WO2012153689A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2012153689A1
WO2012153689A1 PCT/JP2012/061590 JP2012061590W WO2012153689A1 WO 2012153689 A1 WO2012153689 A1 WO 2012153689A1 JP 2012061590 W JP2012061590 W JP 2012061590W WO 2012153689 A1 WO2012153689 A1 WO 2012153689A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
substrates
crystal layer
transmission
Prior art date
Application number
PCT/JP2012/061590
Other languages
French (fr)
Japanese (ja)
Inventor
亮 菊地
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012153689A1 publication Critical patent/WO2012153689A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Definitions

  • the present invention relates to a display device that includes a switch liquid crystal panel that realizes a parallax barrier and can display different images to the right and left eyes of an observer.
  • a parallax barrier method is known as a method of showing a stereoscopic image to an observer without using special glasses.
  • Japanese Patent Application Laid-Open No. 7-261119 discloses a stereoscopic video display device including a parallax barrier unit.
  • the light from the right eye pixel and the light from the left eye pixel are separated by blocking light from a specific direction at the barrier unit. As a result, there is a problem that the transmittance of light from the backlight is greatly reduced.
  • An object of the present invention is to provide a display device capable of suppressing a significant decrease in light transmittance from a backlight.
  • the display device of the present invention includes a liquid crystal display panel having a liquid crystal layer between a pair of substrates, a backlight disposed to face the liquid crystal display panel, and disposed between the liquid crystal display panel and the backlight.
  • a switch liquid crystal panel having a liquid crystal layer between a pair of substrates, and capable of realizing a parallax barrier in which a transmissive portion that transmits light from the backlight and a light shielding portion that blocks the light are alternately arranged; and the liquid crystal It is arranged between the liquid crystal layer of the display panel and the liquid crystal layer of the switch liquid crystal panel, has a predetermined transmission axis, transmits light that vibrates in the direction of the transmission axis, and vibrates in directions other than the transmission axis.
  • the display device of the present invention it is possible to suppress the light transmittance from the backlight from greatly decreasing.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a display device as a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing optical axes of various optical films included in the display device shown in FIG.
  • FIG. 3 is a plan view showing a plurality of drive electrodes formed on one substrate included in the switch liquid crystal panel.
  • FIG. 4 is a plan view showing the counter electrode formed on the other substrate included in the switch liquid crystal panel.
  • FIG. 5 is a cross-sectional view showing a state in which a parallax barrier is realized in the switch liquid crystal panel.
  • FIG. 6 is an exploded perspective view showing each member constituting the backlight.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a display device as a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing optical axes of various optical films included in the display device shown in FIG.
  • FIG. 3 is a plan view showing a plurality of drive electrodes formed on one substrate included in
  • FIG. 7 is a cross-sectional view illustrating a phenomenon in which light from the backlight is reflected by the reflective / transmissive film.
  • FIG. 8 shows experimental data of the transmittance of the liquid crystal display panel.
  • FIG. 9 is an explanatory diagram showing optical axes of various optical films included in the display device as the second embodiment of the present invention.
  • a display device includes a liquid crystal display panel including a liquid crystal layer between a pair of substrates, a backlight disposed to face the liquid crystal display panel, the liquid crystal display panel, and the backlight.
  • the transmission liquid crystal layer disposed between the panel, the liquid crystal layer of the liquid crystal display panel and the liquid crystal layer of the switch liquid crystal panel, and having a predetermined transmission axis and transmitting light oscillating in the direction of the transmission axis,
  • a reflection / transmission film that reflects light oscillating in a direction other than a polarizing plate disposed between the liquid crystal layer of the liquid crystal display panel and the liquid crystal layer of the switch liquid crystal panel, and the transmission axis is the polarization Plank It is parallel to the optical axis
  • the light that passes through the transmission part vibrates in the direction of the polarization axis of the polarizing plate. Thereby, the light passing through the transmission part passes through the reflection / transmission film and enters the liquid crystal display panel.
  • the light that passes through the light shielding portion vibrates in a direction different from the direction of the polarization axis of the polarizing plate.
  • the light which passes a light shielding part is reflected by the reflective transmission film.
  • the light reflected by the reflective / transmissive film passes through the switch liquid crystal panel and then is reflected by the backlight.
  • the light reflected by the backlight is reflected again by the reflection / transmission film when passing through the light shielding part, and is transmitted through the reflection / transmission film when passing through the transmission part and then enters the liquid crystal display panel.
  • the switch liquid crystal panel includes a pair of substrates, a liquid crystal layer sealed between the pair of substrates, and the liquid crystal layer side of each of the pair of substrates.
  • the alignment film is provided, and the alignment axis of the alignment film provided on the side of the pair of substrates located on the reflective / transmissive film side is parallel to the transmission axis.
  • the switch liquid crystal panel has a pair of substrates, a liquid crystal layer sealed between the pair of substrates, and a liquid crystal layer side of each of the pair of substrates. And an alignment axis of the alignment film provided on the side of the pair of substrates located on the reflective / transmissive film side intersects the transmission axis. Even with such a configuration, the transmittance of the liquid crystal display panel can be improved in a state in which the parallax barrier is realized in the switch liquid crystal panel.
  • the fourth configuration is a configuration in which the orientation axis is orthogonal to the transmission axis in the third configuration.
  • the fifth configuration is a configuration in which the reflection / transmission film is disposed between the polarizing plate and the switch liquid crystal panel in any one of the first to fourth configurations.
  • the reflection / transmission film is disposed between the polarizing plate and the switch liquid crystal panel in any one of the first to fourth configurations.
  • the sixth configuration is a configuration in which the polarizing plate and the reflective / transmissive film are integrally formed in any one of the first to fifth configurations. In such a configuration, the polarizing plate and the reflection / transmission film can be handled together.
  • the switch liquid crystal panel includes the polarizing plate and the reflective / transmissive film
  • the switch liquid crystal panel is a common electrode formed on one of the pair of substrates.
  • a plurality of driving electrodes that are formed on the other of the pair of substrates and that realize the light shielding portion together with the common electrode when a voltage is applied
  • the reflective / transmissive film includes the pair of substrates, It is the structure arrange
  • a light shielding portion is formed at a position corresponding to the drive electrode.
  • a transmission part is formed between two adjacent light shielding parts.
  • the light incident between two adjacent drive electrodes changes its polarization direction when passing through the liquid crystal layer.
  • the polarization direction of the light that has passed through the liquid crystal layer coincides with the transmission axis of the reflection / transmission film and the polarization axis of the polarizing plate. Therefore, light incident between two adjacent drive electrodes passes through the reflection / transmission film and the polarizing plate. That is, the transmissive part transmits light from the backlight.
  • the light incident on the drive electrode does not change its polarization direction when passing through the liquid crystal layer.
  • the polarization direction of the light that has passed through the liquid crystal layer is orthogonal to the transmission axis of the reflective / transmissive film. Therefore, the light incident on the drive electrode is reflected by the reflective / transmissive film. That is, the light shielding unit shields light from the backlight.
  • the light reflected by the reflective / transmissive film is reflected by the backlight after passing through the pair of substrates and the liquid crystal layer.
  • the light reflected by the backlight is incident on the drive electrode, it is reflected again by the reflective / transmissive film, and when it is incident between two adjacent drive electrodes, it passes through the reflective / transmissive film and the polarizing plate. Incident on the liquid crystal display panel.
  • each figure referred below demonstrates the simplified main component required in order to demonstrate this invention among the structural members of embodiment of this invention for convenience of explanation. Therefore, the display device according to the present invention can include arbitrary constituent members that are not shown in the drawings referred to in this specification. Moreover, the dimension of the member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each member, etc. faithfully.
  • FIG. 1 shows a display device 10 as a first embodiment of the present invention.
  • the display device 10 includes a liquid crystal display panel 12, a switch liquid crystal panel 16, and a backlight 18.
  • the liquid crystal display panel 12 includes an active matrix substrate 20, a counter substrate 22 disposed to face the active matrix substrate 20, and a liquid crystal layer 24 sealed between the active matrix substrate 20 and the counter substrate 22.
  • Each of the active matrix substrate 20 and the counter substrate 22 includes polarizing plates 26a and 26b bonded to the surface opposite to the liquid crystal layer 24 side.
  • the polarization axes X1 and X2 of these polarizing plates 26a and 26b are orthogonal to each other as shown in FIG.
  • liquid crystal display panel 12 a plurality of pixels are formed in a matrix.
  • a region where a plurality of pixels are formed in a matrix is a display region of the liquid crystal display panel 12.
  • a column of pixels that displays an image (right-eye image) reflected in the right eye of the observer, and a column of pixels that displays an image (left-eye image) reflected in the left eye of the viewer. are alternately arranged in the horizontal direction of the liquid crystal display panel 12.
  • the image for the right eye and the image for the left eye are each divided for each pixel column (in a stripe shape). Then, a composite image obtained by alternately arranging the right eye image and the left eye image divided in the stripe shape is displayed in the display area of the liquid crystal display panel 12.
  • a switch liquid crystal panel 16 is disposed below the liquid crystal display panel 12.
  • the switch liquid crystal panel 16 includes a pair of substrates 28 and 30, a liquid crystal layer 32 sealed between the pair of substrates 28 and 30, a polarizing plate 42, a polarizing plate 26 a, and the reflective / transmissive film 14. That is, in the example shown in FIG. 1, the polarizing plate on the viewer side of the switch liquid crystal panel 16 and the polarizing plate on the backlight 18 side of the liquid crystal display panel 12 are realized by the same polarizing plate 26a.
  • the substrates 28 and 30 are, for example, low alkali glass substrates.
  • the liquid crystal layer 32 is made of, for example, TN (Twisted Nematic) mode liquid crystal.
  • the liquid crystal layer 32 is made of a TN mode liquid crystal having a positive dielectric constant.
  • the substrate 28 has a plurality of drive electrodes 34 formed thereon.
  • the drive electrodes 34 are shown, but the number of drive electrodes 34 is arbitrary.
  • Each of the plurality of drive electrodes 34 extends with a substantially constant width dimension in the vertical direction of the substrate 28 (the vertical direction of the liquid crystal display panel 12). In other words, the plurality of drive electrodes 34 are arranged in the lateral direction of the substrate 28 (lateral direction of the liquid crystal display panel 12).
  • One end of the drive electrode 34 in the length direction (upper end in FIG. 3) is connected by a connecting electrode 36.
  • the connecting electrode 36 extends with a substantially constant width dimension in the lateral direction of the substrate 28.
  • the counter electrode 38 is formed on the substrate 30 as shown in FIG.
