WO2012160990A1 - Igf-1r-binding peptide - Google Patents

Igf-1r-binding peptide Download PDF

Info

Publication number
WO2012160990A1
WO2012160990A1 PCT/JP2012/062092 JP2012062092W WO2012160990A1 WO 2012160990 A1 WO2012160990 A1 WO 2012160990A1 JP 2012062092 W JP2012062092 W JP 2012062092W WO 2012160990 A1 WO2012160990 A1 WO 2012160990A1
Authority
WO
WIPO (PCT)
Prior art keywords
phage
peptide
igf
ala
cancer
Prior art date
Application number
PCT/JP2012/062092
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 飯森
瑞恵 山形
智隆 塩野
芝 清隆
Original Assignee
Hoya株式会社
公益財団法人がん研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, 公益財団法人がん研究会 filed Critical Hoya株式会社
Publication of WO2012160990A1 publication Critical patent/WO2012160990A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57434Specifically defined cancers of prostate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a peptide that specifically binds to insulin-like growth factor 1 receptor (IGF-1R) and a medicament containing the peptide.
  • IGF-1R insulin-like growth factor 1 receptor
  • IGF-1R Human insulin-like growth factor 1 receptor
  • IGF-1R Human insulin-like growth factor 1 receptor
  • IGF-1R Human insulin-like growth factor 1 receptor
  • IGF-2 Human insulin-like growth factor 1 receptor
  • IGF-1R is a receptor belonging to the family of transmembrane protein tyrosine kinases, has high affinity for IGF-1, and binds weakly to IGF-2.
  • IGF-1R is a transmembrane heterotetramer protein and has a configuration in which two ⁇ chains outside the cell and two ⁇ chains straddling the membrane are disulfide bonded.
  • IGF-1 and IGF-2 bind to the extracellular domain of IGF-1R, the intracellular tyrosine kinase domain is activated, causing receptor autophosphorylation and substrate phosphorylation.
  • IGF-1R is known to promote tumor cell growth, transformation and survival.
  • Known tumor cells include lung cancer, breast cancer, colon cancer, ovarian cancer, synovial sarcoma, pancreatic cancer, prostate cancer and the like. It is also known that the blood concentration and tissue concentration of IGF-1R correlate with an increased risk of many cancers.
  • IGF-1R is deeply involved in the development and development of various cancers, and anti-IGF-1R antibodies and IGF-1R antagonists have been reported as tools for the diagnosis and treatment of these cancers ( Patent Documents 1 to 3).
  • anticancer agents using anti-IGF-1R antibodies have not yet been approved as pharmaceuticals.
  • IGF-1R antagonist of Patent Document 3 no specific substance is disclosed, and the invention has not been completed.
  • an object of the present invention is to provide a substance that binds specifically and with high affinity to IGF-1R and a medicament containing the same.
  • the present inventors searched for phages that display peptides that specifically bind to IGF-1R using the phage display method. As a result, peptides having specific amino acid sequences specifically bound to recombinant human IGF-1R protein. And it was found that cells or tissues expressing IGF-1R can be specifically detected using this peptide or a labeled form thereof. Further, since the peptide or a labeled product thereof competitively inhibits the binding between IGF-1R and IGF-1 and suppresses the proliferation of cancer cells by IGF-1, the peptide or the labeled product is a cancer therapeutic agent. As a result, the present invention was completed.
  • the present invention provides a peptide having 8 to 50 amino acids having at least an amino acid sequence represented by the following formula (1).
  • X 1 represents Tyr, Trp, Phe or His
  • X 2 represents Ser, Ala, Thr, Gly, Asn, Asp, Glu, Arg or Lys
  • X 3 represents Met, Leu, Ile, Val, Ala, Phe, Tyr, Trp or Cys
  • X 4 represents Leu, Ile, Val or Met
  • X 5 represents Gln, Asn, Asp, Glu, Ala, Ser, Thr, Leu, Met, Lys or Arg
  • X 6 represents Arg, Lys, His, Asn, Gln, Ser, Thr, Asp, Glu or Ala
  • X 7 represents Leu, Ile, Val or Met
  • the present invention also provides a medicine containing the above peptide or a label thereof.
  • this invention provides the said peptide or its label for cancer diagnosis or cancer treatment. Moreover, this invention provides use of the said peptide or its labeled body for cancer diagnostic agent or cancer therapeutic agent manufacture. The present invention also provides a method for diagnosing or treating cancer, comprising administering the peptide or a labeled form thereof.
  • the peptide of the present invention has a specific and strong binding property to IGF-1R, this peptide or its label is a detection agent for cells or tissues expressing IGF-1R, particularly various cancer cells or cancer tissues. That is, it is useful as a diagnostic agent for cancer.
  • the peptide of the present invention competitively inhibits the binding between IGF-1R and IGF-1 and suppresses the growth of cancer cells by IGF-1, and thus is useful as a cancer therapeutic agent expressing IGF-1R. It is.
  • the output titer / input titer ratio of the panning experiment with D12 library is shown.
  • the output titer / input titer ratio of the panning experiment with C7C library is shown.
  • the peptide sequence displayed by the phage recovered in 3 rounds of IGF-1R target panning is shown.
  • the binding test result for the immobilized protein of S-011 phage is shown.
  • the binding test result with respect to the solid-phased protein of M13KE phage is shown.
  • the binding test result of S-011 phage to the liquid phase protein is shown.
  • the bindability test result with respect to the liquid phase protein of M13KE phage is shown.
  • the display peptide sequence of an alanine substituted phage is shown.
  • the binding test result with respect to the solidification protein of an alanine substitution phage is shown.
  • the result of examining the expression level of IGF-1R (Western blot) is shown.
  • the actin expression level examination result (Western blot) is shown.
  • the result of an in vitro binding test using MCF7 cells is shown.
  • the in vitro binding test results using A-172 cells are shown.
  • the competition test result of S-011 phage and peptide Pep02 is shown.
  • the competition test result of S-011 phage and peptide Pep17 is shown.
  • the MCF7 stained image of peptide Pep02-F is shown.
  • the MCF7 stained image of peptide Pep17-F is shown.
  • the display peptide sequences of amino acid substitution phage and short peptide phage are shown.
  • the bindability test result with respect to the solid-phased protein of a 1 amino acid substitution phage is shown.
  • the bindability test result with respect to the solid-phased protein of a 2 amino acid substitution phage is shown.
  • the binding test result to the immobilized protein of the short peptide phage is shown.
  • the competition test result of S-011 phage and rhIGF-1 is shown.
  • the competition test result of S-011 phage and anti-IGF-1R antibody is shown.
  • the growth inhibitory effect of peptide Pep02 with respect to the proliferation enhancement of Hela S3 by rhIGF-1 addition is shown.
  • the growth inhibitory effect of peptide Pep02 with respect to the proliferation enhancement of MCF7 by rhIGF-1 addition is shown.
  • the growth inhibitory effect of peptide Pep02 with respect to the anchorage independent growth enhancement of MCF7 by rhIGF-1 addition is shown.
  • the peptide of the present invention is a peptide having 8 to 50 amino acids having at least the amino acid sequence represented by the following formula (1).
  • X 1 represents Tyr, Trp, Phe or His
  • X 2 represents Ser, Ala, Thr, Gly, Asn, Asp, Glu, Arg or Lys
  • X 3 represents Met, Leu, Ile, Val, Ala, Phe, Tyr, Trp or Cys
  • X 4 represents Leu, Ile, Val or Met
  • X 5 represents Gln, Asn, Asp, Glu, Ala, Ser, Thr, Leu, Met, Lys or Arg
  • X 6 represents Arg, Lys, His, Asn, Gln, Ser, Thr, Asp, Glu or Ala
  • X 7 represents Leu, Ile, Val or Met
  • X 1 represents Tyr, Trp, Phe or His, among which Tyr, Trp or Phe is preferable, and Tyr is particularly preferable.
  • X 2 represents Ser, Ala, Thr, Gly, Asn, Asp, Glu, Arg or Lys. Among these, Ser, Ala, Thr and Gly are preferred, Ser and Ala are more preferred, and Ser is particularly preferred.
  • X 3 represents Met, Leu, Ile, Val, Ala, Phe, Tyr, Trp, or Cys. Among them, Met, Leu, Ile, Val, Ala are preferable, and Met, Leu, Ile, Ala are more preferable. Met is particularly preferable.
  • X 4 represents Leu, Ile, Val or Met, but Leu is more preferable.
  • X 5 represents Gln, Asn, Asp, Glu, Ala, Ser, Thr, Leu, Met, Lys or Arg, and among them, Gln, Asn and Ala are preferable, Gln and Ala are more preferable, and Gln is particularly preferable.
  • X 6 represents Arg, Lys, His, Asn, Gln, Ser, Thr, Asp, Glu or Ala, preferably Arg, Lys, His, and Ala, more preferably Arg, Lys, and Ala, and particularly preferably Arg.
  • X 7 represents Leu, Ile, Val or Met, but Leu is more preferable.
  • peptides of the present invention peptides having at least the amino acid sequence represented by the formula (2) and having 10 to 50 amino acids are more preferable.
  • X a represents Asp or Glu
  • Xb represents Pro, Val, Ile, Leu, Ala, Met, Trp, Tyr, Ser, Thr, Cys or Phe
  • X 1 to X 7 are the same as above
  • X a is show Asp or Glu, Asp are preferred.
  • Xb represents Pro, Val, Ile, Leu, Ala, Met, Trp, Tyr, Ser, Thr, Lys, or Phe, but Pro, Val, Ile, Leu, Ala, and Met are preferable, and Pro, Val, Ile Is more preferable, and Pro is particularly preferable.
  • a peptide having at least an amino acid sequence represented by the formula (3) and having 10 to 50 amino acids is more preferable.
  • Xc represents Ala, Gly, Ser, Thr, Asn, Val or Cys
  • Xd represents His, Tyr, Phe, Lys, Arg, Leu, Met or Ala
  • X 1 to X 7 are the same as above
  • Xc represents Ala, Gly, Ser, Thr, Asn, Val, or Cys. Among them, Ala, Gly, Ser, and Thr are preferable, Ala and Gly are more preferable, and Ala is particularly preferable.
  • X d represents His, Tyr, Phe, Lys, Arg, Leu, Met or Ala, and among these, His, Tyr, Phe, Lys, Arg, Ala are preferred, His, Tyr, Phe, Ala are more preferred, His Is particularly preferred.
  • a peptide having at least an amino acid sequence represented by the following formula (4) and having 12 to 50 amino acids is more preferable.
  • the number of amino acids of the peptide of the present invention is 8 to 50, preferably 10 to 50, and more preferably 12 to 50.
  • the upper limit of the number of amino acids is preferably 40, more preferably 30, more preferably 20, and particularly preferably 18.
  • substitution of X 1 to X 7 and X a to X d of the peptide of the present invention is based on the binding test results described in the examples below and the similar activity if conservative substitutions are shown. Here, typical conservative substitutions are shown in Table 1.
  • the peptide of the present invention can be produced by a recombinant technique using DNA encoding the amino acid sequence, but can also be produced by an organic synthetic chemical peptide synthesis method.
  • Organic synthetic chemical peptide synthesis methods are performed by means of general protection of functional groups, activation of carboxyl groups, formation of peptide bonds, and deprotection of protecting groups. These reactions are preferably carried out by a solid phase method.
  • the peptide represented by SEQ ID NO: 2 is selected by screening a peptide having a binding property to IGF-1R by a phage display method from a phage library displaying a random peptide sequence. Can do. M13 is preferable as the phage used in the phage display method. To select those that bind strongly to IGF-1R from the phage library, the phage population is incubated with IGF-1R, the phage that did not bind to IGF-1R are washed away, and the bound phage is recovered. To determine what sequence of peptides the recovered phage displays, the relevant part of the phage genome may be sequenced.
  • the peptide of the present invention specifically binds to IGF-1R. Accordingly, the peptide of the present invention or a labeled form thereof is useful as a reagent for detecting cells or tissues expressing IGF-1R or IGF-1R.
  • the label of the peptide of the present invention may be a label capable of detecting a peptide bound to IGF-1R, and is a radioisotope, an affinity label (for example, biotin, avidin, etc.), an enzyme label (for example, Horseradish peroxidase, alkaline phosphatase, etc.), fluorescent labels (eg, FITC, rhodamine, etc.), paramagnetic atoms and the like.
  • a fluorescent label or a label with a positron nuclide is more preferable for detecting cancer cells or cancer tissues expressing IGF-1R such as colorectal cancer.
  • the fluorescently labeled peptide of the present invention is useful for diagnosis of cancer expressing IGF-1R, for example, early cancer diagnosis.
  • diagnosis for the purpose of confirming the presence or absence of cancer tissue after contacting the fluorescently labeled peptide to the target site by means such as spraying or injection, after removing the excess fluorescent component by washing treatment, Excitation light can be irradiated to the corresponding part, and the presence or absence of the fluorescently stained tissue can be confirmed macroscopically or microscopically.
  • the fluorescently labeled peptide of the present invention is used as a fluorescence contrast agent for cancer diagnosis by an endoscope.
  • the fluorescently labeled peptide is contacted with tissue by means such as endoscopically spraying. After that, a cleaning process is performed, and an excitation light is irradiated onto the corresponding part with an endoscope light source, and the presence or absence of the fluorescently stained tissue may be confirmed endoscopically.
  • a cleaning process is performed, and an excitation light is irradiated onto the corresponding part with an endoscope light source, and the presence or absence of the fluorescently stained tissue may be confirmed endoscopically.
  • the type of endoscope is not particularly limited, but a fluorescent endoscope capable of irradiating excitation light for fluorescein as an endoscope light source or a confocal endoscope having an enlargement capability is preferable.
  • the fluorescent dye to be modified is not limited to fluorescein, and fluorescent dyes having different excitation wavelengths such as cyanine compounds may be used.
  • a cyanine compound such as indocyanine green
  • the excitation wavelength is further shifted to the longer wavelength side compared to fluorescein, which is effective in confirming deeper lesions.
  • the positron nuclide is modified with the peptide of the present invention, it can be detected by PET, SPECT or the like.
  • the peptide of the present invention can be used not only for cancer at sites that can be reached endoscopically, such as digestive organs, but also for cancer lesions throughout the body.
  • the peptide of the present invention or a labeled product thereof competitively inhibits the binding between IGF-1R and IGF-1, and suppresses cancer growth of cancer cells by IGF-1, detection of cancer cells as described above, It can be used not only for cancer diagnosis but also for cancer treatment.
  • any cell or tissue expressing IGF-1R may be used.
  • cancer cell or cancer tissue specifically lung cancer Breast cancer, colon cancer, osteosarcoma, cervical cancer, ovarian cancer, synovial sarcoma, pancreatic cancer, prostate cancer and the like.
  • the peptide of the present invention or a labeled form thereof can be used as it is, but various administration forms together with a pharmaceutically acceptable carrier. It can be set as the composition suitable for. Examples of the composition include injectable agents, spray agents, oral administration agents, rectal agents and the like. Examples of the pharmaceutically acceptable carrier include water, physiological saline, various buffers, excipients, disintegrants, binders, lubricants, and the like.
  • the dose when the peptide of the present invention or a labeled product thereof is used as a cancer therapeutic agent varies depending on symptoms, body weight, etc., but is usually preferably 0.1 mg to 1000 mg per day for an adult.
  • Example 1 (phage display) [procedure] 1. Panning experiment-round 1 200 ⁇ L of 5 ⁇ g / mL Recombinant human Insulin Like Growth Factor-1 Receptor (rhIGF-1R, R & D Systems) was added to a 96-well plate (1 ⁇ g / well) and incubated at 4 ° C. overnight (solid phase on the plate). ). The non-solid phase protein in the well was removed, Blocking buffer (5 mg / mL BSA (bovine serum albumin) / TBS (50 mM Tris-HCL / 150 mM NaCl)) was added at 300 ⁇ L / well, and allowed to stand at 37 ° C. for 1 hour.
  • BSA bovine serum albumin
  • TBS 50 mM Tris-HCL / 150 mM NaCl
  • the peptide-displaying phage library (NEW ENGLAND BioLabs Inc.) utilizes two types, and the D12 library displays 12-residue linear random peptides, and 2.7 ⁇ 10 9 different peptide sequences. It has a phage library.
  • the C7C library presents a 7-residue cyclic random peptide and is a phage library having 1.2 ⁇ 10 9 different peptide sequences.
  • peptide-displayed phage (hereinafter abbreviated as phage) was bound to the immobilized rhIGF-1R, the phage solution was removed, and 0.1% TBST 200 ⁇ L / Washed 10 times with well. Phage was eluted by adding 100 ⁇ L of 1 mg / mL BSA / 0.2M Glycine-HCl (pH 2.2) and shaking at room temperature for 10 minutes. The eluate was recovered and neutralized by adding 15 ⁇ L of 1M Tris-HCl (pH 9.1) to the recovered solution. A part of the collected eluate was used to measure the phage titer.
  • phage peptide-displayed phage
  • the phage eluate obtained by the operation of amplification 1 of the recovered phage was subjected to ER2738 logarithmically growing in 20 mL of LB [F'lacl q ⁇ (lacZ) M15proA + B + zzf :: Tn10 (TetR) fhuA2supEthi ⁇ (lac-proAB) ⁇ (hsdMS-mcrB) 5 (r k -m k -McrBC-)] was infected and incubated for 4 hours 30 minutes at 37 ° C. with vigorous stirring using a shaker.
  • the phage-infected bacterial culture was transferred to a 50 mL centrifuge tube, and the sample was centrifuged at 8,900 ⁇ g at 4 ° C. for 10 minutes using a micro-cooled centrifuge. After centrifugation, the supernatant was collected in a new tube for the purpose of removing ER2738 bacteria.
  • Add 3.6 mL (1/5 volume) of PEG / NaCl (20% Polyethylene glycol 6,000, 2.5 M NaCl) solution to the recovered phage solution, stir well with a mixer, and incubate at 4 ° C. for 16 hours. Then, phages were precipitated.
  • the supernatant was removed by centrifugation at 8,900 ⁇ g for 10 minutes at 4 ° C. in a micro-cooled centrifuge. In order to completely remove the supernatant, it was centrifuged once more and the supernatant was removed. 1 mL of ice-cold TBS was added to the precipitated phage, suspended, and transferred to a microtube. The phage suspension was centrifuged at 16,000 ⁇ g for 5 minutes at 4 ° C. using a compact high speed cooling centrifuge.
  • the supernatant was collected in another tube, the residue that was not suspended was removed, 200 ⁇ L of PEG / NaCl was added to the collected solution, and the mixture was stirred with a mixer. The solution was incubated on ice for 1 hour to precipitate the phage. The solution was centrifuged at 16,000 ⁇ g for 10 minutes at 4 ° C. in a high-speed centrifuge to precipitate phages and remove the supernatant. This centrifugation step was performed again, and the supernatant was completely removed.
  • phage precipitate 200 ⁇ L of 0.02% NaN 3 / TBS is completely suspended, suspended in a compact refrigerated centrifuge at 4 ° C., 5 minutes, 16,000 ⁇ g, and the supernatant is removed. The residue that was not suspended was removed by recovery. The titer of the recovered phage concentrate was measured.
  • Panning experiment-Round 2 3 Second and third panning experiments were performed using the concentrated phage solution.
  • the second panning experiment differs from the first operation in that the amount of added phage was 2 ⁇ 10 11 PFU / well and the washing solution was 0.3% TBST (0.3% Tween 20 / TBS).
  • the third panning experiment differs from the first operation in that the amount of added phage was 2 ⁇ 10 11 PFU / well and the washing solution was 0.5% TBST (0.5% Tween 20 / TBS).
  • IGF-1R target panning experiment using D12 library up to 3 rounds when comparing the output titer / input titer ratio, an increase of about 87 times of 1 round was observed in 3 rounds. . Therefore, it was expected that phages showing IGF-1R specific binding were selected. IGF-1R targeted panning experiments using the C7C library proceeded to 4 lands, but only an increase of about 2-fold was observed compared to 1 round.
  • Example 2 (sequence analysis) [procedure] Phage obtained from three rounds of panning experiments using the D12 library was cloned according to a conventional method (Page Display A Laboratory Manual, Cole Spring Harbor Laboratory Press, 2001). The base sequence of the part was determined. For the determination of the base sequence, a primer corresponding to the complementary strand of the base sequence located 96 residues downstream from the presented peptide region [-96 gIII sequencing primer (5′- HO CCCTCATTAGTAGCGTAACG-3 ′) (SEQ ID NO: 1), S1259A , NEB] by the dideoxyterminate method (CEQ DTCS Quick start kit, Beckmann). A capillary sequencer (CEQ2000, Beckman) was used for electrophoresis of reaction products and data analysis.
  • the peptide sequence DPFYSMLQRLAH (SEQ ID NO: 2) displayed by the obtained S-011 phage was 9 clones having the same sequence among 12 clones examined in 3 rounds (75% ). Only one clone of each of S-012 phage (SEQ ID NO: 3), S-017 phage (SEQ ID NO: 4), and S-020 phage (SEQ ID NO: 5) was obtained. Therefore, it was revealed that S-011 phage was selected as the number of pannings progressed. The reason why a specific phage clone is selected is that the phage clone shows a strong binding property to the target molecule.
  • Example 3 (Phage binding test (protein immobilization conditions)) [procedure] Add target protein rhIGF-1R and IGF-1R structurally similar protein, Recombinant human Epidermal Factor Receptor (rhEGFR, R & D Systems), BSA as standard protein to 96 ⁇ m microplate at 1 ⁇ g / well. It was solidified by leaving it overnight. The protein solution was removed, 300 ⁇ l of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 ⁇ l of a washing solution 0.5% TBST, and finally 100 ⁇ l of 0.5% TBST was added.
  • rhIGF-1R Recombinant human Epidermal Factor Receptor
  • An amplification phage solution (S-011 or M13KE (peptide non-displaying phage) was added to the wells so as to be 1 ⁇ 10 10 PFU and mixed by pipetting. The reaction was gently shaken for 1 hour at room temperature. After removing the reaction solution and washing the well 10 times with 200 ⁇ l of 0.5% TBST, 100 ⁇ l of 0.2 M Glycine-HCl (pH 2.2) was added to the well, and the mixture was stirred by pipetting. Gently shake for minutes. The eluate was collected from the wells into a microtube and neutralized by adding 15 ⁇ l of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
  • FIG. 4 shows the change in the ratio between the input titer and the output titer in the binding test by the solid-phase method
  • FIG. 5 shows the result of the M13KE phage. It was revealed that the binding of S-011 to IGF-1R was 9963 times higher than that of EGFR, which is an IGF-1R structure-analogous protein, and 7130 times higher than that of BSA, which is a standard protein. In M13KE phage, no difference in binding was observed between the immobilized proteins, and all of them were low values.
  • S-011 phage specifically binds to IGF-1R under protein-immobilized conditions. Further, comparing the binding properties of S-011 phage and M13KE phage to IGF-1R, it was revealed that S-011 was 2892 times higher. From these results, it was suggested that the peptide sequence displayed by the S-011 phage may be involved in the binding to IGF-1R.
  • Example 4 (Phage binding test (protein solution phase conditions)) [procedure] Dispense 200 ⁇ l of 0.01% PBST (0.01% Tween20 / PBS) into a microtube, add 10 ⁇ l of magnetic beads coated with Protein A (Dynabeads Protein A, invitrogen), mix by pipetting, and mix the magnet with a micro tube. The supernatant was removed by pressing against the side of the tube. Thereafter, the magnet was separated from the microtube, 200 ⁇ l of 0.01% PBST was added and mixed by pipetting, the magnet was pressed against the microtube, and the supernatant was removed. The above process was repeated three times to wash the magnetic beads.
  • PBST 0.01% Tween20 / PBS
  • Example 5 (Alanine-substituted phage production) [procedure] 1. Using a site-directed mutagenesis KOD-Plus-Mutageness kit (SMK-101, TOYOBO), a phage in which the amino acid in the peptide display portion of M13KE phage was substituted with alanine was prepared. An oligonucleotide primer containing a desired mutation in the nucleotide sequence of the displayed peptide sequence was commissioned and synthesized (Nippon Genetics Research Laboratories). The synthetic primer is a desalted oligonucleotide purified by HPLC.
  • the primer synthesized this time was designed to have a length of 24-27 bp and a GC content of 50-60%.
  • the phosphorylation of the PCR product can be carried out simultaneously with the self-ligation of the PCR product, so that the primer is not phosphorylated.
  • Template plasmid DNA was purified from S-011 phage-infected ER2738 bacteria using QIAGEN Plasmid kit.
  • PCR reaction Using template plasmid DNA, primer, dNTPs, KOD-plus-, [94 ° C., 2 minutes] ⁇ ⁇ [98 ° C., 10 seconds] ⁇ [68 ° C., 7.5 minutes] ⁇ ⁇ 8 cycles ⁇ [4 ° C. , Hold] conditions.
  • a thermal cycler PCR Thermal Cycler Dice, TAKARA
  • PCR reaction conditions were set based on the amplification size.
  • the template plasmid was digested by DpnI treatment, and the PCR product was self-ligated by T4 Polynucleotide Kinase treatment.
  • Transformed XL-1 Blue competent cells were lysed on ice. 10 ⁇ L of the self-ligated solution was added to 60 ⁇ L of XL-1 Blue competent cells and mixed. After incubating on ice for 30 minutes, it was incubated on a heat block at 42 ° C. for 90 seconds and incubated on ice for 2 minutes. In a 15 mL conical tube, 1 ⁇ L of the XL-Blue bacterium was added to 100 ⁇ L of ER2738 O / N culture and mixed. The remaining XL-1 Blue bacteria were placed in a 15 mL conical tube. 4 mL of top agar was added to each of the above samples and mixed by vortexing. The E. coli sample was seeded on an LB / IPTG / Xgal plate and incubated at 37 ° C. for 16 hours.
  • Example 6 (Alanine-substituted phage binding test) [procedure]
  • the target protein rhIGF-1R was added to a 96-well microplate at 1 ⁇ g / well and allowed to stand overnight at 4 ° C. for immobilization.
  • the protein solution was removed, 300 ⁇ l of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 ⁇ l of a washing solution 0.5% TBST, and finally 100 ⁇ l of 0.5% TBST was added.
  • Amplified phage solution (S-011 phage or alanine-substituted phage prepared in Example 5) was added to the well so as to be 1 ⁇ 10 10 PFU and mixed by pipetting. The reaction was gently shaken for 1 hour at room temperature. After removing the reaction solution and washing the well 10 times with 200 ⁇ l of 0.5% TBST, 100 ⁇ l of 0.2M Glycine-HCl (pH 2.2) was added to the well and stirred by pipetting. Gently shake for 10 minutes. The eluate was collected from the wells into a microtube and neutralized by adding 15 ⁇ l of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
  • FIG. 9 shows the change in the ratio between the input titer and the output titer in the alanine-substituted phage binding test.
  • FIG. 9 shows the change in the ratio between the input titer and the output titer in the alanine-substituted phage binding test.
  • the first D aspartic acid
  • the third F phenylalanine
  • the fourth Y tyrosine
  • the seven A phage in which the 10th L (leucine) and the 10th L (leucine) are substituted with alanine In particular, it was revealed that the binding ability of the phage in which the seventh L (leucine) was substituted with alanine was most lowered.
  • phages There are five types of phages in which the amino acid of S-011 phage is substituted with alanine, and the binding to IGF-1R is lower than that of S-011 phage.
  • the amino acid sequence of the peptide displayed by S-011 phage amino acids considered to be involved in binding to IGF-1R are the first D (aspartic acid), the third F (phenylalanine), the fourth Y (tyrosine), the seventh L ( Leucine) and tenth L (leucine). Of the above amino acids, the amino acid most likely to be involved in binding to IGF-1R was the seventh L (leucine).
  • Example 7 (Western blot) [procedure] Cultured cells MCF7; human breast cancer cells (DS Pharmabiomedical), A-172 cells; human neuroblastoma cells (DS PharmaBiomedical), Hela S3: human cervical cancer cells (DS PharmaBiomedical)) A cell lysate was prepared according to the Laemmli method and subjected to SDS-PAGE. A-431 Whole Cell Lysate (Santa Cruz Biotechnology) was used as a control cell sample. Proteins were transferred from the polyacrylamide gel after electrophoresis to a PVDF membrane, and blocking was performed using 5% skim milk / TBST (0.05% Tween-20 / TBS).
  • IGF-1R detection 1 ⁇ g / mL IGF-1R ⁇ (N20) (Santa Cruz Biotechnology) was used as the primary antibody, and Goat anti-rabbit IgG-HRP (BioRad) was used as the secondary antibody.
  • ⁇ -actin detection Monoclonal Anti- ⁇ -Actin, Clone AC-15 (SIGMA-ALDRICH) was used as the primary antibody, and Goat anti-mouse IgG-HRP (BioRad) was used as the secondary antibody.
  • Amersham TM ECL Plus Western Blotting Detection System (GE Healthcare), which is a detection agent, was added to the PVDF membrane after the antibody reaction, and a band was detected using a chemiluminescence detection analyzer (LumiVison PRO, Taitec).
  • Example 8 (Bindability test (in vitro)) From Example 7, a phage peptide binding test was carried out targeting the MCF7 cell line in which high expression of IGF-1R was observed and the A-172 cell line in which expression was not observed.
  • reaction solution was removed and washed 10 times with 1 mL of 1% BSA / PBS to remove unbound phage. 100 ⁇ l of 0.05% trypsin / 0.53 mM EDTA solution was added, incubated at 37 ° C. for 5 minutes, and 900 ⁇ l of growth medium was added to obtain a recovered phage solution. The titer of each recovered phage solution was measured.
  • FIG. 12 shows the ratio between the input titer and the output titer of each phage.
  • the titer ratio of S-011 phage was 170 times higher than that of M13KE phage.
  • the titer ratio of S-011_L7A phage was 1.6 times that of M13KE phage.
  • reaction solution was removed and washed 10 times with 1 mL of 1% BSA / PBS to remove unbound phage. 100 ⁇ l of 0.05% trypsin / 0.53 mM EDTA solution was added, incubated at 37 ° C. for 5 minutes, and 900 ⁇ l of growth medium was added to obtain a recovered phage solution. The titer of each recovered phage solution was measured.
  • FIG. 13 shows the ratio between the input titer and the output titer of each phage.
  • the titer ratio of S-011 phage peptide was 3.0 times that of M13KE phage.
  • the titer ratio of S-011_L7A phage was 2.7 times that of M13KE phage. From the results shown in FIG. 13, it can be seen that in A-172 cells not expressing IGF-1R, the phage peptide displaying the peptide showed about two times higher binding than the peptide non-displaying phage. However, specific binding due to the peptide sequence is not observed, and it is considered that cells bind nonspecifically. On the other hand, from the results of FIG.
  • the phage peptide displaying the peptide of SEQ ID NO: 2 was compared with the phage peptide of SEQ ID NO: 12 or the peptide non-displaying phage. It was strongly tied to the superiority. This advantage is considered to be due to the binding of the peptide of SEQ ID NO: 2 to IGF-1R expressed in MCF7 cells.
  • Example 9 (competitive test) [procedure]
  • the target protein rhIGF-1R was added to a 96-well microplate at 1 ⁇ g / well and allowed to stand overnight at 4 ° C. for immobilization.
  • the protein solution was removed, 300 ⁇ l of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 ⁇ l of a washing solution 0.5% TBST, and finally 100 ⁇ l of 0.5% TBST was added.
  • the S-011 amplified phage solution was added to the wells to 1 ⁇ 10 10 PFU, and then the synthetic peptide Pep02 (purity 90% ⁇ , HPLC grade, AnyGen, Korea) and synthetic peptide Pep17 (GAASTRYLHELI: SEQ ID NO: 17) unrelated to the binding of IGF-1R with a purity of 90% ⁇ , HPLC grade, AnyGen, Korea, 0, 1 nM, 100 nM, respectively. It added so that it might become a density
  • Pep17 was not involved in the binding of S-011 phage to IGF-1R at all, so there was no difference in the recovered amount of S-011 phage even at high concentrations, but a synthetic peptide having a peptide sequence displayed by S-011 phage Pep02 was found to inhibit the binding between S-011 phage and IGF-1R in a concentration-dependent manner. From this result, it is considered that there is a high possibility that the peptide displayed by the S-011 phage binds to the same site of the S-011 phage and IGF-1R even with the peptide alone.
  • Example 10 Human breast adenocarcinoma cells MCF7 were seeded in a glass bottom dish ( ⁇ 35 mm, Mat Tek Corp.) so as to be 400 ⁇ 10 4 Cells / Dish, and cultured at 37 ° C. under CO 2 conditions for 48 hours. The cultured dish was incubated at 4 ° C. for 30 minutes, and after removing the culture solution, it was washed 3 times with 1 mL of 4 ° C. growth medium.
  • Peptides (Pep02-F, Pep18-F (LASFMFLDQPYR: SEQ ID NO: 18) in which an aminocaproic acid linker is linked to the N-terminal of the peptide and FITC is labeled on the opposite side of the linked linker (purity 90% ⁇ , HPLC grade AnyGen, Korea) was prepared to 100 ⁇ M in growth medium, 1 mL was added and incubated at 4 ° C. for 1 hour. The peptide solution was removed, washed 10 times with 1 mL of growth medium at 4 ° C., and finally 1 mL of medium was added. Observation was carried out using a confocal microscope (Leica SP2), and the excitation light was irradiated with a laser wavelength of 488 nm, and fluorescence was observed.
  • FIG. 16 shows the staining property of MCF7 of Pep02-F observed with a confocal microscope.
  • the imaging conditions were an image taken with a gain value of 700 Volt using excitation light of 488 nm, fluorescence receiving side set to 515 to 600 nm, objective lens using a 63 ⁇ oil lens (HCX PL APO CS 63x OIL, Leica). .
  • HCX PL APO CS 63x OIL, Leica 63 ⁇ oil lens
  • FIG. 17 shows the staining of Pep18-F MCF7 observed with a confocal microscope. The shooting conditions are the same as for Pep02-F. MCF7 is not stained at all. Even when the Gain value was maximized, the staining of the cells could not be observed.
  • Pep02-F When the staining of Pep02-F and Pep18-F was compared, the staining ability of MCF7 could be confirmed only with Pep02-F. That is, Pep02-F may specifically stain the cell gap of MCF7. In addition, from the results of WB, MCF7 is highly likely to express IGF-1R, and Pep02-F staining is also in the intercellular space. Therefore, Pep02-F binds to IGF-1R expressed by MCF7. It is thought that there is.
  • Example 11 (Production of amino acid-substituted phage) [procedure] 1. Using site-directed mutagenesis KOD-Plus-Mutageness kit (SMK-101, TOYOBO), the amino acid in the peptide display part of M13KE phage was replaced with another amino acid, and several amino acids of the display peptide were removed. The phage (short peptide-displaying phage) was prepared. An oligonucleotide primer containing a desired mutation in the nucleotide sequence of the displayed peptide sequence was commissioned and synthesized (Nippon Genetics Research Laboratories). The synthetic primer is a desalting oligo purified by HPLC.
  • the primer synthesized this time was designed to have a length of 20 to 27 bp and a GC content of about 50 to 60%.
  • the phosphorylation of the PCR product can be carried out simultaneously with the self-ligation of the PCR product, so that the primer is not phosphorylated.
  • Example 12 (Binding test of amino acid-substituted phage) [procedure]
  • the target protein rhIGF-1R was added to a 96-well microplate at 1 ⁇ g / well and allowed to stand overnight at 4 ° C. for immobilization.
  • the protein solution was removed, 300 ⁇ l of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 ⁇ l of a washing solution 0.5% TBST, and finally 100 ⁇ l of 0.5% TBST was added.
  • Amplified phage solution (S-011 phage or amino acid-substituted phage prepared in Example 11) was added to the well so as to be 1 ⁇ 10 10 PFU, and mixed by pipetting. The reaction was gently shaken for 1 hour at room temperature. After removing the reaction solution and washing the well 10 times with 200 ⁇ l of 0.5% TBST, 100 ⁇ l of 0.2M Glycine-HCl (pH 2.2) was added to the well and stirred by pipetting. Gently shake for 10 minutes. The eluate was collected from the wells into a microtube and neutralized by adding 15 ⁇ l of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
  • [result] 1 The change in the ratio of the values of the input titers and output titer binding test of one amino acid substitution phage single amino acid substitutions phage 19.
  • the one amino acid substituted phages there were 10 phages that showed less change compared to the binding properties of S-011 phage.
  • the phage showing the binding of 1 to 1/10 times that of S-011 has the seventh L (leucine) substituted with I (isoleucine), V (valine), and M (methionine). Case (SEQ ID NO: 19 to 21).
  • the fourth Y (tylosin) is substituted with W (tryptophan), F (phenylalanine), and H (histidine) (SEQ ID NO: 22 to 24) and the first D (aspartic acid) is replaced with E (glutamic acid) (SEQ ID NO: 25) and the tenth L (leucine) is replaced with I (isoleucine), V (valine), M (methionine) (SEQ ID NO: 26 to 28).
  • FIG. 20 A two-amino acid-substituted phage showing 1/10 to 1 / 100-fold binding compared to the binding of S-011 is a phage in which the first D is replaced with E and the seventh L is replaced with I (D1E / L10I, SEQ ID NO: 29), phage with 4th Y replaced with W and 7th L replaced with I (Y4W / L7I, SEQ ID NO: 30), 7th L replaced with I and 10th L replaced with V Phage (L7I / L10V, SEQ ID NO: 31).
  • FIG. 21 shows the change in the ratio between the input titer and the output titer in the binding test of the S-011 short peptide phage S-011 short peptide phage.
  • the S-011 short peptide phage showing 1/10 to 1 / 100-fold binding compared to the binding of S-011 is the first to the 10th L from D (D1-L10, SEQ ID NO: 32). And a phage displaying the third F to the 12th H (F3-H12, SEQ ID NO: 33). Subsequently, the phage with a small change in binding was a phage displaying the third F to the tenth L (F3-L10, SEQ ID NO: 34).
  • Example 13 (competition test between rhIGF-1 and S-011 phage) [procedure]
  • the target protein rhIGF-1R was added to a 96-well microplate at 1 ⁇ g / well and allowed to stand overnight at 4 ° C. for immobilization.
  • the protein solution was removed, 300 ⁇ l of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 ⁇ l of a washing solution 0.5% TBST.
  • the eluate was collected from the wells into a microtube and neutralized by adding 15 ⁇ l of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution.
  • the binding ability of the recovered phage was determined by titration.
  • Each cell is suspended in a culture medium without addition of serum, and 900 ⁇ L each in a 12-well plate so as to have a predetermined number of cells (Hela S3: 5 ⁇ 10 4 cells / well, MCF7: 10 ⁇ 10 4 cells / well). Sowing. Pre-culture was performed in a CO 2 incubator (37 ° C.). Next, 50 ⁇ L of a peptide (Pep02, Pep12) diluted with a serum-free culture solution to a predetermined concentration was added to each well and incubated at 4 ° C. for 30 minutes.
  • a peptide Pep02, Pep12
  • Example 15 (cancer cell growth inhibition test 2) The effect of Pep02 on anchorage independent growth was tested.
  • Each cell is suspended in a serum-free culture medium, and 90 ⁇ L each in an ultra-low adhesion surface culture plate (Ultra Low Attachment Microplate, CORNING) so as to have a predetermined cell number (MCF: 5 ⁇ 10 4 cells / well). Sowing. Pre-culture was performed in a CO 2 incubator (37 ° C.). 5 ⁇ L of peptides (Pep02, Pep12) diluted with a serum-free culture solution at a predetermined concentration were added to each well, and incubated at 4 ° C. for 30 minutes.
  • rhIGF-1 solution 5 ⁇ L was added to a final concentration of 100 ng / mL, and the cells were cultured in a CO 2 incubator (37 ° C.) for 2 days.
  • the growth rate after culture was evaluated by the MTT test.
  • the MTT test was performed using CellTiter 96 (Promega). 15 ⁇ L of MTT solution (dye solution) was added to each well, mixed, and reacted in a CO 2 incubator for 4 hours. After the reaction, 100 ⁇ L of a solubilization solution (stop solution) was added to each well and mixed. After sealing, the mixture was allowed to stand overnight at room temperature, and then the absorbance value at 570 nm was measured using a microplate reader.

Abstract

Provided are: a substance capable of binding to IGF-1R in a specific manner and with high affinity; and a medicinal agent comprising the substance. A peptide which comprises at least the amino acid sequence represented by formula (1) and has 8-50 amino acid residues. Phe-X1-X2-X3-X4-X5-X6-X7 (1) (wherein X1 represents Tyr, Trp, Phe or His; X2 represents Ser, Ala, Thr, Gly, Asn, Asp, Glu, Arg or Lys; X3 represents Met, Leu, Ile, Val, Ala, Phe, Tyr, Trp or Cys; X4 represents Leu, Ile, Val or Met; X5 represents Gln, Asn, Asp, Glu, Ala, Ser, Thr, Leu, Met, Lys or Arg; X6 represents Arg, Lys, His, Asn, Gln, Ser, Thr, Asp, Glu or Ala; and X7 represents Leu, Ile, Val or Met).

Description

IGF-1R結合性ペプチドIGF-1R binding peptide
 本発明は、インスリン様増殖因子1受容体(IGF-1R)に特異的に結合するペプチド及びこれを含有する医薬に関する。 The present invention relates to a peptide that specifically binds to insulin-like growth factor 1 receptor (IGF-1R) and a medicament containing the peptide.
 ヒトインスリン様増殖因子1受容体(IGF-1R)は、トランスメンブレンタンパク質チロシンキナーゼのファミリーに属するレセプターであり、IGF-1と高い親和性を有し、IGF-2にも弱く結合する。
 IGF-1Rは、膜貫通ヘテロテトラマータンパク質であり、細胞外の2つのα鎖と膜をまたがる2つのβ鎖がジスルフィド結合したコンフィギュレーションの形態を有する。IGF-1及びIGF-2がIGF-1Rの細胞外ドメインに結合すると、細胞内のチロシンキナーゼドメインを活性化して受容体の自己リン酸化及び基質リン酸化が起こる。
Human insulin-like growth factor 1 receptor (IGF-1R) is a receptor belonging to the family of transmembrane protein tyrosine kinases, has high affinity for IGF-1, and binds weakly to IGF-2.
IGF-1R is a transmembrane heterotetramer protein and has a configuration in which two α chains outside the cell and two β chains straddling the membrane are disulfide bonded. When IGF-1 and IGF-2 bind to the extracellular domain of IGF-1R, the intracellular tyrosine kinase domain is activated, causing receptor autophosphorylation and substrate phosphorylation.
 IGF-1Rは、腫瘍細胞の増殖、形質転換及び生存を促進することが知られている。該腫瘍細胞としては肺癌、乳癌、大腸癌、卵巣癌、滑膜肉腫、膵臓癌、前立腺癌等が知られている。また、IGF-1Rの血中濃度や組織濃度は、多くの癌のリスクの増加と相関があることも知られている。 IGF-1R is known to promote tumor cell growth, transformation and survival. Known tumor cells include lung cancer, breast cancer, colon cancer, ovarian cancer, synovial sarcoma, pancreatic cancer, prostate cancer and the like. It is also known that the blood concentration and tissue concentration of IGF-1R correlate with an increased risk of many cancers.
 このようにIGF-1Rは、種々の癌の発生及び進展に深く関与しており、これらの癌の診断及び治療のためのツールとして抗IGF-1R抗体及びIGF-1Rアンタゴニストが報告されている(特許文献1~3)。 Thus, IGF-1R is deeply involved in the development and development of various cancers, and anti-IGF-1R antibodies and IGF-1R antagonists have been reported as tools for the diagnosis and treatment of these cancers ( Patent Documents 1 to 3).
特許第4473257号公報Japanese Patent No. 4473257 特表2005-533493号公報JP 2005-533493 A 特表2009-542719号公報Special table 2009-542719
 しかしながら、抗IGF-1R抗体を用いた抗癌剤については未だ医薬品として認められるに至っていない。また特許文献3のIGF-1Rアンタゴニストに関しては、何ら具体的な物質が明示されておらず、発明として完成されていない。 However, anticancer agents using anti-IGF-1R antibodies have not yet been approved as pharmaceuticals. In addition, regarding the IGF-1R antagonist of Patent Document 3, no specific substance is disclosed, and the invention has not been completed.
 従って、本発明の課題は、IGF-1Rに特異的かつ高親和性で結合する物質及びそれを含む医薬を提供することにある。 Therefore, an object of the present invention is to provide a substance that binds specifically and with high affinity to IGF-1R and a medicament containing the same.
 そこで本発明者は、ファージディスプレイ法を用いてIGF-1Rに特異的に結合するペプチドを提示するファージを探索したところ、特定のアミノ酸配列を有するペプチドがリコンビナントヒトIGF-1Rタンパク質に特異的に結合すること、及びこのペプチド又はその標識体を用いてIGF-1Rを発現する細胞や組織を特異的に検出できることを見出した。さらに、該ペプチド又はその標識体がIGF-1RとIGF-1との結合を競合的に阻害し、IGF-1による癌細胞の増殖を抑制することから、該ペプチド又はその標識体は癌治療薬としても有用であることを見出し、本発明を完成した。 Accordingly, the present inventors searched for phages that display peptides that specifically bind to IGF-1R using the phage display method. As a result, peptides having specific amino acid sequences specifically bound to recombinant human IGF-1R protein. And it was found that cells or tissues expressing IGF-1R can be specifically detected using this peptide or a labeled form thereof. Further, since the peptide or a labeled product thereof competitively inhibits the binding between IGF-1R and IGF-1 and suppresses the proliferation of cancer cells by IGF-1, the peptide or the labeled product is a cancer therapeutic agent. As a result, the present invention was completed.
 すなわち、本発明は、少なくとも下記式(1)で表されるアミノ酸配列を有するアミノ酸数8~50のペプチドを提供するものである。 That is, the present invention provides a peptide having 8 to 50 amino acids having at least an amino acid sequence represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、XはTyr、Trp、Phe又はHisを示し、
 XはSer、Ala、Thr、Gly、Asn、Asp、Glu、Arg又はLysを示し、
 XはMet、Leu、Ile、Val、Ala、Phe、Tyr、Trp又はCysを示し、
 XはLeu、Ile、Val又はMetを示し、
 XはGln、Asn、Asp、Glu、Ala、Ser、Thr、Leu、Met、Lys又はArgを示し、
 XはArg、Lys、His、Asn、Gln、Ser、Thr、Asp、Glu又はAlaを示し、
 XはLeu、Ile、Val又はMetを示す)
(Wherein X 1 represents Tyr, Trp, Phe or His,
X 2 represents Ser, Ala, Thr, Gly, Asn, Asp, Glu, Arg or Lys;
X 3 represents Met, Leu, Ile, Val, Ala, Phe, Tyr, Trp or Cys;
X 4 represents Leu, Ile, Val or Met;
X 5 represents Gln, Asn, Asp, Glu, Ala, Ser, Thr, Leu, Met, Lys or Arg;
X 6 represents Arg, Lys, His, Asn, Gln, Ser, Thr, Asp, Glu or Ala;
X 7 represents Leu, Ile, Val or Met)
 また、本発明は、上記ペプチド又はその標識体を含有する医薬を提供するものである。 The present invention also provides a medicine containing the above peptide or a label thereof.
 また、本発明は、癌診断又は癌治療のための、上記ペプチド又はその標識体を提供するものである。
 また、本発明は、癌診断薬又は癌治療薬製造のための、上記ペプチド又はその標識体の使用を提供するものである。
 また、本発明は、上記ペプチド又はその標識体を投与することを特徴とする癌の診断又は治療方法を提供するものである。
Moreover, this invention provides the said peptide or its label for cancer diagnosis or cancer treatment.
Moreover, this invention provides use of the said peptide or its labeled body for cancer diagnostic agent or cancer therapeutic agent manufacture.
The present invention also provides a method for diagnosing or treating cancer, comprising administering the peptide or a labeled form thereof.
 本発明のペプチドは、IGF-1Rに特異的かつ強い結合性を有することから、このペプチド又はその標識体は、IGF-1Rを発現する細胞又は組織、特に種々の癌細胞又は癌組織の検出薬、すなわち癌の診断薬として有用である。また、本発明のペプチドは、IGF-1RとIGF-1との結合を競合的に阻害し、IGF-1による癌細胞の増殖を抑制することから、IGF-1Rを発現する癌治療薬として有用である。 Since the peptide of the present invention has a specific and strong binding property to IGF-1R, this peptide or its label is a detection agent for cells or tissues expressing IGF-1R, particularly various cancer cells or cancer tissues. That is, it is useful as a diagnostic agent for cancer. The peptide of the present invention competitively inhibits the binding between IGF-1R and IGF-1 and suppresses the growth of cancer cells by IGF-1, and thus is useful as a cancer therapeutic agent expressing IGF-1R. It is.
D12ライブラリーでのパニング実験のアウトプット力価/インプット力価比を示す。The output titer / input titer ratio of the panning experiment with D12 library is shown. C7Cライブラリーでのパニング実験のアウトプット力価/インプット力価比を示す。The output titer / input titer ratio of the panning experiment with C7C library is shown. IGF-1R標的パニング3ラウンドで回収したファージが提示しているペプチド配列を示す。The peptide sequence displayed by the phage recovered in 3 rounds of IGF-1R target panning is shown. S-011ファージの固相化タンパクに対する結合性試験結果を示す。The binding test result for the immobilized protein of S-011 phage is shown. M13KEファージの固相化タンパクに対する結合性試験結果を示す。The binding test result with respect to the solid-phased protein of M13KE phage is shown. S-011ファージの液相化タンパクに対する結合性試験結果を示す。The binding test result of S-011 phage to the liquid phase protein is shown. M13KEファージの液相化タンパクに対する結合性試験結果を示す。The bindability test result with respect to the liquid phase protein of M13KE phage is shown. アラニン置換ファージの提示ペプチド配列を示す。The display peptide sequence of an alanine substituted phage is shown. アラニン置換ファージの固相化タンパクに対する結合性試験結果を示す。The binding test result with respect to the solidification protein of an alanine substitution phage is shown. IGF-1R発現量検討結果(ウェスタンブロット)を示す。The result of examining the expression level of IGF-1R (Western blot) is shown. アクチン発現量検討結果(ウェスタンブロット)を示す。The actin expression level examination result (Western blot) is shown. MCF7細胞を用いたin vitro結合性試験結果を示す。The result of an in vitro binding test using MCF7 cells is shown. A-172細胞を用いたin vitro結合性試験結果を示す。The in vitro binding test results using A-172 cells are shown. S-011ファージとペプチドPep02の競合試験結果を示す。The competition test result of S-011 phage and peptide Pep02 is shown. S-011ファージとペプチドPep17の競合試験結果を示す。The competition test result of S-011 phage and peptide Pep17 is shown. ペプチドPep02-FのMCF7染色像を示す。The MCF7 stained image of peptide Pep02-F is shown. ペプチドPep17-FのMCF7染色像を示す。The MCF7 stained image of peptide Pep17-F is shown. アミノ酸置換ファージ及び短鎖ペプチドファージの提示ペプチド配列を示す。The display peptide sequences of amino acid substitution phage and short peptide phage are shown. アミノ酸1個置換ファージの固相化タンパクに対する結合性試験結果を示す。The bindability test result with respect to the solid-phased protein of a 1 amino acid substitution phage is shown. アミノ酸2個置換ファージの固相化タンパクに対する結合性試験結果を示す。The bindability test result with respect to the solid-phased protein of a 2 amino acid substitution phage is shown. 短鎖ペプチドファージの固相化タンパクに対する結合性試験結果を示す。The binding test result to the immobilized protein of the short peptide phage is shown. S-011ファージとrhIGF-1の競合試験結果を示す。The competition test result of S-011 phage and rhIGF-1 is shown. S-011ファージと抗IGF-1R抗体の競合試験結果を示す。The competition test result of S-011 phage and anti-IGF-1R antibody is shown. rhIGF-1添加によるHela S3の増殖亢進に対するペプチドPep02の増殖抑制効果を示す。The growth inhibitory effect of peptide Pep02 with respect to the proliferation enhancement of Hela S3 by rhIGF-1 addition is shown. rhIGF-1添加によるMCF7の増殖亢進に対するペプチドPep02の増殖抑制効果を示す。The growth inhibitory effect of peptide Pep02 with respect to the proliferation enhancement of MCF7 by rhIGF-1 addition is shown. rhIGF-1添加によるMCF7の足場非依存性増殖亢進に対するペプチドPep02の増殖抑制効果を示す。The growth inhibitory effect of peptide Pep02 with respect to the anchorage independent growth enhancement of MCF7 by rhIGF-1 addition is shown.
 本発明のペプチドは、少なくとも下記式(1)で表されるアミノ酸配列を有するアミノ酸数8~50のペプチドである。 The peptide of the present invention is a peptide having 8 to 50 amino acids having at least the amino acid sequence represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、XはTyr、Trp、Phe又はHisを示し、
 XはSer、Ala、Thr、Gly、Asn、Asp、Glu、Arg又はLysを示し、
 XはMet、Leu、Ile、Val、Ala、Phe、Tyr、Trp又はCysを示し、
 XはLeu、Ile、Val又はMetを示し、
 XはGln、Asn、Asp、Glu、Ala、Ser、Thr、Leu、Met、Lys又はArgを示し、
 XはArg、Lys、His、Asn、Gln、Ser、Thr、Asp、Glu又はAlaを示し、
 XはLeu、Ile、Val又はMetを示す)
(Wherein X 1 represents Tyr, Trp, Phe or His,
X 2 represents Ser, Ala, Thr, Gly, Asn, Asp, Glu, Arg or Lys;
X 3 represents Met, Leu, Ile, Val, Ala, Phe, Tyr, Trp or Cys;
X 4 represents Leu, Ile, Val or Met;
X 5 represents Gln, Asn, Asp, Glu, Ala, Ser, Thr, Leu, Met, Lys or Arg;
X 6 represents Arg, Lys, His, Asn, Gln, Ser, Thr, Asp, Glu or Ala;
X 7 represents Leu, Ile, Val or Met)
 上記式(1)中、XはTyr、Trp、Phe又はHisを示すが、このうちTyr、Trp又はPheが好ましく、Tyrが特に好ましい。
 XはSer、Ala、Thr、Gly、Asn、Asp、Glu、Arg又はLysを示すが、このうちSer、Ala、Thr、Glyが好ましく、Ser、Alaがより好ましく、特にSerが好ましい。
 Xは、Met、Leu、Ile、Val、Ala、Phe、Tyr、Trp又はCysを示すが、このうちMet、Leu、Ile、Val、Alaが好ましく、Met、Leu、Ile、Alaがより好ましく、特にMetが好ましい。
In the above formula (1), X 1 represents Tyr, Trp, Phe or His, among which Tyr, Trp or Phe is preferable, and Tyr is particularly preferable.
X 2 represents Ser, Ala, Thr, Gly, Asn, Asp, Glu, Arg or Lys. Among these, Ser, Ala, Thr and Gly are preferred, Ser and Ala are more preferred, and Ser is particularly preferred.
X 3 represents Met, Leu, Ile, Val, Ala, Phe, Tyr, Trp, or Cys. Among them, Met, Leu, Ile, Val, Ala are preferable, and Met, Leu, Ile, Ala are more preferable. Met is particularly preferable.
 XはLeu、Ile、Val又はMetを示すが、Leuがより好ましい。
 XはGln、Asn、Asp、Glu、Ala、Ser、Thr、Leu、Met、Lys又はArgを示すが、このうちGln、Asn、Alaが好ましく、Gln、Alaがより好ましく、特にGlnが好ましい。
 XはArg、Lys、His、Asn、Gln、Ser、Thr、Asp、Glu又はAlaを示すが、Arg、Lys、His、Alaが好ましく、Arg、Lys、Alaがより好ましく、特にArgが好ましい。
 XはLeu、Ile、Val又はMetを示すが、Leuがより好ましい。
X 4 represents Leu, Ile, Val or Met, but Leu is more preferable.
X 5 represents Gln, Asn, Asp, Glu, Ala, Ser, Thr, Leu, Met, Lys or Arg, and among them, Gln, Asn and Ala are preferable, Gln and Ala are more preferable, and Gln is particularly preferable.
X 6 represents Arg, Lys, His, Asn, Gln, Ser, Thr, Asp, Glu or Ala, preferably Arg, Lys, His, and Ala, more preferably Arg, Lys, and Ala, and particularly preferably Arg.
X 7 represents Leu, Ile, Val or Met, but Leu is more preferable.
 本発明のペプチドのうち、少なくとも式(2)で表されるアミノ酸配列を有し、アミノ酸数が10~50であるペプチドがより好ましい。 Of the peptides of the present invention, peptides having at least the amino acid sequence represented by the formula (2) and having 10 to 50 amino acids are more preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、XはAsp又はGluを示し、
 XはPro、Val、Ile、Leu、Ala、Met、Trp、Tyr、Ser、Thr、Cys又はPheを示し、
 X~Xは前記と同じ)
(Wherein X a represents Asp or Glu,
Xb represents Pro, Val, Ile, Leu, Ala, Met, Trp, Tyr, Ser, Thr, Cys or Phe,
X 1 to X 7 are the same as above)
 式(2)中、XはAsp又はGluを示すが、Aspがより好ましい。またXはPro、Val、Ile、Leu、Ala、Met、Trp、Tyr、Ser、Thr、Lys又はPheを示すが、Pro、Val、Ile、Leu、Ala、Metが好ましく、Pro、Val、Ileがより好ましく、Proが特に好ましい。 Wherein (2), X a is show Asp or Glu, Asp are preferred. Xb represents Pro, Val, Ile, Leu, Ala, Met, Trp, Tyr, Ser, Thr, Lys, or Phe, but Pro, Val, Ile, Leu, Ala, and Met are preferable, and Pro, Val, Ile Is more preferable, and Pro is particularly preferable.
 本発明のペプチドのうち、少なくとも式(3)で表されるアミノ酸配列を有し、アミノ酸数が10~50であるペプチドがより好ましい。 Among the peptides of the present invention, a peptide having at least an amino acid sequence represented by the formula (3) and having 10 to 50 amino acids is more preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、XはAla、Gly、Ser、Thr、Asn、Val又はCysを示し、
 XはHis、Tyr、Phe、Lys、Arg、Leu、Met又はAlaを示し、
 X~Xは前記と同じ)
(Wherein Xc represents Ala, Gly, Ser, Thr, Asn, Val or Cys;
Xd represents His, Tyr, Phe, Lys, Arg, Leu, Met or Ala;
X 1 to X 7 are the same as above)
 式(3)中、XはAla、Gly、Ser、Thr、Asn、Val又はCysを示すが、このうちAla、Gly、Ser、Thrが好ましく、Ala、Glyがより好ましく、特にAlaが好ましい。XはHis、Tyr、Phe、Lys、Arg、Leu、Met又はAlaを示すが、このうちHis、Tyr、Phe、Lys、Arg、Alaが好ましく、His、Tyr、Phe、Alaがより好ましく、Hisが特に好ましい。 In the formula (3), Xc represents Ala, Gly, Ser, Thr, Asn, Val, or Cys. Among them, Ala, Gly, Ser, and Thr are preferable, Ala and Gly are more preferable, and Ala is particularly preferable. X d represents His, Tyr, Phe, Lys, Arg, Leu, Met or Ala, and among these, His, Tyr, Phe, Lys, Arg, Ala are preferred, His, Tyr, Phe, Ala are more preferred, His Is particularly preferred.
 さらに、本発明ペプチドのうち、少なくとも下記式(4)で表されるアミノ酸配列を有し、アミノ酸数が12~50であるペプチドがより好ましい。 Furthermore, among the peptides of the present invention, a peptide having at least an amino acid sequence represented by the following formula (4) and having 12 to 50 amino acids is more preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、X~X及びX~Xは前記と同じ) (Wherein, X a to X d and X 1 to X 7 are the same as above)
 また、本発明ペプチドのアミノ酸数としては、8~50であるが、10~50が好ましく、12~50がより好ましい。なお、アミノ酸数の上限は40が好ましく、30がより好ましく、20がさらに好ましく、18が特に好ましい。 The number of amino acids of the peptide of the present invention is 8 to 50, preferably 10 to 50, and more preferably 12 to 50. The upper limit of the number of amino acids is preferably 40, more preferably 30, more preferably 20, and particularly preferably 18.
 本発明ペプチドのX~X及びX~Xの置換は、後記実施例記載の結合性試験結果及び保存的置換であれば同様の活性を示すことに基づくものである。ここで典型的な保存的置換を表1に示す。 The substitution of X 1 to X 7 and X a to X d of the peptide of the present invention is based on the binding test results described in the examples below and the similar activity if conservative substitutions are shown. Here, typical conservative substitutions are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明のペプチドは、前記アミノ酸配列をコードするDNAを用いる組み換え技術によって製造することもできるが、有機合成化学的ペプチド合成法によって製造することができる。有機合成化学的ペプチド合成法は、一般的な官能基の保護、カルボキシル基の活性化、ペプチド結合の形成、保護基の脱保護の手段によって行われる。これらの反応は固相法で行うのが好ましい。 The peptide of the present invention can be produced by a recombinant technique using DNA encoding the amino acid sequence, but can also be produced by an organic synthetic chemical peptide synthesis method. Organic synthetic chemical peptide synthesis methods are performed by means of general protection of functional groups, activation of carboxyl groups, formation of peptide bonds, and deprotection of protecting groups. These reactions are preferably carried out by a solid phase method.
