WO2012157537A1 - Light-emitting element material and light-emitting element - Google Patents

Light-emitting element material and light-emitting element Download PDF

Info

Publication number
WO2012157537A1
WO2012157537A1 PCT/JP2012/062084 JP2012062084W WO2012157537A1 WO 2012157537 A1 WO2012157537 A1 WO 2012157537A1 JP 2012062084 W JP2012062084 W JP 2012062084W WO 2012157537 A1 WO2012157537 A1 WO 2012157537A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light emitting
emitting device
light
electron
Prior art date
Application number
PCT/JP2012/062084
Other languages
French (fr)
Japanese (ja)
Inventor
市橋泰宜
長尾和真
富永剛
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201280023167.9A priority Critical patent/CN103534832B/en
Priority to KR1020137025435A priority patent/KR101950723B1/en
Priority to JP2012523538A priority patent/JP6024455B2/en
Publication of WO2012157537A1 publication Critical patent/WO2012157537A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the present invention relates to a light emitting element capable of converting electric energy into light and a material used therefor.
  • the present invention can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, and optical signal generators.
  • organic thin-film light-emitting elements can be obtained in various light-emitting colors by using various fluorescent materials for the light-emitting layer, and therefore, research for practical application to displays and the like is active.
  • the three primary color luminescent materials research on the green luminescent material is the most advanced, and at present, intensive research is being conducted to improve the characteristics of the red and blue luminescent materials.
  • Organic thin-film light-emitting elements need to improve luminous efficiency, drive voltage, and durability.
  • the luminous efficiency is low, it is impossible to output an image that requires high luminance, and the amount of power consumption for outputting desired luminance increases.
  • various luminescent materials and electron transport materials having fluorene as a basic skeleton have been developed (see Patent Documents 1 to 4).
  • the present invention is a light emitting device material containing a compound represented by the following general formula (1).
  • Y is a group represented by the following general formula (2);
  • Ar 1 is a group represented by the following general formula (3);
  • L 1 is a single bond or a substituted or unsubstituted group having 5 to 12 nuclear carbon atoms.
  • L 2 is a group selected from a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms and a substituted or unsubstituted heteroarylene group;
  • Ar also the n Ar 2 is the same; 2, aromatic heterocyclic group only consists group containing electron-accepting nitrogen, which is unsubstituted or substituted alkyl group or a cycloalkyl group;
  • n is an integer from 1 to 5 May be different.
  • R 1 to R 10 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether A group selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group and —P ( ⁇ O) R 11 R 12 ; R 11 and R 12 are aryl groups R 1 to R 12 may form a ring with adjacent substituents; provided that any one of R 1 to R 8 is a group selected from L 1 and a heteroaryl group; used in connection, one further one of the other is used for connection with the L 2.
  • R 13 to R 21 may be the same or different and each is a group selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group. R 13 to R 21 may form a ring with adjacent substituents. However, any one of R 13 to R 21 is used for connection with L 1 .
  • an organic thin film light emitting device that achieves both high luminous efficiency and low driving voltage.
  • Y is a group represented by the following general formula (2)
  • Ar 1 is a group represented by the following general formula (3).
  • L 1 is a single bond or a group selected from a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms and a substituted or unsubstituted heteroarylene group.
  • L 2 is a group selected from a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms and a substituted or unsubstituted heteroarylene group.
  • Ar 2 is a group composed only of an aromatic heterocyclic group containing an electron-accepting nitrogen which is unsubstituted or substituted with an alkyl group or a cycloalkyl group.
  • n is an integer of 1 to 5.
  • n Ar 2 may be the same or different.
  • R 1 to R 10 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether A group selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, and —P ( ⁇ O) R 11 R 12 .
  • R 11 and R 12 are groups selected from aryl groups and heteroaryl groups.
  • R 1 to R 12 may form a ring with adjacent substituents. However, any one of R 1 to R 8 is used for connection with L 1, and any other one is used for connection with L 2 .
  • any one of R 1 to R 8 is used for linking with L 1 means that the group represented by the general formula (2) is located at any one position of R 1 to R 8. This means that it is directly bonded to L 1 . The same is true for L 2.
  • R 13 to R 21 may be the same or different and each is a group selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group. R 13 to R 21 may form a ring with adjacent substituents. However, any one of R 13 to R 21 is used for connection with L 1 . Here, any one of R 13 to R 21 is used for linking to L 1 means that the group represented by the general formula (3) is located at any one position of R 13 to R 21. This means that it is directly bonded to L 1 .
  • the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. It may or may not have a substituent. There is no restriction
  • the number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
  • the cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. .
  • carbon number of a heterocyclic group is not specifically limited, Preferably it is the range of 2-20.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • carbon number of an alkenyl group is not specifically limited, Preferably it is the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
  • the alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have.
  • carbon number of an alkoxy group is not specifically limited, Preferably it is the range of 1-20.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Preferably it is the range of 1-20.
  • An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. Although carbon number of an aryl ether group is not specifically limited, Preferably, it is the range of 6-40.
  • the aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Preferably, it is the range of 6-40.
  • the aryl group represents, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, or a pyrenyl group.
  • the aryl group may or may not have a substituent.
  • carbon number of an aryl group is not specifically limited, Preferably, it is the range of 6-40.
  • a heteroaryl group is a furanyl group, thiophenyl group, pyridyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, naphthyridyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group And a cyclic aromatic group having one or more atoms other than carbon in the ring, such as a carbazolyl group, which may be unsubstituted or substituted.
  • carbon number of heteroaryl group is not specifically limited, Preferably it is the range of 2-30.
  • Halogen refers to an atom selected from fluorine, chlorine, bromine and iodine.
  • the carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group and phosphine oxide group may or may not have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these substituents may be further substituted.
  • An arylene group refers to a divalent group derived from an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, or a biphenyl group, which may or may not have a substituent.
  • L 1 or L 2 in the general formula (1) is an arylene group, the number of nuclear carbon atoms is preferably in the range of 5 or more and 12 or less.
  • arylene group examples include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 4,4′-biphenylylene group, 4,3′-biphenylylene group, 3,3 Examples include '-biphenylylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group and the like. More preferred is a 1,4-phenylene group.
  • any adjacent two substituents can be bonded to each other to form a conjugated or non-conjugated condensed ring.
  • an atom selected from nitrogen, oxygen, sulfur, phosphorus and silicon may be contained, or it may be condensed with another ring.
  • a heteroarylene group is derived from an aromatic group having one or more atoms other than carbon in the ring, such as a pyridyl group, a quinolinyl group, a pyrazinyl group, a naphthyridyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group.
  • a divalent group to be removed which may or may not have a substituent.
  • the number of carbon atoms of the heteroarylene group is not particularly limited, but is preferably in the range of 2-30.
  • the aromatic heterocyclic group containing electron-accepting nitrogen refers to a cyclic aromatic group having one or more electron-accepting nitrogen atoms in the ring as atoms other than carbon in the heteroaryl group.
  • the number of electron-accepting nitrogen contained in the aromatic heterocyclic group containing electron-accepting nitrogen is not particularly limited, it is preferably in the range of 1 or more and 6 or less. In addition, these may be substituted with an alkyl group or a cycloalkyl group.
  • the electron-accepting nitrogen mentioned here represents a nitrogen atom forming a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, an aromatic heterocycle containing electron-accepting nitrogen has a high electron affinity.
  • aromatic heterocyclic groups containing electron-accepting nitrogen include pyridyl group, quinolinyl group, isoquinolinyl group, quinoxanyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, phenanthrolinyl group, imidazopyridyl group, triazyl group, Examples include an acridyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a bipyridyl group, and a terpyridyl group.
  • carbon number of the aromatic heterocyclic group containing electron-accepting nitrogen is not specifically limited, Preferably it is the range of 2-30.
  • the connecting position of the aromatic heterocyclic group containing an electron-accepting nitrogen may be any part.
  • any of 2-pyridyl group, 3-pyridyl group and 4-pyridyl group may be used.
  • Ar 2 is a group composed of only an aromatic heterocyclic group containing an electron-accepting nitrogen which is unsubstituted or substituted with an alkyl group or a cycloalkyl group.
  • An aromatic heterocyclic group containing electron-accepting nitrogen is present on the outside (end) of the molecule. Accordingly, when the compound represented by the general formula (1) is used for the electron transport layer, it becomes easier to receive electrons from the cathode, and the driving voltage of the light emitting element can be lowered. In addition, since the electron donation to the light emitting layer is increased and the probability of recombination of electrons and holes is increased, the light emission efficiency of the light emitting element is improved.
  • Ar 2 is and a group composed of only aromatic heterocyclic group containing electron-accepting nitrogen, which is unsubstituted or substituted alkyl group or a cycloalkyl group, Ar 2 is an unsubstituted aromatic heterocyclic
  • Ar 2 is an aromatic heterocyclic group substituted, and the substituent includes an aromatic heterocyclic group containing an alkyl group, a cycloalkyl group, and an electron-accepting nitrogen. The case where it is selected from a cyclic group is also included.
  • Examples of the latter include a bipyridyl group and a bis (pyridyl) pyridyl group (both are pyridyl groups having a pyridyl group which is an aromatic heterocyclic group containing an electron-accepting nitrogen as a substituent). Note that a group composed only of an aromatic heterocyclic group containing an electron-accepting nitrogen may be substituted with an alkyl group or a cycloalkyl group, but is not substituted with an aromatic group containing no electron-accepting nitrogen. must not.
  • Ar 2 is preferably selected from the group consisting of the following groups.
  • the solid line indicating the bonding position between Ar 2 and L 2 is drawn through the ring constituting each multi-membered ring. This is because the bonding position between Ar 2 and L 2 is Ar It means that it may be at any position of the 2 multi-membered ring.
  • a pyridyl group represents any of 2-pyridyl group, 3-pyridyl group and 4-pyridyl group
  • quinolyl group represents 2-quinolinyl group, 3-quinolinyl group, 4- It represents that any of a quinolinyl group, a 5-quinolinyl group, a 6-quinolinyl group, a 7-quinolinyl group, and an 8-quinolinyl group may be used.
  • a group in which a plurality of rings are connected such as a bipyridyl group, a bond is drawn from one ring, but may be bonded by another ring.
  • the groups exemplified above may be substituted with an alkyl group or a cycloalkyl group, preferably a methyl group, an ethyl group, a propyl group, a butyl group, or a cyclohexyl group.
  • Ar 2 is preferably a pyridyl group, quinolinyl group, isoquinolinyl group, quinoxanyl group, pyrimidyl group, phenanthrolinyl group, bipyridyl group, terpyridyl group, acridyl group, benzo [d] imidazolyl group, imidazo [1,2-a ] A pyridyl group and a group in which these are substituted with an alkyl group or a cycloalkyl group, preferably a methyl group or a cyclohexyl group.
  • the compound represented by the general formula (1) has a fluorene skeleton and an aromatic heterocyclic ring containing an electron-accepting nitrogen in the molecule, so that the electron transportability and electrochemical stability of the fluorene skeleton are high. And the high electron-accepting property of aromatic heterocycles containing electron-accepting nitrogen. Thereby, the compound represented by the general formula (1) exhibits a high electron injecting and transporting ability.
  • the compound represented by the general formula (1) has high carrier mobility and good carrier balance by having 1 to 5 aromatic heterocycles Ar 2 containing electron-accepting nitrogen in the molecule. .
  • the compound represented by the general formula (1) can improve the light emission efficiency of the light emitting element.
  • the compound represented by General formula (1) has high heat resistance, it can improve the durability of the light-emitting element.
  • the number of Ar 2 is more preferably 1 or 2, and particularly preferably 1. When two or more Ar 2 are present, Ar 2 may be the same or different.
  • the compound represented by the general formula (1) has a fluorene skeleton and a carbazole group in the molecule, stacking between molecules is suppressed and the film quality is stabilized. Moreover, the electrochemical stability with respect to a hole improves by having a carbazole group with hole tolerance. Thereby, the compound represented by the general formula (1) expresses higher electron injecting and transporting ability.
  • R 7 in the general formula (2) is used for connection with L 1 .
  • the conjugated system easily spreads at the positions of R 2 and R 7 , and the conjugated system is efficiently spread by using R 7 for connection to L 1 .
  • the compound represented by the general formula (1) becomes electrochemically stable and further improves the electron transport property, and thus exhibits a higher electron injecting and transporting ability.
  • R 2 in the general formula (2) is used for connection to L 2 .
  • the conjugated system easily spreads at the positions of R 2 and R 7 , and the conjugated system is efficiently spread when R 2 is used for connection with L 2 .
  • the compound represented by the general formula (1) becomes electrochemically stable and further improves the electron transport property, and thus exhibits a higher electron injecting and transporting ability.
  • R 15 , R 18 or R 21 in the general formula (3) is used for connection with L 1 . Since the positions of R 15 , R 18, and R 21 are vulnerable to oxidation in carbazole, the compound represented by the general formula (1) becomes electrochemically stable by combining this position with a linking group, and is higher. Expresses electron injection and transport ability.
  • R 7 is used for linking with L 1 means that the position of R 7 of the benzene ring of the group represented by the general formula (2) and the group represented by the linking group L 1 are directly bonded. To do.
  • L 1 is preferably a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms. Since a carbazole group is vulnerable to oxidation, it is electrochemically more stable to bond via an arylene group than to bond directly to a fluorene skeleton. As a result, a high electron transporting property and a synergistic effect of the fluorene skeleton are produced, and a higher electron injecting and transporting ability is expressed.
  • L 2 is preferably a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms. Since aromatic heterocycles containing electron-accepting nitrogen are vulnerable to oxidation, it is more electrochemically stable to bond via an arylene group than to bond directly to a fluorene skeleton. As a result, a high electron transporting property and a synergistic effect of the fluorene skeleton are produced, and a higher electron injecting and transporting ability is expressed.
  • R 1 to R 21 are preferably groups selected from hydrogen, an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group among the above. Furthermore, among R 9 to R 10 , among the above, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group is preferable. R 21 is preferably an aryl group or a heteroaryl group among the above.
  • the compound represented by the general formula (1) is not particularly limited, but specific examples include the following.
  • a known method can be used for the synthesis of the compound represented by the general formula (1).
  • Examples of the method for introducing a carbazole group into the fluorene skeleton include a method using a coupling reaction of a halogenated fluorene derivative and a substituted or unsubstituted carbazole boronic acid under a palladium catalyst or a nickel catalyst, but are not limited thereto. It is not something.
  • a method for introducing an aromatic heterocyclic ring containing electron-accepting nitrogen into the fluorene skeleton for example, an aromatic heterocyclic ring containing a halogenated fluorene derivative and electron-accepting nitrogen under a palladium catalyst or a nickel catalyst may be used.
  • the method using the coupling reaction of the boronic acid of a ring is mentioned, It is not limited to these.
  • an aromatic heterocyclic ring containing a carbazole group or electron-accepting nitrogen is introduced into the fluorene skeleton through an arylene group
  • an aryl boronic acid substituted with an aromatic heterocyclic ring containing a carbazole group or electron-accepting nitrogen is used. It may be used.
  • boronic acid esters may be used in place of the various boronic acids described above.
  • the compound represented by the general formula (1) is used as a light emitting device material.
  • the light emitting element material represents a material used for any layer of the light emitting element, and is a material used for a layer selected from a hole transport layer, a light emitting layer, and an electron transport layer, as will be described later.
  • the material used for the protective film of a cathode is also included.
  • the compound represented by the general formula (1) Since the compound represented by the general formula (1) has high electron injection and transport ability, light emission efficiency, and thin film stability, it is preferably used for the light emitting layer or the electron transport layer of the light emitting element. In particular, since it has an excellent electron injecting and transporting capability, it is preferably used for the electron transporting layer.
  • the light-emitting element has an anode and a cathode, and an organic layer interposed between the anode and the cathode.
  • the organic layer includes at least a light emitting layer, and the light emitting layer emits light by electric energy.
  • the organic layer in addition to the structure composed of only the light emitting layer, 1) a hole transport layer / light emitting layer / electron transport layer, 2) a light emitting layer / electron transport layer, 3) a hole transport layer / light emitting layer, etc.
  • Each of the layers may be a single layer or a plurality of layers.
  • the layers in contact with the electrodes may be referred to as a hole injection layer and an electron injection layer, respectively.
  • the hole injection material is included in the hole transport material, and the electron injection material is included in the electron transport material.
  • the light emitting element is preferably formed over a substrate.
  • a glass substrate such as soda glass or non-alkali glass is preferably used.
  • the thickness of the glass substrate it is sufficient that the thickness is sufficient to maintain the mechanical strength.
  • alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass.
  • soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used.
  • the substrate does not need to be glass, and for example, a plastic substrate may be used.
  • the anode and the cathode have a role for supplying a sufficient current for light emission of the element.
  • the anode formed on the substrate is a transparent electrode.
  • the material used for the anode is preferably a material that can efficiently inject holes into the organic layer, and is transparent or translucent in order to extract light.
  • Materials used for the anode include conductive metal oxides such as tin oxide, indium oxide, indium tin oxide (ITO), and zinc indium oxide (IZO); metals such as gold, silver, and chromium; copper iodide, copper sulfide, and the like
  • Inorganic conductive compounds conductive polymers such as polythiophene, polypyrrole, and polyaniline. Although not particularly limited, it is particularly desirable to use ITO glass or Nesa glass. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the electric resistance of the transparent electrode is not limited as long as it can supply a current sufficient for light emission of the element, but it is desirable that the resistance is low from the viewpoint of power consumption of the element.
  • an ITO substrate having a surface electrical resistance of 300 ⁇ / ⁇ or less can be used as a device electrode, but since it is now possible to supply a substrate of about 10 ⁇ / ⁇ , 20 ⁇ / ⁇ or less. It is particularly desirable to use a low resistance substrate.
  • the thickness of the anode can be arbitrarily selected according to the resistance value, but is often used between 100 and 300 nm.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys and multilayer laminates of these metals with low work function metals such as lithium, sodium, potassium, calcium and magnesium Etc. are preferable.
  • a metal selected from aluminum, silver and magnesium is preferable from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like.
  • the cathode is made of magnesium and silver because electrons can be easily injected into the electron transport layer and the electron injection layer and can be driven at a low voltage.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium; alloys using these metals; inorganic compounds such as silica, titania and silicon nitride; polyvinyl alcohol, polychlorinated
  • organic polymer compounds such as vinyl and hydrocarbon polymer compounds are laminated on the cathode as a protective film layer.
  • the compound represented by General formula (1) can also be utilized as this protective film layer.
  • the protective film layer is selected from materials that are light transmissive in the visible light region.
  • the manufacturing method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
  • the hole transport layer needs to efficiently transport holes injected from the anode between electrodes to which an electric field is applied. Therefore, it is desirable that the hole transport material has high hole injection efficiency and efficiently transports the injected holes.
  • the hole transport material must have an appropriate ionization potential, have a high hole mobility, have excellent stability, and be a substance that does not easily generate trapping impurities during manufacturing and use. Is done.
  • the substance satisfying such conditions is not particularly limited, but 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl, 4,4′-bis (N— Triphenylamine derivatives such as (1-naphthyl) -N-phenylamino) biphenyl, 4,4 ′, 4 ′′ -tris (3-methylphenyl (phenyl) amino) triphenylamine; bis (N-allylcarbazole) or Biscarbazole derivatives such as bis (N-alkylcarbazole); pyrazoline derivatives; stilbene compounds; hydrazone compounds; heterocyclic compounds such as benzofuran derivatives, thiophene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives; fullerene derivatives; polymers In the system, the polycarbonate having the monomer in the side chain Sulfonate and styrene derivatives; or polythiophen
  • inorganic compounds such as p-type Si and p-type SiC can be used.
  • a compound represented by the following general formula (4), tetrafluorotetracyanoquinodimethane (4F-TCNQ) or molybdenum oxide can also be used.
  • R 22 to R 27 may be the same or different and are a group selected from the group consisting of halogen, sulfonyl group, carbonyl group, nitro group, cyano group and trifluoromethyl group.
  • the compound (5) (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) is preferably contained in the hole transport layer or the hole injection layer because it can be driven at a lower voltage.
  • the hole transport layer is formed by a method of laminating or mixing one or more hole transport materials or a method using a mixture of a hole transport material and a polymer binder.
  • the hole transport layer may be formed by adding an inorganic salt such as iron (III) chloride to the hole transport material.
  • the light emitting layer may be either a single layer or a plurality of layers.
  • the light emitting material may be a mixture of a host material and a dopant material, or a host material alone. That is, in the light emitting layer, only the host material or the dopant material may emit light, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material. Further, the host material and the dopant material may be either one kind or a plurality of combinations, respectively. The dopant material may be included in the entire host material or may be partially included.
  • the dopant material may be laminated with a layer made of the host material or may be dispersed in the host material.
  • the emission color can be controlled by mixing the host material and the dopant material. In this case, if the amount of the dopant material is too large, a concentration quenching phenomenon occurs. Therefore, the dopant material is preferably used in an amount of 20% by weight or less, more preferably 10% by weight or less based on the host material.
  • the host material and the dopant material may be co-evaporated, or the host material and the dopant material may be mixed in advance and then evaporated.
  • the light-emitting material include condensed ring derivatives such as anthracene and pyrene; metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum; bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives; Tetraphenylbutadiene derivative, indene derivative, coumarin derivative, oxadiazole derivative, pyrrolopyridine derivative, perinone derivative, cyclopentadiene derivative, oxadiazole derivative, thiadiazolopyridine derivative, dibenzofuran derivative, carbazole derivative, indolocarbazole derivative; polymer In the system, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives can be used, but are not particularly limited.
  • the compound represented by the general formula (1) is also preferably used as a light emitting material because it has high light emitting performance. Since the compound represented by the general formula (1) exhibits strong light emission in the ultraviolet to blue region (300 to 450 nm region), it can be suitably used as a blue light emitting material. Although the compound represented by the general formula (1) may be used as a dopant material, it is preferably used as a host material because it is excellent in thin film stability. In addition, since the compound represented by the general formula (1) has high luminous efficiency, high triplet level, bipolar property (both charge transport properties) and thin film stability, the phosphorescent dopant is particularly preferable. It is preferable to use as a host material to be combined with.
  • the host material need not be limited to only one compound, and a plurality of compounds may be mixed and used.
  • the host material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene and the like; N, N′-dinaphthyl- Aromatic amine derivatives such as N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine; metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III); distyrylbenzene Bisstyryl derivatives such as derivatives; tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perin
  • metal chelating oxinoid compounds dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, and the like are preferably used as the host material used when the light emitting layer emits phosphorescence.
  • the dopant material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof (for example, 2- (benzothiazole-2- Yl) -9,10-diphenylanthracene, 5,6,11,12-tetraphenylnaphthacene); furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene , Benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine, quinoxaline, pyrrolo
  • a dopant material used when the light emitting layer emits phosphorescence iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re) are used.
  • It is preferably a metal complex compound containing at least one metal selected from the group consisting of
  • the ligand preferably has a nitrogen-containing aromatic heterocycle such as a phenylpyridine skeleton or a phenylquinoline skeleton.
  • an appropriate complex is selected from the relationship between the required emission color, device performance, and host compound.
  • the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons.
  • the electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. Therefore, the electron transport material is required to be a substance having a high electron affinity, a high electron mobility, excellent stability, and a trapping impurity that is unlikely to be generated during manufacture and use. In particular, in the case of stacking a thick film, a low molecular weight compound is likely to be deteriorated due to crystallization or the like. Therefore, a compound having a molecular weight of 400 or more is preferable in order to maintain a stable film quality.
  • the electron transport layer plays a role in efficiently preventing holes from the anode from flowing to the cathode side without recombination, the electron transport capability is Even if the electron transport layer is made of a material that is not so high, the effect of improving the light emission efficiency is equivalent to that of a material made of a material having a high electron transport capability.
  • the electron transport material need not be limited to one kind, and a plurality of compounds may be mixed and used.
  • the electron transport material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, or pyrene or a derivative thereof; a styryl aromatic ring derivative represented by 4,4′-bis (diphenylethenyl) biphenyl; Perylene derivatives; perinone derivatives; coumarin derivatives; naphthalimide derivatives; quinone derivatives such as anthraquinone and diphenoquinone; phosphoroxide derivatives; carbazole derivatives; indole derivatives; quinolinol complexes such as tris (8-quinolinolato) aluminum (III); hydroxyphenyloxazole complexes And the like, such as hydroxyazole complexes; azomethine complexes; tropolone metal complexes; and flavonol metal complexes
  • the compound represented by the general formula (1) is particularly preferably used as an electron transporting material because it has a high electron injecting and transporting ability. Further, when the electron transport layer further contains a donor compound, the electron transport layer is highly compatible with the donor compound in a thin film state, and exhibits a higher electron injecting and transporting ability. By the action of the mixture layer, the transport of electrons from the cathode to the light emitting layer is promoted, and the effects of high luminous efficiency and low driving voltage are further improved.
  • the donor compound is a compound that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier and further improves the electrical conductivity of the electron transport layer. That is, in the light emitting device of the present invention, the electron transport layer more preferably contains a donor compound in order to improve the electron transport capability in addition to the compound represented by the general formula (1).
  • the donor compound include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal and an organic substance. And the like.
  • alkali metals and alkaline earth metals include alkali metals such as lithium, sodium, and cesium that have a low work function and a large effect of improving the electron transport ability, and alkaline earth metals such as magnesium and calcium.
  • the donor compound is preferably in a state of an inorganic salt or a complex with an organic substance rather than a single metal. Furthermore, it is more preferable that it is in the state of a complex of a metal and an organic matter from the viewpoint of easy handling in the air and easy control of the addition concentration.
  • inorganic salts include oxides such as LiO and Li 2 O; nitrides; fluorides such as LiF, NaF and KF; Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , And carbonates such as Cs 2 CO 3 .
  • a preferable example of the alkali metal or alkaline earth metal is lithium from the viewpoint that the raw materials are inexpensive and easy to synthesize.
  • preferable examples of the organic substance in the complex of metal and organic substance include quinolinol, benzoquinolinol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like.
  • a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable.
  • the doping ratio of the donor compound in the electron transport layer when the doping ratio of the donor compound in the electron transport layer is appropriate, the injection ratio of electrons from the cathode or the electron injection layer to the electron transport layer increases, and the cathode and the electron injection layer or the electron injection layer and the electron transport. The energy barrier between layers is reduced and the driving voltage is lowered.
  • the preferred doping concentration varies depending on the material and the film thickness of the doping region, but the electron transport layer is deposited by vapor deposition so that the deposition rate ratio of the electron transport material and the donor compound is in the range of 100: 1 to 1: 100. It is preferable to form.
  • the deposition rate ratio is more preferably 10: 1 to 1:10, and particularly preferably 7: 3 to 3: 7.
  • the method of improving the electron transport ability by doping a donor compound in the electron transport layer is particularly effective when the organic layer is thick.
  • the effect is particularly great when the total thickness of the electron transport layer and the light emitting layer is 50 nm or more.
  • there is a method of using the interference effect to improve the light emission efficiency but this improves the light extraction efficiency by matching the phase of the light directly emitted from the light emitting layer and the light reflected by the cathode. Is the method.
  • the optimum conditions vary depending on the light emission wavelength, but the total film thickness of the electron transport layer and the light emitting layer may be 50 nm or more. In the case where the light emission is long wavelength light emission such as red, the total film thickness of the electron transport layer and the light emitting layer may be a thick film near 100 nm.
  • the thicker the electron transport layer the higher the doping concentration. Doping may be performed on a part or all of the electron transport layer. However, when doping a part of the electron transport layer, providing a doping region at least at the electron transport layer / cathode interface is effective in reducing the voltage. Is desirable because it is obtained. In addition, when the light emitting layer is doped with the donor compound, it is desirable to provide a non-doped region at the light emitting layer / electron transport layer interface when adversely affecting the light emission efficiency.
  • each of the above layers constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, and coating method, but resistance heating vapor deposition or electron beam vapor deposition is preferable from the viewpoint of element characteristics.
  • the total thickness of the organic layer cannot be limited because it depends on the resistance value of the light-emitting substance, but is preferably 1 to 1000 nm.
  • the film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
  • the light emitting element has a function of converting electrical energy into light.
  • a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used.
  • the current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
  • the light emitting device of the present invention is suitably used as a matrix type and / or segment type display, for example.
  • the matrix method is a method in which pixels for display are two-dimensionally arranged such as a lattice shape or a mosaic shape, and a character or an image is displayed by a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order is used for a large display such as a display panel.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, typical pixel arrangements include a delta type and a stripe type.
  • the matrix driving method may be either line sequential driving or active matrix.
  • the line-sequential drive has a simple display structure, but the active characteristics of the active matrix are better, so it is necessary to use them properly depending on the application.
  • the segment method is a method in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • Examples of segment-type displays include time and temperature displays on digital clocks and thermometers, operating status displays for audio equipment and electromagnetic cookers, and car panel displays.
  • the matrix display and the segment display may coexist in the same panel.
  • the light-emitting element of the present invention is also preferably used as a backlight for various devices.
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, especially a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
  • Synthesis example 1 Synthesis of Compound [1] To a solution composed of 25.0 g of 2-bromofluorene, 12.2 g of iodine and 680 ml of acetic acid, 68 mL of sulfuric acid was slowly added under a nitrogen stream. After slowly adding 7.1 g of sodium nitrite to this mixed solution, the mixture was stirred for 2 hours under reflux. After the reaction mixture was cooled to room temperature, the precipitate was filtered. The obtained precipitate was washed with ethyl acetate, water and methanol, respectively, and vacuum-dried to obtain 25.9 g (yield 68%) of 2-bromo-7-iodofluorene.
  • the precipitate was purified by silica gel column chromatography, and the eluate was evaporated. 20 ml of methanol was added to the obtained solid and filtered. The solid was vacuum dried and purified by recrystallization using 65 mL of o-xylene to obtain 2.2 g of white crystals (yield 67%).
  • Compound [1] was used as a light emitting device material after sublimation purification at about 310 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.7% before sublimation purification and 99.7% after sublimation purification.
  • Synthesis example 2 Synthesis of Compound [2] After substituting a mixed solution of 2.4 g of intermediate (A), 2.1 g of 4- (4-pyridyl) phenylboronic acid pinacol ester, 24 mL of dimethoxyethane and 7 mL of 1.5 M aqueous sodium carbonate solution with nitrogen , 33 mg of bis (triphenylphosphine) palladium dichloride was added, and the mixture was stirred with heating under reflux for 12 and a half hours. The reaction mixture was cooled to room temperature, 24 mL of water was added, and the precipitate was filtered and dried in vacuo. The precipitate was purified by silica gel column chromatography.
  • Compound [2] was used as a light emitting device material after sublimation purification at about 310 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.9% before sublimation purification and 99.9% after sublimation purification.
  • Synthesis example 3 Synthesis of Compound [3] 2-Bromo-7-iodo-9,9-dimethylfluorene (11.5 g), 4- (9-carbazolyl) phenylboronic acid (9.1 g), dimethoxyethane (144 mL) and 1.5 M aqueous sodium carbonate solution (42 mL) The mixed solution was purged with nitrogen, 202 mg of bis (triphenylphosphine) palladium dichloride was added, and the mixture was heated and stirred at 60 ° C. for 5.5 hours. After the reaction mixture was cooled to about 40 ° C., 200 mL of water was added, and the precipitate was filtered.
  • the precipitate was dissolved in 500 mL of THF, added with 0.5 g of activated carbon and 0.8 g of QuadraSil (registered trademark), stirred at room temperature for 1 hour, and then filtered through a silica pad. The eluate was evaporated. 20 ml of methanol was added to the obtained solid and filtered. The solid was vacuum dried and recrystallized using 120 mL of N, N-dimethylformamide. Furthermore, recrystallization was performed using 105 mL of N, N-dimethylformamide to obtain 4.3 g (yield 75%) of pale yellow crystals.
  • Compound [3] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.9% before sublimation purification and 99.9% after sublimation purification.
  • Synthesis example 4 Synthesis of Compound [4] Intermediate (C) 5.1 g, 4- (2-pyridyl) phenylboronic acid 2.2 g, dimethoxyethane 49 mL and 1.5 M aqueous sodium carbonate solution 14 mL were mixed with nitrogen, 69 mg of (triphenylphosphine) palladium dichloride was added, and the mixture was stirred with heating under reflux for 4 and a half hours. After the reaction mixture was cooled to room temperature, 49 mL of water was added, and the precipitate was filtered and dried in vacuo.
  • the precipitate was purified by silica gel column chromatography, 0.8 g of QuadraSil (registered trademark) was added to the eluate, and the mixture was stirred at room temperature for 1 hour and filtered through celite. After the filtrate was evaporated, 20 ml of methanol was added to the obtained solid and filtered. The filtrate was vacuum dried and recrystallized using 54 mL of N, N-dimethylformamide. Furthermore, recrystallization was performed using 46 mL of N, N-dimethylformamide to obtain 3.5 g of white crystals (yield 60%).
  • Compound [4] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.8% before sublimation purification and 99.8% after sublimation purification.
  • Example 1 A glass substrate (manufactured by Geomat Co., Ltd., surface electrical resistance 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film is deposited to 150 nm is cut into 38 ⁇ 46 mm, and then etched to form the ITO transparent conductive film in a predetermined electrode shape. Formed. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • copper phthalocyanine is first formed to a thickness of 10 nm as a hole injection layer by resistance heating, and 4,4′-bis (N- (1-naphthyl) -N— as a hole transport layer. Phenylamino) biphenyl was deposited to a thickness of 50 nm each.
  • a layer in which the compound (H-1) as a host material and the compound (D-1) as a dopant material are mixed has a thickness of 40 nm so that the dopant concentration is 5% by weight. Vapor deposited.
  • a layer in which the compound [1] and lithium fluoride which is a donor compound are mixed as an electron transporting layer has a thickness of 20 nm at a deposition rate ratio of 1: 1 (0.05 nm / s: 0.05 nm / s). Vapor deposited and laminated.
  • lithium fluoride was vapor-deposited to a thickness of 0.5 nm, and then aluminum was vapor-deposited to a thickness of 1000 nm to form a cathode.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Examples 2 to 27 A light emitting device was fabricated in the same manner as in Example 1 except that the materials described in Table 1 and Table 2 were used as the host material, the dopant material, and the electron transport layer. The results are shown in Tables 1 and 2. Compounds [5] to [19] and 2E-1 are the compounds shown below.
  • Comparative Examples 1-12 A light emitting device was produced in the same manner as in Example 1 except that the materials described in Table 2 were used as the host material, the dopant material, and the electron transport layer. The results are shown in Table 2. In Tables 1 and 2, compounds E-1, E-2, E-3, and E-4 are the compounds shown below.
  • Examples 28-38 A light emitting device was fabricated in the same manner as in Example 1 except that the materials described in Table 3 were used as the host material, the dopant material, and the electron transport layer. The evaluation results are shown in Table 3. In Table 3, compounds H-2 to H-8 and D-2 to D-10 are the compounds shown below.
  • Examples 39 to 46, Comparative Examples 13 to 20 A light emitting device was fabricated in the same manner as in Example 1 except that the materials described in Table 4 were used as the host material and the dopant material, and tris (8-quinolinolato) aluminum (Alq) was used as the electron transport layer. The evaluation results are shown in Table 4.
  • the present invention provides a light emitting device material that enables an organic thin film light emitting device that achieves both high luminous efficiency and low driving voltage, and a light emitting device using the same.
  • the light emitting device material of the present invention can be preferably used for the electron transport layer or the light emitting layer of the light emitting device.

Abstract

Provided are: a light-emitting element material which contains a specific compound having a fluorene skeleton, a carbazole group and an aromatic heterocyclic group containing an electron-accepting nitrogen and which is capable of providing an organic thin film light-emitting element that has a good balance between high luminous efficiency and low driving voltage; and a light-emitting element which uses the light-emitting element material.

Description

発光素子材料および発光素子Light emitting device material and light emitting device
 本発明は、電気エネルギーを光に変換できる発光素子およびそれに用いられる材料に関する。本発明は、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能である。 The present invention relates to a light emitting element capable of converting electric energy into light and a material used therefor. The present invention can be used in fields such as display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, and optical signal generators.
 陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型で、かつ、低駆動電圧下での高輝度発光と、蛍光材料を選ぶことにより多色発光が可能であることが特徴であり、注目を集めている。コダック社のC.W.Tangらが、有機薄膜発光素子が高輝度に発光することを示して以来、多くの研究機関が有機薄膜発光素子の検討を行っている。 In recent years, research on organic thin-film light emitting devices that emit light when electrons injected from a cathode and holes injected from an anode are recombined in an organic phosphor sandwiched between both electrodes has been actively conducted. This light-emitting element is characterized by being thin and capable of high-intensity light emission under a low driving voltage and multicolor light emission by selecting a fluorescent material. Kodak's C.I. W. Since Tang et al. Have shown that organic thin film light emitting devices emit light with high brightness, many research institutions have been studying organic thin film light emitting devices.
 また、有機薄膜発光素子は、発光層に種々の蛍光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。三原色の発光材料の中では緑色発光材料の研究が最も進んでおり、現在は赤色発光材料と青色発光材料において、特性向上を目指して鋭意研究がなされている。 Also, organic thin-film light-emitting elements can be obtained in various light-emitting colors by using various fluorescent materials for the light-emitting layer, and therefore, research for practical application to displays and the like is active. Among the three primary color luminescent materials, research on the green luminescent material is the most advanced, and at present, intensive research is being conducted to improve the characteristics of the red and blue luminescent materials.
 有機薄膜発光素子には、発光効率の向上、駆動電圧の低下および耐久性の向上が必要である。中でも、発光効率が低いと高輝度を要する画像の出力ができなくなり、所望の輝度を出力するための消費電力量が多くなる。例えば、発光効率を向上させるために、フルオレンを基本骨格とした様々な発光材料や電子輸送材料が開発されている(特許文献1~4参照)。 Organic thin-film light-emitting elements need to improve luminous efficiency, drive voltage, and durability. In particular, when the luminous efficiency is low, it is impossible to output an image that requires high luminance, and the amount of power consumption for outputting desired luminance increases. For example, in order to improve luminous efficiency, various luminescent materials and electron transport materials having fluorene as a basic skeleton have been developed (see Patent Documents 1 to 4).
特開2004-91350号公報JP 2004-91350 A 特開2010-215759号公報JP 2010-215759 A 特開2004-277377号公報JP 2004-277377 A 特開2008-208065号公報JP 2008-208065 A
 しかしながら、従来公知の材料では、低電圧駆動と高発光効率との両立は不十分であった。本発明は、かかる従来技術の問題を解決し、高発光効率と低駆動電圧を両立した有機薄膜発光素子を可能にする発光素子材料およびこれを用いた発光素子を提供することを目的とするものである。 However, the conventionally known materials have not been compatible with low voltage driving and high luminous efficiency. SUMMARY OF THE INVENTION It is an object of the present invention to provide a light emitting device material that solves the problems of the prior art and enables an organic thin film light emitting device having both high luminous efficiency and low driving voltage, and a light emitting device using the same. It is.
 本発明は、下記一般式(1)で表される化合物を含有する発光素子材料である。 The present invention is a light emitting device material containing a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、Yは下記一般式(2)で表される基;Arは下記一般式(3)で表される基;Lは単結合、または核炭素数5~12の置換もしくは無置換のアリーレン基および置換もしくは無置換のヘテロアリーレン基から選ばれる基;Lは核炭素数5~12の置換もしくは無置換のアリーレン基、および置換もしくは無置換のヘテロアリーレン基から選ばれる基;Arは、無置換またはアルキル基もしくはシクロアルキル基で置換された電子受容性窒素を含む芳香族複素環基のみで構成される基;nは1~5の整数;n個のArは同じでも異なっていてもよい。 In the formula, Y is a group represented by the following general formula (2); Ar 1 is a group represented by the following general formula (3); L 1 is a single bond or a substituted or unsubstituted group having 5 to 12 nuclear carbon atoms. A group selected from an arylene group and a substituted or unsubstituted heteroarylene group; L 2 is a group selected from a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms and a substituted or unsubstituted heteroarylene group; Ar also the n Ar 2 is the same; 2, aromatic heterocyclic group only consists group containing electron-accepting nitrogen, which is unsubstituted or substituted alkyl group or a cycloalkyl group; n is an integer from 1 to 5 May be different.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 R~R10はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)R1112からなる群より選ばれる基;R11およびR12はアリール基およびヘテロアリール基から選ばれる基である;R~R12は隣接する置換基同士で環を形成していてもよい;ただし、R1~Rのうちいずれか一つはLとの連結に用いられ、さらに他のいずれか一つはLとの連結に用いられる。 R 1 to R 10 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether A group selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group and —P (═O) R 11 R 12 ; R 11 and R 12 are aryl groups R 1 to R 12 may form a ring with adjacent substituents; provided that any one of R 1 to R 8 is a group selected from L 1 and a heteroaryl group; used in connection, one further one of the other is used for connection with the L 2.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 R13~R21はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アリール基およびヘテロアリール基からなる群より選ばれる基。R13~R21は隣接する置換基同士で環を形成していても良い。ただし、R13~R21のうちいずれか一つはLとの連結に用いられる。 R 13 to R 21 may be the same or different and each is a group selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group. R 13 to R 21 may form a ring with adjacent substituents. However, any one of R 13 to R 21 is used for connection with L 1 .
 本発明により、高発光効率と低駆動電圧を両立した有機薄膜発光素子を提供することができる。 According to the present invention, it is possible to provide an organic thin film light emitting device that achieves both high luminous efficiency and low driving voltage.
 一般式(1)で表される化合物について詳細に説明する。 The compound represented by the general formula (1) will be described in detail.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式中、Yは下記一般式(2)で表される基、Arは下記一般式(3)で表される基である。Lは単結合、または核炭素数5~12の置換もしくは無置換のアリーレン基および置換もしくは無置換のヘテロアリーレン基から選ばれる基である。Lは核炭素数5~12の置換もしくは無置換のアリーレン基、および置換もしくは無置換のヘテロアリーレン基から選ばれる基である。Arは、無置換またはアルキル基もしくはシクロアルキル基で置換された電子受容性窒素を含む芳香族複素環基のみで構成される基である。nは1~5の整数である。n個のArは同じでも異なっていてもよい。 In the formula, Y is a group represented by the following general formula (2), and Ar 1 is a group represented by the following general formula (3). L 1 is a single bond or a group selected from a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms and a substituted or unsubstituted heteroarylene group. L 2 is a group selected from a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms and a substituted or unsubstituted heteroarylene group. Ar 2 is a group composed only of an aromatic heterocyclic group containing an electron-accepting nitrogen which is unsubstituted or substituted with an alkyl group or a cycloalkyl group. n is an integer of 1 to 5. n Ar 2 may be the same or different.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 R~R10はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)R1112からなる群より選ばれる基である。R11およびR12はアリール基およびヘテロアリール基から選ばれる基である。R~R12は隣接する置換基同士で環を形成していてもよい。ただし、R~Rのうちいずれか一つはLとの連結に用いられ、さらに他のいずれか一つはLとの連結に用いられる。ここで、R~Rのうちいずれか一つはLとの連結に用いられるとは、一般式(2)で表される基が、R~Rのうちいずれか一つの位置で、Lと直接結合しているという意味である。Lについても同様である。 R 1 to R 10 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether A group selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, and —P (═O) R 11 R 12 . R 11 and R 12 are groups selected from aryl groups and heteroaryl groups. R 1 to R 12 may form a ring with adjacent substituents. However, any one of R 1 to R 8 is used for connection with L 1, and any other one is used for connection with L 2 . Here, any one of R 1 to R 8 is used for linking with L 1 means that the group represented by the general formula (2) is located at any one position of R 1 to R 8. This means that it is directly bonded to L 1 . The same is true for L 2.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 R13~R21はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アリール基およびヘテロアリール基からなる群より選ばれる基である。R13~R21は隣接する置換基同士で環を形成していても良い。ただし、R13~R21のうちいずれか一つはLとの連結に用いられる。ここで、R13~R21のうちいずれか一つはLとの連結に用いられるとは、一般式(3)で表される基が、R13~R21のうちいずれか一つの位置で、Lと直接結合しているという意味である。 R 13 to R 21 may be the same or different and each is a group selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group. R 13 to R 21 may form a ring with adjacent substituents. However, any one of R 13 to R 21 is used for connection with L 1 . Here, any one of R 13 to R 21 is used for linking to L 1 means that the group represented by the general formula (3) is located at any one position of R 13 to R 21. This means that it is directly bonded to L 1 .
 上記の全ての基において、水素は重水素であってもよい。また、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。 In all the above groups, hydrogen may be deuterium. The alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. It may or may not have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of being substituted, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned, This point is common also in the following description. The number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。 The cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, which may or may not have a substituent. The number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 The heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. . Although carbon number of a heterocyclic group is not specifically limited, Preferably it is the range of 2-20.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 An alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent. Although carbon number of an alkenyl group is not specifically limited, Preferably it is the range of 2-20.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。 The alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. The number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have. Although carbon number of an alkoxy group is not specifically limited, Preferably it is the range of 1-20.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Preferably it is the range of 1-20.
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。 An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. Although carbon number of an aryl ether group is not specifically limited, Preferably, it is the range of 6-40.
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。 The aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom. The aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Preferably, it is the range of 6-40.
 アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。 The aryl group represents, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, or a pyrenyl group. The aryl group may or may not have a substituent. Although carbon number of an aryl group is not specifically limited, Preferably, it is the range of 6-40.
 ヘテロアリール基とは、フラニル基、チオフェニル基、ピリジル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ナフチリジル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリール基の炭素数は特に限定されないが、好ましくは、2以上30以下の範囲である。 A heteroaryl group is a furanyl group, thiophenyl group, pyridyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, naphthyridyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group And a cyclic aromatic group having one or more atoms other than carbon in the ring, such as a carbazolyl group, which may be unsubstituted or substituted. Although carbon number of heteroaryl group is not specifically limited, Preferably it is the range of 2-30.
 ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。 Halogen refers to an atom selected from fluorine, chlorine, bromine and iodine.
 カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基およびホスフィンオキサイド基は、置換基を有していても有していなくてもよい。ここで、置換基としては、例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。 The carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group and phosphine oxide group may or may not have a substituent. Here, examples of the substituent include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these substituents may be further substituted.
 アリーレン基とは、フェニル基、ナフチル基、ビフェニル基などの芳香族炭化水素基から導かれる2価の基を示し、これは置換基を有していても有していなくてもよい。一般式(1)のLまたはLがアリーレン基の場合、核炭素数は5以上12以下の範囲が好ましい。アリーレン基としては、具体的には、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、4,4’-ビフェニリレン基、4,3’-ビフェニリレン基、3,3’-ビフェニリレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,5-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基などが挙げられる。より好ましくは1,4-フェニレン基である。 An arylene group refers to a divalent group derived from an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, or a biphenyl group, which may or may not have a substituent. When L 1 or L 2 in the general formula (1) is an arylene group, the number of nuclear carbon atoms is preferably in the range of 5 or more and 12 or less. Specific examples of the arylene group include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 4,4′-biphenylylene group, 4,3′-biphenylylene group, 3,3 Examples include '-biphenylylene group, 1,4-naphthylene group, 1,5-naphthylene group, 2,5-naphthylene group, 2,6-naphthylene group, 2,7-naphthylene group and the like. More preferred is a 1,4-phenylene group.
 隣接する置換基同士で環を形成する場合、任意の隣接2置換基(例えば一般式(2)のRとR)が互いに結合して共役または非共役の縮合環を形成できる。縮合環の構成元素として、炭素以外にも窒素、酸素、硫黄、リンおよびケイ素から選ばれる原子を含んでいてもよいし、さらに別の環と縮合してもよい。 When adjacent substituents form a ring, any adjacent two substituents (for example, R 2 and R 3 in formula (2)) can be bonded to each other to form a conjugated or non-conjugated condensed ring. As a constituent element of the condensed ring, in addition to carbon, an atom selected from nitrogen, oxygen, sulfur, phosphorus and silicon may be contained, or it may be condensed with another ring.
 ヘテロアリーレン基とは、ピリジル基、キノリニル基、ピラジニル基、ナフチリジル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する芳香族基から導かれる2価の基を示し、これは置換基を有していても有していなくてもよい。ヘテロアリーレン基の炭素数は特に限定されないが、好ましくは、2~30の範囲である。 A heteroarylene group is derived from an aromatic group having one or more atoms other than carbon in the ring, such as a pyridyl group, a quinolinyl group, a pyrazinyl group, a naphthyridyl group, a dibenzofuranyl group, a dibenzothiophenyl group, or a carbazolyl group. A divalent group to be removed, which may or may not have a substituent. The number of carbon atoms of the heteroarylene group is not particularly limited, but is preferably in the range of 2-30.
 電子受容性窒素を含む芳香族複素環基とは、ヘテロアリール基のうち、炭素以外の原子として、電子受容性の窒素原子を一個または複数個環内に有する環状芳香族基を示す。電子受容性窒素を含む芳香族複素環基に含まれる電子受容性窒素の数は特に限定されないが、好ましくは、1以上6以下の範囲である。なお、これらはアルキル基またはシクロアルキル基で置換されていてもよい。 The aromatic heterocyclic group containing electron-accepting nitrogen refers to a cyclic aromatic group having one or more electron-accepting nitrogen atoms in the ring as atoms other than carbon in the heteroaryl group. Although the number of electron-accepting nitrogen contained in the aromatic heterocyclic group containing electron-accepting nitrogen is not particularly limited, it is preferably in the range of 1 or more and 6 or less. In addition, these may be substituted with an alkyl group or a cycloalkyl group.
 ここで言う電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。 The electron-accepting nitrogen mentioned here represents a nitrogen atom forming a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, an aromatic heterocycle containing electron-accepting nitrogen has a high electron affinity.
 電子受容性窒素を含む芳香族複素環基の例としては、ピリジル基、キノリニル基、イソキノリニル基、キノキサニル基、ピラジニル基、ピリミジル基、ピリダジニル基、フェナントロリニル基、イミダゾピリジル基、トリアジル基、アクリジル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ビピリジル基、ターピリジル基などが挙げられる。電子受容性窒素を含む芳香族複素環基の炭素数は特に限定されないが、好ましくは、2以上30以下の範囲である。電子受容性窒素を含む芳香族複素環基の連結位置はどの部分でもよく、例えばピリジル基の場合、2-ピリジル基、3-ピリジル基および4-ピリジル基のいずれでもよい。 Examples of aromatic heterocyclic groups containing electron-accepting nitrogen include pyridyl group, quinolinyl group, isoquinolinyl group, quinoxanyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, phenanthrolinyl group, imidazopyridyl group, triazyl group, Examples include an acridyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a bipyridyl group, and a terpyridyl group. Although carbon number of the aromatic heterocyclic group containing electron-accepting nitrogen is not specifically limited, Preferably it is the range of 2-30. The connecting position of the aromatic heterocyclic group containing an electron-accepting nitrogen may be any part. For example, in the case of a pyridyl group, any of 2-pyridyl group, 3-pyridyl group and 4-pyridyl group may be used.
 一般式(1)で表される化合物は、Arが、無置換またはアルキル基もしくはシクロアルキル基で置換された電子受容性窒素を含む芳香族複素環基のみで構成される基であることから、電子受容性窒素を含む芳香族複素環基が分子の外側(端部)に存在する。このことにより、一般式(1)で表される化合物を電子輸送層に用いた場合、陰極からの電子をより受け取りやすくなり、発光素子の駆動電圧を低くすることが可能となる。また、発光層への電子供与が多くなり、電子と正孔の再結合確率が高くなるので、発光素子の発光効率が向上する。 In the compound represented by the general formula (1), Ar 2 is a group composed of only an aromatic heterocyclic group containing an electron-accepting nitrogen which is unsubstituted or substituted with an alkyl group or a cycloalkyl group. An aromatic heterocyclic group containing electron-accepting nitrogen is present on the outside (end) of the molecule. Accordingly, when the compound represented by the general formula (1) is used for the electron transport layer, it becomes easier to receive electrons from the cathode, and the driving voltage of the light emitting element can be lowered. In addition, since the electron donation to the light emitting layer is increased and the probability of recombination of electrons and holes is increased, the light emission efficiency of the light emitting element is improved.
 なお、Arが、無置換またはアルキル基もしくはシクロアルキル基で置換された電子受容性窒素を含む芳香族複素環基のみで構成される基であるとは、Arが無置換の芳香族複素環基である場合はもちろんであるが、加えて、Arが置換された芳香族複素環基であって、その置換基が、アルキル基、シクロアルキル基および電子受容性窒素を含む芳香族複素環基から選ばれる場合も含む。後者の例として、ビピリジル基やビス(ピリジル)ピリジル基(いずれも、電子受容性窒素を含む芳香族複素環基であるピリジル基を置換基として有するピリジル基)等が挙げられる。なお、電子受容性窒素を含む芳香族複素環基のみで構成される基は、アルキル基またはシクロアルキル基で置換されていてもよいが、電子受容性窒素を含まない芳香族基で置換されていてはならない。置換基が、アルキル基またはシクロアルキル基である場合、これらの基には共役が広がらないため、電子受容性窒素を含む芳香族複素環の高い電子親和性に、大きな影響を及ぼさない。一方、電子受容性窒素を含む芳香族複素環基が、アリール基などの電子受容性窒素を含まない芳香族基で置換されている場合、これらの置換基まで共役が広がることにより、電子受容性窒素を含む芳香族複素環の高い電子親和性が損なわれる。つまり、電子受容性窒素を含む芳香族複素環基のみで構成される基がアルキル基またはシクロアルキル基で置換されていても、上記の効果が損なわれないが、電子受容性窒素を含まない芳香族基で置換されている場合、上記の効果が損なわれてしまう。 Incidentally, Ar 2 is and a group composed of only aromatic heterocyclic group containing electron-accepting nitrogen, which is unsubstituted or substituted alkyl group or a cycloalkyl group, Ar 2 is an unsubstituted aromatic heterocyclic Of course, when it is a cyclic group, Ar 2 is an aromatic heterocyclic group substituted, and the substituent includes an aromatic heterocyclic group containing an alkyl group, a cycloalkyl group, and an electron-accepting nitrogen. The case where it is selected from a cyclic group is also included. Examples of the latter include a bipyridyl group and a bis (pyridyl) pyridyl group (both are pyridyl groups having a pyridyl group which is an aromatic heterocyclic group containing an electron-accepting nitrogen as a substituent). Note that a group composed only of an aromatic heterocyclic group containing an electron-accepting nitrogen may be substituted with an alkyl group or a cycloalkyl group, but is not substituted with an aromatic group containing no electron-accepting nitrogen. must not. When the substituent is an alkyl group or a cycloalkyl group, conjugation does not extend to these groups, and thus the electron affinity of the aromatic heterocyclic ring containing electron-accepting nitrogen is not greatly affected. On the other hand, when an aromatic heterocyclic group containing an electron-accepting nitrogen is substituted with an aromatic group that does not contain an electron-accepting nitrogen such as an aryl group, conjugation extends to these substituents, resulting in an electron accepting property. The high electron affinity of the aromatic heterocycle containing nitrogen is impaired. That is, even if a group composed only of an aromatic heterocyclic group containing an electron-accepting nitrogen is substituted with an alkyl group or a cycloalkyl group, the above effect is not impaired, but an aromatic containing no electron-accepting nitrogen is used. When substituted with a group, the above effect is impaired.
 より具体的には、Arは以下に示す基からなる群から選ばれることが好ましい。 More specifically, Ar 2 is preferably selected from the group consisting of the following groups.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記において、ArとLとの結合位置を示す実線が、それぞれの多員環を構成する環を貫いて描かれているが、これは、ArとLとの結合位置が、Arの多員環のいずれの位置であってもよいことを意味する。例えば、ピリジル基の場合、2-ピリジル基、3-ピリジル基、4-ピリジル基のいずれであってもよいことを表し、キノリル基の場合は、2-キノリニル基、3-キノリニル基、4-キノリニル基、5-キノリニル基、6-キノリニル基、7-キノリニル基、8-キノリニル基のいずれであってもよいことを表す。また、ビピリジジル基等、複数の環が連結した基の場合は、一つの環から結合を描いているが、別の環で結合していてもよい。 In the above, the solid line indicating the bonding position between Ar 2 and L 2 is drawn through the ring constituting each multi-membered ring. This is because the bonding position between Ar 2 and L 2 is Ar It means that it may be at any position of the 2 multi-membered ring. For example, a pyridyl group represents any of 2-pyridyl group, 3-pyridyl group and 4-pyridyl group, and quinolyl group represents 2-quinolinyl group, 3-quinolinyl group, 4- It represents that any of a quinolinyl group, a 5-quinolinyl group, a 6-quinolinyl group, a 7-quinolinyl group, and an 8-quinolinyl group may be used. In addition, in the case of a group in which a plurality of rings are connected, such as a bipyridyl group, a bond is drawn from one ring, but may be bonded by another ring.
 また、上に例示した基は、アルキル基またはシクロアルキル基、好ましくはメチル基、エチル基、プロピル基、ブチル基またはシクロヘキシル基で置換されていてもよい。 In addition, the groups exemplified above may be substituted with an alkyl group or a cycloalkyl group, preferably a methyl group, an ethyl group, a propyl group, a butyl group, or a cyclohexyl group.
 Arは、好ましくはピリジル基、キノリニル基、イソキノリニル基、キノキサニル基、ピリミジル基、フェナントロリニル基、ビピリジル基、ターピリジル基、アクリジル基、ベンゾ[d]イミダゾリル基、イミダゾ[1,2-a]ピリジル基およびこれらがアルキル基またはシクロアルキル基、好ましくはメチル基またはシクロヘキシル基で置換された基などである。より具体的には2-ピリジル基、3-ピリジル基、4-ピリジル基、2-キノリニル基、3-キノリニル基、6-キノリニル基、1-イソキノリニル基、3-イソキノリニル基、2-キノキサニル基、5-ピリミジル基、2-フェナントロリニル基、1-ベンゾ[d]イミダゾリル基、2-ベンゾ[d]イミダゾリル基、2-イミダゾ[1,2-a]ピリジル基、3-イミダゾ[1,2-a]ピリジル基、3-メチル-2-ピリジル基、4-メチル-2-ピリジル基、5-メチル-2-ピリジル基、6-メチル-2-ピリジル基、2-メチル-3-ピリジル基、4-メチル-3-ピリジル基、5-メチル-3-ピリジル基、6-メチル-3-ピリジル基、2-メチル-4-ピリジル基、3-メチル-4-ピリジル基、4-メチル-2-キノリン基などが挙げられ、より好ましくは2-ピリジル基、3-ピリジル基、4-ピリジル基などが挙げられる。 Ar 2 is preferably a pyridyl group, quinolinyl group, isoquinolinyl group, quinoxanyl group, pyrimidyl group, phenanthrolinyl group, bipyridyl group, terpyridyl group, acridyl group, benzo [d] imidazolyl group, imidazo [1,2-a ] A pyridyl group and a group in which these are substituted with an alkyl group or a cycloalkyl group, preferably a methyl group or a cyclohexyl group. More specifically, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-quinolinyl group, 3-quinolinyl group, 6-quinolinyl group, 1-isoquinolinyl group, 3-isoquinolinyl group, 2-quinoxanyl group, 5-pyrimidyl group, 2-phenanthrolinyl group, 1-benzo [d] imidazolyl group, 2-benzo [d] imidazolyl group, 2-imidazol [1,2-a] pyridyl group, 3-imidazolo [1, 2-a] pyridyl group, 3-methyl-2-pyridyl group, 4-methyl-2-pyridyl group, 5-methyl-2-pyridyl group, 6-methyl-2-pyridyl group, 2-methyl-3-pyridyl group Group, 4-methyl-3-pyridyl group, 5-methyl-3-pyridyl group, 6-methyl-3-pyridyl group, 2-methyl-4-pyridyl group, 3-methyl-4-pyridyl group, 4-methyl -2-Kinori Such group, more preferably 2-pyridyl, 3-pyridyl, 4-pyridyl group and the like can be mentioned.
 一般式(1)で表される化合物は、分子中にフルオレン骨格と電子受容性窒素を含む芳香族複素環とを有していることにより、フルオレン骨格の高い電子輸送性および電気化学的安定性と、電子受容性窒素を含む芳香族複素環の高い電子受容性を併せ持つ。これによって、一般式(1)で表される化合物は、高い電子注入輸送能を発現する。 The compound represented by the general formula (1) has a fluorene skeleton and an aromatic heterocyclic ring containing an electron-accepting nitrogen in the molecule, so that the electron transportability and electrochemical stability of the fluorene skeleton are high. And the high electron-accepting property of aromatic heterocycles containing electron-accepting nitrogen. Thereby, the compound represented by the general formula (1) exhibits a high electron injecting and transporting ability.
 一般式(1)で表される化合物は、分子中に電子受容性窒素を含む芳香族複素環Arを1~5個有していることにより、高いキャリア移動度および良好なキャリアバランスを有する。これによって、一般式(1)で表される化合物は、発光素子の発光効率を向上させることができる。さらに一般式(1)で表される化合物は、高い耐熱性を有するため、発光素子の耐久性を向上させることができる。結晶性低減および置換基の効果が顕著に発現する観点から、Arの数は1個または2個の場合がより好ましく、1個の場合が特に好ましい。Arが2個以上の場合、Arは同じでも異なっていてもよい。 The compound represented by the general formula (1) has high carrier mobility and good carrier balance by having 1 to 5 aromatic heterocycles Ar 2 containing electron-accepting nitrogen in the molecule. . Thus, the compound represented by the general formula (1) can improve the light emission efficiency of the light emitting element. Furthermore, since the compound represented by General formula (1) has high heat resistance, it can improve the durability of the light-emitting element. From the viewpoint of reducing the crystallinity and the effect of the substituent remarkably, the number of Ar 2 is more preferably 1 or 2, and particularly preferably 1. When two or more Ar 2 are present, Ar 2 may be the same or different.
 さらに、一般式(1)で表される化合物は、分子中にフルオレン骨格とカルバゾール基を有していることにより、分子間のスタッキングが抑制され膜質が安定する。また正孔耐性のあるカルバゾール基を有することで、正孔に対する電気化学的安定性が向上する。これによって、一般式(1)で表される化合物は、より高い電子注入輸送能を発現する。 Furthermore, since the compound represented by the general formula (1) has a fluorene skeleton and a carbazole group in the molecule, stacking between molecules is suppressed and the film quality is stabilized. Moreover, the electrochemical stability with respect to a hole improves by having a carbazole group with hole tolerance. Thereby, the compound represented by the general formula (1) expresses higher electron injecting and transporting ability.
 また、一般式(2)におけるRがLとの連結に用いられることが望ましい。フルオレンはRおよびRの位置で共役系が広がりやすく、RがLとの連結に用いられることで、効率的に共役系が広がる。これにより、一般式(1)で表される化合物は、電気化学的に安定になり、さらに電子輸送性が向上するため、より高い電子注入輸送能を発現する。 Moreover, it is desirable that R 7 in the general formula (2) is used for connection with L 1 . In fluorene, the conjugated system easily spreads at the positions of R 2 and R 7 , and the conjugated system is efficiently spread by using R 7 for connection to L 1 . As a result, the compound represented by the general formula (1) becomes electrochemically stable and further improves the electron transport property, and thus exhibits a higher electron injecting and transporting ability.
 また、一般式(2)におけるRがLとの連結に用いられることが望ましい。フルオレンはRおよびRの位置で共役系が広がりやすく、RがLとの連結に用いられることで、効率的に共役系が広がる。これにより、一般式(1)で表される化合物は、電気化学的に安定になり、さらに電子輸送性が向上するため、より高い電子注入輸送能を発現する。 Moreover, it is desirable that R 2 in the general formula (2) is used for connection to L 2 . In fluorene, the conjugated system easily spreads at the positions of R 2 and R 7 , and the conjugated system is efficiently spread when R 2 is used for connection with L 2 . As a result, the compound represented by the general formula (1) becomes electrochemically stable and further improves the electron transport property, and thus exhibits a higher electron injecting and transporting ability.
 また、一般式(3)におけるR15、R18またはR21がLとの連結に用いられることが望ましい。カルバゾールはR15、R18およびR21の位置が酸化に弱いため、この位置が連結基と結合することで、一般式(1)で表される化合物は電気化学的に安定になり、より高い電子注入輸送能を発現する。 Moreover, it is desirable that R 15 , R 18 or R 21 in the general formula (3) is used for connection with L 1 . Since the positions of R 15 , R 18, and R 21 are vulnerable to oxidation in carbazole, the compound represented by the general formula (1) becomes electrochemically stable by combining this position with a linking group, and is higher. Expresses electron injection and transport ability.
 なお、例えば、RがLとの連結に用いられるとは、一般式(2)で表される基のベンゼン環のRの位置と連結基Lで表される基とが直接結合することをいう。 In addition, for example, R 7 is used for linking with L 1 means that the position of R 7 of the benzene ring of the group represented by the general formula (2) and the group represented by the linking group L 1 are directly bonded. To do.
 また、Lが、核炭素数5~12の置換もしくは無置換のアリーレン基であることが好ましい。カルバゾール基は酸化に弱いため、フルオレン骨格に直接結合するよりもアリーレン基を介して結合する方が、電気化学的により安定となる。これにより、フルオレン骨格の高い電子輸送性と相乗効果を生み出し、より高い電子注入輸送能を発現する。 L 1 is preferably a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms. Since a carbazole group is vulnerable to oxidation, it is electrochemically more stable to bond via an arylene group than to bond directly to a fluorene skeleton. As a result, a high electron transporting property and a synergistic effect of the fluorene skeleton are produced, and a higher electron injecting and transporting ability is expressed.
 また、Lが核炭素数5~12の置換もしくは無置換のアリーレン基であることが好ましい。電子受容性窒素を含む芳香族複素環は酸化に弱いため、フルオレン骨格に直接結合するよりもアリーレン基を介して結合する方が、電気化学的により安定となる。これにより、フルオレン骨格の高い電子輸送性と相乗効果を生み出し、より高い電子注入輸送能を発現する。 L 2 is preferably a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms. Since aromatic heterocycles containing electron-accepting nitrogen are vulnerable to oxidation, it is more electrochemically stable to bond via an arylene group than to bond directly to a fluorene skeleton. As a result, a high electron transporting property and a synergistic effect of the fluorene skeleton are produced, and a higher electron injecting and transporting ability is expressed.
 一般式(1)で表される化合物において、R~R21としては、上記の中でも水素、アルキル基、シクロアルキル基、アリール基およびヘテロアリール基から選ばれる基が好ましい。さらに、R~R10としては、上記の中でもアルキル基、シクロアルキル基、アリール基またはヘテロアリール基が好ましい。R21としては、上記の中でもアリール基またはヘテロアリール基が好ましい。 In the compound represented by the general formula (1), R 1 to R 21 are preferably groups selected from hydrogen, an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group among the above. Furthermore, among R 9 to R 10 , among the above, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group is preferable. R 21 is preferably an aryl group or a heteroaryl group among the above.
 上記一般式(1)に表される化合物としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。 The compound represented by the general formula (1) is not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 一般式(1)で表される化合物の合成には、公知の方法を使用することができる。フルオレン骨格へカルバゾール基を導入する方法としては、例えば、パラジウム触媒やニッケル触媒下でハロゲン化フルオレン誘導体と置換もしくは無置換のカルバゾールボロン酸のカップリング反応を用いる方法が挙げられるが、これらに限定されるものではない。また、フルオレン骨格へ電子受容性窒素を含む芳香族複素環を導入する方法としても、上記と同様に、例えば、パラジウム触媒やニッケル触媒下でハロゲン化フルオレン誘導体と電子受容性窒素を含む芳香族複素環のボロン酸のカップリング反応を用いる方法が挙げられるが、これらに限定されるものではない。なお、カルバゾール基または電子受容性窒素を含む芳香族複素環を、アリーレン基を介してフルオレン骨格へ導入する場合は、カルバゾール基または電子受容性窒素を含む芳香族複素環が置換したアリールボロン酸を用いてもよい。また、上記の各種ボロン酸に代えて、ボロン酸エステルを用いてもよい。 A known method can be used for the synthesis of the compound represented by the general formula (1). Examples of the method for introducing a carbazole group into the fluorene skeleton include a method using a coupling reaction of a halogenated fluorene derivative and a substituted or unsubstituted carbazole boronic acid under a palladium catalyst or a nickel catalyst, but are not limited thereto. It is not something. In addition, as a method for introducing an aromatic heterocyclic ring containing electron-accepting nitrogen into the fluorene skeleton, for example, an aromatic heterocyclic ring containing a halogenated fluorene derivative and electron-accepting nitrogen under a palladium catalyst or a nickel catalyst may be used. Although the method using the coupling reaction of the boronic acid of a ring is mentioned, It is not limited to these. When an aromatic heterocyclic ring containing a carbazole group or electron-accepting nitrogen is introduced into the fluorene skeleton through an arylene group, an aryl boronic acid substituted with an aromatic heterocyclic ring containing a carbazole group or electron-accepting nitrogen is used. It may be used. Further, boronic acid esters may be used in place of the various boronic acids described above.
 一般式(1)で表される化合物は、発光素子材料として用いられる。ここで発光素子材料とは、発光素子のいずれかの層に使用される材料を表し、後述するように、正孔輸送層、発光層および電子輸送層から選ばれた層に使用される材料であるほか、陰極の保護膜に使用される材料も含む。一般式(1)で表される化合物を、発光素子のいずれかの層に使用することにより、高い発光効率が得られ、かつ低駆動電圧の発光素子が得られる。 The compound represented by the general formula (1) is used as a light emitting device material. Here, the light emitting element material represents a material used for any layer of the light emitting element, and is a material used for a layer selected from a hole transport layer, a light emitting layer, and an electron transport layer, as will be described later. In addition, the material used for the protective film of a cathode is also included. By using the compound represented by the general formula (1) in any layer of the light-emitting element, a high light-emitting efficiency and a light-emitting element with a low driving voltage can be obtained.
 一般式(1)で表される化合物は、高い電子注入輸送能、発光効率および薄膜安定性を有しているため、発光素子の発光層または電子輸送層に用いることが好ましい。特に、優れた電子注入輸送能を有していることから、電子輸送層に用いることが好ましい。 Since the compound represented by the general formula (1) has high electron injection and transport ability, light emission efficiency, and thin film stability, it is preferably used for the light emitting layer or the electron transport layer of the light emitting element. In particular, since it has an excellent electron injecting and transporting capability, it is preferably used for the electron transporting layer.
 次に、発光素子について詳細に説明する。発光素子は、陽極と陰極、およびそれら陽極と陰極との間に介在する有機層を有する。該有機層は少なくとも発光層を含み、該発光層が電気エネルギーにより発光する。 Next, the light emitting element will be described in detail. The light-emitting element has an anode and a cathode, and an organic layer interposed between the anode and the cathode. The organic layer includes at least a light emitting layer, and the light emitting layer emits light by electric energy.
 有機層としては、発光層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層、2)発光層/電子輸送層、3)正孔輸送層/発光層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。正孔輸送層および電子輸送層が複数層を有する場合、電極に接する側の層をそれぞれ正孔注入層および電子注入層と呼ぶことがあるが、以下の説明では、特に言及しない限りは、正孔注入材料は正孔輸送材料に、電子注入材料は電子輸送材料にそれぞれ含まれる。 As the organic layer, in addition to the structure composed of only the light emitting layer, 1) a hole transport layer / light emitting layer / electron transport layer, 2) a light emitting layer / electron transport layer, 3) a hole transport layer / light emitting layer, etc. A configuration is mentioned. Each of the layers may be a single layer or a plurality of layers. When the hole transport layer and the electron transport layer have a plurality of layers, the layers in contact with the electrodes may be referred to as a hole injection layer and an electron injection layer, respectively. The hole injection material is included in the hole transport material, and the electron injection material is included in the electron transport material.
 また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。または、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、基板はガラスである必要はなく、例えば、プラスチック基板を用いても良い。 In order to maintain the mechanical strength of the light emitting element, the light emitting element is preferably formed over a substrate. As the substrate, a glass substrate such as soda glass or non-alkali glass is preferably used. As the thickness of the glass substrate, it is sufficient that the thickness is sufficient to maintain the mechanical strength. As for the glass material, alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass. Alternatively, soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used. Furthermore, the substrate does not need to be glass, and for example, a plastic substrate may be used.
 発光素子において、陽極と陰極は、素子の発光のために十分な電流を供給するための役割を有するものである。光を取り出すために、陽極と陰極の少なくとも一方は透明または半透明であることが望ましい。通常、基板上に形成される陽極を透明電極とする。 In the light emitting element, the anode and the cathode have a role for supplying a sufficient current for light emission of the element. In order to extract light, it is desirable that at least one of the anode and the cathode is transparent or translucent. Usually, the anode formed on the substrate is a transparent electrode.
 陽極に用いる材料は、正孔を有機層に効率よく注入できる材料であって、かつ、光を取り出すために透明または半透明であることが好ましい。陽極に用いる材料としては、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物;金、銀、クロムなどの金属;ヨウ化銅、硫化銅などの無機導電性化合物;ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどが挙げられる。特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。透明電極の電気抵抗は、素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば、表面電気抵抗が300Ω/□以下のITO基板であれば、素子電極として十分使用可能であるが、現在では10Ω/□程度の基板の供給も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが特に望ましい。陽極の厚みは、抵抗値に合わせて任意に選ぶことができるが、100~300nmの間で用いられることが多い。 The material used for the anode is preferably a material that can efficiently inject holes into the organic layer, and is transparent or translucent in order to extract light. Materials used for the anode include conductive metal oxides such as tin oxide, indium oxide, indium tin oxide (ITO), and zinc indium oxide (IZO); metals such as gold, silver, and chromium; copper iodide, copper sulfide, and the like Inorganic conductive compounds: conductive polymers such as polythiophene, polypyrrole, and polyaniline. Although not particularly limited, it is particularly desirable to use ITO glass or Nesa glass. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed. The electric resistance of the transparent electrode is not limited as long as it can supply a current sufficient for light emission of the element, but it is desirable that the resistance is low from the viewpoint of power consumption of the element. For example, an ITO substrate having a surface electrical resistance of 300Ω / □ or less can be used as a device electrode, but since it is now possible to supply a substrate of about 10Ω / □, 20Ω / □ or less. It is particularly desirable to use a low resistance substrate. The thickness of the anode can be arbitrarily selected according to the resistance value, but is often used between 100 and 300 nm.
 陰極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層体などが好ましい。中でも、アルミニウム、銀およびマグネシウムから選ばれる金属が、電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。特に陰極がマグネシウムと銀で構成されると、電子輸送層および電子注入層への電子注入が容易になり、低電圧駆動が可能になるため好ましい。 The material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer. Generally, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys and multilayer laminates of these metals with low work function metals such as lithium, sodium, potassium, calcium and magnesium Etc. are preferable. Among these, a metal selected from aluminum, silver and magnesium is preferable from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like. In particular, it is preferable that the cathode is made of magnesium and silver because electrons can be easily injected into the electron transport layer and the electron injection layer and can be driven at a low voltage.
 さらに、陰極保護のために、白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属;これら金属を用いた合金;シリカ、チタニアおよび窒化ケイ素などの無機化合物;ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物などを、保護膜層として陰極上に積層することが、好ましい例として挙げられる。また、一般式(1)で表される化合物もこの保護膜層として利用できる。ただし、陰極側から光を取り出す素子構造(トップエミッション構造)の場合は、保護膜層は可視光領域で光透過性のある材料から選択される。 Furthermore, for cathode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium; alloys using these metals; inorganic compounds such as silica, titania and silicon nitride; polyvinyl alcohol, polychlorinated As a preferred example, organic polymer compounds such as vinyl and hydrocarbon polymer compounds are laminated on the cathode as a protective film layer. Moreover, the compound represented by General formula (1) can also be utilized as this protective film layer. However, in the case of an element structure (top emission structure) that extracts light from the cathode side, the protective film layer is selected from materials that are light transmissive in the visible light region.
 これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど特に制限されない。 The manufacturing method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
 正孔輸送層は、電界を与えられた電極間において陽極から注入された正孔を効率良く輸送することが必要である。したがって、正孔輸送材料は、正孔注入効率が高く、注入された正孔を効率良く輸送することが望ましい。そのためには、正孔輸送材料は、適切なイオン化ポテンシャルを持ち、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、特に限定されるものではないが、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体;ビス(N-アリルカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体;ピラゾリン誘導体;スチルベン系化合物;ヒドラゾン系化合物;ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物;フラーレン誘導体;ポリマー系では、前記単量体を側鎖に有するポリカーボネートやスチレン誘導体;あるいは、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが好ましい。 The hole transport layer needs to efficiently transport holes injected from the anode between electrodes to which an electric field is applied. Therefore, it is desirable that the hole transport material has high hole injection efficiency and efficiently transports the injected holes. For this purpose, the hole transport material must have an appropriate ionization potential, have a high hole mobility, have excellent stability, and be a substance that does not easily generate trapping impurities during manufacturing and use. Is done. The substance satisfying such conditions is not particularly limited, but 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl, 4,4′-bis (N— Triphenylamine derivatives such as (1-naphthyl) -N-phenylamino) biphenyl, 4,4 ′, 4 ″ -tris (3-methylphenyl (phenyl) amino) triphenylamine; bis (N-allylcarbazole) or Biscarbazole derivatives such as bis (N-alkylcarbazole); pyrazoline derivatives; stilbene compounds; hydrazone compounds; heterocyclic compounds such as benzofuran derivatives, thiophene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives; fullerene derivatives; polymers In the system, the polycarbonate having the monomer in the side chain Sulfonate and styrene derivatives; or polythiophene, polyaniline, polyfluorene, polyvinylcarbazole and polysilane are preferred.
 また、正孔輸送材料としては、p型Si、p型SiC等の無機化合物も使用できる。また、下記一般式(4)で表される化合物、テトラフルオロテトラシアノキノジメタン(4F-TCNQ)または酸化モリブデンも用いることができる。 Also, as the hole transport material, inorganic compounds such as p-type Si and p-type SiC can be used. Further, a compound represented by the following general formula (4), tetrafluorotetracyanoquinodimethane (4F-TCNQ) or molybdenum oxide can also be used.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 R22~R27はそれぞれ同じでも異なっていてもよく、ハロゲン、スルホニル基、カルボニル基、ニトロ基、シアノ基およびトリフルオロメチル基からなる群より選ばれる基である。 R 22 to R 27 may be the same or different and are a group selected from the group consisting of halogen, sulfonyl group, carbonyl group, nitro group, cyano group and trifluoromethyl group.
 中でも、化合物(5)(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)が正孔輸送層または正孔注入層に含まれると、より低電圧駆動となるため好ましい。 Among these, the compound (5) (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) is preferably contained in the hole transport layer or the hole injection layer because it can be driven at a lower voltage.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 正孔輸送層は、正孔輸送材料の一種または二種以上を積層または混合する方法、もしくは、正孔輸送材料と高分子結着剤の混合物を用いる方法により形成される。また、正孔輸送材料に塩化鉄(III)のような無機塩を添加して正孔輸送層を形成してもよい。 The hole transport layer is formed by a method of laminating or mixing one or more hole transport materials or a method using a mixture of a hole transport material and a polymer binder. Alternatively, the hole transport layer may be formed by adding an inorganic salt such as iron (III) chloride to the hole transport material.
 発光層は、単一層、複数層のどちらでもよい。発光材料は、ホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合物からなることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料は、ホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は、ホスト材料からなる層と積層されていても、ホスト材料中に分散されていても、いずれでもよい。ホスト材料とドーパント材料を混合することにより、発光色の制御ができる。この場合、ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ホスト材料とドーパント材料を混合する方法としては、ホスト材料とドーパント材料を共蒸着法にしても良いし、ホスト材料とドーパント材料を予め混合してから蒸着してもよい。 The light emitting layer may be either a single layer or a plurality of layers. The light emitting material may be a mixture of a host material and a dopant material, or a host material alone. That is, in the light emitting layer, only the host material or the dopant material may emit light, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material. Further, the host material and the dopant material may be either one kind or a plurality of combinations, respectively. The dopant material may be included in the entire host material or may be partially included. The dopant material may be laminated with a layer made of the host material or may be dispersed in the host material. The emission color can be controlled by mixing the host material and the dopant material. In this case, if the amount of the dopant material is too large, a concentration quenching phenomenon occurs. Therefore, the dopant material is preferably used in an amount of 20% by weight or less, more preferably 10% by weight or less based on the host material. As a method of mixing the host material and the dopant material, the host material and the dopant material may be co-evaporated, or the host material and the dopant material may be mixed in advance and then evaporated.
 発光材料としては、具体的には、アントラセンやピレンなどの縮合環誘導体;トリス(8-キノリノラート)アルミニウムを始めとする金属キレート化オキシノイド化合物;ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体;テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体;ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体;などが使用できるが、特に限定されるものではない。 Specific examples of the light-emitting material include condensed ring derivatives such as anthracene and pyrene; metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum; bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives; Tetraphenylbutadiene derivative, indene derivative, coumarin derivative, oxadiazole derivative, pyrrolopyridine derivative, perinone derivative, cyclopentadiene derivative, oxadiazole derivative, thiadiazolopyridine derivative, dibenzofuran derivative, carbazole derivative, indolocarbazole derivative; polymer In the system, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives can be used, but are not particularly limited.
 一般式(1)で表される化合物も、高い発光性能を有することから、発光材料として好ましく用いられる。一般式(1)で表される化合物は、紫外~青色領域(300~450nm領域)に強い発光を示すことから、青色発光材料として好適に用いることができる。一般式(1)で表される化合物は、ドーパント材料として用いてもよいが、薄膜安定性に優れることから、ホスト材料として好適に用いられる。また、一般式(1)で表される化合物は、高い発光効率、高い三重項準位、バイポーラー性(両電荷輸送性)および薄膜安定性を有しているため、特に、りん光性ドーパントと組み合わせるホスト材料として用いることが好ましい。 The compound represented by the general formula (1) is also preferably used as a light emitting material because it has high light emitting performance. Since the compound represented by the general formula (1) exhibits strong light emission in the ultraviolet to blue region (300 to 450 nm region), it can be suitably used as a blue light emitting material. Although the compound represented by the general formula (1) may be used as a dopant material, it is preferably used as a host material because it is excellent in thin film stability. In addition, since the compound represented by the general formula (1) has high luminous efficiency, high triplet level, bipolar property (both charge transport properties) and thin film stability, the phosphorescent dopant is particularly preferable. It is preferable to use as a host material to be combined with.
 ホスト材料は、化合物一種のみに限る必要はなく、複数の化合物を混合して用いてもよい。ホスト材料としては、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体;N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体;トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物;ジスチリルベンゼン誘導体などのビススチリル誘導体;テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体;ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが使用できるが、特に限定されるものではない。中でも、発光層がりん光発光を行う際に用いられるホスト材料としては、金属キレート化オキシノイド化合物、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体などが好適に用いられる。 The host material need not be limited to only one compound, and a plurality of compounds may be mixed and used. The host material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene and the like; N, N′-dinaphthyl- Aromatic amine derivatives such as N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine; metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III); distyrylbenzene Bisstyryl derivatives such as derivatives; tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives, thiadiazolopyridines Derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives; in the polymer system, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, polythiophene derivatives, etc. can be used, but are particularly limited is not. Among these, metal chelating oxinoid compounds, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, and the like are preferably used as the host material used when the light emitting layer emits phosphorescence.
 ドーパント材料としては、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体(例えば2-(ベンゾチアゾール-2-イル)-9,10-ジフェニルアントラセンや5,6,11,12-テトラフェニルナフタセンなど);フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体;ボラン誘導体;ジスチリルベンゼン誘導体;4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベンなどのアミノスチリル誘導体;芳香族アセチレン誘導体;テトラフェニルブタジエン誘導体;スチルベン誘導体;アルダジン誘導体;ピロメテン誘導体;ジケトピロロ[3,4-c]ピロール誘導体;2,3,5,6-1H,4H-テトラヒドロ-9-(2’-ベンゾチアゾリル)キノリジノ[9,9a,1-gh]クマリンなどのクマリン誘導体;イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体;およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などが挙げられる。 The dopant material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, triphenylene, perylene, fluoranthene, fluorene, indene or a derivative thereof (for example, 2- (benzothiazole-2- Yl) -9,10-diphenylanthracene, 5,6,11,12-tetraphenylnaphthacene); furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene , Benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene, etc. And its derivatives; borane derivatives; distyrylbenzene derivatives; 4,4′-bis (2- (4-diphenylaminophenyl) ethenyl) biphenyl, 4,4′-bis (N- (stilben-4-yl) -N -Aminostyryl derivatives such as phenylamino) stilbene; aromatic acetylene derivatives; tetraphenylbutadiene derivatives; stilbene derivatives; aldazine derivatives; pyromethene derivatives; diketopyrrolo [3,4-c] pyrrole derivatives; , 4H-tetrahydro-9- (2′-benzothiazolyl) quinolidino [9,9a, 1-gh] coumarin derivatives such as coumarin; azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole, triazole and the like A metal complex; and , N'- diphenyl -N, etc. N'- di (3-methylphenyl) -4,4'-aromatic amine derivative typified by diphenyl 1,1'-diamine.
 また、発光層がりん光発光を行う際に用いられるドーパント材料としては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、およびレニウム(Re)からなる群から選択される少なくとも一つの金属を含む金属錯体化合物であることが好ましい。配位子は、フェニルピリジン骨格またはフェニルキノリン骨格などの含窒素芳香族複素環を有することが好ましい。しかしながら、これらに限定されるものではなく、要求される発光色、素子性能およびホスト化合物との関係から適切な錯体が選ばれる。 In addition, as a dopant material used when the light emitting layer emits phosphorescence, iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re) are used. It is preferably a metal complex compound containing at least one metal selected from the group consisting of The ligand preferably has a nitrogen-containing aromatic heterocycle such as a phenylpyridine skeleton or a phenylquinoline skeleton. However, it is not limited to these, and an appropriate complex is selected from the relationship between the required emission color, device performance, and host compound.
 電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため電子輸送材料は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。特に膜厚を厚く積層する場合には、低分子量の化合物は結晶化するなどして膜質が劣化しやすいため、安定な膜質を保つために分子量400以上の化合物が好ましい。一方、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れることを効率よく阻止できる役割を電子輸送層が果たすならば、電子輸送能力がそれ程高くない材料で電子輸送層が構成されていても、発光効率を向上させる効果は、電子輸送能力が高い材料で構成されている場合と同等となる。 The electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons. The electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. Therefore, the electron transport material is required to be a substance having a high electron affinity, a high electron mobility, excellent stability, and a trapping impurity that is unlikely to be generated during manufacture and use. In particular, in the case of stacking a thick film, a low molecular weight compound is likely to be deteriorated due to crystallization or the like. Therefore, a compound having a molecular weight of 400 or more is preferable in order to maintain a stable film quality. On the other hand, considering the transport balance between holes and electrons, if the electron transport layer plays a role in efficiently preventing holes from the anode from flowing to the cathode side without recombination, the electron transport capability is Even if the electron transport layer is made of a material that is not so high, the effect of improving the light emission efficiency is equivalent to that of a material made of a material having a high electron transport capability.
 電子輸送材料は、一種のみに限る必要はなく、複数の化合物を混合して用いてもよい。電子輸送材料としては、特に限定されないが、ナフタレン、アントラセン、ピレンなどの縮合アリール環を有する化合物やその誘導体;4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体;ペリレン誘導体;ペリノン誘導体;クマリン誘導体;ナフタルイミド誘導体;アントラキノンやジフェノキノンなどのキノン誘導体;リンオキサイド誘導体;カルバゾール誘導体;インドール誘導体;トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体;ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体;アゾメチン錯体;トロポロン金属錯体;およびフラボノール金属錯体が挙げられる。 The electron transport material need not be limited to one kind, and a plurality of compounds may be mixed and used. The electron transport material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, or pyrene or a derivative thereof; a styryl aromatic ring derivative represented by 4,4′-bis (diphenylethenyl) biphenyl; Perylene derivatives; perinone derivatives; coumarin derivatives; naphthalimide derivatives; quinone derivatives such as anthraquinone and diphenoquinone; phosphoroxide derivatives; carbazole derivatives; indole derivatives; quinolinol complexes such as tris (8-quinolinolato) aluminum (III); hydroxyphenyloxazole complexes And the like, such as hydroxyazole complexes; azomethine complexes; tropolone metal complexes; and flavonol metal complexes.
 一般式(1)で表される化合物は、高い電子注入輸送能を有することから電子輸送材料として、特に好適に用いられる。また、電子輸送層に、さらにドナー性化合物を含む場合に、ドナー性化合物との薄膜状態における相溶性が高く、より高い電子注入輸送能を発現する。この混合物層の働きにより、陰極から発光層への電子の輸送が促進され、高発光効率と低駆動電圧の効果がさらに向上する。 The compound represented by the general formula (1) is particularly preferably used as an electron transporting material because it has a high electron injecting and transporting ability. Further, when the electron transport layer further contains a donor compound, the electron transport layer is highly compatible with the donor compound in a thin film state, and exhibits a higher electron injecting and transporting ability. By the action of the mixture layer, the transport of electrons from the cathode to the light emitting layer is promoted, and the effects of high luminous efficiency and low driving voltage are further improved.
 ドナー性化合物は、電子注入障壁の改善により、陰極または電子注入層から電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。すなわち本発明の発光素子において、電子輸送層は、一般式(1)で表される化合物に加えて、電子輸送能力を向上させるためにドナー性化合物を含むことがより好ましい。 The donor compound is a compound that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier and further improves the electrical conductivity of the electron transport layer. That is, in the light emitting device of the present invention, the electron transport layer more preferably contains a donor compound in order to improve the electron transport capability in addition to the compound represented by the general formula (1).
 ドナー性化合物の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。アルカリ金属およびアルカリ土類金属の好ましい種類としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、セシウムといったアルカリ金属や、マグネシウム、カルシウムといったアルカリ土類金属が挙げられる。 Preferred examples of the donor compound include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal and an organic substance. And the like. Preferable types of alkali metals and alkaline earth metals include alkali metals such as lithium, sodium, and cesium that have a low work function and a large effect of improving the electron transport ability, and alkaline earth metals such as magnesium and calcium.
 また、真空中での蒸着が容易で取り扱いに優れることから、ドナー性化合物は、金属単体よりも無機塩、あるいは有機物との錯体の状態であることが好ましい。さらに、大気中での取扱の容易性や、添加濃度の制御のし易さの点で、金属と有機物との錯体の状態にあることがより好ましい。無機塩の例としては、LiO、LiO等の酸化物;窒化物;LiF、NaF、KF等のフッ化物;LiCO、NaCO、KCO、RbCO、CsCO等の炭酸塩などが挙げられる。また、アルカリ金属またはアルカリ土類金属の好ましい例としては、原料が安価で合成が容易な点から、リチウムが挙げられる。また、金属と有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましく、リチウムキノリノールが特に好ましい。 In addition, since the deposition in vacuum is easy and the handling is excellent, the donor compound is preferably in a state of an inorganic salt or a complex with an organic substance rather than a single metal. Furthermore, it is more preferable that it is in the state of a complex of a metal and an organic matter from the viewpoint of easy handling in the air and easy control of the addition concentration. Examples of inorganic salts include oxides such as LiO and Li 2 O; nitrides; fluorides such as LiF, NaF and KF; Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , And carbonates such as Cs 2 CO 3 . A preferable example of the alkali metal or alkaline earth metal is lithium from the viewpoint that the raw materials are inexpensive and easy to synthesize. In addition, preferable examples of the organic substance in the complex of metal and organic substance include quinolinol, benzoquinolinol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, hydroxytriazole and the like. Among these, a complex of an alkali metal and an organic substance is preferable, a complex of lithium and an organic substance is more preferable, and lithium quinolinol is particularly preferable.
 また、電子輸送層中のドナー性化合物のドーピング割合が適切であると、陰極または電子注入層から電子輸送層への電子の注入割合が増加し、陰極と電子注入層間または電子注入層と電子輸送層間でのエネルギー障壁が軽減され、低駆動電圧化する。好適なドーピング濃度は、材料やドーピング領域の膜厚によっても異なるが、電子輸送材料とドナー性化合物の蒸着速度比が100:1~1:100の範囲となるように蒸着して電子輸送層を形成することが好ましい。蒸着速度比は10:1~1:10がより好ましく、7:3~3:7が特に好ましい。 In addition, when the doping ratio of the donor compound in the electron transport layer is appropriate, the injection ratio of electrons from the cathode or the electron injection layer to the electron transport layer increases, and the cathode and the electron injection layer or the electron injection layer and the electron transport. The energy barrier between layers is reduced and the driving voltage is lowered. The preferred doping concentration varies depending on the material and the film thickness of the doping region, but the electron transport layer is deposited by vapor deposition so that the deposition rate ratio of the electron transport material and the donor compound is in the range of 100: 1 to 1: 100. It is preferable to form. The deposition rate ratio is more preferably 10: 1 to 1:10, and particularly preferably 7: 3 to 3: 7.
 電子輸送層にドナー性化合物をドーピングして電子輸送能を向上させる方法は、有機層の膜厚が厚い場合に特に効果を発揮するものである。電子輸送層および発光層の合計膜厚が50nm以上の場合に特に効果が大きい。例えば、発光効率を向上させるために干渉効果を利用する方法があるが、これは発光層から直接放射される光と、陰極で反射された光の位相を整合させて光の取り出し効率を向上させる方法である。最適条件は光の発光波長に応じて変化するが、電子輸送層および発光層の合計膜厚が50nm以上となる場合がある。また、発光が赤色などの長波長発光の場合には、電子輸送層および発光層の合計膜厚が100nm近くの厚膜になる場合がある。 The method of improving the electron transport ability by doping a donor compound in the electron transport layer is particularly effective when the organic layer is thick. The effect is particularly great when the total thickness of the electron transport layer and the light emitting layer is 50 nm or more. For example, there is a method of using the interference effect to improve the light emission efficiency, but this improves the light extraction efficiency by matching the phase of the light directly emitted from the light emitting layer and the light reflected by the cathode. Is the method. The optimum conditions vary depending on the light emission wavelength, but the total film thickness of the electron transport layer and the light emitting layer may be 50 nm or more. In the case where the light emission is long wavelength light emission such as red, the total film thickness of the electron transport layer and the light emitting layer may be a thick film near 100 nm.
 ドナー性化合物をドーピングする場合、電子輸送層全体の膜厚が厚いほどドーピングする濃度も濃い方がよい。ドーピングするのは、電子輸送層の一部分または全部のどちらでも構わないが、電子輸送層の一部分にドーピングする場合、少なくとも電子輸送層/陰極界面にはドーピング領域を設けることが、低電圧化の効果は得られるので望ましい。また、ドナー性化合物が発光層にドーピングされると発光効率を低下させる悪影響を及ぼす場合には、発光層/電子輸送層界面にノンドープ領域を設けることが望ましい。 When doping a donor compound, the thicker the electron transport layer, the higher the doping concentration. Doping may be performed on a part or all of the electron transport layer. However, when doping a part of the electron transport layer, providing a doping region at least at the electron transport layer / cathode interface is effective in reducing the voltage. Is desirable because it is obtained. In addition, when the light emitting layer is doped with the donor compound, it is desirable to provide a non-doped region at the light emitting layer / electron transport layer interface when adversely affecting the light emission efficiency.
 発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されないが、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。 The formation method of each of the above layers constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, and coating method, but resistance heating vapor deposition or electron beam vapor deposition is preferable from the viewpoint of element characteristics.
 有機層全体の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1~1000nmであることが好ましい。発光層、電子輸送層および正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。 The total thickness of the organic layer cannot be limited because it depends on the resistance value of the light-emitting substance, but is preferably 1 to 1000 nm. The film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
 発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。 The light emitting element has a function of converting electrical energy into light. Here, a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used. The current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
 本発明の発光素子は、例えば、マトリクス方式および/またはセグメント方式のディスプレイとして好適に用いられる。 The light emitting device of the present invention is suitably used as a matrix type and / or segment type display, for example.
 マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する方式である。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑および青の画素を並べて表示させる。この場合、典型的な画素の配列にはデルタタイプとストライプタイプがある。また、マトリクスの駆動方法は、線順次駆動およびアクティブマトリクスのどちらでもよい。線順次駆動は、ディスプレイの構造が簡単であるが、動作特性はアクティブマトリクスの方が優れるので、用途によって使い分けることが必要である。 The matrix method is a method in which pixels for display are two-dimensionally arranged such as a lattice shape or a mosaic shape, and a character or an image is displayed by a set of pixels. The shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 μm or less is used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order is used for a large display such as a display panel. Become. In monochrome display, pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, typical pixel arrangements include a delta type and a stripe type. The matrix driving method may be either line sequential driving or active matrix. The line-sequential drive has a simple display structure, but the active characteristics of the active matrix are better, so it is necessary to use them properly depending on the application.
 セグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。セグメント方式のディスプレイの例としては、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 The segment method is a method in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light. Examples of segment-type displays include time and temperature displays on digital clocks and thermometers, operating status displays for audio equipment and electromagnetic cookers, and car panel displays. The matrix display and the segment display may coexist in the same panel.
 本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに、本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。 The light-emitting element of the present invention is also preferably used as a backlight for various devices. The backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. In particular, the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, especially a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 合成例1
 化合物[1]の合成
 2-ブロモフルオレン25.0g、ヨウ素12.2gおよび酢酸680mlからなる溶液に、窒素気流下で、硫酸68mLをゆっくり加えた。この混合溶液に亜硝酸ナトリウム7.1gをゆっくり加えた後、還流下で2時間撹拌した。反応混合物を室温に冷ました後、析出物をろ過した。得られた析出物を、酢酸エチル、水およびメタノールでそれぞれ洗浄し、真空乾燥することにより、2-ブロモ-7-ヨードフルオレン25.9g(収率68%)を得た。
Synthesis example 1
Synthesis of Compound [1] To a solution composed of 25.0 g of 2-bromofluorene, 12.2 g of iodine and 680 ml of acetic acid, 68 mL of sulfuric acid was slowly added under a nitrogen stream. After slowly adding 7.1 g of sodium nitrite to this mixed solution, the mixture was stirred for 2 hours under reflux. After the reaction mixture was cooled to room temperature, the precipitate was filtered. The obtained precipitate was washed with ethyl acetate, water and methanol, respectively, and vacuum-dried to obtain 25.9 g (yield 68%) of 2-bromo-7-iodofluorene.
 次に、カリウム-t-ブトキシド19.6gとジメチルスルホキシド317mLの溶液を窒素気流下、0℃に冷やし、2-ブロモ-7-ヨードフルオレン25.9gを加えた。さらに、ヨウ化メチル29.7gをゆっくり加えた後、室温下で4時間反応混合物を撹拌した。反応混合物に水317mLを加え、析出物をろ過した。析出物をトルエンに溶解し、硫酸マグネシウムで乾燥後、シリカパッドでろ過し、ろ液をエバポレートした。得られた固体にメタノール50mlを加え、ろ過した。さらに、固体をトルエンに再溶解し、シリカパッドでろ過し、ろ液をエバポレートした。析出物をろ過し、真空乾燥することにより、2-ブロモ-7-ヨード-9,9-ジメチルフルオレン21.5g(収率77%)を得た。 Next, a solution of 19.6 g of potassium tert-butoxide and 317 mL of dimethyl sulfoxide was cooled to 0 ° C. under a nitrogen stream, and 25.9 g of 2-bromo-7-iodofluorene was added. Further, 29.7 g of methyl iodide was slowly added, and the reaction mixture was stirred at room temperature for 4 hours. 317 mL of water was added to the reaction mixture, and the precipitate was filtered. The precipitate was dissolved in toluene, dried over magnesium sulfate, filtered through a silica pad, and the filtrate was evaporated. 50 ml of methanol was added to the obtained solid and filtered. Further, the solid was redissolved in toluene, filtered through a silica pad, and the filtrate was evaporated. The precipitate was filtered and dried under vacuum to obtain 21.5 g (yield 77%) of 2-bromo-7-iodo-9,9-dimethylfluorene.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 次に、2-ブロモ-7-ヨード-9,9-ジメチルフルオレン10.0g、3-(9-カルバゾリル)フェニルボロン酸7.9g、ジメトキシエタン125mLおよび1.5M炭酸ナトリウム水溶液37mLの混合溶液を窒素置換した後、ビス(トリフェニルホスフィン)パラジウムジクロリド176mgを加え、60℃で6時間加熱撹拌した。反応混合物を室温に冷却した後、トルエン200mlで抽出した。得られた有機層を水100mlで3回洗浄し、硫酸ナトリウムで乾燥後、ろ過した。ろ液をエバポレートし、シリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートした。得られた固体に、メタノール50mlを加え、ろ過した後、真空乾燥することにより、中間体(A)10.5g(収率81%)を得た。 Next, a mixed solution of 10.0 g of 2-bromo-7-iodo-9,9-dimethylfluorene, 7.9 g of 3- (9-carbazolyl) phenylboronic acid, 125 mL of dimethoxyethane and 37 mL of 1.5 M aqueous sodium carbonate solution was added. After nitrogen substitution, 176 mg of bis (triphenylphosphine) palladium dichloride was added, and the mixture was heated and stirred at 60 ° C. for 6 hours. The reaction mixture was cooled to room temperature and extracted with 200 ml of toluene. The obtained organic layer was washed with 100 ml of water three times, dried over sodium sulfate, and then filtered. The filtrate was evaporated and purified by silica gel column chromatography, and the eluate was evaporated. 50 ml of methanol was added to the obtained solid, filtered, and then vacuum-dried to obtain 10.5 g of intermediate (A) (yield 81%).
 次に、中間体(A)6.0g、4-クロロフェニルボロン酸2.0g、ジメトキシエタン58mLおよび1.5M炭酸ナトリウム水溶液17mLの混合溶液を窒素置換した後、ビス(トリフェニルホスフィン)パラジウムジクロリド82mgを加え、還流下で6時間半加熱撹拌した。反応混合物を室温に冷却した後、トルエン750mLで抽出した。得られた有機層を水100mlで3回洗浄し、硫酸ナトリウムで乾燥後、ろ過した。ろ液をエバポレートし、シリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートした。得られた固体に、メタノール20mlを加え、ろ過した後、真空乾燥することにより、中間体(B)5.7g(収率89%)を得た。 Next, a mixed solution of 6.0 g of intermediate (A), 2.0 g of 4-chlorophenylboronic acid, 58 mL of dimethoxyethane and 17 mL of 1.5 M aqueous sodium carbonate solution was purged with nitrogen, and then 82 mg of bis (triphenylphosphine) palladium dichloride. And stirred under reflux for 6 hours and a half. The reaction mixture was cooled to room temperature and extracted with 750 mL of toluene. The obtained organic layer was washed with 100 ml of water three times, dried over sodium sulfate, and then filtered. The filtrate was evaporated and purified by silica gel column chromatography, and the eluate was evaporated. 20 ml of methanol was added to the obtained solid, filtered, and then vacuum-dried to obtain 5.7 g of intermediate (B) (yield 89%).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 次に、中間体(B)3.0g、3-ピリジンボロン酸0.74g、ビス(ジベンジリデンアセトン)パラジウム36mg、トリシクロヘキシルホスフィン・テトラフルオロボレート49mgおよび1,4-ジオキサン28mlの混合溶液を窒素置換した後、1.27Mリン酸三カリウム水溶液7.4mlを加え、窒素気流下、還流下で7時間加熱攪拌した。反応混合物を室温に冷却した後、水28mlを加え、析出物をろ過し、真空乾燥機で乾燥した。析出物をシリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートした。得られた固体に、メタノール20mlを加え、ろ過した。固体を真空乾燥した後、o-キシレン65mLを用いて再結晶にて精製し、白色結晶2.2g(収率67%)を得た。 Next, a mixed solution of 3.0 g of intermediate (B), 0.74 g of 3-pyridineboronic acid, 36 mg of bis (dibenzylideneacetone) palladium, 49 mg of tricyclohexylphosphine tetrafluoroborate and 28 ml of 1,4-dioxane was added to nitrogen. After the substitution, 7.4 ml of 1.27M tripotassium phosphate aqueous solution was added, and the mixture was heated and stirred for 7 hours under reflux in a nitrogen stream. After the reaction mixture was cooled to room temperature, 28 ml of water was added, and the precipitate was filtered and dried with a vacuum dryer. The precipitate was purified by silica gel column chromatography, and the eluate was evaporated. 20 ml of methanol was added to the obtained solid and filtered. The solid was vacuum dried and purified by recrystallization using 65 mL of o-xylene to obtain 2.2 g of white crystals (yield 67%).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 得られた白色結晶のH-NMR分析結果は次の通りであり、上記で得られた白色結晶が化合物[1]であることが確認された。
化合物[1]: H-NMR (CDCl (d=ppm)) δ 1.60 (s,6H),7.29 (td,2H),7.37-7.58 (m,6H),7.63-7.78 (m,7H),7.81-7.89 (m,6H),7.94 (dt,1H),8.18 (d,2H),8.62 (dd,1H),8.93 (d,1H)。
The results of 1 H-NMR analysis of the obtained white crystals are as follows, and it was confirmed that the white crystals obtained above were the compound [1].
Compound [1]: 1 H-NMR (CDCl 3 (d = ppm)) δ 1.60 (s, 6H), 7.29 (td, 2H), 7.37-7.58 (m, 6H), 7.63-7.78 (m, 7H), 7.81-7.89 (m, 6H), 7.94 (dt, 1H), 8.18 (d, 2H), 8.62 (dd, 1H), 8.93 (d, 1H).
 なお、化合物[1]は、油拡散ポンプを用いて1×10-3Paの圧力下、約310℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.7%、昇華精製後が99.7%であった。 Compound [1] was used as a light emitting device material after sublimation purification at about 310 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.7% before sublimation purification and 99.7% after sublimation purification.
 合成例2
 化合物[2]の合成
 中間体(A)2.4g、4-(4-ピリジル)フェニルボロン酸ピナコールエステル2.1g、ジメトキシエタン24mLおよび1.5M炭酸ナトリウム水溶液7mLの混合溶液を窒素置換した後、ビス(トリフェニルホスフィン)パラジウムジクロリド33mgを加え、還流下で12時間半加熱撹拌した。反応混合物を室温に冷却した後、水24mLを加え、析出物をろ過し、真空乾燥した。析出物をシリカゲルカラムクロマトグラフィーにより精製し、溶出液に、スカベンジャーとしてQuadraSil(登録商標)0.5gを加え、室温で1時間撹拌した後、シリカパッドでろ過し、溶媒を留去した。o-キシレン73mLを用いて得られた固体の再結晶をおこない、白色結晶2.2g(収率73%)を得た。
Synthesis example 2
Synthesis of Compound [2] After substituting a mixed solution of 2.4 g of intermediate (A), 2.1 g of 4- (4-pyridyl) phenylboronic acid pinacol ester, 24 mL of dimethoxyethane and 7 mL of 1.5 M aqueous sodium carbonate solution with nitrogen , 33 mg of bis (triphenylphosphine) palladium dichloride was added, and the mixture was stirred with heating under reflux for 12 and a half hours. The reaction mixture was cooled to room temperature, 24 mL of water was added, and the precipitate was filtered and dried in vacuo. The precipitate was purified by silica gel column chromatography. To the eluate, 0.5 g of QuadraSil (registered trademark) was added as a scavenger, stirred for 1 hour at room temperature, filtered through a silica pad, and the solvent was distilled off. The obtained solid was recrystallized using 73 mL of o-xylene to obtain 2.2 g of white crystals (yield 73%).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 得られた白色結晶のH-NMR分析結果は次の通りであり、上記で得られた白色結晶が化合物[2]であることが確認された。
化合物[2]: H-NMR (CDCl (d=ppm)) δ 1.60 (s,6H),7.31 (td,2H),7.41-7.52 (m,4H),7.55-7.59 (m,3H),7.64-7.89 (m,13H),8.18 (d,2H),8.69 (dd,2H)。
The results of 1 H-NMR analysis of the obtained white crystals are as follows, and it was confirmed that the white crystals obtained above were the compound [2].
Compound [2]: 1 H-NMR (CDCl 3 (d = ppm)) δ 1.60 (s, 6H), 7.31 (td, 2H), 7.41-7.52 (m, 4H), 7.55-7.59 (m, 3H), 7.64-7.89 (m, 13H), 8.18 (d, 2H), 8.69 (dd, 2H).
 なお、化合物[2]は、油拡散ポンプを用いて1×10-3Paの圧力下、約310℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.9%、昇華精製後が99.9%であった。 Compound [2] was used as a light emitting device material after sublimation purification at about 310 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.9% before sublimation purification and 99.9% after sublimation purification.
 合成例3
 化合物[3]の合成
 2-ブロモ-7-ヨード-9,9-ジメチルフルオレン11.5g、4-(9-カルバゾリル)フェニルボロン酸9.1g、ジメトキシエタン144mLおよび1.5M炭酸ナトリウム水溶液42mLの混合溶液を窒素置換した後、ビス(トリフェニルホスフィン)パラジウムジクロリド202mgを加え、60℃で5.5時間加熱撹拌した。反応混合物を約40℃に冷却した後、水200mLを加え、析出物をろ過した。析出物をメタノールで洗浄し、ろ過し、真空乾燥した。析出物をシリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートした。得られた固体に、メタノール100mlを加え、ろ過し、真空乾燥することにより、中間体(C)10.1g(収率68%)を得た。
Synthesis example 3
Synthesis of Compound [3] 2-Bromo-7-iodo-9,9-dimethylfluorene (11.5 g), 4- (9-carbazolyl) phenylboronic acid (9.1 g), dimethoxyethane (144 mL) and 1.5 M aqueous sodium carbonate solution (42 mL) The mixed solution was purged with nitrogen, 202 mg of bis (triphenylphosphine) palladium dichloride was added, and the mixture was heated and stirred at 60 ° C. for 5.5 hours. After the reaction mixture was cooled to about 40 ° C., 200 mL of water was added, and the precipitate was filtered. The precipitate was washed with methanol, filtered and dried in vacuo. The precipitate was purified by silica gel column chromatography, and the eluate was evaporated. 100 ml of methanol was added to the obtained solid, filtered, and vacuum-dried to obtain 10.1 g of intermediate (C) (yield 68%).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 中間体(C) 5.1g、4-(3-ピリジル)フェニルボロン酸ピナコールエステル3.5g、ジメトキシエタン49mL、1.5M炭酸ナトリウム水溶液14mLの混合溶液を窒素置換した後、ビス(トリフェニルホスフィン)パラジウムジクロリド138mgを加え、還流下で7時間半加熱撹拌した。反応混合物を室温に冷却した後、析出物をろ過し、真空乾燥した。析出物をTHF500mLに溶解し、活性炭0.5gおよびQuadraSil(登録商標)0.8gを加え、室温で1時間撹拌した後、シリカパッドでろ過した。溶出液をエバポレートした。得られた固体に、メタノール20mlを加え、ろ過した。固体を真空乾燥した後、N,N-ジメチルホルムアミド120mLを用いて再結晶をおこなった。さらに、N,N-ジメチルホルムアミド105mLを用いて再結晶をおこなうことで、淡黄色結晶4.3g(収率75%)を得た。 A mixed solution of Intermediate (C) g 5.1 g, 4- (3-pyridyl) phenylboronic acid pinacol ester 3.5 g, dimethoxyethane 49 mL, 1.5 M aqueous sodium carbonate solution 14 mL was purged with nitrogen, and then bis (triphenylphosphine). ) Palladium dichloride (138 mg) was added, and the mixture was stirred with heating under reflux for 7 and a half hours. After the reaction mixture was cooled to room temperature, the precipitate was filtered and dried in vacuo. The precipitate was dissolved in 500 mL of THF, added with 0.5 g of activated carbon and 0.8 g of QuadraSil (registered trademark), stirred at room temperature for 1 hour, and then filtered through a silica pad. The eluate was evaporated. 20 ml of methanol was added to the obtained solid and filtered. The solid was vacuum dried and recrystallized using 120 mL of N, N-dimethylformamide. Furthermore, recrystallization was performed using 105 mL of N, N-dimethylformamide to obtain 4.3 g (yield 75%) of pale yellow crystals.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 得られた淡黄色結晶のH-NMR分析結果は次の通りであり、上記で得られた淡黄色結晶が化合物[3]であることが確認された。
化合物[3]: H-NMR (CDCl (d=ppm)) δ 1.65 (s,6H),7.30 (td,2H),7.38-7.52 (m,5H),7.64-7.98 (m,15H),8.18 (d,2H),8.63 (dd,1H),8.94 (d,1H)。
The results of 1 H-NMR analysis of the obtained pale yellow crystals were as follows, and it was confirmed that the pale yellow crystals obtained above were the compound [3].
Compound [3]: 1 H-NMR (CDCl 3 (d = ppm)) δ 1.65 (s, 6H), 7.30 (td, 2H), 7.38-7.52 (m, 5H), 7.64-7.98 (m, 15H), 8.18 (d, 2H), 8.63 (dd, 1H), 8.94 (d, 1H).
 なお、化合物[3]は、油拡散ポンプを用いて1×10-3Paの圧力下、約320℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.9%、昇華精製後が99.9%であった。 Compound [3] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.9% before sublimation purification and 99.9% after sublimation purification.
 合成例4
 化合物[4]の合成
 中間体(C) 5.1g、4-(2-ピリジル)フェニルボロン酸2.2g、ジメトキシエタン49mLおよび1.5M炭酸ナトリウム水溶液14mLの混合溶液を窒素置換した後、ビス(トリフェニルホスフィン)パラジウムジクロリド69mgを加え、還流下で4時間半加熱撹拌した。反応混合物を室温に冷却した後、水49mLを加え、析出物をろ過し、真空乾燥した。析出物をシリカゲルカラムクロマトグラフィーにより精製し、溶出液にQuadraSil(登録商標)0.8gを加え、室温で1時間撹拌した後、セライトでろ過した。ろ液をエバポレートした後、得られた固体にメタノール20mlを加え、ろ過した。ろ液を真空乾燥した後、N,N-ジメチルホルムアミド54mLを用いて再結晶をおこなった。さらに、N,N-ジメチルホルムアミド46mLを用いて再結晶をおこなうことで、白色結晶3.5g(収率60%)を得た。
Synthesis example 4
Synthesis of Compound [4] Intermediate (C) 5.1 g, 4- (2-pyridyl) phenylboronic acid 2.2 g, dimethoxyethane 49 mL and 1.5 M aqueous sodium carbonate solution 14 mL were mixed with nitrogen, 69 mg of (triphenylphosphine) palladium dichloride was added, and the mixture was stirred with heating under reflux for 4 and a half hours. After the reaction mixture was cooled to room temperature, 49 mL of water was added, and the precipitate was filtered and dried in vacuo. The precipitate was purified by silica gel column chromatography, 0.8 g of QuadraSil (registered trademark) was added to the eluate, and the mixture was stirred at room temperature for 1 hour and filtered through celite. After the filtrate was evaporated, 20 ml of methanol was added to the obtained solid and filtered. The filtrate was vacuum dried and recrystallized using 54 mL of N, N-dimethylformamide. Furthermore, recrystallization was performed using 46 mL of N, N-dimethylformamide to obtain 3.5 g of white crystals (yield 60%).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 得られた白色結晶のH-NMR分析結果は次の通りであり、上記で得られた白色結晶が化合物[4]であることが確認された。
化合物[4]: H-NMR (CDCl (d=ppm)) δ 1.65 (s,6H),7.31 (td,2H),7.41-7.52 (m,4H),7.66-7.93 (m,15H),8.12-8.19 (m,4H),8.74 (dt,1H)。
The results of 1 H-NMR analysis of the obtained white crystals are as follows, and it was confirmed that the white crystals obtained above were the compound [4].
Compound [4]: 1 H-NMR (CDCl 3 (d = ppm)) δ 1.65 (s, 6H), 7.31 (td, 2H), 7.41-7.52 (m, 4H), 7.66-7.93 (m, 15H), 8.12-8.19 (m, 4H), 8.74 (dt, 1H).
 なお、化合物[4]は、油拡散ポンプを用いて1×10-3Paの圧力下、約320℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.8%、昇華精製後が99.8%であった。 Compound [4] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.8% before sublimation purification and 99.8% after sublimation purification.
 実施例1
 ITO透明導電膜を150nm堆積させたガラス基板(ジオマテック(株)製、表面電気抵抗11Ω/□、スパッタ品)を38×46mmに切断した後、エッチングを行い、ITO透明導電膜を所定の電極形状に形成した。得られた基板を“セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。ITO透明導電膜上に、抵抗加熱法によって、まず正孔注入層として、銅フタロシアニンを10nmの厚さ、正孔輸送層として、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニルを50nmの厚さ、それぞれ蒸着した。次に、発光層として、ホスト材料である化合物(H-1)およびドーパント材料である化合物(D-1)を混合した層を、ドーパント濃度が5重量%になるようにして40nmの厚さに蒸着した。次に、電子輸送層として化合物[1]とドナー性化合物であるフッ化リチウムを混合した層を、蒸着速度比1:1(0.05nm/s:0.05nm/s)で20nmの厚さに蒸着して積層した。
Example 1
A glass substrate (manufactured by Geomat Co., Ltd., surface electrical resistance 11Ω / □, sputtered product) on which ITO transparent conductive film is deposited to 150 nm is cut into 38 × 46 mm, and then etched to form the ITO transparent conductive film in a predetermined electrode shape. Formed. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. On the ITO transparent conductive film, copper phthalocyanine is first formed to a thickness of 10 nm as a hole injection layer by resistance heating, and 4,4′-bis (N- (1-naphthyl) -N— as a hole transport layer. Phenylamino) biphenyl was deposited to a thickness of 50 nm each. Next, as a light emitting layer, a layer in which the compound (H-1) as a host material and the compound (D-1) as a dopant material are mixed has a thickness of 40 nm so that the dopant concentration is 5% by weight. Vapor deposited. Next, a layer in which the compound [1] and lithium fluoride which is a donor compound are mixed as an electron transporting layer has a thickness of 20 nm at a deposition rate ratio of 1: 1 (0.05 nm / s: 0.05 nm / s). Vapor deposited and laminated.
 次に、フッ化リチウムを0.5nmの厚さに蒸着した後、アルミニウムを1000nmの厚さに蒸着して陰極とし、発光面が5×5mm角の発光素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、駆動電圧4.7V、外部量子効率5.4%の高効率青色発光が得られた。 Next, lithium fluoride was vapor-deposited to a thickness of 0.5 nm, and then aluminum was vapor-deposited to a thickness of 1000 nm to form a cathode. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a driving voltage of 4.7 V and an external quantum efficiency of 5.4% was obtained.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 実施例2~27
 ホスト材料、ドーパント材料および電子輸送層として表1および表2に記載した材料を用いた以外は、実施例1と同様にして発光素子を作製した。結果は表1および表2に示した。なお、化合物[5]~[19]、2E-1は下記に示す化合物である。
Examples 2 to 27
A light emitting device was fabricated in the same manner as in Example 1 except that the materials described in Table 1 and Table 2 were used as the host material, the dopant material, and the electron transport layer. The results are shown in Tables 1 and 2. Compounds [5] to [19] and 2E-1 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 比較例1~12
 ホスト材料、ドーパント材料および電子輸送層として表2に記載した材料を用いた以外は、実施例1と同様にして発光素子を作製した。結果は表2に示した。なお、表1および表2中、化合物E-1、E-2、E-3、E-4は下記に示す化合物である。
Comparative Examples 1-12
A light emitting device was produced in the same manner as in Example 1 except that the materials described in Table 2 were used as the host material, the dopant material, and the electron transport layer. The results are shown in Table 2. In Tables 1 and 2, compounds E-1, E-2, E-3, and E-4 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 実施例28~38
 ホスト材料、ドーパント材料および電子輸送層として表3に記載した材料を用いた以外は、実施例1と同様にして発光素子を作製した。評価結果は表3に示した。なお、表3中、化合物H-2~H-8、D-2~D-10は下記に示す化合物である。
Examples 28-38
A light emitting device was fabricated in the same manner as in Example 1 except that the materials described in Table 3 were used as the host material, the dopant material, and the electron transport layer. The evaluation results are shown in Table 3. In Table 3, compounds H-2 to H-8 and D-2 to D-10 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 実施例39~46、比較例13~20
 ホスト材料およびドーパント材料として表4に記載した材料および電子輸送層としてトリス(8-キノリノラート)アルミニウム(Alq)を用いた以外は、実施例1と同様にして発光素子を作製した。評価結果は表4に示した。
Examples 39 to 46, Comparative Examples 13 to 20
A light emitting device was fabricated in the same manner as in Example 1 except that the materials described in Table 4 were used as the host material and the dopant material, and tris (8-quinolinolato) aluminum (Alq) was used as the electron transport layer. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 本発明は、高発光効率と低駆動電圧を両立した有機薄膜発光素子を可能にする発光素子材料およびこれを用いた発光素子を提供する。本発明の発光素子材料は、発光素子の電子輸送層または発光層に好ましく用いることができる。 The present invention provides a light emitting device material that enables an organic thin film light emitting device that achieves both high luminous efficiency and low driving voltage, and a light emitting device using the same. The light emitting device material of the present invention can be preferably used for the electron transport layer or the light emitting layer of the light emitting device.

Claims (14)

  1. 下記一般式(1)で表される化合物を含有する発光素子材料:
    Figure JPOXMLDOC01-appb-C000001
    式中、Yは下記一般式(2)で表される基;Arは下記一般式(3)で表される基;Lは単結合、または核炭素数5~12の置換もしくは無置換のアリーレン基および置換もしくは無置換のヘテロアリーレン基から選ばれる基;Lは核炭素数5~12の置換もしくは無置換のアリーレン基、および置換もしくは無置換のヘテロアリーレン基から選ばれる基;Arは、無置換またはアルキル基もしくはシクロアルキル基で置換された電子受容性窒素を含む芳香族複素環基のみで構成される基;nは1~5の整数;n個のArは同じでも異なっていてもよい;
    Figure JPOXMLDOC01-appb-C000002
    ~R10はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)R1112からなる群より選ばれる基;R11およびR12はアリール基およびヘテロアリール基から選ばれる基である;R~R12は隣接する置換基同士で環を形成していてもよい;ただし、R1~Rのうちいずれか一つはLとの連結に用いられ、さらに他のいずれか一つはLとの連結に用いられる;
    Figure JPOXMLDOC01-appb-C000003
    13~R21はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アリール基およびヘテロアリール基からなる群より選ばれる基;R13~R21は隣接する置換基同士で環を形成していても良い;ただし、R13~R21のうちいずれか一つはLとの連結に用いられる。
    Light emitting device material containing a compound represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    In the formula, Y is a group represented by the following general formula (2); Ar 1 is a group represented by the following general formula (3); L 1 is a single bond or a substituted or unsubstituted group having 5 to 12 nuclear carbon atoms. A group selected from an arylene group and a substituted or unsubstituted heteroarylene group; L 2 is a group selected from a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms and a substituted or unsubstituted heteroarylene group; Ar also the n Ar 2 is the same; 2, aromatic heterocyclic group only consists group containing electron-accepting nitrogen, which is unsubstituted or substituted alkyl group or a cycloalkyl group; n is an integer from 1 to 5 May be different;
    Figure JPOXMLDOC01-appb-C000002
    R 1 to R 10 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, an aryl ether group, an aryl thioether A group selected from the group consisting of a group, an aryl group, a heteroaryl group, a halogen, a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group and —P (═O) R 11 R 12 ; R 11 and R 12 are aryl groups R 1 to R 12 may form a ring with adjacent substituents; provided that any one of R 1 to R 8 is a group selected from L 1 and a heteroaryl group; Used for ligation, and any other one is used for ligation with L 2 ;
    Figure JPOXMLDOC01-appb-C000003
    R 13 to R 21 may be the same or different and each is a group selected from the group consisting of hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an aryl group, and a heteroaryl group; R 13 to R 21 are adjacent to each other The substituents may form a ring; however, any one of R 13 to R 21 is used for linking to L 1 .
  2. 電子受容性窒素を含む芳香族複素環基がピリジル基、キノリニル基、イソキノリニル基、キノキサニル基、ピラジニル基、ピリミジル基、ピリダジニル基、フェナントロリニル基、イミダゾピリジル基、トリアジル基、アクリジル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ビピリジル基およびターピリジル基からなる群より選ばれる請求項1記載の発光素子材料。 An aromatic heterocyclic group containing an electron-accepting nitrogen is a pyridyl group, a quinolinyl group, an isoquinolinyl group, a quinoxanyl group, a pyrazinyl group, a pyrimidyl group, a pyridazinyl group, a phenanthrolinyl group, an imidazopyridyl group, a triazyl group, an acridyl group, or a benzoimidazolyl group The light emitting device material according to claim 1, which is selected from the group consisting of a group, a benzoxazolyl group, a benzothiazolyl group, a bipyridyl group, and a terpyridyl group.
  3. Arが、以下に示す基からなる群より選ばれる請求項1または2記載の発光素子材料;
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    ただし、これらの基はアルキル基またはシクロアルキル基で置換されていてもよい。
    The light emitting device material according to claim 1, wherein Ar 2 is selected from the group consisting of the following groups:
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    However, these groups may be substituted with an alkyl group or a cycloalkyl group.
  4. 一般式(2)におけるRがLとの連結に用いられる請求項1~3のいずれか記載の発光素子材料。 The light emitting device material according to claim 1 , wherein R 7 in the general formula (2) is used for connection with L 1 .
  5. 一般式(2)におけるRがLとの連結に用いられる請求項1~4のいずれか記載の発光素子材料。 The light emitting device material according to any one of claims 1 to 4, wherein R 2 in the general formula (2) is used for connection with L 2 .
  6. 一般式(3)におけるR15、R18またはR21がLとの連結に用いられる請求項1~5のいずれか記載の発光素子材料。 6. The light emitting device material according to claim 1, wherein R 15 , R 18 or R 21 in the general formula (3) is used for connection to L 1 .
  7. が核炭素数5~12の置換もしくは無置換のアリーレン基である請求項1~6のいずれか記載の発光素子材料。 7. The light emitting device material according to claim 1, wherein L 1 is a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms.
  8. が核炭素数5~12の置換もしくは無置換のアリーレン基である請求項1~7のいずれか記載の発光素子材料。 The light emitting device material according to any one of claims 1 to 7, wherein L 2 is a substituted or unsubstituted arylene group having 5 to 12 nuclear carbon atoms.
  9. 陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する発光素子であって、前記有機層に請求項1~8のいずれか記載の発光素子材料を含有する発光素子。 9. A light-emitting element in which an organic layer is present between an anode and a cathode and emits light by electric energy, wherein the organic layer contains the light-emitting element material according to claim 1.
  10. 前記有機層が電子輸送層を含み、電子輸送層が請求項1~8のいずれか記載の発光素子材料を含む請求項9記載の発光素子。 The light emitting device according to claim 9, wherein the organic layer includes an electron transport layer, and the electron transport layer includes the light emitting device material according to any one of claims 1 to 8.
  11. 前記電子輸送層がさらにドナー性化合物を含む請求項10記載の発光素子。 The light emitting device according to claim 10, wherein the electron transport layer further contains a donor compound.
  12. 前記ドナー性化合物がアルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体である請求項11記載の発光素子。 The donor compound is an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or a complex of an alkaline earth metal and an organic substance. The light emitting device according to claim 11.
  13. 前記ドナー性化合物がアルカリ金属と有機物との錯体またはアルカリ土類金属と有機物との錯体である請求項12記載の発光素子。 The light-emitting element according to claim 12, wherein the donor compound is a complex of an alkali metal and an organic substance or a complex of an alkaline earth metal and an organic substance.
  14. 前記有機層が発光層を含み、発光層が請求項1~8のいずれか記載の発光素子材料を含む請求項9記載の発光素子。 The light emitting device according to claim 9, wherein the organic layer includes a light emitting layer, and the light emitting layer includes the light emitting device material according to any one of claims 1 to 8.
PCT/JP2012/062084 2011-05-17 2012-05-11 Light-emitting element material and light-emitting element WO2012157537A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280023167.9A CN103534832B (en) 2011-05-17 2012-05-11 Light emitting element material and light-emitting component
KR1020137025435A KR101950723B1 (en) 2011-05-17 2012-05-11 Light-emitting element material and light-emitting element
JP2012523538A JP6024455B2 (en) 2011-05-17 2012-05-11 Light emitting device material and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011110042 2011-05-17
JP2011-110042 2011-05-17

Publications (1)

Publication Number Publication Date
WO2012157537A1 true WO2012157537A1 (en) 2012-11-22

Family

ID=47176857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062084 WO2012157537A1 (en) 2011-05-17 2012-05-11 Light-emitting element material and light-emitting element

Country Status (5)

Country Link
JP (1) JP6024455B2 (en)
KR (1) KR101950723B1 (en)
CN (1) CN103534832B (en)
TW (1) TWI521044B (en)
WO (1) WO2012157537A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150006758A (en) * 2013-07-09 2015-01-19 제일모직주식회사 Compound, organic optoelectric device and display device
KR20160078241A (en) * 2014-12-24 2016-07-04 주식회사 두산 Organic electro luminescence device
KR101788094B1 (en) 2014-01-09 2017-10-19 제일모직 주식회사 Organic compound and organic optoelectric device and display device
JP2018520097A (en) * 2015-12-23 2018-07-26 エルジー・ケム・リミテッド Compound and organic electronic device containing the same
JP2021052209A (en) * 2014-05-23 2021-04-01 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic device, and lighting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033118A1 (en) * 2003-08-26 2005-04-14 Idemitsu Kosan Co., Ltd. Coordination metal compound, material for organic electroluminescence device, material for luminescent coating formation and organic electroluminescence device
JP2009073803A (en) * 2007-08-31 2009-04-09 Toyo Ink Mfg Co Ltd Compound having carbazolyl group and its use
JP2009123976A (en) * 2007-11-16 2009-06-04 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element
JP2009194042A (en) * 2008-02-13 2009-08-27 Toyo Ink Mfg Co Ltd Charge transporting material for use of organic electroluminescence element containing carbazolyl group and its use
JP2010114180A (en) * 2008-11-05 2010-05-20 Konica Minolta Holdings Inc Organic electroluminescent element, white organic electroluminescent element, display device and illuminator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4125076B2 (en) 2002-08-30 2008-07-23 キヤノン株式会社 Monoaminofluorene compound and organic light-emitting device using the same
JP2004277377A (en) 2003-03-18 2004-10-07 Junji Kido Fluorene compound and organic electroluminescent element produced by using the same
JP3964361B2 (en) * 2003-07-11 2007-08-22 Tdk株式会社 Purge apparatus and purge method
CN100415759C (en) * 2003-08-26 2008-09-03 出光兴产株式会社 Complex metal compound, material for organic electroluminescent element, material for luminescent coating film formation, and organic electroluminescent element
JP5114070B2 (en) 2007-02-26 2013-01-09 ケミプロ化成株式会社 Fluorene derivative, electron transport material comprising the same, electron injection material, and organic electroluminescence device using the same
JP5277578B2 (en) * 2007-07-25 2013-08-28 東洋インキScホールディングス株式会社 Compound having carbazolyl group and use thereof
KR20100000772A (en) * 2008-06-25 2010-01-06 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP5509634B2 (en) 2009-03-16 2014-06-04 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL
KR101771528B1 (en) * 2010-03-22 2017-08-28 에스에프씨 주식회사 Spiro compound and organic electroluminescent devices comprising the same
KR101840313B1 (en) * 2011-02-14 2018-03-21 에스에프씨 주식회사 Pyridine derivative compound and organic electroluminescent device comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033118A1 (en) * 2003-08-26 2005-04-14 Idemitsu Kosan Co., Ltd. Coordination metal compound, material for organic electroluminescence device, material for luminescent coating formation and organic electroluminescence device
JP2009073803A (en) * 2007-08-31 2009-04-09 Toyo Ink Mfg Co Ltd Compound having carbazolyl group and its use
JP2009123976A (en) * 2007-11-16 2009-06-04 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element, and organic electroluminescent element
JP2009194042A (en) * 2008-02-13 2009-08-27 Toyo Ink Mfg Co Ltd Charge transporting material for use of organic electroluminescence element containing carbazolyl group and its use
JP2010114180A (en) * 2008-11-05 2010-05-20 Konica Minolta Holdings Inc Organic electroluminescent element, white organic electroluminescent element, display device and illuminator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101720719B1 (en) * 2013-07-09 2017-03-28 제일모직주식회사 Compound, organic optoelectric device and display device
KR20150006758A (en) * 2013-07-09 2015-01-19 제일모직주식회사 Compound, organic optoelectric device and display device
KR101788094B1 (en) 2014-01-09 2017-10-19 제일모직 주식회사 Organic compound and organic optoelectric device and display device
US10147891B2 (en) 2014-01-09 2018-12-04 Samsung Sdi Co., Ltd. Organic compound, organic optoelectronic device, and display device
JP2021052209A (en) * 2014-05-23 2021-04-01 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic device, and lighting device
JP7035158B2 (en) 2014-05-23 2022-03-14 株式会社半導体エネルギー研究所 Light emitting elements, light emitting devices, electronic devices, and lighting devices
KR102587500B1 (en) * 2014-12-24 2023-10-11 솔루스첨단소재 주식회사 Organic electro luminescence device
KR20160078241A (en) * 2014-12-24 2016-07-04 주식회사 두산 Organic electro luminescence device
JP2018506847A (en) * 2014-12-24 2018-03-08 ドゥーサン コーポレイション Organic electroluminescence device
JP2018507174A (en) * 2014-12-24 2018-03-15 ドゥーサン コーポレイション Organic compound and organic electroluminescent device including the same
US10916709B2 (en) 2014-12-24 2021-02-09 Doosan Solus Co., Ltd. Organic compound and organic electroluminescent element comprising same
US11832514B2 (en) 2014-12-24 2023-11-28 Solus Advanced Materials Co., Ltd. Organic compound and organic electroluminescent element comprising same
JP2018520097A (en) * 2015-12-23 2018-07-26 エルジー・ケム・リミテッド Compound and organic electronic device containing the same
US10934268B2 (en) 2015-12-23 2021-03-02 Lg Chem, Ltd. Compound and organic electronic device comprising same

Also Published As

Publication number Publication date
JP6024455B2 (en) 2016-11-16
KR101950723B1 (en) 2019-02-21
JPWO2012157537A1 (en) 2014-07-31
TWI521044B (en) 2016-02-11
KR20140020942A (en) 2014-02-19
TW201247841A (en) 2012-12-01
CN103534832B (en) 2016-02-10
CN103534832A (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5012998B2 (en) Light emitting device material and light emitting device
KR101971895B1 (en) Light-emitting element material and light-emitting element
JP5821635B2 (en) Light emitting device material and light emitting device
KR101966680B1 (en) Benzindolocarbazole derivative, light-emitting element material produced using same, and light-emitting element
JP6183214B2 (en) Fluoranthene derivative, light emitting device material containing the same, and light emitting device
JP6627507B2 (en) Fluoranthene derivative, electronic device, light emitting element and photoelectric conversion element containing the same
KR101951216B1 (en) Light emitting element material and light emitting element
KR101978165B1 (en) Light-emitting element material and light-emitting element
JP2012216801A (en) Light-emitting element material and light-emitting element
JP5594031B2 (en) Light emitting device material and light emitting device
JPWO2013187258A1 (en) Light emitting device material and light emitting device
JP6024455B2 (en) Light emitting device material and light emitting device
KR101946891B1 (en) Light emitting elment material and light emitting element
JP5640460B2 (en) Light emitting device and light emitting device material
JP2016160208A (en) Chemical compound, luminous element containing the same, photoelectric conversion element and image sensor
JPWO2014024750A1 (en) Light emitting device material and light emitting device
JP2011204844A (en) Light emitting device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012523538

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025435

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785225

Country of ref document: EP

Kind code of ref document: A1