  • the counter electrode 38 overlaps all of the plurality of drive electrodes 34 in the direction in which the pair of substrates 28 and 30 face each other.
  • the counter electrode 38 is formed over the entire region in the switch liquid crystal panel 16 where a parallax barrier 48 described later is realized.
  • the driving electrode 34, the connecting electrode 36, and the counter electrode 38 are transparent conductive films such as an indium tin oxide film (ITO film), for example.
  • the connection electrode 36 may be a metal film such as titanium or molybdenum.
  • Alignment films 40a and 40b are formed on the substrates 28 and 30 as shown in FIG.
  • the alignment films 40a and 40b are, for example, polyimide resin films.
  • the alignment film 40 a covers the drive electrode 34 and the connection electrode 36.
  • the alignment axis X4 of the alignment film 40a is orthogonal to the transmission axis X3 of the reflective / transmissive film 14, as shown in FIG. Note that the alignment axis X4 of the alignment film 40a does not need to be strictly orthogonal to the transmission axis X3 of the reflective / transmissive film 14, and may be substantially orthogonal.
  • the alignment film 40 b covers the counter electrode 38.
  • the alignment axis X5 of the alignment film 40b is parallel to the transmission axis X3 of the reflective / transmissive film 14, as shown in FIG.
  • the polarizing plate 42 is bonded to the surface of the substrate 28 opposite to the liquid crystal layer 32 side. That is, the polarizing plate 42 is disposed between the substrate 28 and the backlight 18. As shown in FIG. 2, the polarization axis X6 of the polarizing plate 42 is orthogonal to the transmission axis X3 of the reflection / transmission film 14 and the polarization axis X1 of the polarizing plate 26a.
  • the reflection / transmission film 14 is a brightness enhancement film.
  • the reflective / transmissive film 14 has a transmission axis X3 (see FIG. 2).
  • the reflective / transmissive film 14 transmits light that vibrates in the same direction as the transmission axis X3, and reflects light that vibrates in a direction different from the transmission axis X3.
  • the transmission axis X3 of the reflection / transmission film 14 is parallel to the polarization axis X1 of the polarizing plate 26a as shown in FIG.
  • the transmission axis X3 of the reflection / transmission film 14 does not need to be strictly parallel to the polarization axis X1 of the polarizing plate 26a, and may be substantially parallel.
  • the reflection / transmission film 14 is, for example, a film in which a plurality of dielectric thin films are laminated, a film in which a plurality of thin films having different refractive index anisotropies are laminated, a film in which a cholesteric liquid crystal layer and a retardation plate are laminated, or the like.
  • DBEF series manufactured by 3M Company can be adopted.
  • the reflective / transmissive film 14 may include a polarizing plate 26a.
  • the reflective / transmissive film 14 and the polarizing plate 26a can be handled integrally.
  • a polarizing plate with a brightness enhancement film (NIPOCS) manufactured by Nitto Denko Corporation can be used as the reflection / transmission film 14 including the polarizing plate 26a.
  • the switch liquid crystal panel 16 when a voltage is applied between the plurality of drive electrodes 34 and the counter electrode 38, the orientation of the liquid crystal molecules located between the drive electrodes 34 and the counter electrode 38 changes. As a result, as shown in FIG. 5, in the liquid crystal layer 32, a portion located between each drive electrode 34 and the counter electrode 38 functions as a light shielding portion 44, and between two adjacent light shielding portions 44, 44. It functions as the transmission part 46. As a result, in the switch liquid crystal panel 16, a parallax barrier 48 in which the light shielding portions 44 and the transmission portions 46 are alternately arranged is realized.
  • the portion of the liquid crystal layer 32 that functions as the light blocking portion 44 cannot block the light from the backlight 18 by itself.
  • the optical member for example, the polarizing plates 26a and 42
  • a backlight 18 is disposed below the switch liquid crystal panel 16. As shown in FIG. 6, the backlight 18 includes a plurality of light emitting diodes 50, a light guide plate 52, a reflection sheet 54, a diffusion sheet 56, and two refractive prism sheets 58 a and 58 b.
  • the plurality of light emitting diodes 50 are arranged on one side.
  • a dot pattern that scatters light is formed on the bottom of the light guide plate 52.
  • the reflection sheet 54 is disposed below the light guide plate 52 and contributes to the reuse of light.
  • the diffusion sheet 56 is disposed on the upper side of the light guide plate 52 and reduces luminance unevenness.
  • the two refractive prism sheets 58a and 58b are arranged on the upper side of the diffusion sheet 56 and improve the luminance.
  • a diffusion sheet may be further stacked on the two refractive prism sheets 58a and 58b. Thereby, it is possible to prevent interference fringes from being formed on the switch liquid crystal panel 16.
  • the backlight 18 may be, for example, a direct type other than the edge light type shown in FIG.
  • the light source of the backlight 18 is not limited to the light emitting diode 50, and may be a cold cathode tube, for example.
  • each light emitting diode 50 In the backlight 18, the light emitted from each light emitting diode 50 is incident on the light guide plate 52, scattered in the light guide plate 52, and then emitted upward from the main surface of the light guide plate 52.
  • the light emitted from the light guide plate 52 is diffused by the diffusion sheet 56 and then condensed by the two refractive prism sheets 58a and 58b. In this way, light with reduced brightness unevenness and improved brightness is irradiated onto the switch liquid crystal panel 16.
  • a composite image obtained by alternately arranging the right eye image and the left eye image divided into stripes is displayed on the liquid crystal display panel 12. Displayed in the display area. Thereby, only the right-eye image reaches the observer's right eye, and only the left-eye image reaches the observer's left eye. As a result, the observer can view a stereoscopic image without using special glasses.
  • the display device 10 when a planar image is displayed on the liquid crystal display panel 12 in a state where the parallax barrier 48 is not displayed on the switch liquid crystal panel 16, the planar image can be shown to the observer.
  • the reflective / transmissive film 14 is disposed between the substrate 30 provided in the switch liquid crystal panel 16 and the polarizing plate 26a. Thereby, the transmittance
  • the light from the backlight 18 passes through the polarizing plate 42.
  • the light that has passed through the polarizing plate 42 is light that vibrates in the direction of the polarization axis X6 of the polarizing plate 42.
  • the parallax barrier 48 When the parallax barrier 48 is realized in the switch liquid crystal panel 16, the direction of the liquid crystal molecules does not change in the portion that functions as the transmission portion 46 in the liquid crystal layer 32. As a result, when the light passing through the portion functioning as the transmission portion 46 in the liquid crystal layer 32 passes through the liquid crystal layer 32, the polarization direction is rotated by 90 degrees.
  • the polarization direction of the light that has passed through the portion functioning as the transmission portion 46 in the liquid crystal layer 32 is parallel to the transmission axis X3 of the reflective / transmissive film 14. As a result, as shown in FIG. 7, the light that has passed through the portion functioning as the transmissive portion 46 in the liquid crystal layer 32 passes through the reflective / transmissive film 14 and the polarizing plate 26 a and enters the liquid crystal display panel 12.
  • the polarization direction of the light that has passed through the portion functioning as the light shielding portion 44 in the liquid crystal layer 32 is orthogonal to the transmission axis X3 of the reflective / transmissive film 14. As a result, as shown in FIG. 7, the light that has passed through the portion that functions as the light shielding portion 44 in the liquid crystal layer 32 is reflected by the reflective / transmissive film 14.
  • the light reflected by the reflective / transmissive film 14 enters the backlight 18 after passing through the substrate 30, the liquid crystal layer 32, the substrate 28, and the polarizing plate 42.
  • the light incident on the backlight 18 is reflected in the backlight 18 and then exits from the backlight 18.
  • light is reflected between the reflection sheet 54 and various optical films 56, 58 a, 58 b included in the backlight 18.
  • the light exiting from the backlight 18 passes again through the portion functioning as the light shielding portion 44 in the liquid crystal layer 32, the light is reflected between the reflective / transmissive film 14 and the backlight 18 as described above. repeat.
  • the light exiting from the backlight 18 passes through the portion functioning as the transmission portion 46 in the liquid crystal layer 32, the light passes through the reflective / transmissive film 14 and the polarizing plate 26a as described above, and the liquid crystal Incident on the display panel 12.
  • FIG. 8 is experimental data showing how much the transmittance of the liquid crystal display panel 12 is improved.
  • an example is experimental data of the display device 10 of the present embodiment.
  • the comparative example is experimental data of a display device having a configuration that does not include the reflective / transmissive film 14 as compared with the display device 10 of the present embodiment.
  • the parallax barrier 48 is displayed on the switch liquid crystal panel 16 and the composite image is displayed on the liquid crystal display panel 12
  • the right-eye image and the left-eye image are displayed in white, and the liquid crystal display panel 12
  • the transmittance is measured by changing the angle in the surface direction of the liquid crystal display panel 12.
  • the angle is an angle tilted to the left and right with reference to the case where the liquid crystal display panel 12 is viewed from the front.
  • the transmittance of the liquid crystal display panel 12 at the optimal position for the observer to see the left-eye image with the left eye was 1.99% in the example.
  • the comparative example it was 1.85%. From these results, it was confirmed that the transmittance of the liquid crystal display panel 12 was improved by about 8%.
  • the transmittance of the liquid crystal display panel 12 at the optimum position for the observer to view the right-eye image with the right eye was 1.98%.
  • the comparative example it was 1.84%. From these results, it was confirmed that the transmittance of the liquid crystal display panel 12 was improved by about 8%.
  • the transmission axis X3 of the reflective / transmissive film 14 and the alignment axis X5 of the alignment film 40b are parallel, more light can easily pass through the switch liquid crystal panel 16. As a result, the transmittance of the liquid crystal display panel 12 is further improved.
  • connection electrode 36 Since one end in the length direction of the plurality of drive electrodes 34 is connected by the connection electrode 36, the number of wirings required when applying a voltage to the plurality of drive electrodes 34 all at once can be reduced.
  • the counter electrode 38 is formed over the entire region where the parallax barrier 48 is realized, the counter electrode 38 can be easily formed.
  • the display device of this embodiment differs from the display device 10 of the first embodiment in the alignment axes X4 and X5 of the alignment films 40a and 40b.
  • the alignment axis X4 of the alignment film 40a is parallel to the transmission axis X3 of the reflective / transmissive film 14
  • the alignment axis X5 of the alignment film 40b is parallel to the transmission axis X3 of the reflective / transmissive film 14. Orthogonal.
  • the alignment axis X4 of the alignment film 40a and the alignment axis X5 of the alignment film 40b are orthogonal to each other, when the light that has passed through the polarizing plate 42 passes through a portion that functions as the transmission part 46 in the liquid crystal layer 32, the light When the liquid crystal layer 32 passes through the portion functioning as the transmission portion 46, the polarization direction is rotated by 90 degrees. On the other hand, when the light that has passed through the polarizing plate 42 passes through a portion that functions as the light shielding portion 44 in the liquid crystal layer 32, the light passes through the portion that functions as the light shielding portion 44 in the liquid crystal layer 32 as it is. Therefore, also in the display device of the present embodiment, the same effect as that of the display device 10 of the first embodiment can be obtained.
  • the present invention is applicable to a display device in which different images are displayed when the display screen is viewed from the left oblique direction and when viewed from the right oblique direction.
  • the alignment axis X5 of the alignment film 40b and the transmission axis X3 of the reflective / transmissive film 14 are orthogonal to each other.
  • the alignment axis X5 and the transmission axis X3 are not necessarily orthogonal to each other. It may be crossed.
  • the liquid crystal layer 32 is made of, for example, a TN mode liquid crystal.

