WO2012153467A1 - Human power driving force detection apparatus for electric bicycle - Google Patents

Human power driving force detection apparatus for electric bicycle Download PDF

Info

Publication number
WO2012153467A1
WO2012153467A1 PCT/JP2012/002657 JP2012002657W WO2012153467A1 WO 2012153467 A1 WO2012153467 A1 WO 2012153467A1 JP 2012002657 W JP2012002657 W JP 2012002657W WO 2012153467 A1 WO2012153467 A1 WO 2012153467A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
human
force
detection sensor
crankshaft
Prior art date
Application number
PCT/JP2012/002657
Other languages
French (fr)
Japanese (ja)
Inventor
憲夫 梅沢
将史 川上
松浦 昭
植松 秀典
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012153467A1 publication Critical patent/WO2012153467A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/225Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to foot actuated controls, e.g. brake pedals

Definitions

  • the present invention relates to a human power driving force detection device for an electric bicycle.
  • a human power driving force such as a pedaling force applied to the pedal is detected by a human power driving force detection device including a torque sensor and the like.
  • a human power driving force detection device including a torque sensor and the like.
  • an electric bicycle also referred to as an electric assist bicycle
  • an electric bicycle that can easily travel even on an uphill by applying an auxiliary driving force (assist force) of an electric motor corresponding to the human power driving force is already known.
  • the crankshaft is twisted when the left and right pedals are depressed, so that the twisted state of the crankshaft and the twist of the cylindrical shaft to which the manpower driving force is transmitted from the crankshaft are described.
  • the state is detected by a magnetostrictive torque sensor (Patent Document 1, etc.).
  • the crankshaft and the cylindrical shaft (referred to as a manpower transmission rotary shaft) are rotatably supported by bearings or the like.
  • the manpower driving force transmitted to the manpower transmitting rotating shaft is transmitted to a driving sprocket (also referred to as a front sprocket, a front gear, or a crank sprocket) as a manpower driving wheel fixed to the manpower transmitting rotating shaft. Then, it is transmitted to the rear wheel via a driving force transmission body such as a chain spanned over the driving sprocket and a driven sprocket (also referred to as a rear sprocket or a rear gear) as a driven wheel attached to the rear wheel. .
  • a driving force transmission body such as a chain spanned over the driving sprocket and a driven sprocket (also referred to as a rear sprocket or a rear gear) as a driven wheel attached to the rear wheel.
  • the magnetostrictive torque sensor when detecting a human driving force using the magnetostrictive torque sensor, the magnetostrictive torque sensor requires processing of a magnetostriction generating portion and a coil, which requires a lot of manufacturing cost and difficult process control. However, it has many disadvantages and time.
  • the human-powered driving force that rotates the rear wheel acts as a force that causes the upper part of the driving force transmission body such as a chain to be moved forward by the driving sprocket. If the force corresponding to the forward tension of the body can be detected, the human driving force for actually driving the rear wheel can be measured. In addition, if it is possible to detect the force corresponding to the forward tension of the driving force transmission body with a simple configuration, it is more desirable because the manufacturing cost can be reduced.
  • An example of a method for detecting a force corresponding to a forward tension of a driving force transmission body is a torque detection device for an electric bicycle disclosed in Patent Document 2.
  • a force that pulls a driving force transmission body such as a chain forward is generated by a driving sprocket during traveling, and the crankshaft is elastically deformed backward by this reaction force. Therefore, by applying such a phenomenon, as shown in FIG. 18, an elastic deformation portion (support plate portion) 102 that receives and supports the force from which the crankshaft 101 is elastically deformed backward is provided.
  • a strain detection sensor (strain gauge) 103 for detecting the amount of elastic deformation is attached to the elastic deformation portion 102.
  • the elastic deformation portion 102 and the strain detection sensor 103 are disposed at a position immediately behind the crankshaft 101 (specifically, a position on a horizontal line extending from the crankshaft 101 as viewed from the side).
  • Patent Document 3 a similar configuration is disclosed in Patent Document 3.
  • a sensor is provided between a bearing bearing 112 that rotatably supports the crankshaft 111 and a support portion 113 that holds the bearing bearing 112.
  • a sleeve 114 is provided.
  • a sensor chip 115 for detecting distortion is disposed at a position slightly above the horizontal line extending just behind the crankshaft 111 in the sensor sleeve 114 (above an angle ⁇ above the horizontal line).
  • a strain detection sensor (detecting the amount of elastic deformation of the elastic deformation portion 102 and the sensor sleeve 114 that elastically deforms substantially rearward by receiving the force from the crankshafts 101 and 111).
  • the strain detection sensor 103 In the configuration having the strain gauge 103 and the sensor chip 115 attached, when the left and right pedals are stepped on, the strain detection sensor 103 other than the effective component that becomes the driving force (rotational torque) through the chain by the pedaling force. As a result, a forward or backward component force that becomes an error signal to the sensor chip 115 is generated.
  • the present invention solves the above-mentioned problems, and can minimize the influence of the forward and backward component forces caused by the pedaling posture, and can pull the driving force transmission body such as a chain forward.
  • An object of the present invention is to provide a human-powered driving force detection device for an electric bicycle capable of detecting a corresponding force satisfactorily.
  • the human-powered driving force detection device for an electric bicycle includes a driving sprocket or the like in which a driving force transmitting body such as a chain for rotating and driving a rear wheel rotates together with a crankshaft.
  • the manpower driving wheel In an electric bicycle that spans between a manpower driven wheel body and a driven wheel body attached to a rear wheel and is configured to be able to add an auxiliary driving force based on a manpower driving force by a pedaling force from a pedal, the manpower driving wheel
  • An elastic deformation portion is provided that elastically deforms when the crankshaft is elastically deformed rearward by a reaction force of a force pulling the driving force transmission body forward by the body, and the elastic deformation portion is provided with the elastic deformation portion.
  • a strain detection sensor for detecting the human driving force from the amount of elastic deformation is attached. The elastic deformation portion and the strain detection sensor are viewed from the side, and the driving force is transmitted by the human driving wheel. Characterized in that disposed in the rear position inclined obliquely downward from a line passing through an axis parallel crank axis direction to pull the body forward.
  • the pedaling force is reduced in the position behind the crankshaft, so the pedal is located in front of the crankshaft.
  • the pedaling force from the pedal is generated and the pedaling force is not generated at the location located behind the crankshaft, and the pedal is located ahead of the crankshaft.
  • the strain detection sensor is placed in an arrangement state in which the force is detected as an inclination state behind the crankshaft along the inclination posture of the pedal, that is, the driving force transmission body such as a chain is detected by the human-powered wheel body.
  • the pedal When pulled in the horizontal direction, the pedal is twisted in a horizontal state by disposing the strain detection sensor at a position inclined obliquely below the horizontal line directly behind the crankshaft in side view. As in the case, it is possible to measure a force corresponding to a force that pulls a driving force transmission body such as a chain forward, which is hardly influenced by the inclination angle of the pedal.
  • a bearing that rotatably supports the crankshaft is disposed in a hanger portion fixed to the frame, and the bearing is in contact with the bearing from behind between the hanger portion and the bearing.
  • a sensor support member having an elastically deformable portion that can be elastically deformed is attached, and a strain detection sensor is attached to the elastically deformable portion of the sensor support member.
  • the sensor support member is constituted by a ring-shaped part cut out in a planar shape so that the elastically deforming portion is thin.
  • the elastic deformation portion and strain detection sensor only one elastic deformation portion and strain detection sensor are provided, and in that case, if the elastic deformation portion and strain detection sensor are provided on the side on which the human-powered wheel body is attached in the left-right direction, the number is small. It can be configured inexpensively with the number of parts.
  • the elastic deformation portion and the strain detection sensor are provided at a plurality of locations on the side where the human-powered wheel body is attached in the left-right direction and on the side where the human-powered wheel body is not attached in the left-right direction. Although the number of parts increases, the measurement accuracy can be improved.
  • the strain detection sensor and the elastic deformation portion are arranged so that the installation angle of the strain detection sensor is increased by the inclination angle that is the difference from the direction.
  • the strain detection sensor and the elastically deformable portion can be arranged at a position suitable for the posture where the driving force transmission body is stretched over the manpower driving wheel body, so that it can handle the force that pulls the driving force transmission body forward. Can be detected well.
  • the strain detection sensor is disposed at an inclination angle of 10 degrees or more obliquely from a line passing through the axis of the crankshaft parallel to the direction in which the driving force transmitting body is pulled forward by the human-powered driving wheel. It is suitable that it is 15 degrees or less.
  • the elastically deformable portion and the strain detection sensor are inclined obliquely downward from a line passing through the axis of the crankshaft in parallel with the direction in which the driving force transmission body is pulled by the human-powered driving wheel when viewed from the side.
  • FIG. 1 and FIG. 2 is an electric bicycle according to an embodiment of the present invention. As shown in FIGS.
  • this electric bicycle 1 includes a metal frame 2 including a head pipe 2a, a front fork 2b, a main pipe 2c, a standing pipe 2d, a chain stay 2e, a seat stay 2f, and the like, A front wheel 3 rotatably attached to the lower end of the fork 2b, a rear wheel 4 rotatably attached to the rear end of the chain stay 2e, a handle 5 for changing the direction of the front wheel 3, a saddle 6, and a crankshaft 7a and a crank arm 7b, a left and right pedal 8 to which a pedaling force as a manual driving force is applied, and an electric motor that generates an auxiliary driving force (assist force).
  • a metal frame 2 including a head pipe 2a, a front fork 2b, a main pipe 2c, a standing pipe 2d, a chain stay 2e, a seat stay 2f, and the like
  • a front wheel 3 rotatably attached to the lower end of the fork 2b
  • a hand operating part which is attached to the battery 12, the handle 5 and the like and can be operated by a passenger, etc., and a driving sprocket as a manpower driven wheel attached so as to rotate integrally with the crank 7 (Also referred to as front sprocket, front gear, crank sprocket or crank gear) 13 and driven sprocket (rear sprocket or rear gear, rear wheel) as a driven wheel attached to a hub 9 (also referred to as rear hub) 9 14) (also referred to as a wheel gear), a chain 15 as an endless driving force transmission member spanning the drive sprocket 13 and the driven sprocket 14, and a chain cover 21 that covers the chain 15 and the like from the side. Yes.
  • the crank 7 rotates about the crankshaft 7a, and this manpower driving force is transmitted to the rear wheel via the drive sprocket 13, the chain 15, and the driven sprocket 14. 4 is rotated.
  • the upper portion of the chain 15 that spans the upper end portion of the drive sprocket 13 and the upper end portion of the driven sprocket 14 is arranged in a posture along the horizontal line.
  • the electric motor 10 is built in a metal hub (hereinafter also referred to as a front hub) 16 disposed at the center of the front wheel 3.
  • the battery 12 is an example of a capacitor, and a secondary battery is preferable.
  • another example of the capacitor may be a capacitor.
  • the control unit 11 is a control space portion provided from the center to the rear of the control unit 22 whose outer shell is constituted by the left and right unit cases 22 a and 22 b. 22c.
  • the control unit 22 is arranged at the center lower part of the electric bicycle 1 so as to connect the front end of the chain stay 2e, the rear end of the main pipe 2c, and the lower end of the standing pipe 2d. It is supported in a suspended posture through the support bracket 19 and a cylindrical hanger portion 20 fixed to the support bracket 19 and the like.
  • the control unit 11 includes a control board and a storage circuit that control each component (including the electric motor 10) of the electric bicycle 1. As shown in FIGS.
  • crankshaft 7a is inserted in the front portion of the control unit 22 in the lateral direction (left and right horizontal direction), and bearings 25 and 26 that rotatably support the crankshaft 7a.
  • a crankshaft insertion portion 22d having a substantially cylindrical shape is provided, and most of the crankshaft insertion portion 22d is supported in a state of being inserted into the hanger portion 20.
  • the drive sprocket 13 is attached to a portion of the right crank arm 7b fitted into the crankshaft 7a so as to rotate integrally with the crankshaft 7a.
  • the crankshaft insertion portion 22d of the control unit 22 has an elastic deformation portion 23a that is elastically deformed by receiving a force that causes the crankshaft 7a to be elastically deformed rearward by a reaction force of pulling the chain 15 forward by the drive sprocket 13. Is provided. And the distortion detection sensor 24 which detects the said human-power driving force from the elastic deformation amount of this elastic deformation part 23a is attached to this elastic deformation part 23a.
  • the elastic deformation portion 23a is formed on the right side of the crankshaft insertion portion 22d of the control unit 22, that is, on the side close to the drive sprocket 13, and outside the crankshaft insertion portion 22d in the right unit case 22b.
  • a substantially ring-shaped sensor ring 23 As a sensor support member, which is disposed between the cylindrical portion forming the shell portion. That is, a part of the outer peripheral side of the sensor ring 23 is notched in a planar shape to form a thin portion, and the thin portion constitutes an elastic deformation portion 23a.
  • the elastic deformation portion 23a and the strain detection sensor 24 allow the force in a direction substantially orthogonal to the plane portion of the elastic deformation portion 23a and the surface portion of the strain detection sensor 24 disposed along the elastic deformation portion 23a with high sensitivity.
  • the ratio of the sensitivity in the direction perpendicular to the plane portion of the elastic deformation portion 23a of the sensor ring 23 and the sensitivity in the direction along the direction has a stress distribution of, for example, 50 to 200: 1.
  • a load sensor using a micro electro mechanical system (MEMS) having high sensitivity and mechanically high proof stress that can be well detected even for a slight displacement, that is, a minute stress is used. It is preferable. Further, in this embodiment, only one elastic deformation portion 23a and strain detection sensor 24 are provided on the side where the human-powered wheel body is attached in the left-right direction, that is, only one.
  • the elastic deformation portion 23 a and the strain detection sensor 24 are viewed from the axis 7 a ′ of the crankshaft 7 a as viewed from the side (specifically, from the horizontal line H passing through the axis 7 a ′). More specifically, a line orthogonal to the strain detection sensor 24 is disposed in a posture that passes through the axis 7a ′ of the crankshaft 7a from the rear position.
  • the inclination angle which is the angle difference between the horizontal line H passing through the axis 7a ′ of the crankshaft 7a and the line inclined obliquely downward where the strain detection sensor 24 is disposed is 10 degrees or more and 15 degrees.
  • the strain detection sensor 24 is disposed so as to be less than or equal to the degree.
  • the portion of the human power driving force detection device including the sensor ring 23 and the strain detection sensor 24 is shown in a larger size.
  • the force is detected by setting the strain detection sensor 24 in a tilted state behind the crankshaft 7a along the tilted posture of the pedal 8, that is, a horizontal line extending right behind the crankshaft 7a in side view ( That is, the strain detection sensor 25 is directed from the position inclined parallel to the direction in which the chain 15 is pulled forward by the drive sprocket 13 and obliquely below the axis of the crankshaft 7a toward the axis of the crankshaft 7a.
  • the pedal 8 is disposed, a force corresponding to the force that pulls the driving force transmission body such as the chain 15 forward, which is not easily affected by the inclination angle ⁇ of the pedal 8, as in the case where the pedal 8 is rolled in a horizontal state. It becomes possible to measure.
  • the force acting on the crankshaft 7a and the force pulling the upper portion of the chain 15 forward by the drive sprocket 13 are as follows, in addition to those caused by the angle when the pedal 8 is stepped on. It has various error factors.
  • the compound load and chain based on the pedaling force on the pedal 8 are excluded as the above-mentioned error factors resulting from adding the error factors (A) and (B) above to the error factors resulting from the angle when the pedal 8 is depressed.
  • the error rate was obtained using a correlation equation assuming a simplified model of the two-point support structure of the crankshaft 7a.
  • the subscript D means the drive side pedal 8
  • the subscript N means the non-drive side pedal 8
  • the subscript L means the left pedal 8
  • the subscript R means the right side.
  • the pedal 8 is meant.
  • P N N
  • the pedaling force of the non-drive pedal 8 is P N (Nm)
  • the torque is T N
  • the pedal angle is ⁇ N
  • the chain tension ratio (error ratio of the detection value of the strain detection sensor 24 to the chain tension) ⁇ which is the ratio of the horizontal component force acting on the right bearing 26 to which the strain detection sensor 24 is attached to the tension of the chain 15, is expressed as follows: It becomes an expression like this.
  • the installation angle (tilt angle) of the strain detection sensor 24 is ⁇ degrees
  • the detection load of the strain detection sensor 24 is P A (Nm)
  • the tension of the chain 15 is P C (Nm).
  • the diameter D of the drive sprocket 13 is 0.133 m
  • the distance L O 84.3 mm between the bearings 25 and 26 of the crankshaft 7a
  • the distance L C 16.1 mm between the chain 15 and the right bearing 26
  • the distance L R between the pedal 8 and the right bearing 26 is 123.3 mm
  • the distance L L between the left pedal 8 and the left bearing 25 is 111.6 mm (see FIG. 7).
  • ⁇ ′ LA is an error when the left pedal 8 acting on the right bearing 26 is a drive side pedal
  • ⁇ ′′ RA is an error when the right pedal 8 acting on the right bearing 26 is a drive side pedal. It is an error.
  • FIG. 8 to 13 are diagrams showing the chain tension ratio with respect to the crank angle based on the equations 1 and 2, respectively.
  • FIG. 8 shows the case where the installation angle ⁇ of the strain detection sensor 24 is 0 degree
  • FIGS. Reference numeral 13 denotes a case where the installation angle ⁇ is 5 degrees, 10 degrees, 12.5 degrees, 15 degrees, and 20 degrees in order. These figures show values when a load five times larger than the load applied to the non-drive pedal 8 is applied to the drive pedal 8.
  • the chain tension ratio is a constant value close to 1.19 times the actual tensile force of the chain 15 (hereinafter also referred to as a ratio reference, and this value is 15 and the distance between the bearings 25 and 26, that is, the distance between the bearings 25 and 26 (ie, (LC + LO) / LO), and the strain detection sensor 24 stabilizes the actual tensile force of the chain 15 without error. Can be measured.
  • FIG. 14 is a diagram schematically showing the relationship between the pedal maximum angle and the pedal minimum angle with respect to the crank angle ⁇
  • FIG. 15 is a diagram in the range where the crank angle ⁇ is 60 degrees to 120 degrees (also referred to as the priority crank angle). It is a figure which shows the relationship between the installation angle (alpha) of the distortion detection sensor 24, and chain tension ratio (epsilon).
  • the installation angle (alpha) of the distortion detection sensor 24, and chain tension ratio (epsilon) As described above, in many cases, the occupant steps on the pedal 8 in a forwardly raised state in front of the crankshaft 7a when traveling, but when the crank angle is small as shown in FIG. Therefore, the inclination angle (also referred to as pedal angle) ⁇ of the pedal 8 tends to increase.
  • the pedal angle ⁇ tends to decrease.
  • the pedal 8 when the pedal 8 is in a position directly above or directly below or near the crankshaft 7a as viewed from the side, it is often the case that only a foot is placed and almost no force is applied. Therefore, the reliability of the measurement value of the strain detection sensor 24 is substantially high in the range (practical range) of the pedal angle ⁇ and the crank angle ⁇ (30 ° to 150 °) enclosed by the square frame in FIG. It is preferable to use an installation angle ⁇ that reduces the error. Further, since the pedal 8 is often loaded with a large pedaling force when the crank angle ⁇ is in the range of 60 degrees to 120 degrees (critical crank angle), the pedal 8 has an installation angle ⁇ that is more reliable in this range. It is particularly preferred to use
  • the range of the chain tension ratio ⁇ when the electric bicycle 1 is used in the range of the pedal angle ⁇ ( ⁇ 5 degrees to 25 degrees) and the crank angle ⁇ (30 degrees to 150 degrees) is shown in FIGS.
  • the right (R) pedal is driven and when the left (L) pedal is driven, four side frames A and B are shown, respectively, and the crank angle ⁇ in the range surrounded by these frames A and B is 60 degrees.
  • a rectangular frame C indicates a range of 120 degrees (also referred to as a priority crank angle).
  • the frame A is a range of the chain tension ratio ⁇ corresponding to the crank angle ⁇ of the right pedal 8
  • the frame B is a range of the chain tension ratio corresponding to the crank angle ⁇ of the left pedal 8.
  • the crank angle ⁇ is 60 degrees to 120 degrees (respectively indicated by a rectangular frame C), as shown in FIGS. 10 and 15, when the installation angle ⁇ of the strain detection sensor 24 is 10 degrees, the chain tension When the ratio ⁇ is 0.90 to 1.47 and the installation angle ⁇ of the strain detection sensor 24 is 12.5 degrees as shown in FIGS. 11 and 15, the chain tension ratio ⁇ is 0.96. As shown in FIGS. 12 and 15, when the installation angle ⁇ of the strain detection sensor 24 is 15 degrees, the chain tension ratio ⁇ is 0.97 to 1.53. As described above, when the installation angle ⁇ of the strain detection sensor 24 is 10 degrees to 15 degrees, that is, 10 degrees or more and 15 degrees or less, the chain tension ratio ⁇ becomes a value close to the ratio reference. When ⁇ is 12.5 degrees, the chain tension ratio ⁇ is the closest value to the ratio reference, and is hardly affected by the horizontal component force related to the inclination angle ⁇ of the pedal 8, and is highly reliable. The value can be measured.
  • the installation angle ⁇ of the strain detection sensor 24 is 0 degrees.
  • the chain tension ratio ⁇ is 0.74 to 1.50, and when the installation angle ⁇ of the strain detection sensor 24 is 5 degrees as shown in FIGS. As shown in FIGS. 14 and 15, when the installation angle ⁇ of the strain detection sensor 24 is 20 degrees, the chain tension ratio ⁇ is 0.87 to 1.63.
  • the installation angle ⁇ of the strain detection sensor 24 is 5 degrees or 20 degrees, that is, when the installation angle ⁇ is smaller than 10 degrees or larger than 15 degrees, the installation angle ⁇ is 10 degrees to 15 degrees.
  • the chain tension ratio ⁇ is far from the ratio reference and covers a wide range, so that it is easily affected by the horizontal component force related to the inclination angle ⁇ of the pedal 8.
  • the chain tension ratio ⁇ is close to the ratio reference, so that it is less affected by the horizontal component force related to the inclination angle ⁇ of the pedal 8. That is, it has the effect of reducing the error.
  • the ratio reference value 1.19 can be converted as a proportionality constant.
  • the fluctuation of the chain tension ratio ⁇ between the minimum value and the maximum value of the chain tension ratio ⁇ is an error in the detection value of the strain detection sensor 24. Therefore, an error can be reduced by setting an appropriate set angle.
  • the installation angle ⁇ of the strain detection sensor 24 is 10 degrees to 15 degrees
  • the chain tension ratio ⁇ becomes a value close to the ratio reference, and the inclination angle ⁇ of the pedal 8 is increased. It can be seen that it is less susceptible to the influence of horizontal component force and can measure highly reliable values.
  • the bearing 26 that rotatably supports the crankshaft 7a is housed in the hanger portion 20 fixed to the frame 2 such as the front end portion of the chain stay 2e.
  • a sensor ring 23 as a sensor support member having an elastically deformable portion 23a that abuts the bearing 26 from behind and can be elastically deformed is attached between the shaft 26 and the bearing 26, and a strain detection sensor is attached to the elastically deformable portion 23a of the sensor ring 23. 24 is attached.
  • the sensor ring 23 as the sensor support member is constituted by a ring-shaped part cut out in a planar shape so that the elastic deformation portion 23a is thin.
  • elastic force deformation is hardly detected with little detection of force acting on the sensor ring 23 in the vertical direction (strictly, force in a direction along the plane portion of the elastic deformation portion 23a).
  • Only the force in the direction substantially perpendicular to the plane portion of the portion 23a and the surface portion of the strain detection sensor 24 can be detected with high sensitivity, and the force corresponding to the force pulling the chain 15 forward can be detected even better.
  • the sensing mechanism component that separates the rotation acting on the bearing 26 and the fluctuating load into only one direction component, only the force corresponding to the force pulling the chain 15 forward can be detected well. .
  • the present invention is not limited to this.
  • the right bearing 26 to which the drive sprocket 13 is attached in the left-right direction but also the left bearing 25 to which the drive sprocket 13 is not attached in the left-right direction has the same configuration.
  • a plurality of elastic deformation portions 23 a and strain detection sensors 24 may be provided, such as a sensor ring 23 having an elastic deformation portion 23 a and a strain detection sensor 24.
  • the plurality of elastic deformation portions 23a and the strain detection sensors 24 are used, and arithmetic processing is performed on signals from the plurality of strain detection sensors 24.
  • the force corresponding to the force pulling the chain 15 forward can be detected with higher accuracy.
  • the case where the upper portion of the chain 15 that spans the upper end portion of the drive sprocket 13 and the upper end portion of the driven sprocket 14 is arranged in a posture along the horizontal line has been described.
  • the relative positions of the upper portion of the chain 15, the strain detection sensor 24, and the elastic deformation portion 23a are the same as those in the above-described embodiment. Therefore, the posture of the chain 15 spanning the drive sprocket 13
  • the strain detection sensor 24 and the elastic deformation portion 23a can be disposed at a position suitable for the above, and a force corresponding to the force pulling the chain 15 forward can be detected well.
  • the upper part of the chain 15 spanned over the drive sprocket 13 is inclined and arranged so as to become higher toward the rear, the inclination angle of the difference between the inclined and pulling direction and the horizontal line direction.
  • the strain detection sensor 24 and the elastic deformation portion 23a may be disposed so that the installation angle ⁇ of the strain detection sensor 24 decreases. That is, when the strain detection sensor 24 and the elastic deformation portion 23a are viewed from the side, the installation angle is larger than the line passing through the axis 7a ′ of the crankshaft 7a in parallel with the direction in which the drive sprocket 13 pulls the upper portion of the chain 15 forward. What is necessary is just to arrange
  • FIG. 16 is a diagram showing the relationship between human power driving force, auxiliary driving force, and chain tension (total driving force).
  • FIG. 17 is a block diagram conceptually showing an arithmetic processing unit for calculating the human driving force related to the human driving force in the control unit 11. That is, as shown in FIG. 16, the chain tension (total driving force) measured by the strain detecting sensor 24 is the sum of the human driving force and the auxiliary driving force. Therefore, as shown in FIG. The manual driving force is calculated by subtracting the auxiliary driving force from the chain tension (total driving force) measured by the sensor 24. As shown in FIG.
  • the arithmetic processing unit of the control unit 11 calculates the value of the auxiliary driving force from the current value of the electric motor 10, Used as the value of the auxiliary driving force. Thereby, the human driving force is calculated, and the control unit determines the auxiliary driving force to be output based on the human driving force.
  • the drive sprocket 13 rotates integrally with the crankshaft 7a via the portion of the right crank arm 7b fitted into the crankshaft 7a.
  • the present invention is not limited to this, and the drive sprocket 13 may be directly attached to the crankshaft 7a.
  • the chain 15 is used as the driving force transmission body that transmits the pedaling force from the pedal 8 to the rear wheel 4 .
  • a belt may be used.
  • a driving gear is used in place of the driving sprocket 13 as a manpower driving wheel that outputs a manpower driving force, and a rear sprocket 14 is used as a rear wheel.
  • a rear gear may be used.
  • the present invention can be suitably applied to an electric bicycle that actually travels, but is not limited to this, and can also be applied to a fixed electric bicycle for training installed in a sports gym or the like.