 本発明のペプチドのうち、配列番号2で示されるペプチドは、ランダムなペプチド配列を提示させたファージライブラリーからファージディスプレイ法によって、IGF-1Rと結合性を有するペプチドをスクリーニングすることにより選択することができる。ファージディスプレイ法に用いられるファージとしてはM13が好ましい。ファージライブラリーからIGF-1Rと強く結合するものを選択するには、ファージ集団をIGF-1Rとインキュベートし、IGF-1Rに結合しなかったファージを洗い流した後に、結合したファージを回収する。回収したファージがどのような配列のペプチドを提示しているかは、ファージゲノムの該当部分をシークエンスすればよい。IGF-1Rとペプチドの相互作用はそれほど強いものではない場合には、弱い結合力を持つファージがバックグラウンドとして付きまとってしまう。そこで、結合→洗浄→回収の一連の流れの後に、再度大腸菌に感染させ、二次ライブラリーを調製し、このライブラリーを用いて再度一連の操作を繰り返すパニング操作を行う。パニングを繰り返していくことによって得られるライブラリーの中には、IGF-1Rに高い結合能力を持ったファージの数が増えてくる。このようにして、目的とするIGF-1Rと強い結合性を有するファージが選択できる。 Among the peptides of the present invention, the peptide represented by SEQ ID NO: 2 is selected by screening a peptide having a binding property to IGF-1R by a phage display method from a phage library displaying a random peptide sequence. Can do. M13 is preferable as the phage used in the phage display method. To select those that bind strongly to IGF-1R from the phage library, the phage population is incubated with IGF-1R, the phage that did not bind to IGF-1R are washed away, and the bound phage is recovered. To determine what sequence of peptides the recovered phage displays, the relevant part of the phage genome may be sequenced. When the interaction between IGF-1R and the peptide is not so strong, a phage having a weak binding force is attached as a background. Therefore, after a series of flows of binding → washing → recovery, E. coli is again infected, a secondary library is prepared, and a panning operation is repeated by repeating the series of operations using this library. In the library obtained by repeating panning, the number of phages having high binding ability to IGF-1R increases. In this way, a phage having a strong binding property to the target IGF-1R can be selected.
 本発明のペプチドは、IGF-1Rに特異的に結合する。従って、本発明のペプチド又はその標識体は、IGF-1R又はIGF-1Rを発現している細胞若しくは組織を検出するための試薬として有用である。ここで本発明のペプチドの標識体としては、IGF-1Rに結合したペプチドを検出し得る標識体であればよく、放射性同位体、アフィニティー標識(例えば、ビオチン、アビジン等)、酵素標識(例えば、西洋ワサビペルオキシダーゼ、アルカリホスファターゼ等)、蛍光標識(例えば、FITC、ローダミン等)、常磁性原子等が挙げられる。これらの標識体のうち、蛍光標識やポジトロン核種による標識は、例えば大腸癌等のIGF-1Rが発現している癌細胞又は癌組織を検出するうえでより好ましい。 The peptide of the present invention specifically binds to IGF-1R. Accordingly, the peptide of the present invention or a labeled form thereof is useful as a reagent for detecting cells or tissues expressing IGF-1R or IGF-1R. Here, the label of the peptide of the present invention may be a label capable of detecting a peptide bound to IGF-1R, and is a radioisotope, an affinity label (for example, biotin, avidin, etc.), an enzyme label (for example, Horseradish peroxidase, alkaline phosphatase, etc.), fluorescent labels (eg, FITC, rhodamine, etc.), paramagnetic atoms and the like. Among these labels, a fluorescent label or a label with a positron nuclide is more preferable for detecting cancer cells or cancer tissues expressing IGF-1R such as colorectal cancer.
 本発明の蛍光標識ペプチドは、IGF-1Rが発現している癌診断、例えば早期癌診断に有用である。例えば、癌組織の存在の有無の確認を目的とした診断においては、対象部位に上記蛍光標識ペプチドを散布又は注射などの手段により接触させた後、洗浄処理により余剰な蛍光成分を除去した後、該当部位に励起光を照射し、蛍光染色された組織の有無を肉眼的又は顕微鏡的に確認することができる。
 より好ましい形態としては、本発明の蛍光標識ペプチドを蛍光造影剤として内視鏡による癌診断に用いることである、例えば、蛍光標識ペプチドを経内視鏡的に散布などの手段により組織に接触させた後、洗浄処理を行い、内視鏡光源により励起光を該当部に照射し、蛍光染色された組織の有無を内視鏡的に確認すればよい。これにより早期癌の発見診断に使用可能となるばかりではなく、通常内視鏡的に病変と疑われる部位を染色し、拡大蛍光観察をすることにより蛍光の有無による病変部位と非病変部位の境界を判別することにも使用可能となる。内視鏡の種類は特に限定されないが、内視鏡光源としてフルオレセインのための励起光を照射できる蛍光内視鏡又は、加えて拡大能を有する共焦点内視鏡が好ましい。
 また、修飾する蛍光色素はフルオレセインだけではなく、たとえばシアニン系化合物など励起波長の異なる蛍光色素を用いてもよい。蛍光剤としてインドシアニングリーンなどのシアニン系化合物を用いた場合、フルオレセインと比較して励起波長がさらに長波長側にシフトするため、より深部の病変の確認に有効である。またポジトロン核種を本発明ペプチドに修飾させた場合、PETやSPECTなどにより検出可能となる。また、ガドリニウムを本発明ペプチドに修飾させた場合、MRIにより検出可能である。これにより主に消化器などといった経内視鏡的に到達可能な部位の癌のみならず、全身の癌病変において、本発明ペプチドが利用可能となる。
The fluorescently labeled peptide of the present invention is useful for diagnosis of cancer expressing IGF-1R, for example, early cancer diagnosis. For example, in the diagnosis for the purpose of confirming the presence or absence of cancer tissue, after contacting the fluorescently labeled peptide to the target site by means such as spraying or injection, after removing the excess fluorescent component by washing treatment, Excitation light can be irradiated to the corresponding part, and the presence or absence of the fluorescently stained tissue can be confirmed macroscopically or microscopically.
In a more preferred form, the fluorescently labeled peptide of the present invention is used as a fluorescence contrast agent for cancer diagnosis by an endoscope. For example, the fluorescently labeled peptide is contacted with tissue by means such as endoscopically spraying. After that, a cleaning process is performed, and an excitation light is irradiated onto the corresponding part with an endoscope light source, and the presence or absence of the fluorescently stained tissue may be confirmed endoscopically. This makes it possible not only to be used for early cancer detection and diagnosis, but also by staining the site suspected to be lesioned endoscopically and magnifying the fluorescence to observe the boundary between the lesioned and non-lesioned sites. It can also be used to determine The type of endoscope is not particularly limited, but a fluorescent endoscope capable of irradiating excitation light for fluorescein as an endoscope light source or a confocal endoscope having an enlargement capability is preferable.
The fluorescent dye to be modified is not limited to fluorescein, and fluorescent dyes having different excitation wavelengths such as cyanine compounds may be used. When a cyanine compound such as indocyanine green is used as the fluorescent agent, the excitation wavelength is further shifted to the longer wavelength side compared to fluorescein, which is effective in confirming deeper lesions. Further, when the positron nuclide is modified with the peptide of the present invention, it can be detected by PET, SPECT or the like. Further, when gadolinium is modified with the peptide of the present invention, it can be detected by MRI. As a result, the peptide of the present invention can be used not only for cancer at sites that can be reached endoscopically, such as digestive organs, but also for cancer lesions throughout the body.
 また、本発明ペプチド又はその標識体はIGF-1RとIGF-1との結合を競合的に阻害し、IGF-1による癌細胞の癌増殖を抑制することから、上記のような癌細胞検出、癌診断だけでなく、癌の治療にも用いることができる。 In addition, since the peptide of the present invention or a labeled product thereof competitively inhibits the binding between IGF-1R and IGF-1, and suppresses cancer growth of cancer cells by IGF-1, detection of cancer cells as described above, It can be used not only for cancer diagnosis but also for cancer treatment.
 本発明ペプチド又はその標識体が検出、診断又は治療可能な細胞又は組織としては、IGF-1Rを発現している細胞又は組織であればよく、例えば癌細胞又は癌組織、具体的には、肺癌、乳癌、大腸癌、骨肉腫、子宮頸癌、卵巣癌、滑膜肉腫、膵臓癌、前立腺癌等が挙げられる。 As a cell or tissue capable of detecting, diagnosing or treating the peptide of the present invention or a labeled form thereof, any cell or tissue expressing IGF-1R may be used. For example, cancer cell or cancer tissue, specifically lung cancer Breast cancer, colon cancer, osteosarcoma, cervical cancer, ovarian cancer, synovial sarcoma, pancreatic cancer, prostate cancer and the like.
 本発明のペプチド又はその標識体を癌検出薬、癌診断薬、癌治療薬として用いる場合、本発明ペプチド又はその標識体はそのまま用いることもできるが、薬学的に許容される担体とともに各種投与形態に適した組成物とすることができる。該組成物としては、注射用剤、散布用剤、経口投与用剤、経直腸用剤等が挙げられる。薬学的に許容される担体としては、水、生理食塩水、各種緩衝剤、賦形剤、崩壊剤、結合剤、滑沢剤等が挙げられる。 When the peptide of the present invention or a labeled form thereof is used as a cancer detection agent, a cancer diagnostic agent, or a cancer therapeutic agent, the peptide of the present invention or a labeled form thereof can be used as it is, but various administration forms together with a pharmaceutically acceptable carrier. It can be set as the composition suitable for. Examples of the composition include injectable agents, spray agents, oral administration agents, rectal agents and the like. Examples of the pharmaceutically acceptable carrier include water, physiological saline, various buffers, excipients, disintegrants, binders, lubricants, and the like.
 本発明のペプチド又はその標識体を癌治療薬として用いる場合の投与量は、症状、体重等によっても異なるが、通常成人1日あたり0.1mg~1000mgが好ましい。 The dose when the peptide of the present invention or a labeled product thereof is used as a cancer therapeutic agent varies depending on symptoms, body weight, etc., but is usually preferably 0.1 mg to 1000 mg per day for an adult.
 次に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
実施例1(ファージディスプレイ)
[手順]
1.パニング実験-ラウンド1
 96wellプレートに5μg/mLのRecombinant human Insulin Like Growth Factor-1 Receptor(rhIGF-1R、R&D Systems)を200μL添加し(1μg/well)、4℃、一晩、静置インキュベートした(プレートへの固相化)。ウェル内の非固相タンパクを除去し、Blocking buffer(5mg/mL BSA(牛血清アルブミン)/TBS(50mM Tris-HCL/150mM NaCl))を300μL/well添加し、37℃、1時間、静置インキュベートし、その後、0.1%TBST(0.1%Tween20/TBS)200μL/wellで3回洗浄した。
 0.1%TBSTを100μL添加し、D12ファージライブラリー(1×1013PFU/mL)、C7Cファージライブラリー(2×1013PFU/mL)をそれぞれ10μL添加した。
Example 1 (phage display)
[procedure]
1. Panning experiment-round 1
200 μL of 5 μg / mL Recombinant human Insulin Like Growth Factor-1 Receptor (rhIGF-1R, R & D Systems) was added to a 96-well plate (1 μg / well) and incubated at 4 ° C. overnight (solid phase on the plate). ). The non-solid phase protein in the well was removed, Blocking buffer (5 mg / mL BSA (bovine serum albumin) / TBS (50 mM Tris-HCL / 150 mM NaCl)) was added at 300 μL / well, and allowed to stand at 37 ° C. for 1 hour. Incubation was followed by 3 washes with 200 μL / well of 0.1% TBST (0.1% Tween20 / TBS).
100 μL of 0.1% TBST was added, and 10 μL each of D12 phage library (1 × 10 13 PFU / mL) and C7C phage library (2 × 10 13 PFU / mL) were added.
 ペプチド提示ファージライブラリー(NEW ENGLAND BioLabs Inc.)は、2種類利用し、D12ライブラリーは、12残基の直線状ランダムペプチドを提示しており、2.7×10種の異なるペプチド配列を持つファージライブラリーである。C7Cライブラリーは、7残基の環状ランダムペプチドを提示しており、1.2×10種の異なるペプチド配列を持つファージライブラリーである。
 室温、1時間、シーソーを用いて振とうインキュベートし、ペプチド提示ファージ(以下ファージと略す)を固相化したrhIGF-1Rに結合させた後、ファージ溶液を除去し、0.1%TBST 200μL/wellで10回洗浄した。1mg/mL BSA/0.2M Glycine-HCl(pH 2.2)100μL添加し、室温、10分、振とうインキュベートしファージを溶出させた。溶出液を回収し、回収溶液に1M Tris-HCl(pH 9.1)を15μL添加することで中和した。回収した溶出液の一部を用いてファージの力価を測定した。
The peptide-displaying phage library (NEW ENGLAND BioLabs Inc.) utilizes two types, and the D12 library displays 12-residue linear random peptides, and 2.7 × 10 9 different peptide sequences. It has a phage library. The C7C library presents a 7-residue cyclic random peptide and is a phage library having 1.2 × 10 9 different peptide sequences.
After shaking incubation with a seesaw at room temperature for 1 hour, peptide-displayed phage (hereinafter abbreviated as phage) was bound to the immobilized rhIGF-1R, the phage solution was removed, and 0.1% TBST 200 μL / Washed 10 times with well. Phage was eluted by adding 100 μL of 1 mg / mL BSA / 0.2M Glycine-HCl (pH 2.2) and shaking at room temperature for 10 minutes. The eluate was recovered and neutralized by adding 15 μL of 1M Tris-HCl (pH 9.1) to the recovered solution. A part of the collected eluate was used to measure the phage titer.
2.回収ファージの増幅
 1の操作で得られたファージ溶出液をLB20mL中で対数増殖中のER2738菌[F’laclΔ(lacZ) M15proAzzf::Tn10 (TetR) fhuA2supEthiΔ(lac-proAB)Δ(hsdMS-mcrB) 5 (r-m-McrBC-)]に感染させ、振とう培養機を用いて、37℃で激しく攪拌しながら、4時間30分インキュベートした。ファージ感染菌培養液を50mL遠心チューブに移し、上記サンプルをマイクロ冷却遠心機を用いて、4℃、10分、8,900×gで遠心した。遠心後、ER2738菌を除去する目的で、上清を新しいチューブに回収した。回収ファージ溶液に3.6mL(1/5量)のPEG/NaCl(20% Polyehtylene glycol 6,000、2.5M NaCl)溶液を添加し、ミキサーでよく攪拌して、4℃、16時間、インキュベートして、ファージを沈殿させた。沈殿したファージを回収するために、マイクロ冷却遠心機で4℃、10分、8,900×gで遠心して、上清を除去した。上清を完全除去する目的で、もう一度遠心し、上清を除去した。沈殿ファージに、氷冷TBS 1mLを加え、懸濁し、マイクロチューブに移した。ファージ懸濁液を、コンパクト高速冷却遠心機を用いて、4℃、5分、16,000×gで遠心した。上清を別のチューブに回収し、懸濁されない残渣を取り除き、回収溶液に、200μLのPEG/NaClを加えて、ミキサーで攪拌した。上記溶液を氷上、1時間、インキュベートしファージを沈殿させた。溶液を高速遠心機で4℃、10分、16,000×g遠心してファージを沈殿させ上清を除去した。この遠心工程を再び行い、上清を完全に除去した。得られたファージ沈殿に、200μLの0.02%NaN/TBSを加え、完全に懸濁させ、コンパクト冷却遠心機で、4℃、5分、16,000×g、遠心し、上清を回収することで懸濁されなかった残渣を除去した。回収ファージ濃縮液の力価を測定した。
2. The phage eluate obtained by the operation of amplification 1 of the recovered phage was subjected to ER2738 logarithmically growing in 20 mL of LB [F'lacl q Δ (lacZ) M15proA + B + zzf :: Tn10 (TetR) fhuA2supEthiΔ (lac-proAB) Δ (hsdMS-mcrB) 5 (r k -m k -McrBC-)] was infected and incubated for 4 hours 30 minutes at 37 ° C. with vigorous stirring using a shaker. The phage-infected bacterial culture was transferred to a 50 mL centrifuge tube, and the sample was centrifuged at 8,900 × g at 4 ° C. for 10 minutes using a micro-cooled centrifuge. After centrifugation, the supernatant was collected in a new tube for the purpose of removing ER2738 bacteria. Add 3.6 mL (1/5 volume) of PEG / NaCl (20% Polyethylene glycol 6,000, 2.5 M NaCl) solution to the recovered phage solution, stir well with a mixer, and incubate at 4 ° C. for 16 hours. Then, phages were precipitated. In order to collect the precipitated phage, the supernatant was removed by centrifugation at 8,900 × g for 10 minutes at 4 ° C. in a micro-cooled centrifuge. In order to completely remove the supernatant, it was centrifuged once more and the supernatant was removed. 1 mL of ice-cold TBS was added to the precipitated phage, suspended, and transferred to a microtube. The phage suspension was centrifuged at 16,000 × g for 5 minutes at 4 ° C. using a compact high speed cooling centrifuge. The supernatant was collected in another tube, the residue that was not suspended was removed, 200 μL of PEG / NaCl was added to the collected solution, and the mixture was stirred with a mixer. The solution was incubated on ice for 1 hour to precipitate the phage. The solution was centrifuged at 16,000 × g for 10 minutes at 4 ° C. in a high-speed centrifuge to precipitate phages and remove the supernatant. This centrifugation step was performed again, and the supernatant was completely removed. To the obtained phage precipitate, 200 μL of 0.02% NaN 3 / TBS is completely suspended, suspended in a compact refrigerated centrifuge at 4 ° C., 5 minutes, 16,000 × g, and the supernatant is removed. The residue that was not suspended was removed by recovery. The titer of the recovered phage concentrate was measured.
3.パニング実験-ラウンド2、3
 濃縮ファージ溶液を用いて、2及び3回目のパニング実験を実施した。2回目のパニング実験において、1回目の操作と異なる点は添加ファージ量を2×1011PFU/well、洗浄液を0.3%TBST(0.3%Tween20/TBS)にしたことである。3回目のパニング実験では、1回目の操作と異なる点は添加ファージ量を2×1011PFU/well、洗浄液を0.5%TBST(0.5%Tween20/TBS)にしたことである。
3. Panning experiment- Round 2, 3
Second and third panning experiments were performed using the concentrated phage solution. The second panning experiment differs from the first operation in that the amount of added phage was 2 × 10 11 PFU / well and the washing solution was 0.3% TBST (0.3% Tween 20 / TBS). The third panning experiment differs from the first operation in that the amount of added phage was 2 × 10 11 PFU / well and the washing solution was 0.5% TBST (0.5% Tween 20 / TBS).
4.力価測定
 LB 3mL内でER2738菌を対数増殖期(OD600;~0.5)となるまで培養し、ER2738培養液200μLに、必要濃度となるよう希釈したファージ液を10μL添加した。この混合溶液をミキサーでよく攪拌し、室温、5分間インキュベートした後、溶解したトップアガー溶液4mLと混合させ、LB/IPTG/Xgalプレート上に播種した。
4). Titer measurement LB In 3 mL of LB, ER2738 bacteria were cultured until reaching the logarithmic growth phase (OD600; to 0.5), and 10 μL of phage solution diluted to the required concentration was added to 200 μL of ER2738 culture solution. The mixed solution was thoroughly stirred with a mixer, incubated at room temperature for 5 minutes, mixed with 4 mL of dissolved top agar solution, and seeded on an LB / IPTG / Xgal plate.
 ファージ感染大腸菌播種プレートを37℃、16時間、インキュベートした後、得られた青色プラークの数をカウントした。ファージ希釈倍率を用いて、ファージ数を算出した。 After incubating the phage-infected E. coli seed plate at 37 ° C. for 16 hours, the number of blue plaques obtained was counted. The phage number was calculated using the phage dilution factor.
[結果]
 ファージライブラリーを用いた実験のインプット力価(標的分子に加えたファージ力値)とアウトプット力価(洗浄後の標的分子から溶出されたファージ力値)の比の値の変化をD12ライブラリーの結果を図1、C7Cライブラリーの結果を図2に示す。
[result]
Changes in the ratio of the input titer (phage force added to the target molecule) and the output titer (phage force eluted from the target molecule after washing) in the experiment using the phage library were measured using the D12 library. FIG. 1 shows the results and FIG. 2 shows the results of the C7C library.
 D12ライブラリーを利用した、IGF-1R標的パニング実験を3ラウンドまで進めた結果、アウトプット力価/インプット力価比を比較したところ、3ラウンドは1ラウンドの87倍程度の増加が観察された。したがって、IGF-1R特異結合性を示すファージがセレクションされたことが予想された。
 C7Cライブラリーを利用した、IGF-1R標的パニング実験は4ランドまで進めたが、1ラウンドと比較して2倍程度の増加しか観察されなかった。
As a result of IGF-1R target panning experiment using D12 library up to 3 rounds, when comparing the output titer / input titer ratio, an increase of about 87 times of 1 round was observed in 3 rounds. . Therefore, it was expected that phages showing IGF-1R specific binding were selected.
IGF-1R targeted panning experiments using the C7C library proceeded to 4 lands, but only an increase of about 2-fold was observed compared to 1 round.
実施例2(シークエンス解析)
[手順]
 D12ライブラリーを用いたパニング実験の3ラウンドで得られたファージを、常法(Phage Display A Laboratory Manual, Cole Spring Harbor Laboratory Press, 2001)に従いクローン化し、精製した一本鎖ゲノムよりファージの提示ペプチド部分の塩基配列を決定した。塩基配列の決定には、提示ペプチド領域から96残基下流に位置する塩基配列の相補鎖に相当するプライマー[-96gIII シーケンシングプライマー(5’-HOCCCTCATAGTTAGCGTAACG-3’)(配列番号1)、S1259A、NEB]を用いて、ダイデオキシターミネイト法により決定した(CEQ DTCS Quick start kit、ベッマン)。反応産物の泳動とデータ解析には、キャピラリーシーケンサー(CEQ2000、ベックマン)を用いた。
Example 2 (sequence analysis)
[procedure]
Phage obtained from three rounds of panning experiments using the D12 library was cloned according to a conventional method (Page Display A Laboratory Manual, Cole Spring Harbor Laboratory Press, 2001). The base sequence of the part was determined. For the determination of the base sequence, a primer corresponding to the complementary strand of the base sequence located 96 residues downstream from the presented peptide region [-96 gIII sequencing primer (5′- HO CCCTCATTAGTAGCGTAACG-3 ′) (SEQ ID NO: 1), S1259A , NEB] by the dideoxyterminate method (CEQ DTCS Quick start kit, Beckmann). A capillary sequencer (CEQ2000, Beckman) was used for electrophoresis of reaction products and data analysis.
[結果]
 決定した塩基配列から予想される提示ペプチド配列を図3に示す。
[result]
The presented peptide sequence predicted from the determined nucleotide sequence is shown in FIG.
 この中で、得られたS-011ファージの提示するペプチド配列DPFYSMLQRLAH(配列番号2)は、3ラウンドで調べた12個のクローンの中に同じ配列を持つクローンが9個であった(75%)。S-012ファージ(配列番号3)、S-017ファージ(配列番号4)、S-020ファージ(配列番号5)は各1クローンしか得られなかった。
 したがって、パニングの回数が進むにすれ、S-011ファージがセレクションされていることが明らかとなった。特定のファージクローンがセレクションされている理由として、そのファージクローンが標的分子に対し強い結合性を示していることが挙げられる。
Among them, the peptide sequence DPFYSMLQRLAH (SEQ ID NO: 2) displayed by the obtained S-011 phage was 9 clones having the same sequence among 12 clones examined in 3 rounds (75% ). Only one clone of each of S-012 phage (SEQ ID NO: 3), S-017 phage (SEQ ID NO: 4), and S-020 phage (SEQ ID NO: 5) was obtained.
Therefore, it was revealed that S-011 phage was selected as the number of pannings progressed. The reason why a specific phage clone is selected is that the phage clone shows a strong binding property to the target molecule.
実施例3(ファージ結合性試験(タンパク固相化条件))
[手順]
 標的タンパクrhIGF-1RとIGF-1R構造類似タンパクであるRecombinant human Epidermal Growth Factor Receptor(rhEGFR、R&D Systems)、標準タンパクとしてBSAを1μg/wellになるように96ウェルマイクロプレートに添加し、4℃で一晩放置することで固相化した。タンパク溶液を除去し、Blocking bufferを300μl添加し、37℃で1時間インキュベートすることでウェルをブロッキングした。Blocking bufferを除去後、洗浄液0.5%TBST 200μlでウェルを3回洗浄し、最後に0.5%TBSTを100μl添加した。上記ウェルに増幅ファージ液(S-011又はM13KE(ペプチド非提示ファージ))を1×1010PFUになるように添加し、ピペッティングにより混合した。反応は、室温で1時間、穏やかに振とうさせた。反応液を除去し、0.5%TBST 200μlでウェルを10回洗浄後、0.2M Glycine-HCl(pH 2.2)をウェルに100μl添加し、ピペッティングで撹拌した後、室温下で10分間穏やかに振とうさせた。溶出液をウェルからマイクロチューブへ回収し、1M Tris-HCl(pH 9.1)を15μl添加することで中和し、標的結合ファージ液を得た。回収したファージの結合能は、力価測定により行った。
Example 3 (Phage binding test (protein immobilization conditions))
[procedure]
Add target protein rhIGF-1R and IGF-1R structurally similar protein, Recombinant human Epidermal Factor Receptor (rhEGFR, R & D Systems), BSA as standard protein to 96 μm microplate at 1 μg / well. It was solidified by leaving it overnight. The protein solution was removed, 300 μl of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 μl of a washing solution 0.5% TBST, and finally 100 μl of 0.5% TBST was added. An amplification phage solution (S-011 or M13KE (peptide non-displaying phage)) was added to the wells so as to be 1 × 10 10 PFU and mixed by pipetting. The reaction was gently shaken for 1 hour at room temperature. After removing the reaction solution and washing the well 10 times with 200 μl of 0.5% TBST, 100 μl of 0.2 M Glycine-HCl (pH 2.2) was added to the well, and the mixture was stirred by pipetting. Gently shake for minutes. The eluate was collected from the wells into a microtube and neutralized by adding 15 μl of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
[結果]
 固相化法による結合性試験のインプット力価とアウトプット力価の比の値の変化をS-011ファージの結果は図4、M13KEファージの結果は図5に示す。
 S-011のIGF-1Rへの結合性は、IGF-1R構造類似タンパクであるEGFRより9693倍高く、標準タンパクであるBSAよりも7130倍高いことが明らかとなった。
 M13KEファージでは、固相化したタンパク間に結合性の差は見られず、どれも低い値であった。
[result]
FIG. 4 shows the change in the ratio between the input titer and the output titer in the binding test by the solid-phase method, and FIG. 5 shows the result of the M13KE phage.
It was revealed that the binding of S-011 to IGF-1R was 9963 times higher than that of EGFR, which is an IGF-1R structure-analogous protein, and 7130 times higher than that of BSA, which is a standard protein.
In M13KE phage, no difference in binding was observed between the immobilized proteins, and all of them were low values.
 図4の結果から、S-011ファージは、タンパク固相化条件でIGF-1Rに特異的に結合することが明らかとなった。
 また、S-011ファージとM13KEファージのIGF-1Rへの結合性を比較すると、S-011の方が2892倍高い事が明らかとなった。この結果より、S-011ファージの提示するペプチド配列がIGF-1Rとの結合に関与している可能性が示唆された。
From the results shown in FIG. 4, it was revealed that S-011 phage specifically binds to IGF-1R under protein-immobilized conditions.
Further, comparing the binding properties of S-011 phage and M13KE phage to IGF-1R, it was revealed that S-011 was 2892 times higher. From these results, it was suggested that the peptide sequence displayed by the S-011 phage may be involved in the binding to IGF-1R.
実施例4(ファージ結合性試験(タンパク液相化条件))
[手順]
 マイクロチューブに0.01%PBST(0.01%Tween20/PBS)を200μl分注、ProteinAがコートしてある磁気ビーズ(Dynabeads ProteinA、invitrogen)を10μl添加してピペッティングで混合し、磁石をマイクロチューブ側面に押し当て、上清を除去した。その後、磁石をマイクロチューブから離し、0.01% PBSTを200μl添加してピペッティングで混合し、磁石をマイクロチューブに押し当て、上清を除去した。上記工程を3回繰り返し、磁気ビーズを洗浄した。0.01% PBSTを200μl添加し、新しいマイクロチューブへ移し、磁石を用いて上清を除去した。5mg/mL BSA/0.01% PBSTで25μg/mLに調製したMonoclonal Anti Human IGF-1R antibody(R&D Systems)を200μl添加し、Voltexで混合後、室温で1時間、マイクロチューブ撹拌機を用い磁気ビーズと反応させた。反応後、磁石をマイクロチューブに押し当てながら上清を除去した後、磁石をマイクロチューブから離して、0.01% PBSTを200μl添加してピペッティングで混合し、磁石をマイクロチューブに押し当て、上清を除去した。上記工程を3回繰り返し、洗浄した。0.01% PBSTを200μl添加し、新しいマイクロチューブへ移し、磁石を用いて上清を除去した。5mg/mL BSA/0.01% PBSTで5μg/mLに調製したrhIGF-1Rを200μl添加し、Vortexで混合後、室温で1時間、マイクロチューブ撹拌機を用い磁気ビーズと反応させた。反応後、磁石をマイクロチューブに押し当てながら上清を除去した後、磁石をマイクロチューブから離して、0.01% PBSTを200μl添加してピペッティングで混合し、磁石をマイクロチューブに押し当て、上清を除去した。上記工程を3回繰り返し、洗浄した後、0.01% PBSTを200μl添加し、新しいマイクロチューブに移した。上記マイクロチューブに増幅ファージ液(S-011又はM13KE)を1×1010PFUになるように添加し、ピペッティングにより混合した。反応は、室温で1時間、マイクロチューブ撹拌機を用い反応させた。磁石を用い反応液を除去し、0.01% PBST 200μlで5回洗浄した。0.01% PBSTを200μl添加し、新しいマイクロチューブへ移し、磁石を用いて上清を除去した。0.2M Glycine-HCl(pH 2.2)をマイクロチューブに100μl添加し、ピペッティングで撹拌した後、室温下で10分間マイクロチューブ撹拌機を用い撹拌した。その後、ピペッティングを行い、磁石を用いて上清を新しいマイクロチューブへ回収し、1M Tris-HCl(pH 9.1)を15μl添加することで中和し、標的結合ファージ液を得た。回収したファージの結合能は、力価測定により行った。
Example 4 (Phage binding test (protein solution phase conditions))
[procedure]
Dispense 200 μl of 0.01% PBST (0.01% Tween20 / PBS) into a microtube, add 10 μl of magnetic beads coated with Protein A (Dynabeads Protein A, invitrogen), mix by pipetting, and mix the magnet with a micro tube. The supernatant was removed by pressing against the side of the tube. Thereafter, the magnet was separated from the microtube, 200 μl of 0.01% PBST was added and mixed by pipetting, the magnet was pressed against the microtube, and the supernatant was removed. The above process was repeated three times to wash the magnetic beads. 200 μl of 0.01% PBST was added, transferred to a new microtube, and the supernatant was removed using a magnet. Add 200 μl of Monoclonal Anti Human IGF-1R antibody (R & D Systems) adjusted to 25 μg / mL with 5 mg / mL BSA / 0.01% PBST, mix with Voltex, and then magnetically use a microtube stirrer at room temperature for 1 hour. Reacted with beads. After the reaction, the supernatant was removed while pressing the magnet against the microtube, then the magnet was separated from the microtube, 200 μl of 0.01% PBST was added and mixed by pipetting, and the magnet was pressed against the microtube. The supernatant was removed. The above process was repeated 3 times and washed. 200 μl of 0.01% PBST was added, transferred to a new microtube, and the supernatant was removed using a magnet. 200 μl of rhIGF-1R prepared to 5 μg / mL with 5 mg / mL BSA / 0.01% PBST was added, mixed with Vortex, and reacted with magnetic beads using a microtube stirrer for 1 hour at room temperature. After the reaction, the supernatant was removed while pressing the magnet against the microtube, then the magnet was separated from the microtube, 200 μl of 0.01% PBST was added and mixed by pipetting, and the magnet was pressed against the microtube. The supernatant was removed. The above process was repeated three times, and after washing, 200 μl of 0.01% PBST was added and transferred to a new microtube. Amplified phage solution (S-011 or M13KE) was added to the microtube so as to be 1 × 10 10 PFU, and mixed by pipetting. The reaction was performed at room temperature for 1 hour using a microtube stirrer. The reaction solution was removed using a magnet and washed 5 times with 200 μl of 0.01% PBST. 200 μl of 0.01% PBST was added, transferred to a new microtube, and the supernatant was removed using a magnet. 100 μl of 0.2M Glycine-HCl (pH 2.2) was added to the microtube, stirred by pipetting, and then stirred at room temperature for 10 minutes using a microtube stirrer. Thereafter, pipetting was performed, and the supernatant was collected into a new microtube using a magnet and neutralized by adding 15 μl of 1 M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
[結果]
 液相化法による結合性試験のインプット力価とアウトプット力価の比の値の変化をS-011ファージの結果は図6、M13KEファージの結果は図7に示す。
 S-011ファージは、IGF-1Rを結合させた磁気ビーズに強く結合しており、他のものと比較すると、IGF-1R抗体を結合させた磁気ビーズよりも74倍高く、磁気ビーズのみよりも427倍高い結合性を示した。
 M13KEファージでは、磁気ビーズ担体の違いで結合性に大きな変化は無く、どれも低い値を示した。
[result]
Changes in the ratio between the input titer and the output titer in the binding test by the liquid phase method are shown in FIG. 6 for the results of S-011 phage and in FIG. 7 for the results of M13KE phage.
The S-011 phage is strongly bound to the magnetic beads bound with IGF-1R and is 74 times higher than the magnetic beads bound with the IGF-1R antibody, compared to the other magnetic beads. 427 times higher binding was shown.
In M13KE phage, there was no big change in the binding property depending on the magnetic bead carrier, and all showed low values.
 図6に示すように、S-011ファージはIGF-1Rに特異的に結合する事が明らかとなった。
 また、S-011ファージとM13KEファージのIGF-1Rへの結合性を比較すると、S-011の方が402倍高い事が明らかとなり、S-011ファージの提示するペプチドがIGF-1Rの結合に大きく関与している事が示唆された。
 上記結果は、実施例3の固相化条件でも同様の結果が得られており、S-011ファージはIGF-1Rの存在状態に関わらず、特異的にIGF-1Rを認識している可能性がある。
As shown in FIG. 6, it was revealed that the S-011 phage specifically binds to IGF-1R.
In addition, comparing the binding properties of S-011 phage and M13KE phage to IGF-1R, it became clear that S-011 was 402 times higher, and the peptide displayed by S-011 phage was able to bind to IGF-1R. It was suggested that it was greatly involved.
The above results are similar to those obtained under the solid-phase conditions in Example 3. The possibility that S-011 phage specifically recognizes IGF-1R regardless of the presence of IGF-1R. There is.
実施例5(アラニン置換ファージ作製)
[手順]
1.部位特異的変異誘発
 KOD-Plus-Mutagenesis kit(SMK-101、TOYOBO)を用いて、M13KEファージのペプチド提示部分のアミノ酸をアラニンに置換したファージの作製を行った。提示ペプチド配列のヌクレオチド配列に所望の変異を含むオリゴヌクレオチドプライマーを受託合成した(日本遺伝子研究所)。合成プライマーは、HPLCにて精製した、脱塩オリゴヌクレオチドである。今回合成したプライマーは、長さ24~27bpであり、GC含量が50~60%となるよう設計した。今回使用したKOD-Plus-Mutagenesis Kitでは、PCR産物のセルフライゲーションと同時にリン酸化を行うことができるので、プライマーのリン酸化はしていない。鋳型プラスミドDNAはS-011ファージ感染ER2738菌より、QIAGEN Plasmid kitを用いて精製した。
Example 5 (Alanine-substituted phage production)
[procedure]
1. Using a site-directed mutagenesis KOD-Plus-Mutageness kit (SMK-101, TOYOBO), a phage in which the amino acid in the peptide display portion of M13KE phage was substituted with alanine was prepared. An oligonucleotide primer containing a desired mutation in the nucleotide sequence of the displayed peptide sequence was commissioned and synthesized (Nippon Genetics Research Laboratories). The synthetic primer is a desalted oligonucleotide purified by HPLC. The primer synthesized this time was designed to have a length of 24-27 bp and a GC content of 50-60%. In the KOD-Plus-Mutageness Kit used this time, the phosphorylation of the PCR product can be carried out simultaneously with the self-ligation of the PCR product, so that the primer is not phosphorylated. Template plasmid DNA was purified from S-011 phage-infected ER2738 bacteria using QIAGEN Plasmid kit.
 鋳型プラスミドDNA、プライマー、dNTPs、KOD-plus-を用いて、[94℃、2分]→{[98℃、10秒]→[68℃、7.5分]}×8サイクル→[4℃、Hold]条件でPCRを実施した。PCR反応はサーマルサイクラー(PCR Thermal Cycler Dice、TAKARA)を利用した。PCR反応条件は増幅サイズを基に設定した。 Using template plasmid DNA, primer, dNTPs, KOD-plus-, [94 ° C., 2 minutes] → {[98 ° C., 10 seconds] → [68 ° C., 7.5 minutes]} × 8 cycles → [4 ° C. , Hold] conditions. For the PCR reaction, a thermal cycler (PCR Thermal Cycler Dice, TAKARA) was used. PCR reaction conditions were set based on the amplification size.
 DpnI処理により鋳型プラスミドの消化を行ない、T4 Polynucleotide Kinase処理によりPCR産物のセルフライゲーションを行った。 The template plasmid was digested by DpnI treatment, and the PCR product was self-ligated by T4 Polynucleotide Kinase treatment.
2.形質転換
 XL-1Blueコンピテント細胞を氷上で溶解した。60μLのXL-1Blueコンピテント細胞に対し、Self-ligation処理済み溶液を10μL添加し、混合した。氷上、30分間、インキュベートした後、42℃、90秒間、ヒートブロック上でインキュベートし、氷上で2分間、インキュベートした。15mLコニカルチューブ内で、ER2738菌のO/Nカルチャー100μLに、上記XL-Blue菌を1μL添加し、混合した。15mLコニカルチューブ内に、残りのXL-1Blue菌を入れた。上記それぞれのサンプルに、トップアガーを4mL添加し、ボルテックスで混合した。
 上記大腸菌サンプルをLB/IPTG/Xgalプレート上に播種し、37℃、16時間、インキュベートした。
2. Transformed XL-1 Blue competent cells were lysed on ice. 10 μL of the self-ligated solution was added to 60 μL of XL-1 Blue competent cells and mixed. After incubating on ice for 30 minutes, it was incubated on a heat block at 42 ° C. for 90 seconds and incubated on ice for 2 minutes. In a 15 mL conical tube, 1 μL of the XL-Blue bacterium was added to 100 μL of ER2738 O / N culture and mixed. The remaining XL-1 Blue bacteria were placed in a 15 mL conical tube. 4 mL of top agar was added to each of the above samples and mixed by vortexing.
The E. coli sample was seeded on an LB / IPTG / Xgal plate and incubated at 37 ° C. for 16 hours.
3.変異体のシークエンス解析
 得られたLB/IPTG/Xgalプレート上の青プラークを、常法に(Phage Display A Laboratory Manual, Cole Spring Harbor Laboratory Press, 2001)に従いクローン化し、ファージの提示ペプチド部分の塩基配列を決定した。
3. Sequence analysis of mutant The blue plaque on the obtained LB / IPTG / Xgal plate was cloned according to a conventional method (Page Display A Laboratory Manual, Cole Spring Harbor Laboratory Press, 2001), and the nucleotide sequence of the displayed peptide portion of the phage It was determined.
[結果]
 図8に示す配列番号6~16のアラニン置換ファージを得た。
[result]
The alanine substituted phages of SEQ ID NOs: 6 to 16 shown in FIG. 8 were obtained.
実施例6(アラニン置換ファージの結合性試験)
[手順]
 標的タンパクrhIGF-1Rを1μg/wellになるように96ウェルマイクロプレートに添加し、4℃で一晩放置することで固相化した。タンパク溶液を除去し、Blocking bufferを300μl添加し、37℃で1時間インキュベートすることでウェルをブロッキングした。Blocking bufferを除去後、洗浄液0.5%TBST 200μlでウェルを3回洗浄し、最後に0.5%TBSTを100μl添加した。上記ウェルに増幅ファージ液(S-011ファージ又は実施例5で作製したアラニン置換ファージ)を1×1010PFUになるように添加し、ピペッティングにより混合した。反応は、室温で1時間、穏やかに振とうさせた。反応液を除去し、0.5%TBST 200μlでウェルを10回洗浄した後、0.2M Glycine-HCl(pH 2.2)をウェルに100μl添加し、ピペッティングで撹拌した後、室温下で10分穏やかに振とうさせた。溶出液をウェルからマイクロチューブへ回収し、1M Tris-HCl(pH 9.1)を15μl添加することで中和し、標的結合ファージ液を得た。回収したファージの結合能は、力価測定により行った。
Example 6 (Alanine-substituted phage binding test)
[procedure]
The target protein rhIGF-1R was added to a 96-well microplate at 1 μg / well and allowed to stand overnight at 4 ° C. for immobilization. The protein solution was removed, 300 μl of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 μl of a washing solution 0.5% TBST, and finally 100 μl of 0.5% TBST was added. Amplified phage solution (S-011 phage or alanine-substituted phage prepared in Example 5) was added to the well so as to be 1 × 10 10 PFU and mixed by pipetting. The reaction was gently shaken for 1 hour at room temperature. After removing the reaction solution and washing the well 10 times with 200 μl of 0.5% TBST, 100 μl of 0.2M Glycine-HCl (pH 2.2) was added to the well and stirred by pipetting. Gently shake for 10 minutes. The eluate was collected from the wells into a microtube and neutralized by adding 15 μl of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
[結果]
 アラニン置換ファージの結合性試験のインプット力価とアウトプット力価の比の値の変化を図9に示す。
 図9から分かるように、S-011に比べ結合性が低下したファージは5種存在し、一番目のD(アスパラギン酸)、三番目のF(フェニルアラニン)、四番目のY(チロシン)、七番目のL(ロイシン)、十番目のL(ロイシン)をアラニンに置換したファージである。
 中でも、特に七番目のL(ロイシン)をアラニンで置換したファージの結合性が最も低下していることが明らかとなった。
[result]
FIG. 9 shows the change in the ratio between the input titer and the output titer in the alanine-substituted phage binding test.
As can be seen from FIG. 9, there are five types of phages with decreased binding compared to S-011, the first D (aspartic acid), the third F (phenylalanine), the fourth Y (tyrosine), the seven A phage in which the 10th L (leucine) and the 10th L (leucine) are substituted with alanine.
In particular, it was revealed that the binding ability of the phage in which the seventh L (leucine) was substituted with alanine was most lowered.
 S-011ファージのアミノ酸をアラニンに置換したファージは、S-011ファージに比べIGF-1Rへの結合性が低下するファージが5種存在し、S-011ファージが提示しているペプチドのアミノ酸配列の中で、IGF-1Rとの結合に関与していると思われるアミノ酸は一番目のD(アスパラギン酸)、三番目のF(フェニルアラニン)、四番目のY(チロシン)、七番目のL(ロイシン)、十番目のL(ロイシン)であることが明らかとなった。
 また、上記アミノ酸の中で、最もIGF-1Rとの結合に関与していると思われるアミノ酸は、七番目のL(ロイシン)であった。
There are five types of phages in which the amino acid of S-011 phage is substituted with alanine, and the binding to IGF-1R is lower than that of S-011 phage. The amino acid sequence of the peptide displayed by S-011 phage Among them, amino acids considered to be involved in binding to IGF-1R are the first D (aspartic acid), the third F (phenylalanine), the fourth Y (tyrosine), the seventh L ( Leucine) and tenth L (leucine).
Of the above amino acids, the amino acid most likely to be involved in binding to IGF-1R was the seventh L (leucine).
実施例7(ウェスタンブロット)
[手順]
 培養細胞であるMCF7;ヒト乳腺癌細胞(DSファーマバイオメディカル)、A-172細胞;ヒト神経芽種細胞(DSファーマバイオメディカル)、Hela S3:ヒト子宮頸癌細胞(DSファーマバイオメディカル))を用いて、Laemmli法に従い細胞ライセートを作製し、SDS-PAGEを行った。コントロール細胞サンプルとして、A-431 Whole Cell Lysate(Santa Cruz Biotechnology)を用いた。電気泳動後のポリアクリルアミドゲルからPVDF膜にタンパクを転写し、5%スキムミルク/TBST(0.05%Tween-20/TBS)を用いてブロッキングを行った。IGF-1R検出では、一次抗体に1μg/mLのIGF-1Rα(N20)(Santa Cruz Biotechnology)、二次抗体にGoat anti-rabbit IgG-HRP(BioRad)を用いた。β‐Actin検出では、一次抗体にMonoclonal Anti-β-Actin, Clone AC-15(SIGMA-ALDRICH)、二次抗体にGoat anti-mouse IgG-HRP(BioRad)を用いた。抗体反応後のPVDF膜に、検出薬であるAmershamTM ECL Plus Western Blotting Detection System(GE Healthcare)を添加し、化学発光検出解析装置(LumiVison PRO、タイテック)を用いて、バンドを検出した。
Example 7 (Western blot)
[procedure]
Cultured cells MCF7; human breast cancer cells (DS Pharmabiomedical), A-172 cells; human neuroblastoma cells (DS PharmaBiomedical), Hela S3: human cervical cancer cells (DS PharmaBiomedical)) A cell lysate was prepared according to the Laemmli method and subjected to SDS-PAGE. A-431 Whole Cell Lysate (Santa Cruz Biotechnology) was used as a control cell sample. Proteins were transferred from the polyacrylamide gel after electrophoresis to a PVDF membrane, and blocking was performed using 5% skim milk / TBST (0.05% Tween-20 / TBS). For IGF-1R detection, 1 μg / mL IGF-1Rα (N20) (Santa Cruz Biotechnology) was used as the primary antibody, and Goat anti-rabbit IgG-HRP (BioRad) was used as the secondary antibody. In β-actin detection, Monoclonal Anti-β-Actin, Clone AC-15 (SIGMA-ALDRICH) was used as the primary antibody, and Goat anti-mouse IgG-HRP (BioRad) was used as the secondary antibody. Amersham ECL Plus Western Blotting Detection System (GE Healthcare), which is a detection agent, was added to the PVDF membrane after the antibody reaction, and a band was detected using a chemiluminescence detection analyzer (LumiVison PRO, Taitec).
[結果]
 各細胞のIGF-1Rα発現量を評価した結果、Hela S3、及びMCF7で高発現していることが明らかとなった(図10)。今回、使用した細胞サンプルのβ-アクチン量比較は以下でありサンプル間でのタンパク量に大差はなかった(図11)。
[result]
As a result of evaluating the expression level of IGF-1Rα in each cell, it was revealed that it was highly expressed in Hela S3 and MCF7 (FIG. 10). This time, the amount of β-actin in the cell samples used was as follows, and there was no significant difference in the amount of protein between samples (FIG. 11).
実施例8(結合性試験(in vitro))
 実施例7より、IGF-1Rの高発現が認められたMCF7細胞株と発現が認められなかったA-172細胞株を標的として、ファージペプチドの結合性試験を実施した。
Example 8 (Bindability test (in vitro))
From Example 7, a phage peptide binding test was carried out targeting the MCF7 cell line in which high expression of IGF-1R was observed and the A-172 cell line in which expression was not observed.
[手順]
1.MCF7細胞
 6ウェル培養プレートに細胞を2×10cells/wellで播種し、37℃、5%CO条件で一晩培養した。プレートを4℃で30分間インキュベートした後、各ウェルの培地を除去し、1%BSA/PBS 1mLで2回洗浄処理を行った。S-011とS-011_L7A(配列番号12)ファージ及び、M13KEファージを力価1×1010PFUとなるように10%FBS培地(増殖培地)1mLに希釈し、各ウェルに添加し、4℃で60分間インキュベートした。反応後、反応液を除去し、1%BSA/PBS 1mLで10回洗浄処理を行い、非結合のファージを除去した。0.05%トリプシン/0.53mM EDTA溶液を100μl添加し、37℃で5分間インキュベートし、増殖培地を900μl添加し、回収ファージ液とした。各回収ファージ液の力価を測定した。
[procedure]
1. Cells were seeded at 2 × 10 6 cells / well in 6-well culture plates of MCF7 cells and cultured overnight at 37 ° C. and 5% CO 2 conditions. After incubating the plate at 4 ° C. for 30 minutes, the medium in each well was removed and washed twice with 1 mL of 1% BSA / PBS. S-011 and S-011_L7A (SEQ ID NO: 12) phage and M13KE phage were diluted in 1 mL of 10% FBS medium (growth medium) to a titer of 1 × 10 10 PFU, added to each well, and 4 ° C. And incubated for 60 minutes. After the reaction, the reaction solution was removed and washed 10 times with 1 mL of 1% BSA / PBS to remove unbound phage. 100 μl of 0.05% trypsin / 0.53 mM EDTA solution was added, incubated at 37 ° C. for 5 minutes, and 900 μl of growth medium was added to obtain a recovered phage solution. The titer of each recovered phage solution was measured.
[結果]
 図12に各ファージのインプット力価とアウトプット力価の比を示す。S-011ファージの力価比はM13KEファージと比較して170倍高かった。これに対し、S-011_L7Aファージの力価比はM13KEファージに対し1.6倍であった。
[result]
FIG. 12 shows the ratio between the input titer and the output titer of each phage. The titer ratio of S-011 phage was 170 times higher than that of M13KE phage. In contrast, the titer ratio of S-011_L7A phage was 1.6 times that of M13KE phage.
[手順]
2.A-172細胞
 6ウェル培養プレートに細胞を7×10cells/wellで播種し、37℃、5%CO条件で一晩培養した。プレートを4℃で30分間インキュベートした後、各ウェルの培地を除去し、1%BSA/PBS 1mLで2回洗浄処理を行った。S-011とS-011_L7A(配列番号12)ファージ及び、M13KEファージを力価1×1010PFUとなるように増殖培地1mLに希釈し、各ウェルに添加し、4℃で60分間インキュベートした。反応後、反応液を除去し、1%BSA/PBS 1mLで10回洗浄処理を行い、非結合のファージを除去した。0.05%トリプシン/0.53mM EDTA溶液を100μl添加し、37℃で5分間インキュベートし、増殖培地を900μl添加し、回収ファージ液とした。各回収ファージ液の力価を測定した。
[procedure]
2. Cells were seeded at 7 × 10 5 cells / well in A-172 cell 6-well culture plates and cultured overnight at 37 ° C. and 5% CO 2 . After incubating the plate at 4 ° C. for 30 minutes, the medium in each well was removed and washed twice with 1 mL of 1% BSA / PBS. S-011 and S-011_L7A (SEQ ID NO: 12) phage and M13KE phage were diluted in 1 mL of growth medium to a titer of 1 × 10 10 PFU, added to each well, and incubated at 4 ° C. for 60 minutes. After the reaction, the reaction solution was removed and washed 10 times with 1 mL of 1% BSA / PBS to remove unbound phage. 100 μl of 0.05% trypsin / 0.53 mM EDTA solution was added, incubated at 37 ° C. for 5 minutes, and 900 μl of growth medium was added to obtain a recovered phage solution. The titer of each recovered phage solution was measured.
[結果]
 図13に各ファージのインプット力価とアウトプット力価の比を示す。S-011ファージペプチドの力価比はM13KEファージに対し3.0倍であった。S-011_L7Aファージの力価比はM13KEファージに対し2.7倍であった。
 図13の結果から、IGF-1Rを発現していないA-172細胞では、ペプチドを提示したファージペプチドはペプチド非提示のファージと比較して2倍程度高い結合性を示していたことがわかる。しかし、ペプチド配列による特異結合性は見られず、非特異的に細胞に結合していることが考えられる。
 これに対し、図12の結果から、IGF-1Rを強く発現しているMCF7細胞では、配列番号2のペプチドを提示したファージペプチドが、配列番号12のファージペプチドやペプチド非提示ファージと比較して優位に強く結合していた。この優位性は配列番号2のペプチドがMCF7細胞に発現したIGF-1Rに結合していることによるものと考えられる。
[result]
FIG. 13 shows the ratio between the input titer and the output titer of each phage. The titer ratio of S-011 phage peptide was 3.0 times that of M13KE phage. The titer ratio of S-011_L7A phage was 2.7 times that of M13KE phage.
From the results shown in FIG. 13, it can be seen that in A-172 cells not expressing IGF-1R, the phage peptide displaying the peptide showed about two times higher binding than the peptide non-displaying phage. However, specific binding due to the peptide sequence is not observed, and it is considered that cells bind nonspecifically.
On the other hand, from the results of FIG. 12, in MCF7 cells that strongly express IGF-1R, the phage peptide displaying the peptide of SEQ ID NO: 2 was compared with the phage peptide of SEQ ID NO: 12 or the peptide non-displaying phage. It was strongly tied to the superiority. This advantage is considered to be due to the binding of the peptide of SEQ ID NO: 2 to IGF-1R expressed in MCF7 cells.
実施例9(競合試験)
[手順]
 標的タンパクrhIGF-1Rを1μg/wellになるように96ウェルマイクロプレートに添加し、4℃で一晩放置することで固相化した。タンパク溶液を除去し、Blocking bufferを300μl添加し、37℃で1時間インキュベートすることでウェルをブロッキングした。Blocking bufferを除去後、洗浄液0.5%TBST 200μlでウェルを3回洗浄し、最後に0.5%TBSTを100μl添加した。上記ウェルにS-011増幅ファージ液を1×1010PFUになるように添加し、次に、S-011ファージ提示ペプチド(配列番号2)を人工的に合成した合成ペプチドPep02(純度90%<, HPLCグレード, AnyGen, Korea)とIGF-1Rとの結合には無関係な合成ペプチドPep17(GAASRTYLHELI:配列番号17)(純度90%<, HPLCグレード, AnyGen, Korea)をそれぞれ0、1nM、100nM、1μM、10μMの濃度になるように添加し、ピペッティングで混合した。反応は、室温で1時間、穏やかに振とうさせた。反応液を除去し、0.5%TBST 200μlでウェルを10回洗浄した。その後、0.2M Glycine-HCl(pH 2.2)をウェルに100μl添加し、ピペッティングで撹拌した後、室温下で10分間穏やかに振とうさせた。溶出液をウェルからマイクロチューブへ回収し、1M Tris-HCl(pH 9.1)を15μl添加することで中和し、標的結合ファージ液を得た。回収したファージの結合能は、力価測定により行った。
Example 9 (competitive test)
[procedure]
The target protein rhIGF-1R was added to a 96-well microplate at 1 μg / well and allowed to stand overnight at 4 ° C. for immobilization. The protein solution was removed, 300 μl of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 μl of a washing solution 0.5% TBST, and finally 100 μl of 0.5% TBST was added. The S-011 amplified phage solution was added to the wells to 1 × 10 10 PFU, and then the synthetic peptide Pep02 (purity 90% < , HPLC grade, AnyGen, Korea) and synthetic peptide Pep17 (GAASTRYLHELI: SEQ ID NO: 17) unrelated to the binding of IGF-1R with a purity of 90% <, HPLC grade, AnyGen, Korea, 0, 1 nM, 100 nM, respectively. It added so that it might become a density | concentration of 1 micromol and 10 micromol, and mixed by pipetting. The reaction was gently shaken for 1 hour at room temperature. The reaction solution was removed, and the wells were washed 10 times with 200 μl of 0.5% TBST. Thereafter, 100 μl of 0.2M Glycine-HCl (pH 2.2) was added to the well, and the mixture was stirred by pipetting, and then gently shaken at room temperature for 10 minutes. The eluate was collected from the wells into a microtube and neutralized by adding 15 μl of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
[結果]
 競合試験のインプット力価とアウトプット力価の比の値の変化をS-011ファージとPep02の結果は図14、S-011ファージとPep17の結果は図15に示す。
 図14からわかるように、S-011ファージの回収率がPep02を0.1μM添加したときを境に右肩下がりに落ちており、Pep02は、S-011ファージのIGF-1Rへの結合を濃度依存的に阻害していることが明らかとなった。
 図15を見ると、S-011ファージの回収率は、Pep17の添加濃度が高くなっても変化は見られず高い値を保っている。
[result]
The change in the ratio of the input titer and the output titer in the competition test is shown in FIG. 14 for the results of S-011 phage and Pep02, and in FIG. 15 for the results of S-011 phage and Pep17.
As can be seen from FIG. 14, the recovery rate of the S-011 phage has dropped to the right when 0.1 μM of Pep02 is added, and Pep02 has a concentration of S-011 phage binding to IGF-1R. It became clear that it inhibited in a dependent manner.
Referring to FIG. 15, the recovery rate of S-011 phage remains high with no change even when the concentration of Pep17 added increases.
 Pep17は、S-011ファージとIGF-1Rの結合に全く関与しないため高濃度でもS-011ファージの回収量に差が見られなかったが、S-011ファージの提示するペプチド配列を持つ合成ペプチドPep02は、濃度依存的にS-011ファージとIGF-1Rの結合を阻害していることが明らかとなった。この結果から、S-011ファージの提示するペプチドはペプチド単体でもS-011ファージとIGF-1Rの同じ部位に結合している可能性が高いと考えられる。 Pep17 was not involved in the binding of S-011 phage to IGF-1R at all, so there was no difference in the recovered amount of S-011 phage even at high concentrations, but a synthetic peptide having a peptide sequence displayed by S-011 phage Pep02 was found to inhibit the binding between S-011 phage and IGF-1R in a concentration-dependent manner. From this result, it is considered that there is a high possibility that the peptide displayed by the S-011 phage binds to the same site of the S-011 phage and IGF-1R even with the peptide alone.
実施例10(In vitro imaging)
[手順]
 ガラスボトムディッシュ(φ35mm、Mat Tek Corp.)にヒト乳腺癌細胞MCF7を400×10Cells/Dishになるように播種し、37℃、CO条件下で48時間培養した。培養後のディッシュを4℃で30分間インキュベートし、培養液を除去後、4℃の増殖培地1mLで3回洗浄した。ペプチドのN末端にアミノカプロン酸リンカーを連結させて、連結されたリンカーの反対側にFITCを標識したペプチド(Pep02-F、Pep18-F(LASFMHLDQPYR:配列番号18))(純度90%<, HPLCグレード, AnyGen, Korea)を増殖培地で100μMに調製し、1mL添加して4℃で1時間インキュベートした。ペプチド溶液を除去し、4℃の増殖培地1mLで10回洗浄し、最後に培地を1mL添加した。観察は、共焦点顕微鏡(Leica SP2)を用い、励起光のレーザー波長は488nmを照射し蛍光観察を行った。
Example 10 (In vitro imaging)
[procedure]
Human breast adenocarcinoma cells MCF7 were seeded in a glass bottom dish (φ35 mm, Mat Tek Corp.) so as to be 400 × 10 4 Cells / Dish, and cultured at 37 ° C. under CO 2 conditions for 48 hours. The cultured dish was incubated at 4 ° C. for 30 minutes, and after removing the culture solution, it was washed 3 times with 1 mL of 4 ° C. growth medium. Peptides (Pep02-F, Pep18-F (LASFMFLDQPYR: SEQ ID NO: 18)) in which an aminocaproic acid linker is linked to the N-terminal of the peptide and FITC is labeled on the opposite side of the linked linker (purity 90% <, HPLC grade AnyGen, Korea) was prepared to 100 μM in growth medium, 1 mL was added and incubated at 4 ° C. for 1 hour. The peptide solution was removed, washed 10 times with 1 mL of growth medium at 4 ° C., and finally 1 mL of medium was added. Observation was carried out using a confocal microscope (Leica SP2), and the excitation light was irradiated with a laser wavelength of 488 nm, and fluorescence was observed.
[結果]
 図16に共焦点顕微鏡で観察した、Pep02-FのMCF7の染色性を示す。
 撮影条件は、励起光が488nmで蛍光受光側を515~600nmに設定し、対物レンズは63倍オイルレンズ(HCX PL APO CS 63x OIL 、Leica)を使用し、Gain値700Voltで撮影した像である。
 MCF7の細胞間隙が強く染色されているが、細胞質や核、その他の細胞内小器官は染色されていない様子が観察できる。
 図17に共焦点顕微鏡で観察した、Pep18-FのMCF7の染色性を示す。
 撮影条件は、Pep02-Fと同様である。
 MCF7はまったく染色されていない。Gain値を最大値にしても、細胞の染色性は観察できなかった。
[result]
FIG. 16 shows the staining property of MCF7 of Pep02-F observed with a confocal microscope.
The imaging conditions were an image taken with a gain value of 700 Volt using excitation light of 488 nm, fluorescence receiving side set to 515 to 600 nm, objective lens using a 63 × oil lens (HCX PL APO CS 63x OIL, Leica). .
Although the cell gap of MCF7 is strongly stained, it can be observed that the cytoplasm, nucleus, and other organelles are not stained.
FIG. 17 shows the staining of Pep18-F MCF7 observed with a confocal microscope.
The shooting conditions are the same as for Pep02-F.
MCF7 is not stained at all. Even when the Gain value was maximized, the staining of the cells could not be observed.
 Pep02-FとPep18-Fの染色を比較すると、Pep02-FのみでMCF7の染色性が確認できた。つまり、Pep02-Fは特異的にMCF7の細胞間隙を染色している可能性がある。
 また、WBの結果からMCF7はIGF-1Rを発現している可能性が高く、Pep02-Fの染色性も細胞間隙であることから、Pep02-FはMCF7の発現するIGF-1Rに結合していると考えられる。
When the staining of Pep02-F and Pep18-F was compared, the staining ability of MCF7 could be confirmed only with Pep02-F. That is, Pep02-F may specifically stain the cell gap of MCF7.
In addition, from the results of WB, MCF7 is highly likely to express IGF-1R, and Pep02-F staining is also in the intercellular space. Therefore, Pep02-F binds to IGF-1R expressed by MCF7. It is thought that there is.
実施例11(アミノ酸置換ファージ作製)
[手順]
1.部位特異的変異誘発
 KOD-Plus-Mutagenesis kit(SMK-101、TOYOBO)を用いて、M13KEファージのペプチド提示部分のアミノ酸を他のアミノ酸に置換したファージ、及び、提示ペプチドのアミノ酸数個を離脱させたファージ(短鎖ペプチド提示ファージ)の作製を行った。提示ペプチド配列のヌクレオチド配列に所望の変異を含むオリゴヌクレオチドプライマーを受託合成した(日本遺伝子研究所)。合成プライマーは、HPLCにて精製した、脱塩オリゴである。今回合成したプライマーは、長さ20~27bpであり、GC含量が50~60%程度となるよう設計した。今回使用したKOD-Plus-Mutagenesis Kitでは、PCR産物のセルフライゲーションと同時にリン酸化を行うことができるので、プライマーのリン酸化はしていない。以下、アラニン置換ファージ作製(実施例5)の作業手順を参照とする。
Example 11 (Production of amino acid-substituted phage)
[procedure]
1. Using site-directed mutagenesis KOD-Plus-Mutageness kit (SMK-101, TOYOBO), the amino acid in the peptide display part of M13KE phage was replaced with another amino acid, and several amino acids of the display peptide were removed. The phage (short peptide-displaying phage) was prepared. An oligonucleotide primer containing a desired mutation in the nucleotide sequence of the displayed peptide sequence was commissioned and synthesized (Nippon Genetics Research Laboratories). The synthetic primer is a desalting oligo purified by HPLC. The primer synthesized this time was designed to have a length of 20 to 27 bp and a GC content of about 50 to 60%. In the KOD-Plus-Mutageness Kit used this time, the phosphorylation of the PCR product can be carried out simultaneously with the self-ligation of the PCR product, so that the primer is not phosphorylated. Hereinafter, reference will be made to the procedure for preparing alanine-substituted phage (Example 5).