Abstract

The purpose of the present invention is to provide a display device in which significant lowering of the transmission of light from a backlight can be suppressed. The display device is provided with: a liquid crystal display panel (12); a backlight (18) that is disposed facing the liquid crystal display panel (12); a switch liquid crystal panel (16) that is disposed between the liquid crystal display panel (12) and the backlight (18), and can achieve a disparity barrier (48) in which transmission parts (46) that transmit light from the backlight (18) and shield parts (44) that shield light are alternately arranged; a reflection-transmission film (14) that is disposed between the liquid crystal display panel (12) and the switch liquid crystal panel (16), includes a prescribed transmission axis (X3), and transmits light oscillating in the direction of the transmission axis (X3) while reflecting light oscillating in directions other than the transmission axis (X3); and a polarizing plate (26a) that is disposed between the liquid crystal display panel (12) and the switch liquid crystal panel (16). The transmission axis (X3) is parallel to a polarizing axis (X1) of the polarizing plate (26a).

Description

表示装置Display device
 本発明は、視差バリアを実現するスイッチ液晶パネルを備え、観察者の右眼と左眼に異なる画像を見せることができる表示装置に関する。 The present invention relates to a display device that includes a switch liquid crystal panel that realizes a parallax barrier and can display different images to the right and left eyes of an observer.
 従来から、特殊なメガネを使用せずに、観察者に立体画像を見せる方法として、視差バリア方式が知られている。例えば、特開平7-261119号公報には、パララックスバリア部を備える立体映像表示装置が開示されている。 Conventionally, a parallax barrier method is known as a method of showing a stereoscopic image to an observer without using special glasses. For example, Japanese Patent Application Laid-Open No. 7-261119 discloses a stereoscopic video display device including a parallax barrier unit.
 視差バリア方式では、特定の方向からの光をバリア部で遮断することにより、右眼用の画素からの光と、左眼用の画素からの光とを分離する。その結果、バックライトからの光の透過率が大きく低下するという問題がある。 In the parallax barrier method, the light from the right eye pixel and the light from the left eye pixel are separated by blocking light from a specific direction at the barrier unit. As a result, there is a problem that the transmittance of light from the backlight is greatly reduced.
 本発明の目的は、バックライトからの光の透過率が大きく低下するのを抑えることができる表示装置を提供することにある。 An object of the present invention is to provide a display device capable of suppressing a significant decrease in light transmittance from a backlight.
 本発明の表示装置は、一対の基板間に液晶層を備えた液晶表示パネルと、前記液晶表示パネルに対向して配置されるバックライトと、前記液晶表示パネルと前記バックライトとの間に配置され、一対の基板間に液晶層を備え、前記バックライトからの光を透過させる透過部と、前記光を遮断する遮光部とが交互に並ぶ視差バリアを実現可能なスイッチ液晶パネルと、前記液晶表示パネルの液晶層と前記スイッチ液晶パネルの液晶層との間に配置され、所定の透過軸を有し、前記透過軸の方向に振動する光を透過する一方、前記透過軸以外の方向に振動する光を反射する反射透過フィルムと、前記液晶表示パネルの液晶層と前記スイッチ液晶パネルの液晶層との間に配置される偏光板とを備え、前記透過軸が、前記偏光板の偏光軸に平行である。 The display device of the present invention includes a liquid crystal display panel having a liquid crystal layer between a pair of substrates, a backlight disposed to face the liquid crystal display panel, and disposed between the liquid crystal display panel and the backlight. A switch liquid crystal panel having a liquid crystal layer between a pair of substrates, and capable of realizing a parallax barrier in which a transmissive portion that transmits light from the backlight and a light shielding portion that blocks the light are alternately arranged; and the liquid crystal It is arranged between the liquid crystal layer of the display panel and the liquid crystal layer of the switch liquid crystal panel, has a predetermined transmission axis, transmits light that vibrates in the direction of the transmission axis, and vibrates in directions other than the transmission axis. A reflection / transmission film that reflects the light to be transmitted, and a polarizing plate disposed between the liquid crystal layer of the liquid crystal display panel and the liquid crystal layer of the switch liquid crystal panel, and the transmission axis is the polarization axis of the polarizing plate Parallel .
 本発明の表示装置によれば、バックライトからの光の透過率が大きく低下するのを抑えることができる。 According to the display device of the present invention, it is possible to suppress the light transmittance from the backlight from greatly decreasing.
図1は、本発明の第1の実施形態としての表示装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a display device as a first embodiment of the present invention. 図2は、図1に示す表示装置が備える各種光学フィルムの光学軸を示す説明図である。FIG. 2 is an explanatory diagram showing optical axes of various optical films included in the display device shown in FIG. 図3は、スイッチ液晶パネルが備える一方の基板に形成された複数の駆動電極を示す平面図である。FIG. 3 is a plan view showing a plurality of drive electrodes formed on one substrate included in the switch liquid crystal panel. 図4は、スイッチ液晶パネルが備える他方の基板に形成された対向電極を示す平面図である。FIG. 4 is a plan view showing the counter electrode formed on the other substrate included in the switch liquid crystal panel. 図5は、スイッチ液晶パネルに視差バリアが実現された状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a parallax barrier is realized in the switch liquid crystal panel. 図6は、バックライトを構成する各部材を示す分解斜視図である。FIG. 6 is an exploded perspective view showing each member constituting the backlight. 図7は、バックライトからの光が反射透過フィルムによって反射される現象を説明する断面図である。FIG. 7 is a cross-sectional view illustrating a phenomenon in which light from the backlight is reflected by the reflective / transmissive film. 図8は、液晶表示パネルの透過率の実験データである。FIG. 8 shows experimental data of the transmittance of the liquid crystal display panel. 図9は、本発明の第2の実施形態としての表示装置が備える各種光学フィルムの光学軸を示す説明図である。FIG. 9 is an explanatory diagram showing optical axes of various optical films included in the display device as the second embodiment of the present invention.
 本発明の一実施形態に係る表示装置は、一対の基板間に液晶層を備えた液晶表示パネルと、前記液晶表示パネルに対向して配置されるバックライトと、前記液晶表示パネルと前記バックライトとの間に配置され、一対の基板間に液晶層を備え、前記バックライトからの光を透過させる透過部と、前記光を遮断する遮光部とが交互に並ぶ視差バリアを実現可能なスイッチ液晶パネルと、前記液晶表示パネルの液晶層と前記スイッチ液晶パネルの液晶層との間に配置され、所定の透過軸を有し、前記透過軸の方向に振動する光を透過する一方、前記透過軸以外の方向に振動する光を反射する反射透過フィルムと、前記液晶表示パネルの液晶層と前記スイッチ液晶パネルの液晶層との間に配置される偏光板とを備え、前記透過軸が、前記偏光板の偏光軸に平行である(第1の構成)。 A display device according to an embodiment of the present invention includes a liquid crystal display panel including a liquid crystal layer between a pair of substrates, a backlight disposed to face the liquid crystal display panel, the liquid crystal display panel, and the backlight. A liquid crystal layer disposed between the pair of substrates, and a switch liquid crystal capable of realizing a parallax barrier in which a transmissive portion that transmits light from the backlight and a light-shielding portion that blocks the light are alternately arranged The transmission liquid crystal layer disposed between the panel, the liquid crystal layer of the liquid crystal display panel and the liquid crystal layer of the switch liquid crystal panel, and having a predetermined transmission axis and transmitting light oscillating in the direction of the transmission axis, A reflection / transmission film that reflects light oscillating in a direction other than a polarizing plate disposed between the liquid crystal layer of the liquid crystal display panel and the liquid crystal layer of the switch liquid crystal panel, and the transmission axis is the polarization Plank It is parallel to the optical axis (first configuration).
 第1の構成においては、バックライトからの光のうち、透過部を通過する光は、偏光板が有する偏光軸の方向に振動する。これにより、透過部を通過する光は、反射透過フィルムを通過し、液晶表示パネルに入射する。 In the first configuration, of the light from the backlight, the light that passes through the transmission part vibrates in the direction of the polarization axis of the polarizing plate. Thereby, the light passing through the transmission part passes through the reflection / transmission film and enters the liquid crystal display panel.
 一方、バックライトからの光のうち、遮光部を透過する光は、偏光板が有する偏光軸の方向とは異なる方向に振動する。これにより、遮光部を通過する光は、反射透過フィルムによって反射される。反射透過フィルムによって反射された光は、スイッチ液晶パネルを透過した後、バックライトで反射される。バックライトで反射された光は、遮光部を通過する場合には反射透過フィルムによって再び反射され、透過部を通過する場合には反射透過フィルムを透過した後、液晶表示パネルに入射する。 On the other hand, of the light from the backlight, the light that passes through the light shielding portion vibrates in a direction different from the direction of the polarization axis of the polarizing plate. Thereby, the light which passes a light shielding part is reflected by the reflective transmission film. The light reflected by the reflective / transmissive film passes through the switch liquid crystal panel and then is reflected by the backlight. The light reflected by the backlight is reflected again by the reflection / transmission film when passing through the light shielding part, and is transmitted through the reflection / transmission film when passing through the transmission part and then enters the liquid crystal display panel.
 このようにして、遮光部で遮られていた光を再利用するようにした。従って、視差バリアが実現されている場合であっても、液晶表示パネルの透過率を向上させることができる。 In this way, the light blocked by the light blocking part was reused. Therefore, even when a parallax barrier is realized, the transmittance of the liquid crystal display panel can be improved.
 第2の構成は、前記第1の構成において、前記スイッチ液晶パネルは、一対の基板と、前記一対の基板間に封入される液晶層と、前記一対の基板のそれぞれにおいて、前記液晶層側に設けられる配向膜とを備え、前記一対の基板のうち、前記反射透過フィルム側に位置する側に設けられた前記配向膜の配向軸が、前記透過軸に平行とされている構成である。このような構成においては、より多くの光がスイッチ液晶パネルを通過し易くなる。その結果、液晶表示パネルの透過率を更に向上させることができる。 According to a second configuration, in the first configuration, the switch liquid crystal panel includes a pair of substrates, a liquid crystal layer sealed between the pair of substrates, and the liquid crystal layer side of each of the pair of substrates. The alignment film is provided, and the alignment axis of the alignment film provided on the side of the pair of substrates located on the reflective / transmissive film side is parallel to the transmission axis. In such a configuration, more light can easily pass through the switch liquid crystal panel. As a result, the transmittance of the liquid crystal display panel can be further improved.
 第3の構成は、前記第1の構成において、前記スイッチ液晶パネルは、一対の基板と、前記一対の基板間に封入される液晶層と、前記一対の基板のそれぞれにおいて、前記液晶層側に設けられる配向膜とを備え、前記一対の基板のうち、前記反射透過フィルム側に位置する側に設けられた前記配向膜の配向軸が、前記透過軸に交差する構成である。このような構成であっても、スイッチ液晶パネルに視差バリアが実現されている状態で、液晶表示パネルの透過率を向上させることができる。 According to a third configuration, in the first configuration, the switch liquid crystal panel has a pair of substrates, a liquid crystal layer sealed between the pair of substrates, and a liquid crystal layer side of each of the pair of substrates. And an alignment axis of the alignment film provided on the side of the pair of substrates located on the reflective / transmissive film side intersects the transmission axis. Even with such a configuration, the transmittance of the liquid crystal display panel can be improved in a state in which the parallax barrier is realized in the switch liquid crystal panel.
 第4の構成は、前記第3の構成において、前記配向軸が前記透過軸に直交する構成である。 The fourth configuration is a configuration in which the orientation axis is orthogonal to the transmission axis in the third configuration.
 第5の構成は、前記第1~第4の構成の何れか1つにおいて、前記反射透過フィルムが前記偏光板と前記スイッチ液晶パネルとの間に配置される構成である。このような構成においては、スイッチ液晶パネルから出射された光のうち、偏光板の偏光軸とは異なる方向に振動する光が、偏光板によって吸収される前に、反射透過フィルムで反射される。その結果、輝度を向上させ易くなる。 The fifth configuration is a configuration in which the reflection / transmission film is disposed between the polarizing plate and the switch liquid crystal panel in any one of the first to fourth configurations. In such a configuration, of the light emitted from the switch liquid crystal panel, light that vibrates in a direction different from the polarization axis of the polarizing plate is reflected by the reflective / transmissive film before being absorbed by the polarizing plate. As a result, it is easy to improve the luminance.
 第6の構成は、前記第1~第5の構成の何れか1つにおいて、前記偏光板と前記反射透過フィルムとが一体形成されている構成である。このような構成においては、偏光板と反射透過フィルムとを纏めて取り扱うことができる。 The sixth configuration is a configuration in which the polarizing plate and the reflective / transmissive film are integrally formed in any one of the first to fifth configurations. In such a configuration, the polarizing plate and the reflection / transmission film can be handled together.
 第7の構成は、前記第1の構成において、前記スイッチ液晶パネルは、前記偏光板と、前記反射透過フィルムとを含み、前記スイッチ液晶パネルは、前記一対の基板の一方に形成された共通電極と、前記一対の基板の他方に複数形成され、電圧が印加されたときに前記共通電極とともに前記遮光部を実現する駆動電極とをさらに備え、前記反射透過フィルムは、前記一対の基板のうち、前記液晶表示パネル側の基板と、前記偏光板との間に配置される構成である。 According to a seventh configuration, in the first configuration, the switch liquid crystal panel includes the polarizing plate and the reflective / transmissive film, and the switch liquid crystal panel is a common electrode formed on one of the pair of substrates. And a plurality of driving electrodes that are formed on the other of the pair of substrates and that realize the light shielding portion together with the common electrode when a voltage is applied, and the reflective / transmissive film includes the pair of substrates, It is the structure arrange | positioned between the board | substrate by the side of the said liquid crystal display panel, and the said polarizing plate.
 第7の構成においては、駆動電極と対応する位置に、遮光部が形成される。隣り合う2つの遮光部の間に、透過部が形成される。 In the seventh configuration, a light shielding portion is formed at a position corresponding to the drive electrode. A transmission part is formed between two adjacent light shielding parts.
 バックライトからの光のうち、隣り合う2つの駆動電極の間に入射する光は、液晶層を通過するときに、その偏光方向が変化する。液晶層を通過した光の偏光方向は、反射透過フィルムの透過軸及び偏光板の偏光軸に一致する。そのため、隣り合う2つの駆動電極の間に入射する光は、反射透過フィルム及び偏光板を通過する。つまり、透過部は、バックライトからの光を透過する。 Of the light from the backlight, the light incident between two adjacent drive electrodes changes its polarization direction when passing through the liquid crystal layer. The polarization direction of the light that has passed through the liquid crystal layer coincides with the transmission axis of the reflection / transmission film and the polarization axis of the polarizing plate. Therefore, light incident between two adjacent drive electrodes passes through the reflection / transmission film and the polarizing plate. That is, the transmissive part transmits light from the backlight.
 一方、バックライトからの光のうち、駆動電極に入射する光は、液晶層を通過するときに、その偏光方向が変化しない。液晶層を通過した光の偏光方向は、反射透過フィルムの透過軸に直交する。そのため、駆動電極に入射する光は、反射透過フィルムで反射される。つまり、遮光部は、バックライトからの光を遮光する。 On the other hand, of the light from the backlight, the light incident on the drive electrode does not change its polarization direction when passing through the liquid crystal layer. The polarization direction of the light that has passed through the liquid crystal layer is orthogonal to the transmission axis of the reflective / transmissive film. Therefore, the light incident on the drive electrode is reflected by the reflective / transmissive film. That is, the light shielding unit shields light from the backlight.
 ここで、反射透過フィルムが反射した光は、一対の基板及び液晶層を通過した後、バックライトで反射される。バックライトが反射した光は、駆動電極に入射する場合には、反射透過フィルムによって再び反射され、隣り合う2つの駆動電極の間に入射する場合には、反射透過フィルム及び偏光板を通過した後、液晶表示パネルに入射する。 Here, the light reflected by the reflective / transmissive film is reflected by the backlight after passing through the pair of substrates and the liquid crystal layer. When the light reflected by the backlight is incident on the drive electrode, it is reflected again by the reflective / transmissive film, and when it is incident between two adjacent drive electrodes, it passes through the reflective / transmissive film and the polarizing plate. Incident on the liquid crystal display panel.
 以下、本発明のより具体的な実施形態について、図面を参照しながら説明する。なお、以下で参照する各図は、説明の便宜上、本発明の実施形態の構成部材のうち、本発明を説明するために必要な主要部材のみを簡略化して示したものである。従って、本発明に係る表示装置は、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。 Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings. In addition, each figure referred below demonstrates the simplified main component required in order to demonstrate this invention among the structural members of embodiment of this invention for convenience of explanation. Therefore, the display device according to the present invention can include arbitrary constituent members that are not shown in the drawings referred to in this specification. Moreover, the dimension of the member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each member, etc. faithfully.
 [第1の実施形態]
 図1には、本発明の第1の実施形態としての表示装置10が示されている。表示装置10は、液晶表示パネル12と、スイッチ液晶パネル16と、バックライト18とを備える。
[First Embodiment]
FIG. 1 shows a display device 10 as a first embodiment of the present invention. The display device 10 includes a liquid crystal display panel 12, a switch liquid crystal panel 16, and a backlight 18.
 液晶表示パネル12は、アクティブマトリクス基板20と、アクティブマトリクス基板20に対向して配置される対向基板22と、アクティブマトリクス基板20と対向基板22との間に封入された液晶層24とを備える。 The liquid crystal display panel 12 includes an active matrix substrate 20, a counter substrate 22 disposed to face the active matrix substrate 20, and a liquid crystal layer 24 sealed between the active matrix substrate 20 and the counter substrate 22.
 アクティブマトリクス基板20及び対向基板22は、それぞれ、液晶層24側とは反対側の面に接着される偏光板26a,26bを備える。これらの偏光板26a,26bの偏光軸X1,X2は、図2に示すように、互いに直交している。 Each of the active matrix substrate 20 and the counter substrate 22 includes polarizing plates 26a and 26b bonded to the surface opposite to the liquid crystal layer 24 side. The polarization axes X1 and X2 of these polarizing plates 26a and 26b are orthogonal to each other as shown in FIG.
 液晶表示パネル12においては、複数の画素がマトリクス状に形成されている。複数の画素がマトリクス状に形成された領域が、液晶表示パネル12の表示領域になる。 In the liquid crystal display panel 12, a plurality of pixels are formed in a matrix. A region where a plurality of pixels are formed in a matrix is a display region of the liquid crystal display panel 12.
 液晶表示パネル12においては、観察者の右眼に映る画像(右眼用画像)を表示する画素の列と、観察者の左眼に映る画像(左眼用画像)を表示する画素の列とが、液晶表示パネル12の横方向に交互に配置されている。換言すれば、右眼用画像と左眼用画像が、それぞれ、画素列毎に(ストライプ状に)分割される。そして、これらストライプ状に分割された右眼用画像及び左眼用画像を交互に並べた合成画像が、液晶表示パネル12の表示領域に表示される。 In the liquid crystal display panel 12, a column of pixels that displays an image (right-eye image) reflected in the right eye of the observer, and a column of pixels that displays an image (left-eye image) reflected in the left eye of the viewer. Are alternately arranged in the horizontal direction of the liquid crystal display panel 12. In other words, the image for the right eye and the image for the left eye are each divided for each pixel column (in a stripe shape). Then, a composite image obtained by alternately arranging the right eye image and the left eye image divided in the stripe shape is displayed in the display area of the liquid crystal display panel 12.
 液晶表示パネル12の下側には、スイッチ液晶パネル16が配置される。 A switch liquid crystal panel 16 is disposed below the liquid crystal display panel 12.
 スイッチ液晶パネル16は、一対の基板28,30と、これら一対の基板28,30間に封入された液晶層32と、偏光板42と、偏光板26aと、反射透過フィルム14とを備える。つまり、図1に示す例では、スイッチ液晶パネル16の観察者側の偏光板と、液晶表示パネル12のバックライト18側の偏光板とが、同じ偏光板26aで実現されている。 The switch liquid crystal panel 16 includes a pair of substrates 28 and 30, a liquid crystal layer 32 sealed between the pair of substrates 28 and 30, a polarizing plate 42, a polarizing plate 26 a, and the reflective / transmissive film 14. That is, in the example shown in FIG. 1, the polarizing plate on the viewer side of the switch liquid crystal panel 16 and the polarizing plate on the backlight 18 side of the liquid crystal display panel 12 are realized by the same polarizing plate 26a.
 基板28,30は、例えば、低アルカリガラス基板等である。液晶層32は、例えば、TN(Twisted Nematic)モードの液晶からなる。本実施形態では、液晶層32は、正の誘電率を有するTNモードの液晶からなる。 The substrates 28 and 30 are, for example, low alkali glass substrates. The liquid crystal layer 32 is made of, for example, TN (Twisted Nematic) mode liquid crystal. In the present embodiment, the liquid crystal layer 32 is made of a TN mode liquid crystal having a positive dielectric constant.
 図3に示すように、基板28には、複数の駆動電極34が形成されている。なお、図3においては、理解を容易にするために、駆動電極34が9つしか示されていないが、駆動電極34の数は任意である。 As shown in FIG. 3, the substrate 28 has a plurality of drive electrodes 34 formed thereon. In FIG. 3, for ease of understanding, only nine drive electrodes 34 are shown, but the number of drive electrodes 34 is arbitrary.
 複数の駆動電極34は、それぞれ、基板28の縦方向(液晶表示パネル12の縦方向)に略一定の幅寸法で延びている。換言すれば、複数の駆動電極34は、基板28の横方向(液晶表示パネル12の横方向)に並んでいる。 Each of the plurality of drive electrodes 34 extends with a substantially constant width dimension in the vertical direction of the substrate 28 (the vertical direction of the liquid crystal display panel 12). In other words, the plurality of drive electrodes 34 are arranged in the lateral direction of the substrate 28 (lateral direction of the liquid crystal display panel 12).
 駆動電極34の長さ方向一端(図3の上端)同士が、連結電極36によって、連結されている。連結電極36は、基板28の横方向に略一定の幅寸法で延びている。 One end of the drive electrode 34 in the length direction (upper end in FIG. 3) is connected by a connecting electrode 36. The connecting electrode 36 extends with a substantially constant width dimension in the lateral direction of the substrate 28.
 基板30には、図4に示すように、対向電極38が形成されている。対向電極38は、一対の基板28,30が対向する方向で、複数の駆動電極34の全てに重なっている。対向電極38は、スイッチ液晶パネル16において、後述する視差バリア48が実現される領域の全体に亘って形成されている。 The counter electrode 38 is formed on the substrate 30 as shown in FIG. The counter electrode 38 overlaps all of the plurality of drive electrodes 34 in the direction in which the pair of substrates 28 and 30 face each other. The counter electrode 38 is formed over the entire region in the switch liquid crystal panel 16 where a parallax barrier 48 described later is realized.
