WO2012160965A1 - Method of manufacturing power storage device - Google Patents

Method of manufacturing power storage device Download PDF

Info

Publication number
WO2012160965A1
WO2012160965A1 PCT/JP2012/061816 JP2012061816W WO2012160965A1 WO 2012160965 A1 WO2012160965 A1 WO 2012160965A1 JP 2012061816 W JP2012061816 W JP 2012061816W WO 2012160965 A1 WO2012160965 A1 WO 2012160965A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
negative electrode
positive electrode
storage device
location
Prior art date
Application number
PCT/JP2012/061816
Other languages
French (fr)
Japanese (ja)
Inventor
雄二 水口
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2012160965A1 publication Critical patent/WO2012160965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/136Flexibility or foldability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a method of manufacturing a power storage device, wherein separators can be prevented from being sealed together with enveloping members. In a method of manufacturing a laminated type nonaqueous electrolytic-solution rechargeable battery (100), enveloping members (20a, 20b) that constitute an enveloping body (20) are superimposed, and sealed together by heat-welding at a sealing portion (21b). After that, the superimposed enveloping members (20a, 20b) are arranged so as to sandwich an electrode structure (10). Then, the superimposed enveloping members (20a, 20b) are sealed together by heat-welding at sealing portions (21a).

Description

蓄電デバイスの製造方法Method for manufacturing power storage device
 本発明は、一般的には蓄電デバイスの製造方法に関し、特定的には、非水電解液二次電池、電気二重層キャパシタ等の蓄電要素を、複数の外包部材を重ね合わせて封着して収容する蓄電デバイスの製造方法に関するものである。 The present invention generally relates to a method for manufacturing an electricity storage device, and specifically, an electricity storage element such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor is sealed by overlapping a plurality of outer packaging members. The present invention relates to a method for manufacturing an electricity storage device to be accommodated.
 従来から、たとえば、非水電解液二次電池等の蓄電デバイスに関しては、多様な用途の拡大に伴って、軽量化、薄型化、形状の自由度等の要求が高まっている。 Conventionally, for example, regarding power storage devices such as non-aqueous electrolyte secondary batteries, demands such as weight reduction, thickness reduction, and degree of freedom of shape are increasing with the expansion of various applications.
 そこで、軽量化、薄型化に優れた非水電解液二次電池として、外包部材として可撓性のラミネートフィルム(積層シートともいう)を用いて電極構造体を収容した非水電解液二次電池が用いられている。ラミネートフィルムは、電極構造体に面する内面側に位置付けられ、合成樹脂からなる内面層と、非水電解液二次電池の外表面に位置付けられ、合成樹脂からなる外面層と、内面層と外面層との間に配置される中間層とから構成される。内面層は、たとえば、ポリエチレン、ポリプロピレン等の耐電解液性と熱溶着性に優れた熱可塑性樹脂からなる。中間層は、たとえば、アルミニウム箔等の可撓性と強度に優れた金属層からなる。外面層は、たとえば、ナイロン、ポリアミド等の電気絶縁性に優れた絶縁樹脂からなる。電極構造体(電池要素ともいう)は、セパレータを介して正極部材と負極部材とを巻回させて、または、交互に積層させて、構成される。 Therefore, as a non-aqueous electrolyte secondary battery excellent in weight reduction and thickness reduction, a non-aqueous electrolyte secondary battery containing an electrode structure using a flexible laminate film (also referred to as a laminated sheet) as an outer packaging member Is used. The laminate film is positioned on the inner surface facing the electrode structure, and is positioned on the outer surface of the synthetic resin, the outer surface of the non-aqueous electrolyte secondary battery, the outer surface layer of the synthetic resin, the inner layer and the outer surface. It is comprised from the intermediate | middle layer arrange | positioned between layers. The inner surface layer is made of, for example, a thermoplastic resin excellent in electrolytic solution resistance and heat welding properties such as polyethylene and polypropylene. An intermediate | middle layer consists of a metal layer excellent in flexibility and intensity | strength, such as aluminum foil, for example. The outer surface layer is made of, for example, an insulating resin excellent in electrical insulation, such as nylon or polyamide. An electrode structure (also referred to as a battery element) is configured by winding a positive electrode member and a negative electrode member with a separator interposed therebetween or alternately laminating them.
 たとえば、国際公開第2005/086258号(以下、特許文献1という)には、上記の非水電解液二次電池として、フィルム外装電池の構成が開示されている。このフィルム外装電池は、電極構造体を電解液とともに収納する外包体を備えている。電極構造体は、複数の正極板と複数の負極板とをセパレータを介して交互に積層して構成されている。外包体は、電極構造体をその厚み方向両側から挟んで包囲する2枚のラミネートフィルムからなる。重ね合わせられた2枚のラミネートフィルムの外周縁部(矩形状の平面形状では四辺)を熱溶着により封着することによって、電極構造体を外包体の内部に封入している。なお、このような構成は、5mm以上の厚みを有する電極構造体を収容する場合に望ましい形態である。 For example, International Publication No. 2005/086258 (hereinafter referred to as Patent Document 1) discloses a configuration of a film-covered battery as the non-aqueous electrolyte secondary battery. This film-clad battery includes an outer package that houses the electrode structure together with the electrolytic solution. The electrode structure is configured by alternately laminating a plurality of positive plates and a plurality of negative plates via separators. The outer package is composed of two laminated films that surround the electrode structure from both sides in the thickness direction. By sealing the outer peripheral edge portions (four sides in the case of a rectangular planar shape) of the two laminated laminate films by heat welding, the electrode structure is sealed inside the outer package. Such a configuration is a desirable form when accommodating an electrode structure having a thickness of 5 mm or more.
国際公開第2005/086258号International Publication No. 2005/086258
 特許文献1に記載のフィルム外装電池では、電極構造体を2枚のラミネートフィルムで挟んで配置した後、電解液を入れるための開口部以外の三辺を熱溶着により封着している。そして、電解液を注入した後に開口部の一辺を熱溶着により封着している。 In the film-clad battery described in Patent Document 1, the electrode structure is disposed between two laminated films, and then the three sides other than the opening for containing the electrolytic solution are sealed by thermal welding. And after inject | pouring electrolyte solution, the one side of an opening part is sealed by heat welding.
 しかしながら、電極構造体を2枚のラミネートフィルムで挟んで配置する際に、電極構造体の配置がずれる場合がある。この場合、正極端子(正極タブともいう)または負極端子(負極タブともいう)が配置されて導出される箇所を含む辺以外の一辺を封着する際に、電極構造体を構成するセパレータがラミネートフィルムとともに封着されることがある。 However, when the electrode structure is disposed between two laminate films, the electrode structure may be misaligned. In this case, the separator constituting the electrode structure is laminated when sealing one side other than the side including the portion where the positive electrode terminal (also referred to as positive electrode tab) or the negative electrode terminal (also referred to as negative electrode tab) is arranged and led out. May be sealed with film.
 セパレータがラミネートフィルムとともに封着されると、ラミネートフィルムの溶着が不十分になる。このため、封着強度または封着性の低下による電池の信頼性の低下、セパレータの破損による内部短絡、等の問題を引き起こす恐れがある。 When the separator is sealed together with the laminate film, the laminate film is insufficiently welded. For this reason, there is a risk of causing problems such as a decrease in battery reliability due to a decrease in sealing strength or sealing property, and an internal short circuit due to a separator being damaged.
 そこで、本発明の目的は、セパレータが外包部材とともに封着されることを防止することが可能な蓄電デバイスの製造方法を提供することである。 Therefore, an object of the present invention is to provide a method for manufacturing an electricity storage device capable of preventing the separator from being sealed together with the outer packaging member.
 本発明の製造方法が対象とする蓄電デバイスは、セパレータを介在して正極部材と負極部材とを交互に配置することにより形成された電極構造体と、電極構造体を収容して外周縁部で封着された外包体とを備える。正極部材が正極集電体を含み、負極部材が負極集電体を含む。さらに、蓄電デバイスは、正極集電体の端部に電気的に接続されるとともに外包体の外周縁部から導出された正極端子と、負極集電体の端部に電気的に接続されるとともに外包体の外周縁部から導出された負極端子とを備える。外包体の外周縁部が、正極端子と負極端子が導出される箇所を含まない第1の封着箇所と、正極端子と負極端子が導出される箇所を含む第2の封着箇所とを有する。 The power storage device targeted by the manufacturing method of the present invention includes an electrode structure formed by alternately arranging a positive electrode member and a negative electrode member with separators interposed between the electrode structure and the outer peripheral edge. A sealed outer package. The positive electrode member includes a positive electrode current collector, and the negative electrode member includes a negative electrode current collector. Furthermore, the electricity storage device is electrically connected to the end portion of the positive electrode current collector and electrically connected to the positive electrode terminal derived from the outer peripheral edge of the outer package and the end portion of the negative electrode current collector. And a negative electrode terminal derived from the outer peripheral edge of the outer package. The outer peripheral edge of the outer package has a first sealing location that does not include a location from which the positive electrode terminal and the negative electrode terminal are derived, and a second sealing location that includes a location from which the positive electrode terminal and the negative electrode terminal are derived. .
 上記のように構成された蓄電デバイスの製造方法は、以下の工程を備える。 The method for manufacturing an electricity storage device configured as described above includes the following steps.
 (A)外包体を構成する第1と第2の外包部材を重ね合わせて第1の封着箇所で封着する第1の封着工程 (A) A first sealing step in which the first and second outer packaging members constituting the outer packaging body are overlapped and sealed at the first sealing location.
 (B)第1の封着工程の後、重ね合わせられた第1と第2の外包部材で電極構造体を挟むようにして配置する電極構造体収容工程 (B) After the first sealing step, the electrode structure housing step in which the electrode structure is placed between the first and second outer packaging members that are overlapped.
 (C)電極構造体収容工程の後、重ね合わせられた第1と第2の外包部材を第2の封着箇所で封着する第2の封着工程 (C) Second sealing step of sealing the overlapped first and second outer packaging members at the second sealing location after the electrode structure housing step
 本発明の蓄電デバイスの製造方法では、外包体を構成する第1と第2の外包部材を重ね合わせて、正極端子と負極端子が導出される箇所を含まない第1の封着箇所で予め封着した後、重ね合わせられた第1と第2の外包部材で電極構造体を挟むようにして配置する。その後、重ね合わせられた第1と第2の外包部材を、正極端子と負極端子が導出される箇所を含む第2の封着箇所で封着する。これにより、電極構造体を構成するセパレータが第1の封着箇所で第1と第2の外包部材とともに封着されることを防止することができる。 In the method for manufacturing the electricity storage device of the present invention, the first and second outer packaging members constituting the outer packaging body are overlapped and sealed in advance at the first sealing location that does not include the location where the positive electrode terminal and the negative electrode terminal are led out. After being attached, the electrode structure is disposed so as to be sandwiched between the superimposed first and second outer packaging members. Thereafter, the overlapped first and second outer packaging members are sealed at a second sealing location including a location where the positive electrode terminal and the negative electrode terminal are led out. Thereby, it can prevent that the separator which comprises an electrode structure is sealed with the 1st and 2nd outer packaging member in a 1st sealing location.
 本発明の製造方法が対象とする蓄電デバイスにおいて、電極構造体は、セパレータを介在して複数の正極部材と複数の負極部材とを交互に積層することにより形成されていることが好ましい。 In the electricity storage device targeted by the manufacturing method of the present invention, the electrode structure is preferably formed by alternately laminating a plurality of positive electrode members and a plurality of negative electrode members with a separator interposed therebetween.
 また、本発明の製造方法は、さらに以下の工程を備える。 Moreover, the manufacturing method of the present invention further includes the following steps.
 (D)第2の封着工程の後、未封着の第3の封着箇所を上にした状態で電解液を注入する電解液注入工程 (D) After the second sealing step, an electrolytic solution injection step for injecting the electrolytic solution with the unsealed third sealing portion facing up
 (E)電解液注入工程の後、第3の封着箇所で封着する第3の封着工程 (E) Third sealing step of sealing at the third sealing location after the electrolyte injection step
 本発明によれば、電極構造体を構成するセパレータが、正極端子と負極端子が導出される箇所を含まない封着箇所で外包部材とともに封着されることを防止することができるので、封着強度または封着性の低下による電池の信頼性の低下、セパレータの破損による内部短絡、等を防止することができる。 According to the present invention, it is possible to prevent the separator constituting the electrode structure from being sealed together with the outer packaging member at a sealing location that does not include a location where the positive electrode terminal and the negative electrode terminal are led out. It is possible to prevent a decrease in battery reliability due to a decrease in strength or sealing property, an internal short circuit due to a breakage of the separator, and the like.
本発明の蓄電デバイスの一つの実施の形態であるラミネート型非水電解液二次電池の一例を示す概略的な平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view showing an example of a laminated nonaqueous electrolyte secondary battery that is an embodiment of an electricity storage device of the present invention. 封止前のラミネート型非水電解液二次電池において図1のII‐II線に沿った方向から見た断面を拡大して示す部分断面図である。FIG. 2 is a partial cross-sectional view showing, in an enlarged manner, a cross section viewed from a direction along the line II-II in FIG. 1 in a laminated nonaqueous electrolyte secondary battery before sealing. 封止前のラミネート型非水電解液二次電池の内部において、図1のIII‐III線に沿った方向から見た電極構造体の断面を拡大して示す概略的な部分断面図である。FIG. 3 is a schematic partial cross-sectional view showing, in an enlarged manner, a cross section of the electrode structure viewed from the direction along the line III-III in FIG. 1 inside the laminated nonaqueous electrolyte secondary battery before sealing. 本発明の一つの実施の形態としてのラミネート型非水電解液二次電池の内部において、正極部材、負極部材、セパレータ、正極端子、および、負極端子の配置を示す平面図である。It is a top view which shows arrangement | positioning of a positive electrode member, a negative electrode member, a separator, a positive electrode terminal, and a negative electrode terminal inside the lamination type nonaqueous electrolyte secondary battery as one embodiment of this invention. 図1に示すラミネート型非水電解液二次電池の分解斜視図である。FIG. 2 is an exploded perspective view of the laminate type nonaqueous electrolyte secondary battery shown in FIG. 1. 本発明の別の実施の形態として、封止前のラミネート型非水電解液二次電池の内部において、図1のVI‐VI線に沿った方向から見た電極構造体の断面を拡大して示す概略的な部分断面図である。As another embodiment of the present invention, an enlarged cross section of the electrode structure viewed from the direction along the line VI-VI in FIG. 1 inside the laminated non-aqueous electrolyte secondary battery before sealing. It is a schematic fragmentary sectional view shown.
 以下、本発明の一つの実施の形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1~図5に示すように、蓄電デバイスの一つの実施の形態として、非水電解液二次電池の一例であるラミネート型非水電解液二次電池100は、電極構造体10と、図示しない非水電解液と、矩形状を有し、電極構造体10と非水電解液を収容して封止する上下二枚の可撓性の外包部材20a、20bからなる外包体20と、電極構造体10に超音波溶着により電気的に接続されるとともに外包体20の外周縁部から互いに対向する反対方向に導出された正極端子30および負極端子40とから構成される。外包体20の外周縁部は、四方の封着箇所21a、21a、21b、21cにて熱溶着(ヒートシール)によって封着されている。封着箇所21b、または21cのいずれか一方は、正極端子30と負極端子40が導出される箇所を含まない第1の封着箇所であり、他方は第3の封着箇所である。また、封着箇所21a、21aは、正極端子30と負極端子40が導出される箇所を含む第2の封着箇所である。正極端子30および負極端子40のそれぞれは、電極構造体10の幅方向の中央に位置づけられているが、幅方向の一方端部に位置づけられてもよい。また、この実施の形態では、図5に示すように外包体20を構成する一方の外包部材20bがカップ形状の凸部を有しているが、両方の外包部材20a、20bがカップ形状の凸部を有していてもよい。 As shown in FIGS. 1 to 5, as one embodiment of the electricity storage device, a laminated nonaqueous electrolyte secondary battery 100 which is an example of a nonaqueous electrolyte secondary battery includes an electrode structure 10 and an illustrated structure. A non-aqueous electrolyte solution, a rectangular shape, and an outer packaging body 20 composed of an electrode structure 10 and two upper and lower flexible packaging members 20a and 20b that contain and seal the non-aqueous electrolyte solution, and an electrode The structure is composed of a positive electrode terminal 30 and a negative electrode terminal 40 that are electrically connected to the structure 10 by ultrasonic welding and led out from the outer peripheral edge of the outer package 20 in opposite directions. The outer peripheral edge of the outer package 20 is sealed by thermal welding (heat sealing) at four sealing locations 21a, 21a, 21b, and 21c. Either one of the sealing locations 21b or 21c is a first sealing location that does not include a location from which the positive electrode terminal 30 and the negative electrode terminal 40 are led out, and the other is a third sealing location. Further, the sealing locations 21a and 21a are second sealing locations including a location where the positive electrode terminal 30 and the negative electrode terminal 40 are led out. Each of the positive electrode terminal 30 and the negative electrode terminal 40 is positioned at the center in the width direction of the electrode structure 10, but may be positioned at one end in the width direction. Further, in this embodiment, as shown in FIG. 5, one outer packet member 20b constituting the outer packet body 20 has a cup-shaped convex part, but both outer packet members 20a and 20b are cup-shaped convex parts. May have a part.
 図2と図3に示すように、電極構造体10は、複数の短冊状の正極部材11と、複数の短冊状の負極部材12と、複数の短冊状のセパレータ13とを含む。正極部材11と負極部材12がセパレータ13を間に介在して交互に積層されている。正極部材11は正極集電体111を含み、複数の正極部材11が、複数の正極集電体111を集積した端部111aを介して正極端子30に超音波溶着により電気的に接続されている。負極部材12は負極集電体121を含み、複数の負極部材12も正極部材と同様に、複数の負極集電体121を集積した端部を介して負極端子40に超音波溶着により電気的に接続されている。なお、上記のラミネート型非水電解液二次電池100の例では、電極構造体10の構成として正極部材11と負極部材12との間に一枚のセパレータ13を介在させているが、複数枚のセパレータを介在させてもよい。複数枚のセパレータの材質は同種でも異種でもよい。セパレータの材質としては、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂の単独またはその組み合わせ、ポリオレフィン系樹脂にシリカ、アルミナ等のセラミックを添加したもの、ポリエチレンテレフタレート、セルロース、不織布等が用いられる。また、たとえば、正極部材11を袋状のセパレータ内に配置して負極部材12との間にセパレータを介在させてもよく、図6(A)に示すように長尺状のセパレータ13を九十九折りにして介在させてもよい。なお、図6(B)に示すように長尺状の正極部材11と負極部材12との間に、長尺状のセパレータ13を介在させ、巻回させてもよい。 2 and 3, the electrode structure 10 includes a plurality of strip-shaped positive electrode members 11, a plurality of strip-shaped negative electrode members 12, and a plurality of strip-shaped separators 13. The positive electrode members 11 and the negative electrode members 12 are alternately stacked with the separators 13 interposed therebetween. The positive electrode member 11 includes a positive electrode current collector 111, and the plurality of positive electrode members 11 are electrically connected to the positive electrode terminal 30 by ultrasonic welding via end portions 111a in which the plurality of positive electrode current collectors 111 are integrated. . The negative electrode member 12 includes a negative electrode current collector 121. Similarly to the positive electrode member, the plurality of negative electrode members 12 are electrically connected to the negative electrode terminal 40 by ultrasonic welding through an end portion where the plurality of negative electrode current collectors 121 are integrated. It is connected. In the example of the laminate-type nonaqueous electrolyte secondary battery 100 described above, one separator 13 is interposed between the positive electrode member 11 and the negative electrode member 12 as a configuration of the electrode structure 10. A separator may be interposed. The material of the plurality of separators may be the same or different. As the material of the separator, a polyolefin resin such as polypropylene or polyethylene, or a combination thereof, a polyolefin resin added with a ceramic such as silica or alumina, polyethylene terephthalate, cellulose, nonwoven fabric, or the like is used. Further, for example, the positive electrode member 11 may be disposed in a bag-shaped separator, and a separator may be interposed between the positive electrode member 12 and the long separator 13 may be replaced by 90 as shown in FIG. Nine folds may be interposed. 6B, a long separator 13 may be interposed between the long positive electrode member 11 and the negative electrode member 12 and wound.
 外包体20を構成する外包部材20a、20bは、電極構造体10に面する内面側に位置づけられ、合成樹脂からなる内面層と、ラミネート型非水電解液二次電池100の外表面に位置づけられ、合成樹脂からなる外面層と、内面層と外面層との間に配置される金属層とから構成される単一のフィルム、すなわち、三層構造のラミネートフィルムで形成されている(図2では三層構造は省略している)。内面層は、一例として、ヒートシール可能な熱可塑性樹脂であるポリプロピレンからなり、厚みが30~120μmである。金属層は、一例として、アルミニウム箔またはアルミニウム合金箔からなり、厚みが30~50μmである。外面層は、一例として、ナイロン(登録商標)からなり、厚みが20~40μmである。このように構成された外包部材20a、20bは、容易に変形しやすい材料であり、可撓性を有する。なお、ラミネートフィルムは、少なくとも内面層とその外側に配置される金属層とを有するものであればよく、必要に応じて外面層を設ければよい。また、必要に応じて層間にウレタン樹脂等の接着層、他の合成樹脂層等を設けてもよい。図1と図5に示すように、外包体20は、ラミネートフィルムからなる2枚の外包部材20a、20bの外周縁部を重ね合わせて四辺の封着箇所21a、21a、21b、21cにて熱溶着することによって形成される。 The outer packaging members 20 a and 20 b constituting the outer packaging body 20 are positioned on the inner surface side facing the electrode structure 10, and are positioned on the inner surface layer made of synthetic resin and the outer surface of the laminated nonaqueous electrolyte secondary battery 100. , A single film composed of an outer surface layer made of a synthetic resin and a metal layer disposed between the inner surface layer and the outer surface layer, that is, a laminate film having a three-layer structure (in FIG. 2) The three-layer structure is omitted). For example, the inner surface layer is made of polypropylene which is a heat-sealable thermoplastic resin and has a thickness of 30 to 120 μm. For example, the metal layer is made of an aluminum foil or an aluminum alloy foil and has a thickness of 30 to 50 μm. For example, the outer surface layer is made of nylon (registered trademark) and has a thickness of 20 to 40 μm. The outer packaging members 20a and 20b configured in this way are easily deformable materials and have flexibility. In addition, the laminate film should just have an inner surface layer and the metal layer arrange | positioned on the outer side at least, and should just provide an outer surface layer as needed. Moreover, you may provide adhesive layers, such as a urethane resin, another synthetic resin layer, etc. between layers as needed. As shown in FIG. 1 and FIG. 5, the outer package 20 is heated at the four sides of the sealing locations 21a, 21a, 21b, and 21c by overlapping the outer peripheral edges of the two outer packaging members 20a and 20b made of a laminate film. It is formed by welding.
 上記の実施形態では、図2と図4に示されるように、正極端子30と負極端子40のそれぞれは、正極集電体111と負極集電体121のそれぞれの端部が集積された箇所の下面にて超音波溶着により接続されるが、正極端子30と負極端子40のそれぞれは、集電体の端部が集積された箇所の上面にて超音波溶着により接続されてもよく、あるいは、集電体の端部が集積された箇所の内部に挿入されるように配置して超音波溶着により接続されてもよい。 In the above embodiment, as shown in FIGS. 2 and 4, each of the positive electrode terminal 30 and the negative electrode terminal 40 is a portion where the end portions of the positive electrode current collector 111 and the negative electrode current collector 121 are integrated. Although connected by ultrasonic welding on the lower surface, each of the positive electrode terminal 30 and the negative electrode terminal 40 may be connected by ultrasonic welding on the upper surface of the portion where the ends of the current collector are integrated, or It may be arranged so that the end of the current collector is inserted into the integrated portion and connected by ultrasonic welding.
 また、上記の実施形態では、正極端子30および負極端子40は外包体20の外周縁部から互いに対向する反対方向に導出されているが、正極端子30および負極端子40が外包部材の外周縁部から同じ方向に導出されていてもよい。この場合、正極端子30が電極構造体10の幅方向の一方端部に位置づけられ、負極端子40が電極構造体10の幅方向の一方端部と反対側の他方端部に位置づけられる。 In the above embodiment, the positive electrode terminal 30 and the negative electrode terminal 40 are led out from the outer peripheral edge portion of the outer package 20 in opposite directions, but the positive electrode terminal 30 and the negative electrode terminal 40 are the outer peripheral edge portion of the outer packaging member. May be derived in the same direction. In this case, the positive terminal 30 is positioned at one end in the width direction of the electrode structure 10, and the negative terminal 40 is positioned at the other end opposite to the one end in the width direction of the electrode structure 10.
 以上のように構成された本発明のラミネート型非水電解液二次電池100は、次のような工程にて、電極構造体10を外包体20内に収容して封入することにより製造される。なお、下記の製造工程を行う前には、正極端子30および負極端子40が超音波溶着により電極構造体10に予め接続されている。 The laminate type non-aqueous electrolyte secondary battery 100 of the present invention configured as described above is manufactured by housing and enclosing the electrode structure 10 in the outer package 20 in the following steps. . In addition, before performing the following manufacturing process, the positive electrode terminal 30 and the negative electrode terminal 40 are previously connected to the electrode structure 10 by ultrasonic welding.
 まず、外包体20を構成する外包部材20a、20bを重ね合わせて、第1の封着箇所として封着箇所21bにて熱溶着することにより、封着する(第1の封着工程)。 First, the outer packaging members 20a and 20b constituting the outer packaging body 20 are overlapped and heat-sealed at a sealing location 21b as a first sealing location (first sealing step).
 その後、重ね合わせられた外包部材20a、20bで電極構造体10を挟むようにして配置する(電極構造体収容工程)。 Thereafter, the electrode structure 10 is disposed so as to be sandwiched between the overlapped outer packaging members 20a and 20b (electrode structure accommodation step).
 そして、重ね合わせられた外包部材20a、20bを第2の封着箇所として封着箇所21aにて熱溶着することにより、封着する(第2の封着工程)。 Then, the overlapped outer packaging members 20a and 20b are sealed as a second sealing location by heat welding at the sealing location 21a (second sealing step).
 なお、封着箇所21c(第3の封着箇所)は、封着箇所21cを上にした状態で電解液を注入した後に熱溶着により封着される(電解液注入工程・第3の封着工程)。 The sealing part 21c (third sealing part) is sealed by thermal welding after injecting the electrolytic solution with the sealing part 21c facing upward (electrolyte injection process / third sealing). Process).
 以上のように本発明のラミネート型非水電解液二次電池100の製造方法では、外包部材20a、20bを重ね合わせて、正極端子30と負極端子40が導出される箇所を含まない封着箇所21bで予め封着した後、重ね合わせられた外包部材20a、20bで電極構造体10を挟むようにして配置する。その後、重ね合わせられた外包部材20a、20bを、正極端子30と負極端子40が導出される箇所を含む封着箇所21aで封着する。これにより、電極構造体10を構成するセパレータ13が封着箇所21bで外包部材20a、20bとともに封着されることを防止することができる。具体的には、セパレータ13の部分131(図3、図4、図6)が封着箇所21bで外包部材20a、20bとともに封着されることを防止することができる。 As described above, in the method for manufacturing the laminate-type nonaqueous electrolyte secondary battery 100 of the present invention, the sealing part does not include the part from which the positive electrode terminal 30 and the negative electrode terminal 40 are led by overlapping the outer packaging members 20a and 20b. After sealing in advance at 21b, the electrode structure 10 is disposed so as to be sandwiched between the overwrapped outer packaging members 20a and 20b. Thereafter, the overlapped outer packaging members 20a and 20b are sealed at a sealing location 21a including a location where the positive electrode terminal 30 and the negative electrode terminal 40 are led out. Thereby, it can prevent that the separator 13 which comprises the electrode structure 10 is sealed with the outer packaging members 20a and 20b in the sealing location 21b. Specifically, the portion 131 (FIGS. 3, 4, and 6) of the separator 13 can be prevented from being sealed together with the outer packaging members 20a and 20b at the sealing location 21b.
 したがって、電極構造体10を構成するセパレータ13が封着箇所21bで外包部材20a、20bとともに封着されることに起因して、封着強度または封着性が低下することによる電池の信頼性の低下、セパレータが破損することによる内部短絡、等を防止することができる。 Therefore, the separator 13 constituting the electrode structure 10 is sealed together with the outer packaging members 20a and 20b at the sealing portion 21b, and thus the reliability of the battery due to the decrease in the sealing strength or the sealing property. It is possible to prevent a decrease, an internal short circuit due to a breakage of the separator, and the like.
 一例として、図5に示される形態にて外包部材20a、20bの平面外形寸法は160mm×160mm、ラミネート型非水電解液二次電池100の厚みは約5mmである。図2と図3に示される形態の電極構造体10において、20枚の正極部材11と21枚の負極部材12がセパレータ13を間に介在して交互に積層されるように構成される。 As an example, in the form shown in FIG. 5, the outer dimensions of the outer packaging members 20a and 20b are 160 mm × 160 mm, and the thickness of the laminated nonaqueous electrolyte secondary battery 100 is about 5 mm. The electrode structure 10 shown in FIGS. 2 and 3 is configured such that 20 positive electrode members 11 and 21 negative electrode members 12 are alternately stacked with separators 13 interposed therebetween.
 なお、本発明のラミネート型非水電解液二次電池100において、正極部材11は、正極端子30に接続される側の端部を除いて、正極活物質を含む正極合材層が正極集電体111の両面上に形成されることによって構成される。負極部材12は、負極端子40に接続される側の端部を除いて、負極活物質を含む負極合材層が負極集電体121の両面上に形成されることによって構成される。 In the laminate type nonaqueous electrolyte secondary battery 100 of the present invention, the positive electrode member 11 has a positive electrode mixture layer containing a positive electrode active material, except for an end portion on the side connected to the positive electrode terminal 30. It is configured by being formed on both surfaces of the body 111. The negative electrode member 12 is configured by forming a negative electrode mixture layer containing a negative electrode active material on both surfaces of the negative electrode current collector 121 except for an end portion on the side connected to the negative electrode terminal 40.
 たとえば、正極部材11は、正極活物質と結着剤と必要に応じて導電剤とを有機溶媒中で混錬してなる正極合材スラリーを、アルミニウム箔または銅箔からなる正極集電体111の両面上に均一に塗布し、乾燥して、正極合材層を正極集電体111の両面上に形成することにより作製される。 For example, the positive electrode member 11 includes a positive electrode current collector 111 made of an aluminum foil or a copper foil, and a positive electrode mixture slurry formed by kneading a positive electrode active material, a binder, and, if necessary, a conductive agent in an organic solvent. It is produced by coating uniformly on both surfaces of the substrate and drying to form a positive electrode mixture layer on both surfaces of the positive electrode current collector 111.
 非水電解液二次電池を構成する場合、正極活物質としては、コバルト酸リチウム複合酸化物、マンガン酸リチウム複合酸化物、ニッケル酸リチウム複合酸化物、リチウム‐ニッケル‐マンガン‐コバルト複合酸化物、リチウム‐マンガン‐ニッケル複合酸化物、リチウム‐マンガン‐コバルト複合酸化物、リチウム‐ニッケル‐コバルト複合酸化物等を用いることができる。さらに、正極活物質は、上記の材料を混合したものでもよい。具体的には、非水電解液二次電池の正極活物質としてLiMx2(化学式中、Mは一種以上の遷移金属を表し、xは電池の充放電状態によって異なり、通常0.05以上、1.10以下である)を主体とするリチウム複合酸化物等を使用することができる。このリチウム複合酸化物を構成する遷移金属Mとしては、Co、Ni、Mn等が好ましい。このようなリチウム複合酸化物の具体例としてはLiCoO2、LiNiO2、LiNiyCo1-y2(化学式中、0<y<1である)、Li1+a(NixMnyCoz)O2-b(化学式中、-0.1<a<0.2、x+y+z=1、-0.1<b<0.1)、LiMn24等を挙げることができる。これらのリチウム複合酸化物は、高電圧を発生でき、エネルギー密度が優れた正極活物質となる。正極部材11を作製するために、これらの正極活物質の複数種をあわせて使用してもよい。正極活物質は、LiFePO4で表わされるリン酸鉄リチウム等のオリビン型構造を有するリチウム含有リン酸化合物でもよい。オリビン型構造を有しているのであれば、LiFePO4で表わされるリン酸鉄リチウムにおいて、Feの一部をAl、Ti、V、Cr、Mn、Co、Ni、Zr、Nb等で置換してもよい。また、Pの一部をB、Si等で置換してもよい。 When configuring a non-aqueous electrolyte secondary battery, the positive electrode active materials include lithium cobaltate composite oxide, lithium manganate composite oxide, lithium nickelate composite oxide, lithium-nickel-manganese-cobalt composite oxide, A lithium-manganese-nickel composite oxide, a lithium-manganese-cobalt composite oxide, a lithium-nickel-cobalt composite oxide, or the like can be used. Further, the positive electrode active material may be a mixture of the above materials. Specifically, LiM x O 2 (in the chemical formula, M represents one or more transition metals, x represents a charge / discharge state of the battery, and is usually 0.05 or more as a positive electrode active material of a non-aqueous electrolyte secondary battery. Or a lithium composite oxide mainly composed of 1.10 or less). As the transition metal M constituting this lithium composite oxide, Co, Ni, Mn and the like are preferable. LiCoO 2, LiNiO 2, LiNi y Co 1-y O 2 Specific examples of the lithium composite oxide (in the chemical formula, 0 <y <a 1), Li 1 + a ( Ni x Mn y Co z ) O 2-b (in the chemical formula, −0.1 <a <0.2, x + y + z = 1, −0.1 <b <0.1), LiMn 2 O 4 and the like. These lithium composite oxides can generate a high voltage and become a positive electrode active material having an excellent energy density. In order to produce the positive electrode member 11, a plurality of these positive electrode active materials may be used in combination. The positive electrode active material may be a lithium-containing phosphate compound having an olivine type structure such as lithium iron phosphate represented by LiFePO 4 . If it has an olivine type structure, in the lithium iron phosphate represented by LiFePO 4 , a part of Fe is replaced with Al, Ti, V, Cr, Mn, Co, Ni, Zr, Nb, etc. Also good. A part of P may be replaced with B, Si, or the like.
 また、上記の正極合材に含有される結着剤としては、通常、非水電解液二次電池の正極合材に用いられている公知の結着剤を用いることができ、上記の正極合材には、導電剤、酸化物等、公知の添加剤を添加することができる。上記の正極合材に含有される導電剤としては、ファーネスブラック、アセチレンブラック、炭素繊維、カーボンナノチューブ等の炭素材料が用いられる。正極活物質と導電剤を結着させるための結着剤としては、ポリフッ化ビニリデン(PVDF)、ポリアミドイミド(PAI)、ポリアクリロニトリル(PAN)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)またはフッ素系ラテックスが用いられる。 In addition, as the binder contained in the positive electrode mixture, a known binder that is usually used in the positive electrode mixture of a non-aqueous electrolyte secondary battery can be used. Known additives such as a conductive agent and an oxide can be added to the material. As the conductive agent contained in the positive electrode mixture, carbon materials such as furnace black, acetylene black, carbon fiber, and carbon nanotube are used. As a binder for binding the positive electrode active material and the conductive agent, polyvinylidene fluoride (PVDF), polyamideimide (PAI), polyacrylonitrile (PAN), polyethylene (PE), polypropylene (PP), polytetrafluoro Ethylene (PTFE) or fluorine-based latex is used.
 たとえば、負極部材12は、負極活物質と結着剤と必要に応じて導電剤とを有機溶媒中で混錬してなる負極スラリーを、銅箔からなる負極集電体の両面上に均一に塗布し、乾燥して、負極合材層を負極集電体の両面上に形成することにより作製される。 For example, the negative electrode member 12 is formed by uniformly applying a negative electrode slurry obtained by kneading a negative electrode active material, a binder, and, if necessary, a conductive agent in an organic solvent on both surfaces of a negative electrode current collector made of copper foil. It is produced by applying and drying to form a negative electrode mixture layer on both sides of the negative electrode current collector.
 非水電解液二次電池を構成する場合、負極活物質としては、難黒鉛化炭素材料、易黒鉛化炭素材料(ソフトカーボン)、グラファイト系炭素材料等の炭素材料を使用することができる。具体的には、熱分解炭素類、コークス類、黒鉛類、ガラス状炭素繊維、有機高分子化合物焼成体、炭素繊維、カーボンナノチューブ、活性炭等の炭素材料を使用することができる。上記のコークス類には、ピッチコークス、ニードルコークス、石油コークス等がある。また、上記の有機高分子化合物焼成体とは、フェノール樹脂、フラン樹脂等を適当な温度で焼成して炭素化したものをいう。上述した炭素材料のほか、リチウムをドープ、脱ドープできる材料としては、ポリアセチレン、ポリピロール等の高分子、SnO2等のSn酸化物系、Sn5Cu6等のSn合金系、SiMg2等のSi合金系、Li4Ti512(チタン酸リチウム)等の酸化物を使用することもできる。 When constituting a non-aqueous electrolyte secondary battery, a carbon material such as a non-graphitizable carbon material, a graphitizable carbon material (soft carbon), or a graphite-based carbon material can be used as the negative electrode active material. Specifically, carbon materials such as pyrolytic carbons, cokes, graphites, glassy carbon fibers, organic polymer compound fired bodies, carbon fibers, carbon nanotubes, and activated carbon can be used. Examples of the cokes include pitch coke, needle coke, and petroleum coke. Moreover, said organic polymer compound fired body means what carbonized by baking a phenol resin, furan resin, etc. at a suitable temperature. In addition to the carbon material described above, materials that can be doped or dedoped with lithium include polymers such as polyacetylene and polypyrrole, Sn oxides such as SnO 2 , Sn alloys such as Sn 5 Cu 6 , and SiMg 2. An oxide such as an alloy or Li 4 Ti 5 O 12 (lithium titanate) can also be used.
 また、上記の負極合材に含有される結着剤としては、通常、非水電解液二次電池の負極合材に用いられている公知の結着剤を用いることができ、上記の負極合材には、導電剤、酸化物等、公知の添加剤を添加することができる。負極活物質を結着させるための結着剤としては、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリアミドイミド、ポリアクリロニトリル、ポリエチレン、ポリプロピレンまたはポリテトラフルオロエチレンが用いられ、あるいは、スチレンブタジエンラバー等のラテックスバインダーとカルボキシメチルセルロース等の増粘剤の混合物が用いられる。 In addition, as the binder contained in the negative electrode mixture, a known binder that is usually used in a negative electrode mixture of a non-aqueous electrolyte secondary battery can be used. Known additives such as a conductive agent and an oxide can be added to the material. As the binder for binding the negative electrode active material, polyvinylidene fluoride, polyacrylonitrile, polyamideimide, polyacrylonitrile, polyethylene, polypropylene or polytetrafluoroethylene is used, or a latex binder such as styrene butadiene rubber and the like. A mixture of thickeners such as carboxymethylcellulose is used.
 非水電解液は、支持電解質を非水溶媒に溶解して調製される。非水電解液としては、たとえば、非水溶媒中にLiPF6を1.0mol/Lの濃度で溶解したものが使用される。LiPF6以外の支持電解質としては、LiBF4、LiAsF6、LiClO4、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6等のリチウム塩を挙げることができる。これらの中でも、支持電解質として特にLiPF6、LiBF4を用いることが酸化安定性の点から望ましい。このような支持電解質は、非水溶媒中に、0.1mol/L~3.0mol/Lの濃度で溶解されて用いられることが好ましく、0.5mol/L~2.0mol/Lの濃度で溶解されて用いられることがさらに好ましい。上記の非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等の環状炭酸エステルに、低粘性溶媒であるジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等の低級鎖状炭酸エステルを加えたものが用いられる。 The nonaqueous electrolytic solution is prepared by dissolving the supporting electrolyte in a nonaqueous solvent. As the non-aqueous electrolyte, for example, a solution obtained by dissolving LiPF 6 in a non-aqueous solvent at a concentration of 1.0 mol / L is used. Examples of supporting electrolytes other than LiPF 6 include lithium salts such as LiBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , and LiSiF 6. Can be mentioned. Among these, LiPF 6 and LiBF 4 are particularly preferably used as the supporting electrolyte from the viewpoint of oxidation stability. Such a supporting electrolyte is preferably used by being dissolved in a nonaqueous solvent at a concentration of 0.1 mol / L to 3.0 mol / L, and at a concentration of 0.5 mol / L to 2.0 mol / L. More preferably, it is used after being dissolved. Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), which are low viscosity solvents. And a lower chain carbonate of the above are used.
 上記の実施の形態では、本発明を蓄電デバイスの一例としてラミネート型非水電解液二次電池100に適用した例について説明したが、少なくとも電極構造体を収容するために外包部材を用いた蓄電デバイスであれば、本発明を適用することができ、たとえば、非水電解液二次電池の他に、電気二重層キャパシタ等に本発明を適用することができる。なお、外包部材は、三層構造のラミネートフィルム等からなる可撓性を有するものに限定されない。 In the above embodiment, an example in which the present invention is applied to the laminated nonaqueous electrolyte secondary battery 100 as an example of an electricity storage device has been described. However, an electricity storage device using an outer packaging member to accommodate at least an electrode structure If so, the present invention can be applied. For example, the present invention can be applied to an electric double layer capacitor in addition to a non-aqueous electrolyte secondary battery. The outer packaging member is not limited to a flexible member made of a laminate film having a three-layer structure.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正または変形を含むものであることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the embodiments described above, and is intended to include any modifications or variations within the scope and meaning equivalent to the terms of the claims.
 本発明によれば、封着強度または封着性の低下による電池の信頼性の低下、セパレータの破損による内部短絡、等を防止することができるので、可撓性を有する外包部材が使用可能な蓄電デバイス、たとえば、蓄電要素として非水電解液二次電池の他に、電気二重層キャパシタ等の種々の蓄電要素を収容する蓄電デバイスの信頼性の向上に寄与するものである。 According to the present invention, it is possible to prevent a decrease in battery reliability due to a decrease in sealing strength or sealing property, an internal short circuit due to a breakage of a separator, and the like, so that a flexible outer packaging member can be used. This contributes to improving the reliability of an electricity storage device, for example, an electricity storage device that houses various electricity storage elements such as an electric double layer capacitor in addition to a non-aqueous electrolyte secondary battery as an electricity storage element.
 10:電極構造体、11:正極部材、12:負極部材、13:セパレータ、20:外包体、20a,20b:外包部材、21a,21b,21c:封着箇所、30:正極端子、40:負極端子、100:ラミネート型非水電解液二次電池、111:正極集電体、121:負極集電体。

                                                                                
DESCRIPTION OF SYMBOLS 10: Electrode structure, 11: Positive electrode member, 12: Negative electrode member, 13: Separator, 20: Outer package, 20a, 20b: Outer package member, 21a, 21b, 21c: Sealing location, 30: Positive electrode terminal, 40: Negative electrode Terminal: 100: Laminated non-aqueous electrolyte secondary battery, 111: Positive electrode current collector, 121: Negative electrode current collector.

Claims (4)

  1.  セパレータを介在して正極部材と負極部材とを交互に配置することにより形成された電極構造体と、前記電極構造体を収容して外周縁部で封着された外包体とを備え、前記正極部材が正極集電体を含み、前記負極部材が負極集電体を含み、さらに、前記正極集電体の端部に電気的に接続されるとともに前記外包体の外周縁部から導出された正極端子と、前記負極集電体の端部に電気的に接続されるとともに前記外包体の外周縁部から導出された負極端子とを備え、前記外包体の外周縁部が、前記正極端子と前記負極端子が導出される箇所を含まない第1の封着箇所と、前記正極端子と前記負極端子が導出される箇所を含む第2の封着箇所とを有する蓄電デバイスの製造方法であって、
     前記外包体を構成する第1と第2の外包部材を重ね合わせて前記第1の封着箇所で封着する第1の封着工程と、
     前記第1の封着工程の後、重ね合わせられた前記第1と第2の外包部材で前記電極構造体を挟むようにして配置する電極構造体収容工程と、
     前記電極構造体収容工程の後、重ね合わせられた前記第1と第2の外包部材を前記第2の封着箇所で封着する第2の封着工程とを備えた、蓄電デバイスの製造方法。
    An electrode structure formed by alternately arranging a positive electrode member and a negative electrode member with a separator interposed therebetween; and an outer package that contains the electrode structure and is sealed at an outer peripheral edge, The member includes a positive electrode current collector, the negative electrode member includes a negative electrode current collector, and is further electrically connected to an end of the positive electrode current collector and led out from the outer peripheral edge of the outer package A terminal, and a negative electrode terminal electrically connected to an end of the negative electrode current collector and led out from an outer peripheral edge of the outer envelope, the outer peripheral edge of the outer envelope being connected to the positive terminal and the positive electrode A method for manufacturing an electricity storage device having a first sealing location that does not include a location from which a negative electrode terminal is derived, and a second sealing location that includes a location from which the positive electrode terminal and the negative electrode terminal are derived,
    A first sealing step in which the first and second outer packaging members constituting the outer packaging body are overlapped and sealed at the first sealing location;
    After the first sealing step, an electrode structure housing step of arranging the electrode structure so as to be sandwiched between the superimposed first and second outer packaging members;
    A method for manufacturing an electricity storage device, comprising: a second sealing step of sealing the overlapped first and second outer packaging members at the second sealing location after the electrode structure housing step .
  2.  前記電極構造体は、セパレータを介在して複数の正極部材と複数の負極部材とを交互に積層することにより形成されている、請求項1に記載の蓄電デバイスの製造方法。 The method for manufacturing an electricity storage device according to claim 1, wherein the electrode structure is formed by alternately laminating a plurality of positive electrode members and a plurality of negative electrode members with a separator interposed therebetween.
  3.  前記正極端子および前記負極端子が、前記外包体の外周縁部から互いに反対方向に延びている、請求項1または請求項2のいずれか1項に記載の蓄電デバイスの製造方法。 The method for manufacturing an electricity storage device according to any one of claims 1 and 2, wherein the positive electrode terminal and the negative electrode terminal extend in directions opposite to each other from an outer peripheral edge portion of the outer package.
  4.  前記第2の封着工程の後、未封着の第3の封着箇所を上にした状態で電解液を注入する電解液注入工程と、
     前記電解液注入工程の後、前記第3の封着箇所で封着する第3の封着工程とを備えた、請求項1から請求項3までのいずれか1項に記載の蓄電デバイスの製造方法。

                                                                                    
    After the second sealing step, an electrolytic solution injection step of injecting an electrolytic solution with the unsealed third sealing portion facing up,
    The manufacturing of the electricity storage device according to any one of claims 1 to 3, further comprising a third sealing step of sealing at the third sealing location after the electrolyte injection step. Method.

PCT/JP2012/061816 2011-05-25 2012-05-09 Method of manufacturing power storage device WO2012160965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-117173 2011-05-25
JP2011117173 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012160965A1 true WO2012160965A1 (en) 2012-11-29

Family

ID=47217046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061816 WO2012160965A1 (en) 2011-05-25 2012-05-09 Method of manufacturing power storage device

Country Status (1)

Country Link
WO (1) WO2012160965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238508A (en) * 2008-03-26 2009-10-15 Fdk Corp Electrochemical device, and manufacturing method of electrochemical device
JP2010192230A (en) * 2009-02-18 2010-09-02 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery
JP2010199281A (en) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd Electric storage device and method of manufacturing the same
JP2010244930A (en) * 2009-04-08 2010-10-28 Hitachi Maxell Ltd Method for manufacturing laminated battery
JP2010244725A (en) * 2009-04-01 2010-10-28 Sony Corp Nonaqueous electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238508A (en) * 2008-03-26 2009-10-15 Fdk Corp Electrochemical device, and manufacturing method of electrochemical device
JP2010192230A (en) * 2009-02-18 2010-09-02 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery
JP2010199281A (en) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd Electric storage device and method of manufacturing the same
JP2010244725A (en) * 2009-04-01 2010-10-28 Sony Corp Nonaqueous electrolyte battery
JP2010244930A (en) * 2009-04-08 2010-10-28 Hitachi Maxell Ltd Method for manufacturing laminated battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Similar Documents

Publication Publication Date Title
US20110244304A1 (en) Stack type battery
JP4659861B2 (en) Flat secondary battery and manufacturing method thereof
JP5591569B2 (en) Square battery, method for manufacturing the same, and assembled battery using the same
JP5699559B2 (en) Non-aqueous electrolyte battery
JP5830953B2 (en) Secondary battery, battery unit and battery module
JP6504158B2 (en) Stacked battery and method of manufacturing the same
US9614194B2 (en) Battery
JP4720384B2 (en) Bipolar battery
US20120244423A1 (en) Laminate case secondary battery
WO2013002058A1 (en) Power storage device
WO2017039143A1 (en) Electrode assembly, secondary battery comprising same, and manufacturing method thereof
JP2013206699A (en) Electrochemical device
US20150111095A1 (en) Lithium-Ion Battery
JP2005310588A (en) Bipolar battery, manufacturing method of bipolar battery, battery pack, and vehicle equipped with them
JP4725578B2 (en) Electrochemical device and method for producing electrochemical device
JP2010161249A (en) Lithium ion capacitor
JP2009187675A (en) Laminate type secondary battery and method of manufacturing the same
JP2012151036A (en) Laminated battery
US10158107B2 (en) Battery comprising insulative films
WO2011070918A1 (en) Electrical storage device and method for manufacturing same
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
US20150079448A1 (en) Nonaqueous electrolyte battery
JP2011060564A (en) Method of manufacturing power storage device
WO2012160965A1 (en) Method of manufacturing power storage device
JP2012195122A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP