WO2012159463A1 - 驻波比告警检测方法及装置 - Google Patents

驻波比告警检测方法及装置 Download PDF

Info

Publication number
WO2012159463A1
WO2012159463A1 PCT/CN2012/071374 CN2012071374W WO2012159463A1 WO 2012159463 A1 WO2012159463 A1 WO 2012159463A1 CN 2012071374 W CN2012071374 W CN 2012071374W WO 2012159463 A1 WO2012159463 A1 WO 2012159463A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
aem
alarm information
determining
involved
Prior art date
Application number
PCT/CN2012/071374
Other languages
English (en)
French (fr)
Inventor
周慧明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012159463A1 publication Critical patent/WO2012159463A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for detecting a standing wave ratio alarm. Background technique
  • the probability of false alarms, false alarms, and missed alarms of base station equipment has become an important basis for measuring the maintainability of base station equipment.
  • the related alarms with a large probability of traditional false alarms such as the VSWR alarms of the Antenna Equipment Module (AEM, Antenna Equipment Module), are particularly important for high accuracy of alarm detection.
  • AEM Antenna Equipment Module
  • the so-called VSWR alarm is a base station alarm that is generated when the antenna feeder connection of the base station or the antenna feeder itself is faulty.
  • the fault may include virtual connection of the antenna feeder and the base station, disconnection, and failure of the antenna feeder.
  • the traditional VSWR alarm detection method is: Set the alarm threshold, and the base station detects the transmit power of each antenna device module transmit channel.
  • the ratio of the reflected power, and the relationship between the ratio and the set alarm threshold is compared to measure whether there is a standing wave ratio alarm in each transmission path. For example: When the ratio of transmit power to reflected power is less than the alarm threshold, the AEM standing wave ratio alarm is generated. Otherwise, the AEM standing wave ratio alarm is not generated.
  • the alarm threshold of the AEM slight standing wave ratio alarm is set to 1.5, and the alarm threshold of the AEM severe standing wave ratio alarm is set to 3.0.
  • a base station generally adopts a multi-cell configuration, and one base station needs to configure multiple transmit channels and receive paths to work together.
  • the duplexer used by the base station does not have a perfect detection function for reverse power leakage, and the base station antennas are generally close to each other. If there is no transmission power in a certain transmission path of the base station, and another transmission path with a relatively close transmission path has a strong transmission power, the transmission path without the transmission power may have a certain receiving power. Rate. In this case, the received power is also equivalent to the reverse power leakage of the transmit path for the transmit path without transmit power. Therefore, since there is no transmission power in the transmission path, there is a certain reverse power leakage, which eventually causes a standing wave ratio alarm.
  • the embodiment of the invention provides a method and a device for detecting a standing wave ratio alarm, which is used to solve the problem that the existing standing wave ratio detection is easy to cause false alarms and missing alarms.
  • a standing wave ratio alarm detecting device includes:
  • An active detection module is used to receive an escalated antenna feeder module AEM transmission path alarm When the information is actively sent to the AEM involved in the alarm information, the detection signal of the carrier frequency of the at least one transmission channel TCH that lasts for a set length of time is transmitted at a specific transmission power;
  • An alarm detecting module configured to detect, by using the transmitted detection signal, whether the AEM related to the alarm information has a transmission path alarm during the set time length;
  • the alarm judging module is configured to: when the detection result corresponding to the detection signal of each of the TCH carrier frequencies indicates that the AEM of the alarm information has a transmission path alarm, determine that the AEM related to the alarm information has a transmission path alarm; And determining that the AEM involved in the alarm information does not have a transmission path alarm.
  • a base station includes the above-described standing wave ratio alarm detecting device.
  • the method and device for detecting the standing wave ratio alarm according to the embodiment of the present invention, based on the traditional alarm information of the standing wave ratio alarm detection, actively initiates further detection of the AEM involved in the standing wave ratio alarm information, and determines by further detecting the result. Whether there is an alarm in the AEM, avoiding false alarms and leakage alarms caused by transmission power interference and power shortage and detection path failure, etc., and reducing the possibility of false alarms and leakage alarms of the standing wave ratio alarms, and the implementation is simple and convenient.
  • FIG. 1 is a flowchart of a method for detecting a standing wave ratio alarm according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a principle of multiple carrier frequency detection AEM alarm according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a standing wave ratio alarm detection apparatus according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for detecting a standing wave ratio alarm, which is implemented based on a base station antenna-based standing wave technology.
  • the flow of the method is as shown in FIG. 1 , and includes the following steps:
  • Step S101 Receive the reported AEM transmitting path alarm information of the antenna feeder module.
  • the traditional method is to report the alarm information when the VSWR alarm is present in the AEM transmission path, that is, passively detect the AEM VSWR alarm.
  • Step S102 When receiving the reported AEM transmission path alarm information, the AEM involved in the actively reporting the alarm information transmits the detection signal of the carrier frequency of the at least one transmission channel (TCH, Traffic Channel) for a preset set time length.
  • TCH Transmission Channel
  • the reported AEM alarm information that is, passively detecting the AEM standing wave ratio alarm
  • it is required to actively detect the involved AEM, and transmit at least one TCH carrier frequency detection signal to the involved AEM at a specific transmission power.
  • a detection signal of one or several carrier frequencies is sent to the AEM with a set time length and a specific transmission power.
  • the detection signal it is detected again whether the AEM has a standing wave ratio alarm in a certain GSM time slot, which is the process of active detection.
  • the specific transmit power is set according to the transmit power range that can accurately detect the presence of the alarm according to the VSWR alarm detection; the TCH carrier frequency is selected according to the principle that the carrier frequency of the adjacent AEM does not interfere.
  • Transmit detection signal set time length according to the time required for active detection The number of slots and the number of time slots in which the VSWR alarm is detected.
  • the specific transmit power means that the carrier transmit power during active detection cannot interfere with the adjacent network or carrier frequency. At the same time, it is necessary to ensure that the transmit power can reach the threshold of accurate and error-free detection of the standing wave ratio alarm.
  • the set time length means that the active detection time can ensure that the number of time slots with the transmit power and the number of time slots for detecting the standing wave ratio alarm reach the set threshold. At the same time, the time should not be too long, so as not to affect the normal operation of the carrier frequency.
  • Step S103 Detect whether there is a transmission path alarm in the AEM related to the reported alarm information by using the detected detection signal during the set time length.
  • this step it is determined whether there is a transmission path alarm according to the detected detection signal, that is, whether the detection result of the active detection is consistent with the detection result of the passive detection.
  • the active detection result of the single carrier frequency is taken as the standard. That is, it is only necessary to transmit a detection signal of a carrier frequency of a specific transmission power.
  • each carrier frequency of the same layer is required to transmit a detection signal of a set time length with a specific transmission power, in this setting.
  • the alarm signal is read through the same backplane of the layer, and all AEM standing wave ratio alarms on the same layer are transmitted.
  • This AEM alarm is acknowledged when all carrier frequencies in the same layer detect the same alarm for the same AEM. This eliminates false alarms caused by bad detection path of a certain carrier frequency.
  • the principle is as shown in FIG. 2, taking an AEM standing wave ratio alarm detection by a base station having 3 AEMs and 3 carrier frequencies in the same layer as an example, 2 It can be seen that the three AEM logos are AEM0, AEM1 and AEM2, three The carrier frequency identifiers are carrier frequency 1, carrier frequency 2 and carrier frequency 3. The three carrier frequencies of the same layer can be detected by the backplane for each AEM.
  • the standing wave ratio alarm is passively detected, for example, the AEM0 alarm, in order to confirm the accuracy of the AEM0 standing wave ratio alarm, each carrier frequency is actively detected, and the detection signal is detected and reported by the specific transmission power transmission for the set length of time.
  • the AEM0 of the VSWR alarm information is then judged according to the results of the active detection of the three carrier frequencies, and it is determined whether the AEM detection results of the VSWR alarm information are all the presence of the standing wave ratio alarm. If yes, report the AEM0 standing wave ratio alarm. Otherwise, only one notification can be reported, so that the network maintenance personnel need to perform hardware check on all carrier frequencies of the layer to ensure that the carrier frequency hardware works normally.
  • the alarms for AEM1 and AEM2 are similarly handled.
  • the VSWR alarm detection circuit in the prior art can be used to perform VSWR alarm detection, and a timer is used to control the transmission channel of the carrier frequency to transmit power for a specific time.
  • Step S104 According to the detection result, it is determined whether the detection result corresponding to the detection signal of each TCH carrier frequency indicates that the AEM related to the reported alarm information has a transmission path alarm.