 駆動電極34、連結電極36及び対向電極38は、例えば、インジウム酸化錫膜(ITO膜)等の透明な導電膜である。なお、連結電極36は、例えば、チタンやモリブデン等の金属膜であっても良い。 The driving electrode 34, the connecting electrode 36, and the counter electrode 38 are transparent conductive films such as an indium tin oxide film (ITO film), for example. The connection electrode 36 may be a metal film such as titanium or molybdenum.
 基板28,30には、図5に示すように、配向膜40a,40bが形成されている。配向膜40a,40bは、例えば、ポリイミド樹脂膜である。 Alignment films 40a and 40b are formed on the substrates 28 and 30 as shown in FIG. The alignment films 40a and 40b are, for example, polyimide resin films.
 配向膜40aは、駆動電極34及び連結電極36を覆っている。配向膜40aの配向軸X4は、図2に示すように、反射透過フィルム14の透過軸X3に直交している。なお、配向膜40aの配向軸X4は、反射透過フィルム14の透過軸X3に対して、厳密に直交している必要はなく、略直交していれば良い。 The alignment film 40 a covers the drive electrode 34 and the connection electrode 36. The alignment axis X4 of the alignment film 40a is orthogonal to the transmission axis X3 of the reflective / transmissive film 14, as shown in FIG. Note that the alignment axis X4 of the alignment film 40a does not need to be strictly orthogonal to the transmission axis X3 of the reflective / transmissive film 14, and may be substantially orthogonal.
 配向膜40bは、対向電極38を覆っている。配向膜40bの配向軸X5は、図2に示すように、反射透過フィルム14の透過軸X3に平行である。 The alignment film 40 b covers the counter electrode 38. The alignment axis X5 of the alignment film 40b is parallel to the transmission axis X3 of the reflective / transmissive film 14, as shown in FIG.
 偏光板42は、基板28において、液晶層32側とは反対側の面に接着される。つまり、偏光板42は、基板28とバックライト18との間に配置される。偏光板42の偏光軸X6は、図2に示すように、反射透過フィルム14の透過軸X3及び偏光板26aの偏光軸X1に対して直交している。 The polarizing plate 42 is bonded to the surface of the substrate 28 opposite to the liquid crystal layer 32 side. That is, the polarizing plate 42 is disposed between the substrate 28 and the backlight 18. As shown in FIG. 2, the polarization axis X6 of the polarizing plate 42 is orthogonal to the transmission axis X3 of the reflection / transmission film 14 and the polarization axis X1 of the polarizing plate 26a.
 反射透過フィルム14は、輝度向上フィルムである。反射透過フィルム14は、透過軸X3(図2参照)を有する。反射透過フィルム14は、透過軸X3と同じ方向に振動する光を透過し、透過軸X3と異なる方向に振動する光を反射する。 The reflection / transmission film 14 is a brightness enhancement film. The reflective / transmissive film 14 has a transmission axis X3 (see FIG. 2). The reflective / transmissive film 14 transmits light that vibrates in the same direction as the transmission axis X3, and reflects light that vibrates in a direction different from the transmission axis X3.
 反射透過フィルム14の透過軸X3は、図2に示すように、偏光板26aの偏光軸X1と平行である。なお、反射透過フィルム14の透過軸X3は、偏光板26aの偏光軸X1に対して厳密に平行である必要はなく、略平行であれば良い。 The transmission axis X3 of the reflection / transmission film 14 is parallel to the polarization axis X1 of the polarizing plate 26a as shown in FIG. The transmission axis X3 of the reflection / transmission film 14 does not need to be strictly parallel to the polarization axis X1 of the polarizing plate 26a, and may be substantially parallel.
 反射透過フィルム14は、例えば、誘電体の薄膜を複数積層したフィルム、屈折率異方性が相違する薄膜を複数積層したフィルム、コレステリック液晶層と位相差板を積層したフィルム等である。反射透過フィルムとしては、例えば、3M社製のDBEFシリーズ等を採用することができる。 The reflection / transmission film 14 is, for example, a film in which a plurality of dielectric thin films are laminated, a film in which a plurality of thin films having different refractive index anisotropies are laminated, a film in which a cholesteric liquid crystal layer and a retardation plate are laminated, or the like. As the reflection / transmission film, for example, DBEF series manufactured by 3M Company can be adopted.
 反射透過フィルム14は、偏光板26aを備えていても良い。この場合、反射透過フィルム14と偏光板26aとを一体的に取り扱うことができる。なお、偏光板26aを備える反射透過フィルム14としては、例えば、日東電工社製の輝度向上フィルム付偏光板(NIPOCS)等を採用することができる。 The reflective / transmissive film 14 may include a polarizing plate 26a. In this case, the reflective / transmissive film 14 and the polarizing plate 26a can be handled integrally. In addition, as the reflection / transmission film 14 including the polarizing plate 26a, for example, a polarizing plate with a brightness enhancement film (NIPOCS) manufactured by Nitto Denko Corporation can be used.
 スイッチ液晶パネル16においては、複数の駆動電極34と対向電極38との間に電圧を印加すると、各駆動電極34と対向電極38との間に位置する液晶分子の向きが変化する。これにより、図5に示すように、液晶層32において、各駆動電極34と対向電極38との間に位置する部分が遮光部44として機能し、隣り合う2つの遮光部44,44の間が透過部46として機能する。その結果、スイッチ液晶パネル16において、遮光部44と透過部46とが交互に並ぶ視差バリア48が実現される。 In the switch liquid crystal panel 16, when a voltage is applied between the plurality of drive electrodes 34 and the counter electrode 38, the orientation of the liquid crystal molecules located between the drive electrodes 34 and the counter electrode 38 changes. As a result, as shown in FIG. 5, in the liquid crystal layer 32, a portion located between each drive electrode 34 and the counter electrode 38 functions as a light shielding portion 44, and between two adjacent light shielding portions 44, 44. It functions as the transmission part 46. As a result, in the switch liquid crystal panel 16, a parallax barrier 48 in which the light shielding portions 44 and the transmission portions 46 are alternately arranged is realized.
 なお、液晶層32において遮光部44として機能する部分は、それだけではバックライト18からの光を遮ることはできない。バックライト18からの光の進行方向に配置された光学部材(例えば、偏光板26a,42)と協働することにより、バックライト18からの光を遮ることができる。 Note that the portion of the liquid crystal layer 32 that functions as the light blocking portion 44 cannot block the light from the backlight 18 by itself. By cooperating with the optical member (for example, the polarizing plates 26a and 42) arranged in the traveling direction of the light from the backlight 18, the light from the backlight 18 can be blocked.
 スイッチ液晶パネル16の下側には、バックライト18が配置される。バックライト18は、図6に示すように、複数の発光ダイオード50と、導光板52と、反射シート54と、拡散シート56と、2つの屈折型プリズムシート58a,58bとを備える。 A backlight 18 is disposed below the switch liquid crystal panel 16. As shown in FIG. 6, the backlight 18 includes a plurality of light emitting diodes 50, a light guide plate 52, a reflection sheet 54, a diffusion sheet 56, and two refractive prism sheets 58 a and 58 b.
 複数の発光ダイオード50は、一側面に配置される。導光板52の底部には、光を散乱させるドットパターンが形成されている。反射シート54は、導光板52の下側に配置され、光の再利用に貢献する。拡散シート56は、導光板52の上側に配置され、輝度ムラを低減する。2つの屈折型プリズムシート58a,58bは、拡散シート56の上側に配置され、輝度を向上させる。 The plurality of light emitting diodes 50 are arranged on one side. A dot pattern that scatters light is formed on the bottom of the light guide plate 52. The reflection sheet 54 is disposed below the light guide plate 52 and contributes to the reuse of light. The diffusion sheet 56 is disposed on the upper side of the light guide plate 52 and reduces luminance unevenness. The two refractive prism sheets 58a and 58b are arranged on the upper side of the diffusion sheet 56 and improve the luminance.
 なお、2つの屈折型プリズムシート58a,58bの上に、拡散シートを更に重ねても良い。これにより、スイッチ液晶パネル16に干渉縞が形成されるのを防ぐことができる。 It should be noted that a diffusion sheet may be further stacked on the two refractive prism sheets 58a and 58b. Thereby, it is possible to prevent interference fringes from being formed on the switch liquid crystal panel 16.
 バックライト18は、図6に示すエッジライト型の他に、例えば、直下型であっても良い。バックライト18の光源は、発光ダイオード50に限定されず、例えば、冷陰極管であっても良い。 The backlight 18 may be, for example, a direct type other than the edge light type shown in FIG. The light source of the backlight 18 is not limited to the light emitting diode 50, and may be a cold cathode tube, for example.
 バックライト18においては、各発光ダイオード50が発する光は、導光板52に入射し、導光板52内で散乱した後、導光板52の主面から上方へ出射される。導光板52から出射された光は、拡散シート56によって拡散された後、2つの屈折型プリズムシート58a,58bによって集光される。このようにして、輝度ムラが低減され、且つ、輝度が向上された光が、スイッチ液晶パネル16に照射される。 In the backlight 18, the light emitted from each light emitting diode 50 is incident on the light guide plate 52, scattered in the light guide plate 52, and then emitted upward from the main surface of the light guide plate 52. The light emitted from the light guide plate 52 is diffused by the diffusion sheet 56 and then condensed by the two refractive prism sheets 58a and 58b. In this way, light with reduced brightness unevenness and improved brightness is irradiated onto the switch liquid crystal panel 16.
 表示装置10においては、視差バリア48がスイッチ液晶パネル16に表示された状態で、ストライプ状に分割された右眼用画像及び左眼用画像を交互に並べた合成画像が、液晶表示パネル12の表示領域に表示される。これにより、観察者の右眼には右眼用画像のみが届き、観察者の左眼には左眼用画像のみが届く。その結果、観察者は、特殊なメガネを使用せずに、立体画像を見ることができる。 In the display device 10, with the parallax barrier 48 displayed on the switch liquid crystal panel 16, a composite image obtained by alternately arranging the right eye image and the left eye image divided into stripes is displayed on the liquid crystal display panel 12. Displayed in the display area. Thereby, only the right-eye image reaches the observer's right eye, and only the left-eye image reaches the observer's left eye. As a result, the observer can view a stereoscopic image without using special glasses.
 また、表示装置10においては、視差バリア48がスイッチ液晶パネル16に表示されていない状態で、液晶表示パネル12に平面画像を表示すれば、平面画像を観察者に見せることができる。 Further, in the display device 10, when a planar image is displayed on the liquid crystal display panel 12 in a state where the parallax barrier 48 is not displayed on the switch liquid crystal panel 16, the planar image can be shown to the observer.
 また、表示装置10においては、スイッチ液晶パネル16が備える基板30と偏光板26aとの間に、反射透過フィルム14が配置されている。これにより、バックライト18からの光を有効に利用して、液晶表示パネル12の透過率を向上させることができる。この効果について、以下に詳しく説明する。 In the display device 10, the reflective / transmissive film 14 is disposed between the substrate 30 provided in the switch liquid crystal panel 16 and the polarizing plate 26a. Thereby, the transmittance | permeability of the liquid crystal display panel 12 can be improved using the light from the backlight 18 effectively. This effect will be described in detail below.
 バックライト18からの光は、偏光板42を通過する。偏光板42を通過した光は、偏光板42の偏光軸X6の方向に振動する光である。 The light from the backlight 18 passes through the polarizing plate 42. The light that has passed through the polarizing plate 42 is light that vibrates in the direction of the polarization axis X6 of the polarizing plate 42.
 視差バリア48がスイッチ液晶パネル16に実現されているとき、液晶層32において透過部46として機能する部分は、液晶分子の向きが変化していない。その結果、液晶層32において透過部46として機能する部分を通過する光は、液晶層32を通過するときに、その偏光方向が90度回転する。 When the parallax barrier 48 is realized in the switch liquid crystal panel 16, the direction of the liquid crystal molecules does not change in the portion that functions as the transmission portion 46 in the liquid crystal layer 32. As a result, when the light passing through the portion functioning as the transmission portion 46 in the liquid crystal layer 32 passes through the liquid crystal layer 32, the polarization direction is rotated by 90 degrees.
 液晶層32において透過部46として機能する部分を通過した光の偏光方向は、反射透過フィルム14の透過軸X3に平行である。その結果、図7に示すように、液晶層32において透過部46として機能する部分を通過した光は、反射透過フィルム14及び偏光板26aを通過し、液晶表示パネル12に入射する。 The polarization direction of the light that has passed through the portion functioning as the transmission portion 46 in the liquid crystal layer 32 is parallel to the transmission axis X3 of the reflective / transmissive film 14. As a result, as shown in FIG. 7, the light that has passed through the portion functioning as the transmissive portion 46 in the liquid crystal layer 32 passes through the reflective / transmissive film 14 and the polarizing plate 26 a and enters the liquid crystal display panel 12.
 一方、視差バリア48がスイッチ液晶パネル16に表示されているとき、液晶層32において遮光部44として機能する部分においては、駆動電極34と対向電極38との間に電圧が印加されていることにより、液晶分子が立ち上がっている。換言すれば、液晶層32において遮光部44として機能する部分においては、液晶分子の向きが変わっている。その結果、液晶層32において遮光部44として機能する部分を通過する光は、液晶層32において透過部46として機能する部分を通過する光のように、その偏光方向が90度回転することはない。 On the other hand, when the parallax barrier 48 is displayed on the switch liquid crystal panel 16, a voltage is applied between the drive electrode 34 and the counter electrode 38 in the portion that functions as the light shielding portion 44 in the liquid crystal layer 32. Liquid crystal molecules are standing up. In other words, the direction of the liquid crystal molecules changes in the portion that functions as the light shielding portion 44 in the liquid crystal layer 32. As a result, the polarization direction of the light passing through the portion functioning as the light shielding portion 44 in the liquid crystal layer 32 is not rotated by 90 degrees unlike the light passing through the portion functioning as the transmission portion 46 in the liquid crystal layer 32. .
 液晶層32において遮光部44として機能する部分を通過した光の偏光方向は、反射透過フィルム14の透過軸X3に直交している。その結果、図7に示すように、液晶層32において遮光部44として機能する部分を通過した光は、反射透過フィルム14によって反射される。 The polarization direction of the light that has passed through the portion functioning as the light shielding portion 44 in the liquid crystal layer 32 is orthogonal to the transmission axis X3 of the reflective / transmissive film 14. As a result, as shown in FIG. 7, the light that has passed through the portion that functions as the light shielding portion 44 in the liquid crystal layer 32 is reflected by the reflective / transmissive film 14.
 反射透過フィルム14が反射した光は、基板30、液晶層32、基板28及び偏光板42を通過した後、バックライト18に入射する。バックライト18に入射した光は、バックライト18内で反射された後、バックライト18から出てゆく。バックライト18内では、例えば、反射シート54、バックライト18が備える各種の光学フィルム56,58a,58b間等において、光が反射される。 The light reflected by the reflective / transmissive film 14 enters the backlight 18 after passing through the substrate 30, the liquid crystal layer 32, the substrate 28, and the polarizing plate 42. The light incident on the backlight 18 is reflected in the backlight 18 and then exits from the backlight 18. In the backlight 18, for example, light is reflected between the reflection sheet 54 and various optical films 56, 58 a, 58 b included in the backlight 18.
 バックライト18から出てゆく光が、液晶層32において遮光部44として機能する部分を再び通過する場合、当該光は、上述のように、反射透過フィルム14とバックライト18との間で反射を繰り返す。一方、バックライト18から出てゆく光が、液晶層32において透過部46として機能する部分を通過する場合、当該光は、上述のように、反射透過フィルム14及び偏光板26aを通過し、液晶表示パネル12に入射する。 When the light exiting from the backlight 18 passes again through the portion functioning as the light shielding portion 44 in the liquid crystal layer 32, the light is reflected between the reflective / transmissive film 14 and the backlight 18 as described above. repeat. On the other hand, when the light exiting from the backlight 18 passes through the portion functioning as the transmission portion 46 in the liquid crystal layer 32, the light passes through the reflective / transmissive film 14 and the polarizing plate 26a as described above, and the liquid crystal Incident on the display panel 12.
 このような表示装置10においては、スイッチ液晶パネル16に視差バリア48を実現しているときに、バックライト18からの光のうち、液晶層32において遮光部44として機能する部分を通過する光が、反射透過フィルム14とバックライト18との間で反射を繰り返すことにより、液晶層32において透過部46として機能する部分を通過するようになる。その結果、液晶表示パネル12の透過率を向上させることができる。 In such a display device 10, when the parallax barrier 48 is realized in the switch liquid crystal panel 16, light passing through a portion functioning as the light shielding portion 44 in the liquid crystal layer 32 among the light from the backlight 18. By repeating the reflection between the reflection / transmission film 14 and the backlight 18, the liquid crystal layer 32 passes through a portion functioning as the transmission portion 46. As a result, the transmittance of the liquid crystal display panel 12 can be improved.
 図8は、液晶表示パネル12の透過率がどれだけ改善されたかを示す実験データである。図8において、実施例は、本実施形態の表示装置10の実験データである。比較例は、本実施形態の表示装置10に比して、反射透過フィルム14を備えていない構成を有する表示装置の実験データである。この実験は、視差バリア48をスイッチ液晶パネル16に表示し、且つ、合成画像を液晶表示パネル12に表示するときに、右眼用画像及び左眼用画像をそれぞれ白色表示し、液晶表示パネル12の透過率を、液晶表示パネル12の面方向に角度を変えて測定したものである。角度は、液晶表示パネル12を真正面から見た場合を基準にし、そこから左右に傾けた角度である。 FIG. 8 is experimental data showing how much the transmittance of the liquid crystal display panel 12 is improved. In FIG. 8, an example is experimental data of the display device 10 of the present embodiment. The comparative example is experimental data of a display device having a configuration that does not include the reflective / transmissive film 14 as compared with the display device 10 of the present embodiment. In this experiment, when the parallax barrier 48 is displayed on the switch liquid crystal panel 16 and the composite image is displayed on the liquid crystal display panel 12, the right-eye image and the left-eye image are displayed in white, and the liquid crystal display panel 12 The transmittance is measured by changing the angle in the surface direction of the liquid crystal display panel 12. The angle is an angle tilted to the left and right with reference to the case where the liquid crystal display panel 12 is viewed from the front.
 図8に示すように、観察者が左眼用画像を左眼で見るのに最適な位置における液晶表示パネル12の透過率は、実施例では、1.99%であった。一方、比較例では、1.85%であった。これらの結果から、液晶表示パネル12の透過率が約8%向上していることが確認できた。 As shown in FIG. 8, the transmittance of the liquid crystal display panel 12 at the optimal position for the observer to see the left-eye image with the left eye was 1.99% in the example. On the other hand, in the comparative example, it was 1.85%. From these results, it was confirmed that the transmittance of the liquid crystal display panel 12 was improved by about 8%.
 また、観察者が右眼用画像を右眼で見るのに最適な位置における液晶表示パネル12の透過率は、実施例では、1.98%であった。一方、比較例では、1.84%であった。これらの結果から、液晶表示パネル12の透過率が約8%向上しているのが確認できた。 Further, in the example, the transmittance of the liquid crystal display panel 12 at the optimum position for the observer to view the right-eye image with the right eye was 1.98%. On the other hand, in the comparative example, it was 1.84%. From these results, it was confirmed that the transmittance of the liquid crystal display panel 12 was improved by about 8%.
 反射透過フィルム14の透過軸X3と配向膜40bの配向軸X5とが平行であるから、より多くの光がスイッチ液晶パネル16を通過しやすくなる。その結果、液晶表示パネル12の透過率が更に向上する。 Since the transmission axis X3 of the reflective / transmissive film 14 and the alignment axis X5 of the alignment film 40b are parallel, more light can easily pass through the switch liquid crystal panel 16. As a result, the transmittance of the liquid crystal display panel 12 is further improved.
 複数の駆動電極34の長さ方向一端同士が連結電極36によって連結されているので、複数の駆動電極34に一斉に電圧を印加する際に必要な配線の数を少なくすることができる。 Since one end in the length direction of the plurality of drive electrodes 34 is connected by the connection electrode 36, the number of wirings required when applying a voltage to the plurality of drive electrodes 34 all at once can be reduced.
 対向電極38が、視差バリア48が実現される領域の全体に亘って形成されているので、対向電極38を容易に形成することができる。 Since the counter electrode 38 is formed over the entire region where the parallax barrier 48 is realized, the counter electrode 38 can be easily formed.
 [第2の実施形態]
 続いて、本発明の第2の実施形態について、説明する。なお、以下の説明において、第一の実施形態と同様な構造とされた部材及び部位については、図中に、第1の実施形態と同一の符号を付すことにより、それらの詳細な説明を省略する。
[Second Embodiment]
Subsequently, a second embodiment of the present invention will be described. In the following description, members and parts having the same structure as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed descriptions thereof are omitted. To do.
 本実施形態の表示装置は、第1の実施形態の表示装置10に比して、配向膜40a,40bの配向軸X4,X5が異なる。図9に示すように、本実施形態では、配向膜40aの配向軸X4が反射透過フィルム14の透過軸X3と平行であり、配向膜40bの配向軸X5が反射透過フィルム14の透過軸X3と直交している。配向膜40aの配向軸X4と配向膜40bの配向軸X5とが直交しているので、偏光板42を通過した光が、液晶層32において透過部46として機能する部分を通過する場合、当該光は、液晶層32において透過部46として機能する部分を通過するときに、その偏光方向が90度回転する。一方、偏光板42を通過した光が、液晶層32において遮光部44として機能する部分を通過する場合、当該光は、液晶層32において遮光部44として機能する部分をそのまま通過する。従って、本実施形態の表示装置においても、第1の実施形態の表示装置10と同様な効果を得ることができる。 The display device of this embodiment differs from the display device 10 of the first embodiment in the alignment axes X4 and X5 of the alignment films 40a and 40b. As shown in FIG. 9, in this embodiment, the alignment axis X4 of the alignment film 40a is parallel to the transmission axis X3 of the reflective / transmissive film 14, and the alignment axis X5 of the alignment film 40b is parallel to the transmission axis X3 of the reflective / transmissive film 14. Orthogonal. Since the alignment axis X4 of the alignment film 40a and the alignment axis X5 of the alignment film 40b are orthogonal to each other, when the light that has passed through the polarizing plate 42 passes through a portion that functions as the transmission part 46 in the liquid crystal layer 32, the light When the liquid crystal layer 32 passes through the portion functioning as the transmission portion 46, the polarization direction is rotated by 90 degrees. On the other hand, when the light that has passed through the polarizing plate 42 passes through a portion that functions as the light shielding portion 44 in the liquid crystal layer 32, the light passes through the portion that functions as the light shielding portion 44 in the liquid crystal layer 32 as it is. Therefore, also in the display device of the present embodiment, the same effect as that of the display device 10 of the first embodiment can be obtained.
 以上、本発明の実施形態について、詳述してきたが、これらはあくまでも例示であって、本発明は、上述の実施形態によって、何等、限定されない。 As mentioned above, although embodiment of this invention has been explained in full detail, these are illustrations to the last and this invention is not limited at all by the above-mentioned embodiment.
 例えば、本発明は、表示画面を左斜め方向から見る場合と右斜め方向から見る場合とで異なる画像が見える表示装置に対しても、勿論、適用可能である。 For example, for example, the present invention is applicable to a display device in which different images are displayed when the display screen is viewed from the left oblique direction and when viewed from the right oblique direction.
 また、前記第2の実施形態では、配向膜40bの配向軸X5と、反射透過フィルム14の透過軸X3とが直交していたが、配向軸X5と透過軸X3は必ずしも直交している必要はなく、交差していてもよい。配向軸X5と透過軸X3が交差する場合、液晶層32は、例えば、TNモードの液晶からなる。 In the second embodiment, the alignment axis X5 of the alignment film 40b and the transmission axis X3 of the reflective / transmissive film 14 are orthogonal to each other. However, the alignment axis X5 and the transmission axis X3 are not necessarily orthogonal to each other. It may be crossed. When the alignment axis X5 and the transmission axis X3 intersect, the liquid crystal layer 32 is made of, for example, a TN mode liquid crystal.

Claims (7)

  1.  一対の基板間に液晶層を備えた液晶表示パネルと、
     前記液晶表示パネルに対向して配置されるバックライトと、
     前記液晶表示パネルと前記バックライトとの間に配置され、一対の基板間に液晶層を備え、前記バックライトからの光を透過させる透過部と、前記光を遮断する遮光部とが交互に並ぶ視差バリアを実現可能なスイッチ液晶パネルと、
     前記液晶表示パネルの液晶層と前記スイッチ液晶パネルの液晶層との間に配置され、所定の透過軸を有し、前記透過軸の方向に振動する光を透過する一方、前記透過軸以外の方向に振動する光を反射する反射透過フィルムと、
     前記液晶表示パネルの液晶層と前記スイッチ液晶パネルの液晶層との間に配置される偏光板とを備え、
     前記透過軸が、前記偏光板の偏光軸に平行である、表示装置。
    A liquid crystal display panel having a liquid crystal layer between a pair of substrates;
    A backlight disposed to face the liquid crystal display panel;
    The liquid crystal layer is disposed between the liquid crystal display panel and the backlight, and includes a liquid crystal layer between a pair of substrates, and a transmission portion that transmits light from the backlight and a light shielding portion that blocks the light are alternately arranged. A switch liquid crystal panel capable of realizing a parallax barrier;
    A liquid crystal layer disposed between the liquid crystal layer of the liquid crystal display panel and the liquid crystal layer of the switch liquid crystal panel, has a predetermined transmission axis, and transmits light oscillating in the direction of the transmission axis, but in a direction other than the transmission axis A reflective transmission film that reflects light that vibrates
    A polarizing plate disposed between the liquid crystal layer of the liquid crystal display panel and the liquid crystal layer of the switch liquid crystal panel,
    The display device, wherein the transmission axis is parallel to the polarization axis of the polarizing plate.
  2.  前記スイッチ液晶パネルは、
     一対の基板と、
     前記一対の基板間に封入される液晶層と、
     前記一対の基板のそれぞれにおいて、前記液晶層側に設けられる配向膜とを備え、
     前記一対の基板のうち、前記反射透過フィルム側に位置する側に設けられた前記配向膜の配向軸が、前記透過軸に平行である、請求項1に記載の表示装置。
    The switch liquid crystal panel is
    A pair of substrates;
    A liquid crystal layer sealed between the pair of substrates;
    In each of the pair of substrates, an alignment film provided on the liquid crystal layer side,
    2. The display device according to claim 1, wherein an alignment axis of the alignment film provided on a side of the pair of substrates positioned on the reflection / transmission film side is parallel to the transmission axis.
  3.  前記スイッチ液晶パネルは、
     一対の基板と、
     前記一対の基板間に封入される液晶層と、
     前記一対の基板のそれぞれにおいて、前記液晶層側に設けられる配向膜とを備え、
     前記一対の基板のうち、前記反射透過フィルム側に位置する側に設けられた前記配向膜の配向軸が、前記透過軸に交差する、請求項1に記載の表示装置。
    The switch liquid crystal panel is
    A pair of substrates;
    A liquid crystal layer sealed between the pair of substrates;
    In each of the pair of substrates, an alignment film provided on the liquid crystal layer side,
    The display device according to claim 1, wherein an alignment axis of the alignment film provided on a side of the pair of substrates positioned on the reflective / transmissive film side intersects the transmission axis.
  4.  前記配向軸が前記透過軸に直交する、請求項3に記載の表示装置。 4. The display device according to claim 3, wherein the orientation axis is orthogonal to the transmission axis.
  5.  前記反射透過フィルムが前記偏光板と前記スイッチ液晶パネルとの間に配置される、請求項1~4の何れか1項に記載の表示装置。 The display device according to any one of claims 1 to 4, wherein the reflection / transmission film is disposed between the polarizing plate and the switch liquid crystal panel.
  6.  前記偏光板と前記反射透過フィルムとが一体形成されている、請求項1~5の何れか1項に記載の表示装置。 The display device according to any one of claims 1 to 5, wherein the polarizing plate and the reflective / transmissive film are integrally formed.
  7.  前記スイッチ液晶パネルは、前記偏光板と、前記反射透過フィルムとを含み、
     前記スイッチ液晶パネルは、
     前記一対の基板の一方に形成された共通電極と、
     前記一対の基板の他方に複数形成され、電圧が印加されたときに前記共通電極とともに前記遮光部を実現する駆動電極とをさらに備え、
     前記反射透過フィルムは、前記一対の基板のうち、前記液晶表示パネル側の基板と、前記偏光板との間に配置される、請求項1に記載の表示装置。
    The switch liquid crystal panel includes the polarizing plate and the reflective / transmissive film,
    The switch liquid crystal panel is
    A common electrode formed on one of the pair of substrates;
    A plurality of driving electrodes that are formed on the other of the pair of substrates and that realize the light-shielding portion together with the common electrode when a voltage is applied;
    2. The display device according to claim 1, wherein the reflection / transmission film is disposed between the liquid crystal display panel side substrate and the polarizing plate of the pair of substrates.
PCT/JP2012/061590 2011-05-09 2012-05-02 Display device WO2012153689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011104567A JP2014139593A (en) 2011-05-09 2011-05-09 Display device
JP2011-104567 2011-05-09

Publications (1)

Publication Number Publication Date
WO2012153689A1 true WO2012153689A1 (en) 2012-11-15

Family

ID=47139169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061590 WO2012153689A1 (en) 2011-05-09 2012-05-02 Display device

Country Status (2)

Country Link
JP (1) JP2014139593A (en)
WO (1) WO2012153689A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142572A (en) * 1996-09-27 1998-05-29 Sharp Corp Spatial light modulator, directional display, and directional source of light
JP2002090533A (en) * 2000-09-14 2002-03-27 Nitto Denko Corp Luminance improving film, polarizing plate and liquid crystal display device using the same
JP2004512564A (en) * 2000-10-24 2004-04-22 ディメンション テクノロジーズ インコーポレイテッド Autostereoscopic display
JP2009522602A (en) * 2005-12-30 2009-06-11 スリーエム イノベイティブ プロパティズ カンパニー Strongly reflective polarizing film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142572A (en) * 1996-09-27 1998-05-29 Sharp Corp Spatial light modulator, directional display, and directional source of light
JP2002090533A (en) * 2000-09-14 2002-03-27 Nitto Denko Corp Luminance improving film, polarizing plate and liquid crystal display device using the same
JP2004512564A (en) * 2000-10-24 2004-04-22 ディメンション テクノロジーズ インコーポレイテッド Autostereoscopic display
JP2009522602A (en) * 2005-12-30 2009-06-11 スリーエム イノベイティブ プロパティズ カンパニー Strongly reflective polarizing film

Also Published As

Publication number Publication date
JP2014139593A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5596625B2 (en) Display device
WO2013099793A1 (en) Stereoscopic display device
TWI474080B (en) Liquid crystal display device
JP5462131B2 (en) Liquid crystal display
US8970797B2 (en) Liquid crystal display adopting structure of liquid crystal lens
KR20130048070A (en) Display apparatus
JP2012226161A (en) Display device
KR20120014870A (en) Display apparatus and light barrier device
WO2013099794A1 (en) Stereoscopic display device
WO2014162798A1 (en) Display panel and display apparatus
US10481465B2 (en) Illumination device and display device
US7471346B2 (en) Transflective liquid crystal display panel, 2D/3D switching type liquid crystal display panel, and 2D/3D switching type liquid crystal display
WO2012014827A1 (en) Switch liquid crystal panel and display device
US9259906B2 (en) Optical laminated body, method of manufacturing the same, and display unit
JP5114853B2 (en) Display device
WO2013065580A1 (en) Display device
CN109212817B (en) Wide viewing angle display device
KR101948827B1 (en) Transparent Liquid Crystal Display Device
WO2012153689A1 (en) Display device
JP5669945B2 (en) 3D display device
KR20120086275A (en) A stereoscopic image display device
JP2006209021A (en) Display device and viewing angle control element
JP5177861B2 (en) Liquid crystal display
KR20150072175A (en) Image display device
TW201339701A (en) 3D display devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP