WO2012150969A1 - Thermal energy storage for combined cycle power plants - Google Patents
Thermal energy storage for combined cycle power plants Download PDFInfo
- Publication number
- WO2012150969A1 WO2012150969A1 PCT/US2012/020743 US2012020743W WO2012150969A1 WO 2012150969 A1 WO2012150969 A1 WO 2012150969A1 US 2012020743 W US2012020743 W US 2012020743W WO 2012150969 A1 WO2012150969 A1 WO 2012150969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- heat
- packed bed
- fluid
- back pressure
- Prior art date
Links
- 238000004146 energy storage Methods 0.000 title description 3
- 239000002245 particle Substances 0.000 claims abstract description 84
- 239000012530 fluid Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000005338 heat storage Methods 0.000 claims description 32
- 238000011084 recovery Methods 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 239000000919 ceramic Substances 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 239000010453 quartz Substances 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000011232 storage material Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000003416 augmentation Effects 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims 6
- 239000004020 conductor Substances 0.000 claims 3
- 230000000737 periodic effect Effects 0.000 claims 3
- 239000003779 heat-resistant material Substances 0.000 claims 2
- 230000003190 augmentative effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 59
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000011449 brick Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/02—Use of accumulators and specific engine types; Control thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/101—Regulating means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/14—Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D17/00—Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
- F28D17/005—Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D17/00—Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
- F28D17/04—Distributing arrangements for the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0056—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/72—Application in combination with a steam turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/42—Storage of energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D2020/0065—Details, e.g. particular heat storage tanks, auxiliary members within tanks
- F28D2020/0086—Partitions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- Standard combined cycle power plants used more commonly can be described by Figure la. These plants provide a large fraction of the electric energy in the world and their use is growing fast (reaching over 20% of installed capacity in the U.S.) .
- compressed air is introduced to a combustion chamber with natural gas or other fuel introduced in a
- the high temperature (1100-1200°C) gases which are produced as a result of this combustion are introduced to gas turbine 110.
- the exhaust gases after the expansion in the gas turbine 110 have much lower pressure (barely sufficient above atmospheric pressure in order to flow) .
- the temperature of these exhaust gases is 550-600°C resulting in the exhaust gases carrying high grade energy, which is recovered in a heat
- HRSG recovery steam generator
- the design of the HRSG 120 is such that the resultant back pressure to the gas turbine is very low (40-50 raBars) . Therefore, providing the HRSG does not affect the efficiency of gas turbine and introduces capability of operating a steam Rankine cycle from the recovered heat.
- the efficiency of modern combined cycle power plants is almost 55-60%.
- the control of the power output from the plant is governed by the demand in the grid and is, in turn, effected via supply and consumption of natural gas/fuel in the combustion chamber. This results in changed output from the gas turbine 110 and the steam turbine 130.
- CCPP combined cycle power plants
- gas turbines operate continuously and the main control of electricity output is obtained by adjusting the main feed to the gas turbines. Since gas turbines have a very low turndown ratio, they can lose efficiency very rapidly when power is below maximum. The only control is basically on-off, as they can be shutdown in an hour and started up in one or two hours.
- the conventional CCPPs are not suitable for rapid load following for grid regulation and there is not enough overcapacity to enable such operation as a practical matter.
- Thermal storage systems that preferably do not create substantially any additional back pressure or create minimal additional back pressure and their applications are disclosed herein below.
- the method includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, the flow path being enabled under predetermined conditions, placing in the flow path a storage medium comprising high thermal conductivity heat resistance media, preferably particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction, the predetermined flow direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure to the gas turbine is at most a predetermined back pressure.
- the combined cycle power plant of these teachings efficiently responds to a decrease in load by enabling the flow path through the thermal storage tank and storage medium and providing at least a portion of the fluid exiting the gas turbine to the flow path.
- the thermal storage system of these teachings includes a container having a first port and a second port, wherein the first port receives fluid after heating and the second port allows exit of the fluid when the heat storage system is utilized in the storage mode, and a storage medium disposed in the container, the storage medium comprising high thermal conductivity heat resistance particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a
- the predetermined flow direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure is at most a predetermined back pressure.
- the system of these teachings includes a gas turbine receiving compressed air and fuel for combustion, a bypass control/connection component and a thermal storage subsystem of these teachings, the bypass control/connection component controlling flow of a portion of fluid exiting the gas turbine and flowing through the heat storage subsystem, the flow through the heat storage subsystem occurring under predetermined conditions.
- Figure la is a schematic representation of a conventional combined cycle power plant
- Figure lb is a schematic representation of a combined cycle power plant of these teachings in the storage mode
- Figure lc is a schematic representation of a combined cycle power plan of these teachings in the recovery mode.
- Figure 2 is a cross-sectional view of a graphical user interface
- Biot number refers to a ratio of the product of the heat transfer coefficient and a characteristic length, typically defined as the volume of the body divided by the surface area of the body, to the thermal conductivity of the body.
- the method of these teachings for efficient response to load variations in a combined cycle power plant includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, the flow path being enabled under predetermined conditions, placing in the flow path a storage medium having high thermal conductivity heat
- the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction, the predetermined flow direction constituting a longitudinal
- the method also includes efficiently responding to a decrease in load by
- the efficiency of the gas turbine 110 is substantially
- the gas turbine power output is reduced as described hereinabove.
- the reduction in gas turbine power output is accompanied by major efficiency loss for the case of gas turbines when they are operated at lower power.
- the gas turbine 110 is kept operating at substantially maximum power even during load reduction and the balance between supply and demand of power output is maintained by allowing the partial or complete flow of the exhaust gas through thermal storage modules 140.
- gas turbine efficiency is maintained to maximum level and power produced by steam turbine (efficiency substantially does not change with power level) is varied.
- the diverted exhaust gas, normally used to produce steam through the HRSG 120 has energy which is transferred to the storage modules 140.
- the storage modules 140 of these teachings preferably do not create substantially any additional back pressure or create minimal additional back pressure to the gas turbine 110. (In one exemplary instance, not a limitation of these teachings, pressure of the gas entering the the HRSG 120 during gas turbine operation is about 15 psi absolute pressure. The operation of the storage volume 140 should occurr at substantially the same pressure.)
- the storage modules 140 of these teachings are designed in such a way to allow exhaust gas to be discharged back to the stack.
- the method of these teachings for satisfying peak power demand in a combined cycle power plant includes (a) providing a thermal storage medium in which thermal energy has been previously stored, the thermal storage medium comprising high thermal conductivity heat resistance particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of a gas in a predetermined direction, the predetermined flow direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected in order to such that, during a storage phase, a resultant back pressure to a gas turbine is at most a predetermined back pressure, (b) flowing gas through the thermal storage medium; thereby obtaining, at an exit port of the thermal storage medium, heated gas, and (c) providing the heated gas to a heat recovery steam generator.
- FIG. lc is a schematic diagram of a system for practicing the embodiment of the method of the teachings for satisfying peak power demand in a combined cycle power plant, which is described hereinabove.
- the combined cycle power plant is expected to deliver stored energy to the grid in addition to its regular power rating.
- Thermal energy (heat) has been previously stored in the storage modules 140.
- the heat stored can be recovered by flowing gas, low pressure gas in one instance (air in one embodiment) through the storage modules 140.
- a flow augmentation component such as fan or blower 150 is utilized to assist the flow of the gas. (Since the gas exiting the storage modules 140 is provided to the H SG 120 in addition to the gas exiting the gas turbine 110, the gas exiting the storage module 140 should be at
- a low-pressure compressor or blower 150 is
- the recovered hot gas exiting the storage modules 140 is introduced to the HRSG 120 to generate additional steam.
- additional steam turbine or a steam turbine 150 of higher capacity may be required.