Abstract

Provided is a human power driving force detection apparatus for an electric bicycle which is capable of minimizing forward and backward power dispersion caused by a pedaling posture and detecting a force effectively which responds to a forward tensile force of a driving force transmission medium such as a chain. An elastic transformation portion (23a) is elastically transformed by a force applied thereto when a crank shaft (7a) is elastically transformed backwards by a reaction force to a forward tensile force of a chain (15) caused by a drive sprocket (13). A distortion detection sensor (24) is disposed at the elastic transformation portion (23a). The elastic transformation portion (23a) and the distortion detection sensor (24) are disposed toward a shaft center (7a') of the crank shaft (7a) from a backward position backwardly slanted from the shaft center (7a') of the crank shaft (7a) when viewed sideways.

Description

電動自転車の人力駆動力検出装置Electric bicycle power detection device
 本発明は電動自転車の人力駆動力検出装置に関する。 The present invention relates to a human power driving force detection device for an electric bicycle.
 バッテリなどの蓄電器と、この蓄電器から給電される電動モータとを有し、ペダルに加えられる踏力などの人力駆動力を、トルクセンサなどからなる人力駆動力検出装置により検出し、前記人力駆動力に、この人力駆動力に対応した電動モータの補助駆動力(アシスト力)を加えることで、上り坂等でも楽に走行できる電動自転車(電動アシスト自転車とも称せられる)は既に知られている。 It has a power storage device such as a battery and an electric motor fed from this power storage device. A human power driving force such as a pedaling force applied to the pedal is detected by a human power driving force detection device including a torque sensor and the like. In addition, an electric bicycle (also referred to as an electric assist bicycle) that can easily travel even on an uphill by applying an auxiliary driving force (assist force) of an electric motor corresponding to the human power driving force is already known.
 前記人力駆動力の検出方法の1例としては、左右のペダルを踏み込んだ際にクランク軸が捩れるため、クランク軸の捩れ状態や、クランク軸からの人力駆動力が伝達される円筒軸の捩れ状態を、磁歪式のトルクセンサにより検出することが行われている(特許文献1等)。なお、前記クランク軸や前記円筒軸(人力伝達回転軸と称す)はベアリング軸受などにより回転自在に支持されている。また、前記人力伝達回転軸に伝達された人力駆動力は、前記人力伝達回転軸に固定された人力駆動輪体としての駆動スプロケット(前スプロケットや前ギヤ、クランクスプロケットとも称せられる)に伝達された後、駆動スプロケットと後輪に取り付けられた従動輪体としての従動スプロケット(後スプロケットや後ギヤとも称せられる)とにわたって架け渡されたチェーンなどの駆動力伝達体を介して後輪に伝達される。 As an example of the method for detecting the manpower driving force, the crankshaft is twisted when the left and right pedals are depressed, so that the twisted state of the crankshaft and the twist of the cylindrical shaft to which the manpower driving force is transmitted from the crankshaft are described. The state is detected by a magnetostrictive torque sensor (Patent Document 1, etc.). The crankshaft and the cylindrical shaft (referred to as a manpower transmission rotary shaft) are rotatably supported by bearings or the like. Further, the manpower driving force transmitted to the manpower transmitting rotating shaft is transmitted to a driving sprocket (also referred to as a front sprocket, a front gear, or a crank sprocket) as a manpower driving wheel fixed to the manpower transmitting rotating shaft. Then, it is transmitted to the rear wheel via a driving force transmission body such as a chain spanned over the driving sprocket and a driven sprocket (also referred to as a rear sprocket or a rear gear) as a driven wheel attached to the rear wheel. .
 しかし、前記磁歪式のトルクセンサを用いて人力駆動力を検出する場合、この磁歪式のトルクセンサは、磁歪発生部の加工やコイルが必要であり、多くの製造コストがかかるとともに工程管理も難かしく、多くの手間や時間がかかる短所がある。 However, when detecting a human driving force using the magnetostrictive torque sensor, the magnetostrictive torque sensor requires processing of a magnetostriction generating portion and a coil, which requires a lot of manufacturing cost and difficult process control. However, it has many disadvantages and time.
 一方、後輪を回転させる人力駆動力は、駆動スプロケットによりチェーンなどの駆動力伝達体の上側部分を前方に引張る力が実質的に走行させる力として作用しているので、このような駆動力伝達体の前方への張力に対応する力を検出することができれば、実際に後輪を駆動するための人力駆動力を測定できる。また、簡単な構成により、前記駆動力伝達体の前方への張力に対応する力を検出することができれば、製造コストの低減化も図ることができるので、より望ましい。 On the other hand, the human-powered driving force that rotates the rear wheel acts as a force that causes the upper part of the driving force transmission body such as a chain to be moved forward by the driving sprocket. If the force corresponding to the forward tension of the body can be detected, the human driving force for actually driving the rear wheel can be measured. In addition, if it is possible to detect the force corresponding to the forward tension of the driving force transmission body with a simple configuration, it is more desirable because the manufacturing cost can be reduced.
 駆動力伝達体の前方への張力に対応する力を検出する方法の1例として、特許文献2に開示された電動自転車のトルク検出装置がある。電動自転車を含めた自転車では、走行時に、駆動スプロケットによってチェーンなどの駆動力伝達体を前方に引張る力が発生し、この反力によって、クランク軸が後方に弾性変形する。したがって、このような現象を応用して、図18に示すように、クランク軸101が後方に弾性変形しようとする力をクランク軸101から受けて支持する弾性変形部(支持板部)102を設け、この弾性変形部102に、その弾性変形量を検出する歪み検出センサ(歪みゲージ)103を取り付けている。なお、弾性変形部102および歪み検出センサ103は、クランク軸101の真後ろの位置(詳しくは、側面視して、クランク軸101から真後ろに延びる水平線上の位置)に配設されている。 An example of a method for detecting a force corresponding to a forward tension of a driving force transmission body is a torque detection device for an electric bicycle disclosed in Patent Document 2. In a bicycle including an electric bicycle, a force that pulls a driving force transmission body such as a chain forward is generated by a driving sprocket during traveling, and the crankshaft is elastically deformed backward by this reaction force. Therefore, by applying such a phenomenon, as shown in FIG. 18, an elastic deformation portion (support plate portion) 102 that receives and supports the force from which the crankshaft 101 is elastically deformed backward is provided. A strain detection sensor (strain gauge) 103 for detecting the amount of elastic deformation is attached to the elastic deformation portion 102. The elastic deformation portion 102 and the strain detection sensor 103 are disposed at a position immediately behind the crankshaft 101 (specifically, a position on a horizontal line extending from the crankshaft 101 as viewed from the side).
 また、これと類似する構成が特許文献3に開示されている。この特許文献3に開示されたトルク検出装置では、図19に示すように、クランク軸111を回転自在に支持するベアリング軸受112と、このベアリング軸受112を保持する支持部113との間に、センサスリーブ114を設けている。そして、センサスリーブ114におけるクランク軸111の真後ろに延びる水平線よりも少し上方(水平線よりも角度θだけ上方)となる位置に、歪みを検出するセンサチップ115を配設している。 Also, a similar configuration is disclosed in Patent Document 3. In the torque detection device disclosed in Patent Document 3, as shown in FIG. 19, a sensor is provided between a bearing bearing 112 that rotatably supports the crankshaft 111 and a support portion 113 that holds the bearing bearing 112. A sleeve 114 is provided. A sensor chip 115 for detecting distortion is disposed at a position slightly above the horizontal line extending just behind the crankshaft 111 in the sensor sleeve 114 (above an angle θ above the horizontal line).
特開平9-95289号公報JP-A-9-95289 特許4428825号公報Japanese Patent No. 4428825 特開平11-258078号公報Japanese Patent Laid-Open No. 11-258078
 しかしながら、図18や図19に示すように、クランク軸101、111からの力を受けて略後方に弾性変形する弾性変形部102やセンサスリーブ114に、その弾性変形量を検出する歪み検出センサ(歪みゲージ)103やセンサチップ115を取り付けた構成のものでは、左右のペダルを踏み込んだ際には、踏力によって、チェーンを介して駆動力(回転トルク)となる有効成分以外に、歪み検出センサ103やセンサチップ115への誤差信号となる前方または後方への分力が発生する。しかも、この誤差を生じる力は搭乗者が踏み込む、ペダルの角度の違いによっても変化するため、このような誤差を生じる力の影響を最小限に抑えるように較正することが望ましい。つまり、一般の自転車と同様に電動自転車でも、図20に簡略的に示すように、搭乗者は、クランク軸Kよりも前方では前側が少し上向きになった前上がり状態でペダルPを踏み、また、クランク軸Kよりも後方では前側が少し下向きになった前下がり状態でペダルPを踏む場合が多い。したがって、このようにペダルPを水平状態では踏み込まないことにより、歪み検出センサ103やセンサチップ115への誤差信号となる前方または後方への分力が発生するため、これらの前方または後方への分力の影響を最小限に抑えるように較正することが好ましい。 However, as shown in FIG. 18 and FIG. 19, a strain detection sensor (detecting the amount of elastic deformation of the elastic deformation portion 102 and the sensor sleeve 114 that elastically deforms substantially rearward by receiving the force from the crankshafts 101 and 111). In the configuration having the strain gauge 103 and the sensor chip 115 attached, when the left and right pedals are stepped on, the strain detection sensor 103 other than the effective component that becomes the driving force (rotational torque) through the chain by the pedaling force. As a result, a forward or backward component force that becomes an error signal to the sensor chip 115 is generated. Moreover, since the force that generates this error varies depending on the difference in the pedal angle that the passenger steps on, it is desirable to calibrate to minimize the influence of the force that generates such an error. That is, in an electric bicycle as well as a general bicycle, as shown in FIG. 20, the occupant depresses the pedal P in a front-up state in which the front side is slightly upward in front of the crankshaft K. In many cases, the pedal P is stepped on the rear side of the crankshaft K in a front-down state in which the front side is slightly downward. Therefore, by not depressing the pedal P in the horizontal state in this way, a forward or backward component force that becomes an error signal to the strain detection sensor 103 or the sensor chip 115 is generated. It is preferred to calibrate to minimize force effects.
 本発明は上記課題を解決するもので、ペダルを踏む姿勢に起因する前方や後方への分力の影響を最小限に抑えることができて、チェーンなどの駆動力伝達体を前方に引張る力に対応する力を良好に検出することができる電動自転車の人力駆動力検出装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and can minimize the influence of the forward and backward component forces caused by the pedaling posture, and can pull the driving force transmission body such as a chain forward. An object of the present invention is to provide a human-powered driving force detection device for an electric bicycle capable of detecting a corresponding force satisfactorily.
 上記課題を解決するために、本発明の電動自転車の人力駆動力検出装置は、後輪を回転駆動させるためのチェーンなどの駆動力伝達体が、クランク軸と一体的に回転する駆動スプロケットなどの人力駆動輪体と、後輪に取り付けられた従動輪体とにわたって架け渡され、ペダルからの踏力による人力駆動力に基づいて補助駆動力を付加可能に構成された電動自転車において、前記人力駆動輪体によって前記駆動力伝達体を前方に引張る力の反力によりクランク軸が後方へ弾性変形しようとする力を受けて弾性変形する弾性変形部を設け、この弾性変形部に、この弾性変形部の弾性変形量から前記人力駆動力を検出する歪み検出センサを取付け、前記弾性変形部および歪み検出センサを、側面視して、前記人力駆動輪体によって前記駆動力伝達体を前方に引張る方向と平行でクランク軸の軸心を通る線よりも斜め下方に傾斜した後方位置に配設したことを特徴とする。 In order to solve the above-described problem, the human-powered driving force detection device for an electric bicycle according to the present invention includes a driving sprocket or the like in which a driving force transmitting body such as a chain for rotating and driving a rear wheel rotates together with a crankshaft. In an electric bicycle that spans between a manpower driven wheel body and a driven wheel body attached to a rear wheel and is configured to be able to add an auxiliary driving force based on a manpower driving force by a pedaling force from a pedal, the manpower driving wheel An elastic deformation portion is provided that elastically deforms when the crankshaft is elastically deformed rearward by a reaction force of a force pulling the driving force transmission body forward by the body, and the elastic deformation portion is provided with the elastic deformation portion. A strain detection sensor for detecting the human driving force from the amount of elastic deformation is attached. The elastic deformation portion and the strain detection sensor are viewed from the side, and the driving force is transmitted by the human driving wheel. Characterized in that disposed in the rear position inclined obliquely downward from a line passing through an axis parallel crank axis direction to pull the body forward.
 上記構成において、搭乗者がペダルを踏み込んで走行する際に、搭乗者は、クランク軸よりも前方では前上り状態でペダルを踏み、また、クランク軸よりも後方では前下がり状態でペダルを踏む場合が多い。また、ペダルがクランク軸よりも前方に位置する箇所ではペダルを強く踏み込むために踏力は大きくなり、クランク軸よりも後方に位置する箇所では、ペダルに足を載せているだけで踏み込んでいない場合が多いため、踏力は小さくなる。したがって、弾性変形部に取り付けられる歪み検出センサを、側面視して、前記人力駆動輪体によって前記駆動力伝達体を前方に引張る方向と平行でクランク軸の軸心を通る線よりも斜め下方に傾斜した後方位置に配設すると、側面視して、前記人力駆動輪体によって前記駆動力伝達体を前方に引張る方向と平行でクランク軸の軸心を通る線上の後方位置に配設した場合よりも、ペダルを踏む姿勢に起因する前方や後方への分力の影響を抑えることができて、チェーンなどの駆動力伝達体を前方に引張る力に対応する力を良好に検出することができる。 In the above configuration, when the passenger depresses the pedal and travels, the passenger steps on the pedal in the front-up state before the crankshaft, and steps on the pedal in the front-down state behind the crankshaft. There are many. Also, when the pedal is located in front of the crankshaft, the pedaling force is stepped on strongly, so the pedaling force increases.In places where the pedal is located behind the crankshaft, the pedal is only placed on the pedal and not depressed. Since there are many, pedaling force becomes small. Therefore, the strain detection sensor attached to the elastically deforming portion is viewed from the side and is obliquely below the line passing through the axis of the crankshaft parallel to the direction in which the driving force transmitting body is pulled forward by the human power driving wheel. When arranged at an inclined rear position, as viewed from the side, it is parallel to the direction in which the driving force transmission body is pulled forward by the human-powered wheel body, and is disposed at a rear position on a line passing through the axis of the crankshaft. However, it is possible to suppress the influence of the forward and backward component forces resulting from the pedaling posture, and it is possible to detect well the force corresponding to the force pulling the driving force transmission body such as a chain forward.
 つまり、ペダルがクランク軸よりも前方に位置する箇所ではペダルを強く踏み込む一方で、クランク軸よりも後方に位置する箇所では踏力は小さくなるので、仮に、ペダルがクランク軸よりも前方に位置する箇所だけでペダルからの踏力が発生し、クランク軸よりも後方に位置する箇所では、ペダルへの踏力が発生しない場合を簡略的な例として想定し、ペダルがクランク軸よりも前方に位置する箇所でのペダルの角度が一定である場合を考える。この場合、歪み検出センサをペダルの傾斜姿勢に沿ったようなクランク軸より後方の傾斜状態として力を検出する配置状態とすることで、すなわち、人力駆動輪体によってチェーンなどの駆動力伝達体が水平方向に引張られる場合には、側面視してクランク軸の真後ろの水平方向線よりも斜め下方に傾斜した位置に歪み検出センサを配設することで、ペダルが水平の状態で漕がれた場合と同様の、ペダルの傾斜角に影響され難い、チェーンなどの駆動力伝達体を前方に引張る力に対応する力を測定可能となる。 In other words, while the pedal is stepped on strongly in front of the crankshaft, the pedaling force is reduced in the position behind the crankshaft, so the pedal is located in front of the crankshaft. As a simple example, it is assumed that the pedaling force from the pedal is generated and the pedaling force is not generated at the location located behind the crankshaft, and the pedal is located ahead of the crankshaft. Consider the case where the pedal angle is constant. In this case, the strain detection sensor is placed in an arrangement state in which the force is detected as an inclination state behind the crankshaft along the inclination posture of the pedal, that is, the driving force transmission body such as a chain is detected by the human-powered wheel body. When pulled in the horizontal direction, the pedal is twisted in a horizontal state by disposing the strain detection sensor at a position inclined obliquely below the horizontal line directly behind the crankshaft in side view. As in the case, it is possible to measure a force corresponding to a force that pulls a driving force transmission body such as a chain forward, which is hardly influenced by the inclination angle of the pedal.
 なお、歪み検出センサの取付構造としては、フレームに固定されたハンガー部内に、クランク軸を回転自在に支持する軸受を配設し、ハンガー部と軸受との間に、軸受に後方から当接して弾性変形可能な弾性変形部を有するセンサ支持部材を取付け、このセンサ支持部材の弾性変形部に歪み検出センサを取付けると好適である。また、前記センサ支持部材を、前記弾性変形部が薄肉となるように平面形状に切欠かれたリング形状部品で構成すると好適である。また、前記弾性変形部および歪み検出センサを1つだけ設け、また、その場合に、前記弾性変形部および歪み検出センサを、左右方向における前記人力駆動輪体が取り付けられた側に設けると、少ない部品点数で安価に構成できる。一方、前記弾性変形部および歪み検出センサを、左右方向における前記人力駆動輪体が取り付けられた側と、左右方向における前記人力駆動輪体が取り付けられていない側との、複数の箇所に設けると、部品点数は多くなるが、測定精度を向上させることが可能となる。 As a mounting structure for the strain detection sensor, a bearing that rotatably supports the crankshaft is disposed in a hanger portion fixed to the frame, and the bearing is in contact with the bearing from behind between the hanger portion and the bearing. It is preferable that a sensor support member having an elastically deformable portion that can be elastically deformed is attached, and a strain detection sensor is attached to the elastically deformable portion of the sensor support member. Further, it is preferable that the sensor support member is constituted by a ring-shaped part cut out in a planar shape so that the elastically deforming portion is thin. Further, only one elastic deformation portion and strain detection sensor are provided, and in that case, if the elastic deformation portion and strain detection sensor are provided on the side on which the human-powered wheel body is attached in the left-right direction, the number is small. It can be configured inexpensively with the number of parts. On the other hand, when the elastic deformation portion and the strain detection sensor are provided at a plurality of locations on the side where the human-powered wheel body is attached in the left-right direction and on the side where the human-powered wheel body is not attached in the left-right direction. Although the number of parts increases, the measurement accuracy can be improved.
 また、本発明は、人力駆動輪体に架け渡された駆動力伝達体の上側部分が、後方ほど低くなるように傾斜して配設されている場合には、この傾斜して引張る方向と水平線方向との差の傾斜角だけ、歪み検出センサの設置角が増加するように、歪み検出センサおよび弾性変形部を配設したことを特徴とする。 Further, in the present invention, when the upper portion of the driving force transmission body spanned over the human-powered driving wheel is disposed so as to be lowered toward the rear, this inclined direction and the horizontal line The strain detection sensor and the elastic deformation portion are arranged so that the installation angle of the strain detection sensor is increased by the inclination angle that is the difference from the direction.
 この構成により、人力駆動輪体に対する駆動力伝達体の架け渡した姿勢に適した位置に歪み検出センサおよび弾性変形部を配設することができて、駆動力伝達体を前方に引張る力に対応する力を良好に検出することができる。 With this configuration, the strain detection sensor and the elastically deformable portion can be arranged at a position suitable for the posture where the driving force transmission body is stretched over the manpower driving wheel body, so that it can handle the force that pulls the driving force transmission body forward. Can be detected well.
 また、前記歪み検出センサの配設位置は、前記人力駆動輪体によって前記駆動力伝達体を前方に引張る方向と平行でクランク軸の軸心を通る線からの斜め下方の傾斜角が10度以上15度以下であると好適である。 The strain detection sensor is disposed at an inclination angle of 10 degrees or more obliquely from a line passing through the axis of the crankshaft parallel to the direction in which the driving force transmitting body is pulled forward by the human-powered driving wheel. It is suitable that it is 15 degrees or less.
 本発明によれば、弾性変形部および歪み検出センサを、側面視して、人力駆動輪体によって駆動力伝達体を引張る方向と平行でクランク軸の軸心を通る線よりも斜め下方に傾斜した後方位置に配設したことにより、ペダルを踏む姿勢に起因する前方や後方への分力の影響を抑えることができて、チェーンなどの駆動力伝達体を前方に引張る力に対応する力を良好に検出することができる。 According to the present invention, the elastically deformable portion and the strain detection sensor are inclined obliquely downward from a line passing through the axis of the crankshaft in parallel with the direction in which the driving force transmission body is pulled by the human-powered driving wheel when viewed from the side. By arranging it in the rear position, it is possible to suppress the influence of the forward and rear component force caused by the pedaling posture, and the force corresponding to the force pulling the driving force transmission body such as the chain forward is good Can be detected.
本発明の実施の形態に係る人力駆動力検出装置を備えた電動自転車の全体側面図The whole side view of the electric bicycle provided with the manpower driving force detecting device concerning an embodiment of the invention 同電動自転車の側面図Side view of the electric bicycle 同電動自転車の制御ユニットの平面断面図Plan sectional view of the control unit of the electric bicycle 同電動自転車の制御ユニットの側面断面図Side sectional view of the control unit of the electric bicycle 同電動自転車の人力駆動力検出装置の側面断面図Side sectional view of the human-powered driving force detection device for the electric bicycle 同電動自転車のペダルからの踏力のかかり状態を概略的に示す図The figure which shows roughly the state where the pedaling force is applied from the pedal of the electric bicycle 同電動自転車のクランク、軸受およびペダルの位置関係を概略的に示す図The figure which shows roughly the positional relationship of the crank, bearing and pedal of the electric bicycle センサ設置角が0度である場合の、クランク角に対するチェーン張力比率を示す図The figure which shows the chain tension ratio to the crank angle when the sensor installation angle is 0 degree センサ設置角が5度である場合の、クランク角に対するチェーン張力比率を示す図Diagram showing the chain tension ratio to crank angle when the sensor installation angle is 5 degrees センサ設置角が10度である場合の、クランク角に対するチェーン張力比率を示す図The figure which shows the chain tension ratio to the crank angle when the sensor installation angle is 10 degrees センサ設置角が12.5度である場合の、クランク角に対するチェーン張力比率を示す図The figure which shows the chain tension ratio to the crank angle when the sensor installation angle is 12.5 degrees センサ設置角が15度である場合の、クランク角に対するチェーン張力比率を示す図The figure which shows the chain tension ratio to the crank angle when the sensor installation angle is 15 degrees センサ設置角が20度である場合の、クランク角に対するチェーン張力比率を示す図The figure which shows the chain tension ratio to the crank angle when the sensor installation angle is 20 degrees クランク角に対するペダル角度の変動状態を概略的に示す図The figure which shows roughly the fluctuation state of the pedal angle with respect to the crank angle センサ設置角とチェーン張力比率との関係を示す図Diagram showing the relationship between sensor installation angle and chain tension ratio 人力駆動力と補助駆動力とチェーン張力(合計駆動力)との関係を示す図The figure which shows the relationship between manpower driving force, auxiliary driving force, and chain tension (total driving force) 制御部における、人力駆動力に係る人力駆動力を算出する演算処理部を概念的に示すブロック図The block diagram which shows notionally the arithmetic processing part which calculates the manpower driving force which concerns on the manpower driving force in a control part 従来の人力駆動力検出装置の側面図Side view of a conventional human driving force detection device その他の従来の人力駆動力検出装置の側面図Side view of other conventional human power driving force detection devices クランク軸とペダルとの関係を示す図Diagram showing relationship between crankshaft and pedal
 以下、本発明の実施の形態に係る電動自転車について図面に基づき説明する。なお、以下の説明における左右とは、電動自転車に搭乗して前方(進行方向)に向いた状態での左右方向をいう。図1、図2における1は本発明の実施の形態に係る電動自転車である。図1、図2に示すように、この電動自転車1は、ヘッドパイプ2a、前フォーク2b、メインパイプ2c、立パイプ2d、チェーンステー2e、シートステー2fなどからなる金属製のフレーム2と、前フォーク2bの下端に回転自在に取り付けられた前輪3と、チェーンステー2eの後端に回転自在に取り付けられた後輪4と、前輪3の向きを変更するハンドル5と、サドル6と、クランク軸7aおよびクランクアーム7bからなるクランク7と、クランク7の両端部に回転自在に取り付けられ、人力駆動力としての踏力が加えられる左右のペダル8と、補助駆動力(アシスト力)を発生させる電動モータ10と、電動モータ10を含めた各種の電気的制御を行う制御部11と、電動モータ10に駆動用の電力を供給する二次電池からなるバッテリ12と、ハンドル5などに取り付けられて、搭乗者などが操作可能な手元操作部(図示せず)と、クランク7と一体的に回転するように取り付けられた人力駆動輪体としての駆動スプロケット(前スプロケットや前ギヤ、クランクスプロケットやクランクギヤとも称せられる)13と、後輪4のハブ(後ハブとも称する)9に取り付けられた従動輪体としての従動スプロケット(後スプロケットや後ギヤ、後輪ギヤとも称せられる)14と、駆動スプロケット13と従動スプロケット14とにわたって架け渡された無端状の駆動力伝達体としてのチェーン15と、チェーン15などを側方から覆うチェーンカバー21などを備えている。 Hereinafter, an electric bicycle according to an embodiment of the present invention will be described with reference to the drawings. Note that the left and right in the following description refers to the left and right direction in a state of riding on an electric bicycle and facing forward (traveling direction). 1 in FIG. 1 and FIG. 2 is an electric bicycle according to an embodiment of the present invention. As shown in FIGS. 1 and 2, this electric bicycle 1 includes a metal frame 2 including a head pipe 2a, a front fork 2b, a main pipe 2c, a standing pipe 2d, a chain stay 2e, a seat stay 2f, and the like, A front wheel 3 rotatably attached to the lower end of the fork 2b, a rear wheel 4 rotatably attached to the rear end of the chain stay 2e, a handle 5 for changing the direction of the front wheel 3, a saddle 6, and a crankshaft 7a and a crank arm 7b, a left and right pedal 8 to which a pedaling force as a manual driving force is applied, and an electric motor that generates an auxiliary driving force (assist force). 10, a control unit 11 that performs various electrical controls including the electric motor 10, and a secondary battery that supplies driving electric power to the electric motor 10. A hand operating part (not shown) which is attached to the battery 12, the handle 5 and the like and can be operated by a passenger, etc., and a driving sprocket as a manpower driven wheel attached so as to rotate integrally with the crank 7 (Also referred to as front sprocket, front gear, crank sprocket or crank gear) 13 and driven sprocket (rear sprocket or rear gear, rear wheel) as a driven wheel attached to a hub 9 (also referred to as rear hub) 9 14) (also referred to as a wheel gear), a chain 15 as an endless driving force transmission member spanning the drive sprocket 13 and the driven sprocket 14, and a chain cover 21 that covers the chain 15 and the like from the side. Yes.
 そして、ペダル8に人力駆動力である踏力が加えられると、クランク7がクランク軸7aを中心に回転し、この人力駆動力が、駆動スプロケット13、チェーン15、および従動スプロケット14を介して後輪4に伝達されて回転される。なお、この実施の形態では、駆動スプロケット13の上端部分と従動スプロケット14の上端部分とにわたって架け渡されたチェーン15の上側部分が、水平線に沿う姿勢で配設されている。また、電動モータ10が、前輪3の中心部に配設されている金属製のハブ(以下、前ハブとも称する)16に内蔵されている。また、バッテリ12は蓄電器の一例であり、二次電池が好適であるが、蓄電器の他の例としてはキャパシタなどであってもよい。 When a pedaling force, which is a manpower driving force, is applied to the pedal 8, the crank 7 rotates about the crankshaft 7a, and this manpower driving force is transmitted to the rear wheel via the drive sprocket 13, the chain 15, and the driven sprocket 14. 4 is rotated. In this embodiment, the upper portion of the chain 15 that spans the upper end portion of the drive sprocket 13 and the upper end portion of the driven sprocket 14 is arranged in a posture along the horizontal line. The electric motor 10 is built in a metal hub (hereinafter also referred to as a front hub) 16 disposed at the center of the front wheel 3. In addition, the battery 12 is an example of a capacitor, and a secondary battery is preferable. However, another example of the capacitor may be a capacitor.
 図3、図4に示すように、制御部11は、左右2つ割のユニットケース22a、22bにより外殻部が構成されている制御ユニット22の、中央部から後部に設けられた制御空間部22cに配設されている。図2に示すように、制御ユニット22は、電動自転車1の中央下部に、チェーンステー2eの前端部とメインパイプ2cの後端部と立パイプ2dの下端部とを連結するように配設された支持ブラケット19やこの支持ブラケット19などに固着された円筒形状のハンガー部20などを介して吊り下げられた姿勢で支持されている。制御部11は、電動自転車1の各構成要素(電動モータ10を含む)の制御を行う制御基板や記憶回路などから構成されている。図3、図4に示すように、制御ユニット22の前部には、クランク軸7aが横方向(左右の水平方向)に挿通されているとともにクランク軸7aを回転自在に支持する軸受25、26が配設されている略円筒形状のクランク軸挿通部22dが設けられており、このクランク軸挿通部22dの大部分は、ハンガー部20に挿入された状態で支持されている。また、右のクランクアーム7bにおける、クランク軸7aに嵌まり込んでいる部分に、駆動スプロケット13がクランク軸7aと一体的に回転するように取り付けられている。 As shown in FIG. 3 and FIG. 4, the control unit 11 is a control space portion provided from the center to the rear of the control unit 22 whose outer shell is constituted by the left and right unit cases 22 a and 22 b. 22c. As shown in FIG. 2, the control unit 22 is arranged at the center lower part of the electric bicycle 1 so as to connect the front end of the chain stay 2e, the rear end of the main pipe 2c, and the lower end of the standing pipe 2d. It is supported in a suspended posture through the support bracket 19 and a cylindrical hanger portion 20 fixed to the support bracket 19 and the like. The control unit 11 includes a control board and a storage circuit that control each component (including the electric motor 10) of the electric bicycle 1. As shown in FIGS. 3 and 4, a crankshaft 7a is inserted in the front portion of the control unit 22 in the lateral direction (left and right horizontal direction), and bearings 25 and 26 that rotatably support the crankshaft 7a. A crankshaft insertion portion 22d having a substantially cylindrical shape is provided, and most of the crankshaft insertion portion 22d is supported in a state of being inserted into the hanger portion 20. In addition, the drive sprocket 13 is attached to a portion of the right crank arm 7b fitted into the crankshaft 7a so as to rotate integrally with the crankshaft 7a.
 制御ユニット22のクランク軸挿通部22dには、駆動スプロケット13によってチェーン15を前方に引張る力の反力によりクランク軸7aが後方へ弾性変形しようとする力を受けて弾性変形する弾性変形部23aが設けられている。そして、この弾性変形部23aに、この弾性変形部23aの弾性変形量から前記人力駆動力を検出する歪み検出センサ24を取付けている。前記弾性変形部23aは、制御ユニット22のクランク軸挿通部22dにおける右側、すなわち、駆動スプロケット13に近い側に配設されている軸受26と、右側のユニットケース22bにおけるクランク軸挿通部22dの外殻部をなす筒状部との間に配設された、センサ支持部材としての略リング形状のセンサリング23の一部に形成されている。つまり、センサリング23における一部の外周側が平面形状に切欠かれて薄肉部が形成され、この薄肉部により弾性変形部23aが構成されている。そして、これらの弾性変形部23aと歪み検出センサ24とにより、弾性変形部23aの平面部分やこれに沿って配設されている歪み検出センサ24の表面部分にほぼ直交する方向の力を感度良く検出し、弾性変形部23aの平面部分や歪み検出センサ24の表面部分に沿う方向(ほぼチェーン15に直交する方向、上下方向)への力は殆ど検出しない(キャンセルする)よう構成されている。センサリング23の弾性変形部23aの平面部分に直交する方向の感度と沿う方向の感度との比は、例えば50~200:1となる応力分布を有する。歪み検出センサ24としては、わずかな変位、すなわち微小な応力に対しても良好に検知できる、高感度で、かつ機械的に高い耐力を有するMEMS(Micro Electro Mechanical System)を応用した荷重センサを用いることが好ましい。また、この実施の形態では、弾性変形部23aおよび歪み検出センサ24は、左右方向における前記人力駆動輪体が取り付けられた側だけに、すなわち1つだけしか設けられていない。 The crankshaft insertion portion 22d of the control unit 22 has an elastic deformation portion 23a that is elastically deformed by receiving a force that causes the crankshaft 7a to be elastically deformed rearward by a reaction force of pulling the chain 15 forward by the drive sprocket 13. Is provided. And the distortion detection sensor 24 which detects the said human-power driving force from the elastic deformation amount of this elastic deformation part 23a is attached to this elastic deformation part 23a. The elastic deformation portion 23a is formed on the right side of the crankshaft insertion portion 22d of the control unit 22, that is, on the side close to the drive sprocket 13, and outside the crankshaft insertion portion 22d in the right unit case 22b. It is formed on a part of a substantially ring-shaped sensor ring 23 as a sensor support member, which is disposed between the cylindrical portion forming the shell portion. That is, a part of the outer peripheral side of the sensor ring 23 is notched in a planar shape to form a thin portion, and the thin portion constitutes an elastic deformation portion 23a. The elastic deformation portion 23a and the strain detection sensor 24 allow the force in a direction substantially orthogonal to the plane portion of the elastic deformation portion 23a and the surface portion of the strain detection sensor 24 disposed along the elastic deformation portion 23a with high sensitivity. It is configured so that almost no force is detected (cancelled) in the direction along the plane portion of the elastic deformation portion 23a and the surface portion of the strain detection sensor 24 (the direction substantially perpendicular to the chain 15 and the vertical direction). The ratio of the sensitivity in the direction perpendicular to the plane portion of the elastic deformation portion 23a of the sensor ring 23 and the sensitivity in the direction along the direction has a stress distribution of, for example, 50 to 200: 1. As the strain detection sensor 24, a load sensor using a micro electro mechanical system (MEMS) having high sensitivity and mechanically high proof stress that can be well detected even for a slight displacement, that is, a minute stress is used. It is preferable. Further, in this embodiment, only one elastic deformation portion 23a and strain detection sensor 24 are provided on the side where the human-powered wheel body is attached in the left-right direction, that is, only one.
 ここで、弾性変形部23aおよび歪み検出センサ24は、図4、図5に示すように、側面視してクランク軸7aの軸心7a’から(詳しくは軸心7a’を通る水平線Hから)斜め下方に傾斜した後方位置に設けられ、より詳しくは、歪み検出センサ24に直交する線が前記後方位置からクランク軸7aの軸心7a’を通る姿勢で配設されている。特にこの実施の形態では、クランク軸7aの軸心7a’を通る水平線Hと、歪み検出センサ24が配設された斜め下方に傾斜する線との角度差である傾斜角が、10度以上15度以下となるように歪み検出センサ24が配設されている。なお、図5においては、理解し易くするために、センサリング23および歪み検出センサ24などからなる人力駆動力検出装置の部分を大きめに示している。 Here, as shown in FIGS. 4 and 5, the elastic deformation portion 23 a and the strain detection sensor 24 are viewed from the axis 7 a ′ of the crankshaft 7 a as viewed from the side (specifically, from the horizontal line H passing through the axis 7 a ′). More specifically, a line orthogonal to the strain detection sensor 24 is disposed in a posture that passes through the axis 7a ′ of the crankshaft 7a from the rear position. In particular, in this embodiment, the inclination angle which is the angle difference between the horizontal line H passing through the axis 7a ′ of the crankshaft 7a and the line inclined obliquely downward where the strain detection sensor 24 is disposed is 10 degrees or more and 15 degrees. The strain detection sensor 24 is disposed so as to be less than or equal to the degree. In FIG. 5, for the sake of easy understanding, the portion of the human power driving force detection device including the sensor ring 23 and the strain detection sensor 24 is shown in a larger size.
 上記構成において、搭乗者がペダル8を踏み込んで走行する際に、搭乗者は、図6に示すように、クランク軸7aよりも前方では前上がり状態でペダル8を踏み、また、クランク軸7aよりも後方では前下がり状態でペダル8を踏む場合が多い。また、ペダル8がクランク軸7aよりも前方に位置する箇所ではペダル8を強く踏み込むために踏力は大きくなり、クランク軸7aよりも後方に位置する箇所では、ペダル8に足を載せているだけで踏み込んでいない場合が多いため、踏力は小さくなる。したがって、図5に示すように、弾性変形部23aに取り付けられる歪み検出センサ24を、側面視してクランク軸7aの真後ろの水平方向線よりも斜め下方に傾斜した位置に配設すると、側面視してクランク軸7aの真後ろの水平方向線上に配設した場合よりも、ペダル8を踏む姿勢に起因する前方や後方への分力の影響を抑えることができて、チェーン15を前方に引張る力に対応する力を良好に検出することができる。 In the above configuration, when the occupant travels while stepping on the pedal 8, as shown in FIG. 6, the occupant steps on the pedal 8 in a front-up state before the crankshaft 7a, and from the crankshaft 7a. In many cases, however, the pedal 8 is stepped forward and lowered. Further, when the pedal 8 is positioned forward of the crankshaft 7a, the pedal 8 is strongly depressed, and therefore the pedaling force is increased. At a position positioned rearward of the crankshaft 7a, only the foot is placed on the pedal 8. Since there are many cases where the pedal is not depressed, the pedaling force is reduced. Therefore, as shown in FIG. 5, when the strain detection sensor 24 attached to the elastic deformation portion 23a is disposed at a position inclined obliquely below the horizontal line directly behind the crankshaft 7a when viewed from the side, Thus, the force of pulling the chain 15 forward can be reduced because the influence of the forward or backward component force caused by the posture of the pedal 8 can be suppressed as compared with the case where it is disposed on the horizontal line immediately behind the crankshaft 7a. Can be detected well.
 つまり、仮に、ペダル8がクランク軸7aよりも前方に位置する箇所だけでペダル8からの踏力が発生し、クランク軸7aよりも後方に位置する箇所では、ペダル8への踏力が発生しない場合を簡略的な例として想定し、ペダル8がクランク軸7aよりも前方に位置する箇所でのペダル8の角度δが一定である場合を考える。この場合に、歪み検出センサ24をペダル8の傾斜姿勢に沿ったようなクランク軸7aより後方の傾斜状態として力を検出すると、すなわち、側面視してクランク軸7aの真後ろに延びる水平方向線(つまり、駆動スプロケット13によってチェーン15を前方に引張る方向と平行でクランク軸7aの軸心7a’を通る線)よりも斜め下方に傾斜した位置からクランク軸7aの軸心に向けて歪み検出センサ25を配設すると、ペダル8が水平の状態で漕がれた場合と同様の、ペダル8の傾斜角δに影響され難い、チェーン15などの駆動力伝達体を前方に引張る力に対応する力を測定可能となる。 That is, suppose that the pedaling force from the pedal 8 is generated only at the position where the pedal 8 is located forward of the crankshaft 7a, and the pedaling force to the pedal 8 is not generated at the position positioned behind the crankshaft 7a. As a simple example, let us consider a case where the angle δ of the pedal 8 is constant at a position where the pedal 8 is located in front of the crankshaft 7a. In this case, when the force is detected by setting the strain detection sensor 24 in a tilted state behind the crankshaft 7a along the tilted posture of the pedal 8, that is, a horizontal line extending right behind the crankshaft 7a in side view ( That is, the strain detection sensor 25 is directed from the position inclined parallel to the direction in which the chain 15 is pulled forward by the drive sprocket 13 and obliquely below the axis of the crankshaft 7a toward the axis of the crankshaft 7a. When the pedal 8 is disposed, a force corresponding to the force that pulls the driving force transmission body such as the chain 15 forward, which is not easily affected by the inclination angle δ of the pedal 8, as in the case where the pedal 8 is rolled in a horizontal state. It becomes possible to measure.
 なお、実際には、クランク軸7aに作用する力と、駆動スプロケット13によってチェーン15の上側部分を前方に引張る力とは、ペダル8を踏む際の角度に起因するもの以外にも、以下のような誤差要因を有する。 Actually, the force acting on the crankshaft 7a and the force pulling the upper portion of the chain 15 forward by the drive sprocket 13 are as follows, in addition to those caused by the angle when the pedal 8 is stepped on. It has various error factors.
 すなわち、(ア)左右のペダル8にかかる軸受荷重の差を生じるとともに、(イ)ペダル8を踏み込む際には、クランク軸7aより前方に位置するペダル8(ドライブ側のペダル8とも称す)に大きな力を加えるが、クランク軸7aより後方に位置するペダル8(非ドライブ側ペダル8とも称す)にも足を載せているため、この足載せ荷重に起因する誤差も生じる。(ウ)また、チェーン15の上側部分は、駆動スプロケット13の上端部分と従動スプロケット14の上端部分とにわたって架け渡されているが、このチェーン15の上側部分は、必ずしも水平線に沿う姿勢で配設されてはいない。したがって、チェーン15の上側部分が傾斜して配設されている場合には、この傾斜角も誤差要因となる。 That is, (a) a difference in bearing load is applied to the left and right pedals 8 and (a) when the pedal 8 is depressed, a pedal 8 (also referred to as a drive-side pedal 8) located in front of the crankshaft 7a is used. Although a large force is applied, since the foot is also placed on the pedal 8 (also referred to as the non-drive side pedal 8) located behind the crankshaft 7a, an error caused by this foot load also occurs. (C) The upper portion of the chain 15 is spanned across the upper end portion of the drive sprocket 13 and the upper end portion of the driven sprocket 14, but the upper portion of the chain 15 is always arranged in a posture along the horizontal line. It has not been done. Therefore, when the upper portion of the chain 15 is disposed to be inclined, this inclination angle also becomes an error factor.
 以上の、ペダル8を踏む際の角度に起因する誤差要因に、上記(ア)、(イ)の誤差要因を加えた誤差要因を排除するものとして、ペダル8への踏力に基づく複合荷重とチェーン15の張力との関係を、図7に示すように、クランク軸7aの2点支持構造の単純化したモデルを想定して、相関式を用いて誤差率を求めた。なお、添え字のDはドライブ側のペダル8を意味し、添え字のNは非ドライブ側のペダル8を意味し、添え字のLは左側のペダル8を意味し、添え字のRは右側のペダル8を意味する。 The compound load and chain based on the pedaling force on the pedal 8 are excluded as the above-mentioned error factors resulting from adding the error factors (A) and (B) above to the error factors resulting from the angle when the pedal 8 is depressed. As shown in FIG. 7, the error rate was obtained using a correlation equation assuming a simplified model of the two-point support structure of the crankshaft 7a. The subscript D means the drive side pedal 8, the subscript N means the non-drive side pedal 8, the subscript L means the left pedal 8, and the subscript R means the right side. The pedal 8 is meant.
 クランクアーム7bの有効長をL、クランク角(ドライブ側のペダル8が組み付けられたクランクアーム7bがクランク軸7aから真上に延びる線と交わる角度)をθ度、ドライブ側のペダル8の、踏力をP(Nm)、トルクをT、ペダル角をδ度とすると、
=L・P・sin(θ+δ
であり、非ドライブ側のペダル8の踏力をP(Nm)、トルクをT、ペダル角をδとすると、
=L・P・sin(δ+180-θ)=L・P・sin(180+δ+-θ)
=L・P・sin(-(θ-δ-180))
=-L・P・sin(θ-δ-180)
=L・P・sin(θ-δ
である。
The effective length of the crank arm 7b is L, the crank angle (the angle at which the crank arm 7b on which the drive-side pedal 8 is assembled and the line extending right above the crankshaft 7a) is θ degrees, and the pedaling force of the drive-side pedal 8 is Is P D (Nm), torque is T D , and pedal angle is δ D degrees,
T D = L · P D · sin (θ + δ D )
When the pedaling force of the non-drive pedal 8 is P N (Nm), the torque is T N , and the pedal angle is δ N ,
T N = L · P N · sin (δ N + 180−θ) = L · P N · sin (180 + δ N + −θ)
= L · P N · sin (− (θ−δ N −180))
= -L · P N · sin (θ-δ N -180)
= L · P N · sin (θ-δ N )
It is.
 また、ドライブ側のペダル8の水平分力PDH
DH=P・sinδ
非ドライブ側のペダル8の水平分力PNH
NH=P・sinδ
である。
Further, the horizontal component force P DH of the pedal 8 on the drive side is P DH = P D · sin δ D
The horizontal component P NH of the pedal 8 on the non-drive side is P NH = P N · sin δ N
It is.
 チェーン15の張力に対する歪み検出センサ24を取り付けている右側の軸受26に作用する水平分力の割合であるチェーン張力比率(チェーン張力に対する歪み検出センサ24の検出値の誤差比率)εは、以下のような式となる。ここで、標準的な自転車の寸法として、歪み検出センサ24の設置角(傾斜角)をα度、歪み検出センサ24の検出荷重をP(Nm)、チェーン15の張力をP(Nm)、駆動スプロケット13の直径D=0.133m、クランク軸7aの軸受25、26間距離L=84.3mm、チェーン15と右側の軸受26との間の距離L=16.1mm、右側のペダル8と右側の軸受26との間の距離L=123.3mm、左側のペダル8と左側の軸受25との間の距離L=111.6mmとする(図7参照)。また、ε’LAは右側の軸受26に作用する左側のペダル8が駆動側ペダルである時の誤差、ε”RAは右側の軸受26に作用する右側のペダル8が駆動側ペダルである時の誤差である。
(式1)
 ε’LA=P’AS/P
={2.95・P・sin(θ+δ)・cosα-2.95・P・sin(θ-δ)・cosα+2.46・P・sin(δ+α)+1.32・P・sin(δ-α)}/{(2L/D)・{P・sin(θ+δ)-P・sin(θ-δ)}
であり、
(式2)
ε”RA=P”AS/P
={2.95・P・sin(θ+δ)・cosα-2.95・P・sin(θ-δ)・cosα-2.46・P・sin(δ-α)-1.32・P・sin(δ+α)}/{(2L/D)・{P・sin(θ+δ)-P・sin(θ-δ)}
である。
The chain tension ratio (error ratio of the detection value of the strain detection sensor 24 to the chain tension) ε, which is the ratio of the horizontal component force acting on the right bearing 26 to which the strain detection sensor 24 is attached to the tension of the chain 15, is expressed as follows: It becomes an expression like this. Here, as standard bicycle dimensions, the installation angle (tilt angle) of the strain detection sensor 24 is α degrees, the detection load of the strain detection sensor 24 is P A (Nm), and the tension of the chain 15 is P C (Nm). The diameter D of the drive sprocket 13 is 0.133 m, the distance L O = 84.3 mm between the bearings 25 and 26 of the crankshaft 7a, the distance L C = 16.1 mm between the chain 15 and the right bearing 26, The distance L R between the pedal 8 and the right bearing 26 is 123.3 mm, and the distance L L between the left pedal 8 and the left bearing 25 is 111.6 mm (see FIG. 7). Also, ε ′ LA is an error when the left pedal 8 acting on the right bearing 26 is a drive side pedal, and ε ″ RA is an error when the right pedal 8 acting on the right bearing 26 is a drive side pedal. It is an error.
(Formula 1)
ε 'LA = P' AS / P C
= {2.95 · P D · sin (θ + δ D) · cosα-2.95 · P N · sin (θ-δ N) · cosα + 2.46 · P N · sin (δ N + α) +1.32 · P D · sin (δ D −α)} / {(2L / D) · {P D · sin (θ + δ D ) −P N · sin (θ−δ N )}
And
(Formula 2)
ε "RA = P" AS / P C
= {2.95 · P D · sin (θ + δ D ) · cos α−2.95 · P N · sin (θ−δ N ) · cos α−2.46 · P D · sin (δ D −α) −1 .32 · P N · sin (δ N + α)} / {(2L / D) · {P D · sin (θ + δ D ) −P N · sin (θ−δ N )}
It is.
 図8~図13はそれぞれ、前記式1、式2に基づく、クランク角に対するチェーン張力比率を示す図であり、図8は歪み検出センサ24の設置角αが0度の場合、図9~図13は、順に、設置角αが5度、10度、12.5度、15度、20度の場合を示す。なお、これらの図は、ドライブ側のペダル8に、非ドライブ側のペダル8への荷重の5倍の荷重が作用している場合の値を示している。 8 to 13 are diagrams showing the chain tension ratio with respect to the crank angle based on the equations 1 and 2, respectively. FIG. 8 shows the case where the installation angle α of the strain detection sensor 24 is 0 degree, and FIGS. Reference numeral 13 denotes a case where the installation angle α is 5 degrees, 10 degrees, 12.5 degrees, 15 degrees, and 20 degrees in order. These figures show values when a load five times larger than the load applied to the non-drive pedal 8 is applied to the drive pedal 8.
 図8に示すように、歪み検出センサ24の設置角αが0度であり、かつ、ペダル8の傾斜角δが0度である場合(すなわち、水平線に沿った前後方向の力が作用しない場合)には、クランク角θが約10度以上の範囲では、チェーン張力比率が、チェーン15の実際の引張り力の1.19倍に近い一定値(以下、比率基準とも称し、この値は、チェーン15と左側の軸受25との間の距離/軸受25、26間の距離、すなわち、(LC+LO)/LOである)となり、歪み検出センサ24によりチェーン15の実際の引張り力を誤差無く安定して測定することができる。しかしながら、ペダル8の傾斜角δが増加するにつれて、チェーン張力比率が前記比率基準から大きく乖離してしまう。また、図9~図13に示すように、歪み検出センサ24の設置角αが大きくなるにつれて、ペダル8の傾斜角δが大きい場合のチェーン張力比率εが、前記比率基準に近づく一方で、ペダル8の傾斜角δが小さい場合のチェーン張力比率εが、前記比率基準から離れる。 As shown in FIG. 8, when the installation angle α of the strain detection sensor 24 is 0 degree and the inclination angle δ of the pedal 8 is 0 degree (that is, when the force in the front-rear direction along the horizon does not act) ), In a range where the crank angle θ is about 10 degrees or more, the chain tension ratio is a constant value close to 1.19 times the actual tensile force of the chain 15 (hereinafter also referred to as a ratio reference, and this value is 15 and the distance between the bearings 25 and 26, that is, the distance between the bearings 25 and 26 (ie, (LC + LO) / LO), and the strain detection sensor 24 stabilizes the actual tensile force of the chain 15 without error. Can be measured. However, as the inclination angle δ of the pedal 8 increases, the chain tension ratio greatly deviates from the ratio reference. Further, as shown in FIGS. 9 to 13, as the installation angle α of the strain detection sensor 24 increases, the chain tension ratio ε when the inclination angle δ of the pedal 8 is large approaches the ratio reference while The chain tension ratio ε when the inclination angle δ of 8 is small is away from the ratio reference.
 また、図14はクランク角θに対するペダル最大角度およびペダル最小角度の関係を概略的に示す図、図15は、クランク角θが60度から120度である範囲(重点クランク角とも称す)における、歪み検出センサ24の設置角度αとチェーン張力比率εとの関係を示す図である。上述したように、搭乗者は走行時にクランク軸7aよりも前方ではペダル8を前上がり状態で踏む場合が多いが、さらに、図14に示すように、クランク角が小さい場合には、ペダル8上の足と股関節とが近接した位置となっているので、ペダル8の傾斜角(ペダル角とも称す)δが大きくなる傾向がある。一方、クランク角θが大きくなって180度に近くなるにつれて(ペダル8が真下に近づくにつれて)、ペダル8上の足と股関節とが離れた位置となるので、ペダル角δが小さくなる傾向がある。また、側面視してペダル8がクランク軸7aの真上や真下の位置や近傍位置である場合には、足を載せているだけで、力は殆どかけていない場合が多い。したがって実質的には、図14における四角の枠で囲んだペダル角δおよびクランク角θ(30度から150度)の範囲(実用的範囲)で、歪み検出センサ24の測定値の信頼性が高くて誤差が小さくなる設置角αのものを使用することが好ましい。さらに、ペダル8には、クランク角θが60度から120度の範囲(重点クランク角)において大きな踏力が負荷される場合が多いので、この範囲で、より信頼性が高くなる設置角αのものを使用することが特に好ましい。 FIG. 14 is a diagram schematically showing the relationship between the pedal maximum angle and the pedal minimum angle with respect to the crank angle θ, and FIG. 15 is a diagram in the range where the crank angle θ is 60 degrees to 120 degrees (also referred to as the priority crank angle). It is a figure which shows the relationship between the installation angle (alpha) of the distortion detection sensor 24, and chain tension ratio (epsilon). As described above, in many cases, the occupant steps on the pedal 8 in a forwardly raised state in front of the crankshaft 7a when traveling, but when the crank angle is small as shown in FIG. Therefore, the inclination angle (also referred to as pedal angle) δ of the pedal 8 tends to increase. On the other hand, as the crank angle θ increases and approaches 180 degrees (as the pedal 8 approaches directly below), the foot on the pedal 8 and the hip joint are separated from each other, and therefore the pedal angle δ tends to decrease. . Further, when the pedal 8 is in a position directly above or directly below or near the crankshaft 7a as viewed from the side, it is often the case that only a foot is placed and almost no force is applied. Therefore, the reliability of the measurement value of the strain detection sensor 24 is substantially high in the range (practical range) of the pedal angle δ and the crank angle θ (30 ° to 150 °) enclosed by the square frame in FIG. It is preferable to use an installation angle α that reduces the error. Further, since the pedal 8 is often loaded with a large pedaling force when the crank angle θ is in the range of 60 degrees to 120 degrees (critical crank angle), the pedal 8 has an installation angle α that is more reliable in this range. It is particularly preferred to use
 当該電動自転車1が、ペダル角δ(-5度から25度)およびクランク角θ(30度から150度)の範囲で使用される場合のチェーン張力比率εの範囲を、図8~図13において、右(R)ペダル駆動時と左(L)ペダル駆動時とで、それぞれ四辺の枠A、Bで示し、さらに、これらの枠A、Bで囲まれた範囲におけるクランク角θが60度から120度の範囲である場合(重点クランク角とも称す)を矩形枠Cで示す。なお、枠Aは右側のペダル8のクランク角θに対応するチェーン張力比率εの範囲であり、枠Bは左側のペダル8のクランク角θに対応するチェーン張力比率の範囲である。クランク角θが60度から120度である範囲(それぞれ矩形枠Cで示す)において、図10、図15に示すように、歪み検出センサ24の設置角αが10度の場合には、チェーン張力比率εが0.90から1.47であり、図11、図15に示すように、歪み検出センサ24の設置角αが12.5度の場合には、チェーン張力比率εが0.96から1.45であり、図12、図15に示すように、歪み検出センサ24の設置角αが15度の場合には、チェーン張力比率εが0.97から1.53である。このように、歪み検出センサ24の設置角αが10度から15度、すなわち、10度以上で15度以下の場合には、チェーン張力比率εが前記比率基準に近い値となり、特に、設置角αが12.5度の場合には、チェーン張力比率εが前記比率基準に最も近い値となって、ペダル8の傾斜角δに係る水平分力の影響を最も受け難くなり、信頼性の高い値を測定できる。 The range of the chain tension ratio ε when the electric bicycle 1 is used in the range of the pedal angle δ (−5 degrees to 25 degrees) and the crank angle θ (30 degrees to 150 degrees) is shown in FIGS. When the right (R) pedal is driven and when the left (L) pedal is driven, four side frames A and B are shown, respectively, and the crank angle θ in the range surrounded by these frames A and B is 60 degrees. A rectangular frame C indicates a range of 120 degrees (also referred to as a priority crank angle). The frame A is a range of the chain tension ratio ε corresponding to the crank angle θ of the right pedal 8, and the frame B is a range of the chain tension ratio corresponding to the crank angle θ of the left pedal 8. In the range where the crank angle θ is 60 degrees to 120 degrees (respectively indicated by a rectangular frame C), as shown in FIGS. 10 and 15, when the installation angle α of the strain detection sensor 24 is 10 degrees, the chain tension When the ratio ε is 0.90 to 1.47 and the installation angle α of the strain detection sensor 24 is 12.5 degrees as shown in FIGS. 11 and 15, the chain tension ratio ε is 0.96. As shown in FIGS. 12 and 15, when the installation angle α of the strain detection sensor 24 is 15 degrees, the chain tension ratio ε is 0.97 to 1.53. As described above, when the installation angle α of the strain detection sensor 24 is 10 degrees to 15 degrees, that is, 10 degrees or more and 15 degrees or less, the chain tension ratio ε becomes a value close to the ratio reference. When α is 12.5 degrees, the chain tension ratio ε is the closest value to the ratio reference, and is hardly affected by the horizontal component force related to the inclination angle δ of the pedal 8, and is highly reliable. The value can be measured.
 これに対して、クランク角θが60度から120度である範囲(それぞれ矩形枠Cで示す)において、図8、図15に示すように、歪み検出センサ24の設置角αが0度の場合には、チェーン張力比率εが0.74から1.50であり、図9、図15に示すように、歪み検出センサ24の設置角αが5度の場合にはチェーン張力比率εが0.82から1.46であり、図14、図15に示すように、歪み検出センサ24の設置角αが20度の場合には、チェーン張力比率εが0.87から1.63である。このように、歪み検出センサ24の設置角αが5度や20度の場合、すなわち、設置角αが10度より小さい場合や、15度より大きい場合は、設置角αが10度から15度の場合と比べて、何れの場合もチェーン張力比率εが前記比率基準から離れて広範囲にわたるので、ペダル8の傾斜角δに係る水平分力の影響を受け易くなる。ただし、歪み検出センサ24の設置角αが0度の場合と比較すると、チェーン張力比率εが前記比率基準に近い値となるので、ペダル8の傾斜角δに係る水平分力の影響を受け難くする、すなわち誤差を小さくする作用効果を有することになる。 On the other hand, in the range where the crank angle θ is 60 degrees to 120 degrees (represented by the rectangular frame C), as shown in FIGS. 8 and 15, the installation angle α of the strain detection sensor 24 is 0 degrees. The chain tension ratio ε is 0.74 to 1.50, and when the installation angle α of the strain detection sensor 24 is 5 degrees as shown in FIGS. As shown in FIGS. 14 and 15, when the installation angle α of the strain detection sensor 24 is 20 degrees, the chain tension ratio ε is 0.87 to 1.63. Thus, when the installation angle α of the strain detection sensor 24 is 5 degrees or 20 degrees, that is, when the installation angle α is smaller than 10 degrees or larger than 15 degrees, the installation angle α is 10 degrees to 15 degrees. In any case, the chain tension ratio ε is far from the ratio reference and covers a wide range, so that it is easily affected by the horizontal component force related to the inclination angle δ of the pedal 8. However, as compared with the case where the installation angle α of the strain detection sensor 24 is 0 degree, the chain tension ratio ε is close to the ratio reference, so that it is less affected by the horizontal component force related to the inclination angle δ of the pedal 8. That is, it has the effect of reducing the error.
 前記比率基準の値である1.19は比例定数として換算できるが、チェーン張力比率εの最低値と最高値との間のチェーン張力比率εの変動は、歪み検出センサ24の検出値の誤差となるため、適切な設定角度とすることで誤差を低減することができる。そして特に、図15に示すように、歪み検出センサ24の設置角αが10度から15度の場合には、チェーン張力比率εが前記比率基準に近い値となって、ペダル8の傾斜角δに係る水平分力の影響を最も受け難くなり、信頼性の高い値を測定できることがわかる。 The ratio reference value 1.19 can be converted as a proportionality constant. However, the fluctuation of the chain tension ratio ε between the minimum value and the maximum value of the chain tension ratio ε is an error in the detection value of the strain detection sensor 24. Therefore, an error can be reduced by setting an appropriate set angle. In particular, as shown in FIG. 15, when the installation angle α of the strain detection sensor 24 is 10 degrees to 15 degrees, the chain tension ratio ε becomes a value close to the ratio reference, and the inclination angle δ of the pedal 8 is increased. It can be seen that it is less susceptible to the influence of horizontal component force and can measure highly reliable values.
 また、本発明の実施の形態によれば、チェーンステー2eの前端部などのフレーム2に固定されたハンガー部20内に、クランク軸7aを回転自在に支持する軸受26を内装し、ハンガー部20と軸受26との間に、軸受26に後方から当接して弾性変形可能な弾性変形部23aを有するセンサ支持部材としてのセンサリング23を取付け、このセンサリング23の弾性変形部23aに歪み検出センサ24を取付けている。この構成により、比較的簡単な構成でありながら、チェーン15を前方に引張る力に対応する力を良好に検出することができる。また、構成が比較的簡単であるので、製造コストの低減化も図ることができる。 Further, according to the embodiment of the present invention, the bearing 26 that rotatably supports the crankshaft 7a is housed in the hanger portion 20 fixed to the frame 2 such as the front end portion of the chain stay 2e. A sensor ring 23 as a sensor support member having an elastically deformable portion 23a that abuts the bearing 26 from behind and can be elastically deformed is attached between the shaft 26 and the bearing 26, and a strain detection sensor is attached to the elastically deformable portion 23a of the sensor ring 23. 24 is attached. With this configuration, the force corresponding to the force pulling the chain 15 forward can be detected well, although the configuration is relatively simple. Further, since the configuration is relatively simple, the manufacturing cost can be reduced.
 また、センサ支持部材としてのセンサリング23を、前記弾性変形部23aが薄肉となるように平面形状に切欠かれたリング形状部品で構成している。これにより、簡単な構成でありながら、センサリング23に対して上下方向に作用する力(厳密には、弾性変形部23aの平面部分に沿う方向への力)を殆ど検出せずに、弾性変形部23aの平面部分や歪み検出センサ24の表面部分にほぼ直交する方向の力だけを感度良く検出できて、チェーン15を前方に引張る力に対応する力をさらに良好に検出することができる。このように、軸受26に作用する回転や変動する荷重を一方向成分のみに分離するセンシング機構部品を用いることで、チェーン15を前方に引張る力に対応する力だけを良好に検出することができる。 Further, the sensor ring 23 as the sensor support member is constituted by a ring-shaped part cut out in a planar shape so that the elastic deformation portion 23a is thin. Thereby, although it is a simple structure, elastic force deformation is hardly detected with little detection of force acting on the sensor ring 23 in the vertical direction (strictly, force in a direction along the plane portion of the elastic deformation portion 23a). Only the force in the direction substantially perpendicular to the plane portion of the portion 23a and the surface portion of the strain detection sensor 24 can be detected with high sensitivity, and the force corresponding to the force pulling the chain 15 forward can be detected even better. In this way, by using the sensing mechanism component that separates the rotation acting on the bearing 26 and the fluctuating load into only one direction component, only the force corresponding to the force pulling the chain 15 forward can be detected well. .
 なお、上記実施の形態においては、弾性変形部23aおよび歪み検出センサ24を1つだけ設けた場合を述べ、この場合には、製造コストや部品点数の増加を最小限で済ますことができる利点がある。しかし、これに限るものではなく、例えば、左右方向における駆動スプロケット13が取り付けられた右側の軸受26だけでなく、左右方向における駆動スプロケット13が取り付けられていない左側の軸受25にも同様な構成の弾性変形部23aを有するセンサリング23と歪み検出センサ24とを設けるなど、弾性変形部23aおよび歪み検出センサ24を複数設けてもよい。この構成によれば、製造コストや部品点数は若干増加するものの、これら複数の弾性変形部23aおよび歪み検出センサ24を用いるとともに、複数の歪み検出センサ24からの信号に対して演算処理をすることで、チェーン15を前方に引張る力に対応する力を、より高精度で検出することが可能となる。 In the above embodiment, the case where only one elastic deformation portion 23a and one strain detection sensor 24 are provided is described. In this case, there is an advantage that the manufacturing cost and the number of parts can be minimized. is there. However, the present invention is not limited to this. For example, not only the right bearing 26 to which the drive sprocket 13 is attached in the left-right direction but also the left bearing 25 to which the drive sprocket 13 is not attached in the left-right direction has the same configuration. A plurality of elastic deformation portions 23 a and strain detection sensors 24 may be provided, such as a sensor ring 23 having an elastic deformation portion 23 a and a strain detection sensor 24. According to this configuration, although the manufacturing cost and the number of parts are slightly increased, the plurality of elastic deformation portions 23a and the strain detection sensors 24 are used, and arithmetic processing is performed on signals from the plurality of strain detection sensors 24. Thus, the force corresponding to the force pulling the chain 15 forward can be detected with higher accuracy.
 また、上記の実施の形態においては、駆動スプロケット13の上端部分と従動スプロケット14の上端部分とにわたって架け渡されたチェーン15の上側部分が、水平線に沿う姿勢で配設されている場合を述べたが、これに限るものではない。すなわち、駆動スプロケット13に架け渡されたチェーン15の上側部分が、後方ほど低くなるように傾斜して配設されている場合には、この傾斜して引張る方向と水平線方向との差の傾斜角だけ、歪み検出センサ24の設置角αが増加するように、歪み検出センサ24および弾性変形部23aを配設する。このように構成することで、チェーン15の上側部分と、歪み検出センサ24および弾性変形部23aとの相対位置が上記実施の形態と同様になるので、駆動スプロケット13に対するチェーン15の架け渡した姿勢に適した位置に歪み検出センサ24および弾性変形部23aを配設することができて、チェーン15を前方に引張る力に対応する力を良好に検出することができる。なお、駆動スプロケット13に架け渡されたチェーン15の上側部分が、後方ほど高くなるように傾斜して配設されている場合には、この傾斜して引張る方向と水平線方向との差の傾斜角だけ、歪み検出センサ24の設置角αが減少するように、歪み検出センサ24および弾性変形部23aを配設すればよい。すなわち、歪み検出センサ24および弾性変形部23aを、側面視して、駆動スプロケット13によってチェーン15の上側部分を前方に引張る方向と平行でクランク軸7aの軸心7a’を通る線よりも設置角αで斜め下方に傾斜した後方位置に配設すればよい。 In the above embodiment, the case where the upper portion of the chain 15 that spans the upper end portion of the drive sprocket 13 and the upper end portion of the driven sprocket 14 is arranged in a posture along the horizontal line has been described. However, it is not limited to this. That is, when the upper part of the chain 15 spanned over the drive sprocket 13 is disposed so as to be lowered toward the rear, the inclination angle of the difference between the inclined and pulling direction and the horizontal line direction. Therefore, the strain detection sensor 24 and the elastic deformation portion 23a are arranged so that the installation angle α of the strain detection sensor 24 is increased. With this configuration, the relative positions of the upper portion of the chain 15, the strain detection sensor 24, and the elastic deformation portion 23a are the same as those in the above-described embodiment. Therefore, the posture of the chain 15 spanning the drive sprocket 13 The strain detection sensor 24 and the elastic deformation portion 23a can be disposed at a position suitable for the above, and a force corresponding to the force pulling the chain 15 forward can be detected well. In addition, when the upper part of the chain 15 spanned over the drive sprocket 13 is inclined and arranged so as to become higher toward the rear, the inclination angle of the difference between the inclined and pulling direction and the horizontal line direction. Therefore, the strain detection sensor 24 and the elastic deformation portion 23a may be disposed so that the installation angle α of the strain detection sensor 24 decreases. That is, when the strain detection sensor 24 and the elastic deformation portion 23a are viewed from the side, the installation angle is larger than the line passing through the axis 7a ′ of the crankshaft 7a in parallel with the direction in which the drive sprocket 13 pulls the upper portion of the chain 15 forward. What is necessary is just to arrange | position in the back position which inclined in the diagonally downward by (alpha).
 また、上記の実施の形態では、電動モータ10が、前輪3の中心部に配設されている金属製のハブ9に内蔵されている場合を示しているが、これに限るものではなく、制御部11と合わせて、モータ駆動ユニットとして当該電動自転車1の中央下部に配設していてもよい。但し、この場合には、図16、図17に示すように、チェーン張力が、搭乗者である人間の踏力による人力駆動力と電動モータによる補助駆動力との合算値となる。そのため、歪み検出センサで計測された値から、電動モータによる補助駆動力を差し引いて、人力駆動力を算出する。なお、図16は、人力駆動力と補助駆動力とチェーン張力(合計駆動力)との関係を示す図で、図16において、Aで示す領域は人力駆動力、Bで示す領域は電動モータによる補助駆動力、Cで示す線は後輪への出力値(合算値)であるチェーン張力(合計駆動力)を示している。また、図17は、制御部11における、人力駆動力に係る人力駆動力を算出する演算処理部を概念的に示すブロック図である。すなわち、図16に示すように、歪み検出センサ24によって計測されるチェーン張力(合計駆動力)は、人力駆動力と補助駆動力との合算値であるので、図17に示すように、歪み検出センサ24によって計測されるチェーン張力(合計駆動力)から、補助駆動力を減算して人力駆動力を算出する。なお、図17に示すように、補助駆動力は電動モータ10の電流値とほぼ比例するので、制御部11の演算処理部では電動モータ10の電流値から補助駆動力の値を算出して、前記補助駆動力の値として用いる。これにより、人力駆動力を算出して、制御部は前記人力駆動力に基づいて出力すべき補助駆動力を決定する。 In the above embodiment, the case where the electric motor 10 is built in the metal hub 9 disposed at the center of the front wheel 3 is shown, but the present invention is not limited to this. In combination with the portion 11, the motor-driven unit may be disposed at the lower center of the electric bicycle 1. However, in this case, as shown in FIGS. 16 and 17, the chain tension is a total value of the human driving force by the stepping force of the human being who is the passenger and the auxiliary driving force by the electric motor. Therefore, the human driving force is calculated by subtracting the auxiliary driving force by the electric motor from the value measured by the strain detection sensor. FIG. 16 is a diagram showing the relationship between human power driving force, auxiliary driving force, and chain tension (total driving force). In FIG. 16, the region indicated by A is the human power driving force, and the region indicated by B is the electric motor. The auxiliary driving force, a line indicated by C, indicates the chain tension (total driving force) that is the output value (total value) to the rear wheels. FIG. 17 is a block diagram conceptually showing an arithmetic processing unit for calculating the human driving force related to the human driving force in the control unit 11. That is, as shown in FIG. 16, the chain tension (total driving force) measured by the strain detecting sensor 24 is the sum of the human driving force and the auxiliary driving force. Therefore, as shown in FIG. The manual driving force is calculated by subtracting the auxiliary driving force from the chain tension (total driving force) measured by the sensor 24. As shown in FIG. 17, since the auxiliary driving force is substantially proportional to the current value of the electric motor 10, the arithmetic processing unit of the control unit 11 calculates the value of the auxiliary driving force from the current value of the electric motor 10, Used as the value of the auxiliary driving force. Thereby, the human driving force is calculated, and the control unit determines the auxiliary driving force to be output based on the human driving force.
 また、上記の実施の形態では、図3に示すように、駆動スプロケット13が、右のクランクアーム7bにおけるクランク軸7aに嵌まり込んでいる部分を介して、クランク軸7aと一体的に回転するように取り付けられている場合を述べたが、これに限るものではなく、駆動スプロケット13がクランク軸7aに直接取り付けられていてもよい。 In the above embodiment, as shown in FIG. 3, the drive sprocket 13 rotates integrally with the crankshaft 7a via the portion of the right crank arm 7b fitted into the crankshaft 7a. However, the present invention is not limited to this, and the drive sprocket 13 may be directly attached to the crankshaft 7a.
 また、上記実施の形態では、ペダル8からの踏力を後輪4に伝達する駆動力伝達体として、チェーン15を用いた場合を述べたが、これに限るものではなく、チェーンに代えて歯付きベルトを用いてもよい。なお、歯付きベルト(駆動力伝達歯付きベルト)を用いた場合には、人力駆動力を出力する人力駆動輪体として、駆動スプロケット13に代えて駆動歯車を用い、後部輪体として後スプロケット14に代えて後歯車を用いるとよい。 In the above-described embodiment, the case where the chain 15 is used as the driving force transmission body that transmits the pedaling force from the pedal 8 to the rear wheel 4 is described. However, the present invention is not limited to this. A belt may be used. When a toothed belt (a belt with a driving force transmission tooth) is used, a driving gear is used in place of the driving sprocket 13 as a manpower driving wheel that outputs a manpower driving force, and a rear sprocket 14 is used as a rear wheel. Instead of this, a rear gear may be used.
 本発明は、実際に走行する電動自転車に好適に適用できるが、これに限るものではなく、スポーツジムなどに設置される固定されたトレーニング用の電動自転車にも適用することが可能である。 The present invention can be suitably applied to an electric bicycle that actually travels, but is not limited to this, and can also be applied to a fixed electric bicycle for training installed in a sports gym or the like.

Claims (8)

  1.  後輪を回転駆動させるためのチェーンなどの駆動力伝達体が、クランク軸と一体的に回転する駆動スプロケットなどの人力駆動輪体と、後輪に取り付けられた従動輪体とにわたって架け渡され、ペダルからの踏力による人力駆動力に基づいて補助駆動力を付加可能に構成された電動自転車において、
    前記人力駆動輪体によって前記駆動力伝達体を前方に引張る力の反力によりクランク軸が後方へ弾性変形しようとする力を受けて弾性変形する弾性変形部を設け、
    この弾性変形部に、この弾性変形部の弾性変形量から前記人力駆動力を検出する歪み検出センサを取付け、
    前記弾性変形部および歪み検出センサを、側面視して、前記人力駆動輪体によって前記駆動力伝達体を前方に引張る方向と平行でクランク軸の軸心を通る線よりも斜め下方に傾斜した後方位置に配設したことを特徴とする電動自転車の人力駆動力検出装置。
    A driving force transmission body such as a chain for rotationally driving the rear wheel is bridged over a manpower driving wheel body such as a driving sprocket that rotates integrally with the crankshaft and a driven wheel body attached to the rear wheel, In the electric bicycle configured to be able to add an auxiliary driving force based on the human driving force by the pedaling force from the pedal,
    An elastically deforming portion that is elastically deformed by receiving a force that the crankshaft is elastically deformed backward by a reaction force of a force that pulls the driving force transmitting body forward by the manpower driven wheel body;
    A strain detection sensor that detects the human driving force from the elastic deformation amount of the elastic deformation portion is attached to the elastic deformation portion,
    The elastically deformable portion and the strain detection sensor, as viewed from the side, are inclined rearward and obliquely downward from a line passing through the axis of the crankshaft parallel to the direction in which the driving force transmission body is pulled forward by the human-powered driving wheel. A human-powered driving force detecting device for an electric bicycle, characterized in that it is disposed at a position.
  2.  フレームに固定されたハンガー部内に、クランク軸を回転自在に支持する軸受を配設し、ハンガー部と軸受との間に、軸受に後方から当接して弾性変形可能な弾性変形部を有するセンサ支持部材を取付け、このセンサ支持部材の弾性変形部に歪み検出センサを取付けたことを特徴とする請求項1記載の電動自転車の人力駆動力検出装置。 A sensor support having an elastically deformable portion that is elastically deformable by abutting the bearing from the rear between the hanger portion and the bearing, and a bearing that rotatably supports the crankshaft is disposed in the hanger portion that is fixed to the frame. 2. A human-power-driving-force detecting device for an electric bicycle according to claim 1, wherein a member is attached, and a strain detection sensor is attached to the elastic deformation portion of the sensor support member.
  3.  前記弾性変形部および歪み検出センサは1つだけ設けられていることを特徴とする請求項1記載の電動自転車の人力駆動力検出装置。 2. The human-power driving force detection device for an electric bicycle according to claim 1, wherein only one elastic deformation portion and one strain detection sensor are provided.
  4.  前記弾性変形部および歪み検出センサは、左右方向における前記人力駆動輪体が取り付けられた側に設けられていることを特徴とする請求項3記載の電動自転車の人力駆動力検出装置。 4. The human power driving force detection device for an electric bicycle according to claim 3, wherein the elastic deformation portion and the strain detection sensor are provided on a side on which the human power driving wheel is attached in the left-right direction.
  5.  前記弾性変形部および歪み検出センサが、左右方向における前記人力駆動輪体が取り付けられた側と、左右方向における前記人力駆動輪体が取り付けられていない側との、複数の箇所に設けられていることを特徴とする請求項1記載の電動自転車の人力駆動力検出装置。 The elastic deformation portion and the strain detection sensor are provided at a plurality of locations on the side where the human-powered wheel body is attached in the left-right direction and on the side where the human-powered wheel body is not attached in the left-right direction. The human power driving force detection device for an electric bicycle according to claim 1.
  6.  前記センサ支持部材は、前記弾性変形部が薄肉となるように平面形状に切欠かれたリング形状部品であることを特徴とする請求項1記載の電動自転車の人力駆動力検出装置。 2. The human-power-driving-force detecting device for an electric bicycle according to claim 1, wherein the sensor support member is a ring-shaped part cut into a planar shape so that the elastically deforming portion is thin.
  7.  人力駆動輪体に架け渡された駆動力伝達体の上側部分が、後方ほど低くなるように傾斜して配設されている場合には、この傾斜して引張る方向と水平線方向との差の傾斜角だけ、歪み検出センサの設置角が増加するように、歪み検出センサおよび弾性変形部を配設したことを特徴とする請求項1記載の電動自転車の人力駆動力検出装置。 When the upper part of the driving force transmission body spanned over the manpower driving wheel is inclined so as to become lower toward the rear, the inclination of the difference between the inclined direction and the horizontal direction is inclined. 2. The human-power driving force detection device for an electric bicycle according to claim 1, wherein the strain detection sensor and the elastic deformation portion are arranged so that the installation angle of the strain detection sensor is increased by the corner.
  8.  前記歪み検出センサの、前記人力駆動輪体によって前記駆動力伝達体を前方に引張る方向と平行でクランク軸の軸心を通る線からの斜め下方の傾斜角が10度以上15度以下であることを特徴とする請求項1記載の電動自転車の人力駆動力検出装置。 An inclination angle of the strain detection sensor obliquely downward from a line passing through the axis of the crankshaft parallel to a direction in which the driving force transmitting body is pulled forward by the human-powered driving wheel is not less than 10 degrees and not more than 15 degrees. The human-power driving force detection device for an electric bicycle according to claim 1.
PCT/JP2012/002657 2011-05-10 2012-04-18 Human power driving force detection apparatus for electric bicycle WO2012153467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-104807 2011-05-10
JP2011104807A JP5127953B2 (en) 2011-05-10 2011-05-10 Electric bicycle power detection device

Publications (1)

Publication Number Publication Date
WO2012153467A1 true WO2012153467A1 (en) 2012-11-15

Family

ID=47138960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002657 WO2012153467A1 (en) 2011-05-10 2012-04-18 Human power driving force detection apparatus for electric bicycle

Country Status (2)

Country Link
JP (1) JP5127953B2 (en)
WO (1) WO2012153467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220161666A1 (en) * 2019-04-17 2022-05-26 Mavic Sas Force measurement sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252444B2 (en) * 2014-11-21 2017-12-27 アイシン精機株式会社 Load detection device
GB201810397D0 (en) * 2018-06-25 2018-08-08 Wattbike Ip Ltd Method and apparartus for monitoring user effectivness during operation of an exercise machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09193876A (en) * 1996-01-17 1997-07-29 Sanyo Electric Co Ltd Bicycle with electric motor
JPH11258078A (en) * 1998-03-09 1999-09-24 Toyoda Mach Works Ltd Torque detecting device
JP2002019683A (en) * 2000-07-06 2002-01-23 Matsushita Electric Ind Co Ltd Torque detection device of power-assisted bicycle and power-assisted bicycle using the same
JP2002082003A (en) * 2000-09-06 2002-03-22 Toyoda Mach Works Ltd Torque detecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09193876A (en) * 1996-01-17 1997-07-29 Sanyo Electric Co Ltd Bicycle with electric motor
JPH11258078A (en) * 1998-03-09 1999-09-24 Toyoda Mach Works Ltd Torque detecting device
JP2002019683A (en) * 2000-07-06 2002-01-23 Matsushita Electric Ind Co Ltd Torque detection device of power-assisted bicycle and power-assisted bicycle using the same
JP2002082003A (en) * 2000-09-06 2002-03-22 Toyoda Mach Works Ltd Torque detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220161666A1 (en) * 2019-04-17 2022-05-26 Mavic Sas Force measurement sensor

Also Published As

Publication number Publication date
JP2012236431A (en) 2012-12-06
JP5127953B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5127961B2 (en) Torque detection device for electric bicycle
US8825279B2 (en) Bicycle power sensing apparatus
EP2714501B1 (en) Pedal assist sensor
EP1324913B1 (en) Method and device for measuring the effort made by a cyclist
US10399636B2 (en) Drive device for an electric bicycle powered electromotively and in a hybrid operating state involving muscular power
TWI410351B (en) Electric assisted bicycle and unit for electric assisted bicycle that can be mounted on bicycle frame
US8485050B2 (en) Torque sensor assembly for a power-assisted bicycle
US11319022B2 (en) Transmission control system for use with human-powered vehicle
WO2012153467A1 (en) Human power driving force detection apparatus for electric bicycle
US11066124B2 (en) Bicycle pedaling torque sensing systems, methods, and devices
JP4428825B2 (en) Torque detection device for electric bicycle and electric bicycle using the same
JP5202707B2 (en) Electric bicycle power detection device
WO2010084297A1 (en) Method and apparatus for measuring torque transmitted by driven wheel of a cycle or the like vehicle
JP5165140B2 (en) Electric bicycle power detection device
WO2021117806A1 (en) Bicycle component and bicycle
US10723411B2 (en) Torque detection device of rear frame for electrically assisted bicycle
US11498641B2 (en) Human-powered vehicle control device, suspension system, and human-powered vehicle
EP3441296B1 (en) Drive unit and electrically assisted bicycle
KR20150009354A (en) Eletricity bike control system and method for control the same
JP2018008611A (en) Electric power assisted bicycle and method of detecting driving torque
JP2000142545A (en) Motor-assisted vehicle
JP6947689B2 (en) Control device for human-powered vehicles and drive device for human-powered vehicles
JP2022066490A (en) Power-assisted bicycle and driving unit
JPH09301263A (en) Motor-driven bicycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12781672

Country of ref document: EP

Kind code of ref document: A1