  • This step determines whether the results of the active detection of each TCH carrier frequency are consistent. When they are consistent, the report is reported.
  • AEM standing wave ratio alarms only one notification is reported when they are inconsistent.
  • step S105 is performed, otherwise step S106 is performed.
  • the ratio of the transmit power to the reflected power of the AEM module related to the alarm information obtained by the specific transmit power detection of each TCH carrier frequency is less than the set alarm threshold, it is considered that the detection result corresponding to the detection signal of each TCH carrier frequency is Indicates that the AEM involved in the alarm information has a transmission path alarm.
  • Step S105 Determine that the AEM related to the reported alarm information has a transmission path alarm.
  • the determination in step S105 is YES, that is, the ratio of the transmit power to the reflected power of the AEM involved in the alarm information obtained by each of the TCH carrier frequencies of the specific transmit power is less than the set value.
  • the alarm threshold is determined, it is determined that the AEM related to the alarm information has a transmission path alarm.
  • Step S106 It is determined that the AEM involved in the reported alarm information does not have a transmission path alarm.
  • step S105 When the determination in step S105 is NO, that is, when the ratio of the transmit power of the AEM and the reflected power involved in the alarm information obtained by the TCH carrier frequency detection of the at least one specific transmit power is not less than the set alarm threshold, the alarm information is determined. There is no transmission path alarm for the AEM involved.
  • the above method actively initiates a detection process to re-detect whether the AEM involved actually has a standing wave ratio alarm, because a detection signal with a specific transmission frequency is used as a transmitting signal of the AEM, avoiding False alarm caused by small TCH carrier frequency transmission power and false alarm caused by antenna interference.
  • the VSWR alarm detection method provided by the embodiment of the present invention further provides a VSWR alarm detection device, which can be set in a base station of a mobile communication system, and its structure is as shown in FIG. 3, including The active detection module 10, the alarm detection module 20, and the alarm determination module 30.
  • the active detection module 10 is configured to: when receiving the reported AEM transmitting path alarm information of the antenna feeder module, the AEM involved in the actively reporting the alarm information sends the at least one transmission channel TCH carrier frequency for a fixed set length of time with a specific transmission power. Detection signal.
  • the alarm detection module 20 is configured to detect, by using the detected detection signal, whether the AEM related to the reported alarm information has a transmission path alarm within a set time length.
  • the alarm judging module 30 is configured to: when the detection result corresponding to the detection signal of each TCH carrier frequency indicates that the AEM of the reported alarm information has a transmission path alarm, determine that the AEM of the reported alarm information has a transmission path alarm; otherwise, It is determined that the AEM involved in the reported alarm information does not have a transmission path alarm.
  • the foregoing alarm detection module 20 is specifically configured to:
  • the alarm determining module 30 is specifically configured to:
  • the alarm determining module 30 is specifically configured to:
  • the method and device for detecting the standing wave ratio alarm based on the traditional alarm information of the standing wave ratio alarm detection, actively initiates further detection of the AEM involved in the standing wave ratio alarm information, and ensures the emission of the AEM.
  • the path has a transmit power output, it is determined whether the AEM has an alarm by further detecting the result, so that the effectiveness of the alarm detection result is improved, and the false alarm and the miss alarm caused by the transmission power interference and the power shortage and the detection path failure are avoided.
  • the possibility of false alarms and leakage alarms of the standing wave ratio alarm is reduced, and the method can be completely realized by software, and the implementation is simple and convenient. This method is applicable not only to GSM base stations, but also to other communication systems that require VSWR alarm detection.
  • the invention is based on the traditional alarm information reporting of the standing wave ratio alarm detection, and actively initiates the standing wave Further detection of the AEM involved in the alarm information determines whether the AEM has an alarm by further detecting the result, thereby avoiding false alarms and leakage alarms caused by transmission power interference and power shortage and detection path failure, etc., and reducing standing waves The possibility of false alarms and missing alarms than alarms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明公开了一种驻波比告警检测方法及装置、基站,其中,驻波比告警检测方法包括:当接收到上报的AEM发射通路告警信息时,主动向所述告警信息涉及的AEM以特定发射功率发送持续设定时间长度的至少一个TCH载频的检测信号;在所述设定时间长度内,通过发射的检测信号检测所述告警信息涉及的AEM是否存在发射通路告警;当每个所述TCH载频的检测信号对应的检测结果均表明所述告警信息涉及的AEM存在发射通路告警时,确定所述告警信息涉及的AEM存在发射通路告警;否则,确定所述告警信息涉及的AEM不存在发射通路告警。本发明降低了驻波比告警的误告警和漏告警的可能性,实现简单、方便。

