WO2012153478A1 - Image display device, image display method, and integrated circuit - Google Patents

Image display device, image display method, and integrated circuit Download PDF

Info

Publication number
WO2012153478A1
WO2012153478A1 PCT/JP2012/002868 JP2012002868W WO2012153478A1 WO 2012153478 A1 WO2012153478 A1 WO 2012153478A1 JP 2012002868 W JP2012002868 W JP 2012002868W WO 2012153478 A1 WO2012153478 A1 WO 2012153478A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
light
unit
pixel
display device
Prior art date
Application number
PCT/JP2012/002868
Other languages
French (fr)
Japanese (ja)
Inventor
林 克彦
式井 愼一
圭司 杉山
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2012800019030A priority Critical patent/CN102971661A/en
Priority to JP2012532179A priority patent/JPWO2012153478A1/en
Priority to US13/808,917 priority patent/US20130113767A1/en
Publication of WO2012153478A1 publication Critical patent/WO2012153478A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display

Definitions

  • the present invention relates to an image display device for displaying an image such as a liquid crystal display and a display projection device such as a projector.
  • Patent Document 1 discloses the following technology relating to an automotive headlamp. Specifically, Patent Document 1 uses a liquid crystal prism in which two transparent substrates having a transparent electrode and a light distribution film face each other in a non-parallel manner and is filled with liquid crystal therebetween, and uses the change in refractive index. The content of scanning light is disclosed.
  • Patent Document 2 discloses a directional lighting device for an autostereoscopic display. Specifically, Patent Document 2 discloses an apparatus that has a surface emitting illumination unit and an imaging unit and deflects and collects light using an array of droplet driving cells in accordance with the position of an observer. Has been.
  • the droplet driving cell is one that controls the surface tension of a liquid by using an electrostatic potential and controls the refractive power of light.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an image display device with improved contrast.
  • An image display device includes a light source and a plurality of pixels, and includes an image display unit that controls a transmission amount of light output from the light source for each pixel, and a plurality of regions. , According to the pixel value of the pixel corresponding to the region, the deflecting unit that deflects light from the light source toward the image display unit for each region, and the light that passes through each of the plurality of regions of the deflecting unit, A light control unit that controls which of the first and second points is different from each other.
  • an image display device with high contrast can be obtained.
  • FIG. 1 is a perspective view illustrating an appearance of the image display apparatus according to Embodiment 1.
  • FIG. 2 is a functional block diagram of the image display apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating the configuration of the light source, the deflection unit, and the image display unit.
  • FIG. 4 is a diagram illustrating a specific configuration of the deflecting unit.
  • FIG. 5A is a diagram illustrating an example of dividing the deflection unit into a plurality of regions.
  • FIG. 5B is a diagram illustrating another example in which the deflection unit is divided into a plurality of regions.
  • FIG. 6 is a flowchart of the image display method according to the first embodiment.
  • FIG. 7 is a diagram illustrating a light collection position of light transmitted through each region of the deflection unit when the pixel group B of the image display unit is in black display (brightness is less than a predetermined threshold).
  • FIG. 8 is a diagram illustrating a condensing position of light output from the image display device according to the second embodiment.
  • FIG. 9 is a diagram illustrating a condensing position of light transmitted through each region of the deflection unit when the pixel group D in the image display unit is black display (brightness is less than a predetermined threshold).
  • FIG. 10 is a perspective view of one region constituting the first and second deflecting units.
  • FIG. 11 is a diagram illustrating an example in which the area of the deflection unit is divided into small areas corresponding to sub-pixels.
  • control according to the characteristics of the image displayed on the display device, such as a method for controlling deflection of light and a method for controlling illumination of an image. Further, there is no description regarding the illuminance distribution state in the actually illuminated illumination area, the state of the sharpness of the image in which the displayed image is actually formed on the retina, or the image quality.
  • an image display device includes a light source and a plurality of pixels, and controls an amount of light transmitted from the light source for each pixel.
  • a display unit and a plurality of regions, a deflection unit configured to deflect light from the light source toward the image display unit for each region, and light transmitted through each of the plurality of regions of the deflection unit to the region.
  • a light control unit that controls which of the first and second points is different from each other according to the pixel value of the corresponding pixel.
  • an image display device with high contrast can be obtained by controlling the direction of light transmitted through each region of the deflection unit in accordance with the pixel value of each pixel of the image display unit.
  • the light control unit deflects light transmitted through the region corresponding to a pixel whose brightness is equal to or higher than a predetermined threshold toward the first point, and the brightness corresponds to a pixel whose brightness is lower than the threshold.
  • Light passing through the region may be deflected toward the second point.
  • the light transmitted through the region corresponding to the pixel displaying black or a color close to black is deflected toward the second point, and the light transmitted through the region corresponding to the pixel displaying the other color is first. It only has to pass through the point.
  • the image display device may further include a detection unit that detects the position of the viewer's eyes.
  • the light control unit may set the position of the viewer's eye detected by the detection unit as the first point, and the position deviated from the viewer's eye as the second point.
  • the image display device may alternately display a right eye image and a left eye image having parallax with each other.
  • the said light control part makes the position of the viewer's right eye detected by the said detection part the said 1st point at the timing when the image for right eyes is displayed, and the timing when the image for left eyes is displayed
  • the position of the left eye of the viewer detected by the detection unit may be set as the first point.
  • the deflecting unit includes a first deflecting unit that deflects light output from the light source in a first direction, and a second that intersects the light transmitted through the first deflecting unit with the first direction. And a second deflecting unit that deflects in the direction.
  • the area may be composed of n small areas provided corresponding to n (n is a natural number of 2 or more) sub-pixels constituting the pixel.
  • the light control unit may individually control the deflection angle of the n small regions so that the light transmitted through each of the n sub-pixels is deflected toward the first point. Good.
  • the image display unit may be a liquid crystal panel.
  • the deflection unit may control the deflection direction by changing the light distribution of the liquid crystal.
  • the image display device may include a plurality of the light sources.
  • the said image display part may be comprised with the said pixel 10 times or more of the number of the said light sources.
  • An image display method includes a light source and a plurality of pixels, and includes an image display unit that controls a transmission amount of light output from the light source for each pixel, and a plurality of regions.
  • light transmitted through each of the plurality of regions of the deflecting unit is deflected toward different first and second points according to the pixel value of a pixel corresponding to the region.
  • An integrated circuit includes a light source and a plurality of pixels, and includes an image display unit that controls a transmission amount of light output from the light source for each pixel, and a plurality of regions.
  • An image is displayed on an image display device including a deflection unit that deflects light directed from the light source toward the image display unit for each region.
  • the light transmitted through each of the plurality of regions of the deflecting unit is deflected toward different first and second points according to the pixel value of the pixel corresponding to the region.
  • the light control part which controls is provided.
  • FIG. 1 is a perspective view showing an external appearance of an image display device 10 according to Embodiment 1 of the present invention.
  • FIG. 2 is a functional block diagram of the image display apparatus 10 according to the first embodiment.
  • the image display apparatus 10 is a television receiver.
  • the present invention is not limited to this, and can be applied to all image display devices such as a portable terminal and a personal computer.
  • the image display device 10 according to the first embodiment includes a light source 11, a deflection unit 12, an image display unit 13, an image acquisition unit 14, a detection unit 15, and light control.
  • the unit 16 is mainly provided.
  • the light source 11 outputs light and functions as a backlight of the image display device 10. That is, the light output from the light source 11 is output to the outside of the image display device 10 by passing through the deflection unit 12 and the image display unit 13.
  • a laser light source may be sufficient and a LED (Light Emitting Diode) light source may be sufficient.
  • the deflection unit 12 deflects the light output from the light source 11 in a predetermined direction and outputs the deflected light to the image display unit 13. More specifically, the deflecting unit 12 includes a plurality of regions, and individually deflects light from the light source 11 toward the image display unit 13 for each region. A specific configuration of the deflection unit 12 will be described later with reference to FIGS. 4, 5A, and 5B.
  • the image display unit 13 includes a plurality of pixels arranged in a matrix and displays the image acquired by the image acquisition unit 14. Although the specific configuration of the image display unit 13 is not particularly limited, the image display unit 13 displays an image by controlling the amount of light transmitted through the backlight (light source 11), and typically corresponds to a liquid crystal panel.
  • the image acquisition unit 14 acquires image data (including video data; the same applies hereinafter) displayed by the image display device 10.
  • the acquisition destination of the image data is not particularly limited, the image acquisition unit 14 may acquire the image data from, for example, a broadcast wave, may acquire from a content server on the Internet through a communication network, or the HDD. (Hard disk drive), DVD (digital versatile disc), BD (Blu-ray Disc), or other storage media.
  • HDD Hard disk drive
  • DVD digital versatile disc
  • BD Blu-ray Disc
  • the detecting unit 15 detects the position of the eye of the viewer who views the image on the image display device 10. Then, the detection unit 15 notifies the deflection control unit 162 of the detected eye position.
  • the specific structure of the detection part 15 is not specifically limited, For example, as FIG. 1 shows, the camera which image
  • the image display device 10 does not necessarily include a camera. That is, the detection unit 15 may provide an interface connected to an external camera, and may detect the position of the viewer's eyes by analyzing image data acquired from the camera through this interface.
  • the light control unit 16 controls the deflection unit 12. More specifically, as illustrated in FIG. 2, the light control unit 16 includes a pixel determination unit 161 and a deflection control unit 162, and transmits light that passes through each of the plurality of regions of the deflection unit 12. In accordance with the pixel value of the pixel of the image display unit 13 corresponding to the above, it is controlled which of the first and second points is different from each other.
  • the pixel discriminating unit 161 acquires image data of an image to be displayed on the image display unit 13 and discriminates the pixel value of each pixel of the image display unit 13. More specifically, the pixel determination unit 161 determines whether the brightness of each pixel is equal to or higher than a predetermined threshold value or less than the predetermined threshold value. That is, the pixel determining unit 161 determines whether each pixel displays black or a color close to black, or displays other colors.
  • a predetermined threshold is not specifically limited, For example, when the pixel value of each pixel is expressed by RGB, let the total of RGB be a predetermined threshold (for example, preferably 20, more preferably 5, etc.) Also good. Alternatively, when the pixel value of each pixel is expressed by the luminance (Y) and the color difference (Cb, Cr), the luminance (Y) may be set to a predetermined threshold (for example, 10, preferably 5, more preferably 3, etc.) Good.
  • the deflection control unit 162 acquires the determination result of the pixel value of each pixel from the pixel determination unit 161, and acquires the position of the viewer's eyes from the detection unit 15. Then, the deflection control unit 162 deflects the light transmitted through the region of the deflecting unit 12 corresponding to the pixel whose brightness is equal to or greater than the predetermined threshold toward the first point, and corresponds to the pixel whose brightness is less than the threshold.
  • the deflecting unit 12 is individually controlled for each region so that light transmitted through the region of the deflecting unit 12 is deflected toward the second point.
  • the first point is the position of the viewer's eyes
  • the second point is the position away from the viewer's eyes. That is, the deflection control unit 162 condenses light that passes through pixels close to black at a position off the viewer's eyes, and condenses light that passes through pixels of other colors at the viewer's eyes. Thus, the deflection unit 12 is controlled.
  • FIG. 3 is a diagram showing the configuration of the light source 11, the deflection unit 12, and the image display unit 13.
  • the light source 11 includes, for example, R, G, and B color solid-state lasers 111 and a light guide plate 112.
  • the three color light beams L emitted from the solid-state laser 111 spread uniformly throughout the light guide plate 112 while repeating total reflection in the light guide plate 112.
  • the structures 113 are regularly arranged on the bottom surface of the light guide plate 112, and the light beam L reflected by the structures 113 breaks the total reflection condition and is emitted upward from the light guide plate 112.
  • the light beam L emitted from the light guide plate 112 is incident on the deflecting unit 12 disposed on the light guide plate 112.
  • FIG. 4 is a diagram showing a specific configuration of the deflecting unit 12.
  • the deflecting unit 12 can control the light deflection direction by changing the light distribution of the liquid crystal. For example, as shown in FIG. 4, the deflecting unit 12 sandwiches the liquid crystal deflecting element 121 and the liquid crystal deflecting element 121. A pair of transparent substrates 124 and 125 arranged in this manner, and a pair of transparent electrodes 126 and 127 arranged further outside the pair of transparent substrates 124 and 125.
  • the liquid crystal deflecting element 121 includes a liquid crystal 122 having a triangular cross-sectional shape and a dielectric 123 having a shape complementary to the shape of the liquid crystal 122. Then, by arranging the liquid crystal 122 and the dielectric 123 having a triangular cross-sectional shape so that their inclined surfaces are in contact with each other, the liquid crystal deflecting element 121 is configured to have a rectangular cross-section as a whole.
  • the pair of transparent base materials 124 and 125 are disposed on one side (the light source 11 side) and the other side (the image display unit 13 side) of the liquid crystal deflection element 121.
  • the transparent electrode 126 is disposed on the surface of the transparent substrate 124 opposite to the liquid crystal deflecting element 121.
  • the transparent electrode 127 is disposed on the surface of the transparent base 125 opposite to the liquid crystal deflecting element 121.
  • the transparent substrate 124 holds the liquid crystal deflecting element 121 on one surface (lower side in FIG. 4) and the transparent electrode 126 on the other side (upper side in FIG. 4).
  • the transparent substrate 125 holds the liquid crystal deflecting element 121 on one side (upper side in FIG. 4) and holds the transparent electrode 127 on the other side (lower side in FIG. 4).
  • the dielectric 123 can be made of, for example, a polymer resin such as plastic, or glass.
  • the dielectric 123 is made of a material having a refractive index substantially equal to the refractive index of the liquid crystal 122 in a certain alignment state (for example, the alignment state of the liquid crystal 122 when no voltage is applied to the pair of transparent electrodes 126 and 127).
  • the light incident on the liquid crystal deflecting element 121 travels straight.
  • a predetermined voltage is applied between the pair of transparent electrodes 126 and 127, the refractive index of the liquid crystal 122 is modulated, and the light incident on the liquid crystal deflecting element 121 is deflected in a predetermined direction.
  • the light deflection angle can be modulated.
  • the deflection unit 12 is divided into a plurality of regions.
  • the pair of transparent electrodes 126 and 127 can apply different voltages to the respective regions. That is, the light transmitted through each region can be deflected in different directions. 2 applies a predetermined voltage to the pair of transparent electrodes 126 and 127 in each region so that light transmitted through each region of the deflection unit 12 is deflected in a desired direction.
  • FIGS. 5A and 5B are diagrams illustrating an example in which the deflection unit 12 is divided into a plurality of regions.
  • the deflecting unit 12 may be divided into strip-like (striped) regions 12a, 12b, 12c,.
  • deviation part 12 may be divided
  • a cross section taken along line IV-IV in FIGS. 5A and 5B corresponds to FIG.
  • the way of dividing the deflection unit 12 is not limited to these.
  • a condenser lens 17 is disposed on the deflection unit 12.
  • the condenser lens 17 amplifies the deflection angle of the light transmitted through the deflecting unit 12.
  • an image display unit 13 is disposed above the condenser lens 17.
  • the image display unit 13 includes a plurality of pixels arranged in a matrix, and includes an electrode that determines the brightness of each pixel according to a desired input image signal, a driving device (driver), and the like (not shown). .
  • the light transmitted through the image display unit 13 is collected at a condensing point P in FIG.
  • the number of regions of the deflection unit 12 and the number of pixels of the image display unit 13 are in a one-to-one or one-to-many relationship. That is, the pixels of the image display unit 13 are equal to or more finely divided than the region of the deflection unit 12. As a result, the light transmitted through one region of the deflecting unit 12 enters one or more pixels of the image display unit 13. Therefore, one or more pixels on which light transmitted through one region is incident are referred to as pixels corresponding to the region.
  • the light transmitted through the deflecting unit 12, the condensing lens 17, and the image display unit 13 can be condensed at an arbitrary condensing point P.
  • the arbitrary condensing point P corresponds to, for example, the position of the eye of the viewer who views the image on the image display device 10.
  • the deflection control unit 162 of the light control unit 16 determines the first point and the second point (S11). Specifically, the deflection control unit 162 sets the position of the viewer's eyes detected by the detection unit 15 as a first point, and sets the position away from the viewer's eyes as a second point. That is, in the example of FIG. 7, the condensing point P becomes the first point, and the condensing point Q becomes the second point.
  • the light control unit 16 executes the processing of step S12 to step S17 in FIG.
  • the pixel determination unit 161 acquires image data from the image acquisition unit 14, and determines the pixel value (brightness) of each pixel corresponding to the region to be processed (S13).
  • the deflection control unit 162 causes the light transmitted through the region to be focused on the condensing point P (first point). ), A predetermined voltage is applied to the pair of transparent electrodes 126 and 127 in the region (S15). On the other hand, when the brightness of all the pixels corresponding to the area is less than the threshold value (No in S14), the deflection control unit 162 collects the light transmitted through the area at the condensing point Q (second point). A predetermined voltage is applied to the pair of transparent electrodes 126 and 127 in the region so as to emit light (S16).
  • FIG. 7 is a diagram showing a condensing position of light transmitted through each region of the deflection unit 12 when the pixel group B of the image display unit 13 is black (brightness is less than a predetermined threshold).
  • the pixel group B displays black
  • the light transmitted through the region A of the deflecting unit 12 corresponding to the pixel group B is deflected so as to be condensed at the condensing point Q, not at the condensing point P.
  • the light transmitted through the region other than the region A is deflected so as to be condensed at the condensing point P.
  • the condensing point Q is not a certain limited position, and may be a position different from the condensing point P where other light is condensed. That is, there may be a plurality of condensing points Q.
  • the light control unit 16 transmits the region A in order to prevent even a minute amount of light transmitted through the pixel group B that is black display from being collected on the viewer's eyes.
  • Light is deflected to a condensing point Q different from the condensing point P. For this reason, the light transmitted through the pixel group B does not reach the viewer's eyes.
  • the dynamic range of the contrast of the image can be expanded, and a good image quality can be obtained.
  • the solid-state laser 111 is employed as the light source 11, the first embodiment is not limited thereto.
  • an LED light source may be used, and R, G, and B may not be separate light sources. That is, the light source may be a single pseudo white light source.
  • the solid-state laser 111 included in the light source 11 may be one or plural.
  • the remarkable effect of the image display method according to the first embodiment is that the number of pixels of the image display unit 13 is extremely larger than the number of light sources (solid laser 111 in the example of FIG. 3).
  • the number of pixels is 10 times or more the number of light sources.
  • the viewer's eyes may be either left or right.
  • light is focused on one eye, but the present invention is not limited to this.
  • a focusing range a part of the light only needs to reach the pupil of the eye. That is, the light may be condensed on a predetermined area including the position of the user's eyes.
  • the range of light collection may include not only one eye but also both eyes.
  • the deflecting unit 12 may be controlled in a time-sharing manner so that the light is focused on the left eye (right eye) for a certain time and the other right eye (left eye) for the next time.
  • the example in which the light transmitted through the area is deflected to the second point has been described. It is not limited to this. For example, if the brightness of pixels of a predetermined ratio (a majority, 80%, etc.) of a plurality of pixels corresponding to one area is less than a threshold value, light transmitted through the area is deflected to the second point. Also good. Alternatively, an average value of pixel values of a plurality of pixels corresponding to one region (or a pixel value of the brightest pixel) may be compared with a threshold value.
  • Embodiment 2 Next, an image display apparatus according to Embodiment 2 will be described with reference to FIGS. A detailed description of points common to the first embodiment will be omitted, and differences will be mainly described.
  • the basic configuration of the image display apparatus according to Embodiments 1 and 2 is the same as that shown in FIGS.
  • FIG. 8 is a diagram showing a condensing position of light output from the image display apparatus according to Embodiment 2 of the present invention.
  • the image display device 10 according to the second embodiment displays the right-eye image and the left-eye image constituting the stereoscopic image alternately, and condenses the light of the right-eye image at the position of the viewer's right eye. Then, the light of the left-eye image is condensed at the position of the viewer's left eye.
  • the image display unit 13 When performing stereoscopic image display, the image display unit 13 alternately displays the right-eye image and the left-eye image sequentially.
  • the right eye image is an image of an object viewed with the right eye.
  • the left-eye image is an image of an object viewed with the left eye. That is, the right-eye image and the left-eye image have different parallax because they are viewed at different angles.
  • Such right-eye image and left-eye image are displayed sequentially, and the right-eye image is focused only on the viewer's right eye, and the left-eye image is focused only on the viewer's left eye. The viewer can feel a three-dimensional feeling.
  • the stereoscopic image data may be images taken from two different points as described above, or may be generated by computer graphics.
  • the image acquisition unit 14 may acquire image data including a right-eye image and a left-eye image, or obtain a three-dimensional image (right-eye image and left-eye image) from the acquired two-dimensional image. It may be generated.
  • the light control unit 16 also deflects the light output from the image display device 10 at the right eye position of the viewer at the timing when the image for the right eye is displayed on the image display unit 13.
  • the voltage of each of the 12 regions and the refractive index of the liquid crystal layer are controlled.
  • the positions of the right eye and the left eye of the viewer can be specified from an image captured by a camera arranged in the image display device 10.
  • the light control unit 16 is configured so that the light output from the image display device 10 is focused on the viewer's left eye at the timing when the image for the left eye is displayed on the image display unit 13. The voltage of each region and the refractive index of the liquid crystal layer are controlled. As described above, the light control unit 16 controls the deflection unit 12 in synchronization with switching of images displayed on the image display unit 13.
  • FIG. 9 is a diagram illustrating a condensing position of light transmitted through each region of the deflecting unit 12 when the pixel group D in the image display unit 13 displays black (brightness is less than a predetermined threshold).
  • the light control unit 16 does not use the condensing points P 1 and P 2 where the light transmitted through the region C of the deflection unit 12 corresponding to the pixel group D is the positions of the left and right eyes,
  • the deflecting unit 12 is controlled so as to collect light at the condensing points Q 1 and Q 2 .
  • the condensing points Q 1 and Q 2 are not limited positions, and may be positions different from the condensing points P 1 and P 2 where other light is condensed.
  • the light control unit 16 condenses the light transmitted through the black pixel group D at the condensing point Q 1 at the timing when the image for the right eye is displayed on the image display unit 13. light transmitted through the pixels such that collected at the focal point P 1, for controlling the deflection unit 12. Further, the light control unit 16, at the timing when the left eye image is displayed on the image display unit 13, light transmitted through the pixel group D of the black is collected at the focal point Q 2, passes through the other pixels light is to be focused at the focal point P 2, controlling the deflection unit 12.
  • the image display unit 13 may be spatially divided to display the right eye image and the left eye image simultaneously. Specifically, the image display unit 13 displays the right eye image on some of the plurality of pixels and displays the left eye image on the remaining pixels. Then, the light control section 16 condenses the light transmitted through the pixels to display the right-eye image at the focal point P 1, the light transmitted through the pixels to display the image for the left eye at the focal point P 2 You may control the deflection
  • the example in which the light transmitted through the deflecting unit 12 is deflected only in the horizontal direction is shown, but the present invention is not limited to this, and the horizontal direction, the vertical direction, and a combination thereof are combined.
  • the light may be deflected in any direction.
  • the light can be deflected in an arbitrary direction by configuring the deflecting unit 12 by combining the first and second deflecting units 22 a and 22 b.
  • FIG. 10 is a perspective view of one region constituting the first and second deflecting portions 22a and 22b.
  • the deflecting unit 12 shown in FIG. 10 is configured by stacking first and second deflecting units 22a and 22b vertically.
  • the basic configuration of the first and second deflecting units 22a and 22b is the same as that of the deflecting unit 12 shown in FIG.
  • the shaded surface in the first deflection unit 22a indicates a surface where the liquid crystal 222a and the dielectric 223a are in contact with each other. This surface is inclined in the direction of arrow a (first direction) in FIG.
  • the shaded surface in the second deflecting unit 22b is a surface where the liquid crystal 222b and the dielectric 223b are in contact with each other. This surface is inclined in the direction of arrow b (second direction) in FIG.
  • the first and second directions are directions that intersect (orthogonal) each other.
  • the lower first deflection unit 22a deflects the light output from the light source 11 (not shown in FIG. 10) in the first direction. Further, the second deflection unit 22b in the upper stage deflects the light transmitted through the first deflection unit 22a in the second direction and outputs it to the image display unit 13 (not shown in FIG. 10). That is, the light control unit 16 can deflect light transmitted through the deflection unit 12 in an arbitrary direction by applying a predetermined voltage to each of the first and second deflection units 22a and 22b.
  • FIG. 11 is a diagram illustrating an example in which the area of the deflecting unit 12 is divided into a plurality of small areas corresponding to sub-pixels.
  • the pixels constituting the image display unit 13 are composed of n (n is a natural number of 2 or more) sub-pixels.
  • the pixel shown in FIG. 11 is composed of three sub-pixels of red (R), green (G), and blue (B). This sub-pixel can be realized by using a color filter of each color.
  • the area of the deflection unit 12 includes a small area 31 corresponding to the red sub-pixel, a small area 32 corresponding to the green sub-pixel, and a small area 33 corresponding to the blue sub-pixel.
  • the deflecting unit 12 for example, the deflecting unit shown in FIG. 4
  • the deflecting unit 12 that is not divided into small regions
  • one point (collected light) of three colors is collected depending on the characteristics of each wavelength of RGB. It does not focus on the light spot P).
  • the light transmitted through the green sub-pixel reaches the condensing point P, but the light transmitted through the red sub-pixel is shifted to the left side of the condensing point P and is transmitted through the blue sub-pixel. Shifts to the right side of the condensing point P (see broken arrow).
  • the light control unit 16 collects the light of all colors at the condensing point P by absorbing such characteristics of the respective wavelengths, and the light control unit 16 has the small regions 31, 32, 33.
  • the deflection is controlled individually. That is, the light control unit 16 causes the light transmitted through the small region 31 corresponding to the red sub-pixel to be deflected further to the right than the dashed arrow, and the light transmitted through the small region 33 corresponding to the blue sub-pixel to be broken.
  • a predetermined voltage is applied to each of the small regions 31, 32, and 33 so as to be deflected further to the left than the arrow. Thereby, the light output from each sub pixel can be condensed on one point.
  • each of the above devices can be realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
  • a part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration).
  • the system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. .
  • a computer program is stored in the ROM.
  • the system LSI achieves its functions by the microprocessor loading a computer program from the ROM to the RAM and performing operations such as operations in accordance with the loaded computer program.
  • Part or all of the constituent elements constituting each of the above devices may be configured from an IC card or a single module that can be attached to and detached from each device.
  • the IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • an integrated circuit includes a light source and a plurality of pixels, and includes an image display unit that controls the transmission amount of light output from the light source for each pixel, and a plurality of regions.
  • An image is displayed on an image display device including a deflection unit that deflects light directed from the light source toward the image display unit for each region.
  • This integrated circuit controls whether the light transmitted through each of the plurality of regions of the deflection unit is deflected toward different first and second points according to the pixel value of the pixel corresponding to the region.
  • the present invention may be realized by the method described above. Further, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
  • an image display method includes a light source and a plurality of pixels, and includes an image display unit that controls a transmission amount of light output from the light source for each pixel, and a plurality of regions.
  • an image is displayed on an image display device including a deflection unit that deflects light directed from the light source toward the image display unit for each region.
  • a light control step to control.
  • the present invention also relates to a computer-readable recording medium that can read a computer program or a digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), You may implement
  • a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention is also a computer system including a microprocessor and a memory.
  • the memory stores a computer program, and the microprocessor may operate according to the computer program.
  • program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
  • the image display device of the present invention can improve the contrast and image quality of an image by effectively controlling the deflection of light, and can be widely applied to display devices.
  • the liquid crystal display device by configuring the liquid crystal display device using the present image display device, it can be used for a 3D liquid crystal display device, a privacy display, or the like with a simple configuration, which is useful.
  • Image display apparatus 11
  • Light source 12 Deflection part 12a, 12b, 12c, 12aa, 12ab, 12ba, 12bb Area
  • Image acquisition part 15 Detection part 16
  • Light control part 17 Condensing lens 22a 1st deflection part 22b 1st 2 deflection units 31, 32, 33 small area 111 solid-state laser 112 light guide plate 113 structure 121 liquid crystal deflection element 122, 222a, 222b liquid crystal 123, 223a, 223b dielectric 124, 125 transparent base material 126, 127 transparent electrode 161 pixel Discriminator 162 Deflection controller

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

An image display device (10) comprises: a light source (11); an image display unit (13) which is configured from a plurality of pixels; a deflector unit (12) which is configured from a plurality of regions, and which deflects light heading from the light source (11) toward the image display unit (13) in each region; and a light control unit (16) which controls the light which respectively passes through the plurality of regions of the deflector unit (12) to be deflected toward either of mutually differing first or second points according to pixel values of the pixels which correspond to the regions.

Description

画像表示装置、画像表示方法、及び集積回路Image display device, image display method, and integrated circuit
 本発明は、例えば液晶ディスプレイなどの画像を表示させるための画像表示装置及びプロジェクタなどの表示投影装置などに関するものである。 The present invention relates to an image display device for displaying an image such as a liquid crystal display and a display projection device such as a projector.
 光の振る舞いを能動的に制御可能な素子として、従来から液晶を利用した素子や、屈折率の異なる材料同士を隣接してその間に発生する表面張力を利用した素子(例えばエレクトウェッティング)などが知られている。 As elements that can actively control the behavior of light, there are conventionally elements that use liquid crystals, elements that use adjacent surfaces of materials with different refractive indexes and use surface tension generated between them (for example, electwetting), etc. Are known.
 特許文献1には、自動車用前照灯に関する下記のような技術が開示されている。具体的には、特許文献1には、透明電極及び配光膜を有する2枚の透明基板を非平行に対向させ、その間に液晶を充填させた液晶プリズムを利用し、その屈折率変化を利用し光を走査する内容が開示されている。 Patent Document 1 discloses the following technology relating to an automotive headlamp. Specifically, Patent Document 1 uses a liquid crystal prism in which two transparent substrates having a transparent electrode and a light distribution film face each other in a non-parallel manner and is filled with liquid crystal therebetween, and uses the change in refractive index. The content of scanning light is disclosed.
 また、特許文献2には、自動立体視ディスプレイのための指向性照明装置が開示されている。具体的には、特許文献2には、面発光照明手段及び画像化手段を有し、観測者の位置に合わせてアレイ状の液滴駆動セルを使って光を偏向させ集光させる装置が開示されている。なお、液滴駆動セルとは、静電電位を利用して液体の表面張力を制御し、光の屈折力を制御するといったものである。 Patent Document 2 discloses a directional lighting device for an autostereoscopic display. Specifically, Patent Document 2 discloses an apparatus that has a surface emitting illumination unit and an imaging unit and deflects and collects light using an array of droplet driving cells in accordance with the position of an observer. Has been. The droplet driving cell is one that controls the surface tension of a liquid by using an electrostatic potential and controls the refractive power of light.
特開昭63-119101号公報JP 63-119101 A 特表2010―529485号公報Special table 2010-5294485 gazette
 近年、画像表示装置のコントラストを向上させることが求められている。 In recent years, it has been required to improve the contrast of image display devices.
 本発明は、上記の事情に鑑みてなされたものであり、コントラストを向上させた画像表示装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an image display device with improved contrast.
 本発明の一形態に係る画像表示装置は、光源と、複数の画素によって構成され、前記光源から出力される光の透過量を前記画素毎に制御する画像表示部と、複数の領域によって構成され、前記光源から前記画像表示部に向かう光を前記領域毎に偏向する偏向部と、前記偏向部の前記複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御部とを備える。 An image display device according to an aspect of the present invention includes a light source and a plurality of pixels, and includes an image display unit that controls a transmission amount of light output from the light source for each pixel, and a plurality of regions. , According to the pixel value of the pixel corresponding to the region, the deflecting unit that deflects light from the light source toward the image display unit for each region, and the light that passes through each of the plurality of regions of the deflecting unit, A light control unit that controls which of the first and second points is different from each other.
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 These general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium, and are realized by any combination of the system, method, integrated circuit, computer program, and recording medium. May be.
 本発明によれば、コントラストの高い画像表示装置を得ることができる。 According to the present invention, an image display device with high contrast can be obtained.
図1は、実施の形態1に係る画像表示装置の外観を示す斜視図である。FIG. 1 is a perspective view illustrating an appearance of the image display apparatus according to Embodiment 1. FIG. 図2は、実施の形態1に係る画像表示装置の機能ブロック図である。FIG. 2 is a functional block diagram of the image display apparatus according to the first embodiment. 図3は、光源、偏向部、及び画像表示部の構成を示す図である。FIG. 3 is a diagram illustrating the configuration of the light source, the deflection unit, and the image display unit. 図4は、偏向部の具体的な構成を示す図である。FIG. 4 is a diagram illustrating a specific configuration of the deflecting unit. 図5Aは、偏向部を複数の領域に分割する一例を示す図である。FIG. 5A is a diagram illustrating an example of dividing the deflection unit into a plurality of regions. 図5Bは、偏向部を複数の領域に分割する他の例を示す図である。FIG. 5B is a diagram illustrating another example in which the deflection unit is divided into a plurality of regions. 図6は、実施の形態1に係る画像表示方法のフローチャートである。FIG. 6 is a flowchart of the image display method according to the first embodiment. 図7は、画像表示部の画素群Bが黒表示(明るさが所定の閾値未満)の場合において、偏向部の各領域を透過した光の集光位置を示す図である。FIG. 7 is a diagram illustrating a light collection position of light transmitted through each region of the deflection unit when the pixel group B of the image display unit is in black display (brightness is less than a predetermined threshold). 図8は、実施の形態2に係る画像表示装置が出力する光の集光位置を示す図である。FIG. 8 is a diagram illustrating a condensing position of light output from the image display device according to the second embodiment. 図9は、画像表示部内の画素群Dが黒表示(明るさが所定の閾値未満)の場合において、偏向部の各領域を透過した光の集光位置を示す図である。FIG. 9 is a diagram illustrating a condensing position of light transmitted through each region of the deflection unit when the pixel group D in the image display unit is black display (brightness is less than a predetermined threshold). 図10は、第1及び第2の偏向部を構成する1つの領域の斜視図である。FIG. 10 is a perspective view of one region constituting the first and second deflecting units. 図11は、偏向部の領域をサブ画素に対応する小領域に分割した例を示す図である。FIG. 11 is a diagram illustrating an example in which the area of the deflection unit is divided into small areas corresponding to sub-pixels.
 上記で説明した従来の技術においては、光線の偏向制御の方法や画像に対する照明制御の方法など、表示装置に表示されている画像の特性に応じた制御について記載がない。また、実際に照明された照明エリアにおける照度分布状態や、表示された画像が網膜上に実際に結像されてなる像の鮮明性における状態又は画質に関する記載がない。 In the conventional technology described above, there is no description of control according to the characteristics of the image displayed on the display device, such as a method for controlling deflection of light and a method for controlling illumination of an image. Further, there is no description regarding the illuminance distribution state in the actually illuminated illumination area, the state of the sharpness of the image in which the displayed image is actually formed on the retina, or the image quality.
 光線を制御する場合において、複数に分割された各エリアを透過する光線を、表示される画像に合わせて偏向方向や駆動方法を効果的に制御する必要がある。これらの制御が適切に実行できない場合は、画質が著しく劣化する課題がある。 In the case of controlling the light beam, it is necessary to effectively control the deflection direction and the driving method of the light beam transmitted through each of the divided areas according to the displayed image. If these controls cannot be executed properly, there is a problem that the image quality is significantly degraded.
 このような課題を解決するために、本発明の一形態に係る画像表示装置は、光源と、複数の画素によって構成され、前記光源から出力される光の透過量を前記画素毎に制御する画像表示部と、複数の領域によって構成され、前記光源から前記画像表示部に向かう光を前記領域毎に偏向する偏向部と、前記偏向部の前記複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御部とを備える。 In order to solve such a problem, an image display device according to one embodiment of the present invention includes a light source and a plurality of pixels, and controls an amount of light transmitted from the light source for each pixel. A display unit, and a plurality of regions, a deflection unit configured to deflect light from the light source toward the image display unit for each region, and light transmitted through each of the plurality of regions of the deflection unit to the region. A light control unit that controls which of the first and second points is different from each other according to the pixel value of the corresponding pixel.
 上記構成のように、画像表示部の各画素の画素値に応じて偏向部の各領域を透過する光の方向を制御することにより、コントラストの高い画像表示装置を得ることができる。 As described above, an image display device with high contrast can be obtained by controlling the direction of light transmitted through each region of the deflection unit in accordance with the pixel value of each pixel of the image display unit.
 例えば、前記光制御部は、明るさが所定の閾値以上の画素に対応する前記領域を透過する光を前記第1の点に向けて偏向させ、明るさが前記閾値未満の画素に対応する前記領域を透過する光を前記第2の点に向けて偏向させてもよい。 For example, the light control unit deflects light transmitted through the region corresponding to a pixel whose brightness is equal to or higher than a predetermined threshold toward the first point, and the brightness corresponds to a pixel whose brightness is lower than the threshold. Light passing through the region may be deflected toward the second point.
 すなわち、黒又は黒に近い色を表示する画素に対応する領域を透過する光を第2の点に向けて偏向させ、それ以外の色を表示する画素に対応する領域を透過する光を第1の点に透過すればよい。 In other words, the light transmitted through the region corresponding to the pixel displaying black or a color close to black is deflected toward the second point, and the light transmitted through the region corresponding to the pixel displaying the other color is first. It only has to pass through the point.
 さらに、該画像表示装置は、さらに、視聴者の眼の位置を検出する検出部を備えてもよい。そして、前記光制御部は、前記検出部によって検出された視聴者の眼の位置を前記第1の点とし、視聴者の眼から外れた位置を前記第2の点としてもよい。 Furthermore, the image display device may further include a detection unit that detects the position of the viewer's eyes. The light control unit may set the position of the viewer's eye detected by the detection unit as the first point, and the position deviated from the viewer's eye as the second point.
 これにより、本来視聴者の眼に入るべきでない光(例えば、黒色を表示する画素から漏れ出る光)を、視聴者の眼から外れた位置に向けて偏向するので、コントラストの高い画像表示装置を得ることができる。 This deflects light that should not originally enter the viewer's eyes (for example, light leaking from the pixels that display black) toward a position off the viewer's eyes, so that an image display device with high contrast can be obtained. Obtainable.
 また、該画像表示装置は、互いに視差を有する右眼用画像及び左眼用画像を交互に表示してもよい。そして、前記光制御部は、右眼用画像が表示されるタイミングで、前記検出部で検出された視聴者の右眼の位置を前記第1の点とし、左眼用画像が表示されるタイミングで、前記検出部で検出された視聴者の左眼の位置を前記第1の点としてもよい。 Further, the image display device may alternately display a right eye image and a left eye image having parallax with each other. And the said light control part makes the position of the viewer's right eye detected by the said detection part the said 1st point at the timing when the image for right eyes is displayed, and the timing when the image for left eyes is displayed Thus, the position of the left eye of the viewer detected by the detection unit may be set as the first point.
 これにより、アクティブシャッター眼鏡等を用いることなく、立体画像を表示することが可能となる。 This makes it possible to display a stereoscopic image without using active shutter glasses or the like.
 また、前記偏向部は、前記光源から出力される光を第1の方向に偏向する第1の偏向部と、前記第1の偏向部を透過した光を前記第1の方向と交差する第2の方向に偏向する第2の偏向部とを備えてもよい。 The deflecting unit includes a first deflecting unit that deflects light output from the light source in a first direction, and a second that intersects the light transmitted through the first deflecting unit with the first direction. And a second deflecting unit that deflects in the direction.
 これにより、偏向部の各領域を透過する光を、3次元の任意の位置に向けて偏向することが可能となる。 This makes it possible to deflect the light transmitted through each region of the deflecting unit toward an arbitrary three-dimensional position.
 また、前記領域は、前記画素を構成するn(nは2以上の自然数)個のサブ画素それぞれに対応して設けられるn個の小領域で構成されてもよい。そして、前記光制御部は、前記n個のサブ画素それぞれを透過する光が前記第1の点に向けて偏向されるように、前記n個の小領域の偏向角度を個別に制御してもよい。 Further, the area may be composed of n small areas provided corresponding to n (n is a natural number of 2 or more) sub-pixels constituting the pixel. The light control unit may individually control the deflection angle of the n small regions so that the light transmitted through each of the n sub-pixels is deflected toward the first point. Good.
 これにより、各サブ画素を透過する光の周波数の違いに起因する偏向角度のずれを吸収し、全ての色の光を第1の点に集光させることができる。その結果、さらにコントラストの高い画像表示装置を得ることができる。 Thereby, it is possible to absorb the deviation of the deflection angle caused by the difference in the frequency of the light transmitted through each sub-pixel, and to collect the light of all colors on the first point. As a result, an image display device with higher contrast can be obtained.
 例えば、前記画像表示部は、液晶パネルであってもよい。 For example, the image display unit may be a liquid crystal panel.
 例えば、前記偏向部は、液晶の配光を変化させることによって、偏向方向を制御してもよい。 For example, the deflection unit may control the deflection direction by changing the light distribution of the liquid crystal.
 例えば、該画像表示装置は、複数の前記光源を備えてもよい。そして、前記画像表示部は、前記光源の数の10倍以上の前記画素で構成されてもよい。 For example, the image display device may include a plurality of the light sources. And the said image display part may be comprised with the said pixel 10 times or more of the number of the said light sources.
 本発明の一形態に係る画像表示方法は、光源と、複数の画素によって構成され、前記光源から出力される光の透過量を前記画素毎に制御する画像表示部と、複数の領域によって構成され、前記光源から前記画像表示部に向かう光を前記領域毎に偏向する偏向部とを備える画像表示装置に画像を表示させる方法である。この画像表示方法は、前記偏向部の前記複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御ステップを含む。 An image display method according to an aspect of the present invention includes a light source and a plurality of pixels, and includes an image display unit that controls a transmission amount of light output from the light source for each pixel, and a plurality of regions. A method of displaying an image on an image display device including a deflection unit that deflects light directed from the light source toward the image display unit for each region. In this image display method, light transmitted through each of the plurality of regions of the deflecting unit is deflected toward different first and second points according to the pixel value of a pixel corresponding to the region. A light control step for controlling the above.
 本発明の一形態に係る集積回路は、光源と、複数の画素によって構成され、前記光源から出力される光の透過量を前記画素毎に制御する画像表示部と、複数の領域によって構成され、前記光源から前記画像表示部に向かう光を前記領域毎に偏向する偏向部とを備える画像表示装置に画像を表示させる。この集積回路は、前記偏向部の前記複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御部を備える。 An integrated circuit according to an aspect of the present invention includes a light source and a plurality of pixels, and includes an image display unit that controls a transmission amount of light output from the light source for each pixel, and a plurality of regions. An image is displayed on an image display device including a deflection unit that deflects light directed from the light source toward the image display unit for each region. In this integrated circuit, the light transmitted through each of the plurality of regions of the deflecting unit is deflected toward different first and second points according to the pixel value of the pixel corresponding to the region. The light control part which controls is provided.
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。 Note that these general or specific aspects may be realized by a system, method, integrated circuit, computer program, or recording medium, and realized by any combination of the system, method, integrated circuit, computer program, or recording medium. May be.
 以下、図面を参照して、本発明の各実施の形態を説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that each of the embodiments described below shows a specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 (実施の形態1)
 図1~図5Bを参照して、実施の形態1に係る画像表示装置の構成を説明する。まず、図1は、本発明の実施の形態1に係る画像表示装置10の外観を示す斜視図である。また、図2は、実施の形態1に係る画像表示装置10の機能ブロック図である。
(Embodiment 1)
The configuration of the image display apparatus according to Embodiment 1 will be described with reference to FIGS. 1 to 5B. First, FIG. 1 is a perspective view showing an external appearance of an image display device 10 according to Embodiment 1 of the present invention. FIG. 2 is a functional block diagram of the image display apparatus 10 according to the first embodiment.
 まず、図1に示されるように、実施の形態1に係る画像表示装置10の典型例は、テレビジョン受像機である。但し、本発明はこれに限定されず、携帯端末、パーソナルコンピュータ等のあらゆる画像表示装置に適用することができる。また、実施の形態1に係る画像表示装置10は、図2に示されるように、光源11と、偏向部12と、画像表示部13と、画像取得部14と、検出部15と、光制御部16とを主に備える。 First, as shown in FIG. 1, a typical example of the image display apparatus 10 according to Embodiment 1 is a television receiver. However, the present invention is not limited to this, and can be applied to all image display devices such as a portable terminal and a personal computer. As shown in FIG. 2, the image display device 10 according to the first embodiment includes a light source 11, a deflection unit 12, an image display unit 13, an image acquisition unit 14, a detection unit 15, and light control. The unit 16 is mainly provided.
 光源11は、光を出力するものであり、画像表示装置10のバックライトとして機能する。すなわち、光源11から出力される光は、偏向部12及び画像表示部13を透過することによって画像表示装置10の外部に出力される。光源11の具体的な構成は特に限定されないが、例えば、レーザ光源であってもよいし、LED(Light Emitting Diode)光源であってもよい。 The light source 11 outputs light and functions as a backlight of the image display device 10. That is, the light output from the light source 11 is output to the outside of the image display device 10 by passing through the deflection unit 12 and the image display unit 13. Although the specific structure of the light source 11 is not specifically limited, For example, a laser light source may be sufficient and a LED (Light Emitting Diode) light source may be sufficient.
 偏向部12は、光源11から出力される光を所定の方向に偏向して画像表示部13に出力する。より具体的には、偏向部12は、複数の領域によって構成され、光源11から画像表示部13に向かう光を領域毎に個別に偏向する。偏向部12の具体的な構成は、図4、図5A、及び図5Bを参照して、後述する。 The deflection unit 12 deflects the light output from the light source 11 in a predetermined direction and outputs the deflected light to the image display unit 13. More specifically, the deflecting unit 12 includes a plurality of regions, and individually deflects light from the light source 11 toward the image display unit 13 for each region. A specific configuration of the deflection unit 12 will be described later with reference to FIGS. 4, 5A, and 5B.
 画像表示部13は、マトリクス状に配置される複数の画素によって構成され、画像取得部14で取得された画像を表示する。画像表示部13の具体的な構成は特に限定されないが、バックライト(光源11)の光の透過量を制御することによって画像を表示するものであり、典型的には液晶パネルが該当する。 The image display unit 13 includes a plurality of pixels arranged in a matrix and displays the image acquired by the image acquisition unit 14. Although the specific configuration of the image display unit 13 is not particularly limited, the image display unit 13 displays an image by controlling the amount of light transmitted through the backlight (light source 11), and typically corresponds to a liquid crystal panel.
 画像取得部14は、画像表示装置10が表示する画像データ(映像データを含む。以下同じ。)を取得する。画像データの取得先は特に限定されないが、画像取得部14は、画像データを、例えば、放送波から取得してもよいし、インターネット上のコンテンツサーバから通信ネットワークを通じて取得してもよいし、HDD(Hard disk drive)、DVD(digital versatile disc)、BD(Blu-ray Disc)等の記憶媒体から取得してもよい。 The image acquisition unit 14 acquires image data (including video data; the same applies hereinafter) displayed by the image display device 10. Although the acquisition destination of the image data is not particularly limited, the image acquisition unit 14 may acquire the image data from, for example, a broadcast wave, may acquire from a content server on the Internet through a communication network, or the HDD. (Hard disk drive), DVD (digital versatile disc), BD (Blu-ray Disc), or other storage media.
 検出部15は、画像表示装置10で画像を視聴する視聴者の眼の位置を検出する。そして、検出部15は、検出した眼の位置を偏向制御部162に通知する。検出部15の具体的な構成は特に限定されないが、例えば図1に示されるように、画像表示装置10の表示面を見ることのできる領域を撮影するカメラであってもよい。また、視聴者の眼の位置をより正確に検出したい場合には、ステレオカメラを用いればよい。 The detecting unit 15 detects the position of the eye of the viewer who views the image on the image display device 10. Then, the detection unit 15 notifies the deflection control unit 162 of the detected eye position. Although the specific structure of the detection part 15 is not specifically limited, For example, as FIG. 1 shows, the camera which image | photographs the area | region which can see the display surface of the image display apparatus 10 may be sufficient. Further, when it is desired to detect the position of the viewer's eyes more accurately, a stereo camera may be used.
 但し、画像表示装置10は、必ずしもカメラを備えている必要はない。すなわち、検出部15は、外部のカメラと接続するインタフェースを供え、このインタフェースを通じてカメラから取得した画像データを分析して視聴者の眼の位置を検出してもよい。 However, the image display device 10 does not necessarily include a camera. That is, the detection unit 15 may provide an interface connected to an external camera, and may detect the position of the viewer's eyes by analyzing image data acquired from the camera through this interface.
 光制御部16は、偏向部12を制御する。より具体的には、光制御部16は、図2に示されるように、画素判別部161と、偏向制御部162とを備え、偏向部12の複数の領域それぞれを透過する光を、当該領域に対応する画像表示部13の画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する。 The light control unit 16 controls the deflection unit 12. More specifically, as illustrated in FIG. 2, the light control unit 16 includes a pixel determination unit 161 and a deflection control unit 162, and transmits light that passes through each of the plurality of regions of the deflection unit 12. In accordance with the pixel value of the pixel of the image display unit 13 corresponding to the above, it is controlled which of the first and second points is different from each other.
 画素判別部161は、画像表示部13に表示する画像の画像データを取得し、画像表示部13の各画素の画素値を判別する。より具体的には、画素判別部161は、各画素の明るさが所定の閾値以上であるか、或いは所定の閾値未満であるかを判別する。すなわち、画素判別部161は、各画素が黒色又は黒色に近い色を表示するか、或いはそれ以外の色を表示するかを判別する。 The pixel discriminating unit 161 acquires image data of an image to be displayed on the image display unit 13 and discriminates the pixel value of each pixel of the image display unit 13. More specifically, the pixel determination unit 161 determines whether the brightness of each pixel is equal to or higher than a predetermined threshold value or less than the predetermined threshold value. That is, the pixel determining unit 161 determines whether each pixel displays black or a color close to black, or displays other colors.
 所定の閾値の具体例は特に限定されないが、例えば、各画素の画素値がRGBで表現される場合に、RGBの合計を所定の閾値(例えば30、好ましくは20、さらに好ましくは5等)としてもよい。または、各画素の画素値が輝度(Y)及び色差(Cb、Cr)で表現される場合に、輝度(Y)を所定の閾値(例えば10、好ましくは5、さらに好ましくは3等)としてもよい。 Although the specific example of a predetermined threshold is not specifically limited, For example, when the pixel value of each pixel is expressed by RGB, let the total of RGB be a predetermined threshold (for example, preferably 20, more preferably 5, etc.) Also good. Alternatively, when the pixel value of each pixel is expressed by the luminance (Y) and the color difference (Cb, Cr), the luminance (Y) may be set to a predetermined threshold (for example, 10, preferably 5, more preferably 3, etc.) Good.
 偏向制御部162は、画素判別部161から各画素の画素値の判別結果を取得し、検出部15から視聴者の眼の位置を取得する。そして、偏向制御部162は、明るさが所定の閾値以上の画素に対応する偏向部12の領域を透過する光が第1の点に向けて偏向し、明るさが閾値未満の画素に対応する偏向部12の領域を透過する光が第2の点に向けて偏向するように、偏向部12を領域毎に個別に制御する。 The deflection control unit 162 acquires the determination result of the pixel value of each pixel from the pixel determination unit 161, and acquires the position of the viewer's eyes from the detection unit 15. Then, the deflection control unit 162 deflects the light transmitted through the region of the deflecting unit 12 corresponding to the pixel whose brightness is equal to or greater than the predetermined threshold toward the first point, and corresponds to the pixel whose brightness is less than the threshold. The deflecting unit 12 is individually controlled for each region so that light transmitted through the region of the deflecting unit 12 is deflected toward the second point.
 ここで、典型的には、第1の点は視聴者の眼の位置であり、第2の点は視聴者の眼から外れた位置である。すなわち、偏向制御部162は、黒に近い画素を透過する光が視聴者の眼から外れた位置に集光し、その他の色の画素を透過する光が視聴者の眼の位置に集光するように、偏向部12を制御する。 Here, typically, the first point is the position of the viewer's eyes, and the second point is the position away from the viewer's eyes. That is, the deflection control unit 162 condenses light that passes through pixels close to black at a position off the viewer's eyes, and condenses light that passes through pixels of other colors at the viewer's eyes. Thus, the deflection unit 12 is controlled.
 次に、図3は、光源11、偏向部12、及び画像表示部13の構成を示す図である。光源11は、例えば、R、G、B3色の固体レーザ111と、導光板112とで構成される。固体レーザ111から出射された3色の光線Lは、導光板112内において全反射を繰り返しながら導光板112全体に均一に広がる。また、導光板112の底面には、構造物113が規則的に配置されており、構造物113に反射した光線Lは、全反射条件を破り、導光板112から上方へ出射される。導光板112から出射した光線Lは、導光板112の上部に配置された偏向部12に入射する。 Next, FIG. 3 is a diagram showing the configuration of the light source 11, the deflection unit 12, and the image display unit 13. The light source 11 includes, for example, R, G, and B color solid-state lasers 111 and a light guide plate 112. The three color light beams L emitted from the solid-state laser 111 spread uniformly throughout the light guide plate 112 while repeating total reflection in the light guide plate 112. Further, the structures 113 are regularly arranged on the bottom surface of the light guide plate 112, and the light beam L reflected by the structures 113 breaks the total reflection condition and is emitted upward from the light guide plate 112. The light beam L emitted from the light guide plate 112 is incident on the deflecting unit 12 disposed on the light guide plate 112.
 図4は、偏向部12の具体的な構成を示す図である。偏向部12は、液晶の配光を変化させることによって、光の偏向方向を制御することができるものであり、例えば図4に示されるように、液晶偏向素子121と、液晶偏向素子121を挟むように配置される一対の透明基材124、125と、一対の透明基材124、125のさらに外側に配置される一対の透明電極126、127とで構成される。 FIG. 4 is a diagram showing a specific configuration of the deflecting unit 12. The deflecting unit 12 can control the light deflection direction by changing the light distribution of the liquid crystal. For example, as shown in FIG. 4, the deflecting unit 12 sandwiches the liquid crystal deflecting element 121 and the liquid crystal deflecting element 121. A pair of transparent substrates 124 and 125 arranged in this manner, and a pair of transparent electrodes 126 and 127 arranged further outside the pair of transparent substrates 124 and 125.
 液晶偏向素子121は、断面形状が三角形の液晶122と、液晶122の形状に対して相補的な形状を有する誘電体123とを有している。そして、断面形状が三角形の液晶122及び誘電体123を互いの斜面が接するように配置することにより、液晶偏向素子121は全体として断面矩形状に構成されている。 The liquid crystal deflecting element 121 includes a liquid crystal 122 having a triangular cross-sectional shape and a dielectric 123 having a shape complementary to the shape of the liquid crystal 122. Then, by arranging the liquid crystal 122 and the dielectric 123 having a triangular cross-sectional shape so that their inclined surfaces are in contact with each other, the liquid crystal deflecting element 121 is configured to have a rectangular cross-section as a whole.
 一対の透明基材124、125は、液晶偏向素子121の一方側(光源11の側)及び他方側(画像表示部13の側)に配置される。また、透明電極126は、透明基材124の液晶偏向素子121と反対の面側に配置される。また、透明電極127は、透明基材125の液晶偏向素子121と反対の面側に配置される。 The pair of transparent base materials 124 and 125 are disposed on one side (the light source 11 side) and the other side (the image display unit 13 side) of the liquid crystal deflection element 121. The transparent electrode 126 is disposed on the surface of the transparent substrate 124 opposite to the liquid crystal deflecting element 121. The transparent electrode 127 is disposed on the surface of the transparent base 125 opposite to the liquid crystal deflecting element 121.
 言い換えれば、透明基材124は、その一方側(図4の下側)の面で液晶偏向素子121を保持し、他方側(図4の上側)の面で透明電極126を保持する。同様に、透明基材125は、その一方側(図4の上側)の面で液晶偏向素子121を保持し、他方側(図4の下側)の面で透明電極127を保持する。 In other words, the transparent substrate 124 holds the liquid crystal deflecting element 121 on one surface (lower side in FIG. 4) and the transparent electrode 126 on the other side (upper side in FIG. 4). Similarly, the transparent substrate 125 holds the liquid crystal deflecting element 121 on one side (upper side in FIG. 4) and holds the transparent electrode 127 on the other side (lower side in FIG. 4).
 誘電体123は、例えばプラスチック等の高分子樹脂等、或いは、ガラス等で構成することができる。この誘電体123は、液晶122のある配向状態(例えば、一対の透明電極126、127に電圧が印加されていない時の液晶122の配向状態)における屈折率に略等しい屈折率の材料からなる。 The dielectric 123 can be made of, for example, a polymer resin such as plastic, or glass. The dielectric 123 is made of a material having a refractive index substantially equal to the refractive index of the liquid crystal 122 in a certain alignment state (for example, the alignment state of the liquid crystal 122 when no voltage is applied to the pair of transparent electrodes 126 and 127).
 すなわち、一対の透明電極126、127に電圧が印加されていない状態では、液晶偏向素子121に入射した光は、直進する。一方、一対の透明電極126、127間に所定の電圧を印加すると、液晶122の屈折率が変調され、液晶偏向素子121に入射した光が所定の方向に偏向される。 That is, in a state where no voltage is applied to the pair of transparent electrodes 126 and 127, the light incident on the liquid crystal deflecting element 121 travels straight. On the other hand, when a predetermined voltage is applied between the pair of transparent electrodes 126 and 127, the refractive index of the liquid crystal 122 is modulated, and the light incident on the liquid crystal deflecting element 121 is deflected in a predetermined direction.
 具体的には、液晶122の屈折率NLが誘電体123の屈折率NDよりも高くなると、光は、図4中の矢印αで示す方向に屈折する。一方、液晶122の屈折率NLが誘電体123の屈折率NDよりも低くなると、光は、図4中の矢印βで示す方向に屈折する。このように、一対の透明電極126、127間に印加する電圧を制御することにより、光の偏向角度を変調することができる。 Specifically, when the refractive index NL of the liquid crystal 122 is higher than the refractive index ND of the dielectric 123, the light is refracted in the direction indicated by the arrow α in FIG. On the other hand, when the refractive index NL of the liquid crystal 122 is lower than the refractive index ND of the dielectric 123, the light is refracted in the direction indicated by the arrow β in FIG. Thus, by controlling the voltage applied between the pair of transparent electrodes 126 and 127, the light deflection angle can be modulated.
 また、偏向部12は、複数の領域に分割されている。そして、一対の透明電極126、127は、各領域に各々異なる電圧を印加することが可能である。つまりは、各領域を透過する光を、それぞれ異なる方向へ偏向させることができる。そして、図2の偏向制御部162は、偏向部12の各領域を透過する光が所望の方向に偏向するように、各領域の一対の透明電極126、127に所定の電圧を印加する。 Further, the deflection unit 12 is divided into a plurality of regions. The pair of transparent electrodes 126 and 127 can apply different voltages to the respective regions. That is, the light transmitted through each region can be deflected in different directions. 2 applies a predetermined voltage to the pair of transparent electrodes 126 and 127 in each region so that light transmitted through each region of the deflection unit 12 is deflected in a desired direction.
 図5A及び図5Bは、偏向部12を複数の領域に分割する例を示す図である。図5Aに示されるように、偏向部12は、それぞれが縦方向に延びる帯状(ストライプ状)の領域12a、12b、12c、・・・に分割されてもよい。または、図5Bに示されるように、偏向部12は、領域12aa、12ab、12ba、12bb、・・・のようにマトリクス状に分割されてもよい。そして、図5A及び図5BのIV-IVにおける断面が図4に相当する。但し、偏向部12の分割の仕方はこれらに限定されない。 5A and 5B are diagrams illustrating an example in which the deflection unit 12 is divided into a plurality of regions. As shown in FIG. 5A, the deflecting unit 12 may be divided into strip-like (striped) regions 12a, 12b, 12c,. Or as FIG. 5B shows, the deflection | deviation part 12 may be divided | segmented into matrix form like area | region 12aa, 12ab, 12ba, 12bb, .... A cross section taken along line IV-IV in FIGS. 5A and 5B corresponds to FIG. However, the way of dividing the deflection unit 12 is not limited to these.
 また、偏向部12の上部には、集光レンズ17が配置されている。この集光レンズ17は、偏向部12を透過した光の偏向角度を増幅させる。また、集光レンズ17の上部には、画像表示部13が配置される。画像表示部13は、マトリクス状に配置された複数の画素で構成され、所望の入力画像信号により各画素の明るさを決定する電極、駆動装置(ドライバー)等を具備する(図示は省略する)。この画像表示部13を透過した光は、例えば図3の集光点Pに集光する。 In addition, a condenser lens 17 is disposed on the deflection unit 12. The condenser lens 17 amplifies the deflection angle of the light transmitted through the deflecting unit 12. In addition, an image display unit 13 is disposed above the condenser lens 17. The image display unit 13 includes a plurality of pixels arranged in a matrix, and includes an electrode that determines the brightness of each pixel according to a desired input image signal, a driving device (driver), and the like (not shown). . For example, the light transmitted through the image display unit 13 is collected at a condensing point P in FIG.
 なお、偏向部12の領域の数と画像表示部13の画素の数とは、1対1又は1対多の関係にある。すなわち、画像表示部13の画素は、偏向部12の領域と同等、又はより細かく分割されている。その結果、偏向部12の1つの領域を透過した光は、画像表示部13の1以上の画素に入射する。そこで、1つの領域を透過した光が入射する1以上の画素を、領域に対応する画素と表記する。 Note that the number of regions of the deflection unit 12 and the number of pixels of the image display unit 13 are in a one-to-one or one-to-many relationship. That is, the pixels of the image display unit 13 are equal to or more finely divided than the region of the deflection unit 12. As a result, the light transmitted through one region of the deflecting unit 12 enters one or more pixels of the image display unit 13. Therefore, one or more pixels on which light transmitted through one region is incident are referred to as pixels corresponding to the region.
 上記の構成によれば、偏向部12、集光レンズ17、及び画像表示部13を透過した光を任意の集光点Pに集光させることができる。ここで任意の集光点Pとは、例えば、この画像表示装置10で画像を視聴する視聴者の眼の位置に対応する。 According to the above configuration, the light transmitted through the deflecting unit 12, the condensing lens 17, and the image display unit 13 can be condensed at an arbitrary condensing point P. Here, the arbitrary condensing point P corresponds to, for example, the position of the eye of the viewer who views the image on the image display device 10.
 ここで、画像表示部13を透過した光を視聴者の眼に集光する事で、画像表示部13に表示される画像の輝度を向上する事ができる。その結果、光源11のパワーを最小限に抑える事が可能であるため、省電力化に寄与する。ここで、画像表示部13の各画素の画素値による偏向部12の効果的な制御方法の例を図6及び図7を参照して説明する。 Here, by condensing the light transmitted through the image display unit 13 to the viewer's eyes, the brightness of the image displayed on the image display unit 13 can be improved. As a result, the power of the light source 11 can be minimized, which contributes to power saving. Here, an example of an effective control method of the deflection unit 12 based on the pixel value of each pixel of the image display unit 13 will be described with reference to FIGS. 6 and 7.
 まず、光制御部16の偏向制御部162は、第1の点及び第2の点を決定する(S11)。具体的には、偏向制御部162は、検出部15で検出された視聴者の眼の位置を第1の点とし、視聴者の眼から外れた位置を第2の点とする。すなわち、図7の例では、集光点Pが第1の点となり、集光点Qが第2の点となる。 First, the deflection control unit 162 of the light control unit 16 determines the first point and the second point (S11). Specifically, the deflection control unit 162 sets the position of the viewer's eyes detected by the detection unit 15 as a first point, and sets the position away from the viewer's eyes as a second point. That is, in the example of FIG. 7, the condensing point P becomes the first point, and the condensing point Q becomes the second point.
 次に、光制御部16は、図6のステップS12~ステップS17の処理を偏向部12の領域毎に実行する。まず、画素判別部161は、画像取得部14から画像データを取得し、処理対象の領域に対応する各画素の画素値(明るさ)を判定する(S13)。 Next, the light control unit 16 executes the processing of step S12 to step S17 in FIG. First, the pixel determination unit 161 acquires image data from the image acquisition unit 14, and determines the pixel value (brightness) of each pixel corresponding to the region to be processed (S13).
 そして、当該領域に対応する画素のうち、明るさが閾値以上の画素が存在する場合(S14でYes)、偏向制御部162は、当該領域を透過する光が集光点P(第1の点)に集光するように、当該領域の一対の透明電極126、127に所定の電圧を印加する(S15)。一方、当該領域に対応する全ての画素の明るさが閾値未満である場合(S14でNo)、偏向制御部162は、当該領域を透過する光が集光点Q(第2の点)に集光するように、当該領域の一対の透明電極126、127に所定の電圧を印加する(S16)。 If there is a pixel whose brightness is equal to or greater than the threshold among the pixels corresponding to the region (Yes in S14), the deflection control unit 162 causes the light transmitted through the region to be focused on the condensing point P (first point). ), A predetermined voltage is applied to the pair of transparent electrodes 126 and 127 in the region (S15). On the other hand, when the brightness of all the pixels corresponding to the area is less than the threshold value (No in S14), the deflection control unit 162 collects the light transmitted through the area at the condensing point Q (second point). A predetermined voltage is applied to the pair of transparent electrodes 126 and 127 in the region so as to emit light (S16).
 図7は、画像表示部13の画素群Bが黒表示(明るさが所定の閾値未満)の場合において、偏向部12の各領域を透過した光の集光位置を示す図である。画素群Bが黒表示の場合、画素群Bに対応する偏向部12の領域Aを透過した光を、集光点Pではなく、集光点Qに集光するように偏向させる。一方、領域A以外の領域を透過した光は、集光点Pに集光するように偏向させる。なお、集光点Qは、ある限定された位置ではなく、他の光が集光される集光点Pと異なる位置であれば良い。すなわち、集光点Qは、複数存在してもよい。 FIG. 7 is a diagram showing a condensing position of light transmitted through each region of the deflection unit 12 when the pixel group B of the image display unit 13 is black (brightness is less than a predetermined threshold). When the pixel group B displays black, the light transmitted through the region A of the deflecting unit 12 corresponding to the pixel group B is deflected so as to be condensed at the condensing point Q, not at the condensing point P. On the other hand, the light transmitted through the region other than the region A is deflected so as to be condensed at the condensing point P. In addition, the condensing point Q is not a certain limited position, and may be a position different from the condensing point P where other light is condensed. That is, there may be a plurality of condensing points Q.
 ここで、画素群Bが黒表示である場合、通常の液晶パネルであれば、画素群Bに対応する液晶の偏向方向を変える事で光の透過量が最も低い状態に制御する。しかしながら、それでも一部の光が液晶パネルを透過して視聴者の眼に到達し、画像のコントラストを低下させてしまう。このため、実施の形態1に係る光制御部16は、黒表示である画素群Bを透過した微小な光量の光さえも視聴者の眼に集光させる事を防ぐために、領域Aを透過する光を集光点Pと異なる集光点Qに偏向させる。このため、画素群Bを透過する光は視聴者の眼に届かない。その結果、画像のコントラストのダイナミックレンジを広げる事ができ、良好な画質が得られる。 Here, when the pixel group B displays black, if the liquid crystal panel is a normal liquid crystal panel, the light transmission amount is controlled to be the lowest by changing the deflection direction of the liquid crystal corresponding to the pixel group B. However, some of the light still passes through the liquid crystal panel and reaches the viewer's eyes, thus reducing the contrast of the image. For this reason, the light control unit 16 according to the first embodiment transmits the region A in order to prevent even a minute amount of light transmitted through the pixel group B that is black display from being collected on the viewer's eyes. Light is deflected to a condensing point Q different from the condensing point P. For this reason, the light transmitted through the pixel group B does not reach the viewer's eyes. As a result, the dynamic range of the contrast of the image can be expanded, and a good image quality can be obtained.
 ここで、光源11に固体レーザ111を採用しているが、実施の形態1ではこれに限らない。例えば、LED光源であってもよいし、R、G、Bそれぞれが別々の光源でなくてもよい。すなわち、一つの擬似白色からなる光源であってもよい。 Here, although the solid-state laser 111 is employed as the light source 11, the first embodiment is not limited thereto. For example, an LED light source may be used, and R, G, and B may not be separate light sources. That is, the light source may be a single pseudo white light source.
 なお、光源11に含まれる固体レーザ111は、1つであってもよいし、複数であってもよい。但し、本実施の形態1に係る画像表示方法が顕著な効果を発揮するのは、画像表示部13の画素数が、光源(図3の例では固体レーザ111)の数と比較して極めて大きい場合であり、一例として、画素数が光源の数の10倍以上の場合である。 In addition, the solid-state laser 111 included in the light source 11 may be one or plural. However, the remarkable effect of the image display method according to the first embodiment is that the number of pixels of the image display unit 13 is extremely larger than the number of light sources (solid laser 111 in the example of FIG. 3). As an example, the number of pixels is 10 times or more the number of light sources.
 また、ここで、視聴者の眼は、左右どちらの眼であってもよい。また、上記の例では片眼に集光させているが、本発明はこれに限定さらない。また、集光の範囲として、光の一部が眼の瞳孔に達すれば良い。すなわち、ユーザの眼の位置を含む所定の領域に集光させればよい。また、集光の範囲が片眼のみでなく、両眼を含んでも良い。また、ある時間は、左眼(右眼)に、また次の時間にはもう片方の右眼(左眼)に集光するように、時分割に偏向部12を制御しても良い。 Here, the viewer's eyes may be either left or right. In the above example, light is focused on one eye, but the present invention is not limited to this. Further, as a focusing range, a part of the light only needs to reach the pupil of the eye. That is, the light may be condensed on a predetermined area including the position of the user's eyes. Further, the range of light collection may include not only one eye but also both eyes. Further, the deflecting unit 12 may be controlled in a time-sharing manner so that the light is focused on the left eye (right eye) for a certain time and the other right eye (left eye) for the next time.
 さらに、実施の形態1では、1つの領域に対応する全ての画素の明るさが閾値未満の場合に、当該領域を透過する光を第2の点に偏向する例を説明したが、本発明はこれに限定されない。例えば、1つの領域対応する複数の画素のうちの所定の割合(過半数、80%等)の画素の明るさが閾値未満であれば、当該領域を透過する光を第2の点に偏向させてもよい。または、1の領域に対応する複数の画素の画素値の平均値(又は最も明るい画素の画素値)と閾値とを比較するようにしてもよい。 Furthermore, in the first embodiment, when the brightness of all the pixels corresponding to one area is less than the threshold value, the example in which the light transmitted through the area is deflected to the second point has been described. It is not limited to this. For example, if the brightness of pixels of a predetermined ratio (a majority, 80%, etc.) of a plurality of pixels corresponding to one area is less than a threshold value, light transmitted through the area is deflected to the second point. Also good. Alternatively, an average value of pixel values of a plurality of pixels corresponding to one region (or a pixel value of the brightest pixel) may be compared with a threshold value.
 (実施の形態2)
 次に、図8及び図9を参照して、実施の形態2に係る画像表示装置を説明する。なお、実施の形態1との共通点の詳しい説明は省略し、相違点を中心に説明する。実施の形態1、2に係る画像表示装置の基本的な構成は、図1~図5Bと共通する。
(Embodiment 2)
Next, an image display apparatus according to Embodiment 2 will be described with reference to FIGS. A detailed description of points common to the first embodiment will be omitted, and differences will be mainly described. The basic configuration of the image display apparatus according to Embodiments 1 and 2 is the same as that shown in FIGS.
 図8は、本発明の実施の形態2に係る画像表示装置が出力する光の集光位置を示す図である。実施の形態2に係る画像表示装置10は、立体画像を構成する右眼用画像及び左眼用画像を交互に表示させ、且つ右眼用画像の光を視聴者の右眼の位置に集光させ、左眼用画像の光を視聴者の左眼の位置に集光させる。 FIG. 8 is a diagram showing a condensing position of light output from the image display apparatus according to Embodiment 2 of the present invention. The image display device 10 according to the second embodiment displays the right-eye image and the left-eye image constituting the stereoscopic image alternately, and condenses the light of the right-eye image at the position of the viewer's right eye. Then, the light of the left-eye image is condensed at the position of the viewer's left eye.
 立体画像表示を行う場合、画像表示部13には、右眼用画像及び左眼用画像が、シーケンシャルに交互に表示される。右眼用画像とは、ある物体を右眼で見た画像である。左眼用画像とは、ある物体を左眼で見た画像である。すなわち、右眼用画像及び左眼用画像は、見る角度が異なるため、互いに視差をもった画像となる。このような右眼用画像及び左眼用画像をシーケンシャルに表示し、かつ、右眼用画像は視聴者の右眼のみに、左眼用画像は視聴者の左眼のみに集光させる事で、視聴者は立体感を感じることができる。 When performing stereoscopic image display, the image display unit 13 alternately displays the right-eye image and the left-eye image sequentially. The right eye image is an image of an object viewed with the right eye. The left-eye image is an image of an object viewed with the left eye. That is, the right-eye image and the left-eye image have different parallax because they are viewed at different angles. Such right-eye image and left-eye image are displayed sequentially, and the right-eye image is focused only on the viewer's right eye, and the left-eye image is focused only on the viewer's left eye. The viewer can feel a three-dimensional feeling.
 なお、立体画像データは、上記のように異なる2点から撮影された画像であってもよいし、コンピュータグラフィックスによって生成されたものであってもよい。また、画像取得部14は、右眼用画像及び左眼用画像を含む画像データを取得してもよいし、取得した2次元画像から3次元画像(右眼用画像及び左眼用画像)を生成してもよい。 Note that the stereoscopic image data may be images taken from two different points as described above, or may be generated by computer graphics. The image acquisition unit 14 may acquire image data including a right-eye image and a left-eye image, or obtain a three-dimensional image (right-eye image and left-eye image) from the acquired two-dimensional image. It may be generated.
 また、光制御部16は、画像表示部13に右眼用画像が表示されるタイミングで、画像表示装置10から出力される光が視聴者の右眼の位置に集光するように、偏向部12の各領域の電圧及び液晶層の屈折率を制御する。ここで、視聴者の右眼及び左眼の位置は、画像表示装置10に配置されたカメラで撮像した画像から特定することができる。 The light control unit 16 also deflects the light output from the image display device 10 at the right eye position of the viewer at the timing when the image for the right eye is displayed on the image display unit 13. The voltage of each of the 12 regions and the refractive index of the liquid crystal layer are controlled. Here, the positions of the right eye and the left eye of the viewer can be specified from an image captured by a camera arranged in the image display device 10.
 また、光制御部16は、画像表示部13に左眼用画像が表示されるタイミングで、画像表示装置10から出力される光が視聴者の左眼に集光するように、偏向部12の各領域の電圧及び液晶層の屈折率を制御する。このように、光制御部16は、画像表示部13に表示される画像の切り替えに同期して偏向部12の制御を行う。 In addition, the light control unit 16 is configured so that the light output from the image display device 10 is focused on the viewer's left eye at the timing when the image for the left eye is displayed on the image display unit 13. The voltage of each region and the refractive index of the liquid crystal layer are controlled. As described above, the light control unit 16 controls the deflection unit 12 in synchronization with switching of images displayed on the image display unit 13.
 このような構成において、偏向部12の効果的な制御方法を図9を参照して説明する。図9は、画像表示部13内の画素群Dが黒表示(明るさが所定の閾値未満)の場合において、偏向部12の各領域を透過した光の集光位置を示す図である。 In such a configuration, an effective control method of the deflection unit 12 will be described with reference to FIG. FIG. 9 is a diagram illustrating a condensing position of light transmitted through each region of the deflecting unit 12 when the pixel group D in the image display unit 13 displays black (brightness is less than a predetermined threshold).
 画素群Dが黒表示の場合、光制御部16は、画素群Dに対応する偏向部12の領域Cを透過した光が左右の眼の位置である集光点P、Pではなく、集光点Q、Qに集光するように、偏向部12を制御する。集光点Q、Qは、ある限定された位置ではなく、他の光が集光される集光点P、Pと異なる位置であれば良い。 When the pixel group D displays black, the light control unit 16 does not use the condensing points P 1 and P 2 where the light transmitted through the region C of the deflection unit 12 corresponding to the pixel group D is the positions of the left and right eyes, The deflecting unit 12 is controlled so as to collect light at the condensing points Q 1 and Q 2 . The condensing points Q 1 and Q 2 are not limited positions, and may be positions different from the condensing points P 1 and P 2 where other light is condensed.
 より具体的には、光制御部16は、画像表示部13に右眼用画像が表示されているタイミングで、黒色の画素群Dを透過する光が集光点Qに集光し、その他の画素を透過する光が集光点Pに集光するように、偏向部12を制御する。また、光制御部16は、画像表示部13に左眼用画像が表示されているタイミングで、黒色の画素群Dを透過する光が集光点Qに集光し、その他の画素を透過する光が集光点Pに集光するように、偏向部12を制御する。 More specifically, the light control unit 16 condenses the light transmitted through the black pixel group D at the condensing point Q 1 at the timing when the image for the right eye is displayed on the image display unit 13. light transmitted through the pixels such that collected at the focal point P 1, for controlling the deflection unit 12. Further, the light control unit 16, at the timing when the left eye image is displayed on the image display unit 13, light transmitted through the pixel group D of the black is collected at the focal point Q 2, passes through the other pixels light is to be focused at the focal point P 2, controlling the deflection unit 12.
 なお、実施の形態2では、右眼用画像と左眼用画像とを時分割で交互に表示することによって視聴者に立体画像を視聴させる例を示したが、本発明はこれに限定されない。例えば、画像表示部13を空間分割して右眼用画像及び左眼用画像を同時に表示してもよい。具体的には、画像表示部13は、複数の画素のうちの一部の画素に右眼用画像を表示し、残りの画素に左眼用画像を表示する。そして、光制御部16は、右眼用画像を表示する画素を透過する光が集光点Pに集光し、左眼用画像を表示する画素を透過する光が集光点Pに集光するように、偏向部12を制御してもよい。 In the second embodiment, an example in which a viewer views a stereoscopic image by alternately displaying a right-eye image and a left-eye image in a time-division manner has been described, but the present invention is not limited to this. For example, the image display unit 13 may be spatially divided to display the right eye image and the left eye image simultaneously. Specifically, the image display unit 13 displays the right eye image on some of the plurality of pixels and displays the left eye image on the remaining pixels. Then, the light control section 16 condenses the light transmitted through the pixels to display the right-eye image at the focal point P 1, the light transmitted through the pixels to display the image for the left eye at the focal point P 2 You may control the deflection | deviation part 12 so that it may condense.
 また、実施の形態1、2では、偏向部12を透過する光を水平方向にのみ偏向する例を示したが、本発明はこれに限定されず、水平方向、垂直方向、及びそれらを組み合わせた任意の方向に光を偏向させてもよい。例えば、図10に示されるように、第1及び第2の偏向部22a、22bを組み合わせて偏向部12を構成することによって、光を任意の方向に偏向させることができる。 In the first and second embodiments, the example in which the light transmitted through the deflecting unit 12 is deflected only in the horizontal direction is shown, but the present invention is not limited to this, and the horizontal direction, the vertical direction, and a combination thereof are combined. The light may be deflected in any direction. For example, as shown in FIG. 10, the light can be deflected in an arbitrary direction by configuring the deflecting unit 12 by combining the first and second deflecting units 22 a and 22 b.
 図10は、第1及び第2の偏向部22a、22bを構成する1つの領域の斜視図である。図10に示される偏向部12は、第1及び第2の偏向部22a、22bを上下に積層することによって構成される。なお、第1及び第2の偏向部22a、22bの基本的な構成は、図4に示される偏向部12と共通するので、詳しい説明は省略する。 FIG. 10 is a perspective view of one region constituting the first and second deflecting portions 22a and 22b. The deflecting unit 12 shown in FIG. 10 is configured by stacking first and second deflecting units 22a and 22b vertically. The basic configuration of the first and second deflecting units 22a and 22b is the same as that of the deflecting unit 12 shown in FIG.
 第1の偏向部22a中の網掛けされた面は、液晶222aと誘電体223aとが接する面を示す。この面は、図10の矢印aの方向(第1の方向)に傾斜している。同様に、第2の偏向部22b中の網掛けされた面は、液晶222bと誘電体223bとが接する面を示す。この面は、図10の矢印bの方向(第2の方向)に傾斜している。そして、第1及び第2の方向は、互いに交差(直交)する方向である。 The shaded surface in the first deflection unit 22a indicates a surface where the liquid crystal 222a and the dielectric 223a are in contact with each other. This surface is inclined in the direction of arrow a (first direction) in FIG. Similarly, the shaded surface in the second deflecting unit 22b is a surface where the liquid crystal 222b and the dielectric 223b are in contact with each other. This surface is inclined in the direction of arrow b (second direction) in FIG. The first and second directions are directions that intersect (orthogonal) each other.
 そして、下の段の第1の偏向部22aは、光源11(図10では図示省略)から出力される光を第1の方向に偏向する。また、上の段の第2の偏向部22bは、第1の偏向部22aを透過した光を第2の方向に偏向して画像表示部13(図10では図示省略)に出力。すなわち、光制御部16は、第1及び第2の偏向部22a、22bそれぞれに所定の電圧を印加することにより、偏向部12を透過する光を任意の方向に偏向できる。 The lower first deflection unit 22a deflects the light output from the light source 11 (not shown in FIG. 10) in the first direction. Further, the second deflection unit 22b in the upper stage deflects the light transmitted through the first deflection unit 22a in the second direction and outputs it to the image display unit 13 (not shown in FIG. 10). That is, the light control unit 16 can deflect light transmitted through the deflection unit 12 in an arbitrary direction by applying a predetermined voltage to each of the first and second deflection units 22a and 22b.
 また、実施の形態1、2では、偏向部12の1つの領域を、画像表示部13の画素と同じ大きさか画素より大きくした例を示したが、図11に示されるように、この1つの領域をさらに複数の小領域に分割して、小領域毎に個別に偏向制御してもよい。図11は、偏向部12の領域をサブ画素に対応する複数の小領域に分割した例を示す図である。 In the first and second embodiments, an example in which one region of the deflection unit 12 is the same size as or larger than the pixel of the image display unit 13 is shown. However, as shown in FIG. The area may be further divided into a plurality of small areas, and the deflection control may be individually performed for each small area. FIG. 11 is a diagram illustrating an example in which the area of the deflecting unit 12 is divided into a plurality of small areas corresponding to sub-pixels.
 まず、画像表示部13を構成する画素は、n(nは2以上の自然数)個のサブ画素で構成されている。そして、偏向部12の領域は、対応する画素を構成するサブ画素それぞれに対応するn(図11の例ではn=3)個の小領域31、32、33で構成される。 First, the pixels constituting the image display unit 13 are composed of n (n is a natural number of 2 or more) sub-pixels. The area of the deflecting unit 12 includes n (n = 3 in the example of FIG. 11) small areas 31, 32, and 33 corresponding to the sub-pixels that constitute the corresponding pixel.
 具体的には、図11に示される画素は、赤色(R)、緑色(G)、青色(B)の3つのサブ画素で構成されている。このサブ画素は、各色のカラーフィルタを用いることで実現できる。また、偏向部12の領域は、赤色のサブ画素に対応する小領域31と、緑色のサブ画素に対応する小領域32と、青色のサブ画素に対応する小領域33とで構成される。 Specifically, the pixel shown in FIG. 11 is composed of three sub-pixels of red (R), green (G), and blue (B). This sub-pixel can be realized by using a color filter of each color. The area of the deflection unit 12 includes a small area 31 corresponding to the red sub-pixel, a small area 32 corresponding to the green sub-pixel, and a small area 33 corresponding to the blue sub-pixel.
 ここで、小領域に分割されていない偏向部12(例えば、図4の偏向部)で各サブ画素を透過する光を偏向すると、RGBの各波長の特性によって、3色の光が一点(集光点P)に集光しない。図11の例では、緑色のサブ画素を透過した光は集光点Pに到達するものの、赤色のサブ画素を透過した光は集光点Pの左側にずれ、青色のサブ画素を透過した光は集光点Pの右側にずれる(破線の矢印を参照)。 Here, when the light transmitted through each sub-pixel is deflected by the deflecting unit 12 (for example, the deflecting unit shown in FIG. 4) that is not divided into small regions, one point (collected light) of three colors is collected depending on the characteristics of each wavelength of RGB. It does not focus on the light spot P). In the example of FIG. 11, the light transmitted through the green sub-pixel reaches the condensing point P, but the light transmitted through the red sub-pixel is shifted to the left side of the condensing point P and is transmitted through the blue sub-pixel. Shifts to the right side of the condensing point P (see broken arrow).
 そこで、図11の例では、このような各波長の特性を吸収して全ての色の光を集光点Pに集光させるために、光制御部16は、各小領域31、32、33を個別に偏向制御する。すなわち、光制御部16は、赤色のサブ画素に対応する小領域31を透過する光が破線の矢印よりもさらに右に偏向され、青色のサブ画素に対応する小領域33を透過する光が破線の矢印よりもさらに左に偏向されるように、各小領域31、32、33それぞれに所定の電圧を印加する。これにより、各サブ画素から出力される光を一点に集光させることができる。 Therefore, in the example of FIG. 11, the light control unit 16 collects the light of all colors at the condensing point P by absorbing such characteristics of the respective wavelengths, and the light control unit 16 has the small regions 31, 32, 33. The deflection is controlled individually. That is, the light control unit 16 causes the light transmitted through the small region 31 corresponding to the red sub-pixel to be deflected further to the right than the dashed arrow, and the light transmitted through the small region 33 corresponding to the blue sub-pixel to be broken. A predetermined voltage is applied to each of the small regions 31, 32, and 33 so as to be deflected further to the left than the arrow. Thereby, the light output from each sub pixel can be condensed on one point.
 なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されないのはもちろんである。以下のような場合も本発明に含まれる。 Although the present invention has been described based on the above embodiment, it is needless to say that the present invention is not limited to the above embodiment. The following cases are also included in the present invention.
 (1)上記の各装置は、具体的には、マイクロプロセッサ、ROM、RAM、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムで実現され得る。RAMまたはハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。 (1) Specifically, each of the above devices can be realized by a computer system including a microprocessor, a ROM, a RAM, a hard disk unit, a display unit, a keyboard, a mouse, and the like. A computer program is stored in the RAM or the hard disk unit. Each device achieves its functions by the microprocessor operating according to the computer program. Here, the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
 (2)上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。ROMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、ROMからRAMにコンピュータプログラムをロードし、ロードしたコンピュータプログラムにしたがって演算等の動作することにより、システムLSIは、その機能を達成する。 (2) A part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration). The system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. . A computer program is stored in the ROM. The system LSI achieves its functions by the microprocessor loading a computer program from the ROM to the RAM and performing operations such as operations in accordance with the loaded computer program.
 (3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されてもよい。ICカードまたはモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカードまたはモジュールには、上記の超多機能LSIが含まれてもよい。マイクロプロセッサが、コンピュータプログラムにしたがって動作することにより、ICカードまたはモジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有してもよい。 (3) Part or all of the constituent elements constituting each of the above devices may be configured from an IC card or a single module that can be attached to and detached from each device. The IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like. The IC card or the module may include the super multifunctional LSI described above. The IC card or the module achieves its functions by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
 すなわち、本発明の一形態に係る集積回路は、光源と、複数の画素によって構成され、光源から出力される光の透過量を画素毎に制御する画像表示部と、複数の領域によって構成され、光源から画像表示部に向かう光を領域毎に偏向する偏向部とを備える画像表示装置に画像を表示させる。この集積回路は、偏向部の複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御部を備える。 That is, an integrated circuit according to an embodiment of the present invention includes a light source and a plurality of pixels, and includes an image display unit that controls the transmission amount of light output from the light source for each pixel, and a plurality of regions. An image is displayed on an image display device including a deflection unit that deflects light directed from the light source toward the image display unit for each region. This integrated circuit controls whether the light transmitted through each of the plurality of regions of the deflection unit is deflected toward different first and second points according to the pixel value of the pixel corresponding to the region. A light control unit.
 (4)本発明は、上記に示す方法で実現されてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムで実現してもよいし、コンピュータプログラムからなるデジタル信号で実現してもよい。 (4) The present invention may be realized by the method described above. Further, these methods may be realized by a computer program realized by a computer, or may be realized by a digital signal consisting of a computer program.
 すなわち、本発明の一形態に係る画像表示方法は、光源と、複数の画素によって構成され、光源から出力される光の透過量を画素毎に制御する画像表示部と、複数の領域によって構成され、光源から画像表示部に向かう光を領域毎に偏向する偏向部とを備える画像表示装置に画像を表示させる方法である。この画像表示方法は、偏向部の複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御ステップを含む。 That is, an image display method according to an aspect of the present invention includes a light source and a plurality of pixels, and includes an image display unit that controls a transmission amount of light output from the light source for each pixel, and a plurality of regions. In this method, an image is displayed on an image display device including a deflection unit that deflects light directed from the light source toward the image display unit for each region. In this image display method, whether the light transmitted through each of the plurality of regions of the deflecting unit is deflected toward different first and second points according to the pixel value of the pixel corresponding to the region is determined. A light control step to control.
 また、本発明は、コンピュータプログラムまたはデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録したもので実現してもよい。また、これらの記録媒体に記録されているデジタル信号で実現してもよい。 The present invention also relates to a computer-readable recording medium that can read a computer program or a digital signal, such as a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, BD (Blu-ray Disc), You may implement | achieve with what was recorded on the semiconductor memory etc. Moreover, you may implement | achieve with the digital signal currently recorded on these recording media.
 また、本発明は、コンピュータプログラムまたはデジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送してもよい。 In the present invention, a computer program or a digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムにしたがって動作してもよい。 The present invention is also a computer system including a microprocessor and a memory. The memory stores a computer program, and the microprocessor may operate according to the computer program.
 また、プログラムまたはデジタル信号を記録媒体に記録して移送することにより、またはプログラムまたはデジタル信号をネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施してもよい。 Also, the program or digital signal may be recorded on a recording medium and transferred, or the program or digital signal may be transferred via a network or the like, and may be implemented by another independent computer system.
 (5)上記実施の形態及び上記変形例をそれぞれ組み合わせてもよい。 (5) You may combine the said embodiment and said modification, respectively.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.
 本発明の画像表示装置は、光を効果的に偏向制御する事で画像のコントラスト及び画質を向上させる事が可能であり広く表示装置に適用することができる。また、本画像表示装置を用いて液晶表示装置を構成することで、簡便な構成で3D液晶表示装置やプライバシーディスプレイ等に用いることが可能であり、有用である。 The image display device of the present invention can improve the contrast and image quality of an image by effectively controlling the deflection of light, and can be widely applied to display devices. In addition, by configuring the liquid crystal display device using the present image display device, it can be used for a 3D liquid crystal display device, a privacy display, or the like with a simple configuration, which is useful.
 10 画像表示装置
 11 光源
 12 偏向部
 12a,12b,12c,12aa,12ab,12ba,12bb 領域
 13 画像表示部
 14 画像取得部
 15 検出部
 16 光制御部
 17 集光レンズ
 22a 第1の偏向部
 22b 第2の偏向部
 31,32,33 小領域
 111 固体レーザ
 112 導光板
 113 構造物
 121 液晶偏向素子
 122,222a,222b 液晶
 123,223a,223b 誘電体
 124,125 透明基材
 126,127 透明電極
 161 画素判別部
 162 偏向制御部
DESCRIPTION OF SYMBOLS 10 Image display apparatus 11 Light source 12 Deflection part 12a, 12b, 12c, 12aa, 12ab, 12ba, 12bb Area | region 13 Image display part 14 Image acquisition part 15 Detection part 16 Light control part 17 Condensing lens 22a 1st deflection part 22b 1st 2 deflection units 31, 32, 33 small area 111 solid-state laser 112 light guide plate 113 structure 121 liquid crystal deflection element 122, 222a, 222b liquid crystal 123, 223a, 223b dielectric 124, 125 transparent base material 126, 127 transparent electrode 161 pixel Discriminator 162 Deflection controller

Claims (11)

  1.  光源と、
     複数の画素によって構成され、前記光源から出力される光の透過量を前記画素毎に制御する画像表示部と、
     複数の領域によって構成され、前記光源から前記画像表示部に向かう光を前記領域毎に偏向する偏向部と、
     前記偏向部の前記複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御部とを備える
     画像表示装置。
    A light source;
    An image display unit configured by a plurality of pixels and controlling the transmission amount of light output from the light source for each pixel;
    A deflecting unit configured by a plurality of regions and deflecting light from the light source toward the image display unit for each region;
    Light control for controlling whether the light transmitted through each of the plurality of regions of the deflecting unit is deflected toward different first and second points according to the pixel value of the pixel corresponding to the region An image display device.
  2.  前記光制御部は、明るさが所定の閾値以上の画素に対応する前記領域を透過する光を前記第1の点に向けて偏向させ、明るさが前記閾値未満の画素に対応する前記領域を透過する光を前記第2の点に向けて偏向させる
     請求項1に記載の画像表示装置。
    The light control unit deflects light transmitted through the region corresponding to a pixel whose brightness is equal to or greater than a predetermined threshold toward the first point, and the region corresponding to a pixel whose brightness is less than the threshold The image display apparatus according to claim 1, wherein the transmitted light is deflected toward the second point.
  3.  該画像表示装置は、さらに、視聴者の眼の位置を検出する検出部を備え、
     前記光制御部は、前記検出部によって検出された視聴者の眼の位置を前記第1の点とし、視聴者の眼から外れた位置を前記第2の点とする
     請求項1又は2に記載の画像表示装置。
    The image display device further includes a detection unit that detects the position of the viewer's eyes,
    The said light control part makes the position of the viewer's eyes detected by the said detection part the said 1st point, and makes the position which remove | deviated from the viewer's eyes the said 2nd point. Image display device.
  4.  該画像表示装置は、互いに視差を有する右眼用画像及び左眼用画像を交互に表示し、
     前記光制御部は、
     右眼用画像が表示されるタイミングで、前記検出部で検出された視聴者の右眼の位置を前記第1の点とし、
     左眼用画像が表示されるタイミングで、前記検出部で検出された視聴者の左眼の位置を前記第1の点とする
     請求項3に記載の画像表示装置。
    The image display device alternately displays a right-eye image and a left-eye image having parallax with each other,
    The light control unit
    At the timing when the right eye image is displayed, the position of the right eye of the viewer detected by the detection unit is the first point,
    The image display device according to claim 3, wherein the position of the viewer's left eye detected by the detection unit is set as the first point at a timing at which a left-eye image is displayed.
  5.  前記偏向部は、
     前記光源から出力される光を第1の方向に偏向する第1の偏向部と、
     前記第1の偏向部を透過した光を前記第1の方向と交差する第2の方向に偏向する第2の偏向部とを備える
     請求項1~4のいずれか1項に記載の画像表示装置。
    The deflection unit is
    A first deflector for deflecting light output from the light source in a first direction;
    The image display device according to any one of claims 1 to 4, further comprising: a second deflection unit that deflects light transmitted through the first deflection unit in a second direction that intersects the first direction. .
  6.  前記領域は、前記画素を構成するn(nは2以上の自然数)個のサブ画素それぞれに対応して設けられるn個の小領域で構成され、
     前記光制御部は、前記n個のサブ画素それぞれを透過する光が前記第1の点に向けて偏向されるように、前記n個の小領域の偏向角度を個別に制御する
     請求項1~5のいずれか1項に記載の画像表示装置。
    The region is composed of n small regions provided corresponding to n (n is a natural number of 2 or more) sub-pixels constituting the pixel,
    The light control unit individually controls a deflection angle of the n small regions so that light transmitted through each of the n sub-pixels is deflected toward the first point. The image display device according to any one of 5.
  7.  前記画像表示部は、液晶パネルである
     請求項1~6のいずれか1項に記載の画像表示装置。
    The image display device according to any one of claims 1 to 6, wherein the image display unit is a liquid crystal panel.
  8.  前記偏向部は、液晶の配光を変化させることによって、偏向方向を制御する
     請求項1~7のいずれか1項に記載の画像表示装置。
    The image display device according to any one of claims 1 to 7, wherein the deflection unit controls a deflection direction by changing a light distribution of liquid crystal.
  9.  該画像表示装置は、複数の前記光源を備え、
     前記画像表示部は、前記光源の数の10倍以上の前記画素で構成される
     請求項1~8のいずれか1項に記載の画像表示装置。
    The image display device includes a plurality of the light sources,
    The image display device according to any one of claims 1 to 8, wherein the image display unit includes the pixels that are ten times or more the number of the light sources.
  10.  光源と、複数の画素によって構成され、前記光源から出力される光の透過量を前記画素毎に制御する画像表示部と、複数の領域によって構成され、前記光源から前記画像表示部に向かう光を前記領域毎に偏向する偏向部とを備える画像表示装置に画像を表示させる画像表示方法であって、
     前記偏向部の前記複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御ステップを含む
     画像表示方法。
    An image display unit configured by a light source and a plurality of pixels and controlling the transmission amount of light output from the light source for each pixel, and a plurality of regions configured to transmit light from the light source toward the image display unit. An image display method for displaying an image on an image display device including a deflection unit that deflects each region,
    Light control for controlling whether the light transmitted through each of the plurality of regions of the deflecting unit is deflected toward different first and second points according to the pixel value of the pixel corresponding to the region An image display method including steps.
  11.  光源と、複数の画素によって構成され、前記光源から出力される光の透過量を前記画素毎に制御する画像表示部と、複数の領域によって構成され、前記光源から前記画像表示部に向かう光を前記領域毎に偏向する偏向部とを備える画像表示装置に画像を表示させる集積回路であって、
     前記偏向部の前記複数の領域それぞれを透過する光を、当該領域に対応する画素の画素値に応じて、互いに異なる第1及び第2の点のどちらに向けて偏向させるかを制御する光制御部を備える
     集積回路。
     
    An image display unit configured by a light source and a plurality of pixels and controlling the transmission amount of light output from the light source for each pixel, and a plurality of regions configured to transmit light from the light source toward the image display unit. An integrated circuit that displays an image on an image display device including a deflection unit that deflects each region,
    Light control for controlling whether the light transmitted through each of the plurality of regions of the deflecting unit is deflected toward different first and second points according to the pixel value of the pixel corresponding to the region An integrated circuit comprising a unit.
PCT/JP2012/002868 2011-05-10 2012-04-26 Image display device, image display method, and integrated circuit WO2012153478A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800019030A CN102971661A (en) 2011-05-10 2012-04-26 Image display device, image display method, and integrated circuit
JP2012532179A JPWO2012153478A1 (en) 2011-05-10 2012-04-26 Image display device, image display method, and integrated circuit
US13/808,917 US20130113767A1 (en) 2011-05-10 2012-04-26 Image display device, image display method, and integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011105698 2011-05-10
JP2011-105698 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012153478A1 true WO2012153478A1 (en) 2012-11-15

Family

ID=47138970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002868 WO2012153478A1 (en) 2011-05-10 2012-04-26 Image display device, image display method, and integrated circuit

Country Status (4)

Country Link
US (1) US20130113767A1 (en)
JP (1) JPWO2012153478A1 (en)
CN (1) CN102971661A (en)
WO (1) WO2012153478A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150059686A (en) * 2013-11-22 2015-06-02 삼성전자주식회사 Method and apparatus for image processing
KR102420041B1 (en) * 2015-04-07 2022-07-13 삼성전자주식회사 Display device and method thereof
US10715792B2 (en) 2015-04-07 2020-07-14 Samsung Electronics Co., Ltd. Display device and method of controlling the same
KR20170084951A (en) * 2016-01-13 2017-07-21 삼성전자주식회사 Light Deflector and Display Device
CN109581704B (en) * 2017-09-28 2021-04-06 京东方科技集团股份有限公司 Light modulation device, 3D display apparatus and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127197A (en) * 1991-11-06 1993-05-25 Hitachi Ltd Display device
JP2000352694A (en) * 1999-06-09 2000-12-19 Toshiba Corp Stereoscopic video display device
JP2010529485A (en) * 2007-05-24 2010-08-26 シーリアル テクノロジーズ ソシエテ アノニム Directional control lighting device for autostereoscopic display

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728515B2 (en) * 2001-03-21 2011-07-20 株式会社リコー Optical path element, spatial light modulator, and image display device
US6917456B2 (en) * 2003-12-09 2005-07-12 Hewlett-Packard Development Company, L.P. Light modulator
US7044606B2 (en) * 2004-03-29 2006-05-16 Hewlett-Packard Development Company, L.P. Projection of pixelized color images
US20080116468A1 (en) * 2006-11-22 2008-05-22 Gelcore Llc LED backlight using discrete RGB phosphors
US7586681B2 (en) * 2006-11-29 2009-09-08 Honeywell International Inc. Directional display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127197A (en) * 1991-11-06 1993-05-25 Hitachi Ltd Display device
JP2000352694A (en) * 1999-06-09 2000-12-19 Toshiba Corp Stereoscopic video display device
JP2010529485A (en) * 2007-05-24 2010-08-26 シーリアル テクノロジーズ ソシエテ アノニム Directional control lighting device for autostereoscopic display

Also Published As

Publication number Publication date
CN102971661A (en) 2013-03-13
JPWO2012153478A1 (en) 2014-07-31
US20130113767A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
US7630131B2 (en) Image display apparatus and optical member therefor
JP4840962B2 (en) 3D display that can be displayed vertically or horizontally
KR101555892B1 (en) Auto-stereoscopic display device
JP4367775B2 (en) Dual view display
KR101632317B1 (en) 2D/3D switchable image display apparatus
JP5649526B2 (en) Display device
CN101331776B (en) Display device
TWI514005B (en) Non-glasses type stereoscopic image display device
JP6154323B2 (en) Video display device
US20080186575A1 (en) 2d-3d image switching display system
KR102261218B1 (en) Auto-stereoscopic display device with a striped backlight and two lenticular lens arrays
TWI481902B (en) Image display apparatus
EP2218261A1 (en) Autostereoscopic display device
WO2012153478A1 (en) Image display device, image display method, and integrated circuit
US20150237334A1 (en) Stereoscopic display device
KR20160062312A (en) Three dimensional image display device
US9128320B2 (en) Three-dimensional display and three dimensional display system
CN105264425B (en) Multi-view display device
CN105892078B (en) A kind of display device and its driving method, display system
WO2013132600A1 (en) Image display device and optical device
JP2013050539A (en) Display device and electronic apparatus
JP2000075243A (en) Stereoscopic display device
JP2013015711A (en) Display device
US9110297B2 (en) Image display device
US20130147927A1 (en) Stereoscopic video display apparatus and display method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001903.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012532179

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13808917

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782856

Country of ref document: EP

Kind code of ref document: A1