WO2012149122A1 - Section d'imprégnation munie de rouleaux et procédé d'imprégnation de métiers à tisser - Google Patents

Section d'imprégnation munie de rouleaux et procédé d'imprégnation de métiers à tisser Download PDF

Info

Publication number
WO2012149122A1
WO2012149122A1 PCT/US2012/035147 US2012035147W WO2012149122A1 WO 2012149122 A1 WO2012149122 A1 WO 2012149122A1 US 2012035147 W US2012035147 W US 2012035147W WO 2012149122 A1 WO2012149122 A1 WO 2012149122A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
impregnation
roving
rovings
roller
Prior art date
Application number
PCT/US2012/035147
Other languages
English (en)
Inventor
Aaron H. Johnson
David W. Eastep
Original Assignee
Ticona Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ticona Llc filed Critical Ticona Llc
Priority to US14/112,609 priority Critical patent/US20140093649A1/en
Publication of WO2012149122A1 publication Critical patent/WO2012149122A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/156Coating two or more articles simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • B29C48/705Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows in the die zone, e.g. to create flow homogeneity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/157Coating linked inserts, e.g. chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/35Extrusion nozzles or dies with rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns

Definitions

  • Fiber rovings have been employed in a wide variety of applications. For example, such rovings have been utilized to form fiber-reinforced composite rods.
  • the rods may be utilized as lightweight structural reinforcements.
  • power umbilicals are often used in the transmission of fluids and/or electric signals between the sea surface and equipment located on the sea bed. To help strengthen such umbilicals, attempts have been made to use pultruded carbon fiber rods as separate load carrying elements.
  • Profiles are pultruded parts with a wide variety of cross-sectional shapes, and may be employed as a structural member for window lineals, decking planks, railings, balusters, roofing tiles, siding, trim boards, pipe, fencing, posts, light posts, highway signage, roadside marker posts, etc.
  • Hollow profiles have been formed by pulling ("pultruding") continuous fiber rovings through a resin and then shaping the fiber-reinforced resin within a pultrusion die.
  • fiber rovings may generally be utilized in any suitable applications to form, for example, suitable fiber reinforced plastics. As is generally known in the art, rovings utilized in these applications are typically combined with a polymer resin.
  • thermoset resins e.g., vinyl esters
  • Thermoset resins are difficult to use during manufacturing and do not possess good bonding characteristics for forming layers with other materials.
  • attempts have been made to form rovings from thermoplastic polymers in other types of applications.
  • U.S. Patent Publication No. 2005/0186410 to Bryant, et aj. describes attempts that were made to embed carbon fibers into a thermoplastic resin to form a composite core of an electrical transmission cable.
  • Bryant, et al. notes that these cores exhibited flaws and dry spots due to inadequate wetting of the fibers, which resulted in poor durability and strength.
  • Another problem with such cores is that the thermoplastic resins could not operate at a high temperature.
  • an impregnation section of a die for impregnating at least one fiber roving with a polymer resin.
  • the impregnation section includes an impregnation zone configured to impregnate the roving with the resin.
  • the impregnation zone includes a plurality of contact surfaces.
  • the impregnation section further includes a roller configured to impregnate the roving with the resin. The roller is rotatable about a central axis.
  • a method for impregnating at least one fiber roving with a polymer resin.
  • the method includes coating a fiber roving with a polymer resin.
  • the method additionally includes traversing the coated roving through an impregnation zone to impregnate the roving with the resin.
  • the impregnation zone includes a plurality of contact surfaces.
  • the method further includes traversing the coated roving past a roller to impregnate the roving with the resin.
  • FIG. 1 is a schematic illustration of one embodiment of an impregnation system for use in the present invention
  • Fig. 2 is a perspective view of one embodiment of a die for use in the present invention.
  • Fig. 3 is an opposing perspective view of one embodiment of a die for use in the present invention.
  • Fig. 4 is a cross-sectional view of one embodiment of the die shown in Fig. 2;
  • Fig. 5 is a cross-sectional view of another embodiment of the die shown in Fig. 2;
  • Fig. 6 is an exploded view of one embodiment of a manifold assembly and gate passage for a die that may be employed in the present invention
  • Fig. 7 is a plan view of one embodiment of a manifold assembly that may be employed in the present invention.
  • FIG. 8 is a plan view of another embodiment of a manifold assembly that may be employed in the present invention.
  • FIG. 9 is a plan view of another embodiment of a manifold assembly that may be employed in the present invention.
  • Fig. 10 is a plan view of another embodiment of a manifold assembly that may be employed in the present invention.
  • Fig. 1 1 is a plan view of another embodiment of a manifold assembly that may be employed in the present invention.
  • Fig. 12 is a plan view of another embodiment of a manifold assembly that may be employed in the present invention.
  • Fig. 13 is a perspective view of one embodiment of a plate at least partially defining an impregnation section that may be employed in the present invention
  • Fig. 14 is a close-up cross-sectional view of one embodiment of a portion of an impregnation section that may be employed in the present invention.
  • FIG. 15 is a close-up cross-sectional view of another embodiment of a ⁇ - portion of an impregnation section that may be employed in the present invention. -
  • Fig. 6 is a close-up cross-sectional view of another embodiment of a portion of an impregnation section that may be employed in the present invention
  • Fig. 17 is a close-up cross-sectional view of another embodiment of a portion of an impregnation section that may be employed in the present invention
  • Fig. 18 is a perspective view of one embodiment of a land zone that may be employed in the present invention.
  • Fig. 19 is a perspective view of another embodiment of a land zone that may be employed in the present invention.
  • Fig. 20 is a perspective view of one embodiment of a consolidated ribbon for use in the present invention.
  • Fig. 21 is a cross-sectional view of another embodiment of a consolidated ribbon for use in the present invention.
  • the present invention is directed to an
  • the impregnation section for a die and a method for impregnating fiber rovings with a polymer resin.
  • the impregnated fiber rovings may be utilized in composite rods, profiles, or any other suitable fiber reinforced plastic applications.
  • the impregnation section generally includes an impregnation zone configured to impregnate the rovings with the resin.
  • the impregnation zone includes a plurality of contact surfaces.
  • the rovings are impregnated with the resin as they are traversed over the contact surfaces.
  • the impregnation section includes at least one roller. The rollers are each rotatable about a central axis, and are configured to additionally impregnate the rovings.
  • the rollers may rotate freely or be rotationally driven to apply pressure to the rovings as the rovings are traversed past the rollers, thus impregnating the rovings with the resin.
  • the rollers may be adjusted generally perpendicularly to the rovings to apply further compressive force to the rovings, thus further impregnating the rovings with the resin.
  • the rollers enhance the impregnation of the rovings with the resin. Further, the rollers may allow such impregnation with only minimal drag flow and/or damage to the rovings. Additionally, in some exemplary embodiments, the rollers may further be utilized to meter the resin onto the rovings,
  • an extrusion device may be employed in conjunction with the die to impregnate the rovings with the polymer.
  • the extrusion device further facilitates the ability of the polymer to be applied to the entire surface of the fibers, as discussed below.
  • the apparatus includes an extruder 120 containing a screw shaft 124 mounted inside a barrel 122.
  • a heater 130 e.g., electrical resistance heater
  • a polymer feedstock 127 is supplied to the extruder 20 through a hopper 126.
  • the feedstock 127 is conveyed inside the barrel 122 by the screw shaft 124 and heated by frictional forces inside the barrel 122 and by the heater 130.
  • the feedstock 127 exits the barrel 122 through a barrel flange 128 and enters a die flange 132 of an
  • a continuous fiber roving 142 or a plurality of continuous fiber rovings 142 may be supplied from a reel or reels 144 to die 150.
  • the rovings 142 may be spread apart before being supplied for impregnation, and may be supplied vertically, horizontally, or at any suitable angle. After being supplied, the rovings 142 may be generally positioned side-by-side, with minimal to no distance between neighboring rovings, before impregnation.
  • the feedstock 127 may further be heated inside the die by heaters 133 mounted in or around the die 150.
  • the die is generally operated at temperatures that are sufficient to cause and/or maintain the proper melt temperature for the polymer, thus allowing for the desired level of impregnation of the rovings by the polymer.
  • the operation temperature of the die is higher than the melt temperature of the polymer, such as at temperatures from about 200°C to about 450°C.
  • the continuous fiber rovings 142 become embedded in the polymer matrix, which may be a resin 214 (Figs. 4 and 5) processed from the feedstock 127.
  • the mixture may then exit the impregnation die 150 as wetted composite or extrudate 152.
  • the term "roving" generally refers to a bundle of individual fibers.
  • the fibers contained within the roving can be twisted or can be straight.
  • the rovings may contain a single fiber type or different types of fibers. Different fibers may also be contained in individual rovings or, alternatively, each roving may contain a different fiber type.
  • the continuous fibers employed in the rovings possess a high degree of tensile strength relative to their mass. For example, the ultimate tensile strength of the fibers is typically from about 1 ,000 to about 15,000 Megapascals ("MPa"), in some embodiments from about 2,000 MPa to about 10,000 MPa, and in some embodiments, from about 3,000 MPa to about 6,000 MPa.
  • MPa Megapascals
  • Such tensile strengths may be achieved even though the fibers are of a relatively light weight, such as a mass per unit length of from about 0.05 to about 2 grams per meter, in some embodiments from about 0.4 to about 1 .5 grams per meter.
  • the ratio of tensile strength to mass per unit length may thus be about ,000 Megapascals per gram per meter ("MPa/g/m") or greater, in some embodiments about 4,000 MPa/g/m or greater, and in some embodiments, from about 5,500 to about 20,000 MPa/g/m.
  • Such high strength fibers may, for instance, be metal fibers, glass fibers (e.g., E-glass, A-glass, C-glass, D-glass, AR-glass, R-glass, S1 -glass, S2-glass, etc.), carbon fibers (e.g., amorphous carbon, graphitic carbon, or metal- coated carbon, etc.), boron fibers, ceramic fibers (e.g., alumina or silica), aramid fibers (e.g., Kevlar® marketed by E. I. duPont de Nemours, Wilmington, Del.), synthetic organic fibers (e.g., polyamide, polyethylene, paraphenylene,
  • Carbon fibers are particularly suitable for use as the continuous fibers, which typically have a tensile strength to mass ratio in the range of from about 5,000 to about 7,000 MPa/g/m.
  • the continuous fibers often have a nominal diameter of about 4 to about 35 micrometers, and in some embodiments, from about 9 to about 35 micrometers.
  • the number of fibers contained in each roving can be constant or vary from roving to roving. Typically, a roving contains from about 1 ,000 fibers to about 50,000 individual fibers, and in some embodiments, from about 5,000 to about 30,000 fibers.
  • thermoplastic or thermoset polymers may be employed to form the polymer matrix in which the continuous fibers are embedded.
  • suitable thermoplastic polymers for use in the present invention-may -- include, for instance, polyolefins (e.g., polypropylene, propylene-ethylene
  • polyesters e.g., polybutylene terephalate (“PBT")
  • PBT polybutylene terephalate
  • - polycarbonates polyamides (e.g., NylonTM)
  • polyether ketones e.g., polyetherether ketone (“PEEK”)
  • PEEK polyetherether ketone
  • PPDK polyphenylene diketone
  • liquid crystal polymers polyarylene sulfides (e.g., polyphenylene sulfide (“PPS”), poly(biphenylene sulfide ketone), poly(phenylene sulfide diketone), poly(biphenylene sulfide), etc.), fluoropolymers (e.g., polytetrafluoroethylene- perfluoromethylvinylether polymer, perfluoro-alkoxyalkane polymer,
  • fluoropolymers e.g., polytetrafluoroethylene- perflu
  • petrafluoroethylene polymer ethylene-tetrafluoroethylene polymer, etc.
  • polyacetals polyurethanes
  • polycarbonates e.g., acrylonitri!e butadiene styrene (“ABS")
  • ABS acrylonitri!e butadiene styrene
  • the properties of the polymer matrix are generally selected to achieve the desired combination of processability and performance.
  • the melt viscosity of the polymer matrix is generally low enough so that the polymer can adequately impregnate the fibers.
  • the melt viscosity typically ranges from about 25 to about 1 ,000 Pascal-seconds ("Pa-s"), in some embodiments from 50 about 500 Pa-s, and in some embodiments, from about 60 to about 200 Pa-s, determined at the operating conditions used for the polymer (e.g., about 360°C).
  • a polymer is employed that has a relatively high melting temperature.
  • the melting temperature of such high temperature polymers may range from about 200°C to about 500°C, in some embodiments from about 225°C to about 400°C, and in some embodiments, from about 250°C to about 350°C.
  • Polyarylene sulfides are particularly suitable for use in the present invention as a high temperature matrix with the desired melt viscosity.
  • Polyphenylene sulfide for example, is a semi-crystalline resin that generally includes repeating monomeric units represented by the following general formula:
  • These monomeric units typically constitute at least 80 mole%, and in some embodiments, at least 90 mole%, of the recurring units, in the polymer ⁇ _
  • Such additional recurring units typically constitute no more than about 20 mole% of the polymer.
  • Commercially available high melt viscosity polyphenylene sulfides may include those available from Ticona, LLC (Florence, Kentucky) under the trade designation FORTRON®. Such polymers may have a melting temperature of about 285°C (determined according to ISO 1 1357-1 ,2,3) and a melt viscosity of from about 260 to about 320 Pascal-seconds at 310°C.
  • a pressure sensor 137 may sense the pressure near the impregnation die 150 to allow control to be exerted over the rate of extrusion by controlling the rotational speed of the screw shaft 124, or the feed rate of the feeder. That is, the pressure sensor 137 is positioned near the impregnation die 150, such as upstream of the manifold assembly 220, so that the extruder 120 can be operated to deliver a correct amount of resin 214 for interaction with the fiber ravings 42.
  • the extrudate 152 may enter an optional pre-shaping or guiding section (not shown) before entering a nip formed between two adjacent rollers 190.
  • the rollers 190 can help to consolidate the extrudate 152 into the form of a ribbon, as well as enhance fiber impregnation and squeeze out any excess voids.
  • the extrudate 52 may be in the form of a consolidated ribbon directly upon exiting the die 150.
  • other shaping devices may also be employed, such as a die system. Regardless, the resulting consolidated ribbon 156 is pulled by tracks 162 and 164 mounted on rollers.
  • the tracks 162 and 164 also pull the extrudate 152 from the impregnation die 150 and through the rollers 190. If desired, the consolidated ribbon 156 may be wound up at a section 171 .
  • the resulting ribbons are relatively thin and typically have a thickness of from about 0.05 to about 1 millimeter, in some embodiments from about 0.1 to about 0.8 millimeters, and in some embodiments, from about 0.2 to about 0.4 millimeters.
  • FIG. 2 and 3 Perspective views of one embodiment of a die 150 according to the present disclosure are further shown in Figs. 2 and 3.
  • resin 2 4 is flowed into the die 150 as indicated by resin flow direction 244.
  • the resin 214 is distributed within the die 150 and then interacted with the ravings 142.
  • the ravings 142 are ⁇ traversed through the die 150 in roving run direction 282, and are coated with resin 214.
  • the ravings 142 are then impregnated with the resin 214, and these
  • impregnated rovings 142 exit the die 150.
  • the rovings 142 are traversed through an impregnation zone 250 to impregnate the rovings with the polymer resin 214.
  • the polymer resin may be forced generally transversely through the rovings by shear and pressure created in the impregnation zone 250, which significantly enhances the degree of impregnation. This is particularly useful when forming a composite from ribbons of a high fiber content, such as about 35% weight fraction ("Wf ) or more, and in some
  • the die 150 will include a plurality of contact surfaces 252, such as for example at least 2, at least 3, from 4 to 7, from 2 to 20, from 2 to 30, from 2 to 40, from 2 to 50, or more contact surfaces 252, to create a sufficient degree of penetration and pressure on the rovings 142.
  • the contact surfaces 252 typically possess a curvilinear surface, such as a curved lobe, pin, etc.
  • the contact surfaces 252 are also typically made of a metal material.
  • Figs. 4 and 5 show cross-sectional views of an impregnation die 150.
  • the impregnation die 150 may inciude a manifold assembly 220 and an impregnation section.
  • the impregnation section includes an impregnation zone 250 and at least one roller 300.
  • the impregnation section additionally includes a gate passage 270.
  • the manifold assembly 220 is provided for flowing the polymer resin 214 therethrough.
  • the manifold assembly 220 may include a channel 222 or a plurality of channels 222.
  • the resin 214 provided to the impregnation die 150 may flow through the channels 222.
  • each of the channels 222 may be curvilinear.
  • the curvilinear portions may allow for relatively smooth redirection of the resin 214 in various directions to distribute the resin 2 4 through the manifold assembly 220, and may allow for relatively smooth flow of the resin 214 through the channels 222.
  • the channels 222 may be linear, and redirection of the resin 214 may be through relatively sharp transition areas between linear portions of the channels 222. It should further be understood that the channels 222 may have any suitable shape, size, and/or contour.
  • the plurality of channels 222 may, in exemplary embodiments as shown in Figs.
  • the runners 222 may include a first branched runner group 232.
  • the first branched runner group 232 includes a plurality of runners 222 branching off from an initial channel or channels 222 that provide the resin 214 to the manifold assembly 220.
  • the first branched runner group 232 may include 2, 3, 4 or more runners 222 branching off from the initial channels 222.
  • the runners 222 may include a second branched runner group 234 diverging from the first branched runner group 232, as shown in Figs. 6 and 8 through 12.
  • a plurality of runners 222 from the second branched runner group 234 may branch off from one or more of the runners 222 in the first branched runner group 232.
  • the second branched runner group 234 may include 2, 3, 4 or more runners 222 branching off from runners 222 in the first branched runner group 232.
  • the runners 222 may include a third branched runner group
  • a plurality of runners 222 from the third branched runner group 236 may branch off from one or more of the runners 222 in the second branched runner group 234.
  • the third branched runner group 236 may include 2, 3, 4 or more runners 222 branching off from runners 222 in the second branched runner group 234.
  • the plurality of branched runners 222 have a symmetrical orientation along a central axis 224.
  • the branched runners 222 and the symmetrical orientation thereof generally evenly distribute the resin 214, such that the flow of resin 214 exiting the manifold assembly 220 and coating the ravings 142 is substantially uniformly distributed on the ravings 142. This desirably allows for generally uniform impregnation of the rovings 142.
  • the manifold assembly 220 may in some embodiments define an outlet region 242.
  • the outlet region 242 is that portion of-the manifold assembly
  • the outlet region 242 generally encompasses at least a downstream portion of the channels or runners
  • the channels or runners 222 disposed in the outlet region 242 have an increasing area in a flow direction 244 of the resin 214.
  • the increasing area allows for diffusion and further distribution of the resin 2 4 as the resin 21 flows through the manifold assembly 220, which further allows for substantially uniform distribution of the resin 214 on the rovings 42.
  • various channels or runners 222 disposed in the outlet region 242 may have constant areas in the flow direction 244 of the resin 214, as shown in Fig. 12 ( or may have decreasing areas in the flow direction 244 of the resin 2 4.