Description

驻波比告警检测方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及一种驻波比告警检测方法及装置。 背景技术
在移动通讯领域中, 随着无线通信业务运营商对基站设备高可维护性 的需求日益增高, 基站设备误告警、 错告警、 漏告警概率的高低已成为衡 量基站设备可维护性的重要依据。 例如天馈设备模块 ( AEM , Antenna Equipment Module ) 的驻波比告警等传统误告警概率较为严重的相关告警, 能否做到告警检测的高准确性便显得尤为重要。
所谓驻波比告警, 是指示基站的天馈连接或者天馈本身存在故障时产 生的基站告警, 例如故障可以包括天馈与基站虚接、 断接及天馈出现故障 等。 由于一旦天馈设备模块出现不匹配现象, 便会存在一个较高的反射功 率, 因此, 传统的驻波比告警检测方法为: 设置告警阈值, 基站检测各个 天馈设备模块发射通路的发射功率与反射功率的比值, 并通过比较得到比 值与设置的告警阈值的关系来衡量各个发射通路是否有驻波比告警的存 在。 例如: 当发射功率与反射功率的比值小于告警阈值时, 产生 AEM驻波 比告警, 否则不产生 AEM驻波比告警。 一般将 AEM轻微驻波比告警的告 警阈值设置为 1.5, AEM严重驻波比告警的告警阈值设置为 3.0。
在工程实现中, 基站一般采用多小区配置, 一个基站需要配置多个发 射通路和接收通路共同工作。 由于目前基站采用的双工器对反向功率泄露 的检测功能并不完善, 且一般基站各个通路天线相距较近。 如果当基站的 某一发射通路并不存在发射功率, 而该发射通路相距较近的另一发射通路 存在较强的发射功率时, 无发射功率的发射通路可能会存在一定的接收功 率。 在这种情况下, 接收功率对于无发射功率的发射通路来说, 亦相当于 该发射通路的反向功率泄露。 因此, 由于该发射通路不存在发射功率, 却 存在一定的反向功率泄露, 从而最终引起驻波比告警。
因此, 现有技术中, 发射通路的发射功率不足时可能会产生报警、 没 有发射功率时也可能会产生报警, 而对于没有发射功率的发射通路的告警 一般是直接屏蔽, 但有时候会导致发射功率不足的发射通路产生的告警也 被屏蔽, 造成传输信道(TCH, Traffic Channel )载波发射功率不足时可能 会出现漏告警现象; 当某个载频的检测通路坏掉时, 会导致在天馈正常的 情况下载频误上报 AEM驻波比告警。
因此, 现有的告警检测方式很容易造成驻波比检测的误告警和漏告警, 告警检测的准确率不高。 发明内容
本发明实施例提供一种驻波比告警检测方法及装置, 用以解决现有驻 波比检测容易导致误告警和漏告警的问题。
Figure imgf000004_0001
当接收到上报的天馈设备模块 AEM发射通路告警信息时,主动向所述 告警信息涉及的 AEM 以特定发射功率发送持续设定时间长度的至少一个 传输信道 TCH载频的检测信号;
在所述设定时间长度内, 通过发射的检测信号检测所述告警信息涉及 的 AEM是否存在发射通路告警;
当每个所述 TCH载频的检测信号对应的检测结果均表明所述告警信息 涉及的 AEM存在发射通路告警时, 确定所述告警信息涉及的 AEM存在发 射通路告警; 否则, 确定所述告警信息涉及的 AEM不存在发射通路告警。
一种驻波比告警检测装置, 包括:
主动检测模块,用于当接收到上报的天馈设备模块 AEM发射通路告警 信息时,主动向所述告警信息涉及的 AEM以特定发射功率发送持续设定时 间长度的至少一个传输信道 TCH载频的检测信号;
告警检测模块, 用于在所述设定时间长度内, 通过发射的检测信号检 测所述告警信息涉及的 AEM是否存在发射通路告警;
告警判断模块, 用于当每个所述 TCH载频的检测信号对应的检测结果 均表明所述告警信息涉及的 AEM存在发射通路告警时,确定所述告警信息 涉及的 AEM存在发射通路告警; 否则, 确定所述告警信息涉及的 AEM不 存在发射通路告警。
一种基站, 包括上述的驻波比告警检测装置。
本发明有益效果如下:
本发明实施例提供的驻波比告警检测方法及装置, 基于传统的驻波比 告警检测的告警信息上报,主动发起对驻波比告警信息所涉及到的 AEM的 进一步检测, 通过进一步检测结果确定 AEM是否存在告警, 避免了因发射 功率干扰和功率不足以及检测通路故障等原因所引起的误告警和漏告警, 降低了驻波比告警的误告警和漏告警的可能性, 实现简单、 方便。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本发明的一 部分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发 明的不当限定。 在附图中:
图 1为本发明实施例中驻波比告警检测方法的流程图;
图 2为本发明实施例中多载频检测 AEM告警的原理示意图; 图 3为本发明实施例中驻波比告警检测装置的结构示意图。 具体实施方式 为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
本发明实施例提供一种驻波比告警检测方法, 基于基站天馈驻波技术 实现, 该方法流程如图 1所示, 包括如下步驟:
步驟 S101: 接收上报的天馈设备模块 AEM发射通路告警信息。
针对驻波比告警检测,传统的方式是在 AEM发射通路存在驻波比告警 时, 上报告警信息, 即被动检测 AEM驻波比告警。
以全球移动通讯系统 ( GSM , Global System of Mobile communication ) 中对 AEM的发射通路进行驻波比告警检测为例,检测各个 GSM时隙 AEM 发射通路是否有告警,不考虑发射通路在各个 GSM时隙是否有发射功率输 出, 这就是被动检测。
步驟 S102: 当接收到上报的 AEM发射通路告警信息时, 主动向上报 的告警信息涉及的 AEM 以特定发射功率发送持续设定时间长度的至少一 个传输信道(TCH, Traffic Channel )载频的检测信号。
当接收到上报的 AEM告警信息后,即被动检测到 AEM驻波比告警后, 要求对涉及到的 AEM进行主动检测, 向涉及到的 AEM以特定发射功率发 射至少一个 TCH载频的检测信号并持续发射设定时间长度。 确保要检测的 AEM的发射通路有发射功率输出。
例如: 当检测到某个 GSM时隙存在 AEM驻波比告警时, 以设定时间 长度和特定发射功率向该 AEM发送某一个或几个载频的检测信号。在发射 检测信号的设定时间长度内, 再次检测该 AEM是否在某个 GSM时隙存在 驻波比告警, 这就是主动检测的过程。
其中, 特定发射功率为根据驻波比告警检测时能准确检测到告警存在 的发射功率范围设定; TCH载频按照与相邻 AEM的载频不发生干扰的原 则选定。 发射检测信号设定时间长度根据主动检测所需的有发射功率的时 隙数和检测到驻波比告警的时隙数设置。
因此, 特定的发射功率是指主动检测期间的载频发射功率不能对临近 的网络或载频产生干扰。 同时又要保证发射功率能够达到准确无误检测到 驻波比告警的门限。 设定时间长度是指主动检测的时间能够保证有发射功 率的时隙数和检测到驻波比告警的时隙数达到设定的门限值。 同时时间也 不能太长, 以免影响载频的正常工作。
步驟 S103: 在设定时间长度内, 通过发射的检测信号检测上报的告警 信息涉及的 AEM是否存在发射通路告警。
针对每个 TCH载频的检测信号, 确定所述告警信息涉及的 AEM的发 射功率与反射功率的比值, 比较该比值与设定的告警阈值的大小, 确定告 警信息涉及的 AEM是否存在发射通路告警。
该步驟根据发射的检测信号确定是否存在发射通路告警, 即判断主动 检测的检测结果与被动检测的检测结果是否一致。
在该步驟中, 对于载频和载频之间无物理背板连接的基站, 即载频和 载频之间在空间上是相互独立的, 则以单载频的主动检测结果为准。 即只 需发送特定发射功率的一个载频的检测信号即可。
对于传统的同一层同时安装有多个 AEM和载频的 GSM基站, 在主动 检测时刻, 要求同一层的每一个载频都以特定的发射功率发射设定时间长 度的检测信号, 在该设定时间长度内, 通过该层相同的背板, 读取告警信 号,并上 ·^艮同层所有的 AEM驻波比告警。当同层所有的载频对同一个 AEM 都检测到同样的告警时, 才确认此 AEM存在告警。 这样排除某个载频的检 测通路坏导致的误告警。
当发射特定发射功率的不止一个载频的检测信号时, 其原理如图 2所 示, 以一个同一层有 3个 AEM和 3个载频的基站进行 AEM驻波比告警检 测为例, 从图 2可以看出, 三个 AEM标识为 AEM0、 AEM1和 AEM2, 三 个载频标识为载频 1、 载频 2和载频 3。 同一层的 3个载频可以通过背板对 每一个 AEM进行检测。 当被动检测到驻波比告警时, 例如 AEM0告警, 为了确认 AEM0驻波比告警的准确性, 每个载频都会进行主动检测, 以特 定的发射功率发射设定的时间长度的检测信号检测上报了驻波比告警信息 的 AEM0, 然后根据 3个载频主动检测后的结果进行判决, 判断 3个载频 对上报了驻波比告警信息的 AEM的检测结果是否都是存在驻波比告警,若 是的话, 则上报 AEM0驻波比告警, 否则只上报一个通知即可, 以便提示 网络维护人员需要对该层的所有载频进行硬件检查, 确保载频硬件正常工 作。 对于 AEM1和 AEM2的告警也是类似处理。
对于控制如何发射检测信号和判断是否存在告警, 则使用现有技术的 相关技术实现。 例如, 可以使用现有技术中的驻波比告警检测电路进行驻 波比告警检测, 使用定时器来控制载频的发射通路发射特定时间的功率。
步驟 S104: 根据检测结果,判断是否每个 TCH载频的检测信号对应的 检测结果均表明上报的告警信息涉及的 AEM存在发射通路告警。
该步驟判断每个 TCH载频主动检测的结果是否一致, 当一致时, 上报
AEM驻波比告警, 不一致时只上报一个通知。
若是, 即当每个 TCH载频的检测信号对应的检测结果均表明告警信息 涉及的 AEM存在发射通路告警时, 执行步驟 S105, 否则执行步驟 S106。
当每个 TCH载频的特定发射功率检测得到的告警信息涉及的 AEM模 块的发射功率与反射功率的比值均小于设定的告警阈值时, 认为每个 TCH 载频的检测信号对应的检测结果均表明告警信息涉及的 AEM存在发射通 路告警。
步驟 S105: 确定上报的告警信息涉及的 AEM存在发射通路告警。 当步驟 S105判断为是时, 即当特定发射功率的每个所述 TCH载频检 测得到的告警信息涉及的 AEM 的发射功率与反射功率的比值均小于设定 的告警阈值时, 确定告警信息涉及的 AEM存在发射通路告警。 步驟 S106: 确定上报的告警信息涉及的 AEM不存在发射通路告警。 当步驟 S105判断为否时, 即当有至少一个特定发射功率的 TCH载频 检测得到的告警信息涉及的 AEM 的发射功率与反射功率的比值不小于设 定的告警阈值时, 确定所述告警信息涉及的 AEM不存在发射通路告警。
上述方法当有载频上 某一个 AEM驻波比告警时, 主动发起检测流 程, 重新检测所涉及的 AEM是否真正有驻波比告警, 由于有特定发射频率 的检测信号作为 AEM的发射信号, 避免 TCH载频发射功率小导致的漏警 及天线干扰导致的误告警。
基于本发明实施例提供的驻波比告警检测方法, 本发明实施例还提供 一种驻波比告警检测装置, 该装置可以设置在移动通信系统的基站中, 其 结构如图 3所示, 包括: 主动检测模块 10、 告警检测模块 20和告警判断模 块 30。
主动检测模块 10, 用于当接收到上报的天馈设备模块 AEM发射通路 告警信息时,主动向上报的告警信息涉及的 AEM以特定发射功率发送持续 设定时间长度的至少一个传输信道 TCH载频的检测信号。
告警检测模块 20, 用于在设定时间长度内, 通过发射的检测信号检测 上报的告警信息涉及的 AEM是否存在发射通路告警。
告警判断模块 30,用于当每个 TCH载频的检测信号对应的检测结果均 表明上报的告警信息涉及的 AEM存在发射通路告警时,确定上报的告警信 息涉及的 AEM存在发射通路告警;否则,确定上报的告警信息涉及的 AEM 不存在发射通路告警。
优选的, 上述告警检测模块 20, 具体用于:
针对每个 TCH载频的检测信号, 确定上报的告警信息涉及的 AEM的 发射功率与反射功率的比值, 比较该比值与设定的告警阈值的大小, 确定 上报的告警信息涉及的 AEM是否存在发射通路告警。
优选的, 上述告警判断模块 30, 具体用于:
当特定发射功率的每个 TCH 载频检测得到的上报的告警信息涉及的 AEM的发射功率与反射功率的比值均小于设定的告警阈值时, 确定上报的 告警信息涉及的 AEM存在发射通路告警。
优选的, 上述告警判断模块 30, 具体用于:
当有至少一个特定发射功率的所述 TCH载频检测得到的告警信息涉及 的 AEM的发射功率与反射功率的比值不小于设定的告警阈值时,确定上报 的告警信息涉及的 AEM不存在发射通路告警。
本发明实施例提供的驻波比告警检测方法及装置, 基于传统的驻波比 告警检测的告警信息上报,主动发起对驻波比告警信息所涉及到的 AEM的 进一步检测, 在保证 AEM的发射通路有发射功率输出的情况下, 通过进一 步检测结果确定 AEM是否存在告警,使告警检测结果有效性提高, 避免了 因发射功率干扰和功率不足以及检测通路故障等原因所引起的误告警和漏 告警, 降低了驻波比告警的误告警和漏告警的可能性, 该方法可以完全由 软件实现, 实现简单、 方便。 该方法不仅适用于 GSM基站, 同样还可以适 用于其他需要进行驻波比告警检测的通讯系统。
上述说明示出并描述了本发明的一个优选实施例, 但如前所述, 应当 理解本发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排 除, 而可用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范 围内, 通过上述教导或相关领域的技术或知识进行改动。 而本领域人员所 进行的改动和变化不脱离本发明的精神和范围, 则都应在本发明所附权利 要求的保护范围内。
工业实用性
本发明基于传统的驻波比告警检测的告警信息上报, 主动发起对驻波 比告警信息所涉及到的 AEM的进一步检测,通过进一步检测结果确定 AEM 是否存在告警, 避免了因发射功率干扰和功率不足以及检测通路故障等原 因所引起的误告警和漏告警, 降低了驻波比告警的误告警和漏告警的可能 性。

Claims

权利要求书
1、 一种驻波比告警检测方法, 其特征在于, 包括:
当接收到上报的天馈设备模块 AEM发射通路告警信息时,主动向所述 告警信息涉及的 AEM 以特定发射功率发送持续设定时间长度的至少一个 传输信道 TCH载频的检测信号;
在所述设定时间长度内, 通过发射的检测信号检测所述告警信息涉及 的 AEM是否存在发射通路告警;
当每个所述 TCH载频的检测信号对应的检测结果均表明所述告警信息 涉及的 AEM存在发射通路告警时, 确定所述告警信息涉及的 AEM存在发 射通路告警; 否则, 确定所述告警信息涉及的 AEM不存在发射通路告警。
2、 根据权利要求 1所述的方法, 其特征在于, 所述特定发射功率为根 据驻波比告警检测时能准确检测到告警存在的发射功率范围设定;
所述 TCH载频按照与相邻 AEM的载频不发生干扰的原则选定。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述通过发射的所 述检测信号检测所述告警信息涉及的 AEM是否存在发射通路告警, 包括: 针对每个 TCH载频的检测信号, 确定所述告警信息涉及的 AEM的发 射功率与反射功率的比值, 比较所述比值与设定的告警阈值的大小, 确定 所述告警信息涉及的 AEM是否存在发射通路告警。
4、 根据权利要求 3 所述的方法, 其特征在于, 所述当每个所述 TCH 载频的检测信号对应的检测结果均表明所述告警信息涉及的 AEM存在发 射通路告警时, 确定所述告警信息涉及的 AEM存在发射通路告警, 包括: 当特定发射功率的每个所述 TCH载频检测得到的所述告警信息涉及的 AEM的发射功率与反射功率的比值均小于设定的告警阈值时, 确定所述告 警信息涉及的 AEM存在发射通路告警。
5、 根据权利要求 3所述的方法, 其特征在于, 确定所述告警信息涉及 的 AEM模块不存在发射通路告警, 包括:
当有至少一个特定发射功率的所述 TCH载频检测得到的所述告警信息 涉及的 AEM的发射功率与反射功率的比值不小于设定的告警阈值时,确定 所述告警信息涉及的 AEM不存在发射通路告警。
6、 一种驻波比告警检测装置, 其特征在于, 包括:
主动检测模块,用于当接收到上报的天馈设备模块 AEM发射通路告警 信息时,主动向所述告警信息涉及的 AEM以特定发射功率发送持续设定时 间长度的至少一个传输信道 TCH载频的检测信号;
告警检测模块, 用于在所述设定时间长度内, 通过发射的检测信号检 测所述告警信息涉及的 AEM是否存在发射通路告警;
告警判断模块, 用于当每个所述 TCH载频的检测信号对应的检测结果 均表明所述告警信息涉及的 AEM存在发射通路告警时,确定所述告警信息 涉及的 AEM存在发射通路告警; 否则, 确定所述告警信息涉及的 AEM不 存在发射通路告警。
7、 根据权利要求 6所述的装置, 其特征在于, 所述告警检测模块, 用 于:
针对每个 TCH载频的检测信号, 确定所述告警信息涉及的 AEM的发 射功率与反射功率的比值, 比较所述比值与设定的告警阈值的大小, 确定 所述告警信息涉及的 AEM是否存在发射通路告警。
8、 根据权利要求 7所述的装置, 其特征在于, 所述告警判断模块, 用 于:
当特定发射功率的每个所述 TCH载频检测得到的所述告警信息涉及的 AEM的发射功率与反射功率的比值均小于设定的告警阈值时, 确定所述告 警信息涉及的 AEM存在发射通路告警。
9、 根据权利要求 7所述的装置, 其特征在于, 所述告警判断模块, 用 于:
当有至少一个特定发射功率的所述 TCH载频检测得到的所述告警信息 涉及的 AEM的发射功率与反射功率的比值不小于设定的告警阈值时,确定 所述告警信息涉及的 AEM不存在发射通路告警。
10、 一种基站, 其特征在于, 包括如权利要求 6-9任一所述的驻波比告
PCT/CN2012/071374 2011-05-25 2012-02-20 驻波比告警检测方法及装置 WO2012159463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110137360.2 2011-05-25
CN201110137360.2A CN102801481B (zh) 2011-05-25 2011-05-25 驻波比告警检测方法及装置

Publications (1)

Publication Number Publication Date
WO2012159463A1 true WO2012159463A1 (zh) 2012-11-29

Family

ID=47200462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071374 WO2012159463A1 (zh) 2011-05-25 2012-02-20 驻波比告警检测方法及装置

Country Status (2)

Country Link
CN (1) CN102801481B (zh)
WO (1) WO2012159463A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286452B (zh) * 2017-07-19 2021-08-06 普天信息技术有限公司 减少射频信号泄露的驻波比检测配置方法及装置
CN111193556B (zh) * 2019-12-18 2022-05-17 上海麦腾物联网技术有限公司 一种具有天线脱离检测功能的天线及其检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097031A (ja) * 2005-09-30 2007-04-12 Kenwood Corp 無線機の出力回路保護装置
CN101257695A (zh) * 2008-03-25 2008-09-03 华为技术有限公司 一种载频和天馈连接的检测方法和装置
CN101541034A (zh) * 2008-03-18 2009-09-23 中兴通讯股份有限公司 一种驻波比告警的鉴别方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145805C (zh) * 2001-02-05 2004-04-14 华为技术有限公司 驻波检测电路及其检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097031A (ja) * 2005-09-30 2007-04-12 Kenwood Corp 無線機の出力回路保護装置
CN101541034A (zh) * 2008-03-18 2009-09-23 中兴通讯股份有限公司 一种驻波比告警的鉴别方法及装置
CN101257695A (zh) * 2008-03-25 2008-09-03 华为技术有限公司 一种载频和天馈连接的检测方法和装置

Also Published As

Publication number Publication date
CN102801481A (zh) 2012-11-28
CN102801481B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
TWI692265B (zh) 基地台、使用者裝置、用於基地台的傳輸控制方法以及用於使用者裝置的資料傳輸方法
US8824972B2 (en) Radio station
US10285158B2 (en) Method and arrangement for triggering paging profiling
RU2012140486A (ru) Обнаружение неисправности в линии радиосвязи (rlf) для восстановления
CN102282884A (zh) 用于无线网络管理的方法和系统
US20150065122A1 (en) Radio communication system, radio station, network operation management apparatus, and network healing method
EP2809022B1 (en) Detection of Intentional Radio Jamming
WO2011160393A1 (zh) 基站反向分集链路状态检测方法、装置、系统与基站
WO2012159463A1 (zh) 驻波比告警检测方法及装置
CN110011771B (zh) 一种信息传输方法、基站及网络管理单元
US11412578B2 (en) Intelligent distributed antenna system monitoring
US8543104B2 (en) Radio device, state detection method and system
US11652682B2 (en) Operations management apparatus, operations management system, and operations management method
US8594658B2 (en) Method and apparatus for diagnosing feeder misconnection
WO2020220774A1 (zh) 一种基于数据调度的波束失败指示和恢复的方法和设备
CN106937319B (zh) 一种无线设备的天线故障自检方法
US7376404B2 (en) System and method for detecting a fault in a multiple receiver system
KR20150052561A (ko) 통신 시스템에서 sms를 제어하기 위한 방법 및 장치
CN101541034B (zh) 一种驻波比告警的鉴别方法及装置
EP2706697A1 (en) Method for providing automatic repeat request error control based on relaying terminals, and related terminal and ARQ control center
TWI804196B (zh) 用於傳輸資料的方法及無線接入點
WO2020076956A1 (en) Method for controlling block error rate (bler) testing of a cellular communication device for a system having a fixed number of bler data packets
KR20100080267A (ko) 기지국, 기지국의 링크 장애 처리 장치 및 방법
KR20090072659A (ko) 무선통신 시스템에서 기지국의 불요파 측정 방법 및 장치
US20200119862A1 (en) Method for Controlling Block Error Rate (BLER) Testing of a Cellular Communication Device For a System Having a Fixed Number of BLER Data Packets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12790161

Country of ref document: EP

Kind code of ref document: A1