2.形質転換
 アラニン置換ファージ作製(実施例5)の作業手順を参照とする。
2. Reference is made to the procedure for producing transformed alanine-substituted phage (Example 5).
3.変異体のシークエンス解析
 得られたLB/IPTG/Xgalプレート上の青プラークを、常法に(Phage Display A Laboratory Mnual, Cole Spring Harbor Laboratory Press, 2001)に従いクローン化し、ファージの提示ペプチド部分の塩基配列を決定した。
3. Sequence analysis of mutants The blue plaques on the obtained LB / IPTG / Xgal plate were cloned according to a conventional method (Page Display A Laboratory Multiple, Cole Spring Harbor Laboratory Press, 2001), and the nucleotide sequence of the displayed peptide part of the phage It was determined.
[結果]
 図18に示す配列番号19~34のアミノ酸置換ファージを得た。
[result]
Amino acid-substituted phages of SEQ ID NOs: 19 to 34 shown in FIG. 18 were obtained.
実施例12(アミノ酸置換ファージの結合性試験)
[手順]
 標的タンパクrhIGF-1Rを1μg/wellになるように96ウェルマイクロプレートに添加し、4℃で一晩放置することで固相化した。タンパク溶液を除去し、Blocking bufferを300μl添加し、37℃で1時間インキュベートすることでウェルをブロッキングした。Blocking bufferを除去後、洗浄液0.5%TBST 200μlでウェルを3回洗浄し、最後に0.5%TBSTを100μl添加した。上記ウェルに増幅ファージ液(S-011ファージ又は実施例11で作成したアミノ酸置換ファージ)を1×1010PFUになるように添加し、ピペッティングにより混合した。反応は、室温で1時間、穏やかに振とうさせた。反応液を除去し、0.5%TBST 200μlでウェルを10回洗浄した後、0.2M Glycine-HCl(pH 2.2)をウェルに100μl添加し、ピペッティングで撹拌した後、室温下で10分穏やかに振とうさせた。溶出液をウェルからマイクロチューブへ回収し、1M Tris-HCl(pH 9.1)を15μl添加することで中和し、標的結合ファージ液を得た。回収したファージの結合能は、力価測定により行った。
Example 12 (Binding test of amino acid-substituted phage)
[procedure]
The target protein rhIGF-1R was added to a 96-well microplate at 1 μg / well and allowed to stand overnight at 4 ° C. for immobilization. The protein solution was removed, 300 μl of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 μl of a washing solution 0.5% TBST, and finally 100 μl of 0.5% TBST was added. Amplified phage solution (S-011 phage or amino acid-substituted phage prepared in Example 11) was added to the well so as to be 1 × 10 10 PFU, and mixed by pipetting. The reaction was gently shaken for 1 hour at room temperature. After removing the reaction solution and washing the well 10 times with 200 μl of 0.5% TBST, 100 μl of 0.2M Glycine-HCl (pH 2.2) was added to the well and stirred by pipetting. Gently shake for 10 minutes. The eluate was collected from the wells into a microtube and neutralized by adding 15 μl of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
[結果]
1.アミノ酸1個置換ファージ
 アミノ酸1個置換ファージの結合性試験のインプット力価とアウトプット力価の比の値の変化を図19に示す。
 アミノ酸1個置換ファージの中にS-011ファージの結合性と比較して変化の低かったファージが10種存在した。その中でもS-011の結合性に比べ等倍から1/10倍の結合性を示すファージは、七番目のL(ロイシン)をI(イソロイシン)、V(バリン)、M(メチオニン)に置換した場合(配列番号19~21)であった。続いて、1/10から1/100倍の間の結合性を示すファージは、四番目のY(チリロシン)をW(トリプトファン)、F(フェニルアラニン)、H(ヒスチジン)に置換した場合(配列番号22~24)と一番目のD(アスパラギン酸)をE(グルタミン酸)に置換した場合(配列番号25)と十番目のL(ロイシン)をI(イソロイシン)、V(バリン)、M(メチオニン)に置換した場合(配列番号26~28)であった。
[result]
1. The change in the ratio of the values of the input titers and output titer binding test of one amino acid substitution phage single amino acid substitutions phage 19.
Among the one amino acid substituted phages, there were 10 phages that showed less change compared to the binding properties of S-011 phage. Among them, the phage showing the binding of 1 to 1/10 times that of S-011 has the seventh L (leucine) substituted with I (isoleucine), V (valine), and M (methionine). Case (SEQ ID NO: 19 to 21). Subsequently, in the case of a phage exhibiting a binding property of 1/10 to 1/100 times, the fourth Y (tylosin) is substituted with W (tryptophan), F (phenylalanine), and H (histidine) (SEQ ID NO: 22 to 24) and the first D (aspartic acid) is replaced with E (glutamic acid) (SEQ ID NO: 25) and the tenth L (leucine) is replaced with I (isoleucine), V (valine), M (methionine) (SEQ ID NO: 26 to 28).
 上記結果より、置換するアミノ酸の違いにより、IGF-1Rへの結合性が変化することがわかった。変化のあったアミノ酸を比較すると、四番目のYを置換して結合性に変化が少なかったアミノ酸はW、F、Hであり、W、FはYと同様に芳香族であるベンゼン環を有する事が明らかとなった。Hは、芳香族を持っていないが五員環を有していることから、Y、W、Fと構造的な類似がみられる。同様にアルキル側鎖を持つ七番目及び十番目のLを置換した場合は、I、V、Mのような類似した構造を持つ場合である事も明らかとなった。但し、実施例6のアラニン置換ファージの結合性試験の結果から、Aに置換すると結合性が低下することから、少なくともV以上のアルキル側鎖が必要であると考えられる。 From the above results, it was found that the binding property to IGF-1R changes depending on the amino acid to be substituted. Comparing the amino acids with changes, the amino acids with little change in binding by substituting the fourth Y are W, F and H, and W and F have an aromatic benzene ring like Y Things became clear. H does not have an aromatic group but has a five-membered ring, so that structural similarity with Y, W, and F is observed. Similarly, when the seventh and tenth Ls having an alkyl side chain were substituted, it was also revealed that they had similar structures such as I, V, and M. However, from the results of the binding test of the alanine-substituted phage of Example 6, it is considered that at least V or higher alkyl side chains are necessary since the binding is reduced when A is substituted.
2.アミノ酸2個置換ファージ
 アミノ酸2個置換ファージの結合性試験のインプット力価とアウトプット力価の比の値の変化を図20に示す。
 S-011の結合性と比較して1/10から1/100倍の結合性を示すアミノ酸2個置換ファージは、一番目のDをEにと七番目のLをIに置換したファージ(D1E/L10I、配列番号29)、四番目のYをWに七番目のLをIに置換したファージ(Y4W/L7I、配列番号30)、七番目のLをIに十番目のLをVに置換したファージ(L7I/L10V、配列番号31)であった。
2. The change in the input titer and output titer value of a ratio of binding test amino acid two substitutions phages acid two substitutions phages is shown in FIG. 20.
A two-amino acid-substituted phage showing 1/10 to 1 / 100-fold binding compared to the binding of S-011 is a phage in which the first D is replaced with E and the seventh L is replaced with I (D1E / L10I, SEQ ID NO: 29), phage with 4th Y replaced with W and 7th L replaced with I (Y4W / L7I, SEQ ID NO: 30), 7th L replaced with I and 10th L replaced with V Phage (L7I / L10V, SEQ ID NO: 31).
 アミノ酸1個置換で結合性の変化が少なかったパターンを組み合わせ、アミノ酸2箇所を置換したファージの結合性は、1個置換の結合性結果と矛盾が無く、IGF-1Rへの結合性を保持していることが明らかとなった。 The binding of phages with two amino acid substitutions combined with a pattern with little change in binding by substitution of one amino acid is consistent with the binding result of single substitution and retains binding to IGF-1R. It became clear that.
3.S-011短鎖ペプチドファージ
 S-011短鎖ペプチドファージの結合性試験のインプット力価とアウトプット力価の比の値の変化を図21に示す。
 S-011の結合性と比較して1/10から1/100倍の結合性を示すS-011短鎖ペプチドファージは、一番目のDから十番目のL(D1-L10、配列番号32)を提示しているファージと三番目のFから十二番目のH(F3-H12、配列番号33)を提示しているファージであった。続いて結合性の変化が小さかったファージは、三番目のFから十番目のL(F3-L10、配列番号34)を提示しているファージであった。
3. FIG. 21 shows the change in the ratio between the input titer and the output titer in the binding test of the S-011 short peptide phage S-011 short peptide phage.
The S-011 short peptide phage showing 1/10 to 1 / 100-fold binding compared to the binding of S-011 is the first to the 10th L from D (D1-L10, SEQ ID NO: 32). And a phage displaying the third F to the 12th H (F3-H12, SEQ ID NO: 33). Subsequently, the phage with a small change in binding was a phage displaying the third F to the tenth L (F3-L10, SEQ ID NO: 34).
 上記結果より、S-011の配列の中でIGF-1Rに結合するために最低必要な部位は三番目のFから十番目のL(F3-L10)までであることが明らかとなった。図示していないが、F3-L10の配列の一部がかけているファージ(例D1-L7、L7-H12等)では、結合性が大きく失われる結果が得られていることからも明らかである。 From the above results, it was found that the minimum necessary site for binding to IGF-1R in the S-011 sequence is from the third F to the tenth L (F3-L10). Although not shown, it is also clear from the fact that phages covered with a part of the F3-L10 sequence (Examples D1-L7, L7-H12, etc.) have lost significant binding. .
実施例13(rhIGF-1とS-011ファージの競合試験)
[手順]
 標的タンパクrhIGF-1Rを1μg/wellになるように96ウェルマイクロプレートに添加し、4℃で一晩放置することで固相化した。タンパク溶液を除去し、Blocking bufferを300μl添加し、37℃で1時間インキュベートすることでウェルをブロッキングした。Blocking bufferを除去後、洗浄液0.5%TBST 200μlでウェルを3回洗浄した。0.5%TBSTで各濃度(0、1、10μM)に希釈したrhIGF-1(R&D Systems)を100μl又は、Monoclonal Anti-human IGF-1R Antibody(R&D systems)を20μg/wellになるように添加し、室温で1時間穏やかに振とうさせた。上記ウェルにS-011ファージ増幅液を1×1010PFUになるように添加し、ピペッティングにより混合した。反応は、室温で15分間穏やかに振とうさせた。反応液を除去し、0.5%TBST 200μlでウェルを10回洗浄した後、0.2M Glycine-HCl(pH 2.2)をウェルに100μl添加し、ピペッティングで撹拌した後、室温下で10分間穏やかに振とうさせた。溶出液をウェルからマイクロチューブへ回収し、1M Tris-HCl(pH 9.1)を15μl添加することで中和し、標的結合ファージ液を得た。回収したファージの結合能は、力価測定により行った。
Example 13 (competition test between rhIGF-1 and S-011 phage)
[procedure]
The target protein rhIGF-1R was added to a 96-well microplate at 1 μg / well and allowed to stand overnight at 4 ° C. for immobilization. The protein solution was removed, 300 μl of Blocking buffer was added, and the wells were blocked by incubating at 37 ° C. for 1 hour. After removing the blocking buffer, the wells were washed three times with 200 μl of a washing solution 0.5% TBST. Add 100 μl of rhIGF-1 (R & D Systems) diluted to each concentration (0, 1, 10 μM) with 0.5% TBST or Monoclonal Anti-human IGF-1R Antibodies (R & D systems) to 20 μg / well. And gently shaken at room temperature for 1 hour. The S-011 phage amplification solution was added to the well so as to be 1 × 10 10 PFU and mixed by pipetting. The reaction was gently shaken for 15 minutes at room temperature. After removing the reaction solution and washing the well 10 times with 200 μl of 0.5% TBST, 100 μl of 0.2M Glycine-HCl (pH 2.2) was added to the well and stirred by pipetting. Gently shake for 10 minutes. The eluate was collected from the wells into a microtube and neutralized by adding 15 μl of 1M Tris-HCl (pH 9.1) to obtain a target-binding phage solution. The binding ability of the recovered phage was determined by titration.
[結果]
 競合試験のインプット力価とアウトプット力価の比の値の変化をrhIGF-1とS-011ファージの結果は図22、Anti-hIGF-1R mAbとS-011ファージの結果は図23に示す。
 S-011ファージのIGF-1Rへの結合は、IGF-1の添加濃度が増加するにつれ減少している事がわかる。
 Anti-hIGF-1R mAbを添加しても、S-011ファージとIGF-1Rの結合には影響を与えなかった。
[result]
The change in the ratio between the input titer and the output titer in the competitive test is shown in FIG. 22 for the rhIGF-1 and S-011 phage results, and in FIG. 23 for the Anti-hIGF-1R mAb and the S-011 phage results. .
It can be seen that the binding of S-011 phage to IGF-1R decreases as the concentration of IGF-1 added increases.
Addition of Anti-hIGF-1R mAb did not affect the binding between S-011 phage and IGF-1R.
 上記結果より、S-011ファージはIGF-1の添加濃度依存的に結合性が減少している事から、IGF-1がS-011ファージのIGF-1Rへの結合を阻害している事が明らかとなった。つまり、S-011ファージはIGF-1のIGF-1Rへの結合を阻害できるとも考えられる事からS-011ファージの提示するペプチドはIGF-1の阻害剤になりうる可能性がある。 From the above results, the binding of S-011 phage decreased depending on the concentration of IGF-1 added, indicating that IGF-1 inhibited the binding of S-011 phage to IGF-1R. It became clear. That is, since it is considered that S-011 phage can inhibit the binding of IGF-1 to IGF-1R, the peptide presented by S-011 phage may be an inhibitor of IGF-1.
実施例14(癌細胞増殖抑制試験1) Example 14 (cancer cell growth inhibition test 1)
[手順]
 各細胞を血清非添加の培養液に懸濁させ、所定の細胞数(Hela S3:5×10 cells/well、MCF7:10×10 cells/well)になるように12ウェルプレートに900μLずつ播種した。COインキュベーター(37℃)内で前培養を行った。次に、各ウェルに所定の濃度に血清非添加培養液で希釈したペプチド(Pep02, Pep12)を50μL添加し、4℃で30分間インキュベートを行った。血清非添加培養液で希釈したrhIGF-1溶液を、終濃度がHela S3では10ng/mL、MCF7では100ng/mLとなるように50μLを添加し、COインキュベーター(37℃)で2日間培養を行った。培養後の増殖率はMTT試験により評価した。MTT試験はCellTiter96(Promega)を用いて実施した。MTT溶液(dye solution)を各ウェルに45μLずつ添加、混合し、COインキュベーター内で4時間反応させた。反応後、可溶化溶液(stop solution)を各ウェルに300μLずつ添加し、混合させた。密閉後、室温で一晩静置後、マイクロプレートリーダーを用いて570nmの吸光度値を測定した。
[procedure]
Each cell is suspended in a culture medium without addition of serum, and 900 μL each in a 12-well plate so as to have a predetermined number of cells (Hela S3: 5 × 10 4 cells / well, MCF7: 10 × 10 4 cells / well). Sowing. Pre-culture was performed in a CO 2 incubator (37 ° C.). Next, 50 μL of a peptide (Pep02, Pep12) diluted with a serum-free culture solution to a predetermined concentration was added to each well and incubated at 4 ° C. for 30 minutes. Add 50 μL of rhIGF-1 solution diluted with serum-free medium to a final concentration of 10 ng / mL for Hela S3 and 100 ng / mL for MCF7, and incubate for 2 days in a CO 2 incubator (37 ° C.). went. The growth rate after culture was evaluated by the MTT test. The MTT test was performed using CellTiter 96 (Promega). 45 μL of MTT solution (dye solution) was added to each well, mixed, and reacted in a CO 2 incubator for 4 hours. After the reaction, 300 μL of a solubilization solution (stop solution) was added to each well and mixed. After sealing, the mixture was allowed to stand overnight at room temperature, and then the absorbance value at 570 nm was measured using a microplate reader.
[結果]
 ペプチド及びrhIGF-1を添加しないで培養した場合に比べて、rhIGF-1を添加して培養した場合には、Hela S3及びMCF7のいずれも細胞増殖が亢進されたことを確認した。
 rhIGF-1とペプチドを添加して共培養し、ペプチド非添加時の吸光度を100%増殖率としてグラフ化した結果を図24及び25に示す。図24及び25より、Pep02添加では濃度依存的に増殖率が抑制され、100μM添加時で約80~90%に抑制された。一方、Pep12添加では添加濃度に依らず横ばいであった。この結果より、Pep02は、rhIGF-1による癌細胞の増殖促進効果を抑制することが判明した。
[result]
It was confirmed that cell growth was enhanced for both Hela S3 and MCF7 when rhIGF-1 was added and cultured compared to the case where the peptide and rhIGF-1 were not added.
24 and 25 show the results of co-culturing with rhIGF-1 and peptide added, and graphing the absorbance when no peptide was added as 100% growth rate. 24 and 25, the growth rate was suppressed in a concentration-dependent manner when Pep02 was added, and was suppressed to about 80 to 90% when 100 μM was added. On the other hand, when Pep12 was added, it remained flat regardless of the addition concentration. From this result, it was found that Pep02 suppresses the growth promoting effect of rhIGF-1 on cancer cells.
実施例15(癌細胞増殖抑制試験2)
 足場非依存性増殖におけるPep02の効果を試験した。
Example 15 (cancer cell growth inhibition test 2)
The effect of Pep02 on anchorage independent growth was tested.
[手順]
 各細胞を血清非添加の培養液に懸濁させ、所定の細胞数(MCF:5×10 cells/well)になるように超低接着表面培養プレート(Ultra Low Attachment Microplate、CORNING)に90μLずつ播種した。COインキュベーター(37℃)内で前培養を行った。各ウェルに所定の濃度に血清非添加培養液で希釈したペプチド(Pep02、Pep12)を5μL添加し、4℃で30分間インキュベートを行った。血清非添加培養液で希釈したrhIGF-1溶液を終濃度が100ng/mLとなるように5μLを添加し、COインキュベーター(37℃)で2日間培養を行った。培養後の増殖率はMTT試験により評価した。MTT試験はCellTiter96(Promega)を用いて実施した。MTT溶液(dye solution)を各ウェルに15μLずつ添加、混合し、COインキュベーター内で4時間反応させた。反応後、可溶化溶液(stop solution)を各ウェルに100μLずつ添加し、混合させた。密閉後、室温で一晩静置後、マイクロプレートリーダーを用いて570nmの吸光度値を測定した。
[procedure]
Each cell is suspended in a serum-free culture medium, and 90 μL each in an ultra-low adhesion surface culture plate (Ultra Low Attachment Microplate, CORNING) so as to have a predetermined cell number (MCF: 5 × 10 4 cells / well). Sowing. Pre-culture was performed in a CO 2 incubator (37 ° C.). 5 μL of peptides (Pep02, Pep12) diluted with a serum-free culture solution at a predetermined concentration were added to each well, and incubated at 4 ° C. for 30 minutes. 5 μL of rhIGF-1 solution diluted with a serum-free culture solution was added to a final concentration of 100 ng / mL, and the cells were cultured in a CO 2 incubator (37 ° C.) for 2 days. The growth rate after culture was evaluated by the MTT test. The MTT test was performed using CellTiter 96 (Promega). 15 μL of MTT solution (dye solution) was added to each well, mixed, and reacted in a CO 2 incubator for 4 hours. After the reaction, 100 μL of a solubilization solution (stop solution) was added to each well and mixed. After sealing, the mixture was allowed to stand overnight at room temperature, and then the absorbance value at 570 nm was measured using a microplate reader.
[結果]
 ペプチド及びrhIGF-1を添加しないで培養した場合に比べて、rhIGF-1を添加して培養した場合には、MCF7は細胞増殖が亢進されたことを確認した。
 rhIGF-1とペプチドを添加して共培養し、ペプチド非添加時の吸光度を100%増殖率としてグラフ化した。結果を図26に示す。図26よりPep02添加では濃度依存的に増殖率が抑制され、100μM添加時で約80%に抑制された。一方、Pep12では添加濃度に依らず横ばいであった。
 足場依存性、足場非依存性増殖のいずれにおいても、Pep02ペプチドは、rhIGF-1による癌細胞増殖促進効果を抑制することが確認された。
[result]
It was confirmed that the cell growth of MCF7 was enhanced when rhIGF-1 was added and cultured compared to the case where the peptide and rhIGF-1 were not added.
rhIGF-1 and peptide were added and co-cultured, and the absorbance when no peptide was added was plotted as a 100% growth rate. The results are shown in FIG. From FIG. 26, the growth rate was suppressed in a concentration-dependent manner when Pep02 was added, and was suppressed to about 80% when 100 μM was added. On the other hand, Pep12 was level regardless of the addition concentration.
It was confirmed that the Pep02 peptide suppresses the cancer cell proliferation promoting effect by rhIGF-1 in both anchorage-dependent and anchorage-independent growth.

