WO2012157124A1 - Electric energy recovering system - Google Patents

Electric energy recovering system Download PDF

Info

Publication number
WO2012157124A1
WO2012157124A1 PCT/JP2011/061691 JP2011061691W WO2012157124A1 WO 2012157124 A1 WO2012157124 A1 WO 2012157124A1 JP 2011061691 W JP2011061691 W JP 2011061691W WO 2012157124 A1 WO2012157124 A1 WO 2012157124A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
led
fluorescent lamp
solar cell
light
Prior art date
Application number
PCT/JP2011/061691
Other languages
French (fr)
Japanese (ja)
Inventor
栗原 公郷
剛 亀田
大熊 一夫
Original Assignee
株式会社栗原工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社栗原工業 filed Critical 株式会社栗原工業
Publication of WO2012157124A1 publication Critical patent/WO2012157124A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • F21S9/03Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]

Definitions

  • the present invention relates to an electrical energy recovery system, and more particularly, to a system that recovers optical energy that is wasted by fluorescent lamp illumination as electrical energy.
  • the power shortage is expected to be prolonged due to the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Plant accident. In order to survive this, power saving at homes and offices is demanded.
  • the present invention recovers the energy of light that has been wasted without being used for conventional lighting from lighting such as fluorescent lamps used in offices and homes, and converts this power into electric power. It is intended to save power by being used for electric devices such as fans and personal coolers.
  • Patent Document 1 the invention described in Patent Document 1 is only used under a limited condition of a backlight, and is not based on the idea of using the collected power for a free purpose.
  • the present invention solves such a problem, and utilizes an electrical energy recovery system that can be used freely for various purposes by using light energy that is not useful for actual lighting from a conventional lighting device and is wasted. It aims at realization.
  • a power reuse system that regenerates power from non-utilized light energy of a lighting device
  • leakage that receives leaked light energy that is output from the lighting device and goes in a direction other than the lighting direction is received.
  • a light receiving photoelectric conversion element is provided, and the output of the photoelectric conversion element is reused as recovered power.
  • the recovered power is used for illumination, driving of electric equipment, and cooling by a Peltier element.
  • the electrical storage apparatus which charges the conversion electric power of the said leakage light light reception photoelectric conversion element was further provided.
  • charging power of the power storage device is used for illumination, driving of an electric device, and cooling by a Peltier element.
  • the present invention captures leaked light energy in a direction other than the illumination direction from a lighting device that emits light in all directions like a fluorescent lamp, and collects and uses it as electric power by photoelectric conversion.
  • unused light energy can be used effectively, and power can be saved.
  • reference numeral 1 is a fluorescent lamp
  • reference numeral 1A is a fluorescent lamp blanket
  • reference numeral 2 is a solar battery
  • reference numeral 3 is a storage battery
  • reference numeral 4 is an illumination device
  • reference numeral 5 is a PC cooling fan motor
  • reference numeral 6 is a Peltier element
  • Reference numeral 7 denotes a storage battery selection switch.
  • a solar cell 2 is provided on the blanket 1 ⁇ / b> A side opposite to the illumination direction. And fan motor 5 and Peltier element 6 ⁇ .
  • the electric power photoelectrically converted by the solar battery 2 may be used by charging the storage battery 3.
  • the electric power photoelectrically converted by the solar cell 2 without using the storage battery 3 is sent directly to the electrical product, or the electric power photoelectrically converted by the solar cell 2 is once charged in the storage battery 3 and then sent to the electrical product, or the solar cell.
  • the storage battery selection switch 7 can be used to select whether the storage battery 3 is charged with the electric power photoelectrically converted in 2 and sent to the electrical product at the same time.
  • the single crystal silicon type has high power generation capability and high reliability, but the power generation effect is remarkably poor unless it is under sunlight.
  • the polycrystalline silicon type is also reliable, has little deterioration, and the price has recently decreased due to mass production.
  • the power generation effect is extremely poor unless it is under sunlight.
  • the amorphous type thin film type silicon type is inexpensive and has a low conversion efficiency as used in calculators and the like, but can generate power even under artificial light, and this type is used in the present invention.
  • Fluorescent lamp ⁇ solar cell (for calculator) ⁇ LED lighting experiment example 1 is to light the LED lamp by photoelectrically converting the light of the fluorescent lamp installed in the office with a solar cell for calculator.
  • FIG. 3 shows an example of brightness when a solar cell is generated by light from a fluorescent lamp and an LED is turned on.
  • the distance between the fluorescent lamp tube surface and the solar cell is 5 cm and the number of arranged solar cells and the number of LEDs are changed, the brightness of the LED irradiation portion at a position of 5 cm from the LED irradiated by the LED is changed. Show.
  • FIG. 4 shows the relationship between the brightness of the fluorescent lamp light on the solar cell surface and the amount of power generated by the solar cell in this case.
  • the distance between the fluorescent lamp and the solar cell is as close as 5 cm, and when five solar cells are installed in parallel, the measurement example (B) is in close contact with the distance between the fluorescent lamp and the solar cell at 0 cm. In this case, five solar cells are installed in parallel.
  • the surface temperature of the fluorescent lamp was 38.5 ° C. (both ends 49.0 ° C.).
  • FIG. 5 shows an example of brightness when the solar cell is generated by the light of the fluorescent lamp and the LED is turned on in this experimental example.
  • positioned solar cells and the number of LED is shown.
  • the distance between the fluorescent lamp and the solar cell is as close as 5 cm.
  • the measurement example (B) is such that the distance between the fluorescent lamp and the solar cell is 0 cm. The measurement result when five solar cells are installed in parallel is shown.
  • FIG. 6 shows the positional relationship between the fluorescent lamp and the solar cell in the measurement example (A) and the measurement example (B) using a cross-sectional view in the length direction of the fluorescent tube.
  • the LED could be turned on and the PC cooling fan motor could be driven with this configuration, but the Peltier element could not be driven only by directly connecting the solar cells.
  • a Peltier element can be driven by using a storage battery.
  • LED without storage battery lighting PC cooling fan motor: rotating Peltier element: not operated
  • LED with storage battery lighting PC cooling fan motor: rotating Peltier element: operation
  • Fluorescent lamp ⁇ Solar cell (for car battery charging) ⁇ Storage battery ⁇ Electrical product experiment example 3 is a nickel-cadmium accumulator battery by photoelectrically converting the light of the fluorescent lamp installed in the office with the solar battery for car battery charging. The LED lamp is turned on and the PC cooling fan motor is driven.
  • Example 4 Sunlight-> solar cell (for car battery charging)-> storage battery-> electrical product experiment example 4 is an apparatus used in this experiment as a reference example. Photoelectric conversion of sunlight is made to charge a nickel-cadmium storage battery, and an LED lamp The fan motor Peltier element for PC cooling is driven.
  • FIG. 7 shows an example of brightness when a solar cell is generated by sunlight and an LED is turned on in this experimental example.
  • positioned solar cells and the number of LED is shown.
  • the present invention lights a light such as an LED and operates a fan motor or a Peltier element with light energy that does not actually contribute to lighting of a fluorescent lamp normally used in an office or home. Therefore, it can be used widely for personal cooling devices in offices, offices, factories, homes, etc., and is extremely important.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to attain an electric energy recovering system, wherein light energy wasted from a conventional illumination apparatus and useless for actual illumination is utilized and retrieved as electric energy to be used freely for various purposes. The electric energy recovering system is characterized in being provided with solar cells (2) for receiving leaked light energy outputted from a fluorescent lamp (1) and directed towards directions other than the direction of illumination, and characterized in that the output of those solar cells (2) is reused as recovered power by LED illumination (4), a cooling fan (5), or a Peltier element (6).

Description

電気エネルギー回収システムElectric energy recovery system
本発明は、電気エネルギーの回収システムに関し、ことに、蛍光灯照明などで無駄にしている光エネルギーを電気エネルギーとして回収するシステムに関する。 The present invention relates to an electrical energy recovery system, and more particularly, to a system that recovers optical energy that is wasted by fluorescent lamp illumination as electrical energy.
東日本大震災や福島第1原発事故の影響で電力不足の長期化が見込まれている。これを乗り切るために、家庭や事務所などでの節電が要望されている。
本発明は、オフィスや家庭内で使われている蛍光灯などの照明から、従来照明に用いられずに無駄にしていた光のエネルギーを回収して電力に変換し、この電力を、再び照明、ファン、個人クーラなどの電気機器に用いるようにして電力の節約を図ることを目的にするものである。
The power shortage is expected to be prolonged due to the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Plant accident. In order to survive this, power saving at homes and offices is demanded.
The present invention recovers the energy of light that has been wasted without being used for conventional lighting from lighting such as fluorescent lamps used in offices and homes, and converts this power into electric power. It is intended to save power by being used for electric devices such as fans and personal coolers.
例えば、今まで無駄にしていたこのようなエネルギーを小電力の個人クーラなどを用いるようにすれば電力消費量の多い大型のクーラを使用せずに、夏でも快適な作業・生活環境を実現することができる。さらに、このようなエネルギーを電力として蓄電池に充電しておくことにより、必要な時刻に消費電力の大きな電気機器にも使用することができ、これは、太陽電池や風力発電のように、時々の自然条件に左右されることなく、また蓄電装置を用いれば時刻に関係なく、今まで無駄にしていた光エネルギーを再利用することができる。 For example, if such energy that has been wasted until now is used with a personal cooler with low power consumption, a comfortable work and living environment can be realized even in summer without using a large cooler with high power consumption. be able to. Furthermore, by charging the storage battery with such energy as electric power, it can also be used for electric devices that consume a large amount of power at the required time. Regardless of natural conditions, and by using a power storage device, light energy that has been wasted can be reused regardless of time.
類似の考え方にたって、液晶表示装置、写真、ポスター等を背面側から照明するいわゆるバックライト装置に、発光素子から照射された光のうち照明方向以外の方向に散乱する無効な光の光電変換素子出力起電力を回収電力として再利用例が報告されている(特許文献1参照)。 Based on a similar concept, a photoelectric conversion element for invalid light that scatters in a direction other than the illumination direction out of light emitted from a light emitting element to a so-called backlight device that illuminates a liquid crystal display device, photograph, poster, etc. from the back side An example of reusing output electromotive force as recovered power has been reported (see Patent Document 1).
特開2011-14513号公報JP 2011-14513 A
しかしながら、特許文献1に記載された発明は、あくまでバックライトという限られた条件においての利用に過ぎず、回収した電力を自由な目的に用いるという考え方にたつものではない。 However, the invention described in Patent Document 1 is only used under a limited condition of a backlight, and is not based on the idea of using the collected power for a free purpose.
本発明は、このような問題を解決して、従来の照明装置から実際の照明の役には立たず無駄に捨てられる光エネルギーを利用して、種々の利用目的に自由に役立てる電気エネルギー回収システムの実現を目的とする。 The present invention solves such a problem, and utilizes an electrical energy recovery system that can be used freely for various purposes by using light energy that is not useful for actual lighting from a conventional lighting device and is wasted. It aims at realization.
以上の課題を解決するため、本発明では、照明装置の非利用光エネルギーから電力を再生する電力再利用システムにおいて、照明装置から出力され、照明方向以外の方向に向かう漏洩光エネルギーを受光する漏洩光受光光電変換素子を設け、この光電変換素子の出力を回収電力として再利用することを特徴とする。 In order to solve the above problems, in the present invention, in a power reuse system that regenerates power from non-utilized light energy of a lighting device, leakage that receives leaked light energy that is output from the lighting device and goes in a direction other than the lighting direction is received. A light receiving photoelectric conversion element is provided, and the output of the photoelectric conversion element is reused as recovered power.
ここで、前記回収電力を照明、電動機器の駆動、ペルチェ素子による冷却に用いることを特徴とする。 Here, the recovered power is used for illumination, driving of electric equipment, and cooling by a Peltier element.
また、以上の課題を解決するため、前記漏洩光受光光電変換素子の変換電力を充電する蓄電装置をさらに設けたことを特徴とする。 Moreover, in order to solve the above-mentioned subject, the electrical storage apparatus which charges the conversion electric power of the said leakage light light reception photoelectric conversion element was further provided.
ここで、前記蓄電装置の充電電力を照明、電動機器の駆動、ペルチェ素子による冷却に用いることを特徴とする。 Here, charging power of the power storage device is used for illumination, driving of an electric device, and cooling by a Peltier element.
本発明は、以上に述べたように、蛍光灯のように周囲全方向に光を出す照明装置から照明方向以外の方向に向かう漏洩光エネルギーを捕らえて光電変換により電力として回収して利用するので、未利用の光エネルギーを有効に利用ことができ、電力の節約を果たすことができる。 As described above, the present invention captures leaked light energy in a direction other than the illumination direction from a lighting device that emits light in all directions like a fluorescent lamp, and collects and uses it as electric power by photoelectric conversion. Thus, unused light energy can be used effectively, and power can be saved.
本発明の一実施形態である電気エネルギー回収システムの1実施形態のブロック図である。It is a block diagram of one embodiment of an electric energy recovery system which is one embodiment of the present invention. 本実施形態での太陽電池が蛍光灯から受光する明るさと太陽電池の発電量の関係を示す図表である。It is a graph which shows the relationship between the brightness which the solar cell in this embodiment receives from a fluorescent lamp, and the electric power generation amount of a solar cell. 本実施形態での蛍光灯の明かりによる発電で点灯させるLEDの明るさを示す図表である。It is a graph which shows the brightness of LED made to light by the electric power generation by the light of the fluorescent lamp in this embodiment. 本実施形態での蛍光灯と太陽電池間の距離による太陽電池の発電量を示す図表である。It is a graph which shows the electric power generation amount of the solar cell by the distance between the fluorescent lamp and solar cell in this embodiment. 本実施形態での蛍光灯の明かりで点灯させたLEDの明るさを示す図表である。It is a chart which shows the brightness of LED turned on with the light of the fluorescent lamp in this embodiment. 本実施形態で蛍光管と太陽電池の位置を示す図である。It is a figure which shows the position of a fluorescent tube and a solar cell in this embodiment. 本システムを太陽光線下で用いた場合のLEDの明るさを示す図表である。It is a graph which shows the brightness of LED at the time of using this system under sunlight.
ここで、本発明の電気エネルギー回収システムの一実施形態の構成を図1のブロック図に添って簡単に説明する。 Here, the configuration of an embodiment of the electrical energy recovery system of the present invention will be briefly described with reference to the block diagram of FIG.
図1において、符号1は蛍光灯、符号1Aは蛍光灯のブランケット、符号2は太陽電池、符号3は蓄電池、符号4は照明装置、符号5はPC冷却用ファンモータ、符号6はペルチェ素子、符号7は蓄電池選択スイッチである。 In FIG. 1, reference numeral 1 is a fluorescent lamp, reference numeral 1A is a fluorescent lamp blanket, reference numeral 2 is a solar battery, reference numeral 3 is a storage battery, reference numeral 4 is an illumination device, reference numeral 5 is a PC cooling fan motor, reference numeral 6 is a Peltier element, Reference numeral 7 denotes a storage battery selection switch.
 この図1の構成で、蛍光灯1の点灯時にその照明方向とは逆方向であるブランケット1A側に太陽電池2を設け、この太陽電池2で光電変換した電力を電気製品{照明(LED)4やフアンモータ5、ペルチェ素子6}の駆動に用いる。
太陽電池2で光電変換した電力は蓄電池3に充電して用いてもよい。この場合、蓄電池3を全く用いずに太陽電池2で光電変換した電力を直接電気製品に送るか、太陽電池2で光電変換した電力を蓄電池3に一旦充電した後電気製品に送るか、太陽電池2で光電変換した電力を蓄電池3に充電させると同時に電気製品に送るかの選択を蓄電池選択スイッチ7で行うことができる。
 このような図1の構成を採ることで、従来全く無駄に捨てていた照明方向以外の方向に向かう光のエネルギーを生かして再利用することができ、節電を図ることができる。
In the configuration of FIG. 1, when the fluorescent lamp 1 is turned on, a solar cell 2 is provided on the blanket 1 </ b> A side opposite to the illumination direction. And fan motor 5 and Peltier element 6}.
The electric power photoelectrically converted by the solar battery 2 may be used by charging the storage battery 3. In this case, the electric power photoelectrically converted by the solar cell 2 without using the storage battery 3 is sent directly to the electrical product, or the electric power photoelectrically converted by the solar cell 2 is once charged in the storage battery 3 and then sent to the electrical product, or the solar cell. The storage battery selection switch 7 can be used to select whether the storage battery 3 is charged with the electric power photoelectrically converted in 2 and sent to the electrical product at the same time.
By adopting such a configuration of FIG. 1, it is possible to reuse the energy of light traveling in a direction other than the illumination direction, which has been totally wasted in the past, and to save power.
ところで、太陽電池には、単結晶シリコン型、多結晶シリコン型、アモルファス型などのタイプがある。
このうち、単結晶シリコン型は、発電能力が高く、信頼性が高いが、太陽光線下でないと発電効果が著しく悪い。同様に、多結晶シリコン型も、信頼性もあり、劣化も少なく、近年多量生産のために価格も下がってきているが、太陽光線下でないと発電効果が著しく悪い。
一方、アモルファス型〈薄膜系シリコン型〉は電卓などに用いられるように、廉価で、変換効率は必ずしもよくないが人工光下でも発電可能であり、本発明にはこの型のものを用いる。
By the way, there are types of solar cells such as a single crystal silicon type, a polycrystalline silicon type, and an amorphous type.
Among these, the single crystal silicon type has high power generation capability and high reliability, but the power generation effect is remarkably poor unless it is under sunlight. Similarly, the polycrystalline silicon type is also reliable, has little deterioration, and the price has recently decreased due to mass production. However, the power generation effect is extremely poor unless it is under sunlight.
On the other hand, the amorphous type (thin film type silicon type) is inexpensive and has a low conversion efficiency as used in calculators and the like, but can generate power even under artificial light, and this type is used in the present invention.
発明者らは、本発明の実用の可能性を見極めるためにいくつかの実験を行った。
これらの実験のいくつかの結果について、以下に報告する。
The inventors have conducted several experiments to determine the practical applicability of the present invention.
Some results of these experiments are reported below.
(実験例1)
蛍光灯→太陽電池(電卓用)→LED照明
実験例1は、オフィスに設置してある蛍光灯の光を、電卓用の太陽電池で光電変換してLEDランプを点灯する。
(Experimental example 1)
Fluorescent lamp → solar cell (for calculator) → LED lighting experiment example 1 is to light the LED lamp by photoelectrically converting the light of the fluorescent lamp installed in the office with a solar cell for calculator.
(使用部品)
太陽電池(アモルファス:薄膜系シリコン型) 電卓用(0.8×2.4cm)10個
LED:3mm丸型白色高輝度LED(Dランク品) 5個
(設置場所)
蛍光灯ブランケット面(蛍光灯の照射方向の裏側で蛍光灯管面からの距離約1cm)
(蛍光灯の明るさと発電量)
この場合の蛍光灯の光の太陽電池面での明るさと太陽電池の発電量との関係を図2に示す。LED点灯欄で◎は明るく点灯、○は点灯、△はかすかに点灯、×は点灯しないを意味する。
この図から分かるように、蛍光灯管面から約1cmのブランケット面で1個の太陽電池から1.6mW程度の電力出力が得られ、LEDを点灯させることができる。
(Used parts)
Solar cell (amorphous: thin-film silicon type) Calculator (0.8 × 2.4cm) 10 LEDs: 3mm round white high brightness LED (D rank product) 5 (installation location)
Fluorescent lamp blanket surface (distance from the fluorescent lamp tube surface on the back side of the fluorescent lamp irradiation direction)
(Brightness of fluorescent lights and power generation)
The relationship between the brightness of the fluorescent lamp light on the solar cell surface in this case and the amount of power generated by the solar cell is shown in FIG. In the LED lighting column, ◎ means brightly lit, ○ means lit, Δ means faintly lit, and x means not lit.
As can be seen from this figure, a power output of about 1.6 mW can be obtained from one solar cell with a blanket surface of about 1 cm from the fluorescent tube surface, and the LED can be turned on.
(実際に発電させた場合の点灯LEDの明るさ)
この実験例で蛍光灯の光により太陽電池を発電させLEDを点灯させた場合の明るさの例を図3に示す。図3では蛍光灯管面と太陽電池の距離を5cmとし、配置した太陽電池の数やLEDの数を変えた場合に、LEDで照射されるLEDから5cmの位置のLED照射部分の明るさを示している。
(Brightness of LED lights when power is actually generated)
In this experimental example, FIG. 3 shows an example of brightness when a solar cell is generated by light from a fluorescent lamp and an LED is turned on. In FIG. 3, when the distance between the fluorescent lamp tube surface and the solar cell is 5 cm and the number of arranged solar cells and the number of LEDs are changed, the brightness of the LED irradiation portion at a position of 5 cm from the LED irradiated by the LED is changed. Show.
(実験例2)
蛍光灯→太陽電池(自動車バッテリ充電用)→LED照明
実験例2は、オフィスに設置してある蛍光灯の光を、自動車バッテリ充電用の太陽電池で光電変換してLEDランプを点灯させる。
(Experimental example 2)
Fluorescent lamp → solar cell (for car battery charging) → LED lighting experiment example 2 photoelectrically converts the light of the fluorescent lamp installed in the office with the solar battery for car battery charging to light the LED lamp.
(使用部品)
太陽電池(三洋電機製アモルファス・表示発電電流量17mA) 
自動車バッテリ充電用(2.5×14.5cm) 5個
LED:自動車室内用3連フラットLED(エーモン社製) 5個
(設置場所)
蛍光灯ブランケット面(蛍光灯の照射方向の裏側で蛍光灯管面からの距離約5cm)
(Used parts)
Solar cell (Amorphous manufactured by Sanyo Electric Co., Ltd., display power generation current of 17 mA)
For vehicle battery charging (2.5 × 14.5cm) 5 LEDs: 5 interior flat LED for automobile interior (made by Amon) 5 (installation location)
Fluorescent lamp blanket surface (the distance from the fluorescent lamp tube surface on the back side of the fluorescent lamp irradiation direction)
(蛍光灯の明るさと発電量)
この場合の蛍光灯の光の太陽電池面での明るさと太陽電池の発電量との関係を図4に示す。この測定例(A)は蛍光灯と太陽電池との距離を5cmと接近させ、太陽電池は5個並列に設置した場合、測定例(B)は蛍光灯と太陽電池との距離を0cmと密着させ、太陽電池は5個並列に設置した場合である。ちなみに、これらの測定時において蛍光灯の表面温度は38.5℃(両端のみ49.0℃)であった。
(Brightness of fluorescent lights and power generation)
FIG. 4 shows the relationship between the brightness of the fluorescent lamp light on the solar cell surface and the amount of power generated by the solar cell in this case. In this measurement example (A), the distance between the fluorescent lamp and the solar cell is as close as 5 cm, and when five solar cells are installed in parallel, the measurement example (B) is in close contact with the distance between the fluorescent lamp and the solar cell at 0 cm. In this case, five solar cells are installed in parallel. Incidentally, at the time of these measurements, the surface temperature of the fluorescent lamp was 38.5 ° C. (both ends 49.0 ° C.).
(実際に発電させた場合の点灯LEDの明るさ)
この実験例で蛍光灯の光により太陽電池を発電させLEDを点灯させた場合の明るさの例を図5に示す。図5では、配置した太陽電池の数やLEDの数を固定にして、LEDで照射される、LEDから1cmと5cmでのLED照射部分の明るさを示している。測定例(A)は蛍光灯と太陽電池との距離を5cmと接近させ、太陽電池は5個並列に設置した場合、測定例(B)は蛍光灯と太陽電池との距離を0cmと密着させ、太陽電池は5個並列に設置した場合の測定結果である。
(Brightness of LED lights when power is actually generated)
FIG. 5 shows an example of brightness when the solar cell is generated by the light of the fluorescent lamp and the LED is turned on in this experimental example. In FIG. 5, the brightness | luminance of the LED irradiation part in 1 cm and 5 cm from LED which irradiates with LED, fixing the number of the arrange | positioned solar cells and the number of LED is shown. In the measurement example (A), the distance between the fluorescent lamp and the solar cell is as close as 5 cm. When five solar cells are installed in parallel, the measurement example (B) is such that the distance between the fluorescent lamp and the solar cell is 0 cm. The measurement result when five solar cells are installed in parallel is shown.
図6に、蛍光管の長さ方向の断面図を用いて測定例(A)と測定例(B)の場合の蛍光灯と太陽電池の位置関係を示した。いずれの場合も、この構成でLEDを点灯させ、PC冷却用ファンモータを駆動させることができたが、太陽電池を直接接続するだけではペルチェ素子を駆動させることはできなかった。次段落であげるように蓄電池を用いることでペルチェ素子も駆動できる。
(A)蓄電池なし
LED:点灯
PC冷却用ファンモータ:回転
ペルチェ素子:動作せず
(B)蓄電池あり
LED:点灯
PC冷却用ファンモータ:回転
ペルチェ素子:動作
FIG. 6 shows the positional relationship between the fluorescent lamp and the solar cell in the measurement example (A) and the measurement example (B) using a cross-sectional view in the length direction of the fluorescent tube. In either case, the LED could be turned on and the PC cooling fan motor could be driven with this configuration, but the Peltier element could not be driven only by directly connecting the solar cells. As described in the next paragraph, a Peltier element can be driven by using a storage battery.
(A) LED without storage battery: lighting PC cooling fan motor: rotating Peltier element: not operated (B) LED with storage battery: lighting PC cooling fan motor: rotating Peltier element: operation
(実験例3)
蛍光灯→太陽電池(自動車バッテリ充電用)→蓄電池→電気製品
実験例3は、オフィスに設置してある蛍光灯の光を、自動車バッテリ充電用の太陽電池で光電変換して、ニッケル・カドミウム蓄電池に充電させ、LEDランプを点灯させ、PC冷却用ファンモータを駆動させる。
(Experimental example 3)
Fluorescent lamp → Solar cell (for car battery charging) → Storage battery → Electrical product experiment example 3 is a nickel-cadmium accumulator battery by photoelectrically converting the light of the fluorescent lamp installed in the office with the solar battery for car battery charging. The LED lamp is turned on and the PC cooling fan motor is driven.
(使用部品)
(1)放電させたニッケル・カドミウム蓄電池(単3型)4本(直列接続)を自動車バッテリ充電用太陽電池5枚並列で蛍光灯で充電させたのち利用可能な放電電流を測定した。
放電電流は、充電2時間後  210mA
      充電6時間後  426mA
(2)充電したニッケル・カドミウム蓄電池(単3型)4本(直列)でPC冷却用ファンモータを駆動させる。
A)蛍光灯で2時間充電   約30分間回転し続けて停止した。
B)蛍光灯で6時間充電   約2時間回転し続けた。
C)蛍光灯で12時間充電  約4時間半回転し続けた。
ちなみに太陽光で2時間充電した場合には数時間回り続けた。
(Used parts)
(1) Four dischargeable nickel-cadmium storage batteries (AA type) (in series connection) were charged with a fluorescent lamp in parallel with five solar battery charging batteries, and the available discharge current was measured.
The discharge current is 210 mA after 2 hours of charging.
426mA after 6 hours of charging
(2) The PC cooling fan motor is driven by four (in series) charged nickel-cadmium storage batteries (AA).
A) Charging with fluorescent lamp for 2 hours The rotation continued for about 30 minutes and stopped.
B) Charging with fluorescent lamp for 6 hours The rotation continued for about 2 hours.
C) Charging with a fluorescent lamp for 12 hours The rotation continued for about 4 and a half hours.
By the way, when it was charged with sunlight for 2 hours, it continued for several hours.
(電気製品の駆動状況)
このように蓄電器を用いて(A)充電した蓄電器のみによる駆動の場合、(B)太陽電池に蓄電器を接続した状態での駆動の場合とも、LEDを点灯させ、PC冷却用ファンモータを駆動させ、ペルチェ素子を駆動させることができた。
(A)蓄電器のみによる駆動の場合、(B)太陽電池に蓄電器を接続した状態での駆動の場合のいずれでも
LED:点灯
PC冷却用ファンモータ:回転
ペルチェ素子:動作
(Driving status of electrical products)
In this way, in the case of driving with only the charged battery (A) using the battery, (B) in the case of driving with the battery connected to the solar cell, the LED is lit and the PC cooling fan motor is driven. The Peltier device could be driven.
(A) In the case of driving only by the capacitor, (B) LED: lighting PC cooling fan motor: rotating Peltier element: operation in any case of driving with the capacitor connected to the solar cell
(実験例4)
太陽光→太陽電池(自動車バッテリ充電用)→蓄電池→電気製品
実験例4は、参考例として本実験で用いた装置で、太陽光を光電変換して、ニッケル・カドミウム蓄電池に充電させ、LEDランプ、PC冷却用ファンモータペルチェ素子を駆動させる。
(Experimental example 4)
Sunlight-> solar cell (for car battery charging)-> storage battery-> electrical product experiment example 4 is an apparatus used in this experiment as a reference example. Photoelectric conversion of sunlight is made to charge a nickel-cadmium storage battery, and an LED lamp The fan motor Peltier element for PC cooling is driven.
(使用部品)
      太陽電池(三洋電機製アモルファス)自動車バッテリ充電用(2.5×14.5cm)
    出力電圧:20.5~22.0V/1個
    出力電流:2.3~5.3mA/1個             5個
    5個並列:21.2V 14.5mA
LED:自動車室内用3連フラットLED                3個
(Used parts)
Solar battery (amorphous manufactured by Sanyo Electric) for vehicle battery charging (2.5 x 14.5 cm)
Output voltage: 20.5 to 22.0V / 1 unit Output current: 2.3 to 5.3mA / 1 unit 5 units 5 units in parallel: 21.2V 14.5mA
LED: 3 triple flat LEDs for automobile interior
(設置場所)
新潟県中央区 4/1/2011 12:40 晴れ、雲あり
(発電させた場合の点灯LEDの明るさ)
この実験例で太陽光により太陽電池を発電させLEDを点灯させた場合の明るさの例を図7に示す。図7では、配置した太陽電池の数やLEDの数を固定にして、LEDで照射される、LEDから1cmと5cmでのLED照射部分の明るさを示している。
(Installation location)
Niigata Prefecture Chuo-ku 4/1/2011 12:40 Sunny, with clouds (brightness of LED lights when power is generated)
FIG. 7 shows an example of brightness when a solar cell is generated by sunlight and an LED is turned on in this experimental example. In FIG. 7, the brightness | luminance of the LED irradiation part in 1 cm and 5 cm from LED which irradiates with LED, fixing the number of the arrange | positioned solar cells and the number of LED is shown.
(電気製品の駆動状況)
この場合、(A)蓄電池を用いず太陽電池直接接続の場合、(B)太陽電池に蓄電器を接続した状態での駆動の場合とも、LEDを点灯させ、PC冷却用ファンモータを駆動させ、ペルチェ素子を駆動させることができた。
(A)蓄電池を用いず太陽電池直接接続の場合
LED:点灯
PC冷却用ファンモータ:回転
ペルチェ素子:動作
(B)太陽電池に蓄電器を接続した状態での駆動の場合
LED:点灯
PC冷却用ファンモータ:回転
ペルチェ素子:動作
(Driving status of electrical products)
In this case, (A) In the case of direct solar cell connection without using a storage battery, (B) In the case of driving with the battery connected to the solar cell, the LED is turned on, the PC cooling fan motor is driven, and the Peltier The element could be driven.
(A) In the case of direct connection of solar cells without using a storage battery LED: lighting PC cooling fan motor: rotating Peltier element: operation (B) In the case of driving in a state where a capacitor is connected to the solar battery LED: lighting PC cooling fan Motor: Rotating Peltier element: Operation
以上に述べた結果から明らかなように、今まで無駄にしていた蛍光灯の照明に用いられていない光を用いて、LEDを用いた照明、PC冷却用ファンモータの駆動、個人用クーラに用いられるペルチェ素子を充分稼動させることができることが判った。 As is clear from the results described above, using light that has not been used for the illumination of fluorescent lamps that has been wasted until now, using LED, driving the fan motor for PC cooling, and personal cooler It has been found that the Peltier element can be operated sufficiently.
このシステムを、さらに最適化して商品化できれば、大きな節電が可能であり、計画停電の実施に対する対応や地球温暖化の防止、環境破壊の抑制を図りながら、照明や個人用クーラを用いて個々人が特に我慢することなく、猛暑の夏を快適に過ごすことができることも夢ではない。 If this system can be further optimized and commercialized, significant power savings will be possible. Individuals will be able to use lighting and personal coolers while responding to planned power outages, preventing global warming, and controlling environmental destruction. It is not a dream to be able to spend the hot summer comfortably without being particularly patient.
以上では利用の対象に、照明、回転機、ペルチェ素子を上げたが、ラジオや動画映像の視聴などにも利用できることはもちろんであり、さらに蓄電器を使うことで電力需要時刻をずらすなどにも用いることができることは言うまでもなく、広い用途や可能性が考えられる。 In the above, lighting, rotating machines, and Peltier elements have been raised as objects of use, but of course they can also be used for radio and video viewing, etc., and also used for shifting power demand times by using capacitors. Needless to say, a wide range of uses and possibilities are conceivable.
本発明は、以上に述べたように、オフィスや家庭などで通常用いられている蛍光灯の実際には照明に寄与しない光エネルギーで、LEDなどの照明を点灯しファンモータやペルチェ素子を稼動させることができるので、事業所、事務所、工場、家庭などで個人用の冷房装置などに用いる広く大きな利用可能性が考えられ、きわめて重要な意義がある。 As described above, the present invention lights a light such as an LED and operates a fan motor or a Peltier element with light energy that does not actually contribute to lighting of a fluorescent lamp normally used in an office or home. Therefore, it can be used widely for personal cooling devices in offices, offices, factories, homes, etc., and is extremely important.
1  蛍光灯
1A ブランケット
1B 蛍光管
2  太陽電池
3  蓄電池
4  照明(LED)
5  PC冷却用ファンモータ
6  ペルチェ素子
7  蓄電池選択スイッチ
DESCRIPTION OF SYMBOLS 1 Fluorescent lamp 1A Blanket 1B Fluorescent tube 2 Solar cell 3 Storage battery 4 Illumination (LED)
5 PC cooling fan motor 6 Peltier element 7 Storage battery selection switch

Claims (4)

  1. 照明装置から出力され、照明方向以外の方向に向かう漏洩光エネルギーを受光する漏洩光受光光電変換素子を設け、この光電変換素子の出力を回収電力として再利用することを特徴とする電力再利用システム。 A power reuse system comprising a leaked light receiving photoelectric conversion element that receives leaked light energy output from a lighting device and traveling in a direction other than the illumination direction, and reusing the output of the photoelectric conversion element as recovered power .
  2. 前記回収電力を照明、電動機器の駆動、ペルチェ素子による冷却に用いることを特徴とする請求項1に記載の電力再利用システム。 2. The power reuse system according to claim 1, wherein the recovered power is used for illumination, driving of an electric device, and cooling by a Peltier element.
  3. 前記漏洩光受光光電変換素子の変換電力を充電する充電装置をさらに設けたことを特徴とする請求項1に記載の電力再利用システム。 The power reuse system according to claim 1, further comprising a charging device that charges the converted power of the leaky light receiving photoelectric conversion element.
  4. 前記充電装置の充電電力を照明、電動機器の駆動、ペルチェ素子による冷却に用いることを特徴とする請求項3に記載の電力再利用システム。 The power reuse system according to claim 3, wherein the charging power of the charging device is used for lighting, driving of an electric device, and cooling by a Peltier element.
PCT/JP2011/061691 2011-05-16 2011-05-20 Electric energy recovering system WO2012157124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-109381 2011-05-16
JP2011109381A JP2012243409A (en) 2011-05-16 2011-05-16 Electric energy recovery system

Publications (1)

Publication Number Publication Date
WO2012157124A1 true WO2012157124A1 (en) 2012-11-22

Family

ID=47176485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061691 WO2012157124A1 (en) 2011-05-16 2011-05-20 Electric energy recovering system

Country Status (2)

Country Link
JP (1) JP2012243409A (en)
WO (1) WO2012157124A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925549A (en) * 2014-04-24 2014-07-16 北京半导体照明科技促进中心 Outdoor guidance lighting device and method
JP2019022471A (en) * 2017-07-24 2019-02-14 石川 誠司 Illumination device having air blowing function for growing and enjoying plants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004964A1 (en) * 2013-07-11 2015-01-15 Yamashita Shirou Illumination device with in-house power generation function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322608A (en) * 2004-05-10 2005-11-17 Motohiro Akakura Lighting apparatus which performs optical power generation with attached solar battery panel by using illumination light as light source and reuses obtained electric power for power source of electric product
JP2010135206A (en) * 2008-12-05 2010-06-17 Toppan Forms Co Ltd Lighting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322608A (en) * 2004-05-10 2005-11-17 Motohiro Akakura Lighting apparatus which performs optical power generation with attached solar battery panel by using illumination light as light source and reuses obtained electric power for power source of electric product
JP2010135206A (en) * 2008-12-05 2010-06-17 Toppan Forms Co Ltd Lighting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925549A (en) * 2014-04-24 2014-07-16 北京半导体照明科技促进中心 Outdoor guidance lighting device and method
JP2019022471A (en) * 2017-07-24 2019-02-14 石川 誠司 Illumination device having air blowing function for growing and enjoying plants

Also Published As

Publication number Publication date
JP2012243409A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
US8358099B2 (en) Modular electric power system with a renewable energy power generating apparatus
WO2012157124A1 (en) Electric energy recovering system
KR20120058794A (en) Optimal Landscape Light System and Method
JP4841240B2 (en) Lighting device
KR20210030056A (en) Photovoltaic device using artificial lighting
CN101686024B (en) Spherical solar lighting system
CN203660965U (en) Movable photovoltaic system room
KR101286578B1 (en) Solar power generation with energy storage capabilities connected unit
KR200459294Y1 (en) Portable and easily keeping solar battery module
JP5629179B2 (en) Self-supporting power supply device and optical equipment using the same
KR101557847B1 (en) Small photovoltaic system for home
CN209800152U (en) Solar low-temperature emergency starting device for generator set
CN105243818A (en) Novel wireless sensor network node
CN202261105U (en) Solar power generation device and waiting station including same
CN102681598A (en) Laptop charged by optical energy
CN201444497U (en) Small solar energy storage battery pack
WO2009157322A1 (en) Saigaichan (portable illumination lamp with receiving function)
CN214798881U (en) Open-air integrated combined power supply based on aluminum-air battery
KR20090112846A (en) The Small size Generation System using Solar Cell
CN202182407U (en) Solar-powered OLED (organic light-emitting diode) and LED lighting system
CN213632413U (en) Thermal infrared imager with new forms of energy power supply
KR20120038673A (en) Solar generating apparatus
Islam et al. Efficient load and charging method for solar powered home lighting system of Bangladesh
CN201509161U (en) Solar power module
CN203104877U (en) Flashlight with super capacitor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865576

Country of ref document: EP

Kind code of ref document: A1