WO2012159410A1 - Method and apparatus for beamforming - Google Patents

Method and apparatus for beamforming Download PDF

Info

Publication number
WO2012159410A1
WO2012159410A1 PCT/CN2011/081054 CN2011081054W WO2012159410A1 WO 2012159410 A1 WO2012159410 A1 WO 2012159410A1 CN 2011081054 W CN2011081054 W CN 2011081054W WO 2012159410 A1 WO2012159410 A1 WO 2012159410A1
Authority
WO
WIPO (PCT)
Prior art keywords
sounding signal
beamforming
weight
frequency point
sounding
Prior art date
Application number
PCT/CN2011/081054
Other languages
French (fr)
Chinese (zh)
Inventor
杨芸霞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012159410A1 publication Critical patent/WO2012159410A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed are a method and apparatus for beamforming. The method comprises: acquiring a channel response of a Sounding signal in-bandwidth frequency point; using the correlation between the Sounding signal in-bandwidth frequency point and the frequency point where the downlink data are located to determine a weight value for the channel response of the Sounding signal in-bandwidth frequency point to interpolate; using the interpolated weight value to determine a weight for beamforming, and using the weight for beamforming to perform beamforming of the uplink data. The present invention enables the accuracy rate of beamforming to be improved.

Description

波束赋形方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种波束赋形方法及装置。 背景技术 无线信道因为电磁波多径反射和散射效应引入了通常所说的衰落, 信道衰落对于 通信质量的影响表现为在接收端信号检测差错概率的增加。为了对抗衰落,信道编码, 交织等技术在无线通信中广泛应用, 以降低接收机信号检测差错概率。 同时, 使用多 天线接收 (Single Input Multiple Output, 简称为 SIMO) 或多天线发射 (Multiple Input Single Output, 简称为 MISO) 的多天线技术, 利用空间分集与信道编码相结合也能很 好的对抗信道衰落。 波束赋形 (Beamforming ) 是一种基于自适应天线原理的下行多天线发射分集 (Transmit Diversity) MISO技术。 它结合了自适应天线技术的优点, 利用天线阵列对 波束的汇成和指向的进行控制, 可以自适应地调整其方向图以跟踪终端信号的变化。 Beamforming的特点是能够以较低的代价换得天线覆盖范围、 系统容量、 频谱利用率、 业务质量等性能的提高, 在消除干扰、 扩大小区覆盖半径、 降低系统成本、 提高系统 容量方面具有不可比拟的优越性。 信道 Sounding 是一种终端发探测信号通知基站的机制, 终端向基站发 Channel Sounding波形。通过时分双工(Time Division Duplex, 简称为 TDD)系统信道互易性, 基站能够知道基站侧到终端侧信道的信道响应。 这种机制使基站能够知道 OFDMA系 统中 Sounding信号带宽内的信道响应的质量, 基站可以根据不同终端 Sounding信号 带宽内的信道响应的质量, 选择信道质量好的频带给该终端作为通信频带。 这种机制 使基站能够测量上行信道响应, 当发射和接收硬件恰好校准时, 基站可以根据测量的 上行信道响应, 估计下行信道响应。 由 SS 向 BS 提供信道响应信息 (或信道状态信息 CSI) 的 Sounding 技术与 Beamforming 技术相结合, 就能够很好的获取 Beamforming 赋形权值极大提高 Beamforming技术的无线链路性能。 下面对 Beamforming的原理进行介绍: 设 M是 MISO系统中发射机发射天线数, 接收机的接收信号可以表示为: TECHNICAL FIELD The present invention relates to the field of communications, and in particular to a beamforming method and apparatus. BACKGROUND OF THE INVENTION Wireless channels introduce what is known as fading due to electromagnetic wave multipath reflection and scattering effects. The effect of channel fading on communication quality is manifested by an increase in the probability of signal detection errors at the receiving end. In order to combat fading, techniques such as channel coding and interleaving are widely used in wireless communication to reduce the error probability of receiver signal detection. At the same time, multi-antenna technology using Multiple Input Multiple Output (SIMO) or Multiple Input Single Output (MISO), combined with spatial diversity and channel coding, can also effectively resist the channel. Decline. Beamforming is a downlink multi-antenna transmit diversity (Transmit Diversity) MISO technology based on the adaptive antenna principle. It combines the advantages of adaptive antenna technology. By using the antenna array to control the convergence and pointing of the beam, it can adaptively adjust its pattern to track the change of the terminal signal. Beamforming is characterized by improved performance in terms of antenna coverage, system capacity, spectrum utilization, and service quality at a lower cost. It is incomparable in eliminating interference, expanding cell coverage radius, reducing system cost, and increasing system capacity. The superiority. The channel Sounding is a mechanism for the terminal to send a sounding signal to the base station, and the terminal sends a Channel Sounding waveform to the base station. Through the channel reciprocity of Time Division Duplex (TDD) system, the base station can know the channel response of the base station side to the terminal side channel. This mechanism enables the base station to know the quality of the channel response within the bandwidth of the Sounding signal in the OFDMA system. The base station can select the frequency band with good channel quality as the communication band according to the quality of the channel response in the bandwidth of the sounding signal of different terminals. This mechanism enables the base station to measure the upstream channel response. When the transmitting and receiving hardware is just calibrated, the base station can estimate the downlink channel response based on the measured upstream channel response. The Sounding technology that provides channel response information (or channel state information CSI) from the SS to the BS combines with the Beamforming technology to obtain the Beamforming shaping weight and greatly improve the wireless link performance of the Beamforming technology. The following describes the principle of Beamforming: Let M be the number of transmitter transmit antennas in the MISO system. The receiver's receive signal can be expressed as:
M M
y = Jhjxj+n y = J h j x j +n
(1) 其中, 是发射天线 j到接收天线的信道衰落, · ^是天线 j发送的符号。 在假设 各发射天线到接收天线信道衰落独立的条件下, 设各发射天线上的发射信号为: xw j = 1,2,···,  (1) where is the channel fading of the transmitting antenna j to the receiving antenna, and ^ is the symbol transmitted by the antenna j. Under the assumption that the channel of each transmitting antenna to the receiving antenna is fading independent, the transmitting signal on each transmitting antenna is: xw j = 1, 2, ···,
(2)
Figure imgf000003_0001
(3) 以上限制是为了保证不增加多天线发射时的发射总功率。将公式 (2)代入公式(1),
(2)
Figure imgf000003_0001
(3) The above limitation is to ensure that the total transmitted power at the time of multi-antenna transmission is not increased. Substituting equation (2) into equation (1),
Μ 可以得到 ^ (4) 由上式可以得到在该信道条件下的 SNR为:  Μ You can get ^ (4) From the above equation, the SNR under the channel condition is:
由上述公式, 要
Figure imgf000003_0002
获得最大的 SNR, 设定 (6)
By the above formula,
Figure imgf000003_0002
Get the maximum SNR, set (6)
则 SNR的最大值为:
Figure imgf000003_0003
(7) 按照 MRC相同的推导, 可以得到此时接收机的差错概率为:
Then the maximum value of SNR is:
Figure imgf000003_0003
(7) According to the same derivation of the MRC, the error probability of the receiver at this time can be obtained as:
SNR SNR
1 +  1 +
(8) 使用公式 (6) 中最佳权值按照 (2) 中所示对各发射天线调制符号进行加权就是 发射波束赋形 ( Transmit Beamforming ) , 也是最大速率传输(Maximum Rate Transmit, 简称为 MRT )。 但是, 进行发射波束赋形必须明确信道状态信息 (Channel State Information,简称为 CSI),对于 TDD系统可以使用 Sounding技术来获取 CSI, Sounding 也即 UL Channel Sounding, 是利用 TDD系统上下行信道互易性, 由终端向基站提供 信道响应信息 (或信道状态信息 CSI) 的一种手段, 主要应用于 TDD系统。 下面对图 1中 Sounding与 Beamforming结合进行说明。 以 IEEE 802.16e协议一种 Sounding与 Beamforming结合为例:该过程包括如下步 骤: 步骤 1 : BS通过 UL-MAP的 PAPR/Safety_Zone/Sounding_Zone_IE为上行子帧分 配 Sounding Zone资源; 步骤 2: BS通过 UL-MAP的 UL_Sounding_Command_IE对 Sounding Zone中的每 个 Sounding符号以及每个 Soundng符号中的 SS定意其 Sounding实现方式; 步骤 3 : SS 根据 UL-MAP 的 PAPR/Safety_Zone/Sounding_Zone_IE 和 UL Sounding Command lE在上行子帧对应资源位置发对应模式的 Sounding信号; 步骤 4: BS接收 UL Sounding信号, 根据该用户 Sounding信号获取上行信道响应 信息 (或信道状态信息 CSI), 利用 TDD系统上下行信道互易性, 根据 Sounding信号 进行信道响应估计, 计算 Beamforming权值, 对该用户下行数据 Beamforming。 相关技术中在 sounding与 Beamforming结合进行数据传输过程中, 由于 sounding 信号频带与下行发射数据所占用的频带不一致,导致 Beamforming的赋形权值不准确, 且上行 Beamforming性能比较差。 发明内容 本发明的主要目的在于提供一种波束赋形方法及装置, 以至少解决上述相关技术 中在 sounding与 Beamforming结合进行数据传输过程中, 由于 sounding信号频带与下 行发射数据所占用的频带不一致, 导致 Beamforming 的赋形权值不准确, 导致下行 Beamforming性能比较差问题。 根据本发明的一个方面, 提供了一种波束赋形方法, 包括: 获取 Sounding信号带 宽内频点的信道响应;使用 Sounding信号带宽内频点与下行数据所在频点的对应关系 确定 Sounding信号带宽内频点的信道响应进行插值处理的权值;使用插值处理的权值 确定波束赋形的权值, 并使用波束赋形的权值对上行数据进行波束赋形。 优选地, 使用 Sounding 信号带宽内频点与下行数据所在频点的对应关系确定 Sounding信号带宽 处理的权值包括: 使用如下公式确定插 值处理的权值 :
Figure imgf000005_0001
, 其中, 为 Sounding信号带宽内频 点与下行数据所在频点的信道响应相关矩阵, Rpp为 Sounding信号带宽内频点之间的 相关矩阵, 为噪声, 为 Sounding信号序列, ^^为 Sounding信号序列矩阵的非 奇异矩阵。 优选地, 获取 Sounding 信号带宽内频点的信道响应包括: 使用如下公式确定 Sounding信号带宽内频点的信道响应 ^^: & , 其中 R是基站接收到的终端在 Sounding频点发射的信号, S是终端发射波形。 优选地, 使用插值处理的权值确定波束赋形的权值包括: 使用如下公式确定波束 赋形的权值^^ : ^ 其中 为 Sounding信号带宽内频点的信道响应。 优选地, 插值处理为最小均方差 (MMSE) 插值处理。 根据本发明的另一方面, 提供了一种波束赋形装置, 包括: 获取模块, 设置为获 取 Sounding信号带宽内频点的信道响应; 处理模块, 设置为使用 Sounding信号带宽 内频点与下行数据所在频点的对应关系确定 Sounding信号带宽内频点的信道响应进行 插值处理的权值; 确定模块, 设置为使用插值处理的权值确定波束赋形的权值; 波束 赋形模块, 设置为使用波束赋形的权值对上行数据进行波束赋形。 优选地, 处理模块设置为使用如下公式确定插值处理的权值 :
(8) Using the best weight in equation (6) to weight each transmit antenna modulation symbol as shown in (2) is Transmit Beamforming, which is also the Maximum Rate Transmit (MRT). However, the channel state information (Channel State Information (CSI) must be clarified for the transmit beamforming. For the TDD system, the Sounding technology can be used to obtain the CSI. The Sounding, that is, the UL Channel Sounding, utilizes the TDD system for uplink and downlink channel reciprocity. A means for providing channel response information (or channel state information CSI) to a base station by a terminal, and is mainly applied to a TDD system. The combination of Sounding and Beamforming in Fig. 1 will be described below. Taking the combination of Sounding and Beamforming in the IEEE 802.16e protocol as an example: The process includes the following steps: Step 1: The BS allocates a Sounding Zone resource to the uplink subframe through the PAPR/Safety_Zone/Sounding_Zone_IE of the UL-MAP; Step 2: The BS passes the UL- MAP's UL_Sounding_Command_IE specifies the Sounding implementation for each Sounding symbol in the Sounding Zone and the SS in each Soundng symbol; Step 3: SS in the uplink subframe according to UL-MAP's PAPR/Safety_Zone/Sounding_Zone_IE and UL Sounding Command lE Corresponding to the resource location corresponding to the Sounding signal of the mode; Step 4: The BS receives the UL Sounding signal, acquires uplink channel response information (or channel state information CSI) according to the user Sounding signal, and utilizes the uplink and downlink channel reciprocity of the TDD system according to the Sounding signal. The channel response estimation is performed, the Beamforming weight is calculated, and the downlink data of the user is Beamforming. In the related art, in the data transmission process combining sounding and Beamforming, since the frequency band occupied by the sounding signal and the downlink transmission data are inconsistent, the shaping weight of Beamforming is inaccurate, and the performance of uplink Beamforming is relatively poor. SUMMARY OF THE INVENTION A main object of the present invention is to provide a beamforming method and apparatus for solving at least the above-mentioned related art in the process of combining sounding and Beamforming data transmission, because the frequency band occupied by the sounding signal band and the downlink transmission data is inconsistent, The shaping weight of Beamforming is inaccurate, which leads to poor performance of downlink Beamforming. According to an aspect of the present invention, a beamforming method is provided, including: acquiring a channel response of a frequency point within a bandwidth of a Sounding signal; and using a correspondence between a frequency point of the Sounding signal bandwidth and a frequency point of the downlink data Determining the weight of the channel response of the frequency band of the Sounding signal to perform interpolation processing; determining the weight of the beamforming using the weight of the interpolation process, and beamforming the uplink data using the weight of the beamforming. Preferably, determining a weight of the Sounding signal bandwidth processing by using a correspondence between a frequency point of the Sounding signal bandwidth and a frequency point of the downlink data includes: determining a weight of the interpolation process by using the following formula:
Figure imgf000005_0001
, where is the channel response correlation matrix of the frequency band of the Sound i n g signal and the frequency point of the downlink data, Rpp is the correlation matrix between the frequency points of the Sounding signal bandwidth, which is noise, is a Sounding signal sequence, ^^ is A non-singular matrix of sounding signal sequence matrices. Preferably, acquiring the channel frequency of the Sounding signal bandwidth response comprises: using the following formula to determine the channel frequency in the Sounding signal bandwidth in response ^ ^: &, wherein R is a base station signal received by the terminal Sounding frequency emitted, S It is the terminal transmitting waveform. Preferably, determining the weight of the beamforming using the weight of the interpolation process comprises: determining the weight of the beamforming using the following formula: ^^ where is the channel response of the frequency within the Sounding signal bandwidth. Preferably, the interpolation process is a minimum mean square error (MMSE) interpolation process. According to another aspect of the present invention, a beamforming apparatus is provided, comprising: an obtaining module configured to acquire a channel response of a frequency point of a Sounding signal bandwidth; and a processing module configured to use a Sounding signal bandwidth inner frequency point and downlink data The correspondence between the frequency points determines the weight of the channel response of the frequency band of the Sounding signal to perform interpolation processing; the determining module is configured to determine the weight of the beamforming using the weight of the interpolation process; the beamforming module is set to use The weight of the beamforming beamforms the uplink data. Preferably, the processing module is arranged to determine the weight of the interpolation process using the following formula:
W= ^ ^ ^y) 其中, RhP为 Sounding信号带宽内频点与下行数据所在频点 的信道响应相关矩阵, 为 Sounding信号带宽内频点之间的相关矩阵, 为噪声, X为 Sounding信号序列, ^^为 Sounding信号序列矩阵的非奇异矩阵。 优选地,获取模块设置为使用如下公式确定 Sounding信号带宽内频点的信道响应 , H W= ^ ^ ^y) where R h P is the channel response correlation matrix of the frequency band of the Sounding signal bandwidth and the frequency point of the downlink data, which is the correlation matrix between the frequency points of the Sounding signal bandwidth, which is noise, and X is Sounding The signal sequence, ^^ is a nonsingular matrix of the Sounding signal sequence matrix. Preferably, the acquisition module is configured to determine a channel response of the frequency within the bandwidth of the Sounding signal using the following formula, H
H . b ~S , 其中 R是基站接收到的终端在 Sounding频点发射的信号, S是终端发 射波形。 优选地, 波束赋形模块设置为使用如下公式确定波束赋形的权值 = fa, 其中 为 Sounding信号带宽内频点的信道响应。 优选地, 插值处理为最小均方差 (MMSE) 插值处理。 通过本发明,采用根据 Sounding信号带宽内频点与下行数据所在频点的对应关系 确定 Sounding信号带宽内频点的信道响应进行插值处理的权值,并使用该权值确定波 束赋形权值, 对上行数据进行波束赋形, 解决了相关技术中由于 sounding信号频带与 下行发射数据所占用的频带不一致, 导致 Beamforming 的赋形权值不准确, 且上行 Beamforming性能比较差的问题,进而达到了提高上行数据 Beamforming性能的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 sounding与 Beamforming结合的示意图; 图 2是根据本发明实施例的波束赋形方法的流程图; 以及 图 3是根据本发明实施例的波束赋形装置的结构框图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本实施例提供了一种波束赋形方法, 图 2是根据本发明实施例的波束赋形的方法 的流程图, 如图 2所示, 该方法包括: 步骤 S202: 获取 Sounding信号带宽内频点的信道响应; 步骤 S204: 使用 Sounding信号带宽内频点与下行数据所在频点的对应关系确定 Sounding信号带宽内频点的信道响应进行插值处理的权值; 步骤 S206: 使用插值处理的权值确定波束赋形的权值, 并使用波束赋形的权值对 上行数据进行波束赋形。 通过上述步骤,首先获取 Sounding信号带宽内频点的信道响应,然后使用 Sounding 信号带宽内频点与下行数据所在频点的对应关系确定对 Sounding信号带宽内频点的信 道响应进行插值处理的权值, 使用该权值确定波束赋形的权值, 并对上行数据进行波 束赋形。 克服了相关技术中由于 sounding信号频带与下行发射数据所占用的频带不一 致, 导致 Beamforming的赋形权值不准确, 且上行 Beamforming性能比较差的问题, 进而达到了提高上行数据 Beamforming性能的效果。 优选地,可以采用不同的方式来使用 Sounding信号带宽内频点与下行数据所在频 点的对应关系确定 Sounding信号带宽内频点的信道响应进行插值处理的权值,只要将 Sounding喜好带宽内频点与下行信号所在频点的差异体现在 Sounding信号带宽内频点 的信道响应, 就可使克服 sounding信号频带与下行发射数据所占用的频带不一致, 导 致 Beamforming的赋形权值不准确的问题,在本实施例中提供了一种优选的实施方式: 使用如下公式确定插值处理的权值 w = R hP (R PP + ^ (xxH yl yl , 其中, R hPH . b ~S , where R is the signal transmitted by the terminal received by the base station at the Sounding frequency, and S is the terminal transmitting waveform. Preferably, the beamforming module is arranged to determine the weight of the beamforming = fa using the following formula, where is the channel response of the frequency within the Sounding signal bandwidth. Preferably, the interpolation process is a minimum mean square error (MMSE) interpolation process. According to the present invention, the weight of the channel response of the frequency band of the Sounding signal bandwidth is determined according to the correspondence between the frequency point of the Sounding signal bandwidth and the frequency point of the downlink data, and the weight of the beam shaping weight is determined by using the weight. The beamforming of the uplink data solves the problem that the frequency band occupied by the sounding signal band and the downlink transmission data is inconsistent in the related art, and the shaping weight of the Beamforming is inaccurate, and the performance of the uplink Beamforming performance is relatively poor, thereby achieving an improvement. The effect of upstream data Beamforming performance. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a schematic diagram of sounding combined with Beamforming according to the related art; FIG. 2 is a flowchart of a beamforming method according to an embodiment of the present invention; and FIG. 3 is a beam shaping device according to an embodiment of the present invention. Block diagram of the structure. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. This embodiment provides a beamforming method. FIG. 2 is a flowchart of a method for beamforming according to an embodiment of the present invention. As shown in FIG. 2, the method includes: Step S202: Acquire a frequency bandwidth of a Sounding signal bandwidth Channel response Step S204: determining, by using a correspondence between a frequency point of the Sounding signal bandwidth and a frequency point of the downlink data, determining a weight of the channel response of the frequency band of the Sounding signal to perform interpolation processing; Step S206: determining a beamforming using the weight of the interpolation process Weights, and beamforming of the uplink data using the weight of the beamforming. Through the above steps, the channel response of the frequency band of the Sounding signal bandwidth is first obtained, and then the weight of the internal frequency point of the Sounding signal bandwidth and the frequency point of the downlink data is used to determine the weight of the channel response of the frequency band of the Sounding signal bandwidth. The weight is used to determine the weight of the beamforming, and the uplink data is beamformed. The problem that the shaping of the sounding signal band and the downlink transmission data is inconsistent in the related art, the inaccurate weighting of the Beamforming, and the poor performance of the uplink Beamforming performance are overcome, thereby improving the performance of the uplink data performance. Preferably, the weighting of the frequency response point of the Sounding signal bandwidth and the frequency point of the downlink data may be determined in different manners to determine the weight of the channel response of the frequency band of the Sounding signal bandwidth for interpolation, as long as the Sounding prefers the bandwidth internal frequency point. The difference from the frequency point of the downlink signal is reflected in the channel response of the frequency band within the Sounding signal bandwidth, which can overcome the problem that the frequency band of the sounding signal is inconsistent with the frequency band occupied by the downlink transmission data, resulting in inaccurate weighting of Beamforming. A preferred embodiment is provided in this embodiment: The weight of the interpolation process is determined by the following formula: w = R hP ( R PP + ^ ( xxH y l y l , where R hP is
Sounding信号带宽内频点与下行数据所在频点的信道响应相关矩阵, 为 Sounding 信号带宽内频点之间的相关矩阵, 为噪声, 为 Sounding信号序列, XH为 Sounding 信号序列矩阵的非奇异矩阵。通过该优选实施例,提高了插值处理权值确定的准确性。 优选地, 下面对步骤 S202的一个优选实施方式进行说明。 Sounding信号带宽内 频点的信道响应通过以下公式确定 & , 其中 R是基站接收到的终端在 Sounding 频点发射的信号, S是终端发射波形。通过该优选实施例,采用现有技术确定 Sounding 信号带宽内频点的信道响应, 减低了研发成本。 优选地,下面对步骤 S206中使用插值处理的权值确定波束赋形的权值可以有多种 实施方式, 下面仅对其中一个优选实施方式进行说明, 使用如下公式确定波束赋形的 权值 = ,其中 为 Sounding信号带宽内频点的信道响应。通过该优选实施 例, 采用对 Sounding 信号带宽内频点信号的信道估计进行插值处理, 可以使得在 Sounding信号频带与下行数据所在频带不同的情况下, 得到准确的波束赋形权值, 提 高了波束赋形权值的准确率。 优选地, 插值处理为最小均方差 (MMSE) 插值处理。 通过该优选实施例, 采用 现有技术中的方式进行插值处理, 降低了研发成本, 并且采用 MMSE方式可以提高插 值的准确率。 本实施例提供了一种波束赋形装置, 可以用于实现上述的波束赋形方法, 图 3是 根据本发明实施例的波束赋形装置的结构框图, 如图 3所示, 该装置包括: 获取模块 32、 处理模块 34、 确定模块 36和波束赋形模块 38, 下面对上述结构进行详细说明。 获取模块 32, 设置为获取 Sounding信号带宽内频点的信道响应; 处理模块 34, 连接至获取模块 32,设置为使用 Sounding信号带宽内频点与下行数据所在频点的对应 关系确定获取模块 32获取到的 Sounding信号带宽内频点的信道响应进行插值处理的 权值; 确定模块 36, 连接至处理模块 34, 设置为使用处理模块 34处理得到的插值处 理的权值确定波束赋形的权值; 波束赋形模块 38, 连接至确定模块 36, 设置为使用确 定模块 36确定的波束赋形的权值对上行数据进行波束赋形。 优选地, 处理模块 34 设置为使用如下公式确定插值处理的权值 : W = Rhp(Rpp + an 2(XXHr1)-1 ^ 其中, RhpSounding信号带宽内频点与下行数据所在 频点的信道响应相关矩阵, 为 Sounding信号带宽内频点之间的相关矩阵, 为噪 声, 为 Sounding信号序列, ^^为 Sounding信号序列矩阵的非奇异矩阵。 优选地, 获取模块 32设置为使用如下公式确定 Sounding信号带宽内频点的信道 , H The channel response correlation matrix of the frequency band of the Sounding signal and the frequency of the downlink data is the correlation matrix between the frequency points of the Sounding signal bandwidth, which is noise, which is the Sounding signal sequence, and X H is the non-singular matrix of the Sounding signal sequence matrix. . With the preferred embodiment, the accuracy of the interpolation process weight determination is improved. Preferably, a preferred embodiment of step S202 is described below. A channel frequency response of the signal bandwidth Sounding & determined by the following equation, wherein R is a base station signal received at the terminal Sounding emission frequency, S is the transmitted waveform terminal. With the preferred embodiment, the channel response of the internal frequency point of the Sounding signal bandwidth is determined by the prior art, which reduces the development cost. Preferably, the following uses the weights of the interpolation process in step S206 to determine the weight of the beamforming. There may be various implementations. Only one of the preferred embodiments will be described below, and the weight of the beamforming is determined using the following formula. = , where is the channel response of the internal frequency point of the Sounding signal bandwidth. With the preferred embodiment, the channel estimation of the frequency-internal frequency point signal of the Sounding signal is interpolated, so that the accurate beamforming weight is obtained when the sounding signal band is different from the frequency band of the downlink data, and the beam is improved. The accuracy of the weighting of the weight. Preferably, the interpolation process is a minimum mean square error (MMSE) interpolation process. With the preferred embodiment, the interpolation process is performed in the manner of the prior art, which reduces the development cost, and the MMSE mode can improve the accuracy of the interpolation. The present embodiment provides a beamforming device, which can be used to implement the beamforming method described above. FIG. 3 is a structural block diagram of a beamforming device according to an embodiment of the present invention. As shown in FIG. 3, the device includes: The acquisition module 32, the processing module 34, the determination module 36, and the beam shaping module 38 are described in detail below. The obtaining module 32 is configured to obtain a channel response of the intra-frequency point of the Sounding signal bandwidth. The processing module 34 is connected to the obtaining module 32, and is configured to determine, by using the corresponding relationship between the frequency-internal frequency point of the Sounding signal and the frequency point of the downlink data, the obtaining module 32 obtains The channel response of the frequency band of the Sounding signal to the interpolation process is performed; the determining module 36 is connected to the processing module 34, and is configured to determine the weight of the beamforming using the weight of the interpolation process processed by the processing module 34; The beamforming module 38, coupled to the determining module 36, is configured to beamform the uplink data using the weight of the beamforming determined by the determining module 36. Preferably, the processing module 34 is set using the following formula to determine the interpolation weights: W = R hp (R pp + a n 2 (XX H r 1) - 1 ^ wherein, R hp within Soundin g signal bandwidth frequency The channel response correlation matrix with the frequency point of the downlink data is the correlation matrix between the frequency points of the Sounding signal bandwidth, which is noise, which is a Sounding signal sequence, and ^^ is a non-singular matrix of the Sounding signal sequence matrix. Preferably, the acquisition module 32 is set to determine the channel of the internal frequency point of the Sounding signal bandwidth using the following formula, H
响应 ls ~S , 其中 R是基站接收到的终端在 Sounding频点发射的信号, S是终 端发射波形。 优选地,波束赋形模块 38设置为使用如下公式确定波束赋形的权值 =冊 , 其中 为 Sounding信号带宽内频点的信道响应。 优选地, 插值处理为最小均方差 MMSE插值处理。 下面结合优选实施例进行描述: 优选实施例 本实施例提供了一种波束赋形方法, 本优选实施例结合上述实施例及其中的优选 实施方式, 在本实施例中采用最小均方误差 (Minimum Mean Square Error, 简称为 MMSE)滤波对 Sounding信号信道估计响应插值获取 Beamforming的 MRT赋形权值, 该方法包括如步骤: 骤 1: 使用 LS信道估计获取终端在 Sounding信号带宽内各频点的信道响应估 - S, 其中, R是基站接收到的终端在 Sounding频点发射的信号, S是终端发 射波形 t 步骤 2: 对相关矩阵进行求解, 步骤 2包括以下 The response is ls ~S, where R is a signal transmitted by the terminal received by the base station at the Sounding frequency point, and S is a terminal transmitting waveform. Preferably, the beamforming module 38 is arranged to determine the weight of the beamforming = the volume using the following formula, where is the channel response of the frequency within the Sounding signal bandwidth. Preferably, the interpolation process is a minimum mean square error MMSE interpolation process. The following describes a preferred embodiment of the present invention. The preferred embodiment provides a beamforming method. The preferred embodiment combines the foregoing embodiments with preferred embodiments thereof. In this embodiment, a minimum mean square error (Minimum) is used. Mean Square Error, referred to as MMSE) filtering the Sounding signal channel estimation response interpolation to obtain the MRT shaping weight of the Beamforming, the method comprising the following steps: Step 1: Acquiring the channel response estimate of the frequency point of the terminal within the Sounding signal bandwidth by using the LS channel estimation, where R is the signal transmitted by the base station at the Sounding frequency, S is the terminal transmitting waveform t Step 2: Solving the correlation matrix, Step 2 includes the following
A、 频域相关系数推导 假设多径功率衰减服从负指数分布,那么功率延迟分布可以用式子(9)近似表示: A. Derivation of frequency domain correlation coefficients Assuming that multipath power attenuation obeys a negative exponential distribution, the power delay distribution can be approximated by the equation (9):
— exp( ) 0<τ — exp( ) 0<τ
0 0>τ 0 0>τ
(9) 其中 为均方时延。 对 W进行 Fourier变换, 可以得到信道频域相关函数:  (9) Where is the mean square delay. By performing Fourier transform on W, the channel frequency domain correlation function can be obtained:
1 T 1 T
¾(Δ )=— I exp(—一 )Qxp(-j2nAf )d  3⁄4(Δ )=— I exp(—1)Qxp(-j2nAf )d
(10) 对上述结果进行整理可以得到:  (10) By arranging the above results, you can get:
1 1
RH(¥) R H (¥)
1 + j2 Af σ.  1 + j2 Af σ.
(11)  (11)
RH(M) = R H (M) =
那么相隔 Δ/个频点相关系数为: 1 + 2πΔ/σ^ (12) 其中, 上述 为相邻频点的频率间隔  Then the correlation coefficient of the Δ/frequency points is: 1 + 2πΔ/σ^ (12) where, the above is the frequency interval of adjacent frequency points.
Β、 频域相关系数估计 终端在 Sounding信号带宽内频点的信道响应可以通过 LS信道估计求得。 利用这 些估计得到的数值, 信道频域相关系数可以通过下式计算: RH(M) = Etk{Ht(k)Ht(k + M)} Β, Frequency Domain Correlation Coefficient Estimation The channel response of the terminal within the frequency of the Sounding signal bandwidth can be obtained by LS channel estimation. Using the values obtained from these estimates, the channel frequency domain correlation coefficient can be calculated by: R H (M) = E tk {H t (k)H t (k + M)}
(13) 其中, ^ 是针对每个 OFDMA符号 每个频点 求平均。以 802.16e的 Sounding 信号 (信号波形为 1) 为例, LS信道估计得到的结果可以表示如下:  (13) where ^ is the average for each frequency point of each OFDMA symbol. Taking the 802.16e Sounding signal (signal waveform 1) as an example, the results of the LS channel estimation can be expressed as follows:
H(k) = H(k) + N(k) ( 14) 其中, ( 为估计得到的信道响应, 为真实的信道响应, 为噪声。 信 道响应和噪声相互独立, 那么 (6) 式中求得的信道频域相关系数可以表示为: H(k) = H(k) + N(k) (14) where, (for the estimated channel response, the true channel response is noise. The channel response and noise are independent of each other, then (6) The resulting channel frequency domain correlation coefficient can be expressed as:
RH(M) = RH(M) + RZ(M) ( 15) 其中, (Δ)为利用 LS信道估计得到的信道频域相关系数, (Δ/)为真实的信 道频域相关系数, (Δ/)为噪声之间的相关系数。 如果不同载波信道估计的噪声是不 相关的, 那么可以得到 (Δ/)为一个 函数。 故而 (13) 式可以表示如下: R H (M) = R H (M) + R Z (M) ( 15) where ( Δ ) is the channel frequency domain correlation coefficient obtained by LS channel estimation, ( Δ / ) is the true channel frequency domain correlation coefficient , (Δ /) as the correlation coefficient between the noise. If the noise estimated by the different carrier channels is uncorrelated, then ( Δ/ ) can be obtained as a function. Therefore , the formula ( 13) can be expressed as follows:
RHm = \ 1RRH(°A)/ +) °2. Δ Δ//=0 ° ( 16) 其中, σ2为系统接收机噪声。 C、 频域相关系数计算 根据 (12) 式和 (16) 式之间的关系可以求出均方时延 。 根据 (12) 式可以求 出任意两个频点之间的相关系数。 步骤 3: 根据 (2) 得到 (1) 中求解所需要的相关矩阵, 使用 (1) 进行 MMSE 插值得到下行非 Sounding频点的 Beamforming的赋形权值。 本实施例中使用如下公式确定波束赋形的权值: R H m = \ 1 R R H( °A ) / + ) ° 2 . Δ Δ / /= 0 ° ( 16) where σ2 is the system receiver noise. C. Frequency domain correlation coefficient calculation The mean square delay can be obtained according to the relationship between (12) and (16). According to the formula (12), the correlation coefficient between any two frequency points can be obtained. Step 3: According to (2), obtain the correlation matrix needed for solving in (1), and use (1) to perform MMSE interpolation to obtain the shaping weight of Beamforming of the downlink non-Sounding frequency. In this embodiment, the weight of the beamforming is determined using the following formula:
Figure imgf000010_0001
, HbLS信道估计得到的终端在 Sounding信号 带宽内频点的信道响应。 为终端使用的下行非 Sounding频点与该终端某 Sounding 频点之间的信道响应相关矩阵, 为 Sounding频点与 Sounding频点之间的相关矩阵。 为噪声, 为发送的 Sounding序列。需要说明的是,步骤 3中采用的是基于 MMSE 准则进行的处理。 该优选实施例, 克服了在实际系统中, 可能出现终端在 OFDMA系统中 Sounding 信号频带与其下行发射数据所占用频带不一致的情况是,那么此时根据 Sounding信号 进行 Beamforming的 MRT权值赋形权值就需要根据 Sounding信号带宽内频点信号的 信道响应估计进行插值得到, 本实施例中提高了一种 MMSE 滤波器来进行插值的方 法, 能够提升插值拟合度, 得到更为准确的 MRT 赋形权值, 以提升系统下行 Beamforming性能。 通过上述实施例, 提供了一种波束赋形方法及装置, 通过根据 Sounding信号带宽 内频点与下行数据所在频点的对应关系确定 Sounding信号带宽内频点的信道响应进行 插值处理的权值, 并使用该权值确定波束赋形权值, 对上行数据进行波束赋形, 解决 了在使用 MRT的 Beamforming下行发射时必须保证终端 Sounding带宽必须与下行发 射带宽一致的限制, 可以实现全频带的频点信道响应估计, 同时, 与目前使用的线性 插值相比, 提升了插值拟合精度, 极大提高了 MRT的 Beamforming下行发射技术的 性能。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Figure imgf000010_0001
, H b is the LS channel estimation in the terminal obtained Sounding signal bandwidth frequency channel response. The downlink non-Sounding frequency used by the terminal and a sounding of the terminal The channel response correlation matrix between the frequency points is the correlation matrix between the Sounding frequency point and the Sounding frequency point. For noise, for the Sounding sequence sent. It should be noted that the processing in step 3 is based on the MMSE criterion. The preferred embodiment overcomes the fact that in the actual system, the frequency band of the Sounding signal band and the downlink transmission data occupied by the terminal in the OFDMA system may be inconsistent, then the MRT weighting weight of Beamforming is performed according to the Sounding signal. It is necessary to perform interpolation according to the channel response estimation of the frequency signal of the Sounding signal bandwidth. In this embodiment, an MMSE filter is added to perform interpolation, which can improve the interpolation fitting degree and obtain a more accurate MRT shaping. Weights to improve system downstream Beamforming performance. According to the foregoing embodiment, a beamforming method and device are provided. The weighting of the channel response of the inner frequency point of the Sounding signal bandwidth is determined according to the correspondence between the inner frequency point of the sounding signal bandwidth and the frequency point of the downlink data. The weight is used to determine the beamforming weight, and the uplink data is beamformed, which solves the limitation that the terminal sounding bandwidth must be consistent with the downlink transmission bandwidth when using the MMT's Beamforming downlink transmission, and the full frequency band can be realized. The point channel response estimation, at the same time, improves the interpolation fitting accuracy compared with the currently used linear interpolation, and greatly improves the performance of the MRT Beamforming downlink transmission technology. Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种波束赋形方法, 包括: A beamforming method, comprising:
获取 Sounding信号带宽内频点的信道响应;  Obtaining the channel response of the intra-frequency point of the Sounding signal bandwidth;
使用所述 Sounding 信号带宽内频点与下行数据所在频点的对应关系确定 所述 Sounding信号带宽内频点的信道响应进行插值处理的权值;  Determining, by using a correspondence between a frequency point of the sounding signal bandwidth and a frequency point of the downlink data, a weight of the channel response of the inner frequency point of the sounding signal to perform interpolation processing;
使用所述插值处理的权值确定波束赋形的权值, 并使用所述波束赋形的权 值对上行数据进行波束赋形。  The weight of the interpolation process is used to determine the weight of the beamforming, and the weight of the beamforming is used to beamform the uplink data.
2. 根据权利要求 1所述的方法, 其中, 使用所述 Sounding信号带宽内频点与下行 数据所在频点的对应关系确定所述 Sounding 信号带宽内频点的信道响应进行 插值处理的权值包括: 使用如下公式确定所述插值处理的权值 W = Rhp(Rpp + an 2(XXHyY, 其中, R^为所述 Sounding信号带宽内频点与所述下行数据所在频点的信道响 应相关矩阵, R^为 Sounding信号带宽内频点之间的相关矩阵, σ„2为噪声, 为 Sounding信号序列, XH为 Sounding信号序列矩阵的非奇异矩阵。 The method according to claim 1, wherein determining, by using a correspondence between a frequency point of the sounding signal bandwidth and a frequency point of the downlink data, determining a channel response of the frequency channel of the Sounding signal bandwidth, and performing interpolation processing includes: : determining, by using the following formula, the weight of the interpolation process, W = R hp (R pp + a n 2 (XX H yY, where R^ is the frequency of the sounding signal bandwidth and the frequency of the downlink data) in response to the channel correlation matrix, R ^ is a correlation matrix between the Sounding signal bandwidth frequency, σ "2 is the noise, the signal sequence for the Sounding, X H is a nonsingular matrix Sounding signal sequence matrix.
3. 根据权利要求 1所述的方法, 其中, 获取 Sounding信号带宽内频点的信道响应 包括: 使用如下公式确定 Sounding信号带宽内频点的信道响应 Afa: k ~S , 其中 R是基站接收到的终端在 Sounding频点发射的信号, S是 终端发射波形。 3. The method according to claim 1, wherein obtaining a channel response of a frequency point within a bandwidth of the Sounding signal comprises: determining a channel response A fa : k ~S of a frequency point within a bandwidth of the Sounding signal using the following formula, where R is a base station receiving The signal that the terminal is transmitting at the Sounding frequency, and S is the terminal transmitting waveform.
4. 根据权利要求 2或 3所述的方法, 其中, 使用所述插值处理的权值确定波束赋 形的权值包括: 使用如下公式确定波束赋形的权值 = ^ , 其中 Afa为 Sounding信 号带宽内频点的信道响应。 The method according to claim 2 or 3, wherein determining the weight of the beamforming using the weight of the interpolation process comprises: determining a weight of the beamforming = ^ using the following formula, wherein A fa is The channel response of the inner frequency point of the Sounding signal bandwidth.
5. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述插值处理为最小均方差 MMSE插值处理。 The method according to any one of claims 1 to 3, wherein the interpolation processing is a minimum mean square error MMSE interpolation process.
6. 一种波束赋形装置, 包括: 获取模块, 设置为获取 Sounding信号带宽内频点的信道响应; 6. A beam shaping device comprising: Obtaining a module, configured to obtain a channel response of an internal frequency point of the Sounding signal bandwidth;
处理模块,设置为使用所述 Sounding信号带宽内频点与下行数据所在频点 的对应关系确定所述 Sounding信号带宽内频点的信道响应进行插值处理的权 值;  The processing module is configured to determine, by using a correspondence between the intra-frequency point of the sounding signal bandwidth and the frequency point of the downlink data, the weight of the channel response of the inner frequency point of the sounding signal to perform interpolation processing;
确定模块, 设置为使用所述插值处理的权值确定波束赋形的权值; 波束赋形模块,设置为使用所述波束赋形的权值对上行数据进行波束赋形。 根据权利要求 6所述的装置, 其中, 所述处理模块设置为使用如下公式确定所 述插值处理的权值 : W = Rhp (Rpp + an 2 (XXHyY , 其中, R 为所述 Sounding 信号带宽内频点与所述下行数据所在频点的信道响应相关矩阵, Rpp为 Sounding信号带宽内频点之间的相关矩阵, σ„2为噪声, 为 Sounding信号序 列, XH为 Sounding信号序列矩阵的非奇异矩阵。 根据权利要求 6 所述的装置, 其中, 所述获取模块设置为使用如下公式确定 a determining module, configured to determine a weight of the beamforming using the weight of the interpolation process; and a beamforming module configured to beamform the uplink data using the weight of the beamforming. The apparatus according to claim 6, wherein said processing module is configured to determine a weight of said interpolation process using the following formula : W = R hp (R pp + a n 2 (XX H yY , where R is The channel response correlation matrix of the frequency band of the Sounding signal and the frequency point of the downlink data, R pp is the correlation matrix between the frequency bands of the Sounding signal bandwidth, σ „ 2 is noise, is a Sounding signal sequence, and X H is A non-singular matrix of a sounding signal sequence matrix. The apparatus according to claim 6, wherein the acquisition module is configured to determine using the following formula
Sounding信号带宽内频点的信道响应 ^ : k , 其中 R是基站接收到的终 端在 Sounding频点发射的信号, S是终端发射波形。 根据权利要求 7或 8所述的装置, 其中, 所述波束赋形模块设置为使用如下公 式确定波束赋形的权值 = ^ , 其中 Afa为 Sounding信号带宽内频点的 信道响应。 根据权利要求 6至 8中任一项所述的装置, 其中, 所述插值处理为最小均方差 MMSE插值处理。 The channel response of the inner frequency point of the sounding signal bandwidth is ^ : k , where R is the signal transmitted by the terminal received by the base station at the Sounding frequency point, and S is the terminal transmitting waveform. The apparatus according to claim 7 or 8, wherein the beamforming module is arranged to determine a weight of the beamforming = ^ using the following formula, wherein A fa is a channel response of a frequency point within the bandwidth of the Sounding signal. The apparatus according to any one of claims 6 to 8, wherein the interpolation processing is a minimum mean square error MMSE interpolation processing.
PCT/CN2011/081054 2011-05-26 2011-10-20 Method and apparatus for beamforming WO2012159410A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110139336.2A CN102801454B (en) 2011-05-26 2011-05-26 Beam form-endowing method and device
CN201110139336.2 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012159410A1 true WO2012159410A1 (en) 2012-11-29

Family

ID=47200436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081054 WO2012159410A1 (en) 2011-05-26 2011-10-20 Method and apparatus for beamforming

Country Status (2)

Country Link
CN (1) CN102801454B (en)
WO (1) WO2012159410A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790815B (en) * 2014-12-23 2019-04-26 华为技术有限公司 Open loop multi-stream sending method and base station based on directional beam
CN104617998A (en) * 2015-01-15 2015-05-13 电子科技大学 Closed-loop MIMO uncooperative receiving method and device
CN113067618B (en) * 2021-03-18 2022-07-01 中国电子科技集团公司第三十八研究所 Multi-frequency spot beam forming method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185275A (en) * 2004-11-04 2008-05-21 摩托罗拉公司 Method and apparatus for channel feedback
CN101453258A (en) * 2007-11-28 2009-06-10 三星电子株式会社 SVD pre-coding method, pre-decoding method and system applying the methods
WO2010075172A2 (en) * 2008-12-22 2010-07-01 Motorola, Inc. System and method for combination multiple input, multiple output (mimo) and beamforming
CN101803229A (en) * 2007-08-15 2010-08-11 高通股份有限公司 Antenna switching and uplink sounding channel measurement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747225B2 (en) * 2006-10-03 2010-06-29 Motorola, Inc. Mobile assisted downlink beamforming with antenna weight feedback
US8014265B2 (en) * 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
CN102013903B (en) * 2009-09-29 2013-11-06 电信科学技术研究院 Method and equipment for space coordination among cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101185275A (en) * 2004-11-04 2008-05-21 摩托罗拉公司 Method and apparatus for channel feedback
CN101803229A (en) * 2007-08-15 2010-08-11 高通股份有限公司 Antenna switching and uplink sounding channel measurement
CN101453258A (en) * 2007-11-28 2009-06-10 三星电子株式会社 SVD pre-coding method, pre-decoding method and system applying the methods
WO2010075172A2 (en) * 2008-12-22 2010-07-01 Motorola, Inc. System and method for combination multiple input, multiple output (mimo) and beamforming

Also Published As

Publication number Publication date
CN102801454A (en) 2012-11-28
CN102801454B (en) 2016-09-14

Similar Documents

Publication Publication Date Title
US20230396381A1 (en) System and Method for Transmitting a Sub-Space Selection
KR101452953B1 (en) Method and device for reporting antenna calibration information and determining antenna calibration factor
US10644773B2 (en) Feedback channel information using pre-coders in a wireless communication system
US7831232B2 (en) Multiple input multiple output communication apparatus
JP2012142964A (en) Calibration and beamforming in wireless communication system
WO2011140788A1 (en) Downlink transmission method and base station used in multiple input multiple output system
WO2013120429A1 (en) Aerial calibration method, system and device
WO2010048745A1 (en) Mimo-based multiple base station collaborative communication method and apparatus
JP5073809B2 (en) Channel information prediction system and channel information prediction method
WO2010121473A1 (en) Single-user beamforming method and device applying to a frequency division multiplex system
CN102742312A (en) Method and arrangement in a wireless communication system
WO2015124071A1 (en) Dual-stream beamforming method and device
WO2010091647A1 (en) System and method for wireless communications using spatial multiplexing with incomplete channel information
KR20150067964A (en) Method and apparatus for selecting a beam in a wireless communication system using multi-antenna
WO2011091589A1 (en) Data transmission method and system for cooperative multiple input multiple output beam-forming
US8718167B2 (en) Method for channel estimation and feedback in wireless communication system
CN102572915B (en) A kind of base station based on self adaptation layer beam excipient transmitting data stream and method
KR102293045B1 (en) A method and apparatus for supporting beamforming based on multiple input multiple output
WO2012159410A1 (en) Method and apparatus for beamforming
CN102547953B (en) Method for obtaining beam forming gain
CN104639271A (en) Downlink SINR estimation method and base station
CN101741450A (en) Uplink signal reception method and system in MIMO system
KR101024105B1 (en) Method for channel state feedback by quantization of time-domain coefficients
WO2020192564A1 (en) Channel correction method and apparatus
EP3526908B1 (en) Relative uplink channel estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866206

Country of ref document: EP

Kind code of ref document: A1