  • each of the channels or runners 222 disposed in the outlet region 242 is positioned such that resin 2 4 flowing therefrom is combined with resin 214 from other channels or runners 222 disposed in the outlet region 242.
  • This combination of the resin 214 from the various channels or runners 222 disposed in the outlet region 242 produces a generally singular and uniformly distributed flow of resin 214 from the manifold assembly 220 to substantially uniformly coat the rovings 42.
  • various of the channels or runners 222 disposed in the outlet region 242 may be positioned such that resin 214 flowing therefrom is discrete from the resin 214 from other channels or runners 222 disposed in the outlet region 242.
  • a plurality of discrete but generally evenly distributed resin flows 214 may be produced by the manifold assembly 220 for substantially uniformly coating the rovings 142.
  • curvilinear profiles allow for the resin 214 to be gradually directed from the channels or runners 222 generally downward towards the rovings 142.
  • these channels or runners 222 may have any suitable cross-sectional profiles.
  • manifold assembly 220 is not limited to the above disclosed embodiments of the manifold assembly 220. Rather, any suitable manifold assembly 220 is within the scope and spirit of the present disclosure.
  • manifold assemblies 220 which may provide generally even, uniform distribution of resin 214, such as coat-hanger, horseshoe, flex-lip, or adjustable slot manifold assemblies, are within the scope and spirit of the present disclosure..
  • the resin 214 may flow through gate passage 270.
  • Gate passage 270 is positioned between the manifold assembly 220 and the impregnation zone 250, and is provided for flowing the resin 214 from the manifold assembly 220 such that the resin 214 coats the rovings 142.
  • resin 214 exiting the manifold assembly 220 such as through outlet region 242 may enter gate passage 270 and flow therethrough.
  • the resin 214 may then exit the gate passage 270 through an outlet of the gate passage 270.
  • the gate passage 270 extends vertically between the manifold assembly 220 and the impregnation zone 250. Alternatively, however, the gate passage 270 may extend at any suitable angle between vertical and horizontal such that resin 214 is allowed to flow therethrough.
  • At least a portion of the gate passage 270 has a decreasing cross-sectional profile in the flow direction 244 of the resin 214. This taper of at least a portion of the gate passage 270 may increase the flow rate of the resin 214 flowing therethrough before it contacts the rovings 142, which may allow the resin 214 to impinge on the rovings 142. Initial impingement of the rovings 142 by the resin 214 provides for further impregnation of the rovings, as discussed below.
  • the gate passage 270 may increase backpressure in the gate passage 270 and the manifold assembly 220, which may further provide more even, uniform distribution of the resin 214 to coat the rovings 142.
  • the gate passage 270 may have an increasing or generally constant cross-sectional profile, as desired or required.
  • the resin 214 Upon exiting the manifold assembly 220 and the gate passage 270 of the die 150 as shown in Figs. 4 and 5, the resin 214 contacts the rovings 142 being traversed through the die 150. As discussed above, the resin 214 may substantially uniformly coat the rovings 142, due to distribution of the resin 214 in the manifold assembly 220 and the gate passage 270. Further, in some embodiments, the resin
  • Impingement on the rovings 142 may be facilitated by the velocity of the resin 214 when it impacts the rovings 142, the proximity of the rovings 142 to the resin 214 when the resin exits the manifold assembly 220 or gate passage 270, or other various variables.
  • the coated rovings 142 are traversed in run direction 282 through impregnation zone 250.
  • the impregnation zone 250 is in fluid communication with the manifold assembly 220, such as through the gate passage 270 disposed therebetween.
  • the impregnation zone 250 is configured to
  • the impregnation zone 250 includes a plurality of contact surfaces 252.
  • the rovings 142 are traversed over the contact surfaces 252 in the impregnation zone. Impingement of the rovings 142 on the contact surface 252 creates shear and pressure sufficient to impregnate the rovings 142 with the resin 214 coating the rovings 142.
  • the impregnation zone 250 is defined between two spaced apart opposing plates 256 and 258.
  • First plate 256 defines a first inner surface 257
  • second plate 258 defines a second inner surface 259.
  • the impregnation zone 250 is defined between the first plate 256 and the second plate 258.
  • the contact surfaces 252 may be defined on or extend from both the first and second inner surfaces 257 and 259, or only one of the first and second inner surfaces 257 and 259.
  • the contact surfaces 252 may be defined alternately on the first and second surfaces 257 and 259 such that the rovings alternately impinge on contact surfaces 252 on the first and second surfaces 257 and 259.
  • the rovings 142 may pass contact surfaces 252 in a waveform, tortuous or sinusoidual-type pathway, which enhances shear.
  • Angle 254 at which the rovings 142 traverse the contact surfaces 252 may be generally high enough to enhance shear and pressure, but not so high to cause excessive forces that will break the fibers.
  • the angle 254 may be in the range between approximately 1 ° and approximately 30°, and in some embodiments, between approximately 5° and approximately 25°.
  • contact surfaces 252 typically possess a curvilinear surface, such as a curved lobe, pin, etc.
  • the impregnation zone 250 has a waveform cross-sectional profile. In one
  • the contact surfaces 252 are lobes that form portions of the waveform surfaces of both the first and second plates 256 and 258 and define the waveform cross-sectional profile.
  • Fig. 3 illustrates one embodiment of the second plate 258 and the various contact surfaces thereon that form at least a portion of the impregnation zone 250 according to these embodiments.
  • the contact surfaces 252 are lobes that form portions of a waveform surface of only one of the first or second plate 256 or 258. In these embodiments, impingement occurs only on the contact surfaces 252 on the surface of the one plate.
  • the other plate may generally be flat or otherwise shaped such that no interaction with the coated rovings occurs.
  • the impregnation zone 250 may include a plurality of pins (or rods), each pin having a contact surface 252.
  • the pins may be static, freely rotational, or rotationally driven. Further, the pins may be mounted directly to the surface of the plates defining the impingement zone, or may be spaced from the surface. It should be noted that the pins may be heated by heaters, or may be heated individually or otherwise as desired or required. Further, the pins may be contained within the die, or may extend outwardly from the die and not be fully encased therein.
  • the contact surfaces 252 and impregnation zone 250 may comprise any suitable shapes and/or structures for impregnating the rovings 142 with the resin 214 as desired or required.
  • the rovings 142 may also be kept under tension while present within the die 150, and specifically within the impregnation zone 250.
  • the tension may, for example, range from about 5 to about
  • 300 Newtons in some embodiments from about 50 to about 250 Newtons, and in some embodiments, from about 100 to about 200 Newtons per roving 142 or tow of - fibers.
  • the impregnation section further includes at least one roller 300.
  • the : rollers 300 are configured to impregnate the rovings 142 with resin 214.
  • the rovings 142 are traversed past the rollers 300.
  • the rollers 300 contact the outer surfaces of the rollers 300. This contact generates pressure and/or shear sufficient to impregnate the resin 214 coating the rovings 142 into the rovings 142.
  • the rollers may allow such impregnation with only minimal drag flow and/or damage to the rovings 142.
  • the rollers may further be utilized to meter resin 214 onto the rovings 142.
  • a roller 300 according to the present disclosure is rotatable about a central axis 302. It should be understood that the roller 300 may be concentric or eccentric with respect to the central axis 302. This rotational movement may, as discussed above, allow impregnation of rovings 142 with only minimal drag flow and/or damage to the rovings 142.
  • the roller 300 is freely rotational. In these embodiments, the roller 300 rotates due to contact with the rovings 142 passing thereby. In other embodiments, the roller 300 is rotationally driven.
  • a motor or other suitable drive device such as a pulling device in a pultrusion system, as discussed below, may be connected to the roller 300 to rotatably drive the roller 300, and the roller 300 may rotate independent of contact with the rovings 142.
  • the rotational speed of the roller 300 may be correlated to the speed of the rovings 142 traversing past the roller 300 as desired or required for suitable impregnation of the rovings 142.
  • the rollers 300 may include at least one pair of rollers 300.
  • a pair of rollers 300 may be generally oppositely aligned with respect to the path of the rovings 142 through the die 150 such that rovings 142 traversing past the rollers 300 contact both rollers 300 in the pair of rollers 300 at substantially the same time.
  • the pair of rollers 300 may be configured to impregnate the rovings 142 with the resin 214 therebetween, with each roller 300 in the pair of rollers 300 impregnating a roving 42 from an opposing side.
  • the rollers 300 may include one pair of rollers 300; as shown in Fig.
  • rollers 300 may include alternating rollers 300, as shown in Fig. 16.
  • the rollers 300 may be positioned alternately on or adjacent to the first and second surfaces 257 and 259, for example.
  • the rovings 142 may pass the rollers 300 in a waveform, tortuous or sinusoidual-type pathway, which enhances shear.
  • the rollers 300 may be positioned in cavities 304.
  • the cavities 304 may be defined, for example, in the first and/or second plates 256 and 258, thus disrupting the first and second surfaces 257 and 259.
  • a portion of a roller 300 positioned in a cavity protrudes from the cavity 304 such that ravings 142 traversing past the roller 300 may contact the roller 300.
  • a roller may be positioned in cavities 304.
  • 300 may be mounted directly to a surface, such as first surface 257 or second surface 159, or may be spaced from the surface as shown in Figs. 16 and 17.
  • a roller 300 may be positioned upstream of the plurality of contact surfaces 252 in impregnation zone 250 in run direction 282 of the rovings 142.
  • one or more of the upstream rollers 300 may be utilized to meter resin 214 onto the rovings 142.
  • the outlet of gate passage 270 may be adjacent to a roller 300, such that resin 214 flowed from the gate passage
  • a roller 300 may be positioned upstream or downstream of the outlet of gate passage 270, as desired or required. Further, as shown in Figs. 5 and 14, 16, and 17, a roller 300 may be positioned downstream of the plurality of contact surfaces 252 in impregnation zone 250 in run direction 282 of the rovings 142. Still further, a roller 300 may be positioned between various of the contact surfaces 252, as shown in Fig. 15. For example, a roller 300 may be positioned downstream of one, two, three, four, five, or more contact surfaces 252, and other contact surface
  • a roller 300 may be adjustable generally perpendicularly to run direction 282 of rovings 142, such along a generally linear or curvilinear path. It should be understood that the roller 300 according to these embodiments may be adjusted perpendicularly to the run direction 282 or at any suitable angle to perpendicular, as desired or required to provide an additional compressive force to the rovings 142. Thus, such adjustment may allow the roller 300 to, when adjusted towards the rovings 142, apply an additional compressive force to the rovings 142 to further enhance impregnation of the rovings 142 with resin 214. For example, a spring mechanism 306, as shown in Fig.
  • a pneumatic or hydraulic cylinder, a gearing mechanism, or any other suitable adjustment mechanism may be connected to the roller 300 to move the roller 300 as desired, thus adjusting the roller 300.
  • adjustment of the roller 300 may be constant, such that a constant compressive force is applied to the rovings 142.
  • adjustment of the roller 300 may be intermittent, such that an intermittent compressive force is applied to the rovings 142 at any suitable speed and/or interval. Further, it should be understood that any suitable adjustment of a roller 300 is within the scope and spirit of the present disclosure.
  • rollers 300 may be heated by heaters 133, or may be heated individually or otherwise as desired or required. Further, the rollers 300 may be contained within the die 50, or may extend outwardly from the die 150 and not be fully encased therein. In exemplary embodiments, the rollers 300 are not cooler than the temperature of the die 150 in general.
  • the impingement section may further include at least one blade 308.
  • Each biade 308 may be in contact with a roller 300, and may be provided for removing excess resin 214 from that roller 300.
  • the blade 308 may be a doctor's blade or other suitable blade.
  • a blade 308 associated with a roller 300 in exemplary embodiments may be positioned downstream of the roller 300 in run direction 282 of the rovings 142.
  • the blade 208 may be positioned upstream of the roller 300.
  • the roller 300 may contact the blade 308. The blade 208 may scrape excess resin 214 from the outer surface of the roller 300.
  • rollers 300 in the impingement section is not limited to the above disclosed examples, and. rather that any suitable arrangement and positioning of rollers 300 in an impingement section is within the scope and spirit of the present disclosure.
  • a land zone 280 may be positioned downstream of the impregnation zone 250 in run direction 282 of the rovings 142.
  • the rovings 142 may traverse through the land zone 280 before exiting the die 150.
  • at least a portion of the land zone 280 may have an increasing cross-sectional profile in run direction 282, such that the area of the land zone 280 increases.
  • the increasing portion may be the downstream portion of the land zone 280 to facilitate the rovings 142 exiting the die 150.
  • the cross-sectional profile or any portion thereof may decrease, or may remain constant as shown in Fig. 19.
  • a faceplate 290 may adjoin the impregnation zone 250.
  • the faceplate 290 may be positioned downstream of the impregnation zone 250 and, if included, the [and zone 280, in the run direction 282.
  • Faceplate 290 is generally configured to meter excess resin 214 from the rovings 142.
  • apertures in the faceplate 290, through which the rovings 142 traverse may be sized such that when the rovings 142 are traversed therethrough, the size of the apertures causes excess resin 214 to be removed from the rovings 142.
  • a "gas jet" assembly may be employed in certain embodiments to help uniformly spread a roving of individual fibers, which may each contain up to as many as 24,000 fibers, across the entire width of the merged tow. This helps achieve uniform distribution of strength properties.
  • Such an assembly may include a supply of compressed air or another gas that impinges in a generally perpendicular fashion on the moving rovings that pass across exit ports. The spread rovings may then be introduced into a die for impregnation, such as described above.
  • the impregnated rovings that result from use of the die and method according to the present disclosure may have a very low void fraction, which helps enhance their strength.
  • the void fraction may be about 3% or less, in some embodiments about 2% or less, in some embodiments about 1 % or less, and in some embodiments, about 0.5% or less.
  • the void fraction may be measured using techniques well known to those skilled in the art. For example, the void fraction may be measured using a "resin burn off' test in which samples are placed in an oven (e.g., at 600° C for 3 hours) to burn out the resin. The mass of the remaining fibers may then be measured to calculate the weight and volume fractions. Such "burn off' testing may be performed in accordance with ASTM D 2584-08 to determine the weights of the fibers and the polymer matrix, which may then be used to calculate the "void fraction" based on the following equations:
  • V f 100 * (p r Pc )/p t
  • 1 ⁇ 2 is the void fraction as a percentage
  • c is the density of the composite as measured using known techniques, such as with a liquid or gas pycnometer (e.g., helium pycnometer);
  • p t 1/[W f /pf + W m /p )V ]
  • p m is the density of the polymer matrix (e.g., at the appropriate crystallinity);
  • p f is the density of the fibers;
  • W f is the weight fraction of the fibers
  • W m is the weight fraction of the polymer matrix.
  • the void fraction may be determined by chemically dissolving the resin in accordance with ASTM D 3171-09. The "burn off" and
  • dissolution methods are particularly suitable for glass fibers, which are generally resistant to melting and chemical dissolution.
  • the void fraction may be indirectly calculated based on the densities of the polymer, fibers, and ribbon in accordance with ASTM D 2734-09 (Method A), where the densities may be determined ASTM D792-08 Method A.
  • ASTM D 2734-09 Method A
  • the densities may be determined ASTM D792-08 Method A.
  • the void fraction can also be estimated using conventional microscopy equipment.
  • the present disclosure is further directed to a method for impregnating at least one fiber roving 142 with a polymer resin 214.
  • the method includes coating a fiber roving 142 with a polymer resin 214.
  • the method further includes traversing the coated roving 42 through an impregnation zone 250 to impregnate the roving 142 with the resin 214.
  • the impregnation zone 250 comprising a plurality of contact surfaces 252.
  • the method further includes traversing the coated roving 142 past at least one roller 300 to impregnate the roving 142 with the resin 214.
  • the method may further include the step of rotating the roller 300, such as using a device configured to rotationally drive the roller 300, as discussed above. Further, in some embodiments, the method may include the step of adjusting the roller 300 generally perpendicularly to a run direction 282 of the roving 142, as discussed above.
  • the rovings 142 may be under a tension of from about 5 Newtons to about 300 Newtons within the impregnation zone 250, as discussed above. Further, in some embodiments, coating the roving 142 with the resin 214 may include flowing the resin 214 through a gate passage 270.
  • the impregnated rovings 142, or extrudate 152 may be consolidated into the form of a ribbon.
  • the number of rovings employed in each ribbon may vary. Typically, however, a ribbon will contain from 2 to 20 rovings, and in some embodiments from 2 to 10 rovings, and in some embodiments, from 3 to 5 rovings. To help achieve the symmetric distribution of the rovings, it is generally desired that they are spaced apart approximately the same distance from each other within the ribbon. Referring to Fig.
  • a consolidated ribbon 4 that contains three (3) rovings 5 spaced equidistant from each other in the -x direction. In other embodiments, however, it may be desired that the rovings are combined, such that the fibers of the rovings are generally evenly distributed throughout the ribbon 4. In these embodiments, the rovings may be generally indistinguishable from each other. Referring to Fig. 21 , for example, one embodiment of a consolidated ribbon 4 is shown that contains rovings that are combined such that the fibers are generally evenly distributed.
  • a pultrusion process may further be utilized according to the present disclosure for certain particular applications.
  • such process may be utilized to form a rod.
  • continuous fibers of rovings 142 may be oriented in the longitudinal direction (the machine direction "A" of the system of Fig. 1 ) to enhance tensile strength.
  • other aspects of the pultrusion process may be controlled to achieve the desired strength. For example, a relatively high percentage of continuous fibers are employed in the consolidated ribbon to provide enhanced strength properties.
  • continuous fibers typically constitute from about 25 wt.% to about 80 wt.%, in some embodiments from about 30 wt.% to about 75 wt.%, and in some embodiments, from about 35 wt.% to about 60 wt.% of the ribbon.
  • polymer(s) typically constitute from about 20 wt.% to about 75 wt.%, in some embodiments from about 25 wt.% to about 70 wt.%, and in some embodiments, from about 40 wt.% to about 65 wt.% of the ribbon.
  • ribbons may be supplied to the pultrusion system directly from impregnation die 150, or may be supplied from spindles or other suitable storage apparatus.
  • a tension-regulating device may be employed to help control the degree of tension in the ribbons as they are drawn through the pultrusion system.
  • An oven may be supplied in the device for heating the ribbons.
  • the ribbons may then be provided to a consolidation die, which may operate to compress the ribbons together into a preform, and to align and form the initial shape of the desired product, such as a rod.
  • a second die e.g., calibration die
  • Cooling systems may additionally be incorporated between the dies and/or after either die.
  • a downstream pulling device may be positioned to pull products through the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

L'invention concerne une section d'imprégnation d'une matrice (150) et un procédé d'imprégnation d'au moins un métier à tisser avec une résine polymère. La section d'imprégnation comprend une zone d'imprégnation (250) configurée pour imprégner le métier à tisser avec la résine. La zone d'imprégnation (250) comprend une pluralité de surfaces de contact (252). La section d'imprégnation comprend en outre un rouleau (300) configuré pour imprégner le métier à tisser avec la résine. Le rouleau (300) peut tourner autour d'un axe central. Le procédé comprend le revêtement d'un métier à tisser avec une résine polymère. Le procédé comprend en outre la traversée, par le métier à tisser revêtu, d'une zone d'imprégnation (250) afin d'imprégner le métier à tisser avec la résine. La zone d'imprégnation (250) comprend une pluralité de surfaces de contact (252). Le procédé comprend en outre le passage, par le métier à tisser revêtu, au niveau d'un rouleau (300) afin d'imprégner le métier à tisser avec la résine.
PCT/US2012/035147 2011-04-29 2012-04-26 Section d'imprégnation munie de rouleaux et procédé d'imprégnation de métiers à tisser WO2012149122A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/112,609 US20140093649A1 (en) 2011-04-29 2012-04-26 Impregnation Section with Rollers and Method for Impregnating Fiber Rovings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161480490P 2011-04-29 2011-04-29
US61/480,490 2011-04-29

Publications (1)

Publication Number Publication Date
WO2012149122A1 true WO2012149122A1 (fr) 2012-11-01

Family

ID=46052881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/035147 WO2012149122A1 (fr) 2011-04-29 2012-04-26 Section d'imprégnation munie de rouleaux et procédé d'imprégnation de métiers à tisser

Country Status (2)

Country Link
US (1) US20140093649A1 (fr)
WO (1) WO2012149122A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346222B2 (en) 2011-04-12 2016-05-24 Ticona Llc Die and method for impregnating fiber rovings
US9623437B2 (en) 2011-04-29 2017-04-18 Ticona Llc Die with flow diffusing gate passage and method for impregnating same fiber rovings
EP3412436A4 (fr) * 2016-02-03 2019-02-13 LG Hausys, Ltd. Dispositif de préparation de pré-imprégné et procédé de préparation de pré-imprégné utilisant ce dernier
US11118292B2 (en) 2011-04-12 2021-09-14 Ticona Llc Impregnation section of die and method for impregnating fiber rovings
WO2022007037A1 (fr) * 2020-07-10 2022-01-13 江苏奇一科技有限公司 Procédé et dispositif de préparation d'un matériau composite thermoplastique renforcé par des fibres continues unidirectionnelles
US11396146B2 (en) 2020-07-10 2022-07-26 Jiangsu Qiyi Technology Co., Ltd Method and equipment for making unidirectional continuous fiber-reinforced thermoplastic composite material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210245456A1 (en) * 2017-02-03 2021-08-12 Usb I, Llc Composite fibers
CN108099051B (zh) * 2017-12-18 2023-07-07 金发科技股份有限公司 一种熔融浸渍设备及熔融浸渍方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138616A (ja) * 1982-02-13 1983-08-17 Kato Hatsujo Kaisha Ltd ガラス繊維強化成形材とその製造装置
US4728387A (en) * 1986-12-15 1988-03-01 General Electric Company Resin impregnation of fiber structures
US4864964A (en) * 1987-12-15 1989-09-12 General Electric Company Apparatus and method for impregnating continuous lengths of multifilament and multi-fiber structures
US5075381A (en) 1989-10-21 1991-12-24 Mitsubishi Petrochemical Company Limited Thermoplastic resin composition
JPH0550432A (ja) * 1991-08-23 1993-03-02 Kobe Steel Ltd 引抜成形装置及び引抜成形方法
EP0712716A1 (fr) * 1994-11-15 1996-05-22 PCD-Polymere Gesellschaft m.b.H. Procédé et dispositif d'imprégnation par extrusion
US20030157280A1 (en) * 2000-04-25 2003-08-21 Philippe Boissonnat Extruded joinery work element reinforced with continuous fibres, method and device
US20050186410A1 (en) 2003-04-23 2005-08-25 David Bryant Aluminum conductor composite core reinforced cable and method of manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3554113A (en) * 1965-05-06 1971-01-12 Gen Mills Inc Apparatus for processing protein fiber
EP1775092A1 (fr) * 2005-10-17 2007-04-18 Claudio Bortoluzzi Procédé et dispositif pour l'imprégnation des faisceaux de fibres continues avec des thermoplastiques fondus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138616A (ja) * 1982-02-13 1983-08-17 Kato Hatsujo Kaisha Ltd ガラス繊維強化成形材とその製造装置
US4728387A (en) * 1986-12-15 1988-03-01 General Electric Company Resin impregnation of fiber structures
US4864964A (en) * 1987-12-15 1989-09-12 General Electric Company Apparatus and method for impregnating continuous lengths of multifilament and multi-fiber structures
US5075381A (en) 1989-10-21 1991-12-24 Mitsubishi Petrochemical Company Limited Thermoplastic resin composition
JPH0550432A (ja) * 1991-08-23 1993-03-02 Kobe Steel Ltd 引抜成形装置及び引抜成形方法
EP0712716A1 (fr) * 1994-11-15 1996-05-22 PCD-Polymere Gesellschaft m.b.H. Procédé et dispositif d'imprégnation par extrusion
US20030157280A1 (en) * 2000-04-25 2003-08-21 Philippe Boissonnat Extruded joinery work element reinforced with continuous fibres, method and device
US20050186410A1 (en) 2003-04-23 2005-08-25 David Bryant Aluminum conductor composite core reinforced cable and method of manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346222B2 (en) 2011-04-12 2016-05-24 Ticona Llc Die and method for impregnating fiber rovings
US11118292B2 (en) 2011-04-12 2021-09-14 Ticona Llc Impregnation section of die and method for impregnating fiber rovings
US9623437B2 (en) 2011-04-29 2017-04-18 Ticona Llc Die with flow diffusing gate passage and method for impregnating same fiber rovings
EP3412436A4 (fr) * 2016-02-03 2019-02-13 LG Hausys, Ltd. Dispositif de préparation de pré-imprégné et procédé de préparation de pré-imprégné utilisant ce dernier
US11235493B2 (en) 2016-02-03 2022-02-01 Lg Hausys, Ltd. Prepreg preparation device and prepreg preparation method using same
WO2022007037A1 (fr) * 2020-07-10 2022-01-13 江苏奇一科技有限公司 Procédé et dispositif de préparation d'un matériau composite thermoplastique renforcé par des fibres continues unidirectionnelles
US11396146B2 (en) 2020-07-10 2022-07-26 Jiangsu Qiyi Technology Co., Ltd Method and equipment for making unidirectional continuous fiber-reinforced thermoplastic composite material
US11479000B2 (en) 2020-07-10 2022-10-25 Jiangsu Qiyi Technology Co., Ltd Method for making unidirectional continuous fiber-reinforced thermoplastic composite material

Also Published As

Publication number Publication date
US20140093649A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
US11118292B2 (en) Impregnation section of die and method for impregnating fiber rovings
US9522483B2 (en) Methods for impregnating fiber rovings with polymer resin
US9757874B2 (en) Die and method for impregnating fiber rovings
US10022919B2 (en) Method for impregnating fiber rovings
US20140191437A1 (en) Impregnation Section with Tension Adjustment Device and Method for Impregnating Fiber Rovings
EP2701886B1 (fr) Matrice à passage à grille diffusant un écoulement et procédé d'imprégnation de stratifils de fibres
US9283708B2 (en) Impregnation section for impregnating fiber rovings
EP2697040B1 (fr) Filière et procédé d'imprégnation de stratifils de fibres
EP2788408A1 (fr) Bande polymère asymétrique renforcée par des fibres
US20140093649A1 (en) Impregnation Section with Rollers and Method for Impregnating Fiber Rovings
WO2013086269A1 (fr) Section d'imprégnation de matrice pour imprégner des mèches de fibres
WO2013086267A1 (fr) Section d'imprégnation de matrice pour imprégner des mèches de fibres

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12720328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14112609

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12720328

Country of ref document: EP

Kind code of ref document: A1