WO2012156126A2 - Sensorelement mit piezoelektrischem wandler - Google Patents

Sensorelement mit piezoelektrischem wandler Download PDF

Info

Publication number
WO2012156126A2
WO2012156126A2 PCT/EP2012/054833 EP2012054833W WO2012156126A2 WO 2012156126 A2 WO2012156126 A2 WO 2012156126A2 EP 2012054833 W EP2012054833 W EP 2012054833W WO 2012156126 A2 WO2012156126 A2 WO 2012156126A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensor element
memristor
piezoelectric transducer
pixels
Prior art date
Application number
PCT/EP2012/054833
Other languages
English (en)
French (fr)
Other versions
WO2012156126A3 (de
Inventor
Axel Franke
Alexander Buhmann
Fabian Henrici
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201280024398.1A priority Critical patent/CN103562696B/zh
Priority to EP12715633.9A priority patent/EP2710344B1/de
Publication of WO2012156126A2 publication Critical patent/WO2012156126A2/de
Publication of WO2012156126A3 publication Critical patent/WO2012156126A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Drive or control circuitry or methods for piezoelectric or electrostrictive devices not otherwise provided for
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors

Definitions

  • the invention relates to a sensor element with at least one piezoelectric transducer.
  • the piezoelectric effect is known per se and is technically exploited to measure an applied force.
  • the force leads to an elastic deformation of a beam or a membrane and thereby to a change in the electrical polarization in the material. Because of this, there is a charge separation, which in turn as
  • piezoelectric transducers are often used to measure the elastic deformation occurring in a sensor diaphragm, for example, the piezoelectric effect.
  • Such piezoelectric transducers are used, for example, in force, pressure or acceleration sensors.
  • a mechanical deformation in such force, pressure or Acceleration sensors leads to a piezoelectric charge that with a
  • Charge amplifier can be converted into a low-impedance electrical voltage.
  • the charge can also be used to charge a capacitor and measure its voltage with a high-impedance voltmeter.
  • poor insulation resistances for example due to moisture, can falsify the result and make the registration of relatively slow deformations more difficult.
  • DE 2 109 388 A describes a piezoelectric transducer which is connected to an amplifier or impedance converter with a first transistor and a second transistor
  • the piezoelectric transducer is housed with the transistors in a single transducer housing.
  • the transistors must be powered by a cable with voltage, for example, from a battery.
  • a high circuit complexity must be operated, which leads inter alia to the fact that the entire arrangement, for example, for a vehicle in a vehicle,
  • a sensor element with at least one piezoelectric transducer is proposed, wherein the piezoelectric transducer is coupled to at least one memristor.
  • a memristor in the sense of the present invention is a passive component whose electrical resistance is not constant, but depends on its past.
  • the memristor is commonly described as the fourth fundamental passive device in addition to the resistor, the capacitor and the coil.
  • the basic behavior of memristors has been extensively studied theoretically (Strukov et al., The missing memristor found, Nature 453 (2008), page 80ff). The
  • memristors Use of memristors is described for example in US 2010/019656 A1 in connection with a magnetic memory element.
  • DE 10 2009 026 189 A1 mentions the use of memristors as an alternative to RAM components (random access memory) for memory elements.
  • the actual resistance of the device depends on how many charges, q (t), have flowed in which direction.
  • the resistance of the memristor which is also referred to as a memorandum, M (t) depends on the integral of the
  • this can be at least two areas
  • the at least two regions of the memristor have a certain size. If a current flows through the component, the size of these areas may change.
  • toroidal inductors for example components with a rod-shaped magnetic core or a magnetic core in the form of a ring interrupted by an air gap, can be cooled in the manner according to the invention.
  • the piezoelectric transducer is connected in parallel with the memristor.
  • the memristor is part of a half-bridge.
  • the half-bridge usually comprises a series connection of two
  • the half-bridge includes two passive components, wherein at least one of these components may be a memristor.
  • the half-bridge may contain two memristors of opposite polarity.
  • the sensor element can also be designed to be operated in a readout mode or a measurement mode.
  • the changeover between the readout mode and the measuring mode can be done by means of switches.
  • the switch can be used during measuring operation be switched so that the memristor of the sensor element is coupled to the piezoelectric transducer.
  • the switch In read-out mode, the switch can be folded over so that the memristor is decoupled from the piezoelectric transducer and comes into contact with reading electronics.
  • the readout electronics may comprise a voltage source, preferably an AC voltage source and a voltage meter such as a voltmeter.
  • the transducer and memristor may be made of CMOS-compatible materials. Suitable materials are, in particular, those used in semiconductor manufacturing, such as AIN for the piezoelectric transducer and TiO 2 for the
  • a sensor with an arrangement of a plurality of pixels wherein at least one of the pixels comprises a sensor element as described above.
  • the arrangement comprises a matrix arrangement of a plurality of sensor elements.
  • this is designed for low-impedance connection to a readout electronics.
  • a method for operating a sensor is also proposed according to the invention, wherein a readout of the sensor takes place in rows and / or columns.
  • the readout of the pixels takes place with a time delay.
  • the use of the sensor element as described above in a force sensor, a pressure sensor, a rotational acceleration sensor or a stress sensor or a mechanical stress sensor is proposed.
  • the inventively proposed combination of piezoelectric transducer with memristor allows to capture the resulting transient signal on site. This results in a smaller area requirement, compared to an active circuit.
  • the resulting signal changes the memorandum, M (t), of the memristor and can be reliably read at any time, whereby the reading is low-impedance and thus immune to interference.
  • M (t) memorandum
  • piezoelectric transducer with memristor as a pixel in an array of a plurality of pixels and so to achieve a high resolution.
  • individual pixels can be read out with a time delay.
  • robust signals are transmitted by the low-resistance connection of the readout electronics, so that electromagnetic interference does not affect the measurement.
  • Figure 1 is an equivalent circuit diagram of a piezoelectric transducer, as from the prior
  • FIG. 3 shows a sensor element according to the invention with a piezoelectric transducer and a parallel connected memristor
  • FIG. 4 shows a step response of the sensor element according to FIG. 3 according to the invention
  • FIG. 5 sensor element according to the invention in measuring operation
  • FIG. 6 sensor element according to the invention in read-out mode
  • FIG. 7 shows a differential structure of the sensor element according to the invention in the read-out mode
  • Pixel is a column and line by line reading.
  • FIG. 1 shows an equivalent circuit diagram of a piezoelectric transducer 11.
  • the equivalent circuit of the piezoelectric transducer 11 includes a current source 12 which emulates the piezoelectric effect.
  • the amperage, i (t) shows a course, which depends on the
  • FIG. 2 shows the step response of the piezoelectric transducer 1 1 according to Figure 1, that is, the resulting output voltage, u (t), at a stepped input current, i (t).
  • the step response or the abrupt change of the input current intensity, i (t) takes place, for example, by applying a force jump to the converter 11.
  • FIG. 2 shows the behavior of the piezoelectric transducer 1 1 on the basis of the signal strength curve, s, the input current intensity, i (t), and the output voltage, u (t), as a function of time, t.
  • the short-time high current intensity, i (FIG. t) charges up the capacitance and thus leads to a drop in the output voltage, u (t). Since a real piezoelectric transducer 1 1 always has a finite internal resistance 14, the capacitance 16 discharges via the resistor 14. The resulting voltage signal, u (t), therefore decreases with increasing time.
  • FIG. 3 shows a sensor element 10, wherein the piezoelectric transducer 1 1 in
  • the sensor element 10 comprises
  • the piezoelectric transducer 1 which is coupled to a Memristor 20.
  • the memristor 20 is connected in parallel with the piezoelectric transducer 11.
  • the memristor 20 comprises two regions 22, 24, wherein a first region 22, for example Ti0 2 includes and a second region 24, for example, doped Ti0 2-x contains.
  • i (t) denote the input current intensity of the piezoelectric transducer 11 and u (t) the output voltage of the sensor element 10.
  • Transducer 1 1 arise over the prior art, new possibilities. For the memristor itself has a relative to the internal resistance 14 of the piezoelectric transducer 1 1 by several orders of magnitude lower resistance value. This reduces the
  • Memristor 20 and thereby changes its resistance, M (t) (Memresistanz).
  • the change in the resistance value is based on a change in size of the
  • the regions 22, 24 typically have a different conductivity and the boundary between the regions 22, 24 shifts when oxygen ions or acting as a dopant vacancies are transported in the electric field. In this way, the memristor 20 contains the information about the currently applied force signal and stores it.
  • FIG. 4 shows, in comparison to the step response of the piezoelectric transducer 1 1 according to FIG. 2, the step response of the inventively proposed sensor element 10 with parallel-connected memristor 20. Similar to FIG. 2, FIG. 4 shows the behavior of the sensor element 10 on the basis of the variation of the input current intensity, i (t ), and the
  • the output voltage, u (t) is followed by the high current intensity, i (t), for a short time. Due to the greatly reduced time constant in inventive sensor element 10 with parallel-connected memristor 20, the output voltage, u (t), follows the current intensity, i (t). Charge flows through the memristor 20 and changes its resistance, M (t).
  • Figures 5 and 6 show the equivalent circuit diagram of the piezoelectric transducer 1 1 comprising a current source 12, an internal resistance 14 and a capacitor 16, wherein a memristor 20 according to the invention is connected in parallel.
  • Figure 5 is a
  • the memristor 20 memorizes how much charge has flowed across the memristor 20 by means of its mem- brane distance.
  • the memristor 20 is in connection with the piezoelectric transducer 1 1.
  • FIG. 6 shows the circuit according to FIG. 5, wherein the memristor 20 is in the read-out mode 32.
  • a voltmeter 26 is connected in series with the memristor 20 and an AC voltage source 28 is connected.
  • the memritance of the memristor 20 can be determined by means of the display of the voltmeter 26.
  • the use of an alternating voltage is particularly advantageous since it leaves the memrity unchanged over the time average.
  • switching is effected between the measuring mode 30 and the read-out mode 32 of the memristor 20 with the aid of a switch 31.
  • the memrystal of the memristor in regular
  • FIG. 7 shows a further embodiment of the sensor element 10 according to the invention, in which, instead of a memristor 20, two memristors 20, 20 'of opposite polarity are connected in series.
  • opposite polarity means that the Memristoren 20, 20 'are connected so that the areas 22, 22' are connected in series.
  • the polarity of the Memristoren 20, 20 ' which in each case from the area 22, 22' to the area 24, 24 ', oppositely poled.
  • FIG. 7 shows the sensor element 10 according to the invention in the read-out mode 32, the switches 31 being in the read-out position.
  • the memristors 20, 20 ' are connected to a voltmeter 38.
  • Signal generator 34, 34 ' connected in series and acted upon by a signal generator 34, 34' generated jump function.
  • FIG. 8 shows a sensor 40 according to the invention which contains individual sensor elements 10, 10 'as pixels.
  • the sensor elements 10, 10 'each comprise a combination of a piezoelectric transducer 11 and a memristor 20.
  • the sensor 40 is furthermore embodied such that the sensor enables a low-impedance connection to a read-out electronics 42.
  • the sensor elements 10, 10 ' are interconnected in a matrix arrangement 44 in such a way that in each case one connection 46 connects in series a sensor element 10, 10' with at least one further sensor element 10, 10 'of the line 46 and / or in each case a further connection 48 a sensor element 10, 10 'with at least one further sensor element 10, 10' of the column 46 connected in series.
  • the read-out electronics 42 comprises a voltage source 52 which provides an AC voltage, and a voltmeter to measure the voltage drop across at least one sensor element 10, 10 '.
  • the switches 31 'and 33' are exemplary closed, with the switch 31 'selecting the row and the switch 33' selecting the column. In the position of the switches 31 'and 33' shown in FIG. 8, the sensor element 10 'is read out. In other embodiments of the sensor 40, different numbers of
  • Sensor elements 10, 10 ' are provided in any number of rows and columns.
  • a number of sensor elements could be arranged in the same number of columns and only one line.
  • Such a matrix arrangement allows individual pixels, each comprising a sensor element 10, 10 ', to be read in columns and lines, in order to detect pressure distributions with the sensor, for example.
  • the small size of the individual sensor elements enables a high resolution.
  • individual pixels can be read out with a time delay. Due to the low-impedance connection of the readout electronics, robust signals are transmitted, so that electromagnetic

Abstract

Die Erfindung betrifft ein Sensorelement (10) mit mindestens einem piezoelektrischen Wandler (11), in dem der piezoelektrische Wandler (11) mit mindestens einem Memristor (20) gekoppelt ist. Weiterhin betrifft die Erfindung einen Sensor mit einer Anordnung von einer Mehrzahl von Pixeln, wobei mindestens einer der Pixel ein Sensorelement (10) umfasst.

Description

Beschreibung Titel
Sensorelement mit piezoelektrischem Wandler Stand der Technik Die Erfindung betrifft ein Sensorelement mit mindestens einem piezoelektrischen Wandler.
Der piezoelektrische Effekt ist an sich bekannt und wird technisch ausgenutzt, um eine anliegende Kraft zu messen. Die Kraft führt hierbei zu einer elastischen Verformung eines Balkens oder einer Membran und dadurch zu einer Änderung der elektrischen Polarisation im Material. Aufgrund dessen kommt es zu einer Ladungstrennung, welche wiederum als
Spannung detektierbar ist. Der piezoelektrische Effekt tritt nur in bestimmten Materialien auf. Hierzu zählen zum Beispiel Quarz, Blei-Zirkonat-Titanat (PZT), Aluminiumnitrid (AIN) sowie bestimmte Keramiken. Die Ladungstrennung in einem piezoelektrischen Wandler wird jedoch je nach Material und umgebender Schaltung mehr oder weniger lange Bestand haben, das heißt eine Änderung der anliegenden Kraft von einem ersten konstanten auf ein zweites kontantes Niveau (Sprung) wird ein Wandler nach mehr oder weniger langer Zeit„vergessen". Dies bedeutet, dass ein direkt genutzter piezoelektrischer Wandler nicht zur Messung von DC ("Direct Current", d.h. Gleichstrom)-Signalen in der Lage ist. Ein piezoelektrischer Wandler als solcher ist somit prinzipbedingt nicht besonders geeignet dafür, zeitlich konstante Kräfte in Messsignale (Spannungen) umzuwandeln. Zu diesem Zweck ist im Stand der Technik eine flächenintensive aktive Schaltung erforderlich (Ladungsverstärker), die sich üblicherweise aus Platzgründen nicht direkt am Ort des piezoelektrischen Wandlers unterbringen lässt.
In Sensoren, wie sie beispielsweise in der Automobilindustrie Verwendung finden, werden piezoelektrische Wandler häufig eingesetzt, um den bei einer elastischen Verformung, z.B. den bei einer Sensormembran auftretenden piezoelektrischen Effekt zu messen. Solche piezoelektrischen Wandler werden etwa in Kraft-, Druck- oder Beschleunigungssensoren eingesetzt. Eine mechanische Verformung in derartigen Kraft-, Druck- oder Beschleunigungssensoren führt zu einer piezoelektrischen Ladung, die mit einem
Ladungsverstärker in eine elektrische Spannung mit niedriger Impedanz umgewandelt werden kann. Die Ladung kann auch verwendet werden, um einen Kondensator aufzuladen und dessen Spannung mit einem möglichst hochohmigen Voltmeter zu messen. Allerdings können hierbei mangelhafte Isolationswiderstände beispielsweise durch Feuchtigkeit das Ergebnis verfälschen und die Registrierung relativ langsamer Verformungen erschweren.
DE 2 109 388 A beschreibt einen piezoelektrischen Wandler, der an einen Verstärker beziehungsweise Impedanzwandler mit einem ersten Transistor und einem zweiten
Transistor angeschlossen ist. Der piezoelektrische Wandler ist mit den Transistoren in einem einzigen Wandlergehäuse untergebracht. Zudem müssen die Transistoren über ein Kabel mit Spannung zum Beispiel aus einer Batterie betrieben werden. Zur Verstärkung beziehungsweise Wandlung des Signals des piezoelektrischen Wandlers muss somit ein hoher schaltungstechnischer Aufwand betrieben werden, der unter anderem dazu führt, dass die gesamte Anordnung, beispielsweise für einen Verbau in einem Fahrzeug,
vergleichsweise groß und unhandlich ist.
Offenbarung der Erfindung Erfindungsgemäß wird ein Sensorelement mit mindestens einem piezoelektrischen Wandler vorgeschlagen, wobei der piezoelektrische Wandler mit mindestens einem Memristor gekoppelt ist.
Ein Memristor (Kofferwort: Memory und Resistor) im Sinne der vorliegenden Erfindung ist ein passives Bauelement, dessen elektrischer Widerstand nicht konstant ist, sondern von seiner Vergangenheit abhängt. Der Memristor wird neben dem Widerstand, dem Kondensator und der Spule üblicherweise als viertes fundamentales passives Bauelement beschrieben. Das grundliegende Verhalten von Memristoren wurde bereits ausführlich theoretisch untersucht (Strukov et al., The missing memristor found, Nature 453 (2008), Seite 80ff). Die
Verwendung von Memristoren ist beispielsweise in US 2010/019656 A1 im Zusammenhang mit einem magnetischen Speicherelement beschrieben. DE 10 2009 026 189 A1 erwähnt den Einsatz von Memristoren als Alternative zu RAM-Bauteilen (Random Access Memory) für Speicherelemente. Bei einem Memristor ist der aktuelle Widerstand des Bauelements davon abhängig, wie viele Ladungen, q(t), in welche Richtung geflossen sind. Insbesondere hängt der Widerstand des Memristors, der auch als Memristanz, M(t), bezeichnet wird, vom Integral des in der
Vergangenheit durch ihn geflossenen Stroms, i(t), ab. Die über dem Memristor abfallende Spannung, u(t), ist somit über die Memristanz, M(t), und den Strom, i(t), zu u(t)=M(q(t)) l(t) gegeben.
In einer Realisierung des Memristors kann dieser mindestens zwei Bereiche
unterschiedlicher Leitfähigkeit umfassen. Dabei weisen die mindestens zwei Bereiche des Memristors eine bestimmte Größe auf. Fließt ein Strom durch das Bauteil, so kann sich die Größe dieser Bereiche ändern. Beispielsweise können die Bereiche als Schichten aus jeweils einem Isolator und einem metallisch leitenden Material ausgebildet sein. Typische Materialien, die in diesem Zusammenhang zum Einsatz kommen umfassen Ti02 und dotiertes Ti02, wie zum Beispiel Ti02-x mit x=0.05. In diesem konkreten Beispiel verschiebt sich die Grenze zwischen den beiden Bereichen, wenn Sauerstoffionen beziehungsweise die als Dotierstoff fungierenden Leerstellen im elektrischen Feld transportiert werden. Aufgrund der Bauweise kann der Memristor verschiedene Polaritäten aufweisen, wobei die
Einbaurichtung relevant ist. Auch andere Bauelemente als Ringkerninduktivitäten, bspw. Bauelemente mit einem stabförmigen magnetischen Kern oder einem magnetischen Kern in Form eines von einem Luftspalt unterbrochenen Rings können auf die erfindungsgemäße Weise gekühlt werden.
In einer Ausführungsform des erfindungsgemäßen Sensorelements ist der piezoelektrische Wandler mit dem Memristor parallel geschaltet.
Bei einer Realisierung des erfindungsgemäßen Sensorelements ist der Memristor Teil einer Halbbrücke. Die Halbbrücke umfasst üblicherweise eine Serienschaltung von zwei
Bauelementen sowie einen Brückenzweig, der zwischen den beiden Bauelementen quer verläuft. Vorzugsweise beinhaltet die Halbbrücke zwei passive Bauelemente, wobei mindestens eines dieser Bauelemente ein Memristor sein kann. Die Halbbrücke kann zwei Memristoren entgegengesetzter Polarität enthalten.
Das Sensorelement kann ferner ausgebildet sein, um in einem Auslesebetrieb oder einem Messbetrieb betrieben zu werden. Der Wechsel zwischen dem Auslesebetrieb und dem Messbetrieb kann mithilfe von Schaltern erfolgen. Dabei kann der Schalter im Messbetrieb so geschaltet werden, dass der Memristor des Sensorelementes mit dem piezoelektrischen Wandler gekoppelt ist. Im Auslesebetrieb kann der Schalter umgelegt werden, so dass der Memristor vom piezoelektrischen Wandler entkoppelt ist und mit einer Ausleseelektronik in Kontakt kommt. Die Ausleseelektronik kann eine Spannungsquelle, vorzugweise eine Wechselspannungsquelle und ein Spannungsmessgerät wie beispielsweise ein Voltmeter umfassen.
Der Wandler und der Memristor können aus CMOS-kompatiblen Materialien gefertigt sein. Geeignete Materialien sind insbesondere solche, die in der Halbleiterfertigung zum Einsatz kommen, wie zum Beispiel AIN für den piezoelektrischen Wandler und Ti02 für den
Memristor.
Weiterhin wird erfindungsgemäß ein Verfahren zum Betreiben des vorstehend
beschriebenen Sensorelements vorgeschlagen, wobei ein Auslesen des Sensorelements mittels einer Wechselspannung erfolgt.
Zusätzlich wird erfindungsgemäß ein Sensor mit einer Anordnung von einer Mehrzahl von Pixeln vorgeschlagen, wobei mindestens einer der Pixel ein Sensorelement wie vorstehend beschrieben umfasst.
In einer Ausführungsform des erfindungsgemäßen Sensors umfasst die Anordnung eine Matrixanordnung einer Mehrzahl von Sensorelementen.
In einer weiteren Ausführungsform des erfindungsgemäßen Sensors ist dieser zur niederohmigen Anbindung an eine Ausleseelektronik ausgebildet.
Auch ein Verfahren zum Betreiben eines Sensors wird erfindungsgemäß vorgeschlagen, wobei ein Auslesen des Sensors Zeilen- und/oder spaltenweise erfolgt. Bei einer Implementierung des erfindungsgemäßen Verfahrens zum Betreiben des Sensors erfolgt das Auslesen der Pixel zeitversetzt.
Erfindungsgemäß wird die Verwendung des Sensorelements wie vorstehend beschrieben in einem Kraftsensor, einem Drucksensor, einem Drehbeschleunigungssensor oder einem Stressensor bzw. einem mechanischen Spannungssensor vorgeschlagen. Vorteile der Erfindung
Die erfindungsgemäß vorgeschlagene Kombination aus piezoelektrischem Wandler mit Memristor erlaubt es, das entstandene transiente Signal vor Ort zu erfassen. Daraus ergibt sich ein geringerer Flächenbedarf, im Vergleich zu einer aktiven Schaltung. Das entstandene Signal verändert die Memristanz, M(t), des Memristors und kann jederzeit zuverlässig ausgelesen werden, wobei das Auslesen niederohmig und somit störungsunempfindlich ist. Ferner ermöglicht der kleine Flächenbedarf, die erfindungsgemäß vorgeschlagene
Kombination aus piezoelektrischem Wandler mit Memristor als Pixel in einer Anordnung von einer Mehrzahl von Pixeln vorzusehen und so eine hohe Auflösung zu erreichen. Zudem lassen sich einzelne Pixel zeitversetzt auslesen. Weiterhin werden durch die niederohmige Anbindung der Ausleseelektronik robuste Signale übertragen, so dass elektromagnetische Störungen die Messung nicht beeinflussen.
Kurze Beschreibung der Zeichnungen
Weitere Aspekte und Vorteile der Erfindung werden nunmehr anhand der beigefügten Figuren eingehender beschrieben. Hierbei zeigt:
Figur 1 ein Ersatzschaltbild eines piezoelektrischen Wandlers, wie aus dem Stand der
Technik bekannt, Figur 2 eine Sprungantwort des piezoelektrischen Wandlers gemäß Figur 1 ,
Figur 3 ein erfindungsgemäßes Sensorelement mit piezoelektrischem Wandler und parallel geschaltetem Memristor, Figur 4 eine Sprungantwort des erfindungsgemäßen Sensorelements gemäß Figur 3,
Figur 5 erfindungsgemäße Sensorelement im Messbetrieb,
Figur 6 erfindungsgemäße Sensorelement im Auslesebetrieb, Figur 7 einen differenziellen Aufbau des erfindungsgemäßen Sensorelements im Auslesebetrieb,
Figur 8 ein Sensor mit in einer Matrix angeordneten Sensorelementen, wobei für die
Pixel eine spalten- und zeilenweise Auslesung erfolgt.
Figur 1 zeigt ein Ersatzschaltbild eines piezoelektrischen Wandlers 1 1 . Das Ersatzschaltbild des piezoelektrischen Wandlers 1 1 beinhaltet eine Stromquelle 12, die den piezoelektrischen Effekt emuliert. Die Stromstärke, i(t), weißt dabei einen Verlauf auf, der von der
piezoelektrischen Empfindlichkeit, k, und der zu wandelnden Kraft, F, abhängt, i(t)=k 5F(t)/5t.
Außerdem sind ein Innenwiderstand 14 und eine Kapazität 16 zur Stromquelle 12 parallel geschaltet. Am Ausgang 18 ergibt sich die Ausgangsspannung des piezoelektrischen Wandlers 1 1 , u (t).
Figur 2 zeigt die Sprungantwort des piezoelektrischen Wandlers 1 1 gemäß Figur 1 , das heißt die resultierende Ausgangsspannung, u(t), bei einer stufenförmigen Eingangsstromstärke, i(t). Die Sprungantwort oder das sprungartige Ändern der Eingangsstromstärke, i(t), erfolgt beispielsweise durch Anlegen eines Kraftsprunges an den Wandler 1 1 . Figur 2 stellt das Verhalten des piezoelektrischen Wandlers 1 1 anhand des Signalstärkenverlaufs, s, der Eingangsstromstärke, i(t), und der Ausgangsspannung, u(t), in Abhängigkeit von der Zeit, t, dar. Die kurzzeitig hohe Stromstärke, i(t), lädt die Kapazität auf und führt so zu einem Abfall der Ausgangsspannung, u(t). Da ein realer piezoelektrischer Wandler 1 1 immer einen endlichen Innenwiderstand 14 aufweist, entlädt sich die Kapazität 16 über den Widerstand 14. Das resultierende Spannungssignal, u(t), sinkt daher mit zunehmender Zeit ab.
Ausführungsformen
Figur 3 zeigt ein Sensorelement 10, wobei der piezoelektrische Wandler 1 1 im
Ersatzschaltbild gemäß Figur 1 dargestellt ist. Das Sensorelement 10 umfasst
erfindungsgemäß den piezoelektrische Wandler 1 1 , der mit einem Memristor 20 gekoppelt ist. Der Memristor 20 ist dem piezoelektrischen Wandler 1 1 parallel geschaltet. Ferner umfasst der Memristor 20 zwei Bereiche 22, 24, wobei ein erster Bereich 22 beispielsweise Ti02 beinhaltet und ein zweiter Bereich 24 beispielsweise dotiertes Ti02-x enthält. Ähnlich wie in Figur 1 bezeichnen i(t) die Eingangsstromstärke des piezoelektrischen Wandlers 1 1 und u(t) die Ausgangsspannung des Sensorelements 10. Durch die erfindungsgemäße Kopplung des Memristors 20 mit dem piezoelektrischen
Wandler 1 1 ergeben sich gegenüber dem Stand der Technik neue Möglichkeiten. Denn der Memristor selbst hat einen relativ zum Innenwiderstand 14 des piezoelektrischen Wandlers 1 1 um mehrere Größenordnungen geringeren Widerstandswert. Dies verringert die
Zeitkonstante des Ausgangsspannungssignals, u(t). Der Großteil der auf dem Kondensator 16 zwischengespeicherten Ladungen fließt in der Schaltung gemäß Figur 3 über den
Memristor 20 ab und verändert dabei dessen Widerstandswert, M(t) (Memresistanz). Die Änderung des Widerstandswertes beruht dabei auf einer Größenänderung der
Memristorbereiche 22, 24. Die Bereiche 22, 24 weisen typischerweise eine unterschiedliche Leitfähigkeit auf und die Grenze zwischen den Bereichen 22, 24 verschiebt sich, wenn Sauerstoffionen beziehungsweise die als Dotierstoff fungierenden Leerstellen im elektrischen Feld transportiert werden. Auf diese Weise enthält der Memristor 20 die Information über das aktuell anliegende Kraftsignal und speichert dieses.
Figur 4 zeigt im Vergleich zu der Sprungantwort des piezoelektrischen Wandlers 1 1 gemäß Figur 2 die Sprungantwort des erfindungsgemäß vorgeschlagenen Sensorelements 10 mit parallel geschaltetem Memristor 20. Ähnlich wie Figur 2 stellt Figur 4 das Verhalten des Sensorelements 10 anhand des Verlaufs der Eingangsstromstärke, i(t), und der
Ausgangsspannung, u(t), in Abhängigkeit von der Zeit dar. Im Unterschied zu Figur 2 folgt die Ausgangsspannung, u(t), der kurzzeitig hohen Stromstärke, i (t). Aufgrund der stark verringerten Zeitkonstante in erfindungsgemäßem Sensorelement 10 mit parallel geschaltetem Memristor 20, folgt die Ausgangsspannung, u(t), der Stromstärke, i(t). Dabei fließt Ladung über den Memristor 20 und verändert dessen Widerstandswert, M(t).
Die Figuren 5 und 6 zeigen das Ersatzschaltbild des piezoelektrischen Wandlers 1 1 umfassend eine Stromquelle 12, einen Innenwiderstand 14 und einen Kondensator 16, wobei ein Memristor 20 erfindungsgemäß parallel geschaltet ist. In Figur 5 ist eine
Realisierung des Messbetriebes 30 angedeutet. In der Anordnung gemäß Figur 5 speichert der Memristor 20 durch seine Memresistanz, wie viel Ladung über den Memristor 20 geflossen ist. Dazu befindet sich der Memristor 20 in Verbindung mit dem piezoelektrischen Wandler 1 1 . Während des Messbetriebes 30 fließen Ladungen über den Memristor 20, wodurch sich die Bereiche 22 und 24 in ihrer Größe ändern und somit die Memristanz des Memristors 20 ändern.
Figur 6 zeigt die Schaltung gemäß Figur 5, wobei sich der Memristor 20 im Auslesebetrieb 32 befindet. Zum Auslesen des Memristors wird ein Voltmeter 26 mit dem Memristor 20 in Serie geschaltet und eine Wechselspannungsquelle 28 angeschlossen. Auf diese Weise kann mittels der Anzeige des Voltmeters 26 die Memritanz des Memristors 20 bestimmt werden. Beim Auslesen des Memristors 20 ist die Verwendung einer Wechselspannung besonders vorteilhaft, da diese die Memristivität im zeitlichen Mittel unverändert lässt.
Wie in den Figuren 5 und 6 schematisch angedeutet, wird zwischen dem Messbetrieb 30 und dem Auslesebetrieb 32 des Memristors 20 mit Hilfe eines Schalters 31 hin- und her geschaltet. Auf diese Weise kann die Memristanz des Memristors in regelmäßigen
Abständen ausgelesen werden.
Figur 7 zeigt eine weitere Ausführungsform des erfindungsgemäßen Sensorelements 10, in dem anstatt eines Memristors 20 zwei Memristoren 20, 20' mit entgegengesetzter Polarität in Serie geschaltet sind. In diesem Zusammenhang bedeutet entgegengesetzte Polarität, dass die Memristoren 20, 20' so verschaltet sind, dass die Bereiche 22, 22' in Serie geschaltet sind. Auf diese Weise ist die Polarität der Memristoren 20, 20', welche jeweils von dem Bereich 22, 22' zu dem Bereich 24, 24' weist, entgegengesetzt gepolt. Figur 7 zeigt das erfindungsgemäße Sensorelement 10 im Auslesebetrieb 32, wobei sich die Schalter 31 in der Ausleseposition befinden. Im Brückenzweig 36 sind die Memristoren 20, 20' mit einem Voltmeter 38 verbunden. Zusätzlich sind die Memristoren 20, 20' jeweils mit einem
Signalgenerator 34, 34' in Serie geschaltet und mit einer von Signalgeneratoren 34, 34' generierten Sprungfunktion beaufschlagt.
Auf diese Weise wird eine Halbbrücke zur Verfügung gestellt, mit der eine differenzielle Messung der Memristanz der beiden Memristoren 20, 20' durchgeführt werden kann, da sich je nach Memristanz die Spannung und die Stromstärke im Brückenzweig 36 in der Höhe und in der Polarität verändern. Die differenzielle Auslesung mittels Halbbrücke hat darüber hinaus den Vorteil, dass Tritts beziehungsweise Netzstörungen ausgeglichen werden und die Messung der Memristanz der beiden Memristoren 20, 20' somit insgesamt stabiler stattfinden kann. In Figur 8 ist ein erfindungsgemäßer Sensor 40 dargestellt, der einzelne Sensorelmente 10, 10' als Pixel enthält. Die Sensorelemente 10, 10' umfassen jeweils eine Kombination aus piezoelektrischem Wandler 1 1 und Memristor 20. Der Sensor 40 ist weiterhin so ausgebildet, dass der Sensor eine niederohmige Anbindung an eine Ausleseelektronik 42 ermöglicht. Dazu sind die Sensorelemente 10, 10' in einer Matrixanordnung 44 so miteinander verschaltet, dass jeweils ein Anschluss 46 ein Sensorelement 10, 10' mit mindestens einem weiteren Sensorelement 10, 10' der Zeile 46 in Serie schaltet und/oder jeweils ein weiterer Anschluss 48 ein Sensorelement 10, 10' mit mindestens einem weiteren Sensorelement 10, 10' der Spalte 46 in Serie schaltet.
Die Ausleseelektronik 42 umfasst eine Spannungsquelle 52, die eine Wechselspannung bereitstellt, und ein Voltmeter, um den Spannungsabfall über mindestens ein Sensorelement 10, 10' zu messen. Das Auslesen der Sensorelemente 10, 10' erfolgt über die Schalter 31 , 31 ', 33, 33' der Auswertelektronik. Auf diese Weise werden die einzelnen Sensorelemente 10, 10' mit der Ausleseelektronik 42 Zeilen- und spaltenweise ausgelesen. In Figur 8 sind exemplarische die Schalter 31 ' und 33' geschlossen, wobei der Schalter 31 ' die Zeile und der Schalter 33' die Spalte selektiert. In der in Figur 8 dargestellten Position der Schalter 31 ' und 33' wird das Sensorelement 10' ausgelesen. In anderen Ausführungsformen des Sensors 40 können unterschiedliche Zahlen von
Sensorelementen 10, 10' in beliebig vielen Zeilen und Spalten vorgesehen werden. Es könnten beispielsweise eine Anzahl von Sensorelementen in der gleichen Anzahl von Spalten und nur einer Zeile angeordnet sein. Eine solche Matrixanordnung erlaubt es einzelne Pixel, die jeweils ein Sensorelement 10, 10' umfassen, spalten- und zeilenweise auszulesen, um mit dem Sensor beispielsweise Druckverteilungen zu detektieren. Die kleine Baugröße der einzelnen Sensorelemente ermöglicht dabei eine hohe Auflösung . Zudem lassen sich einzelne Pixel zeitversetzt auslesen. Durch die nierderohmige Anbindung der Ausleseelektronik werden robuste Signale übertragen, so dass elektromagnetische
Störungen, die beispielsweise durch die Zuleitung empfangen werden, die Messung nicht beeinflussen.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt; vielmehr sind innerhalb des durch die anhängenden Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Sensorelement (10) mit mindestens einem piezoelektrischen Wandler (1 1 ), wobei der piezoelektrische Wandler (1 1 ) mit mindestens einem Memristor (20) gekoppelt ist.
Sensorelement (10) nach Anspruch 1 , wobei der piezoelektrische Wandler (1 1 ) mit dem Memristor (20) parallel geschaltet ist.
Sensorelement (10) nach Anspruch 1 oder 2, wobei der Memristor (20) Teil einer Halbbrücke ist.
Sensorelement (10) nach Anspruch 3, wobei die Halbbrücke zwei Memristoren (20) entgegengesetzter Polarität umfasst.
Sensorelement (10) nach einem der vorhergehenden Ansprüche, wobei das
Sensorelement (10) ausgebildet ist, um in einem Auslesebetrieb (30) oder einem
Messbetrieb (32) betrieben zu werden.
Sensorelement (10) nach einem der vorhergehenden Ansprüche, wobei der Wandler (1 1 ) und der Memristor (20) aus CMOS-kompatiblen Materialien gefertigt sind.
Sensor (40) mit einer Anordnung von einer Mehrzahl von Pixeln, wobei mindestens einer der Pixel ein Sensorelement (10, 10') nach einem der vorhergehenden Ansprüche umfasst.
Sensor (40) nach Anspruch 7, wobei die Anordnung eine Matrixanordnung (44) einer Mehrzahl von Sensorelementen (10, 10') umfasst.
Sensor (40) nach Anspruch 7 oder 8, vorgesehen zur niederohmigen Anbindung an eine Ausleseelektronik (42).
10. Verwendung eines Sensorelements (10) nach einem der vorhergehenden Ansprüche in einem Drucksensor, einem Kraftsensor, einem Drehbeschleunigungssensor oder einem Stressensor.
1 1 . Verfahren zum Betreiben eines Sensorelements (10) nach einem der Ansprüche 1 bis 6, wobei ein Auslesen des Sensorelements (10) mittels einer Wechselspannung erfolgt.
12. Verfahren zum Betreiben eines Sensors nach einem der Ansprüche 7 bis 9, wobei ein Auslesen des Sensors (40) Zeilen- und/oder spaltenweise erfolgt.
13. Verfahren nach Anspruch 12, wobei ein zeitversetztes Auslesen von Pixeln erfolgt.
PCT/EP2012/054833 2011-05-19 2012-03-19 Sensorelement mit piezoelektrischem wandler WO2012156126A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280024398.1A CN103562696B (zh) 2011-05-19 2012-03-19 具有压电转换器的传感器元件
EP12715633.9A EP2710344B1 (de) 2011-05-19 2012-03-19 Sensorelement mit piezoelektrischem wandler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011076105.5 2011-05-19
DE102011076105A DE102011076105A1 (de) 2011-05-19 2011-05-19 Sensorelement mit piezoelektrischem Wandler

Publications (2)

Publication Number Publication Date
WO2012156126A2 true WO2012156126A2 (de) 2012-11-22
WO2012156126A3 WO2012156126A3 (de) 2013-01-17

Family

ID=45992200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/054833 WO2012156126A2 (de) 2011-05-19 2012-03-19 Sensorelement mit piezoelektrischem wandler

Country Status (4)

Country Link
EP (1) EP2710344B1 (de)
CN (1) CN103562696B (de)
DE (1) DE102011076105A1 (de)
WO (1) WO2012156126A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553459A (zh) * 2015-12-15 2016-05-04 杭州电子科技大学 浮地压控忆阻器仿真器电路
CN105978551A (zh) * 2016-04-28 2016-09-28 苏州大学 一种混沌电路
CN105978552A (zh) * 2016-04-28 2016-09-28 苏州大学 一种混沌电路
EP3153850A1 (de) * 2015-10-08 2017-04-12 Nokia Technologies Oy Vorrichtung und zugehöriges verfahren zur messung eines physikalischen reizes
EP3168577A1 (de) * 2015-11-13 2017-05-17 Nokia Technologies Oy Multifunktionelle sensorvorrichtung und zugehörige verfahren
US10520340B2 (en) 2014-10-27 2019-12-31 Lyten, Inc. Sensing system, method and apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056933A1 (en) * 2014-10-06 2016-04-14 Nokia Technologies Oy System, method and apparatus for cumulative sensing
CN108871175A (zh) * 2017-05-11 2018-11-23 西华大学 一种基于忆阻器的工件内径检验系统
CN109720241A (zh) * 2017-10-27 2019-05-07 西华大学 一种地铁列车防电压波动装置
CN107909146B (zh) * 2017-11-13 2021-09-17 中国科学院微电子研究所 基于易失性阈值转变器件的神经元电路
CN108470746B (zh) * 2018-03-13 2020-06-02 北京大学 一种通过电学信号消除电阻失配的忆阻系统及校准电路
CN113532489A (zh) * 2021-06-25 2021-10-22 西安交通大学 一种基于莫特绝缘体忆阻器的电容型传感架构
CN115950562A (zh) * 2023-02-02 2023-04-11 大连理工大学 具有高分辨率和纳米级像素压力压电记忆系统及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2109388A1 (de) 1970-02-27 1971-09-09 Kistler Instr Corp Piezoelektrischer Wandler
US20100019656A1 (en) 2008-07-23 2010-01-28 Gang Yu Active matrix organic light emitting display
DE102009026189A1 (de) 2008-08-05 2010-02-18 Super Talent Electronics Inc., San Jose Intelligenter Speicher-Transfer-Manager für den Befehlsablauf für Data-Striping zu Raw-NAND-Flash-Speicher-Modulen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1507251A (en) * 1976-01-05 1978-04-12 Birchall D Accelerometer transducer
US5760530A (en) * 1992-12-22 1998-06-02 The United States Of America As Represented By The Secretary Of The Air Force Piezoelectric tactile sensor
JP3183177B2 (ja) * 1996-08-13 2001-07-03 株式会社村田製作所 加速度センサ
US6486588B2 (en) * 1997-12-30 2002-11-26 Remon Medical Technologies Ltd Acoustic biosensor for monitoring physiological conditions in a body implantation site
EP1553697A1 (de) * 2004-01-08 2005-07-13 ETA SA Manufacture Horlogère Suisse Vorrichtung zur Feststellung von niederfrequenten Signalen
US8250927B2 (en) * 2010-03-17 2012-08-28 Indian Institute Of Science Flexible, stretchable, and distributed strain sensors
US8624753B2 (en) * 2010-10-19 2014-01-07 Palo Alto Research Center Incorporated Event sensor including printed electronic circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2109388A1 (de) 1970-02-27 1971-09-09 Kistler Instr Corp Piezoelektrischer Wandler
US20100019656A1 (en) 2008-07-23 2010-01-28 Gang Yu Active matrix organic light emitting display
DE102009026189A1 (de) 2008-08-05 2010-02-18 Super Talent Electronics Inc., San Jose Intelligenter Speicher-Transfer-Manager für den Befehlsablauf für Data-Striping zu Raw-NAND-Flash-Speicher-Modulen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STRUKOV ET AL.: "The missing memristor found", NATURE, vol. 453, 2008, pages 80FF

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520340B2 (en) 2014-10-27 2019-12-31 Lyten, Inc. Sensing system, method and apparatus
EP3153850A1 (de) * 2015-10-08 2017-04-12 Nokia Technologies Oy Vorrichtung und zugehöriges verfahren zur messung eines physikalischen reizes
WO2017060564A1 (en) * 2015-10-08 2017-04-13 Nokia Technologies Oy An apparatus and associated method for sensing a physical stimulus
EP3168577A1 (de) * 2015-11-13 2017-05-17 Nokia Technologies Oy Multifunktionelle sensorvorrichtung und zugehörige verfahren
WO2017081361A1 (en) * 2015-11-13 2017-05-18 Nokia Technologies Oy A multifunctional sensor apparatus and associated methods
CN105553459A (zh) * 2015-12-15 2016-05-04 杭州电子科技大学 浮地压控忆阻器仿真器电路
CN105978551A (zh) * 2016-04-28 2016-09-28 苏州大学 一种混沌电路
CN105978552A (zh) * 2016-04-28 2016-09-28 苏州大学 一种混沌电路
CN105978551B (zh) * 2016-04-28 2018-12-21 苏州大学 一种混沌电路

Also Published As

Publication number Publication date
CN103562696B (zh) 2016-10-26
DE102011076105A1 (de) 2012-11-22
CN103562696A (zh) 2014-02-05
EP2710344B1 (de) 2016-11-02
WO2012156126A3 (de) 2013-01-17
EP2710344A2 (de) 2014-03-26

Similar Documents

Publication Publication Date Title
EP2710344B1 (de) Sensorelement mit piezoelektrischem wandler
EP2205984B1 (de) Schaltungsanordnung zur überwachung einer elektrischen isolation
DE60120010T2 (de) Schaltung zur hochpräzisen Ermittlung der Ankunftszeit von Photonen auf durch einzelne Photonen getriggerte Avalanche-Dioden
EP1460398A1 (de) Dehnungsmessfühler mit resistiven und piezoelektrischen dehnungsempfindlichen Elementen
EP1210571B1 (de) Sensoreinrichtung zur abfrage einer sensoreinrichtung
DE102013208982A1 (de) Schaltung und Verfahren zur Regelung eines Stromes für einen elektromechanischen Verbraucher
DE102017215722B4 (de) Einrichtung zur Messung von Kommutierungsströmen schnell schaltender Halbleiterbauelemente
EP2678863B1 (de) Verfahren zum nichtdestruktiven auslesen resistiver speicherelemente
DE102015117203A1 (de) Drucksensor
DE102019213127A1 (de) Vorrichtung für einen nichtkontaktiven sensor mit esd-schutzstruktur
EP0704902B1 (de) Verwendung eines Leistungshalbleiterbauelements mit monolithisch integrierter Sensoranordnung
DE102014204661A1 (de) Magnetfeldsensor zur Erfassung eines Magnetfeldes und Verfahren
WO2009040375A1 (de) Elektronisches bauelement mit schalteigenschaften
WO2018172037A1 (de) Sensoreinrichtung und überwachungsverfahren
EP3624341A1 (de) Pulsgeber
DE102007001606A1 (de) Anordnung zur Messung der Position eines Magneten relativ zu einem Magnetkern
AT504406B1 (de) Messvorrichtung
WO2002045172A1 (de) Verfahren zur erzeugung eines tunnelkontaktes sowie vorrichtung umfassend mittel zur erzeugung eines tunnelkontaktes
EP0239807B1 (de) Kapazitives Intrusionsschutzsystem
DE3824267C2 (de)
DE19913902B4 (de) Verfahren zum Erfassen eines Risses in einem piezoelektrischen Bauelement und Anordnung zum Erfassen des Risses
EP3738211B1 (de) Verfahren zur bestimmung der auslenkung des betätigungsglieds eines kapazitiven mehrwege-kraftsensorbausteins
DE102015221376A1 (de) Halbleiterbauelement sowie Verfahren zur Herstellung eines Halbleiterbauelements und Steuergerät für ein Fahrzeug
DE102019114130A1 (de) Elektrisches Bauelement und Verfahren zur Sensierung einer mechanischen Verformung
DE972908C (de) Einrichtung zur laufenden Registrierung der Spitzenwerte von elektrischen Spannungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12715633

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2012715633

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012715633

Country of ref document: EP