Claims (16)

  1.  少なくとも下記式(1)で表されるアミノ酸配列を有するアミノ酸数8~50のペプチド。
    Figure JPOXMLDOC01-appb-C000001
    (式中、XはTyr、Trp、Phe又はHisを示し、
     XはSer、Ala、Thr、Gly、Asn、Asp、Glu、Arg又はLysを示し、
     XはMet、Leu、Ile、Val、Ala、Phe、Tyr、Trp又はCysを示し、
     XはLeu、Ile、Val又はMetを示し、
     XはGln、Asn、Asp、Glu、Ala、Ser、Thr、Leu、Met、Lys又はArgを示し、
     XはArg、Lys、His、Asn、Gln、Ser、Thr、Asp、Glu又はAlaを示し、
     XはLeu、Ile、Val又はMetを示す)
    A peptide having 8 to 50 amino acids having at least an amino acid sequence represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein X 1 represents Tyr, Trp, Phe or His,
    X 2 represents Ser, Ala, Thr, Gly, Asn, Asp, Glu, Arg or Lys;
    X 3 represents Met, Leu, Ile, Val, Ala, Phe, Tyr, Trp or Cys;
    X 4 represents Leu, Ile, Val or Met;
    X 5 represents Gln, Asn, Asp, Glu, Ala, Ser, Thr, Leu, Met, Lys or Arg;
    X 6 represents Arg, Lys, His, Asn, Gln, Ser, Thr, Asp, Glu or Ala;
    X 7 represents Leu, Ile, Val or Met)
  2.  少なくとも下記式(2)で表されるアミノ酸配列を有し、アミノ酸数が10~50である請求項1記載のペプチド。
    Figure JPOXMLDOC01-appb-C000002
    (式中、XはAsp又はGluを示し、
     XはPro、Val、Ile、Leu、Ala、Met、Trp、Tyr、Ser、Thr、Cys又はPheを示し、
     X~Xは前記と同じ)
    The peptide according to claim 1, which has at least an amino acid sequence represented by the following formula (2) and has 10 to 50 amino acids.
    Figure JPOXMLDOC01-appb-C000002
    (Wherein X a represents Asp or Glu,
    Xb represents Pro, Val, Ile, Leu, Ala, Met, Trp, Tyr, Ser, Thr, Cys or Phe,
    X 1 to X 7 are the same as above)
  3.  少なくとも下記式(3)で表されるアミノ酸配列を有し、アミノ酸数が10~50である請求項1又は2記載のペプチド。
    Figure JPOXMLDOC01-appb-C000003
    (式中、XはAla、Gly、Ser、Thr、Asn、Val又はCysを示し、
     XはHis、Tyr、Phe、Lys、Arg、Leu、Met又はAlaを示し、
     X~Xは前記と同じ)
    The peptide according to claim 1 or 2, which has at least an amino acid sequence represented by the following formula (3) and has 10 to 50 amino acids.
    Figure JPOXMLDOC01-appb-C000003
    (Wherein Xc represents Ala, Gly, Ser, Thr, Asn, Val or Cys;
    Xd represents His, Tyr, Phe, Lys, Arg, Leu, Met or Ala;
    X 1 to X 7 are the same as above)
  4.  少なくとも下記式(4)で表されるアミノ酸配列を有し、アミノ酸数が12~50である請求項1~3のいずれか1項記載のペプチド。
    Figure JPOXMLDOC01-appb-C000004
    (式中、X~X及びX~Xは前記と同じ)
    The peptide according to any one of claims 1 to 3, which has at least an amino acid sequence represented by the following formula (4) and has 12 to 50 amino acids.
    Figure JPOXMLDOC01-appb-C000004
    (Wherein, X a to X d and X 1 to X 7 are the same as above)
  5.  XがSer、XがMet、XがGln、XがArgである請求項1~4のいずれか1項記載のペプチド。 The peptide according to any one of claims 1 to 4, wherein X 2 is Ser, X 3 is Met, X 5 is Gln, and X 6 is Arg.
  6.  XがAsp、XがProである請求項2、4又は5記載のペプチド。 X a is Asp, X b is claim 2, 4 or 5, wherein the peptide is Pro.
  7.  XがAla、XがHisである請求項3、4又は5記載のペプチド。 6. The peptide according to claim 3, 4 or 5, wherein Xc is Ala and Xd is His.
  8.  アミノ酸数の上限が30である請求項1~7のいずれか1項記載のペプチド。 The peptide according to any one of claims 1 to 7, wherein the upper limit of the number of amino acids is 30.
  9.  IGF-1R結合性を有する請求項1~7のいずれか1項記載のペプチド。 The peptide according to any one of claims 1 to 7, which has IGF-1R binding property.
  10.  請求項1~9のいずれか1項記載のペプチド又はその標識体を含有する医薬。 A medicament comprising the peptide according to any one of claims 1 to 9 or a labeled form thereof.
  11.  請求項1~9のいずれか1項記載のペプチド又はその標識体を含有する癌細胞又は癌組織検出薬。 A cancer cell or cancer tissue detection agent comprising the peptide according to any one of claims 1 to 9 or a label thereof.
  12.  請求項1~9のいずれか1項記載のペプチド又はその標識体を含有する癌診断薬。 A cancer diagnostic agent comprising the peptide according to any one of claims 1 to 9 or a labeled form thereof.
  13.  請求項1~9のいずれか1項記載のペプチド又はその標識体を含有する癌治療薬。 A cancer therapeutic agent comprising the peptide according to any one of claims 1 to 9 or a labeled form thereof.
  14.  癌診断又は癌治療のための、請求項1~9のいずれか1項記載のペプチド又はその標識体。 The peptide according to any one of claims 1 to 9 or a labeled body thereof for cancer diagnosis or cancer treatment.
  15.  癌診断薬又は癌治療薬製造のための、請求項1~9のいずれか1項記載のペプチド又はその標識体の使用。 Use of the peptide according to any one of claims 1 to 9 or a labeled product thereof for the manufacture of a cancer diagnostic agent or a cancer therapeutic agent.
  16.  請求項1~9のいずれか1項記載のペプチド又はその標識体を投与することを特徴とする癌の診断又は治療方法。 A method for diagnosing or treating cancer, comprising administering the peptide according to any one of claims 1 to 9 or a labeled form thereof.
PCT/JP2012/062092 2011-05-25 2012-05-11 Igf-1r-binding peptide WO2012160990A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011117441A JP2014156401A (en) 2011-05-25 2011-05-25 Igf-1r-binding peptide
JP2011-117441 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012160990A1 true WO2012160990A1 (en) 2012-11-29

Family

ID=47217070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062092 WO2012160990A1 (en) 2011-05-25 2012-05-11 Igf-1r-binding peptide

Country Status (2)

Country Link
JP (1) JP2014156401A (en)
WO (1) WO2012160990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113457A (en) * 2013-02-26 2013-05-22 张惠中 Antagonistic peptide SA-12 and application thereof in medicament for treating breast cancer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512010A (en) * 2000-03-29 2004-04-22 ディージーアイ・バイオテクノロジーズ・エル・エル・シー Insulin and IGF-1 receptor agonists and antagonists
KR20100035240A (en) * 2008-09-26 2010-04-05 (주)케어젠 Growth factor-related peptides and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512010A (en) * 2000-03-29 2004-04-22 ディージーアイ・バイオテクノロジーズ・エル・エル・シー Insulin and IGF-1 receptor agonists and antagonists
KR20100035240A (en) * 2008-09-26 2010-04-05 (주)케어젠 Growth factor-related peptides and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113457A (en) * 2013-02-26 2013-05-22 张惠中 Antagonistic peptide SA-12 and application thereof in medicament for treating breast cancer
CN103113457B (en) * 2013-02-26 2014-06-18 中国人民解放军第四军医大学 Antagonistic peptide SA-12 and application thereof in medicament for treating breast cancer

Also Published As

Publication number Publication date
JP2014156401A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
Li et al. Affinity peptide for targeted detection of dysplasia in Barrett's esophagus
Kelly et al. Isolation of a colon tumor specific binding peptide using phage display selection
KR101151805B1 (en) Bipodal Peptide Binder
Park et al. Screening of peptides bound to breast cancer stem cell specific surface marker CD44 by phage display
JP2021004242A (en) Ras inhibitory peptides and uses thereof
Dai et al. Development of cell-permeable peptide-based PROTACs targeting estrogen receptor α
KR20120106763A (en) Bpb-based cargo delivery system
WO2014002836A1 (en) Egfr-binding peptide
Wen et al. Rational design of cell-permeable cyclic peptides containing a d-Pro-l-Pro motif
JPH10503369A (en) Src SH3-binding peptide and its separation and use
Kim et al. A screening study of high affinity peptide as molecular binder for AXL, tyrosine kinase receptor involving in Zika virus entry
Ma et al. Screening of a specific peptide binding to esophageal squamous carcinoma cells from phage displayed peptide library
Avignolo et al. Internalization via Antennapedia protein transduction domain of an scFv antibody toward c‐Myc protein
Pallerla et al. Design of cyclic and d‐amino acids containing peptidomimetics for inhibition of protein‐protein interactions of HER2‐HER3
WO2012160990A1 (en) Igf-1r-binding peptide
CN108912212B (en) A kind of polypeptide and its application with CD105 specific binding
JP6155255B2 (en) FZD10 binding peptide
Toyama et al. Functional evaluation of fluorescein-labeled derivatives of a peptide inhibitor of the EGF receptor dimerization
CN115397513A (en) Improved anti-aging compounds and uses thereof
EP4198042A1 (en) Peptide selectively binding to cancer cell-derived exosome, and uses thereof
Mukhopadhyay Chemically-modified peptides targeting the PDZ domain of GIPC as a therapeutic approach for cancer
CN110317244B (en) RAGE (receptor for activating receptor) antagonistic polypeptide and application thereof
KR102194026B1 (en) Peptides that specifically bind to TRAIL receptor and use thereof
KR102659285B1 (en) Peptides that selectively bind to tumor-derived exosomes and use thereof
Zhu et al. Screening and identification of a novel hepatocellular carcinoma cell binding peptide by using a phage display library

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP