WO2012155718A1 - 一种同相正交数据压缩方法和装置 - Google Patents

一种同相正交数据压缩方法和装置 Download PDF

Info

Publication number
WO2012155718A1
WO2012155718A1 PCT/CN2012/073723 CN2012073723W WO2012155718A1 WO 2012155718 A1 WO2012155718 A1 WO 2012155718A1 CN 2012073723 W CN2012073723 W CN 2012073723W WO 2012155718 A1 WO2012155718 A1 WO 2012155718A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
data
prach
traffic channel
quantization processing
Prior art date
Application number
PCT/CN2012/073723
Other languages
English (en)
French (fr)
Inventor
张帅
向际鹰
许进
胡留军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP12785708.4A priority Critical patent/EP2787646A4/en
Publication of WO2012155718A1 publication Critical patent/WO2012155718A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3059Digital compression and data reduction techniques where the original information is represented by a subset or similar information, e.g. lossy compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the invention relates to data compression technology in mobile communication, in particular to an in-phase orthogonal
  • the Long Term Evolution (LTE) wireless communication system is composed of an Evolved NodeB (eNodeB), which includes an Evolved Building Baseband Unit (eBBU) and an Evolved Radio Remote Unit (Evolved).
  • eNodeB Evolved NodeB
  • eBBU Evolved Building Baseband Unit
  • Evolved Evolved Radio Remote Unit
  • Radio Remote Unit (eRRU) the eBBU and the eRRU are connected by optical fibers or cables.
  • the eBBU includes a Radio Equipment Control (REC), and the eRRU includes a Radio Equipment (RE), and the Common Public Radio Interface (CPRI) is used between the REC and the RE. Protocol, or Open Radio Interface (ORI) protocol for data exchange.
  • the rate of data transmission is called optical port rate.
  • the CPRI protocol specifies the contents of the physical layer and the data link layer of the eBBU and eRRU interfaces.
  • the CPRI protocol specifies that the physical layer adopts 8B/10B encoding, and the physical layer rate supports 614.4/1228.8/2457.6/3072/4915.2/6144 Mbps ( A series of levels such as megabits per second.
  • the CPRI protocol specifies that the period of each basic frame of the data link layer is 1/3.84 M (S), which is approximately 260.42 ns, and the basic frame includes one byte of control information and 15 bytes of IQ data.
  • S 1/3.84 M
  • the basic frame includes one byte of control information and 15 bytes of IQ data.
  • the CPRI protocol also stipulates that each 256 basic frames constitute one superframe, and 150 superframes constitute a 10ms radio frame.
  • optical port rate (1 data bit width + Q data bit width) Sample rate X antenna number X optical port redundancy X control word redundancy (1)
  • the bandwidth of the LTE wireless communication system is 20M (the sampling rate of this bandwidth is 30.72m/s), and the bit width of the I data and the Q data are both 15 bits. The remainder is 10/8, and the control word redundancy is 16/15.
  • the value of optical port redundancy depends on the condition of the fiber.
  • the value of control word redundancy depends on the case of REC.
  • the equation (1) shows that the optical port rate will continue to increase.
  • the data traffic between the eBBU and the eRRU in the eNodeB will also increase.
  • the eBBU and eRRUs have higher throughput requirements.
  • the eBBU and eRRU cannot meet the throughput capacity.
  • the eBBU and eRRU need to be updated, which will lead to an increase in the cost of maintaining the LTE wireless communication system. Summary of the invention
  • the main purpose of the embodiments of the present invention is to provide an IQ data compression method and apparatus, which can reduce the optical port rate and avoid frequent updating of the device.
  • the embodiment of the invention discloses an in-phase orthogonal data compression method, and the method includes: the evolved radio remote unit eRRU determines whether the IQ data is needed according to the time-frequency information carried in the IQ data sent by each antenna. Physical random access channel performing predetermined quantization processing
  • PRACH information or data information of a traffic channel
  • the PRACH information that is determined to be subjected to the predetermined quantization process is quantized by using 15 bits, and the data information of the traffic channel that is determined to be subjected to the predetermined quantization process is quantized by using a bit smaller than 15 bits;
  • the quantized data is transmitted to the evolved indoor baseband processing unit eBBU.
  • the eRRU determines, according to time-frequency information carried in the IQ data sent by each antenna, whether the IQ data is PRACH information or a traffic channel data information that needs to be subjected to predetermined quantization processing:
  • the eRRU matches the index value in the time-frequency information carried in the IQ data sent by each antenna with the preset identification information corresponding to each antenna. If the index value matches the preset identification information, the eRRU determines The IQ data is PRACH information or traffic channel data information that needs to be subjected to predetermined quantization processing; if the index value does not match the preset identification information, it is determined that the IQ data is not a PRACH information or a traffic channel that needs to perform predetermined quantization processing. Data information.
  • the identification information is divided into: PRACH information identification information that matches the index value of the PRACH information, and data information identification information of the traffic channel that matches the index value of the data information of the traffic channel;
  • the eRRU sends the time-frequency information carried in the IQ data sent by each antenna.
  • the values are respectively matched with the preset identification information corresponding to each antenna. If the index value matches the preset PRACH information identification information, the IQ data is PRACH information that needs to be subjected to predetermined quantization processing; if the index value and the preset The PRACH information identification information does not match, and the IQ data is not PRACH information that needs to perform predetermined quantization processing;
  • the IQ data is data information of the traffic channel that needs to perform predetermined quantization processing; if the index value is not related to the data information identification information of the preset traffic channel If the match is made, the IQ data is not the data information of the traffic channel that needs to perform the predetermined quantization process.
  • the method further includes:
  • the PRACH information or the traffic information of the traffic channel that is not required to perform the predetermined quantization process is discarded.
  • the quantizing process is performed by using a bit smaller than 15 as follows: 9 bits are used for quantization processing.
  • An embodiment of the present invention further discloses an eRRU, where the eRRU includes:
  • a determining module configured to determine, according to the time-frequency information carried in the IQ data sent by each antenna, whether the IQ data is PRACH information or data information of a traffic channel that needs to perform predetermined quantization processing;
  • a quantization processing module configured to perform quantization processing by using 15 bits for determining PRACH information that needs to perform predetermined quantization processing; and performing quantization processing on data information of a traffic channel that is determined to be subjected to predetermined quantization processing by using less than 15 bits;
  • the sending module is configured to send the quantized data to the eBBU.
  • the determining module is configured to match the index values in the time-frequency information carried in the IQ data sent by the antennas with the preset identification information corresponding to each antenna, if the index value and the pre- If the identification information is matched, it is determined that the IQ data is PRACH information or data information of a traffic channel that needs to perform predetermined quantization processing; if the index value does not match the preset identification information, determining that the IQ data is not required to be scheduled
  • the PRACH information or the data information of the traffic channel is quantized.
  • the identification information is divided into: PRACH information identification information that matches the index value of the PRACH information, and data information identification information of the traffic channel that matches the index value of the data information of the traffic channel;
  • the determining module is specifically configured to match the index values in the time-frequency information carried in the IQ data sent by the antennas with the preset identification information corresponding to each antenna, if the index value and the preset PRACH information If the identification information matches, the IQ data is PRACH information that needs to perform predetermined quantization processing; if the index value does not match the preset PRACH information identification information, the IQ data is not PRACH information that needs to perform predetermined quantization processing;
  • the IQ number According to the data information of the traffic channel that needs to perform the predetermined quantization process; if the index value does not match the data information identification information of the preset traffic channel, the IQ data is not the data information of the traffic channel that needs to perform the predetermined quantization process.
  • the eRRU further includes:
  • the discarding processing module is configured to discard the PRACH information or the traffic information of the traffic channel that is not required to perform predetermined quantization processing.
  • the quantization processing module is specifically configured to perform quantization processing by using 15 bits for determining PRACH information that needs to perform predetermined quantization processing, so that the processed data bit width is 15 bits;
  • the data information of the traffic channel is quantized by 9 bits, so that the processed data bit width is 9 bits.
  • An embodiment of the present invention further discloses an eNodeB, where the eNodeB includes: an eRRU and an eBBU, where
  • the eRRU is configured to determine, according to the time-frequency information carried in the IQ data sent by each antenna, whether the IQ data is PRACH information or a service channel data information that needs to perform predetermined quantization processing;
  • the quantized PRACH information is quantized by using 15 bits, and the data information of the traffic channel that is determined to be subjected to the predetermined quantization process is quantized by using less than 15 bits; the quantized data is sent to the eBBU; And for receiving data sent by the eRRU.
  • the IQ data compression method compresses the data bit width of the data information of the traffic channel to less than 15 bits when the data information of the traffic channel is quantized in the IQ data, so that IQ is performed.
  • the bit width of the data is reduced, thereby reducing the optical port rate and avoiding frequent device updates.
  • FIG. 1 is a schematic flowchart of an implementation of an in-phase orthogonal data compression method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an evolved radio remote unit according to an embodiment of the present invention. detailed description
  • the eRRU determines whether the IQ data is a physical random access channel (Physical Random Access Channel) that needs to perform predetermined quantization processing according to the time-frequency information carried in the IQ data sent by each antenna.
  • PRACH Physical Random Access Channel
  • the eRRU determines whether the IQ data is a physical random access channel (Physical Random Access Channel) that needs to perform predetermined quantization processing according to the time-frequency information carried in the IQ data sent by each antenna.
  • PRACH Physical Random Access Channel
  • the embodiment of the invention provides an in-phase orthogonal data compression method. As shown in FIG. 1, the method includes:
  • Step 101 Each antenna of the eNodeB receives IQ data, and sends the received IQ data to the eRRU, where the IQ data carries time-frequency information.
  • the IQ data includes PRACH information and data information of a traffic channel, and the PRACH information and the data information of the traffic channel carry different time-frequency information.
  • the time-frequency information includes a frequency domain parameter and a time domain parameter, where the frequency domain parameter includes a resource block index value, the time domain parameter includes a subframe index value, and the value of the resource block index value and the subframe index value are the same.
  • the index value of the PRACH information is different from the index value of the data information of the traffic channel, and the index value includes a resource block index value and a subframe index value.
  • the resource block index value and the subframe index value of the PRACH information are both
  • the resource block index value and the subframe index value of the data information of the traffic channel may be any one of 2 to 100 according to the traffic channel.
  • Step 102 The eRRU determines, according to the time-frequency information carried in the IQ data, whether the IQ data sent by each antenna is the PRACH information or the traffic channel data information that needs to perform predetermined quantization processing, and if yes, proceeds to step 103; if not, enters Step 105.
  • the eRRU matches the index value in the time-frequency information carried in the IQ data sent by each antenna with the preset identification information corresponding to each antenna, if the index value matches the preset identification information. And determining that the IQ data is a PRACH that requires predetermined quantization processing Data information of the information or traffic channel; if the index value does not match the preset identification information, it is determined that the IQ data is not the PRACH information of the predetermined quantization process or the data information of the traffic channel.
  • the identification information is divided into: PRACH information identification information that is consistent with an index value of the PRACH information, and data information identification information of a traffic channel that is consistent with an index value of the data information of the traffic channel; the identification information may be PRACH The index value of the information or the index value of the data information of the traffic channel.
  • the IQ data is PRACH information that needs to be subjected to predetermined quantization processing; if the index value does not match the preset PRACH information identification information, the IQ data is not required to be performed.
  • the eNodeB has a total of eight antennas, and eight identification information are set in the eRRU.
  • the identification information is corresponding to each antenna.
  • the identification information of the first to third antennas is set to 1, that is, the identification information is PRACH information identification information.
  • the identification information of the 4th to 8th antennas is set to an interval of 2 to 100, that is, the identification information is the data information identification information of the traffic channel.
  • the data of the predetermined quantization process when the index value of the time-frequency information carried in the IQ data transmitted by the second antenna does not match the identification information corresponding to the second antenna, it indicates that the index value is not 1, and the IQ data is determined. It is not PRACH information, and is not data that needs to be subjected to predetermined quantization processing.
  • the data information is not data that needs to be subjected to predetermined quantization processing.
  • the eRRU can determine whether the IQ data transmitted by the first to third antennas is PRACH information that needs to be subjected to predetermined quantization processing. Similarly, the eRRU can determine whether the IQ data transmitted by the 4th to the 8th antennas is required. Predetermining the data information of the processed traffic channel. If the IQ data transmitted by the first to third antennas is the PRACH information, the operation of step 103 is performed. If the IQ data transmitted by the first to third antennas is not the PRACH information, the operation of step 105 is performed. Similarly, if the IQ data transmitted by the 4th to the 8th antennas is the data information of the traffic channel, the operation of step 103 is performed. If the IQ data transmitted by the 4th to the 8th antennas is not the data information of the traffic channel, The operation of step 105 is performed.
  • the identification information corresponding to each antenna may be modified according to actual conditions.
  • the identification information corresponding to the fourth antenna may be set to 1, so that the eRRU determines the fourth antenna transmission according to the identification information.
  • Whether the incoming IQ data is PRACH information, rather than determining whether the IQ data transmitted by the fourth antenna is the data information of the traffic channel, so that the eRRU can determine whether the IQ data sent by the first to fourth antennas is required to be scheduled. Quantify the processed PRACH information.
  • Step 103 The eRRU determines that the PRACH information that needs to perform the predetermined quantization process is quantized by using 15 bits, so that the processed data bit width is 15 bits; and the data information of the service channel that needs to perform the predetermined quantization process is used. Less than 15 bits are quantized so that the processed data bit width is less than 15 bits.
  • the number of bits subjected to the quantization process corresponds to the identification information, and the identification is set to 1.
  • the number of bits corresponding to the information is 15 bits, and the number of bits corresponding to the identification information of an interval set to 2 to 100 is less than 15, such as: 5, 6, 7, 8, 9, 10, 11, 12, Any value such as 13 or 14 bits, preferably 9 bits, because more than 10 bits are used for quantization processing, the processed data bit width is still large, and the compression effect on the data is not obvious; and less than 8 bits are used.
  • Quantization processing the processed data bit width is too small, the compression of the data is too large, and the data distortion is likely to be serious. Therefore, the 9-bit quantization process can make the processed data bit width and size suitable for realizing the data. Effective compression, and the data distortion caused by compression is serious.
  • the index value of the time-frequency information carried in the IQ data transmitted by the first to second antennas is 1, and the IQ data, that is, the PRACH information is quantized by 15 bits, so that the processed data bit width is 15 bits. If the index value of the time-frequency information carried in the IQ data transmitted by the 4th to the 6th antennas is 100, the IQ data, that is, the data information of the traffic channel is quantized by 9 bits, so that the processed data is processed. The bit width is 9 bits.
  • Step 104 The eRRU sends the quantized data to the eBBU, and ends the processing process.
  • Step 105 The eRRU discards the PRACH information or the data information of the service channel that is determined not to perform the predetermined quantization process, and ends the current processing flow.
  • the eRRU discards the data information of the traffic channel. If the index value of the time-frequency information carried in the IQ data sent by the 7th and 8th antennas is 1, the eRRU discards the PRACH information.
  • the IQ data is data information including PRACH information and a traffic channel, wherein the PRACH information is very important information and only occupies a small portion of the IQ data, so as to prevent the loss of the PRACH information from excessive information during the quantization process, so as to affect the normality of the system. Therefore, the PRACH information is quantized by 15 bits, so that the processed data bit width is 15 bits.
  • the majority of the IQ data is the data information of the traffic channel, and the data information of the traffic channel is common data information, and may include: Physical Downlink Shared Channel (PUSCH) information and a broadcast channel (Multi Channel, MCH).
  • PUSCH Physical Downlink Shared Channel
  • MCH Multi Channel
  • the information even if the data information of the traffic channel is lost during the quantization process, does not affect the normal application of the data information of the traffic channel, and therefore, the data information of the traffic channel is quantized by less than 15 bits. , so that the processed data bit width is less than 15 bits, for example, 9 bits.
  • the IQ data compression method can reduce the optical port rate by reducing the bit width of the IQ data, and avoid frequently updating the device.
  • the eRRU includes: a determining module, configured to determine, according to time-frequency information carried in IQ data sent by each antenna, whether the IQ data is needed Performing predetermined quantization processing of PRACH information or data information of a traffic channel;
  • a quantization processing module configured to quantize the determined PRACH information that needs to be subjected to predetermined quantization processing by 15 bits, so that the processed data bit width is 15 bits; and the determined data of the traffic channel that needs to perform predetermined quantization processing The information is quantized by using less than 15 bits, so that the processed data bit width is less than 15 bits;
  • the sending module is configured to send the quantized data to the eBBU.
  • the determining module is specifically configured to match the index values in the time-frequency information carried in the IQ data sent by the antennas with the preset identification information corresponding to each antenna, if the index value and the preset identification information If the matching is performed, it is determined that the IQ data is PRACH information or data information of a traffic channel that needs to perform predetermined quantization processing; if the index value does not match the preset identification information, it is determined that the IQ data is not a PRACH that needs to perform predetermined quantization processing.
  • the identification information is divided into: PRACH information identification information that is consistent with an index value of the PRACH information, and data information identification information of a traffic channel that is consistent with an index value of the data information of the traffic channel;
  • the determining module is specifically configured to match the index value in the time-frequency information carried in the IQ data sent by each antenna with the preset identification information corresponding to each antenna, if the index value and the preset PRACH information If the identification information matches, the IQ data is PRACH information that needs to perform predetermined quantization processing; if the index value does not match the preset PRACH information identification information, the IQ data is not PRACH information that needs to perform predetermined quantization processing;
  • the IQ data is data information of the traffic channel that needs to perform predetermined quantization processing; if the index value is not related to the data information identification information of the preset traffic channel If the match is made, the IQ data is not the data information of the traffic channel that needs to perform the predetermined quantization process.
  • the eRRU further includes: a discarding processing module, configured to discard the PRACH information that is determined not to be subjected to the pre-quantization processing or the data information of the traffic channel.
  • the quantization processing module is specifically configured to perform quantization processing by using 15 bits for determining PRACH information that needs to perform predetermined quantization processing, so that the processed data bit width is 15 bits; and determining a traffic channel that needs to perform predetermined quantization processing
  • the data information is quantized using bits smaller than 15 so that the processed data bit width is less than 15 bits, and preferably 9 bits are used for quantization processing.
  • An eNodeB is provided in the embodiment of the present invention, where the eNodeB includes: an eRRU and an eBBU, where
  • the eRRU is configured to determine, according to the time-frequency information carried in the IQ data sent by each antenna, whether the IQ data is PRACH information or a service channel data information that needs to perform predetermined quantization processing;
  • the PRACH information that needs to be subjected to predetermined quantization processing is quantized by using 15 bits, so that the processed data bit width is 15 bits;
  • the data information of the traffic channel of the predetermined quantization process is quantized by using less than 15 bits, so that the processed data bit width is less than 15 bits; for transmitting the quantized data to the eBBU;
  • the eBBU is configured to receive data sent by the eRRU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种同相正交(IQ)数据压缩方法,包括:演进型射频拉远单元(eRRU)根据各天线发来的IQ数据中所携带的时频信息,判断所述IQ数据是否为需要进行预定量化处理的物理随机接入信道(PRACH)信息或业务信道的数据信息;将判断出需要进行预定量化处理的PRACH信息采用15比特进行量化处理,将判断出需要进行预定量化处理的业务信道的数据信息采用小于15的比特进行量化处理;将量化处理后的数据发送给演进型室内基带处理单元(eBBU)。本发明实施例还同时公开了一种eRRU和一种演进型基站(eNodeB)。采用本发明实施例能够降低光口速率,避免频繁更换设备。

Description

一种同相正交数据压缩方法和装置 技术领域
本发明涉及移动通讯中的数据压缩技术, 特别涉及一种同相正交
( In-phase Quadrature, IQ )数据压缩方法和装置。 背景技术
长期演进( Long Term Evolution, LTE )无线通讯系统采用演进型基站 ( Evolved NodeB , eNodeB )构成, 该 eNodeB包括演进型室内基带处理单 元( Evolved Building Baseband Unit, eBBU )和演进型射频拉远单元( Evolved Radio Remote Unit, eRRU ), 所述 eBBU和所述 eRRU之间通过光纤或者电 缆连接。
所述 eBBU包括射频设备控制器( Radio Equipment Control, REC ), 所 述 eRRU包括射频设备 ( Radio Equipment, RE ), 所述 REC与所述 RE之 间通过通用公共射频接口 ( Common Public Radio Interface, CPRI )协议、 或开放的无线接口 ( Open Radio Interface, ORI )协议进行数据交互, 数据 传输的速率称为光口速率。
CPRI协议规定了 eBBU和 eRRU接口的物理层和数据链路层的内容, 所述 CPRI 协议规定物理层采用 8B/10B 编码, 所述物理层速率支持 614.4/1228.8/2457.6/3072/4915.2/6144Mbps (兆位 /秒)等一系列等级。 所述 CPRI 协议规定数据链路层每个基本帧的周期是 1/3.84M ( S ), 大约为 260.42ns, 基本帧包括一个字节的控制信息和 15个字节的 IQ数据。 此外, CPRI协议还规定每 256个基本帧构成一个超帧, 150个超帧构成一个 10ms 无线帧。
所述光口速率的计算公式为:光口速率 =(1数据位宽 + Q数据位宽) X采 样速率 X天线数 X光口冗余 X控制字冗余 ( 1 )
假设, LTE无线通讯系统的 eNodeB包括四根天线, LTE无线通讯系统 的带宽为 20M (此带宽下采样速率为 30.72m/s ), I数据和 Q数据的位宽都 为 15比特, 光口冗余是 10/8, 控制字冗余是 16/15, 其中, 光口冗余的值 取决于光纤的情况, 控制字冗余的值取决于 REC的情况。 那么, 根据公式 ( 1 )可以得出 eRRU和 eBBU之间的光口速率为:光口速率 =(15+15) χ 30.72 X 4 X 10/8 X 16/15 =4.9152Gbps。
可见, 在光纤和 eNodeB确定的情况下, 随着 LTE无线通讯系统的带 宽不断增加以及天线数不断增加, 由公式(1 )可知, 光口速率将不断增加。 由于光口速率的增大, eNodeB中的 eBBU和 eRRU之间的数据流量也将随 着增长, 由此对 eBBU和 eRRU的吞吐能力的要求越来越高, 当 eBBU和 eRRU不能满足吞吐能力的要求时,就需要对 eBBU和 eRRU进行更新换代, 由此, 就会导致维护 LTE无线通讯系统的成本提高。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种 IQ数据压缩方法和 装置, 能够降低光口速率, 避免频繁更新设备。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
本发明实施例公开了一种同相正交数据压缩方法, 该方法包括: 演进型射频拉远单元 eRRU根据各天线发来的 IQ数据中所携带的时频 信息, 判断所述 IQ数据是否为需要进行预定量化处理的物理随机接入信道
PRACH信息、 或业务信道的数据信息;
将判断出需要进行预定量化处理的 PRACH信息采用 15比特进行量化 处理, 将判断出需要进行预定量化处理的业务信道的数据信息采用小于 15 的比特进行量化处理;
将量化处理后的数据发送给演进型室内基带处理单元 eBBU。 较佳的, 所述 eRRU根据各天线发来的 IQ数据中所携带的时频信息判 断所述 IQ数据是否为需要进行预定量化处理的 PRACH信息或业务信道的 数据信息为:
所述 eRRU将各天线发来的 IQ数据中携带的时频信息中的索引值分别 与预设的与各天线对应的识别信息进行匹配, 如果索引值与预设的识别信 息相匹配, 则判定该 IQ数据是需要进行预定量化处理的 PRACH信息或业 务信道的数据信息; 如果索引值与预设的识别信息不相匹配, 则判定该 IQ 数据不是需要进行预定量化处理的 PRACH信息或业务信道的数据信息。
较佳的, 所述识别信息分为: 与 PRACH信息的索引值一致的 PRACH 信息识别信息、 以及与业务信道的数据信息的索引值一致的业务信道的数 据信息识别信息;
相应的, 所述 eRRU将各天线发来的 IQ数据中携带的时频信息中的索 ?!值分别与预设的与各天线对应的识别信息进行匹配, 如果索引值与预设 的 PRACH信息识别信息相匹配, 则该 IQ数据是需要进行预定量化处理的 PRACH信息; 如果索引值与预设的 PRACH信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量化处理的 PRACH信息;
如果索引值与预设的业务信道的数据信息识别信息相匹配, 则该 IQ数 据是需要进行预定量化处理的业务信道的数据信息; 如果索引值与预设的 业务信道的数据信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量 化处理的业务信道的数据信息。
较佳的, 所述 eRRU根据各天线发来的 IQ数据中所携带的时频信息判 断所述 IQ数据是否为需要进行预定量化处理的 PRACH信息或业务信道的 数据信息之后, 该方法还包括:
对判断出不是需要进行预定量化处理的 PRACH信息或业务信道的数 据信息丟弃。 较佳的, 所述采用小于 15的比特进行量化处理为: 采用 9比特进行量 化处理。
本发明实施例还公开了一种 eRRU, 所述 eRRU包括:
判断模块, 用于根据各天线发来的 IQ数据中所携带的时频信息, 判断 所述 IQ数据是否为需要进行预定量化处理的 PRACH信息或业务信道的数 据信息;
量化处理模块,用于将判断出需要进行预定量化处理的 PRACH信息采 用 15比特进行量化处理; 将判断出需要进行预定量化处理的业务信道的数 据信息采用小于 15的比特进行量化处理;
发送模块, 用于将量化处理后的数据发送给 eBBU。
较佳的, 所述判断模块, 具体用于将各天线发来的 IQ数据中携带的时 频信息中的索引值分别与预设的与各天线对应的识别信息进行匹配, 如果 索引值与预设的识别信息相匹配, 则判断该 IQ数据是需要进行预定量化处 理的 PRACH信息或业务信道的数据信息;如果索引值与预设的识别信息不 相匹配, 则判断该 IQ数据不是需要进行预定量化处理的 PRACH信息或业 务信道的数据信息。
较佳的, 所述识别信息分为: 与 PRACH信息的索引值一致的 PRACH 信息识别信息、 以及与业务信道的数据信息的索引值一致的业务信道的数 据信息识别信息;
所述判断模块, 具体用于将各天线发来的 IQ数据中携带的时频信息中 的索引值分别与预设的与各天线对应的识别信息进行匹配, 如果索引值与 预设的 PRACH信息识别信息相匹配, 则该 IQ数据是需要进行预定量化处 理的 PRACH信息; 如果索引值与预设的 PRACH信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量化处理的 PRACH信息;
如果索引值与预设的业务信道的数据信息识别信息相匹配, 则该 IQ数 据是需要进行预定量化处理的业务信道的数据信息; 如果索引值与预设的 业务信道的数据信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量 化处理的业务信道的数据信息。
较佳的, 所述 eRRU还包括:
丟弃处理模块,用于对判断出不是需要进行预定量化处理的 PRACH信 息或业务信道的数据信息丟弃。
较佳的, 所述量化处理模块, 具体用于将判断出需要进行预定量化处 理的 PRACH信息采用 15 比特进行量化处理, 使处理后的数据位宽为 15 比特; 将判断出需要进行预定量化处理的业务信道的数据信息采用 9 比特 进行量化处理, 使处理后的数据位宽为 9比特。
本发明实施例还公开了一种 eNodeB , 所述 eNodeB 包括: eRRU 和 eBBU, 其中,
所述 eRRU, 用于根据各天线发来的 IQ数据中所携带的时频信息, 判 断所述 IQ数据是否为需要进行预定量化处理的 PRACH信息或业务信道的 数据信息; 将判断出需要进行预定量化处理的 PRACH信息采用 15比特进 行量化处理, 将判断出需要进行预定量化处理的业务信道的数据信息采用 小于 15的比特进行量化处理; 将量化处理后的数据发送给所述 eBBU; 所述 eBBU, 用于接收所述 eRRU发来的数据。
由上可知, 本发明实施例提供的 IQ数据压缩方法, 在对 IQ数据中业 务信道的数据信息进行量化处理时, 将所述业务信道的数据信息的数据位 宽压缩为小于 15比特, 使得 IQ数据的位宽减少, 从而降低光口速率, 避 免频繁更新设备。 附图说明
图 1是本发明实施例提供的同相正交数据压缩方法的实现流程示意图; 图 2为本发明实施例提供的演进型射频拉远单元的组成结构示意图。 具体实施方式
本发明实施例的基本思想是: eRRU根据各天线发来的 IQ数据中所携 带的时频信息, 判断所述 IQ数据是否为需要进行预定量化处理的物理随机 接入信道(Physical Random Access Channel, PRACH )信息或业务信道的 数据信息; 将判断出需要进行预定量化处理的 PRACH信息采用 15比特进 行量化处理, 将判断出需要进行预定量化处理的业务信道的数据信息采用 小于 15的比特进行量化处理; 之后将量化处理后的数据发送给 eBBU。
本发明实施例提供了一种同相正交数据压缩方法, 如图 1 所示, 该方 法包括:
步驟 101 , eNodeB的各天线分别接收 IQ数据, 并将各自接收的 IQ数 据发送给 eRRU, 所述 IQ数据中携带时频信息。
其中, 所述 IQ数据包括 PRACH信息和业务信道的数据信息, 所述 PRACH信息和业务信道的数据信息携带不同的时频信息。
具体的, 所述时频信息包括频域参数和时域参数, 其中, 频域参数包 括资源块索引值, 时域参数包括子帧索引值, 资源块索引值和子帧索引值 的数值是相同的; PRACH信息的索引值和业务信道的数据信息的索引值是 不相同的, 所述索引值包括资源块索引值和子帧索引值, 例如, PRACH信 息的资源块索引值和子帧索引值均为 1 ,业务信道的数据信息的资源块索引 值和子帧索引值根据业务信道的不同可以为 2至 100中的任意一个整数。
步驟 102, eRRU根据 IQ数据携带的时频信息判断各天线发来的 IQ数 据是否为需要进行预定量化处理的 PRACH信息或业务信道的数据信息,如 果是, 则进入步驟 103; 如果不是, 则进入步驟 105。
具体的, 所述 eRRU将各天线发送来的 IQ数据中携带的时频信息中的 索引值分别与预设的与各天线对应的识别信息进行匹配, 如果索引值与预 设的识别信息相匹配,则判断该 IQ数据是需要进行预定量化处理的 PRACH 信息或业务信道的数据信息; 如果索引值与预设的识别信息不相匹配, 则 判断该 IQ数据不是需要进行预定量化处理的 PRACH信息或业务信道的数 据信息。
进一步的,所述识别信息分为:与 PRACH信息的索引值一致的 PRACH 信息识别信息、 以及与业务信道的数据信息的索引值一致的业务信道的数 据信息识别信息;所述识别信息可以是 PRACH信息的索引值或业务信道的 数据信息的索引值。
如果索引值与预设的 PRACH信息识别信息相匹配, 则该 IQ数据是需 要进行预定量化处理的 PRACH信息;如果索引值与预设的 PRACH信息识 别信息不相匹配,则该 IQ数据不是需要进行预定量化处理的 PRACH信息; 如果索引值与预设的业务信道的数据信息识别信息相匹配, 则该 IQ数 据是需要进行预定量化处理的业务信道的数据信息; 如果索引值与预设的 业务信道的数据信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量 化处理的业务信道的数据信息。
假设, eNodeB共有八根天线, eRRU中共设置八个识别信息, 所述识 别信息分别与各天线对应, 例如, 第 1至 3根天线的识别信息设置为 1 , 即 该识别信息为 PRACH信息识别信息; 第 4至 8根天线的识别信息设置为 2 到 100的一个区间, 即该识别信息为业务信道的数据信息识别信息。 当第 1 根天线发送来的 IQ数据中携带的时频信息的索引值与第 1根天线对应的识 别信息相匹配时, 说明该索引值为 1 , 判定该 IQ数据为 PRACH信息, 是 需要进行预定量化处理的数据; 当第 2根天线发送来的 IQ数据中携带的时 频信息的索引值与第 2根天线对应的识别信息不匹配时, 说明该索引值不 为 1 , 判定该 IQ数据不为 PRACH信息, 不是需要进行预定量化处理的数 据。
同理, 当第 4根天线发送来的 IQ数据中携带的时频信息的索引值与第 4根天线对应的识别信息相匹配时,说明该索引值为 2至 100中的任意一个 整数, 判定该 IQ数据为业务信道的数据信息, 是需要进行预定量化处理的 数据; 当第 8根天线发送来的 IQ数据中携带的时频信息的索引值与第 8根 天线的识别信息不匹配时, 说明该索引值不为 2至 100中的任意一个整数, 判定该 IQ数据不为业务信道的数据信息, 不是需要进行预定量化处理的数 据。
这样, eRRU能够判断出第 1至 3根天线发送来的 IQ数据是否为需要 进行预定量化处理的 PRACH信息, 同样的, eRRU能够判断出第 4至 8根 天线发送来的 IQ数据是否为需要进行预定量化处理的业务信道的数据信 息。如果第 1至 3根天线发送来的 IQ数据为 PRACH信息,则进行步驟 103 的操作, 如果第 1至 3根天线发送来的 IQ数据不为 PRACH信息, 则进行 步驟 105的操作。 同样的, 如果第 4至 8根天线发送来的 IQ数据为业务信 道的数据信息, 则进行步驟 103的操作, 如果第 4至 8根天线发送来的 IQ 数据不为业务信道的数据信息, 则进行步驟 105的操作。
当然, 对于对应于各天线的识别信息, 可以根据实际的情况进行修改, 例如, 也可以将第 4根天线对应的识别信息设置为 1 , 这样 eRRU就会根据 该识别信息判断第 4根天线发送来的 IQ数据是否为 PRACH信息, 而不是 判断第 4根天线发送来的 IQ数据是否为业务信道的数据信息, 使得 eRRU 能够判断出第 1至 4根天线发送过来的 IQ数据是否为需要进行预定量化处 理的 PRACH信息。
步驟 103 , 所述 eRRU将判断出需要进行预定量化处理的 PRACH信息 采用 15比特进行量化处理, 使处理后的数据位宽为 15比特; 将判断出需 要进行预定量化处理的业务信道的数据信息采用小于 15 比特进行量化处 理, 使处理后的数据位宽为小于 15比特。
具体的, 进行量化处理的比特数与识别信息相对应, 设置为 1 的识别 信息对应的比特数是 15比特, 设置为 2到 100的一个区间的识别信息对应 的比特数是小于 15的比特, 如: 可以是 5、 6、 7、 8、 9、 10、 11、 12、 13 或 14比特等任意一个数值, 较佳的是采用 9比特, 因为采用大于 10比特 进行量化处理, 处理后的数据位宽依然较大, 对数据的压缩效果不明显; 而采用小于 8 比特进行量化处理, 处理后的数据位宽太小, 对数据的压缩 过大, 容易导致数据失真严重, 因此, 采用 9 比特进行量化处理, 既能使 处理后的数据位宽大小合适, 实现对数据的有效压缩, 又能因压缩导致的 数据失真严重。
假设, 第 1至 2根天线发送来的 IQ数据中携带的时频信息的索引值为 1 , 则对所述 IQ数据、 即 PRACH信息采用 15比特进行量化处理, 使处理 后的数据位宽为 15比特。 如果, 第 4至 6根天线发送来的 IQ数据中携带 的时频信息的索引值为 100, 则对所述 IQ数据、 即业务信道的数据信息采 用 9比特进行量化处理, 使处理后的数据位宽为 9比特。
步驟 104, 所述 eRRU将量化处理后的数据发送给 eBBU, 结束本次处 理流程。
步驟 105 , 所述 eRRU对判断出不需要进行预定量化处理的 PRACH信 息或业务信道的数据信息进行丟弃处理, 结束本次处理流程。
假设, 第 3根天线发送来的 IQ数据中携带的时频信息的索引值为 2, 所述 eRRU对该业务信道的数据信息进行丟弃处理。 如果, 第 7、 8根天线 发送来的 IQ数据中携带的时频信息的索引值为 1 ,所述 eRRU对该 PRACH 信息进行丟弃处理。
IQ数据是包括 PRACH信息和业务信道的数据信息, 其中, PRACH信 息是很重要的信息且仅占 IQ数据的一小部分, 为防止量化处理时 PRACH 信息损失过多的信息以至于影响系统的正常工作, 因此,将所述 PRACH信 息采用 15比特进行量化处理, 使处理后的数据位宽为 15比特。 IQ数据中绝大部分为业务信道的数据信息, 所述业务信道的数据信息 是普通的数据信息,可以包括:物理下行共享信道( Physical Downlink Shared Channel, PUSCH )信息和广播信道( Multiple Channel, MCH )信息, 即使 量化处理时业务信道的数据信息损失较多的信息, 也不会影响所述业务信 道的数据信息的正常应用, 因此, 将所述业务信道的数据信息采用小于 15 比特进行量化处理, 使处理后的数据位宽为小于 15比特, 例如可以为 9比 特。
根据公式(1 )可知, 当 IQ数据中的绝大多数的数据位宽降低时, 光 口速率也就降低了。 因此, 本发明实施例提供的 IQ数据压缩方法能够通过 减少 IQ数据的位宽的方式来降低光口速率, 避免频繁更新设备。
本发明实施例提供的一种 eRRU, 如图 2所示, 所述 eRRU包括: 判断模块, 用于根据各天线发送来的 IQ数据中所携带的时频信息, 判 断所述 IQ数据是否为需要进行预定量化处理的 PRACH信息或业务信道的 数据信息;
量化处理模块,用于将判断出的需要进行预定量化处理的 PRACH信息 采用 15比特进行量化处理, 使处理后的数据位宽为 15比特; 将判断出的 需要进行预定量化处理的业务信道的数据信息采用小于 15比特进行量化处 理, 使处理后的数据位宽为小于 15比特;
发送模块, 用于将量化处理后的数据发送给 eBBU。
所述判断模块, 具体用于将各天线发送来的 IQ数据中携带的时频信息 中的索引值分别与预设的与各天线对应的识别信息进行匹配, 如果索引值 与预设的识别信息相匹配, 则判定该 IQ数据是需要进行预定量化处理的 PRACH信息或业务信道的数据信息; 如果索引值与预设的识别信息不相匹 配, 则判定该 IQ数据不是需要进行预定量化处理的 PRACH信息或业务信 道的数据信息。 所述识别信息分为:与 PRACH信息的索引值一致的 PRACH信息识别 信息、 以及与业务信道的数据信息的索引值一致的业务信道的数据信息识 别信息;
所述判断模块, 具体用于将各天线发送过来的 IQ数据中携带的时频信 息中的索引值分别与预设的与各天线对应的识别信息进行匹配, 如果索引 值与预设的 PRACH信息识别信息相匹配, 则该 IQ数据是需要进行预定量 化处理的 PRACH信息;如果索引值与预设的 PRACH信息识别信息不相匹 配, 则该 IQ数据不是需要进行预定量化处理的 PRACH信息;
如果索引值与预设的业务信道的数据信息识别信息相匹配, 则该 IQ数 据是需要进行预定量化处理的业务信道的数据信息; 如果索引值与预设的 业务信道的数据信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量 化处理的业务信道的数据信息。
所述 eRRU还包括: 丟弃处理模块, 用于对判断出的不是需要进行预 定量化处理的 PRACH信息或业务信道的数据信息进行丟弃处理。
所述量化处理模块, 具体用于将判断出需要进行预定量化处理的 PRACH信息采用 15比特进行量化处理, 使处理后的数据位宽为 15比特; 将判断出需要进行预定量化处理的业务信道的数据信息采用小于 15的比特 进行量化处理, 使处理后的数据位宽为小于 15的比特, 较佳的采用 9比特 进行量化处理。
本发明实施例提供的一种 eNodeB,所述 eNodeB包括: eRRU和 eBBU, 其中,
所述 eRRU, 用于根据各天线发送来的 IQ数据中所携带的时频信息, 判断所述 IQ数据是否为需要进行预定量化处理的 PRACH信息或业务信道 的数据信息; 用于将判断出的需要进行预定量化处理的 PRACH信息采用 15比特进行量化处理,使处理后的数据位宽为 15比特; 将判断出的需要进 行预定量化处理的业务信道的数据信息采用小于 15的比特进行量化处理, 使处理后的数据位宽为小于 15的比特; 用于将量化处理后的数据发送给所 述 eBBU;
所述 eBBU, 用于接收所述 eRRU发送来的数据。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种同相正交数据压缩方法, 其特征在于, 该方法包括:
演进型射频拉远单元 eRRU根据各天线发来的 IQ数据中所携带的时频 信息, 判断所述 IQ数据是否为需要进行预定量化处理的物理随机接入信道 PRACH信息、 或业务信道的数据信息;
将判断出需要进行预定量化处理的 PRACH信息采用 15比特进行量化 处理, 将判断出需要进行预定量化处理的业务信道的数据信息采用小于 15 的比特进行量化处理;
将量化处理后的数据发送给演进型室内基带处理单元 eBBU。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 eRRU根据各天线 发来的 IQ数据中所携带的时频信息判断所述 IQ数据是否为需要进行预定 量化处理的 PRACH信息或业务信道的数据信息为:
所述 eRRU将各天线发来的 IQ数据中携带的时频信息中的索引值分别 与预设的与各天线对应的识别信息进行匹配, 如果索引值与预设的识别信 息相匹配, 则判定该 IQ数据是需要进行预定量化处理的 PRACH信息或业 务信道的数据信息; 如果索引值与预设的识别信息不相匹配, 则判定该 IQ 数据不是需要进行预定量化处理的 PRACH信息或业务信道的数据信息。
3、 根据权利要求 2所述的方法, 其特征在于, 所述识别信息分为: 与 PRACH信息的索引值一致的 PRACH信息识别信息、 以及与业务信道的数 据信息的索引值一致的业务信道的数据信息识别信息;
相应的, 所述 eRRU将各天线发来的 IQ数据中携带的时频信息中的索 ?!值分别与预设的与各天线对应的识别信息进行匹配, 如果索引值与预设 的 PRACH信息识别信息相匹配, 则该 IQ数据是需要进行预定量化处理的 PRACH信息; 如果索引值与预设的 PRACH信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量化处理的 PRACH信息; 如果索引值与预设的业务信道的数据信息识别信息相匹配, 则该 IQ数 据是需要进行预定量化处理的业务信道的数据信息; 如果索引值与预设的 业务信道的数据信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量 化处理的业务信道的数据信息。
4、 根据权利要求 1、 2或 3所述的方法, 其特征在于, 所述 eRRU根 据各天线发来的 IQ数据中所携带的时频信息判断所述 IQ数据是否为需要 进行预定量化处理的 PRACH信息或业务信道的数据信息之后,该方法还包 括:
对判断出不是需要进行预定量化处理的 PRACH信息或业务信道的数 据信息丟弃。
5、 根据权利要求 1、 2或 3所述的方法, 其特征在于, 所述采用小于 15的比特进行量化处理为: 采用 9比特进行量化处理。
6、 一种 eRRU, 其特征在于, 所述 eRRU包括:
判断模块, 用于根据各天线发来的 IQ数据中所携带的时频信息, 判断 所述 IQ数据是否为需要进行预定量化处理的 PRACH信息或业务信道的数 据信息;
量化处理模块,用于将判断出需要进行预定量化处理的 PRACH信息采 用 15比特进行量化处理; 将判断出需要进行预定量化处理的业务信道的数 据信息采用小于 15的比特进行量化处理;
发送模块, 用于将量化处理后的数据发送给 eBBU。
7、 根据权利要求 6所述的 eRRU, 其特征在于, 所述判断模块, 具体 用于将各天线发来的 IQ数据中携带的时频信息中的索引值分别与预设的与 各天线对应的识别信息进行匹配, 如果索引值与预设的识别信息相匹配, 则判断该 IQ数据是需要进行预定量化处理的 PRACH信息或业务信道的数 据信息; 如果索引值与预设的识别信息不相匹配, 则判断该 IQ数据不是需 要进行预定量化处理的 PRACH信息或业务信道的数据信息。
8、 根据权利要求 6所述的 eRRU, 其特征在于, 所述识别信息分为: 与 PRACH信息的索引值一致的 PRACH信息识别信息、以及与业务信道的 数据信息的索引值一致的业务信道的数据信息识别信息;
所述判断模块, 具体用于将各天线发来的 IQ数据中携带的时频信息中 的索引值分别与预设的与各天线对应的识别信息进行匹配, 如果索引值与 预设的 PRACH信息识别信息相匹配, 则该 IQ数据是需要进行预定量化处 理的 PRACH信息; 如果索引值与预设的 PRACH信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量化处理的 PRACH信息;
如果索引值与预设的业务信道的数据信息识别信息相匹配, 则该 IQ数 据是需要进行预定量化处理的业务信道的数据信息; 如果索引值与预设的 业务信道的数据信息识别信息不相匹配, 则该 IQ数据不是需要进行预定量 化处理的业务信道的数据信息。
9、 根据权利要求 6、 7或 8所述的 eRRU, 其特征在于, 所述 eRRU还 包括:
丟弃处理模块,用于对判断出不是需要进行预定量化处理的 PRACH信 息或业务信道的数据信息丟弃。
10、 根据权利要求 9所述的 eRRU, 其特征在于, 所述量化处理模块, 具体用于将判断出需要进行预定量化处理的 PRACH信息采用 15比特进行 量化处理, 使处理后的数据位宽为 15比特; 将判断出需要进行预定量化处 理的业务信道的数据信息采用 9 比特进行量化处理, 使处理后的数据位宽 为 9比特。
11、 一种 eNodeB, 其特征在于, 所述 eNodeB包括: eRRU和 eBBU, 其中,
所述 eRRU, 用于根据各天线发来的 IQ数据中所携带的时频信息, 判 断所述 IQ数据是否为需要进行预定量化处理的 PRACH信息或业务信道的 数据信息; 将判断出需要进行预定量化处理的 PRACH信息采用 15比特进 行量化处理, 将判断出需要进行预定量化处理的业务信道的数据信息采用 小于 15的比特进行量化处理; 将量化处理后的数据发送给所述 eBBU; 所述 eBBU, 用于接收所述 eRRU发来的数据。
PCT/CN2012/073723 2011-10-08 2012-04-10 一种同相正交数据压缩方法和装置 WO2012155718A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12785708.4A EP2787646A4 (en) 2011-10-08 2012-04-10 COMPRESSION METHOD AND DEVICE IN PHASE QUADRATURE DATA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110299841.3 2011-10-08
CN201110299841.3A CN102340823B (zh) 2011-10-08 2011-10-08 一种同相正交数据压缩方法和装置

Publications (1)

Publication Number Publication Date
WO2012155718A1 true WO2012155718A1 (zh) 2012-11-22

Family

ID=45516267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073723 WO2012155718A1 (zh) 2011-10-08 2012-04-10 一种同相正交数据压缩方法和装置

Country Status (3)

Country Link
EP (1) EP2787646A4 (zh)
CN (1) CN102340823B (zh)
WO (1) WO2012155718A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340823B (zh) * 2011-10-08 2014-06-11 中兴通讯股份有限公司 一种同相正交数据压缩方法和装置
CN103379071B (zh) * 2012-04-19 2016-03-09 普天信息技术研究院有限公司 分布式基站降低上行数据传输带宽的方法及射频拉远模块
CN103532895B (zh) * 2012-07-03 2016-08-31 上海贝尔股份有限公司 一种用于在频率上压缩多载波调制信号的方法及装置
US9380466B2 (en) 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
EP3982697A1 (en) * 2013-02-07 2022-04-13 CommScope Technologies LLC Radio access networks
US9414399B2 (en) 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
US9936470B2 (en) 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
WO2015191530A2 (en) 2014-06-09 2015-12-17 Airvana Lp Radio access networks
WO2016015286A1 (en) * 2014-07-31 2016-02-04 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for data compression and decompression
CA2987693C (en) * 2015-05-29 2021-03-09 Huawei Technologies Co., Ltd. I/q signal transmission method and system, and apparatus
US10785791B1 (en) 2015-12-07 2020-09-22 Commscope Technologies Llc Controlling data transmission in radio access networks
CN116318589A (zh) 2017-10-03 2023-06-23 康普技术有限责任公司 C-ran中的动态下行链路重用
US11304213B2 (en) 2018-05-16 2022-04-12 Commscope Technologies Llc Dynamic uplink reuse in a C-RAN
CN112005598B (zh) 2018-05-16 2023-06-09 康普技术有限责任公司 用于c-ran中的高效前传的下行链路多播
EP3804419A4 (en) 2018-06-08 2022-02-23 CommScope Technologies LLC AUTOMATIC TRANSMIT POWER CONTROL FOR RADIO POINTS IN A CENTRALIZED RADIO ACCESS NETWORK THAT PROVIDE PRIMARILY WIRELESS SERVICE TO USERS LOCATED IN AN EVENT ZONE OF A VENUE
WO2020051146A1 (en) 2018-09-04 2020-03-12 Commscope Technologies Llc Front-haul rate reduction for use in a centralized radio access network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147488A1 (en) * 2005-12-28 2007-06-28 Samsung Electronics Co., Ltd. Apparatus and method for communication between a digital unit and a remote RF unit in a broadband wireless communication system
US20100136932A1 (en) * 2007-11-21 2010-06-03 Jacob Osterling Method and a radio base station in a telecommunications system
CN101754490A (zh) * 2008-12-17 2010-06-23 大唐移动通信设备有限公司 一种数据传输的方法、系统和装置
CN102065470A (zh) * 2009-11-18 2011-05-18 中兴通讯股份有限公司 一种数据传输方法、装置及分布式基站系统
CN102075467A (zh) * 2010-12-17 2011-05-25 中兴通讯股份有限公司 同相正交信号iq数据压缩方法及装置
CN102340823A (zh) * 2011-10-08 2012-02-01 中兴通讯股份有限公司 一种同相正交数据压缩方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147488A1 (en) * 2005-12-28 2007-06-28 Samsung Electronics Co., Ltd. Apparatus and method for communication between a digital unit and a remote RF unit in a broadband wireless communication system
US20100136932A1 (en) * 2007-11-21 2010-06-03 Jacob Osterling Method and a radio base station in a telecommunications system
CN101754490A (zh) * 2008-12-17 2010-06-23 大唐移动通信设备有限公司 一种数据传输的方法、系统和装置
CN102065470A (zh) * 2009-11-18 2011-05-18 中兴通讯股份有限公司 一种数据传输方法、装置及分布式基站系统
CN102075467A (zh) * 2010-12-17 2011-05-25 中兴通讯股份有限公司 同相正交信号iq数据压缩方法及装置
CN102340823A (zh) * 2011-10-08 2012-02-01 中兴通讯股份有限公司 一种同相正交数据压缩方法和装置

Also Published As

Publication number Publication date
CN102340823B (zh) 2014-06-11
CN102340823A (zh) 2012-02-01
EP2787646A1 (en) 2014-10-08
EP2787646A4 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2012155718A1 (zh) 一种同相正交数据压缩方法和装置
EP2710840B1 (en) Apparatus and methods for media access control header compression
US8897298B2 (en) Systems and methods for compressing headers and payloads
Nanba et al. A new IQ data compression scheme for front-haul link in centralized RAN
WO2012155614A1 (zh) 无线通讯系统中数据压缩与解压缩方法、装置及系统
EP3353929B1 (en) Systems and methods for signaling and generating variable length block acknowledgment fields in a wireless network
US20130128809A1 (en) Apparatus and methods for media access control header compression
EP3061306A1 (en) System, method and device for dynamically setting response indication deferral in wireless networks
CN102075467B (zh) 同相正交信号iq数据压缩方法及装置
WO2006096557A3 (en) Restructuring data packets to improve voice quality at low bandwidth conditions in wireless networks
CN110506403B (zh) 用于无线设备的流控制的方法及装置
DK2702716T3 (en) MANAGING redundant data IN A COMMUNICATION SYSTEM
TW201630376A (zh) 具有分割確認訊號傳遞的縮短的塊確認
WO2012174826A1 (zh) 分布式基站系统中数据的压缩、解压缩方法、装置及系统
WO2013010437A1 (zh) 一种数据压缩方法和设备
KR101116265B1 (ko) 무선 통신 장치 및 이들의 통신 방법
WO2020011375A1 (en) Client device, network access node and methods for updating a discard timer
WO2017088147A1 (zh) 实现自适应调制编码的方法和基站
CN105530713B (zh) 一种基于多无线连接的数据传输方法和装置
CN114097272A (zh) 用于聚合通信链路的系统和方法
WO2024020789A1 (en) Proactive packet dropping for extended reality traffic flows
US20210410137A1 (en) Low-Latency Communication in a WLAN
US10313074B1 (en) Channel condition estimation using static user data symbols over user equipment (UE) specific reference signals
CN107528669B (zh) 数据传输方法及微波传输装置
WO2019201196A1 (zh) 速率匹配的方法和装置,以及解速率匹配的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012785708

Country of ref document: EP