WO2012162862A1 - 用冲击振荡波原理检测电缆故障点和路径的装置及应用方法 - Google Patents

用冲击振荡波原理检测电缆故障点和路径的装置及应用方法 Download PDF

Info

Publication number
WO2012162862A1
WO2012162862A1 PCT/CN2011/001395 CN2011001395W WO2012162862A1 WO 2012162862 A1 WO2012162862 A1 WO 2012162862A1 CN 2011001395 W CN2011001395 W CN 2011001395W WO 2012162862 A1 WO2012162862 A1 WO 2012162862A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
fault point
magnetic field
field signal
fault
Prior art date
Application number
PCT/CN2011/001395
Other languages
English (en)
French (fr)
Inventor
王学义
陆正弦
杨唯物
郑建康
梁懿
段玉杰
Original Assignee
西安福润德电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安福润德电子科技有限公司 filed Critical 西安福润德电子科技有限公司
Publication of WO2012162862A1 publication Critical patent/WO2012162862A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods

Definitions

  • the invention relates to a cable fault locating method, in particular to an impact oscillation
  • the force line is changed to the buried cable, which makes the use of the cable increase rapidly. Due to frequent municipal construction and other reasons, a large number of cable faults are caused. In order to quickly and accurately find the fault point of the underground cable, it becomes a cable repair and recovery power transmission. problem. Especially in the face of more and more branch cables and pipe-through cables, there are some defects in the traditional method of detecting cable fault points. At present, the main methods are:
  • the traditional acoustic measurement method, and the subsequent improved acoustic and magnetic simultaneous sound measurement methods, acoustic and magnetic time difference methods, the acoustic and magnetic waveform time difference methods are difficult to work effectively due to the interference of the localized audio noise.
  • the step voltage method can only be used for the positioning of the direct buried cable ground fault and can only adapt to a small number of faults in the field application. At present, it is mainly used for the location of the ground fault of the metal sheath of the direct buried ultrahigh voltage cable.
  • audio sensing method can only be used for special metal short circuit and open circuit fault location, this kind of fault is only a special case in a large number of cable faults.
  • Low-voltage pulse method high-voltage pulse method (flashover method), secondary pulse method, multiple pulse method, which can only be used for pre-positioning of cable faults, rather than accurate positioning.
  • the object of the present invention is to provide a device for detecting a cable fault point and a path by using an impact oscillation wave principle for positioning a fault point of an insulation fault of a main cable of a cable, a buried tunnel, a channel, a tunnel, and a branch cable. .
  • Another object of the present invention is to utilize the apparatus to detect cable fault points, path application methods.
  • a device for detecting a cable fault point by using an impact oscillation wave comprising a high voltage oscillation wave generator, a fault cable to be tested, and a magnetic field signal detecting device
  • the display unit, the inductive receiving coil, and the terminal high-voltage damping load are special in the present invention in that the high-voltage oscillating wave generator is composed of a common high-voltage shock pulse signal source and a high-voltage resonant reactor, wherein the ordinary high-voltage shock pulse
  • the high voltage output end of the signal source is connected to one end of the high voltage resonant reactor, and the other end of the high voltage resonant reactor is connected as a high voltage output end of the high voltage oscillating wave generator to the fault of the faulty cable to be tested;
  • the grounding output end of the generator is connected to the grounding line of the starting end of the faulty cable to be tested; the end of the high voltage damp
  • the magnetic field signal is received by the inductive receiving coil and input to the detecting device.
  • the magnetic field signal received by the detecting device is displayed by the display unit, and the artificial observation display
  • the frequency change point of the damped shock wave displayed on the unit is used to visually determine the position of the cable fault point.
  • the high-voltage oscillating wave generator applies a periodic 5 ⁇ 30kV high-voltage shock pulse signal to the faulty cable to be tested, so that the fault point forms an instantaneous short-circuit arc;
  • the magnetic field signal detecting device is connected with the magnetic field signal sensing receiving coil, and the magnetic field signal sensing the receiving coil detects the change of the magnetic field signal along the faulty cable;
  • the waveform frequency changes its position corresponding to the position of the fault point of the faulty cable to be tested, that is, the magnetic field signal corresponds to the higher frequency change point from the lower frequency before the fault point to the fault point.
  • the cable position is the location of the cable fault point.
  • the frequency before the fault point depends on the LC parameters of the high voltage oscillating wave generator and the cable to be tested.
  • the frequency after the fault point depends on the terminal high voltage damped load and the LC parameters of the cable to be tested.
  • the high-voltage oscillating wave generator and the terminal high-voltage damped load make the frequency of the damped oscillating wave after the fault point more than twice the frequency before the fault point, so that the frequency change is more intuitive, that is, the position of the fault point is more intuitive.
  • FIG. 1 is a schematic block diagram of an application structure of a detection method of the present invention
  • FIG. 2 is a schematic diagram of the magnetic field signal induction receiving coil and the fault cable 3 of FIG. 1;
  • FIG. 3 is a waveform diagram of the detection waveform before the fault point displayed by the magnetic field signal detecting device of FIG.
  • Fig. 4 is a graph showing the detected waveform after the fault point displayed by the magnetic field signal detecting device of Fig. 1.
  • 1 is the high voltage oscillating wave generator of the present invention
  • la is its high voltage output terminal
  • lb is its grounding output terminal
  • 2 is a high voltage resonant reactor in the high voltage oscillating wave generator
  • 3 is a faulty cable to be tested; It is the grounding line at the beginning of the faulty cable 3 to be tested
  • 5 is the fault point
  • 6 is the grounding line of the faulty cable 3 to be tested
  • 7 is the faulty phase of the faulty cable 3 to be tested
  • 8 is the magnetic field signal detecting device
  • 9 is the magnetic field signal detecting device 8
  • a device for detecting a cable fault point by using an impact oscillation wave includes a high voltage oscillation wave generator 1, a fault cable to be tested 3, a magnetic field signal detecting device 8, a display unit 9, an inductive receiving coil 10, and a terminal high voltage.
  • the high-voltage oscillating wave generator 1 is composed of a common high-voltage shock pulse signal source and a high-voltage resonant reactor 2, wherein the high-voltage output terminal of the common high-voltage shock pulse signal source and one end of the high-voltage resonant reactor 2 Connecting, the other end of the high-voltage resonant reactor 2 is connected as a high-voltage output terminal la of the high-voltage oscillating wave generator to the fault phase 7 of the faulty cable to be tested; the grounding output terminal lb of the high-voltage oscillating wave generator 1 is The grounding wire 4 of the faulty cable 3 is connected; the terminal 15 is connected to the terminal fault phase 14 of the faulty cable 3 to be tested, and the terminal is connected to the grounding terminal of the faulty cable 15 and the terminal of the faulty cable 3 to be tested.
  • the grounding wire 6 is connected, and the magnetic field signal detecting device 8 is connected to the inductive receiving coil 10, which is produced on the faulty cable 3.
  • the damped oscillating wave is transmitted along the faulty cable 3 and radiates the magnetic field signal 13 outward.
  • the magnetic field signal is received by the inductive receiving coil 10 and input to the detecting device 8.
  • the magnetic field signal 13 received by the detecting device 8 is displayed by the display unit 9, and the display unit is manually observed.
  • the frequency change point of the damped shock wave shown above is used to visually determine the position of the cable fault point.
  • a device for detecting a cable fault point and a path application method is as follows:
  • high-voltage oscillating wave generator 1 applies a periodic 5 ⁇ 30kV high-voltage shock pulse signal to the faulty cable 3 to be tested, so that the fault point 5 forms an instantaneous short-circuit arc;
  • the magnetic field signal detecting device 8 is connected to the magnetic field signal sensing receiving coil 10, magnetic
  • the field signal inductive receiving coil 10 detects a change in the magnetic field signal along the faulty cable 3;
  • a damped oscillation waveform 12 reflecting the change of the magnetic field signal after the fault point, and the damped oscillation waveform 12 is displayed on the display unit 9 of the magnetic field signal detecting device 8;
  • the change of the waveform frequency before and after the fault point 5 of the cable 3 corresponds to the position of the fault point 5 of the faulty cable 3 to be tested, that is, the magnetic field signal 13 from the lower frequency before the fault point 5 to the fault point 5
  • the position of the cable 3 corresponding to the high frequency change point is the position of the fault point of the cable 3.
  • the frequency before the fault point 5 depends on the LC parameters of the high voltage oscillating wave generator 1 and the cable 3 to be tested.
  • the frequency after the fault point 5 depends on The high-voltage damped load 15 of the terminal and the LC parameter of the cable 3 to be tested are designed.
  • the high-voltage oscillating wave generator 1 and the terminal high-pressure damped load 15 are designed such that the frequency of the damped oscillating wave after the fault point 5 is more than twice the frequency before the fault point 5, and the frequency is judged.
  • the change is more intuitive, that is, the location of the fault point is more intuitive.
  • the magnetic field signal detecting device 8 in Fig. 1 comprises a display unit 9, an inductive receiving coil 10, which detects the damped oscillation of the magnetic field signal 13 before the display unit 9 starts displaying the fault point 5 if it is used to detect the fault point of the cable 3.
  • Waveform 11 after the device moves along the path of the cable 3 to reach the fault point 5, the display unit 9 displays the damped oscillation waveform 12 of the magnetic field signal 13 after the fault point 5 is displayed at this time, in order to clearly show the two different frequency damped oscillations.
  • the display unit 9 of the signal detecting device 8 determines that the frequency of the damped oscillation waveform displayed by the display unit 9 of the signal detecting device 8 changes, the position of the magnetic field signal sensing receiving coil corresponds to At the position of the fault point 5 of the cable 3 to be tested, the display unit 9 displays the damped oscillation waveforms 11, 12 of the two different frequencies before and after the fault point 5 as the cut-off point. When the device is used to detect the path of the cable 3, the display unit 9 also displays the damped oscillation waveform 11 before the fault point 5, and the damped oscillation waveform 12 after the fault point 5.
  • Figure 2 shows the relative position of the faulty cable 3 to be tested when the magnetic field signal senses the receiving coil 10 to detect the magnetic field signal 13.
  • Figure 3 is a diagram showing a waveform 11 displayed when the magnetic field signal detecting means 8 detects the magnetic field signal 13 before the fault point 5 of the cable 3, the waveform being a damped oscillation waveform, when the magnetic field signal detecting means 8 moves forward along the faulty cable 3.
  • the magnetic field signal detecting device 8 always has a waveform 11 display. After the position of the fault point 5 is passed, the waveform displayed by the magnetic field signal detecting device 8 is changed from 11 to the waveform 12, and the change of the waveform frequency is the fault of the cable 3 at this time. Point 5 is located.
  • the waveform 12 displayed by the magnetic field signal detecting means 8 is always present.
  • a periodic high-voltage shock pulse signal is applied between the fault phase of the cable 3 to be tested and the shield layer or another fault phase. Due to the distributed parameter characteristics of the cable 3 itself and the balance of the cable 3 is relative, it The response of the high-voltage shock pulse signal must be such that a damped oscillating wave of different frequency is formed in the cable 3 between the signal source and the fault point and the fault point and the terminal high-voltage damped load, and is transmitted along the cable 3 and radiated to generate a magnetic field signal.
  • the magnetic field signal can be received by the cable 3 before and after the point; the magnetic field signal detecting device capable of detecting the change of the magnetic field signal detects the magnetic along the cable 3 from the end of the high voltage oscillation wave generator
  • the change of the field signal should be able to receive the wave magnetic field signal generated by the damped oscillation wave before the fault point, and the magnetic field signal generated by the damped oscillation of the higher frequency after the fault point, corresponding to the frequency change of the magnetic field signal
  • the position of the cable 3 is the location where the cable 3 is at the point of failure.
  • the high-voltage oscillating wave generator is composed of a common high-voltage shock pulse signal source connected in series with a high-voltage resonant reactor.
  • the commonly used high-voltage shock pulse signal source has a pulse capacitor, and can be used as long as the high-voltage resonant reactor is added.
  • the present invention is required to connect the terminal high voltage damped load 15 between the terminal of the faulty phase of the cable 3 to be tested and the terminal ground.
  • the magnetic field signal sensing receiving coil 10 of the magnetic field signal detecting device must be an air-core coil, one can detect, two can be compared, and can also measure the path of the cable 3, but it is absolutely impossible to use a core or a magnetic core.
  • the magnetic field signal induces the receiving coil, otherwise it will generate a damped oscillation to cause misjudgment.
  • the magnetic field signal of the magnetic field signal detecting device inducing the receiving coil 10 should have a coil plane parallel to the cable 3 to be tested, and ensure that the magnetic field line characterizing the magnetic field signal passes through the magnetic field signal to sense the receiving coil 10.
  • the magnetic field signal detecting device 8 of the present invention can also be used to detect the path of the cable 3.
  • the waveform 11 has the largest amplitude before the fault point 5, and then along the ground. Going forward, the detection device always has a waveform 11 display. If the detection device 8 does not have the waveform 11 displayed, it indicates that the detection device 8 is skewed with the cable 3, and the detection device 8 (or left or right) should be adjusted to select the direction of the cable 3 path.
  • Waveform 12 shows that the path of the magnetic field signal inductive receiving coil 10 on the ground corresponding to the path of the magnetic field signal is the path of the underground cable 3 after the fault point 5.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

一种用冲击振荡波原理检测电缆故障点和路径的装置及方法。在该装置中,高压振荡波发生器(1)接地输出端(lb)连接待测故障电缆(3)的始端接地线(4);发生器(1)高压输出端(la)连接电缆故障相(7);故障相终端(14)接终端高压阻尼负载(15);阻尼负载(15)的另一端接电缆终端接地线(6);发生器(1)给电缆故障相(7)施加脉冲信号,使故障点(5)形成瞬间短路电弧,故障点前后形成两个频率相异的阻尼振荡波形并沿电缆辐射磁场信号(13);检测该磁场信号(13),电缆故障点之前左侧有反映故障点前磁场信号变化的阻尼振荡波形(11),故障点之后右侧是故障点后磁场信号变化的阻尼振荡波形(12),二者频率不同,频率变化之处所对应的电缆位置就是故障点(5)所在位置。适应各种敷设状况下电缆故障检测,结构简单,使用方便,广泛用于电力系统。

Description

用冲击振荡波原理检测电缆故障点和路径的装置及应用方法
技术领域
本发明涉及一种电缆故障定位方法,具体涉及是一种用冲击振荡 说
波原理检测电缆故障点和路径的装置及应用方法。 背景技术
城镇化快速发展, 为了美化环境和国防的需要, 将大量架空的电 书
力线路改为埋地电缆, 使电缆的使用量迅速增加, 而由于频繁的市政 施工等原因又造成了大量的电缆故障发生,为了快速准确地找到地下 电缆故障点, 成为电缆抢修恢复送电的难题。尤其是面对越来越多的 分支电缆、穿管电缆,传统检测电缆故障点方法多少存在一定的缺陷, 目前主要方法有:
1、 传统的声测法, 及后续改进的声、 磁同歩声测法, 声、 磁时差 法, 声、磁波形时差法均由于易受定位现场音频噪声干扰而难于有效 正常工作。
2、跨步电压法, 由于只能用于直埋电缆接地故障的定位而在现场 应用中仅能适应少部分的故障, 目前主要用于直埋超高压电缆金属外 护套接地故障的定位。
3、 音频感应法, 只能用于特殊的金属性短路及开路故障定位, 这 种故障在大量发生的电缆故障中仅属特例。
4、 钢铠电流磁场探测法有公开的专利, 但仅理论可行, 受电缆现 场敷设状况的限制并不实用,其申请单位已将按其原理研制的产品从 公司的宣传网页中撤除。
5、 低压脉冲法、 高压脉冲法 (闪络法)、 二次脉冲法、 多次脉冲 法, 它们都仅能用于电缆故障的预定位, 而非准确定位。
发明内容
本发明的目的是提供一种可对穿管、 直埋、 沟道、 隧道敷设的电 缆的主缆以及分支电缆的绝缘故障进行故障点定位的用冲击振荡波 原理检测电缆故障点、 路径的装置。
本发明的另一目的是利用该装置检测电缆故障点、 路径应用方 法。
为了克服现有技术的不足, 本发明的技术方案是这样解决的: 一 种用冲击振荡波检测电缆故障点的装置,该装置包括一个高压振荡波 发生器、 待测故障电缆、 磁场信号检测装置、 显示单元、 感应接收线 圈、终端高压阻尼负载, 本发明的特殊之处在于所述高压振荡波发生 器由一个普通高压冲击脉冲信号源和一个高压谐振电抗器组成,其中 所述普通高压冲击脉冲信号源的高压输出端与高压谐振电抗器的一 端连接,所述高压谐振电抗器的另一端做为高压振荡波发生器的高压 输出端与待测故障电缆的故障相连接;所述高压振荡波发生器的接地 输出端与待测故障电缆的始端接地线连接;所述终端高压阻尼负载一 端与待测故障电缆的终端故障相连接,所述终端高压阻尼负载接地端 与待测故障电缆的终端接地线连接,所述磁场信号检测装置与感应接 收线圈连接,所述在故障电缆上产生阻尼振荡波沿故障电缆传输并向 外辐射磁场信号, 用感应接收线圈接收该磁场信号输入给检测装置, 检测装置接收的磁场信号由显示单元显示,人工观察显示单元上显示 的阻尼震荡波的频率变化点来直观判断电缆故障点的位置。 一种所述的装置检测电缆故障点、路径应用方法, 按下述步骤进 行:
1 )、高压振荡波发生器给待测故障电缆施加周期性的 5〜30kV高 压冲击脉冲信号, 使故障点形成瞬间短路电弧;
2 )、在故障电缆上产生两个频率相异的阻尼振荡波沿故障电缆传 输并向外辐射磁场信号;
3 )、磁场信号检测装置与磁场信号感应接收线圈连接, 磁场信号 感应接收线圈沿故障电缆检测磁场信号的变化;
4 )、在电缆故障点之前的左侧有一个反映故障点前磁场信号变化 的阻尼振荡波形,该阻尼振荡波形显示在磁场信号检测装置的显示单 元上;
5 )、在电缆故障点之后的右侧, 则是反映故障点后磁场信号变化 的阻尼振荡波形,该阻尼振荡波形显示在磁场信号检测装置的显示单 元上;
6 )、 电缆故障点前、后波形频率变化其位置对应待测故障电缆的 故障点所发生位置,即磁场信号从故障点前的较低频率到故障点之后 的较高频率变化点所对应的电缆位置就是电缆故障点所在的位置,故 障点前的频率取决于高压振荡波发生器及待测电缆的 LC参数, 故障 点后的频率取决于终端高压阻尼负载及待测电缆的 LC参数, 设计高 压振荡波发生器及终端高压阻尼负载使故障点后的阻尼振荡波频率 是故障点前频率的 2倍以上则判断频率变化更直观,也就是判断故障 点位置更直观。
本发明与现有技术相比, 本发明的优点为:
1、 故障检测时彻底不受故障检测现场音频噪声干扰的影响, 判断直观简单;
2、 适应穿管、 直埋、 沟道、 隧道各种电缆敷设状况下的电缆 故障检测;
3、 可以边检测故障边查电缆路径走向;
4、 可以迅速分辨多分支电缆中故障点发生在那个分支上。 结构简单, 使用方便, 广泛用于电力系统、 各企事业单位。 附图说明
图 1为本发明检测方法的应用结构示意框图;
图 2为图 1的磁场信号感应接收线圈及故障电缆 3示意图; 图 3 为图 1 的磁场信号检测装置显示的故障点前检测波形曲线 图;
图 4为图 1 的磁场信号检测装置显示的故障点后检测波形曲线 图。
图中, 1为本发明的高压振荡波发生器, la是其高压输出端, lb 是其接地输出端; 2是高压振荡波发生器中的高压谐振电抗器; 3是 待测故障电缆; 4是待测故障电缆 3始端接地线; 5是故障点; 6是 待测故障电缆 3终端接地线; 7是待测故障电缆 3故障相; 8是磁场 信号检测装置; 9是磁场信号检测装置 8的波形显示单元; 10是磁场 信号检测装置 8的磁场信号感应接收线圈; 11是磁场信号检测装置 8 在故障点前的检测波形; 12是磁场信号检测装置 8在故障点后的检 测波形; 13是故障电缆 3的磁场信号示意; 14是待测电缆 3故障相 的终端; 15是本发明的终端高压阻尼负载。
具体实施方式
下面结合附图对本发明的内容作进一步说明。 实施例 1
参照图 1所示,一种用冲击振荡波检测电缆故障点的装置包括一 个高压振荡波发生器 1、 待测故障电缆 3、 磁场信号检测装置 8、 显 示单元 9、 感应接收线圈 10、 终端高压阻尼负载 15, 所述高压振荡 波发生器 1由一个普通高压冲击脉冲信号源和一个高压谐振电抗器 2 组成,其中所述普通高压冲击脉冲信号源的高压输出端与高压谐振电 抗器 2的一端连接,所述高压谐振电抗器 2的另一端做为高压振荡波 发生器的高压输出端 la与待测故障电缆的故障相 7连接; 所述高压 振荡波发生器 1的接地输出端 lb与待测故障电缆 3的始端接地线 4 连接; 所述终端高压阻尼负载 15—端与待测故障电缆 3的终端故障 相 14连接,所述终端高压阻尼负载 15接地端与待测故障电缆 3的终 端接地线 6连接,所述磁场信号检测装置 8与感应接收线圈 10连接, 所述在故障电缆 3上产生阻尼振荡波沿故障电缆 3传输并向外辐射磁 场信号 13, 用感应接收线圈 10接收该磁场信号输入给检测装置 8, 检测装置 8接收的磁场信号 13由显示单元 9显示, 人工观察显示单 元上显示的阻尼震荡波的频率变化点来直观判断电缆故障点的位置。 实施例 2
一种所述的装置检测电缆故障点、路径应用方法, 按下述步骤进 行:
1 )、高压振荡波发生器 1给待测故障电缆 3施加周期性的 5〜30kV 高压冲击脉冲信号, 使故障点 5形成瞬间短路电弧;
2 )、在故障电缆 3上产生两个频率相异的阻尼振荡波沿故障电缆 3传输并向外辐射磁场信号 13;
3 )、 磁场信号检测装置 8与磁场信号感应接收线圈 10连接, 磁 场信号感应接收线圈 10沿故障电缆 3检测磁场信号的变化;
4 )、在电缆 3故障点 5之前的左侧有一个反映故障点前磁场信号 变化的阻尼振荡波形 11, 该阻尼振荡波形 11显示在磁场信号检测装 置 8的显示单元 9上;
5 )、在电缆 3故障点 5之后的右侧, 则是反映故障点后磁场信号 变化的阻尼振荡波形 12, 该阻尼振荡波形 12显示在磁场信号检测装 置 8的显示单元 9上;
6 )、 电缆 3故障点 5前、后波形频率变化其位置对应待测故障电 缆 3的故障点 5所发生位置, 即磁场信号 13从故障点 5前的较低频 率到故障点 5之后的较高频率变化点所对应的电缆 3位置就是电缆 3 故障点所在的位置,故障点 5前的频率取决于高压振荡波发生器 1及 待测电缆 3的 LC参数, 故障点 5后的频率取决于终端高压阻尼负载 15及待测电缆 3的 LC参数, 设计高压振荡波发生器 1及终端高压阻 尼负载 15使故障点 5后的阻尼振荡波频率是故障点 5前频率的 2倍 以上则判断频率变化更直观, 也就是判断故障点位置更直观。
图 1中的磁场信号检测装置 8包括显示单元 9、感应接收线圈 10, 该装置如果用于检测电缆 3故障点时,其显示单元 9开始显示的为故 障点 5之前检测磁场信号 13的阻尼振荡波形 11, 当装置沿电缆 3路 径走向移动到达故障点 5之后,显示单元 9此时显示的为故障点 5之 后检测磁场信号 13的阻尼振荡波形 12, 为了清楚显示两个频率相异 的阻尼振荡波形 11、 12 , 图 1中高压振荡波发生器 1、 终端高压阻尼 负载 15及待测电缆 3的 LC参数决定了故障点 5后的阻尼振荡波频率 是故障点 5之前的 2倍以上,磁场信号检测装置 8的显示单元 9所显 示的阻尼振荡波形频率变化时其磁场信号感应接收线圈位置对应了 待测电缆 3的故障点 5的位置,显示单元 9在故障点 5作为分界点前 后显示两种不同频率的阻尼振荡波形 11、 12。 当装置用于检测电缆 3 路径走向时, 显示单元 9也是在故障点 5前显示显示阻尼振荡波形 11, 在故障点 5之后显示阻尼振荡波形 12。
图 2、 给出了磁场信号感应接收线圈 10检测磁场信号 13时与待 测故障电缆 3的相对位置。
图 3、 给出了磁场信号检测装置 8在电缆 3的故障点 5之前检测 磁场信号 13时显示的波形 11, 该波形为一个阻尼振荡波形, 当磁场 信号检测装置 8沿故障电缆 3往前移动,磁场信号检测装置 8始终有 波形 11显示, 过了故障点 5的位置之后磁场信号检测装置 8显示的 波形由 11变为波形 12显示, 此时此地波形频率的变化处即为电缆 3 的故障点 5所在位置。
图 4、 给出了磁场信号检测装置 8在电缆 3的故障点 5之后检测 磁场信号 13时显示的波形 12, 该波形也是一个阻尼振荡波形但其频 率是波形 11阻尼振荡波形频率的 2倍以上, 当磁场信号检测装置 8 沿故障电缆 3再往后继续移动, 磁场信号检测装置 8显示的波形 12 一直存在。
故障定位时,在待测电缆 3的故障相与屏蔽层或另一故障相之间 施加周期性的高压冲击脉冲信号,由于电缆 3自身的分布参数特性且 电缆 3的平衡是相对的,它对于高压冲击脉冲信号的响应必然是在信 号源与故障点以及故障点与终端高压阻尼负载之间的电缆 3 中形成 各自频率相异的阻尼振荡波沿电缆 3传输并向外辐射产生磁场信号, 故障点前后沿电缆 3均可收到此磁场信号;用可以检测该磁场信号变 化的磁场信号检测装置从高压振荡波发生器端开始沿电缆 3 检测磁 场信号的变化, 至故障点前均应能收到阻尼振荡波产生的波磁场信 号, 而故障点后收到另一个更高频率的阻尼振荡产生的磁场信号, 磁 场信号频率变化的地方所对应的电缆 3位置就是电缆 3故障点所在的 位置。
其中, 考虑到电缆 3故障可能发生在电缆 3的任何位置, 如果发 生在电缆 3的始端, 电缆 3分布参数中的电感、 电容很小不足以产生 明显的阻尼振荡波,故本发明所述的高压振荡波发生器是由常用的普 通高压冲击脉冲信号源串接高压谐振电抗器组成,常用的高压冲击脉 冲信号源内均有脉冲电容, 只要增加高压谐振电抗器即可用。
为了产生故障点后更高频率的阻尼振荡波,本发明须在待测电缆 3故障相的终端与终端地线之间连接终端高压阻尼负载 15。
所述的磁场信号检测装置的磁场信号感应接收线圈 10必须是空 心线圈, 一个就可以检测, 两个可以比较的检测, 还可以测电缆 3走 向路径, 但绝对不可以使用带铁芯或磁芯的磁场信号感应接收线圈, 否则会自己产生阻尼振荡造成误判。
所述的磁场信号检测装置的磁场信号感应接收线圈 10使用时其 线圈平面应平行于待测电缆 3, 保证表征磁场信号的磁力线穿过磁场 信号感应接收线圈 10。
实施例 3
本发明的磁场信号检测装置 8还可以用来检测电缆 3路径,当磁 场信号感应接收线圈 10置于待测电缆 3位置之上, 在故障点 5之前 则波形 11幅度最大, 此时再沿地面往前走, 检测装置始终有波形 11 显示, 若检测装置 8没有波形 11显示, 说明检测装置 8与电缆 3路 径偏斜, 应调整检测装置 8 (或左或右) 选择电缆 3路径的方向, 波 形 11幅度最大时磁场感应接收线圈 10在地面的路径其下面对应的就 是地下电缆 3在故障点 5之前的路径;在电缆 3故障点 5之后的电缆 3附近磁场信号检测装置 8应始终都有波形 12显示, 其幅度最大时 磁场信号感应接收线圈 10在地面的路径其下面对应的就是地下电缆 3在故障点 5之后的路径。

Claims

1、 一种用冲击振荡波检测电缆故障点的装置, 该装置包括一个 高压振荡波发生器(1)、待测故障电缆(3)、磁场信号检测装置(8)、 显示单元(9)、 感应接收线圈 (10)、 终端高压阻尼负载(15), 其特 征在于所述高压振荡波发生器 (1) 由一个普通高压冲击脉冲信号源 和一个高压谐振电抗器 (2) 组成, 其中所述普通高压冲击脉冲信号 源的高压输出端与高压谐振电抗器 (2) 的一端连接, 所述高压谐振 电抗器 (2) 的另一端做为高压振荡波发生器的高压输出端 (la) 与 待测故障电缆的故障相 (7)连接; 所述高压振荡波发生器(1) 的接 地输出端 (lb) 与待测故障电缆(3) 的始端接地线 (4)连接; 所述 终端高压阻尼负载(15)—端与待测故障电缆(3)的终端故障相(14) 连接, 所述终端高压阻尼负载 (15) 接地端与待测故障电缆 (3) 的 终端接地线 (6)连接, 所述磁场信号检测装置 (8) 与感应接收线圈
(10)连接, 所述在故障电缆(3)上产生阻尼振荡波沿故障电缆(3) 传输并向外辐射磁场信号 (13), 用感应接收线圈 (10) 接收该磁场 信号并输入给检测装置 (8), 检测装置 (8) 接收的磁场信号由显示 单元(9)显示, 人工观察显示单元(9)上显示的阻尼震荡波的频率 变化点来直观判断电缆故障点 (5) 的位置。
2、 一种如权利要求 1所述的装置检测电缆故障点、 路径应用方 法, 其特征在于按下述步骤进行:
1)、 高压振荡波发生器(1)给待测故障电缆(3)施加周期性的 5〜30kV高压冲击脉冲信号, 使故障点 (5) 形成瞬间短路电弧;
2)、 在故障电缆 (3) 上产生两个频率相异的阻尼振荡波沿故障 电缆 (3) 传输并向外辐射磁场信号 (13);
3)、 磁场信号检测装置 (8) 与磁场信号感应接收线圈 (10) 连 接, 磁场信号感应接收线圈 (10) 沿故障电缆 (3) 检测磁场信号的 变化;
4)、 在电缆(3)故障点 (5)之前的左侧有一个反映故障点前磁 场信号变化的阻尼振荡波形 (11), 该阻尼振荡波形 (11) 显示在磁 场信号检测装置 (8) 的显示单元 (9) 上;
5)、 在电缆(3) 故障点 (5)之后的右侧, 则是反映故障点后磁 场信号变化的阻尼振荡波形 (12), 该阻尼振荡波形 (12) 显示在磁 场信号检测装置 (8) 的显示单元 (9) 上;
6)、 电缆(3) 故障点 (5)前、 后波形频率变化其位置对应待测 故障电缆 (3) 的故障点 (5)所发生位置, 即磁场信号 (13) 从故障 点 (5)前的较低频率到故障点 (5)之后的较高频率变化点所对应的 电缆 (3) 位置就是电缆 (3) 故障点所在的位置, 故障点 (5) 前的 频率取决于高压振荡波发生器(1)及待测电缆(3) 自身的 LC参数, 故障点(5)后的频率取决于终端高压阻尼负载(15)及待测电缆(3) 自身的 LC参数,设计高压振荡波发生器(1)及终端高压阻尼负载(15) 使故障点 (5)后的阻尼振荡波频率是故障点 (5)前频率的 2倍以上 则判断频率变化更直观, 也就是判断故障点位置更直观。
PCT/CN2011/001395 2011-06-03 2011-08-22 用冲击振荡波原理检测电缆故障点和路径的装置及应用方法 WO2012162862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110149078.6 2011-06-03
CN201110149078.6A CN102305901B (zh) 2011-06-03 2011-06-03 一种用冲击振荡波原理检测电缆故障点的方法

Publications (1)

Publication Number Publication Date
WO2012162862A1 true WO2012162862A1 (zh) 2012-12-06

Family

ID=45379777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001395 WO2012162862A1 (zh) 2011-06-03 2011-08-22 用冲击振荡波原理检测电缆故障点和路径的装置及应用方法

Country Status (2)

Country Link
CN (1) CN102305901B (zh)
WO (1) WO2012162862A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245875A (zh) * 2013-03-19 2013-08-14 湖南省电力公司永州冷水滩供电局 无线电缆管沟故障探视器
CN105699856A (zh) * 2016-04-18 2016-06-22 国网上海市电力公司 一种基于智能采集与分析的电缆故障定位系统及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759686B (zh) * 2012-07-26 2015-04-01 山东科汇电力自动化股份有限公司 一种电力电缆故障定点方法
RU2585323C1 (ru) * 2015-03-27 2016-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Устройство для определения места повреждения кабеля
CA2894907A1 (fr) * 2015-06-19 2016-12-19 Hydro-Quebec Methode de localisation d'un defaut eclateur dans une ligne electrique souterraine
CN105182193A (zh) * 2015-08-24 2015-12-23 国网天津市电力公司 一种配电电力电缆短时停电的owts测试方法
CN105372555B (zh) * 2015-11-05 2018-04-06 国网山西省电力公司大同供电公司 一种具有故障位置检测功能的电力监控系统
CN105425106B (zh) * 2015-11-11 2018-02-09 国网山西省电力公司晋城供电公司 一种电缆故障检测试验系统及其工作方法
CN105929308A (zh) * 2016-07-14 2016-09-07 广西电网有限责任公司柳州供电局 一种护层接地定点仪
CN111856208B (zh) * 2020-07-17 2023-09-19 山东科汇电力自动化股份有限公司 一种超高压电缆护层故障点定位装置及方法
CN112045107B (zh) * 2020-08-13 2022-11-01 无锡市华美电缆有限公司 一种智能化电缆用剪切装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370610A (en) * 1978-08-30 1983-01-25 Bicc Public Limited Company Locating sheath faults in underground power supply cables
JPH09318692A (ja) * 1996-05-30 1997-12-12 Yamaha Motor Co Ltd 被覆ケーブル用断線検知装置
CN1651926A (zh) * 2005-02-03 2005-08-10 淄博博鸿电气有限公司 电力电缆故障的同步磁场定向定位法
CN1719271A (zh) * 2005-07-01 2006-01-11 淄博威特电气有限公司 电缆故障预定点检测方法及检测装置
CN201373905Y (zh) * 2009-03-04 2009-12-30 厦门红相电力设备股份有限公司 电力电缆的安全检测评估系统
CN201765290U (zh) * 2010-09-10 2011-03-16 安徽省电力公司芜湖供电公司 电缆及架空线混合系统单相接地故障定位装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608328A (en) * 1994-11-18 1997-03-04 Radar Engineers Method and apparatus for pin-pointing faults in electric power lines
CN2874521Y (zh) * 2005-07-01 2007-02-28 淄博威特电气有限公司 电缆故障预定点检测装置
CN101122626A (zh) * 2007-09-10 2008-02-13 西安福润德电子科技有限公司 故障电缆电流的应用方法及无噪声手持式电缆故障定点仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370610A (en) * 1978-08-30 1983-01-25 Bicc Public Limited Company Locating sheath faults in underground power supply cables
JPH09318692A (ja) * 1996-05-30 1997-12-12 Yamaha Motor Co Ltd 被覆ケーブル用断線検知装置
CN1651926A (zh) * 2005-02-03 2005-08-10 淄博博鸿电气有限公司 电力电缆故障的同步磁场定向定位法
CN1719271A (zh) * 2005-07-01 2006-01-11 淄博威特电气有限公司 电缆故障预定点检测方法及检测装置
CN201373905Y (zh) * 2009-03-04 2009-12-30 厦门红相电力设备股份有限公司 电力电缆的安全检测评估系统
CN201765290U (zh) * 2010-09-10 2011-03-16 安徽省电力公司芜湖供电公司 电缆及架空线混合系统单相接地故障定位装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245875A (zh) * 2013-03-19 2013-08-14 湖南省电力公司永州冷水滩供电局 无线电缆管沟故障探视器
CN105699856A (zh) * 2016-04-18 2016-06-22 国网上海市电力公司 一种基于智能采集与分析的电缆故障定位系统及方法

Also Published As

Publication number Publication date
CN102305901A (zh) 2012-01-04
CN102305901B (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
WO2012162862A1 (zh) 用冲击振荡波原理检测电缆故障点和路径的装置及应用方法
CN100410675C (zh) 电力电缆故障的同步磁场定向定位法
CN103487727B (zh) 一种高压电力电缆外护套故障在线定位方法
CN201673231U (zh) 一种电缆或管道的故障测试装置
Li et al. Investigation on the placement effect of UHF sensor and propagation characteristics of PD-induced electromagnetic wave in GIS based on FDTD method
CN104655984A (zh) 一种电力电缆故障的测试方法
Tenbohlen et al. On-site experiences with multi-terminal IEC PD measurements, UHF PD measurements and acoustic PD localisation
CN102967807B (zh) 一种绝缘缺陷定位的方法
CN201429706Y (zh) 电缆路径仪
CN103163422A (zh) 一种查找电缆或管道故障点的装置
CN2466669Y (zh) 多功能电缆故障检测仪
CN202583390U (zh) 一种查找电缆或管道故障点的装置
CN202975229U (zh) 变电站二次回路多点接地检测查找仪
CN109613407B (zh) 电力电缆局放定位系统及检测方法
CN113030635A (zh) 非接触式行波故障测距方法及装置
CN103163561A (zh) 一种电缆路径带电探测方法及装置
CN204214972U (zh) 一种磁控电抗器在线监测系统
CN102221664A (zh) 架空高压线路接地故障检测方法
CN202600098U (zh) 电力电缆故障定点仪
CN203798969U (zh) 一种基于变频谐振耐压的电缆局放检测系统
CN102654550A (zh) 利用介质损耗变化测试电缆故障的方法
CN110412412A (zh) 基于音频分析法的电缆故障断路分析方法
US8555722B2 (en) Method and apparatus for underground line crossing detection
CN105388399A (zh) 一种电缆故障检测方法
CN108646301A (zh) 一种低压电缆路径的探测方法及探测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866718

Country of ref document: EP

Kind code of ref document: A1