- the additional power delivered by the steam turbine enables the combined cycle power plant to satisfy the peak demand.
- the system shown in Figs, lb and lc includes a gas turbine 110 receiving compressed air and fuel for combustion, a bypass control/connection control component 115, a heat storage
- subsystem 140 having a container having a first port and a second port; wherein, when the heat storage system is utilized in the storage - mode , the first port receives fluid exiting the gas turbine and the second port allows exit of the fluid when utilized in the storage mode and a storage medium disposed in the container.
- the second port receives fluid from a fluid source and the first port, when utilized in the recovery mode, allows exit of the fluid and the fluid flows through a storage medium, in which thermal energy is stored, the storage medium being disposed in the container.
- the storage medium includes high thermal conductivity heat resistance particles; the particles are in contact with each other and define voids between the particles in order to facilitate flow of the fluid in a predetermined direction, the predetermined flow direction constituting a longitudinal direction. Arrangement of the partic-.es constitutes a packed bed. Dimensions of in the particles and of the packed bed are selected such that a resultant back pressure to the gas turbine is at most a
- the bypass control/connection control component 115 controls flow of a portion of the fluid exiting the gas turbine 110 through the heat storage subsystem 140.
- the system also includes a heat recovery steam generator 120 receiving heated gas and producing steam.
- the bypass control/connection control component 115 controls flow of fluid exiting the heat storage subsystem through the first port.
- fluid exiting the heat storage subsystem 140 through the first port is provided to the heat recovery steam generator 120.
- the fluid exiting the thermal storage subsystem 140 is provided to the HRSG 120; in addition, the heated gas from the.
- the particles in the storage medium can be at least one of alumina, graphite, silica, quartz, or ceramic.
- the dimensions and characteristics of the particles are selected such that Biot number magnitude does not exceed 0.1.
- alumina particles e.g., stones or pebbles
- the thermal conductivity of the alumina is high and their size is small so the time needed to reach the temperature of . the hot fluid stream is very short compared to the fluid residence time, and the temperature of the alumina thus follows that of the surrounding hot fluid practically instantaneously.
- insulating porous plates are placed, at intervals, inside the packed pebble bed, with holes small enough to retain the filling material.
- the heat up time of the solid particles is selected to be short.
- thermal storage system of these teachings differs from other thermal storage systems, such as the thermal storage systems disclosed in US Patent number 7,954,321, issued on June 7, 2011 to R. Shinnar, and in US Patent Application Publication 20090178409, "Apparatus And Method For Storing Heat Energy,” published on July 16, 2009, both of which are Incorporated by reference herein in their entirety for all purposes, in a variety of factors, among them being the requirement that storage modules of these teachings preferably do not create substantially any additional back pressure or create minimal additional back pressure.
- FIG. 2 shows the assembled modules in side cross-section with the packed (pebble) bed 19 loaded and filling the vessel interior from the vessel top to the vessel bottom, with flow path I -II extending through the medium 18 between the pebble material 19' of pebble bed 19.
- a single large storage vessel 16 can be used although smaller modules can be- assembled to form the vessel.
- a single such module in one instance, a 5-30 ft long section of pipe
- a number of vessels can be assembled, in one instance, in parallel for a larger plant.
- the storage vessel 16 includes preferably cylindrical modules 16A, with two modules 16A1 and 16A2 being vertically stacked and the closed vessel 16 being formed by addition of manifold plates 16B1 and 16B2 at the top 38 and bottom 39 respectively of vessel 16 on the respect outer ends of modules 16A1 and 16A2. Furthermore, Each module 16A is provided with a flange 41 at its top and bottom such that the mated modules can be and are sealed together at meeting adjacent flanges 41 to form seal 43, as indicated.
- a manifold plate 16B1 is placed at the top end of module 16A 1 such that manifold plate rim 45 cooperates with adjacent flange 41 to form seal 47 thereat and manifold plate 16B2 is placed at the bottom end of module 16A2 such that plate rim 45 cooperates with adjacent flange 41 to form seal 49, thus to provide a sealed storage container 16, as shown in FIG. 2.
- the cylindrical modules 16A, 16B of FIG. 2 preferably use sections of ready-made large diameter concrete vessels or vessels made directly by joining insulation bricks, each section of length that is easy to transport and to assemble (such as, in one instance, 5-7.5 ft long sections) , and equipped with the provisions to assist assembly of the vessel on location.
- These modules 16A, 16B, etc. are preferably fitted with perforated plates 40 (FIG. 2), the holes 44 of which are smaller than the diameter of the storage material 19', to retain it in place. It will be
- these plates can be, in one instance, made of non-conducting ceramic to minimize heat conduction through the storage material, since heat transfer is ideally restricted to direct contact between fluid 11a and pebble material 19 1 . It is desirable to limit conduction of heat particle to particle, and therefore, in one practice of these teachings, an insulating step, such as plates 40, is placed at intervals, the plates having enough porosity to permit fluid flow and small enough to hold the particles in place.
- the ceramic filling material 19' is constructed by using small balls of non-porous alumina 3- 10 mm in diameter (preferably 6-8 mm) , with the desired outcome being a fast heating medium.
- the diameter of the non-porous alumina balls is selected such that the Biot number magnitude does not exceed 0.1.
- the configuration of the modular vessel and associated feed pipes forms a strong structure wherein the flanged pipe sections reinforce strength of the individual pipes to form a strong high structure that " can be anchored to the ground.
- Modules (vessels) made of concrete or insulation bricks have diameter up to 15 ft and length 5-10 ft. (The vessel provides a container for the packed (pebble) bed.) These sections should be designed for easy assembly on location, but they can also be prepared on site. The short sections . of the vessels make the process convenient such that they can be made and filled with the ceramic in a shop, and transported completely ready for final assembly. This can be less expensive than building large storage vessels on location.
- the heat transfer fluid is a low pressure gas, just above atmospheric conditions, which means energy density of the fluid is much lower as compared to the fluids used in steam systems or pressurized solar system. Therefore, rate of energy deposition using the low pressure fluids is lower.
- Heat storage methods are efficient only when the heat loss rate to the environment is minimal as compared to the heat storage or recovery rate. With low pressure gas, it is not-desirable to have larger length to diameter columns as it would result in substantial drop in the temperature stored and recovered, i.e. more than 10%.
- a ratio of a characteristic dimension of the packed bed in a longitudinal direction (such as, for example, height) to a characteristic dimension of the packed bed in a direction transverse to the longitudinal direction (such as, for example, diameter ⁇ is at most about 3.0, preferably 2.15.
- the height of column is from about 10 ft to about 15 ft.
- the smaller length of the storage vessel helps in reducing back pressure.
- the diameter of the bed is increased in order to have increased total volume, preferably to about 15 ft.
- Another design consideration in storage vessels is the size of alumina particles. If the size of particles used in the packed bed is increased, the. pressure drop or resultant back pressure on the turbine is reduced. But particle size can be increased only up to the point where Biot number magnitude does not become greater than 0.1 in order for the temperature inside the particles to equilibrate.
- the size range of alumina particles is about 6 mm two about 8 mm.
- Table 1 below illustrates an exemplary embodiment of the system of these teachings.
- the storage modules are configured as disclosed in US Patent Application Publication Number
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Thermal storage systems that preferably do not create substantially any additional back pressure or create minimal additional back pressure and their applications in combined cycle power plants are disclosed. In one embodiment of the method for efficient response to load variations in a combined cycle power plant, the method includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, placing in the flow path a storage medium comprising high thermal conductivity heat resistance media, preferably particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure to the gas turbine is at most a predetermined back pressure.
Description
THERMAL ENERGY STORAGE FOR COMBINED CYCLE POWER PLANTS
BACKGROUND
One reason for the increased need for storage is that the technology for generating electricity has changed Standard combined cycle power plants (CCPP) used more commonly can be described by Figure la. These plants provide a large fraction of the electric energy in the world and their use is growing fast (reaching over 20% of installed capacity in the U.S.) . During normal operation, compressed air is introduced to a combustion chamber with natural gas or other fuel introduced in a
controlled way. The high temperature (1100-1200°C) gases which are produced as a result of this combustion are introduced to gas turbine 110. The exhaust gases after the expansion in the gas turbine 110 have much lower pressure (barely sufficient above atmospheric pressure in order to flow) . The temperature of these exhaust gases is 550-600°C resulting in the exhaust gases carrying high grade energy, which is recovered in a heat
recovery steam generator (HRSG) 120 by generated steam in a separate cycle. The design of the HRSG 120 is such that the resultant back pressure to the gas turbine is very low (40-50 raBars) . Therefore, providing the HRSG does not affect the efficiency of gas turbine and introduces capability of operating a steam Rankine cycle from the recovered heat. The efficiency of modern combined cycle power plants is almost 55-60%. The control of the power output from the plant is governed by the demand in the grid and is, in turn, effected via supply and consumption of natural gas/fuel in the combustion chamber. This results in changed output from the gas turbine 110 and the steam turbine 130.
In conventional combined cycle power plants (CCPP) , gas turbines operate continuously and the main control of
electricity output is obtained by adjusting the main feed to the gas turbines. Since gas turbines have a very low turndown ratio, they can lose efficiency very rapidly when power is below maximum. The only control is basically on-off, as they can be shutdown in an hour and started up in one or two hours. The conventional CCPPs are not suitable for rapid load following for grid regulation and there is not enough overcapacity to enable such operation as a practical matter.
Therefore, it will be appreciated that there remains a need for new energy storage systems that can help address the above supply and control issues. There is also a need for storage systems that can operate while providing a resultant low back pressure .
BRIEF SUMMARY
Thermal storage systems that preferably do not create substantially any additional back pressure or create minimal additional back pressure and their applications are disclosed herein below.
In one embodiment of the method for efficient response to load variations in a combined cycle power plant of these
teachings, the method includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, the flow path being enabled under predetermined conditions, placing in the flow path a storage medium comprising high thermal conductivity heat resistance media, preferably particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction, the predetermined flow direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back
pressure to the gas turbine is at most a predetermined back pressure. The combined cycle power plant of these teachings efficiently responds to a decrease in load by enabling the flow path through the thermal storage tank and storage medium and providing at least a portion of the fluid exiting the gas turbine to the flow path.
In another embodiment, the thermal storage system of these teachings includes a container having a first port and a second port, wherein the first port receives fluid after heating and the second port allows exit of the fluid when the heat storage system is utilized in the storage mode, and a storage medium disposed in the container, the storage medium comprising high thermal conductivity heat resistance particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a
predetermined direction, the predetermined flow direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure is at most a predetermined back pressure.
In one instance, the system of these teachings includes a gas turbine receiving compressed air and fuel for combustion, a bypass control/connection component and a thermal storage subsystem of these teachings, the bypass control/connection component controlling flow of a portion of fluid exiting the gas turbine and flowing through the heat storage subsystem, the flow through the heat storage subsystem occurring under predetermined conditions.
Embodiments of the method of these teachings for satisfying peak power demand in a combined cycle power plant and an
embodiment of a system to implement the method are also
disclosed.
For a better understanding of the present teachings, together with other and further needs thereof, reference is made to the accompanying drawings and detailed description and its scope will be pointed out in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure la is a schematic representation of a conventional combined cycle power plant;
Figure lb is a schematic representation of a combined cycle power plant of these teachings in the storage mode;
Figure lc is a schematic representation of a combined cycle power plan of these teachings in the recovery mode; and
Figure 2 is a cross-sectional view of a graphical
representation of an embodiment of a heat storage subsystem of these teachings .
DETAILED DESCRIPTION
The following detailed description is of the best currently contemplated modes of carrying out these teachings. The
description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of these teachings, since the scope of these teachings is best defined by the appended claims. Although the teachings have been described with respect to various embodiments, it should be realized these teachings are also capable of a wide variety of further and other embodiments within the spirit and scope of the appended claims.
As used herein, the singular forms "a, 11 "an," and "the" include the plural reference unless the context clearly dictates otherwise .
Except where otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about."
Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present
invention. At the very least, and not to be considered as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding conventions.
Additionally, the recitation of numerical ranges within this specification is considered to be a disclosure of all numerical values and ranges within that range. For example, if a range is from about 1 to about 50, it is deemed to include, for example, 1, 7, 34, 46.1, 23.7, or any other value or range within the range. However, any ranges not cited in the claims are only intended for illustration and not for limiting the range covered by our invention. Numerical values are cited for exemplary reasons and to identify embodiments and are not intended to limit the general concept of these teachings.
As used herein, "Biot number" refers to a ratio of the product of the heat transfer coefficient and a characteristic length, typically defined as the volume of the body divided by the surface area of the body, to the thermal conductivity of the body.
In one embodiment, the method of these teachings for efficient response to load variations in a combined cycle power plant includes providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine, the flow path being
enabled under predetermined conditions, placing in the flow path a storage medium having high thermal conductivity heat
resistance particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of the fluid in a predetermined direction, the predetermined flow direction constituting a longitudinal
direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected such that a resultant back pressure to the gas turbine is at most a predetermined back pressure. The method also includes efficiently responding to a decrease in load by
enabling the flow path through the thermal storage tank and storage medium and providing at least a portion of the fluid exiting the gas turbine to the flow path.
Figure lb is a schematic diagram of a system for practicing the embodiment of the method of the teachings described
hereinabove. In one embodiment of the method of these teachings, the efficiency of the gas turbine 110 is substantially
maintained to the maximum level during all modes of grid demand operation. During load reduction times by the grid, the gas turbine power output is reduced as described hereinabove. The reduction in gas turbine power output is accompanied by major efficiency loss for the case of gas turbines when they are operated at lower power. In one embodiment of the method of these teachings, the gas turbine 110 is kept operating at substantially maximum power even during load reduction and the balance between supply and demand of power output is maintained by allowing the partial or complete flow of the exhaust gas through thermal storage modules 140. In this embodiment of the method of these teachings, gas turbine efficiency is maintained to maximum level and power produced by steam turbine (efficiency substantially does not change with power level) is varied. The
diverted exhaust gas, normally used to produce steam through the HRSG 120, has energy which is transferred to the storage modules 140. The storage modules 140 of these teachings preferably do not create substantially any additional back pressure or create minimal additional back pressure to the gas turbine 110. (In one exemplary instance, not a limitation of these teachings, pressure of the gas entering the the HRSG 120 during gas turbine operation is about 15 psi absolute pressure. The operation of the storage volume 140 should occurr at substantially the same pressure.) The storage modules 140 of these teachings are designed in such a way to allow exhaust gas to be discharged back to the stack.
In another embodiment, the method of these teachings for satisfying peak power demand in a combined cycle power plant includes (a) providing a thermal storage medium in which thermal energy has been previously stored, the thermal storage medium comprising high thermal conductivity heat resistance particles, the particles being in contact with each other and defining voids between the particles in order to facilitate flow of a gas in a predetermined direction, the predetermined flow direction constituting a longitudinal direction, arrangement of the particles constituting a packed bed, dimensions of the particles and of the packed bed being selected in order to such that, during a storage phase, a resultant back pressure to a gas turbine is at most a predetermined back pressure, (b) flowing gas through the thermal storage medium; thereby obtaining, at an exit port of the thermal storage medium, heated gas, and (c) providing the heated gas to a heat recovery steam generator.
Steam is produced by the heat recovery steam generator and provided to a steam turbine to generate additional power to satisfy the peak power demand.
Figure lc is a schematic diagram of a system for practicing the embodiment of the method of the teachings for satisfying peak power demand in a combined cycle power plant, which is described hereinabove. During the peak demand the combined cycle power plant is expected to deliver stored energy to the grid in addition to its regular power rating. Thermal energy (heat) has been previously stored in the storage modules 140. The heat stored can be recovered by flowing gas, low pressure gas in one instance (air in one embodiment) through the storage modules 140. In one embodiment, a flow augmentation component such as fan or blower 150 is utilized to assist the flow of the gas. (Since the gas exiting the storage modules 140 is provided to the H SG 120 in addition to the gas exiting the gas turbine 110, the gas exiting the storage module 140 should be at
substantially the same pressure as the gas exiting the gas turbine 110. A low-pressure compressor or blower 150 is
required.) The recovered hot gas exiting the storage modules 140 is introduced to the HRSG 120 to generate additional steam. In order to accommodate higher steam mass flow rate, either an additional steam turbine or a steam turbine 150 of higher capacity may be required. During the recovery process, the additional power delivered by the steam turbine enables the combined cycle power plant to satisfy the peak demand.
The system shown in Figs, lb and lc includes a gas turbine 110 receiving compressed air and fuel for combustion, a bypass control/connection control component 115, a heat storage
subsystem 140 having a container having a first port and a second port; wherein, when the heat storage system is utilized in the storage - mode , the first port receives fluid exiting the gas turbine and the second port allows exit of the fluid when utilized in the storage mode and a storage medium disposed in the container. When the heat storage system is utilized in the
recovery mode, the second port receives fluid from a fluid source and the first port, when utilized in the recovery mode, allows exit of the fluid and the fluid flows through a storage medium, in which thermal energy is stored, the storage medium being disposed in the container. The storage medium includes high thermal conductivity heat resistance particles; the particles are in contact with each other and define voids between the particles in order to facilitate flow of the fluid in a predetermined direction, the predetermined flow direction constituting a longitudinal direction. Arrangement of the partic-.es constitutes a packed bed. Dimensions of in the particles and of the packed bed are selected such that a resultant back pressure to the gas turbine is at most a
predetermined back pressure, the predetermined back pressure being such that the increase in back pressure to the gas turbine is minimal since any increase in gas turbine back pressure results in power losses. In the storage mode, the bypass control/connection control component 115 controls flow of a portion of the fluid exiting the gas turbine 110 through the heat storage subsystem 140. The system also includes a heat recovery steam generator 120 receiving heated gas and producing steam. In the recovery mode, the bypass control/connection control component 115 controls flow of fluid exiting the heat storage subsystem through the first port. In the recovery mode, fluid exiting the heat storage subsystem 140 through the first port is provided to the heat recovery steam generator 120. In one instance, in the recovery mode, the fluid exiting the thermal storage subsystem 140 is provided to the HRSG 120; in addition, the heated gas from the. gas turbine 110 is also provided to the HRSG 120.
In one embodiment, the particles in the storage medium can be at least one of alumina, graphite, silica, quartz, or ceramic. In one instance, the dimensions and characteristics of the particles are selected such that Biot number magnitude does not exceed 0.1. In one embodiment of the storage medium of these teachings, alumina particles (e.g., stones or pebbles) are selected because their heat transfer resistance is low. The latter means that the thermal conductivity of the alumina is high and their size is small so the time needed to reach the temperature of . the hot fluid stream is very short compared to the fluid residence time, and the temperature of the alumina thus follows that of the surrounding hot fluid practically instantaneously.
In one embodiment, to prevent heat transfer through the particles during storage, particularly when there are
temperature gradients in the bed, in order to be able to heat slowly to very high temperature in the bed, insulating porous plates are placed, at intervals, inside the packed pebble bed, with holes small enough to retain the filling material. As will be appreciated by those skilled in the art, the heat up time of the solid particles is selected to be short.
The thermal storage system of these teachings differs from other thermal storage systems, such as the thermal storage systems disclosed in US Patent number 7,954,321, issued on June 7, 2011 to R. Shinnar, and in US Patent Application Publication 20090178409, "Apparatus And Method For Storing Heat Energy," published on July 16, 2009, both of which are Incorporated by reference herein in their entirety for all purposes, in a variety of factors, among them being the requirement that storage modules of these teachings preferably do not create
substantially any additional back pressure or create minimal additional back pressure.
FIG. 2 shows the assembled modules in side cross-section with the packed (pebble) bed 19 loaded and filling the vessel interior from the vessel top to the vessel bottom, with flow path I -II extending through the medium 18 between the pebble material 19' of pebble bed 19. In one instance of these
teachings, a single large storage vessel 16 can be used although smaller modules can be- assembled to form the vessel. A single such module (in one instance, a 5-30 ft long section of pipe) is good for a small power plant, while a number of vessels can be assembled, in one instance, in parallel for a larger plant.
Referring again to FIG. 2, in an exemplary embodiment of these teachings, the storage vessel 16 includes preferably cylindrical modules 16A, with two modules 16A1 and 16A2 being vertically stacked and the closed vessel 16 being formed by addition of manifold plates 16B1 and 16B2 at the top 38 and bottom 39 respectively of vessel 16 on the respect outer ends of modules 16A1 and 16A2. Furthermore, Each module 16A is provided with a flange 41 at its top and bottom such that the mated modules can be and are sealed together at meeting adjacent flanges 41 to form seal 43, as indicated. A manifold plate 16B1 is placed at the top end of module 16A 1 such that manifold plate rim 45 cooperates with adjacent flange 41 to form seal 47 thereat and manifold plate 16B2 is placed at the bottom end of module 16A2 such that plate rim 45 cooperates with adjacent flange 41 to form seal 49, thus to provide a sealed storage container 16, as shown in FIG. 2. The cylindrical modules 16A, 16B of FIG. 2 preferably use sections of ready-made large diameter concrete vessels or vessels made directly by joining insulation bricks, each section of length that is easy to transport and to assemble (such as, in one instance, 5-7.5 ft
long sections) , and equipped with the provisions to assist assembly of the vessel on location. These modules 16A, 16B, etc., are preferably fitted with perforated plates 40 (FIG. 2), the holes 44 of which are smaller than the diameter of the storage material 19', to retain it in place. It will be
appreciated that these plates can be, in one instance, made of non-conducting ceramic to minimize heat conduction through the storage material, since heat transfer is ideally restricted to direct contact between fluid 11a and pebble material 191. It is desirable to limit conduction of heat particle to particle, and therefore, in one practice of these teachings, an insulating step, such as plates 40, is placed at intervals, the plates having enough porosity to permit fluid flow and small enough to hold the particles in place.
In one exemplary embodiment, the ceramic filling material 19' is constructed by using small balls of non-porous alumina 3- 10 mm in diameter (preferably 6-8 mm) , with the desired outcome being a fast heating medium. The diameter of the non-porous alumina balls is selected such that the Biot number magnitude does not exceed 0.1.
The configuration of the modular vessel and associated feed pipes forms a strong structure wherein the flanged pipe sections reinforce strength of the individual pipes to form a strong high structure that " can be anchored to the ground. Modules (vessels) made of concrete or insulation bricks have diameter up to 15 ft and length 5-10 ft. (The vessel provides a container for the packed (pebble) bed.) These sections should be designed for easy assembly on location, but they can also be prepared on site. The short sections. of the vessels make the process convenient such that they can be made and filled with the ceramic in a shop, and transported completely ready for final assembly. This can be less expensive than building large storage vessels on location.
In the system of these teachings, the heat transfer fluid is a low pressure gas, just above atmospheric conditions, which means energy density of the fluid is much lower as compared to the fluids used in steam systems or pressurized solar system. Therefore, rate of energy deposition using the low pressure fluids is lower. Heat storage methods are efficient only when the heat loss rate to the environment is minimal as compared to the heat storage or recovery rate. With low pressure gas, it is not-desirable to have larger length to diameter columns as it would result in substantial drop in the temperature stored and recovered, i.e. more than 10%. In one instance, a ratio of a characteristic dimension of the packed bed in a longitudinal direction (such as, for example, height) to a characteristic dimension of the packed bed in a direction transverse to the longitudinal direction (such as, for example, diameter} is at most about 3.0, preferably 2.15. Preferably, the height of column is from about 10 ft to about 15 ft. Moreover, in
applications in combined cycle power plants, it is essential to have very small back-pressure acting on the gas turbine. The smaller length of the storage vessel helps in reducing back pressure. The diameter of the bed is increased in order to have increased total volume, preferably to about 15 ft. Another design consideration in storage vessels is the size of alumina particles. If the size of particles used in the packed bed is increased, the. pressure drop or resultant back pressure on the turbine is reduced. But particle size can be increased only up to the point where Biot number magnitude does not become greater than 0.1 in order for the temperature inside the particles to equilibrate. Preferably, the size range of alumina particles is about 6 mm two about 8 mm.
Table 1 below illustrates an exemplary embodiment of the system of these teachings.
Table 1
In another embodiment, the storage modules are configured as disclosed in US Patent Application Publication Number
, corresponding to US Patent Application Number
, .entitled "Optimum Process Design of Packed Bed
Type Thermal Storage Systems And Other Applications," (Attorney Docket No. 44821-111) filed concurrently with the present application, and claiming priority of US Provisional Patent Application Number 61/512,281, filed on July 27, 2011, all of which are incorporated by reference herein in their entirety for all purposes .
For the purposes of describing and defining the present teachings, it is noted that the term "substantially" is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value,
measurement, or other representation. The term "substantially" is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
It should be noted that although the storage systems of these teachings have been disclosed in relationship to a combined cycle power plant, the storage systems of these teachings are capable of other applications and those
applications are within the scope of these teachings.
Although the teachings have been described with respect to various embodiments, it should be realized these teachings are also capable of a wide variety of further and other embodiments within the spirit and scope of the appended claims.
What is claimed is:
Claims
A method for efficient response to load variations in a combined cycle power plant, the method comprising the steps of:
providing, through a thermal storage tank, a flow path for fluid exiting a gas turbine; said flow path being enabled under predetermined conditions ; placing in said flow path a storage medium comprising porous high thermal conductivity heat resistance media; said media defining voids in order to
facilitate flow of said fluid in a predetermined direction; said predetermined flow direction
constituting a longitudinal direction; arrangement of said media constituting a packed bed; dimensions of said media and of said packed bed being selected such that a resultant back pressure to the gas turbine is at most a predetermined back pressure; and efficiently responding to a decrease in load by enabling said flow path and providing at least a portion of the fluid exiting the gas turbine to said flow path.
The method of claim 1 wherein said media comprise
particles; and wherein the dimensions of said particles are selected such that Biot number magnitude does not exceed 0.1.
The method of claim 2 wherein said particles comprise alumina; and wherein a characteristic dimension of said particles is between about 6 mm to about 8 mm.
4. The method of claim 1 wherein said media comprise
particles; and wherein said particles comprise at least one of alumina, graphite, silica, quartz, or ceramic.
5. The method of claim i wherein said a ratio of a
characteristic dimension of said packed bed in a
longitudinal direction to a characteristic dimension of said packed bed in a direction transverse to the
longitudinal direction is at most 2.15.
6. A heat storage system for use in systems requiring low back pressure, the system comprising:
a container having a first port and a second port; wherein said first port receives fluid after heating and said second port allows exit of said fluid when the heat storage system is utilized in the storage mode ; a storage medium disposed in said container; said storage medium comprising high thermal conductivity heat resistance particles; said particles being in contact with each other and defining voids between said particles in order to facilitate flow of said fluid in a predetermined direction; said predetermined flow ' direction constituting a longitudinal direction; arrangement of said particles constituting a packed bed; dimensions of said particles and of said packed bed being selected such that a resultant back pressure is at most a predetermined back pressure.
7. The heat storage system of claim 6 wherein the dimensions of said particles are selected such that Biot number magnitude does not exceed 0.1.
8. The heat storage system of claim 7 wherein said particles comprise alumina and wherein a characteristic dimension of said particles is between about 6 mm to about 8 mm.
9. The heat storage system of claim 6 wherein said particles comprise at least one of alumina, graphite, silica, quartz, or ceramic .
10. The heat storage system of claim 6 wherein said a ratio of a characteristic dimension of said packed bed in a
longitudinal direction to a characteristic dimension of said packed bed in a direction transverse to the
longitudinal direction is at most 2.15.
11. The heat storage system of claim 6 wherein said storage
medium further includes heat ' storage material and heat insulating material; periodic insulating porous layers of said heat insulating material being placed in said flow path.
12. The heat storage system of claim 11 wherein the insulating layer comprises a plate with passages, said plate made of an insulating heat resistant material .
13. The heat storage system of claim 11 wherein said insulating layer comprises a layer of insulating heat resistant particles similar in size to the heat conducting material.
system comprising:
a gas turbine receiving compressed air and fuel for combustion,- a bypass control/connection component; a heat storage subsystem comprising:
a container having a first port and a second port; wherein said first port receives fluid exiting the gas turbine and said second port allows exit of said fluid when the heat storage .system is utilized in the storage mode; a storage medium disposed in said container; said storage medium comprising high thermal
conductivity heat resistance media; said media defining voids in order to facilitate flow of said fluid in a predetermined direction; said predetermined flow direction constituting a longitudinal direction; arrangement of said media constituting a packed bed; dimensions of said media and of said packed bed being selected such .that a resultant back pressure to the gas turbine is at most a predetermined back pressure; said bypass control/connection component controlling flow of a portion of fluid exiting said gas turbine and flowing through said heat storage subsystem; said flow through said heat storage subsystem occurring under predetermined conditions.
15. The system of claim 14 wherein said media comprise particles; and wherein the dimensions of said particles are selected such that Biot number magnitude does not exceed 0.1.
16. The system of claim 15 wherein said particles comprise alumina; and wherein a characteristic dimension of said particles is between about 6 mm to about 8 mm.
17. The system of claim 14 wherein said media comprise
particles; and wherein said particles comprise at least one of alumina, graphite, silica, quartz, or ceramic.
18. The system of claim 14 wherein a ratio of a characteristic dimension of said packed bed in a longitudinal direction to a characteristic dimension of said packed bed in a
direction transverse to the longitudinal direction is at most 2.15.
19. The system of claim 14 wherein said storage medium further includes heat storage material and heat insulating
material; periodic insulating porous layers of said heat insulating material being disposed in said flow path.
20. The system of claim 19 wherein the insulating layer is a plate with passages, said plate made of an insulating heat resistant material.
21. The system of claim 19 wherein said insulating layer is a layer of insulating heat resistant particles similar in size to the heat conducting material.
A method for satisfying peak power demand in a combined cycle power plant, the method comprising the steps of:
providing a thermal storage medium in which thermal energy has been previously stored; the thermal storage medium comprising high thermal conductivity heat resistance particles; said particles being in contact with each other and defining voids between said particles in order to facilitate flow of a gas in a predetermined direction; said predetermined flow direction constituting a longitudinal direction;
arrangement of said particles constituting a packed bed; dimensions of said particles and of said packed bed being selected such that, during a storage mode, a resultant back pressure to a gas turbine is at most a predetermined back pressure; flowing gas through the thermal storage medium;
thereby obtaining, at an exit port of the thermal storage medium, heated gas; and providing the heated gas to a heat recovery steam generator; whereby steam is produced by the heat recovery steam generator and provided to a steam turbine to generate additional power to satisfy the peak power demand.
The method of claim 22 wherein the dimensions of said particles are selected such that Biot number magnitude does not exceed 0.1.
24. The method of claim 23 wherein said particles comprise alumina and wherein a characteristic dimension of said particles is between about 6 mm to about 8 mm.
25. The method of claim 22 wherein said particles comprise at least one of alumina, silica, graphite, quartz, or ceramic.
26. The method of claim 22 wherein said a ratio of a
characteristic dimension of said packed bed in a
longitudinal direction to a characteristic dimension of said packed bed in a direction transverse to the
longitudinal direction is at most 2.15.
27. A system comprising:
a heat recovery steam generator receiving heated gas and producing steam; a connection control component; a heat storage subsystem comprising:
a container having a first port and a second port; wherein said first port receives fluid from a fluid source and said second port allows exit of said fluid when the heat storage system is utilized in the recovery mode;
.a storage medium disposed in said container; said storage medium comprising high thermal
conductivity heat resistance particles; said particles being in contact with each other and defining voids between said particles in order to facilitate flow of said fluid in a predetermined
direction; said predetermined flow direction
constituting a longitudinal direction;
arrangement of said particles constituting a packed bed; dimensions of said particles and of said packed bed being selected such that a resultant back pressure is at most a
predetermined back pressure; said connection control component controlling flow of fluid exiting said heat storage subsystem through said second port; in a recovery mode, fluid exiting said heat storage subsystem through said second port is provided to said heat recovery steam generator.
28. The system of claim 27 wherein the dimensions of said
particles are selected such that Biot number magnitude does not exceed 0.1.
29. The system of claim 28 wherein said particles comprise
alumina and wherein a characteristic dimension of said particles is between about 6 mm to about 8 mm.
30. The system of claim 27 wherein said particles comprise at least one of alumina, silica, graphite, quartz, or ceramic.
31. The system of claim 27 wherein said a ratio of a
characteristic dimension of said packed bed in a
longitudinal direction to a characteristic dimension of said packed bed in a direction transverse to the
longitudinal direction is at most 2.15.
32. The system of claim 27 wherein said storage medium further includes heat storage material and heat insulating
material; periodic insulating porous layers of said heat insulating material being disposed in said flow path.
33. The system of claim 32 wherein the insulating layer is a plate with passages, said plate made of an insulating heat resistant . material .
34. The system of claim 32 wherein said insulating layer is a layer of insulating heat resistant particles similar in size to the heat conducting material.
35. The system of claim 27 further comprising a flow
augmentation component augmenting flow speed of the fluid from the fluid source entering the heat storage subsystem.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/115,174 US9540957B2 (en) | 2011-05-02 | 2012-01-10 | Thermal energy storage for combined cycle power plants |
CA2834938A CA2834938C (en) | 2011-05-02 | 2012-01-10 | Thermal energy storage for combined cycle power plants |
EP12779989.8A EP2756170B1 (en) | 2011-05-02 | 2012-01-10 | Thermal energy storage for combined cycle power plants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161481312P | 2011-05-02 | 2011-05-02 | |
US61/481,312 | 2011-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012150969A1 true WO2012150969A1 (en) | 2012-11-08 |
Family
ID=47107986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/020743 WO2012150969A1 (en) | 2011-05-02 | 2012-01-10 | Thermal energy storage for combined cycle power plants |
Country Status (4)
Country | Link |
---|---|
US (1) | US9540957B2 (en) |
EP (1) | EP2756170B1 (en) |
CA (1) | CA2834938C (en) |
WO (1) | WO2012150969A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2796671A1 (en) | 2013-04-26 | 2014-10-29 | Siemens Aktiengesellschaft | Power plant system with thermochemical storage unit |
DE102014202266A1 (en) | 2014-02-07 | 2015-08-13 | Siemens Aktiengesellschaft | Method for operating an energy store |
WO2015149124A1 (en) * | 2014-04-01 | 2015-10-08 | Graphite Energy N.V. | Use of stored heat energy in a combined cycle gas turbine power generating system |
DE102014115449A1 (en) | 2014-10-23 | 2016-04-28 | Technische Universität München | Thermal buffer tank for acceleration of the start-up or start-up process in power plants with heat recovery steam generator |
US9658004B2 (en) | 2011-03-23 | 2017-05-23 | Energy Technologies Institute Llp | Layered thermal store with selectively alterable gas flow path |
US10669897B2 (en) | 2017-12-06 | 2020-06-02 | General Electric Company | Components and systems for reducing thermal stress of heat recovery steam generators in combined cycle power plant systems |
WO2022115721A3 (en) * | 2020-11-30 | 2022-11-10 | Rondo Energy, Inc. | Energy storage system and applications |
US11591955B2 (en) | 2018-06-22 | 2023-02-28 | Siemens Energy Global GmbH & Co. KG | Method for operating a power plant |
US11913361B2 (en) | 2020-11-30 | 2024-02-27 | Rondo Energy, Inc. | Energy storage system and alumina calcination applications |
US11913362B2 (en) | 2020-11-30 | 2024-02-27 | Rondo Energy, Inc. | Thermal energy storage system coupled with steam cracking system |
US12018596B2 (en) | 2020-11-30 | 2024-06-25 | Rondo Energy, Inc. | Thermal energy storage system coupled with thermal power cycle systems |
US12140054B2 (en) | 2024-02-26 | 2024-11-12 | Rondo Energy, Inc. | Thermal energy storage system coupled with steam cracking system |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10094219B2 (en) | 2010-03-04 | 2018-10-09 | X Development Llc | Adiabatic salt energy storage |
EP2703607A1 (en) * | 2012-09-04 | 2014-03-05 | Alstom Technology Ltd | A method of increasing electricity output during high demand |
WO2014052927A1 (en) | 2012-09-27 | 2014-04-03 | Gigawatt Day Storage Systems, Inc. | Systems and methods for energy storage and retrieval |
US10281160B2 (en) | 2013-10-24 | 2019-05-07 | The Research Foundation Of The City University Of New York | Methods for meeting localized peak loads in buildings and urban centers |
PL3002423T3 (en) * | 2014-09-30 | 2022-09-26 | Siemens Gamesa Renewable Energy A/S | Combined cycle power plant with a thermal storage unit and method for generating electricity by using the combined cycle power plant |
EP3247887A1 (en) * | 2015-03-20 | 2017-11-29 | Siemens Aktiengesellschaft | Excess air valves for pressure control |
US10900417B2 (en) | 2015-04-30 | 2021-01-26 | Powerphase Llc | Grid scale energy storage systems using thermal storage coupled with gas turbine air and steam injection |
WO2016195968A1 (en) | 2015-06-01 | 2016-12-08 | Conlon William M | Part load operation of liquid air power and storage system |
WO2016195999A1 (en) | 2015-06-03 | 2016-12-08 | Conlon William M | Liquid air power and storage with carbon capture |
WO2016204893A1 (en) | 2015-06-16 | 2016-12-22 | Conlon William M | Cryogenic liquid energy storage |
WO2017069922A1 (en) | 2015-10-21 | 2017-04-27 | Conlon William M | High pressure liquid air power and storage |
EP3371421B1 (en) * | 2015-11-05 | 2023-02-15 | Pintail Power LLC | Dispatchable storage combined cycle power plants |
US10221726B2 (en) * | 2015-12-21 | 2019-03-05 | Cockerill Maintenance & Ingenierie S.A. | Condensing heat recovery steam generator |
US10233833B2 (en) | 2016-12-28 | 2019-03-19 | Malta Inc. | Pump control of closed cycle power generation system |
US11053847B2 (en) | 2016-12-28 | 2021-07-06 | Malta Inc. | Baffled thermoclines in thermodynamic cycle systems |
US10458284B2 (en) | 2016-12-28 | 2019-10-29 | Malta Inc. | Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank |
US10436109B2 (en) | 2016-12-31 | 2019-10-08 | Malta Inc. | Modular thermal storage |
US10725441B2 (en) | 2017-08-31 | 2020-07-28 | Energy Harbors Corporation, Inc. | Energy management with multiple pressurized storage elements |
US11566839B2 (en) | 2017-08-31 | 2023-01-31 | Energy Internet Corporation | Controlled liquefaction and energy management |
US11392100B2 (en) | 2017-08-31 | 2022-07-19 | Energy Internet Corporation | Modularized energy management using pooling |
US10947899B2 (en) | 2017-08-31 | 2021-03-16 | Energy Internet Corporation | Energy storage and management using pumping |
US11261107B2 (en) | 2017-08-31 | 2022-03-01 | Energy Internet Corporation | Desalination using pressure vessels |
US10998727B2 (en) | 2017-08-31 | 2021-05-04 | Energy Internet Corporation, Inc. | Power management across point of source to point of load |
US11906224B2 (en) | 2017-08-31 | 2024-02-20 | Energy Internet Corporation | Controlled refrigeration and liquefaction using compatible materials for energy management |
DE102019210737A1 (en) | 2019-07-19 | 2021-01-21 | Siemens Aktiengesellschaft | Gas turbine with thermal energy storage, method of operation and method of modification |
CN116624240A (en) | 2019-11-16 | 2023-08-22 | 马耳他股份有限公司 | Dual power system pumping thermoelectric storage with bypass and recirculation |
DE102020201068A1 (en) * | 2020-01-29 | 2021-07-29 | Siemens Aktiengesellschaft | System with thermal energy storage, procedures for operation and procedures for modification |
CA3189001A1 (en) | 2020-08-12 | 2022-02-17 | Mert Geveci | Pumped heat energy storage system with modular turbomachinery |
US11486305B2 (en) | 2020-08-12 | 2022-11-01 | Malta Inc. | Pumped heat energy storage system with load following |
US11396826B2 (en) | 2020-08-12 | 2022-07-26 | Malta Inc. | Pumped heat energy storage system with electric heating integration |
US11480067B2 (en) | 2020-08-12 | 2022-10-25 | Malta Inc. | Pumped heat energy storage system with generation cycle thermal integration |
US20220049652A1 (en) | 2020-08-12 | 2022-02-17 | Malta Inc. | Pumped heat energy storage system with thermal plant integration |
US11286804B2 (en) | 2020-08-12 | 2022-03-29 | Malta Inc. | Pumped heat energy storage system with charge cycle thermal integration |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7444818B1 (en) * | 2005-11-23 | 2008-11-04 | Florida Turbine Technologies, Inc. | Batch fired heat reservoirs |
US20090178409A1 (en) * | 2006-08-01 | 2009-07-16 | Research Foundation Of The City University Of New York | Apparatus and method for storing heat energy |
US20090322089A1 (en) * | 2007-06-06 | 2009-12-31 | Mills David R | Integrated solar energy receiver-storage unit |
US20100202582A1 (en) * | 2006-08-01 | 2010-08-12 | Research Foundation Of The City University Of New York | System and method for storing energy in a nuclear power plant |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3974642A (en) * | 1973-01-26 | 1976-08-17 | Fives-Cail Babcock Societe Anonyme | Hybrid cycle power plant with heat accumulator for storing heat exchange fluid transferring heat between cycles |
US4094148A (en) * | 1977-03-14 | 1978-06-13 | Stone & Webster Engineering Corporation | Thermal storage with molten salt for peaking power |
US4405010A (en) * | 1978-06-28 | 1983-09-20 | Sanders Associates, Inc. | Sensible heat storage unit |
SE455813B (en) * | 1982-12-29 | 1988-08-08 | Hypeco Ab | HEAT EXCHANGER WHICH ATMINSTONE THE CHANNEL FOR ONE MEDIUM IS DIVIDED INTO A LARGE NUMBER OF FLOWMALLY PARALLEL CONNECTED CHANNELS, WHICH TURBULA'S DEVELOPMENT |
US5903060A (en) * | 1988-07-14 | 1999-05-11 | Norton; Peter | Small heat and electricity generating plant |
JPH08260912A (en) * | 1995-03-20 | 1996-10-08 | Toshiba Corp | Combined cycle power plant |
US5896747A (en) * | 1995-08-01 | 1999-04-27 | Antohi; Valentin | Vehicular absorption air conditioning process and system utilizing engine coolant waste heat |
US20050133202A1 (en) * | 2001-11-09 | 2005-06-23 | Aalborg Industries A/S | Heat exchanger, combination with heat exchanger and method of manufacturing the heat exchanger |
DE10260992A1 (en) | 2002-12-24 | 2004-07-08 | Riedel, Erik, Dr.-Ing. | Combined cycle gas and steam power plant has heat storage device arranged in parallel with steam generator connected to line between outlet of gas turbine and inlet of waste heat boiler |
DE102005029321A1 (en) * | 2005-06-24 | 2006-12-28 | Behr Gmbh & Co. Kg | Heat exchanger for exhaust gas cooling has structural elements arranged so that duct has internal variable heat transfer increasing in direction of flow |
EP2126481A4 (en) * | 2007-03-08 | 2013-10-30 | Univ City New York Res Found | Solar power plant and method and/or system of storing energy in a concentrated solar power plant |
CN101984761A (en) * | 2007-06-06 | 2011-03-09 | 奥斯拉公司 | Combined cycle power plant |
EA201001060A1 (en) | 2007-12-21 | 2011-04-29 | Рисерч Фаундэйшн Оф Зе Сити Юниверсити Оф Нью-Йорк | DEVICE AND METHOD FOR THE ACCUMULATION OF HEAT ENERGY |
WO2011104556A2 (en) * | 2010-02-24 | 2011-09-01 | Isentropic Limited | Improved heat storage system |
GB201104867D0 (en) * | 2011-03-23 | 2011-05-04 | Isentropic Ltd | Improved thermal storage system |
WO2013015834A1 (en) * | 2011-07-27 | 2013-01-31 | Research Foundation Of The City University Of New York | Optimum process design of packed bed type thermal storage systems and other applications |
-
2012
- 2012-01-10 US US14/115,174 patent/US9540957B2/en active Active
- 2012-01-10 CA CA2834938A patent/CA2834938C/en active Active
- 2012-01-10 EP EP12779989.8A patent/EP2756170B1/en active Active
- 2012-01-10 WO PCT/US2012/020743 patent/WO2012150969A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7444818B1 (en) * | 2005-11-23 | 2008-11-04 | Florida Turbine Technologies, Inc. | Batch fired heat reservoirs |
US20090178409A1 (en) * | 2006-08-01 | 2009-07-16 | Research Foundation Of The City University Of New York | Apparatus and method for storing heat energy |
US20100202582A1 (en) * | 2006-08-01 | 2010-08-12 | Research Foundation Of The City University Of New York | System and method for storing energy in a nuclear power plant |
US20090322089A1 (en) * | 2007-06-06 | 2009-12-31 | Mills David R | Integrated solar energy receiver-storage unit |
Non-Patent Citations (1)
Title |
---|
See also references of EP2756170A4 * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9658004B2 (en) | 2011-03-23 | 2017-05-23 | Energy Technologies Institute Llp | Layered thermal store with selectively alterable gas flow path |
US9709347B2 (en) | 2011-03-23 | 2017-07-18 | Energy Technologies Institute Llp | Thermal storage system |
EP2796671A1 (en) | 2013-04-26 | 2014-10-29 | Siemens Aktiengesellschaft | Power plant system with thermochemical storage unit |
DE102014202266A1 (en) | 2014-02-07 | 2015-08-13 | Siemens Aktiengesellschaft | Method for operating an energy store |
WO2015149124A1 (en) * | 2014-04-01 | 2015-10-08 | Graphite Energy N.V. | Use of stored heat energy in a combined cycle gas turbine power generating system |
DE102014115449A1 (en) | 2014-10-23 | 2016-04-28 | Technische Universität München | Thermal buffer tank for acceleration of the start-up or start-up process in power plants with heat recovery steam generator |
WO2016062425A1 (en) * | 2014-10-23 | 2016-04-28 | Technische Universität München | Thermal buffer store for accelerating the start-up or starting process in power plants having a waste-heat steam generator |
US10669897B2 (en) | 2017-12-06 | 2020-06-02 | General Electric Company | Components and systems for reducing thermal stress of heat recovery steam generators in combined cycle power plant systems |
US11591955B2 (en) | 2018-06-22 | 2023-02-28 | Siemens Energy Global GmbH & Co. KG | Method for operating a power plant |
US11603776B2 (en) | 2020-11-30 | 2023-03-14 | Rondo Energy, Inc. | Energy storage system and applications |
US11867095B2 (en) | 2020-11-30 | 2024-01-09 | Rondo Energy, Inc. | Thermal energy storage system with steam generator having feedback control |
US11566541B2 (en) | 2020-11-30 | 2023-01-31 | Rondo Energy, Inc. | Solid oxide electrolysis system with thermal energy storage system |
US11572809B2 (en) | 2020-11-30 | 2023-02-07 | Rondo Energy, Inc. | Thermal energy storage system with alternating discharge operation |
US11572810B2 (en) | 2020-11-30 | 2023-02-07 | Rondo Energy, Inc. | Thermal energy storage system with steam generator having feed-forward control |
US11572811B2 (en) | 2020-11-30 | 2023-02-07 | Rondo Energy, Inc. | Thermal energy storage system with forecast control of operating parameters |
US11585243B2 (en) | 2020-11-30 | 2023-02-21 | Rondo Energy, Inc. | Material activation system with thermal energy storage system |
US11530625B2 (en) | 2020-11-30 | 2022-12-20 | Rondo Energy, Inc. | Thermal energy storage assemblage |
US11598226B2 (en) | 2020-11-30 | 2023-03-07 | Rondo Energy, Inc. | Thermal energy storage assemblage with energy cogeneration |
WO2022115721A3 (en) * | 2020-11-30 | 2022-11-10 | Rondo Energy, Inc. | Energy storage system and applications |
US11619144B2 (en) | 2020-11-30 | 2023-04-04 | Rondo Energy, Inc. | Thermal energy storage system with steam generator having feedback control |
US11702963B2 (en) | 2020-11-30 | 2023-07-18 | Rondo Energy, Inc. | Thermal energy storage system with steam generation system including flow control and energy cogeneration |
US11795842B2 (en) | 2020-11-30 | 2023-10-24 | Rondo Energy, Inc. | Thermal energy storage system with steam generator having feed-forward control |
US11859518B2 (en) | 2020-11-30 | 2024-01-02 | Rondo Energy, Inc. | Thermal energy storage system with forecast control of operating parameters |
US11867093B2 (en) | 2020-11-30 | 2024-01-09 | Rondo Energy, Inc. | Thermal energy storage system with radiation cavities |
US11530626B2 (en) | 2020-11-30 | 2022-12-20 | Rondo Energy, Inc. | Thermal energy storage assemblage with dynamic insulation and failsafe cooling |
US11867094B2 (en) | 2020-11-30 | 2024-01-09 | Rondo Energy, Inc. | Thermal energy storage assemblage with energy cogeneration |
US11867096B2 (en) | 2020-11-30 | 2024-01-09 | Rondo Energy, Inc. | Calcination system with thermal energy storage system |
US11873741B2 (en) | 2020-11-30 | 2024-01-16 | Rondo Energy, Inc. | Thermal energy storage system with forecast control of operating parameters |
US11873743B2 (en) | 2020-11-30 | 2024-01-16 | Rondo Energy, Inc. | Methods for material activation with thermal energy storage system |
US11873742B2 (en) | 2020-11-30 | 2024-01-16 | Rondo Energy, Inc. | Thermal energy storage system with deep discharge |
US11913361B2 (en) | 2020-11-30 | 2024-02-27 | Rondo Energy, Inc. | Energy storage system and alumina calcination applications |
US11913362B2 (en) | 2020-11-30 | 2024-02-27 | Rondo Energy, Inc. | Thermal energy storage system coupled with steam cracking system |
US11920501B2 (en) | 2020-11-30 | 2024-03-05 | Rondo Energy, Inc. | Thermal energy storage system with steam generation system including flow control and energy cogeneration |
US12018596B2 (en) | 2020-11-30 | 2024-06-25 | Rondo Energy, Inc. | Thermal energy storage system coupled with thermal power cycle systems |
US12146424B2 (en) | 2023-06-01 | 2024-11-19 | Rondo Energy, Inc. | Thermal energy storage system coupled with a solid oxide electrolysis system |
US12140054B2 (en) | 2024-02-26 | 2024-11-12 | Rondo Energy, Inc. | Thermal energy storage system coupled with steam cracking system |
US12140053B2 (en) | 2024-02-26 | 2024-11-12 | Rondo Energy, Inc. | Thermal energy storage system coupled with steam cracking system |
US12146426B2 (en) | 2024-02-26 | 2024-11-19 | Rondo Energy, Inc. | Energy storage system and alumina calcination applications |
US12146425B2 (en) | 2024-02-26 | 2024-11-19 | Rondo Energy, Inc. | Energy storage system and alumina calcination applications |
Also Published As
Publication number | Publication date |
---|---|
CA2834938C (en) | 2019-06-25 |
CA2834938A1 (en) | 2012-11-08 |
US20140202157A1 (en) | 2014-07-24 |
EP2756170A4 (en) | 2015-11-11 |
US9540957B2 (en) | 2017-01-10 |
EP2756170B1 (en) | 2019-09-25 |
EP2756170A1 (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2834938C (en) | Thermal energy storage for combined cycle power plants | |
US8544275B2 (en) | Apparatus and method for storing heat energy | |
AU2011288289B2 (en) | Method and apparatus for storing thermal energy | |
Ahmadi et al. | A review on solar‐assisted gas turbines | |
US8621868B2 (en) | Solar power plant and method and/or system of storing energy in a concentrated solar power plant | |
US9475023B2 (en) | Optimum process design of packed bed type thermal storage systems and other applications | |
JP2013512410A (en) | Thermal energy storage device for adiabatic compressed air energy storage system and corresponding method for forming the system | |
US10794276B2 (en) | Energy storage via thermal reservoirs and air turbines | |
EP3739084A1 (en) | Hydrogen production system and method for producing hydrogen in a hydrogen production system | |
EP2235341A1 (en) | Apparatus and method for storing heat energy | |
Vesely et al. | Optimization of Supercritical CO 2 Power Conversion System With an Integrated Energy Storage for the Pulsed DEMO | |
US20210364172A1 (en) | Cold storage system and method of operating a multi-packed bed cold storage system | |
US10281160B2 (en) | Methods for meeting localized peak loads in buildings and urban centers | |
US11815016B2 (en) | Thermal storage and power generation systems and methods for electrical power source management | |
DK180903B1 (en) | Pumped-heat thermal energy storage system | |
WO2024020322A1 (en) | Regenerative brayton based thermal energy storage system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12779989 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2834938 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012779989 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14115174 Country of ref document: US |