Λ / + [χ], =0, and the remaining position elements of X are unchanged. This allows one element to be erased by a Givens rotation, and multiple elements can be eliminated by multiple rotations. If you take 1, Z, then take 2 , 3 , ···, Μ , you can transform J into: , „ Givens Rotation for -1 times . , 2 m
x ,0,0,···,0] ( 9 ) x , 0 , 0 ,···, 0 ] ( 9 )
需要说明的是, 可以将需要反馈的预编码矩阵分解为几个 Givens旋转 矩阵的乘积, 只需反馈相应的旋转角度即可在接收端重建信道信息。 具体 量化压缩步骤如下:  It should be noted that the precoding matrix that needs feedback can be decomposed into the products of several Givens rotation matrices, and the channel information can be reconstructed at the receiving end by simply feeding back the corresponding rotation angle. The specific quantization compression steps are as follows:
(1)对 UE i ( = 12)处的本地信道 或 做 SVD (奇异值)分解(1) Decompose the local channel at UE i ( = 1 , 2 ) or do SVD (singular value)
(在不引起歧义的情况下, 以下分析中略去下标 : (Under ambiguity, the subscript is omitted in the following analysis:
H =請" (10)  H = please" (10)
需要反馈内容为 =V(:1: ) ), 此处^对应着 UE的数据流 数。 The feedback content is required to be =V(:, 1: )), where ^ corresponds to the number of data streams of the UE.
(2)将^最后一行元素变为正实数。 取矩阵:
Figure imgf000008_0001
(2) Change the last row element to a positive real number. Take the matrix:
Figure imgf000008_0001
其中 = ngle([Vp ]M .) ( = 1, 2 ) , 得到 ^ ¾^。 Where = ngle([V p ] M .) ( = 1, 2 ) , get ^ 3⁄4^.
(3)用 将 ^ 的第一列元素变换为正实数, 得到 其中^ 取值为: (3) Convert the first column element of ^ to a positive real number, and get the value of ^ where:
D, = diag(e气 e气…, e "'1 ,1) ( 12 ) D, = diag (e gas e gas..., e "' 1 , 1) ( 12 )
(4)用 Givens矩阵 υ ^^—^υ依次将"„"第一列的 2, 3, ..., Μ行元素消去, 得到: (4) Use the Givens matrix υ ^^—^υ to erase the 2, 3, ..., and Μ elements of the first column of "„" in order to obtain:
1 0  1 0
0 *  0 *
4(^M4)-..,G31(^,1)-G21(^2,1)-£>1 § =v2 4 (^ M4 )-..,G 31 (^, 1 )-G 21 (^ 2 , 1 )-£> 1 § =v 2
(13) 上式中符号 "*" 表示任意元素或矩阵。  (13) The symbol "*" in the above formula represents an arbitrary element or matrix.
变换后得到的 ^的第二列第一个元素为 0 ,该取值是由 ^的列正交性决 定的。 ( 5 ) 重复步驟 ( 3 ) 和 ( 4 ), 处理 ^的其他列。 其中对第 i列 ( i = 2,3,...,min{ -l,N} ), 有. The first element of the second column of the transformed ^ is 0, and the value is determined by the column orthogonality of ^. (5) Repeat steps (3) and (4) to process the other columns of ^. Among them, for the i-th column (i = 2,3,...,min{ -l,N} ), there is.
0 ··· 0 0 0 ··· 0 0
0 e] 0 0 0 0 e ] 0 0 0
O = : 0 "·. 0 0  O = : 0 "·. 0 0
0 e 0  0 e 0
0 0 0 1  0 0 0 1
( 14)  (14)
需要的 Givens矩阵依次为 G'+"(UG'+2.'(U, (^/— 。 每列需要 Z个 值来将该列元素变为实数, 然后需要∑'='·"Ζ个 ^值来做 Givens旋 转。 The required Givens matrix is in turn G ' + "(U G ' +2 .'(U, (^/- . Each column requires Z values to make the column element a real number, then ∑'='·" Ζ A value of ^ to do Givens rotation.
(6)经过以上变换, ^化为 MxN的单位阵: phase shift by D( (6) After the above transformation, ^ is transformed into a unit matrix of MxN: phase shift by D (
V P, Givens rotation by Gh ψι ) VP, Givens rotation by G h ψ ι )
( 15)  (15)
以上变换用到的 Di和 Gli )都是酉矩阵, 因此可用以上变换的逆变换 The D i and Gli used in the above transformation are all 酉 matrices, so the inverse transform of the above transform can be used.
Figure imgf000009_0001
可见, UE只需反馈 么在基站端即可用这些 ^和 ^重建 。
Figure imgf000009_0001
It can be seen that the UE only needs to feedback and can use these ^ and ^ reconstructions at the base station end.
同理, 可以反馈协作基站到 UE信道矩阵的右奇异矩阵。  Similarly, the right singular matrix of the cooperative base station to the UE channel matrix can be fed back.
在实际应用中, 上述的 的取值范围为 [02 ], ^的取值范围为 [0/2], 可以分别用不同的比特数量化, 例如:
Figure imgf000009_0002
In practical applications, the above range of values is [ 0 , 2 ], and the range of ^ is [ 0 , /2 ], which can be quantized by different bits, for example:
Figure imgf000009_0002
1 k  1 k
Ψ = π\ — + - , t = 0,l,...,26-l 式中 ό为 ^的量化比特数, + 2是 的量化比特数。 Ψ = π\ — + - , t = 0,l,...,2 6 -l In the formula, ό is the number of quantization bits of ^, and + 2 is the number of quantization bits.
3.4反馈格式  3.4 feedback format
在进行反馈时, 反馈矩阵的具体格式如下:  When making feedback, the specific format of the feedback matrix is as follows:
ν =【¼, ν2,..., νΝ】 (18 ) 其中 ¼是终端至第一个协作基站的信道信息反馈矩阵, v2是终端至第 二个协作基站的信道信息反馈矩阵, VN是终端至第 N个协作基站的信道信 息反馈矩阵。 每个信道信息反馈矩阵可以采用和单小区相同的反馈格式, 也可以以第一个反馈矩阵为基准, 后 N-1 个反馈矩阵依次以差分的形式反 贝。 ν = [1⁄4, ν 2 ,..., ν Ν 】 ( 18 ) where 1⁄4 is the channel information feedback matrix of the terminal to the first cooperative base station, and v 2 is the channel information feedback matrix of the terminal to the second cooperative base station, V N is a channel information feedback matrix of the terminal to the Nth cooperative base station. Each channel information feedback matrix may adopt the same feedback format as the single cell, or may be based on the first feedback matrix, and the subsequent N-1 feedback matrices are sequentially inverted in the form of a difference.
实施例一:  Embodiment 1:
反馈矩阵的具体格式如下:  The specific format of the feedback matrix is as follows:
v2,..., vNU9 ) 其中 ¼是终端至第一个协作基站的信道信息反馈矩阵, v2是终端至第 二个协作基站的信道信息反馈矩阵, vN是终端至第 N个协作基站的信道信 息反馈矩阵。 每个信道信息反馈矩阵可以采用和单小区相同的反馈格式, 即采用和式(17 )相同的量化方法。 v 2 ,..., v NU9 ) where 1⁄4 is the channel information feedback matrix of the terminal to the first cooperative base station, v 2 is the channel information feedback matrix of the terminal to the second cooperative base station, and v N is the terminal to the Channel information feedback matrix of N cooperative base stations. Each channel information feedback matrix can adopt the same feedback format as the single cell, that is, the same quantization method as that of equation (17).
实施例二:  Embodiment 2:
反馈矩阵的具体格式如下:  The specific format of the feedback matrix is as follows:
V ^, V2,..., VN】 (20 ) 其中 ¼是终端至第一个协作基站的信道信息反馈矩阵, v2是终端至第 二个协作基站的信道信息反馈矩阵, VN是终端至第 N个协作基站的信道信 息反馈矩阵。 每个信道信息反馈矩阵第一个反馈矩阵为基准, 后 N-1 个反 馈矩阵依次以差分的形式反馈。 即第一个矩阵 ¼即采用和式( 17 )相同的 量化方法形成, 其中 为 ^的量化比特数, + 2是 的量化比特数; 第二个 矩阵的反馈值为 Φ2-Φ1 , Φ 2- Φ 1 , 将其差分值 Φ2-Φ 1用 b-2个比特反馈, 用 b个比特反馈。 第 N个矩阵的反馈值为 ΦΝ-Φ Ι , Φ Ν- Φ 1 , 将 其差分值 ΦΝ-Φ 1用 b-2个比特反馈, Ψ Ν- Ψ 1用 b个比特反馈。 V ^, V 2 ,..., V N 】 ( 20 ) where 1⁄4 is the channel information feedback matrix of the terminal to the first cooperative base station, and v 2 is the channel information feedback matrix of the terminal to the second cooperative base station, V N It is a channel information feedback matrix from the terminal to the Nth cooperative base station. The first feedback matrix of each channel information feedback matrix is used as a reference, and the last N-1 feedback matrices are sequentially fed back in the form of differences. That is, the first matrix 1⁄4 is formed by the same quantization method as (17), where is the number of quantization bits of ^, and the number of quantization bits of + 2 is; the feedback value of the second matrix is Φ2-Φ1, Φ 2- Φ 1 , the differential value Φ2-Φ 1 is fed back with b-2 bits, Feedback with b bits. The feedback value of the Nth matrix is ΦΝ-Φ Ι , Φ Ν- Φ 1 , and the differential value ΦΝ-Φ 1 is fed back with b-2 bits, and Ψ Ν- Ψ 1 is fed back with b bits.
结合以上描述可知, 本发明中进行信道信息反馈的操作思路可以表示 如图 2所示的流程, 该流程包括以下步驟:  As shown in the above description, the operation of channel information feedback in the present invention may represent the process shown in FIG. 2, and the process includes the following steps:
步驟 210: 将需要反馈的预编码矩阵分解为多个 Givens旋转矩阵的乘 积, 每个旋转矩阵只与旋转角度有关。  Step 210: Decompose the precoding matrix that needs feedback into a product of multiple Givens rotation matrices, and each rotation matrix is only related to the rotation angle.
步驟 220: 反馈完成分解的所述旋转矩阵的相应旋转角度。  Step 220: Feedback the corresponding rotation angle of the rotation matrix that completes the decomposition.
为了保证上述技术描述和操作思路能够顺利实现, 可以进行如图 3 所 示的设置。 参见图 3, 图 3为本发明实施例的信道信息反馈系统图, 该系统 包括相连的分解单元、 反馈单元。  To ensure that the above technical description and operation ideas can be implemented smoothly, the settings shown in Figure 3 can be performed. Referring to FIG. 3, FIG. 3 is a diagram of a channel information feedback system according to an embodiment of the present invention, where the system includes a connected decomposition unit and a feedback unit.
在实际应用时, 分解单元能够将需要反馈的预编码矩阵分解为多个 Givens 旋转矩阵的乘积, 每个旋转矩阵只与旋转角度有关; 反馈单元则能 够反馈由分解单元完成分解的所述旋转矩阵的相应旋转角度。  In practical applications, the decomposition unit can decompose the precoding matrix that needs feedback into a product of multiple Givens rotation matrices, each rotation matrix is only related to the rotation angle; the feedback unit can feed back the rotation matrix that is decomposed by the decomposition unit. The corresponding rotation angle.
综上所述可见, 无论是方法还是系统, 本发明的信道信息反馈技术是 一种基于 Givens变换的信道压缩量化反馈方案。 可以通过连续 Given旋转 将 M维矢量 变换为只有一个非零元素的矢量, 进而可以利用连续 Givens 旋转将需要反馈的预编码矩阵转换为有限的角度值, 基站可以利用这些反 馈回的量化角度重建信道矩阵, 进而计算预编码矢量, 可以有效降低反馈 开销。 相对于传统的标量量化, 本发明可以有效减少量化元素的数目, 从 而减少反馈量; 而相对于矢量量化, 因为只需要进行分解量化操作, 不需 要联合优化搜索, 因此可以在保证系统性能的情况下有效降低系统复杂度。  In summary, the channel information feedback technique of the present invention is a channel compression quantization feedback scheme based on Givens transform, whether it is a method or a system. The M-dimensional vector can be transformed into a vector with only one non-zero element by continuous Given rotation, and then the pre-coding matrix that needs feedback can be converted into a finite angle value by using successive Givens rotation, and the base station can reconstruct the channel by using these feedbackd quantization angles. The matrix, and thus the precoding vector, can effectively reduce the feedback overhead. Compared with the traditional scalar quantization, the present invention can effectively reduce the number of quantized elements and thus reduce the amount of feedback; whereas with respect to vector quantization, since only the decomposition quantization operation is required, joint optimization search is not required, and thus the system performance can be guaranteed. Effectively reduce system complexity.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。  The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention.

Claims

权利要求书 Claim
1、 一种信道信息反馈方法, 包括:  1. A channel information feedback method, comprising:
将需要反馈的预编码矩阵分解为多个 Givens旋转矩阵的乘积, 每个旋 转矩阵只与旋转角度有关; 反馈完成分解的所述旋转矩阵的相应旋转角度。  The precoding matrix that needs feedback is decomposed into products of a plurality of Givens rotation matrices, each of which is only related to the angle of rotation; the corresponding rotation angle of the rotation matrix that completes the decomposition is fed back.
2、 根据权利要求 1 所述的方法, 其中, 反馈的所述旋转角度为 i=l l=i 个 0值和 ^i=l l=i 个 值。  2. The method according to claim 1, wherein the angle of rotation of the feedback is i = l l = i 0 values and ^ i = l l = i values.
3、 根据权利要求 2所述的方法, 其中, 的取值范围为 [02 ] , ^的取 值范围为 [Q/ 2] ; 3. The method according to claim 2, wherein the value ranges from [ 0 , 2 ], and the range of ^ is [ Q , / 2 ];
分别用不同的比特数量化。  Differentiate with different bits.
4、 根据权利要求 1至 3任一项所述的方法, 其中, 反馈的所述旋转角 度以反馈矩阵的形式表示, 该反馈矩阵的格式为: V =【 , ···, V】; The method according to any one of claims 1 to 3, wherein the rotation angle of the feedback is expressed in the form of a feedback matrix, and the format of the feedback matrix is: V = [ , ···, V 】;
其中, 是终端至第一个协作基站的信道信息反馈矩阵, V2是终端至 第二个协作基站的信道信息反馈矩阵, VN是终端至第 N个协作基站的信道 信息反馈矩阵。 The channel information feedback matrix of the terminal to the first coordinated base station, V 2 is a channel information feedback matrix of the terminal to the second coordinated base station, and V N is a channel information feedback matrix of the terminal to the Nth cooperative base station.
5、 根据权利要求 4所述的方法, 其中,  5. The method according to claim 4, wherein
每个信道信息反馈矩阵采用和单小区相同的反馈格式; 或者, 以第一个反馈矩阵为基准, 后 N-1个反馈矩阵依次以差分的形式反馈。 Each channel information feedback matrix adopts the same feedback format as the single cell; or, based on the first feedback matrix, the latter N-1 feedback matrices are sequentially fed back in differential form.
6、 一种信道信息反馈系统, 包括分解单元、 反馈单元; 其中, 所述分解单元, 用于将需要反馈的预编码矩阵分解为多个 Givens旋转 矩阵的乘积, 每个旋转矩阵只与旋转角度有关; A channel information feedback system, comprising: a decomposing unit and a feedback unit; wherein the decomposing unit is configured to decompose a precoding matrix that needs feedback into a product of a plurality of Givens rotation matrices, each rotation matrix only having a rotation angle Related
所述反馈单元, 用于反馈由所述分解单元完成分解的所述旋转矩阵的 相应旋转角度。  The feedback unit is configured to feed back a corresponding rotation angle of the rotation matrix that is decomposed by the decomposition unit.
7、 根据权利要求 6所述的系统, 其中, 所述反馈单元反馈的所述旋转  7. The system of claim 6, wherein the rotation of the feedback unit feedback
/T w i=l U个 值和 !=1 U个 ^值。 / T w i=l U values and !=1 U^ values.
8、 根据权利要求 7所述的系统, 其中, 的取值范围为 [02 ], ^的取 值范围为 [Q/2];8. The system according to claim 7, wherein the value ranges from [ 0 , 2 ], and the range of ^ is [ Q , /2 ];
Ψ分别用不同的比特数量化。  数量 Quantify with different bits.
9、 根据权利要求 6至 8任一项所述的系统, 其中, 所述反馈单元反馈 的所述旋转角度以反馈矩阵的形式表示, 该反馈矩阵的格式为: The system according to any one of claims 6 to 8, wherein the rotation angle fed back by the feedback unit is expressed in the form of a feedback matrix, and the format of the feedback matrix is:
V V = Γ L V Vl, V ν2'·"' V VN 1J · VV = Γ LV Vl, V ν 2'·"' V V N 1J ·
其中, 是终端至第一个协作基站的信道信息反馈矩阵, v2是终端至 第二个协作基站的信道信息反馈矩阵, VN是终端至第 N个协作基站的信道 信息反馈矩阵。 The channel information feedback matrix of the terminal to the first coordinated base station, v 2 is a channel information feedback matrix of the terminal to the second coordinated base station, and V N is a channel information feedback matrix of the terminal to the Nth cooperative base station.
10、 根据权利要求 9所述的系统, 其中,  10. The system according to claim 9, wherein
每个信道信息反馈矩阵采用和单小区相同的反馈格式; 或者, 以第一个反馈矩阵为基准, 后 N-1个反馈矩阵依次以差分的形式反馈。  Each channel information feedback matrix adopts the same feedback format as the single cell; or, based on the first feedback matrix, the latter N-1 feedback matrices are sequentially fed back in differential form.
PCT/CN2012/072146 2011-06-02 2012-03-09 Method and system for channel information feedback WO2012163125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101472951A CN102811111A (en) 2011-06-02 2011-06-02 Channel information feedback method and system
CN201110147295.1 2011-06-02

Publications (1)

Publication Number Publication Date
WO2012163125A1 true WO2012163125A1 (en) 2012-12-06

Family

ID=47234702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072146 WO2012163125A1 (en) 2011-06-02 2012-03-09 Method and system for channel information feedback

Country Status (2)

Country Link
CN (1) CN102811111A (en)
WO (1) WO2012163125A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605141A (en) * 2016-02-15 2018-09-28 高通股份有限公司 Efficient parameter storage for the transformation of compact multipass

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324953B (en) * 2013-09-16 2020-11-06 华为技术有限公司 Method for determining downlink channel precoding matrix, base station and user equipment
CN106160808B (en) * 2015-04-10 2019-10-29 上海无线通信研究中心 A kind of multi-user MIMO system and method
US9887749B2 (en) * 2015-12-16 2018-02-06 Huawei Technologies Co., Ltd. System and method for quantization of angles for beamforming feedback
US10390048B2 (en) 2016-02-15 2019-08-20 Qualcomm Incorporated Efficient transform coding using optimized compact multi-pass transforms
US10448053B2 (en) 2016-02-15 2019-10-15 Qualcomm Incorporated Multi-pass non-separable transforms for video coding
US11095893B2 (en) 2016-10-12 2021-08-17 Qualcomm Incorporated Primary transform and secondary transform in video coding
US10439701B2 (en) * 2016-12-16 2019-10-08 Marvell World Trade Ltd. Low complexity beamforming with compressed feedback
DE102019117402B3 (en) * 2019-03-15 2020-07-02 Samsung Electronics Co., Ltd. Device and method for a noniterative singular value decomposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956430A (en) * 2005-10-27 2007-05-02 财团法人工业技术研究院 MIMO OFDM system and precoding and feedback method of it
CN101036332A (en) * 2004-08-17 2007-09-12 德州仪器公司 Method and apparatus for providing closed-loop transmit precoding
US20080192852A1 (en) * 2007-02-12 2008-08-14 Mark Kent Method and system for an alternating channel delta quantizer for 2x2 mimo pre-coders with finite rate channel state information feedback

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036332A (en) * 2004-08-17 2007-09-12 德州仪器公司 Method and apparatus for providing closed-loop transmit precoding
CN1956430A (en) * 2005-10-27 2007-05-02 财团法人工业技术研究院 MIMO OFDM system and precoding and feedback method of it
US20080192852A1 (en) * 2007-02-12 2008-08-14 Mark Kent Method and system for an alternating channel delta quantizer for 2x2 mimo pre-coders with finite rate channel state information feedback

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108605141A (en) * 2016-02-15 2018-09-28 高通股份有限公司 Efficient parameter storage for the transformation of compact multipass
CN108605141B (en) * 2016-02-15 2020-12-15 高通股份有限公司 Efficient parameter storage for compact multi-pass transforms

Also Published As

Publication number Publication date
CN102811111A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2012163125A1 (en) Method and system for channel information feedback
CN110100393B (en) Codebook-based channel state information feedback method and device
CN109302857B (en) Linear combination PMI codebook based CSI reporting in advanced wireless communication systems
EP2737640B1 (en) Apparatus and method for combining baseband processing and radio frequency beam steering in a wireless communication system
EP2412117B1 (en) Adaptive precoding codebooks for wireless communications
WO2018059161A1 (en) Wireless communication method and wireless communication device
EP2985924A1 (en) Method and apparatus for acquiring a precoding matrix indicator and a precoding matrix
EP2583385A1 (en) Alternate feedback types for downlink multiple user mimo configurations
JP2012514442A5 (en) Method for feeding back channel state information of a downlink channel from a mobile station to one or more base stations, and a method for generating rank-1 precoding vectors for multi-base station transmission in a wireless network
JP2017519459A (en) Wireless full-duplex scaling in multi-cell networks using spatial interference alignment
WO2011158943A1 (en) User equipment and channel status information feedback method
EP2661821A1 (en) Precoding method and precoder for cross-polarized antenna array
JP2009253980A (en) Multiple-input and multiple-output precoding method and apparatus for the method
US20140056334A1 (en) Enhanced communication over networks using joint matrix decompositions
WO2011076031A1 (en) Method, device and system for information feedback in coordinated multipoint reception and transmission joint transmission network
CN102377527B (en) Method and device for decreasing multi-cell feedback overhead
JP2009153139A (en) Pre-coding processing method and apparatus for mimo downlink, and base station
WO2014019473A1 (en) Method, device and system for coordinated multi-point transmission precoding
WO2011137591A1 (en) Method and device for generating and feeding back high rank adaptive codebook in multiple input multiple output system
WO2013167018A1 (en) Method and device for performing codebook processing on channel information
CN114900398A (en) IRS (intelligent resilient framework) assisted cloud access network downlink beam forming method for non-ideal CSI (channel state information)
CN103259582B (en) A kind of multi-point cooperative transmission method for precoding, terminal and base station
CN111713054B (en) Communication method, communication device and system
WO2013078743A1 (en) Precoding method and matrix generation device for coordinated multiple point multiple user mimo system
JP5121368B2 (en) Receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792763

Country of ref document: EP

Kind code of ref document: A1