WO2012148085A2 - Antimony amino alkoxide compound and method for preparing same, and method for forming a thin film containing antimony using the antimony amino alkoxide compound and an atomic layer deposition technique - Google Patents

Antimony amino alkoxide compound and method for preparing same, and method for forming a thin film containing antimony using the antimony amino alkoxide compound and an atomic layer deposition technique Download PDF

Info

Publication number
WO2012148085A2
WO2012148085A2 PCT/KR2012/002056 KR2012002056W WO2012148085A2 WO 2012148085 A2 WO2012148085 A2 WO 2012148085A2 KR 2012002056 W KR2012002056 W KR 2012002056W WO 2012148085 A2 WO2012148085 A2 WO 2012148085A2
Authority
WO
WIPO (PCT)
Prior art keywords
antimony
formula
thin film
linear
branched alkyl
Prior art date
Application number
PCT/KR2012/002056
Other languages
French (fr)
Korean (ko)
Other versions
WO2012148085A3 (en
WO2012148085A9 (en
Inventor
정택모
김창균
이영국
안기석
이선숙
박보근
정석종
정인경
전동주
임종선
이창완
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110039028A external-priority patent/KR101294660B1/en
Priority claimed from KR1020120026274A external-priority patent/KR101335019B1/en
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2012148085A2 publication Critical patent/WO2012148085A2/en
Publication of WO2012148085A3 publication Critical patent/WO2012148085A3/en
Publication of WO2012148085A9 publication Critical patent/WO2012148085A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/90Antimony compounds
    • C07F9/902Compounds without antimony-carbon linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Definitions

  • the present invention relates to a novel antimony amino alkoxide compound and a method for preparing the same, and a method for producing a film containing antimony using atomic layer deposition techniques using the antimony amino alkoxide compound.
  • Antimony trioxide has been widely applied in the fields of catalysts, electrical conductor materials, optical materials, flame retardants, etc.
  • the DRAM unit cell includes one capacitor and one transistor for controlling the capacitor, a relatively large unit cell area is required as compared to the NAND flash memory having a string structure.
  • the DRAM is a volatile memory device that loses stored data when power supply is interrupted.
  • flash memory is a nonvolatile memory device that does not lose its stored data even when its power supply is interrupted.
  • the flash memory is slow in operation because it is based on a tunneling phenomenon.
  • the unit cell of the phase change memory device may include a phase change material as an element for storing data.
  • the phase change material may have states with different resistance values.
  • the phase change material in the crystalline state may have a lower resistance value than the phase change material in the amorphous state.
  • the crystal state of the phase change material can be controlled through the conditions of the melting and cooling process.
  • phase change chalcogenide non-vaporizable memory technique using germanium-antimony-tellurium (Ge2Sb2Te5) membranes antimony is used as a key component along with germanium and tellurium.
  • Phase-change random access memory (PRAM) devices based on Ge-Sb-Te (GST) thin films utilize a reversible transition from a crystalline state to an amorphous state associated with the resistive change of the membrane material.
  • the film material itself is preferably formed using methods such as chemical vapor deposition (CVD) and atomic layer deposition (ALD).
  • the antimony trivalent compounds known in the art have problems such as insufficient volatility, supply of oxygen from the outside, contamination of carbon and chlorine generated in the prepared membrane, and the like. Therefore, the development of the antimony trivalent compound as a precursor that can be used in the production of antimony and antimony trioxide thin film is highly significant.
  • GST film manufacturing processes of conventional PRAMs known in the art are manufactured by sputtering method, which is physical vapor deposition, or by using CVD, which is chemical vapor deposition.
  • sputtering method which is physical vapor deposition
  • CVD which is chemical vapor deposition
  • an object of the present invention is to produce a thin film of excellent quality, in particular a novel antimony amino alkoxide compound capable of growing the thin film also by organic metal chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) and its preparation To provide a way.
  • MOCVD organic metal chemical vapor deposition
  • ALD atomic layer deposition
  • an object of the present invention is to provide a method for producing an antimony thin film by the ALD process using the antimony precursor suitable for the ALD process.
  • the present invention provides an antimony amino alkoxide compound represented by Formula 1:
  • A is C2-C5 alkylene unsubstituted or substituted with a C1-C10 linear or branched alkyl group
  • R1 and R2 are each independently a C1-C10 linear or branched alkyl group.
  • the present invention provides a method for preparing an antimony amino alkoxide compound represented by the following Chemical Formula 1, comprising reacting an antimony halide compound represented by the following Chemical Formula 3 with an alkali metal salt of an alcohol represented by the Chemical Formula 4.
  • A is C2-C5 alkylene unsubstituted or substituted with C1-C10 linear or branched alkyl groups
  • R 1 and R 2 are, independently from each other, a C 1 -C 10 linear or branched alkyl group
  • M is Li, Na or K
  • X is Cl, Br or I.
  • the present invention comprises the steps of preparing an antimony compound represented by the following formula (6) by reacting the antimony halide compound of formula 3 and the alkali metal compound represented by the formula (5) in an organic solvent; And it provides a method for producing an antimony amino alkoxide compound of formula (1) comprising the step of reacting the antimony compound represented by the formula (6) and the alcohol represented by the formula (7) in an organic solvent.
  • A is C2-C5 alkylene unsubstituted or substituted with a C1-C10 linear or branched alkyl group
  • R 1 and R 2 are each independently C 1 -C 10 linear or branched alkyl groups
  • R5 is a C1-C10 linear or branched alkyl group, or SiR63, and R6 is a C1-C10 linear or branched alkyl group;
  • M is Li, Na or K
  • X is Cl, Br or I.
  • Method for producing an antimony thin film according to the present invention for achieving the above object comprises the steps of preparing a substrate in a vacuum chamber;
  • the antimony precursor material is characterized in that the antimony amino alkoxide represented by the formula (1).
  • the method for manufacturing the antimony thin film it is preferable to repeat the step of forming an antimony-metal monolayer thin film on the substrate to control the thickness of the thin film.
  • the substrate is preferably maintained in a temperature range of 60 °C to 160 °C.
  • the purge gas is argon.
  • the metal is telluride.
  • the antimony precursor is preferably a compound represented by the following formula (2).
  • R 3 and R 4 are each independently C 1 -C 10 linear or branched alkyl groups
  • n is an integer of 1-3.
  • R 1 , R 2 , R 3 and R 4 are each independently methyl, ethyl, n-propyl, i-propyl or t-butyl;
  • m 1 or 2.
  • Antimony thin film according to the present invention for achieving the above object is characterized in that it is produced by the above method.
  • novel antimony precursor according to the present invention binds to an oxygen atom ligand, it is advantageous for the production of a thin film containing antimony.
  • novel antimony precursor according to the present invention binds to amino alkoxides, the thermal stability and the volatility are excellent, and thus the preservation is excellent.
  • novel antimony precursor according to the present invention can produce a thin film of excellent quality, and can be particularly useful when manufacturing a thin film by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • the antimony thin film can be produced at a low temperature by the ALD process, thereby improving the mass productivity.
  • FIG. 2 is a 13C NMR spectrum of Sb (dmamp) 3 compound prepared in Example 1.
  • FIG. 2 is a 13C NMR spectrum of Sb (dmamp) 3 compound prepared in Example 1.
  • TGA thermogravimetric analysis
  • DTA differential thermal analysis
  • Figure 4 is a 1H NMR analysis of the Sb (dmamb) 3 compound prepared in Example 3.
  • FIG. 5 is a 13C NMR spectrum of a Sb (dmamb) 3 compound prepared in Example 3.
  • FIG. 5 is a 13C NMR spectrum of a Sb (dmamb) 3 compound prepared in Example 3.
  • FIG. 6 is a graph showing the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of the Sb (dmamb) 3 compound prepared in Example 3.
  • TGA thermogravimetric analysis
  • DTA differential thermal analysis
  • FIG. 7 is a graph illustrating a correlation between a growth rate and a growth temperature for manufacturing an antimony thin film according to an embodiment of the present invention.
  • Figure 8a shows an SEM image of the antimony thin film prepared at 60 °C in accordance with an embodiment of the present invention
  • b is a SEM image of the antimony thin film prepared at 80 °C in accordance with an embodiment of the present invention
  • c shows the SEM image of the antimony thin film prepared at 100 °C according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the XRD diffraction pattern pumice results of the antimony thin film manufactured according to an embodiment of the present invention.
  • the present invention provides an antimony amino alkoxide compound represented by the following formula (1).
  • C2-C5 alkylene unsubstituted or substituted with a linear or branched alkyl group of C1-C10;
  • R1 and R2 are each independently a C1-C10 linear or branched alkyl group.
  • the form of the antimony amino alkoxide compound represented by Formula 1 is not particularly limited, but is preferably in a liquid state.
  • the antimony amino alkoxide compound represented by Formula 1 may be an antimony amino alkoxide compound represented by Formula 2 below.
  • R1, R2, R3 and R4 are each independently a C1-C10 linear or branched alkyl group, preferably R1, R2, R3 and R4 are each independently methyl, ethyl, n-propyl, i-propyl or t- Butyl.
  • n is an integer of 1-3, Preferably it is 1 or 2.
  • the antimony amino alkoxide compound represented by Chemical Formula 1 according to the present invention may be prepared by the following two methods.
  • the antimony amino alkoxide compound represented by Formula 1 is prepared by reacting an antimony halide compound represented by Formula 3 with an alkali metal salt of an alcohol represented by Formula 4.
  • the reaction scheme may be represented by the following scheme 1.
  • M is Li, Na or K; X is Cl, Br or I.
  • the antimony halide compound represented by Chemical Formula 3 and the alkali metal salt of the alcohol represented by Chemical Formula 4 are preferably reacted in the presence of an organic solvent, preferably 12 to 36 hours at room temperature.
  • the organic solvent is not particularly limited as long as it is used in the art, but hexane, toluene, ethyl ether, tetrahydrofuran, and dichloromethane may be used.
  • the antimony amino alkoxide compound represented by Chemical Formula 1 according to the present invention is reacted with an antimony halide compound represented by Chemical Formula 3 and an alkali metal compound represented by Chemical Formula 5 under an organic solvent to be represented by Chemical Formula 6 below.
  • the reaction scheme may be represented by the following scheme 2.
  • R5 is a C1-C10 linear or branched alkyl group, or SiR63, and R6 is a C1-C10 linear or branched alkyl group;
  • M is Li, Na or K;
  • X is Cl, Br or I.
  • the organic solvent is not particularly limited as long as it is used in the art, but hexane, toluene, ethyl ether, tetrahydrofuran, and dichloromethane may be used.
  • the present invention provides a method for forming a thin film, using the antimony amino alkoxide compound represented by the formula (1) as a precursor to form a thin film containing antimony.
  • the antimony thin film is preferably formed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • novel antimony precursor according to the present invention binds to an oxygen atom ligand, it is advantageous for the production of a thin film containing antimony.
  • novel antimony precursor according to the present invention binds to amino alkoxides, the thermal stability and the volatility are excellent, and thus the preservation is excellent.
  • the novel antimony precursor according to the present invention can produce a thin film having excellent quality, and can be usefully used when preparing a thin film by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • the antimony precursor of the present invention when the non-polar alkyl group is bonded to the a-carbon position with respect to the alkoxide oxygen, the affinity for the organic solvent is high, and the stereometal is prevented from causing intermolecular interaction with the oxygen of the neighboring ligand. It can be present as a monomer because of its disability. Due to these structural features, the antimony precursor of the present invention is a stable liquid at room temperature, has high solubility in organic solvents such as benzene, tetrahydrofuran, toluene, chloroform, and the like, and is highly volatile and does not contain a halogen element. Therefore, these can be used to obtain a thin film containing antimony having better quality.
  • the present invention also relates to a method for producing an antimony thin film using an ALD process and an antimony thin film produced thereby.
  • Method for producing an antimony thin film of the present invention comprises the steps of preparing a substrate in a vacuum chamber;
  • the antimony precursor material is a method for producing an antimony thin film, characterized in that the antimony amino alkoxide represented by the following formula (1):
  • A is C 2 to C 5 alkylene unsubstituted or substituted with a C 1 to C 10 linear or branched alkyl group;
  • R 1 and R 2 are each independently a C 1 to C 10 linear or branched alkyl group.
  • ALD process is an abbreviation of Atomic Layer Depostion and is an atomic layer deposition process using nano thin film deposition technology using the phenomenon of monoatomic layer that is chemically attached. Since the film can be formed at a lower temperature than chemical vapor deposition, it is understood as a suitable technology for system-on-chip.
  • precursors that can be deposited at low temperatures are required to be applied to the ALD process.
  • Application of the ALD process was difficult due to the difficulty in low temperature deposition of the precursor material, particularly the antimony precursor, required to prepare the GST thin film.
  • an antimony precursor of Formula 1 by applying to the ALD process using an antimony precursor of Formula 1, to form a thin film containing antimony.
  • the antimony precursor of the formula (1) is bound to the oxygen atom ligand, it is assumed that it is advantageous for the production of antimony thin film.
  • the substrate may be a known substrate that can be used in a semiconductor process, for example, a silicon substrate, a silicon dioxide substrate and the like.
  • the silicon substrate can be, for example, an amorphous silicon or a polycrystalline silicon substrate.
  • the substrate When the substrate is prepared in the vacuum chamber, it is heated so that the temperature of the substrate in the chamber is a temperature suitable for forming an antimony film.
  • an antimony film is formed by the ALD method.
  • the process temperature of the substrate is preferably 60 to 160 ° C., and is preferably kept within this temperature range while the reaction continues.
  • antimony atoms may be deposited by increasing the reaction rate by controlling other process variables such as pressure and flow rate of the source gas.
  • a source gas is prepared from the antimony precursor material and supplied into the chamber to form an antimony layer having a predetermined thickness of an antimony atomic layer on the substrate.
  • the antimony precursor of the formula (1) is used as the antimony precursor, preferably Sb [O-CR 3 R 4 (CH 2 ) m-NR 1 R 2 ] 3 of the formula ( 2 ).
  • R 3 and R 4 are each independently a C 1 -C 10 linear or branched alkyl group; m is an integer of 1-3. More preferably R 1 , R 2 , R 3 and R 4 are each independently methyl, ethyl, n-propyl, i-propyl or t-butyl; It is preferable that said m is 1 or 2.
  • an inert gas such as argon
  • argon may be used as a carrier gas as necessary, but the carrier gas that can be used is not limited thereto.
  • a plasma may be optionally fed into the chamber to facilitate the reaction.
  • reaction gas is supplied on the antimony atomic layer formed on the substrate to provide antimony-presite on the surface of the antimony atomic layer.
  • Hydrogen gas may be supplied as the reaction gas, but is not necessarily limited thereto.
  • purge gas is supplied into the chamber to perform the purge process.
  • An inert gas such as argon gas may be used as the purge gas, but is not limited thereto.
  • an inert gas such as argon may be used as the carrier gas as necessary, but the carrier gas that can be used is not limited thereto.
  • a plasma can optionally be fed into the chamber to facilitate the reaction.
  • the metal may use telluride, but is not limited thereto.
  • Telluride is a component of the GST film, which is a phase change layer of PRAM, and shows that when antimony and telluride are prepared using the ALD process, the entire GST film can be prepared by the ALD process.
  • One cycle of sequentially supplying source gas, reaction gas, purge gas, and metal precursor gas into a vacuum chamber is performed to form an atomic layer of antimony-metal on the substrate, and then cycled so that the thickness of the thin film becomes a desired thickness. Can be performed multiple times.
  • an exhaust process is performed from the chamber to remove deposition byproducts remaining in the chamber.
  • the antimony thin film manufacturing method it is possible to provide an antimony thin film having improved flatness of the surface layer of the thin film using an ALD process at low temperature, and in particular, to provide an antimony-telluride layer, and ultimately, GST for PRAM It is useful for film formation.
  • SbCl 3 [2.0 g, 8.8 mmol] and Li (btsa) [lithium bistrimethylsilylamide, 4.4 g, 26.3 mmol] were added to a 125 ml Schlenk flask, and toluene (100 ml) was added thereto. The solvent was removed to obtain Sb (btsa) 3 as a yellow liquid.
  • Sb (btsa) 3 [5.3 g, 8.8 mmol] was added to a 125 ml Schlenk flask containing hexane (50 ml), and dmampH [1-dimethylamino-2-methyl-2- was dissolved in hexane (20 ml).
  • the antimony (III) amino alkoxide compound which is an organic antimony trivalent compound prepared from Examples, was found to have very good solubility in organic solvents such as diethyl ether, tetrahydrofuran, toluene and hexane as a liquid at room temperature.
  • organic solvents such as diethyl ether, tetrahydrofuran, toluene and hexane as a liquid at room temperature.
  • the high volatility of the compounds of the present invention and the excellent solubility in organic solvents satisfy the coordination number of the antimony ions by the three amino alkoxide ligands coordinating to the antimony trivalent ions.
  • two alkyl groups in the alpha carbon position and two methyl groups substituted at the nitrogen atom of the amine effectively mask oxygen and nitrogen, thereby reducing intermolecular interactions and increasing affinity for organic solvents. .
  • a substrate in which a silicon dioxide layer was formed on Si was used as a substrate to which the ALD process was applied.
  • the temperature of the substrate was raised to 60 ° C., and the temperature of the substrate was maintained at 60 ° C. until the reaction was completed.
  • tris [1-dimethylamino-2-methyl-2-propoxy] antimony was fed into the chamber with argon (50 sccm) as the source gas.
  • Tris [1-dimethylamino-2-methyl-2-propoxy] antimony was supplied followed by a plasma at 20W.
  • Hydrogen gas (200 sccm) was fed into the chamber after plasma injection, followed by argon gas (200 sccm) into the chamber.
  • the plasma was supplied at 20W.
  • the pressure was maintained at 1 Torr in the entire process, and the exhaust process was performed to remove the reaction by-products after the whole process was completed.
  • the thickness of the antimony-telluride (Sb 2 Te 3 ) thin film formed on the substrate in the chamber was 60 nm and the growth rate was 0.4 nm per cycle. SEM photographs of the prepared thin films are shown in FIG. 8A.
  • a thin film of Sb 2 Te 3 was prepared in the same manner as in Example 5, except that the substrate was reacted at 80 ° C. in Example 5.
  • the thickness of the prepared Sb 2 Te 3 thin film was 60nm, the growth rate was 0.4nm per cycle. SEM pictures of the prepared thin film are shown in FIG. 8B.
  • a thin film of Sb 2 Te 3 was prepared in the same manner as in Example 5, except that the substrate was reacted at 100 ° C. in Example 5.
  • the thickness of the prepared Sb 2 Te 3 thin film was 80nm, the growth rate was 0.53nm per cycle. SEM photographs of the prepared thin films are shown in FIG. 8C.
  • the growth rate is 0.4 nm per cycle when the temperature of the substrate during manufacture is within the range of 60 ° C to 80 ° C.
  • the growth rate also increases as the temperature rises. That is, in the low temperature section of 60 °C to 80 °C, it was confirmed that a constant ALD window with a low growth rate.
  • FIGS. 8A to 8C when the SEM photographs of the thin film of Sb 2 Te 3 grown at low temperatures, it can be seen that a generally flat surface is formed, in particular, relatively low temperatures (60 ° C.) In the case of the thin film deposited in (Fig. 8a) it can be seen that the case has a flatter surface than when deposited at 100 ° C (Fig. 8c).
  • Figure 9 shows the analysis of the XRD diffraction pattern of the thin film prepared by Examples 5-7.
  • a thin film of polycrystalline Sb 2 Te 3 was identified in all temperature ranges regardless of the temperature ranges shown in Examples 5 to 7, and thus, the Sb 2 Te 3 thin film of Sb 2 Te 3 by the ALD process was observed in the temperature range. It can be seen that the low temperature deposition of the thin film is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a novel antimony amino alkoxide compound and to a method for preparing a thin film containing antimony using same. The novel antimony amino alkoxide compound according to the present invention may be expressed as Sb[O-A-NR1R2]3, where A is a linear or branched C2-C5 alkylene optionally substituted with a C1-C10 alkyl group; and R1 and R2 are an independent linear or branched C1-C10 alkyl group, respectively. According to the present invention, it is possible to provide an antimony precursor enabling a thin film of superior quality to be prepared.

Description

안티몬 아미노 알콕사이드 화합물 및 이의 제조 방법, 이 안티몬 아미노 알콕사이드 화합물을 이용하고 원자층 증착 기술을 이용하는 안티몬을 포함하는 박막의 형성 방법Antimony amino alkoxide compound and manufacturing method thereof, Formation method of thin film containing antimony using this antimony amino alkoxide compound and using atomic layer deposition technique
본 발명은 신규한 안티몬 아미노 알콕사이드 화합물 및 이의 제조 방법, 그리고 이 안티몬 아미노 알콕사이드 화합물을 사용하여 원자층 증착 기술을 이용해서 안티몬을 함유하는 필름을 제조하는 방법에 대한 것이다. The present invention relates to a novel antimony amino alkoxide compound and a method for preparing the same, and a method for producing a film containing antimony using atomic layer deposition techniques using the antimony amino alkoxide compound.
삼산화안티몬(Sb2O3)는 촉매, 전기 전도체 물질, 광학 물질, 내연제 등의 기술분야에서 광범위하게 응용되고 있다(Kokkalas, D.E., Bikiaris, D.N., Karayannidis, G.P., J. Appl. Poly. Sci.2003, 55,.787;Bryngelsson, Hl, Eskhult, J., Nyholm, L., Herranen, M,,Alm, O., Edstram, K., Chem. Mater. 2007, 19, 1170; Tigau, N., Ciupina, V., Prodan, G. J. Optoelectro., Adv. Mater. 2006, 8, 37; Ballistreri, A., Foti, S., Montaudo, G., Pappalardo, S., Scamporrino, E., J Poly. Sci. Poly. Chem. Ed. 2003, 17, 2469; Brebu, M., Jakab, E., Sakata, Y., J. Anal. Appl. Pyrolysis, 2007, 79, 346; Papaspyrides, C.D., Pavlidou, S., Vouyiouka, S.N., J. Mate. Design. Appl. 2009, 223, 91). Antimony trioxide (Sb2O3) has been widely applied in the fields of catalysts, electrical conductor materials, optical materials, flame retardants, etc. (Kokkalas, DE, Bikiaris, DN, Karayannidis, GP, J. Appl. Poly. Sci. 2003, 55, .787; Bryngelsson, Hl, Eskhult, J., Nyholm, L., Herranen, M ,, Alm, O., Edstram, K., Chem. Mater. 2007, 19, 1170; Tigau, N., Ciupina , V., Prodan, GJ Optoelectro., Adv. Mater. 2006, 8, 37; Ballistreri, A., Foti, S., Montaudo, G., Pappalardo, S., Scamporrino, E., J Poly. Sci. Poly.Chem.Ed. 2003, 17, 2469; Brebu, M., Jakab, E., Sakata, Y., J. Anal.Appl.Pyrolysis, 2007, 79, 346; Papaspyrides, CD, Pavlidou, S., Vouyiouka, SN, J. Mate.Design.Appl. 2009, 223, 91).
한편, 정보화 기술이 발달함에 따라, 다양한 전자 장치가 증가하고 있다. 특히, 휴대 가능한 미디어 장치는 다양한 정보를 저장 및 제공하도록 고성능화되고, 대용량화되고 있다. 이러한 미디어 장치를 이용하여 대용량의 데이터를 저장 및 전송하기 위해 고집적 메모리 소자가 필요하다. 상기 고집적의 메모리 소자는 큰 용량을 가질 뿐 아니라, 빠른 속도, 비휘발성 및 저전력 소모와 같은 경제성 등 다양한 조건을 만족시켜야 한다. 현재 널리 사용되는 디램 및 플래쉬 메모리 소자는 앞서 언급된 조건들의 일부를 만족시킬 수 있다. Meanwhile, with the development of information technology, various electronic devices are increasing. In particular, portable media devices have become high performance and large in capacity to store and provide various information. There is a need for a highly integrated memory device for storing and transferring large amounts of data using such media devices. The highly integrated memory device has not only large capacity but also satisfies various conditions such as high speed, nonvolatile and economic efficiency such as low power consumption. Currently widely used DRAM and flash memory devices can satisfy some of the conditions mentioned above.
그러나 디램의 단위 셀은 하나의 캐패시터 및 캐패시터를 제어하는 하나의 트랜지스터를 포함하므로 스트링 구조의 낸드플래시 메모리에 비해 상대적으로 큰 단위 셀 면적을 필요로 한다. 또한, 디램은 전원 공급이 중단되는 경우 저장된 데이터를 잃게 되는 휘발성 메모리 장치이다. 반면, 플래시 메모리는 전원 공급이 중단되더라도 저장된 데이터를 잃지 않는 비휘발성 메모리 장치이나, 터널링 현상에 기초하기 때문에 동작 속도가 느리다.However, since the DRAM unit cell includes one capacitor and one transistor for controlling the capacitor, a relatively large unit cell area is required as compared to the NAND flash memory having a string structure. Also, the DRAM is a volatile memory device that loses stored data when power supply is interrupted. On the other hand, flash memory is a nonvolatile memory device that does not lose its stored data even when its power supply is interrupted. However, the flash memory is slow in operation because it is based on a tunneling phenomenon.
이에 따라, 동작 속도가 빠르면서도 비휘발성 특성을 갖는 차세대 메모리로, 상변화 메모리 소자에 대한 연구가 증대되고 있다. 상변화 메모리 소자의 단위 셀은 데이터를 저장하는 요소로서 상변화 물질을 포함할 수 있다. 상변화 물질은 서로 다른 저항 값들을 갖는 상태들을 가질 수 있다. 예를 들면, 결정상태의 상변화 물질은 비정질 상태의 상변화 물질에 비하여 낮은 저항 값을 가질 수 있다. 상변화 물질의 결정 상태는 용융 및 냉각 과정의 조건을 통해 제어될 수 있다. 상변화 메모리 소자의 물질적인 문제 및 구조적인 문제와 관련하여, 상변화 메모리 소자의 제조 공정 개발이 요구된다.Accordingly, research on a phase change memory device is increasing as a next-generation memory having a high operation speed and nonvolatile characteristics. The unit cell of the phase change memory device may include a phase change material as an element for storing data. The phase change material may have states with different resistance values. For example, the phase change material in the crystalline state may have a lower resistance value than the phase change material in the amorphous state. The crystal state of the phase change material can be controlled through the conditions of the melting and cooling process. With regard to the physical and structural problems of phase change memory devices, development of manufacturing processes of phase change memory devices is required.
게르마늄-안티몬-텔루륨(Ge2Sb2Te5) 막을 이용하는 상변화 칼코게나이드 비기화성 메모리 기법에서 안티몬은 게르마늄 및 텔루륨과 함께 핵심 성분으로서 사용되고 있다. Ge-Sb-Te(GST) 박막을 주성분으로 하는 상변화 임의 접근 메모리(Phase-change random access memory: PRAM) 장치는 결정 상태로부터 막 물질의 저항성 변화와 관련된 비정질 상태로의 가역적 전이를 이용한다. 상업적 고속제조 및 성능의 이유를 위해 막 물질 자체는 바람직하게 화학 기상 증착(CVD) 및 원자층 증착(ALD) 등의 방법을 이용하여 형성된다. In a phase change chalcogenide non-vaporizable memory technique using germanium-antimony-tellurium (Ge2Sb2Te5) membranes, antimony is used as a key component along with germanium and tellurium. Phase-change random access memory (PRAM) devices based on Ge-Sb-Te (GST) thin films utilize a reversible transition from a crystalline state to an amorphous state associated with the resistive change of the membrane material. For commercial high speed manufacturing and performance reasons, the film material itself is preferably formed using methods such as chemical vapor deposition (CVD) and atomic layer deposition (ALD).
이들의 장래성에도 불구하고, 저온에서 CVD 및 ALD를 통해 재생 가능한 고품질의 안티몬화물, Sb2Te3 및 GST 막을 성장시키기 위한 노력에 직면한 실질적인 문제가 존재한다. 매우 제한된 수의 안티몬 CVD/ALD 전구체만이 현재 사용 가능한데, 대부분은 알킬계 화합물 예컨대 Me3Sb, Et3Sb, (iPr)3Sb 및 Ph3Sb 또는 하이드라이드계 화합물 예컨대 SbH3이고, 이들 전구체는 낮은 열안정성, 낮은 기화성, 합성 곤란성 및 높은 전달 온도를 비롯한 다양한 결점을 겪고 있다. (Sugiura, 0., Kameda, H., Shiina, K., Mataumura, M., J. Electron. Mater., 1988, 17, 11.; Biefeld, R. M., Hebner, G. A., Appl. Phys. Lett. 1990, 57, 1563.; Stauf, G. T., Gaskill, D. K., Bottka, N., Gedridge, R. W. Jr., Appl. Phys. Lett. 1991, 58, 1311.)Despite their prospects, there are practical problems faced with efforts to grow high quality antimonide, Sb2Te3 and GST films that are reproducible via CVD and ALD at low temperatures. Only a very limited number of antimony CVD / ALD precursors are currently available, most of which are alkyl-based compounds such as Me3Sb, Et3Sb, (iPr) 3Sb and Ph3Sb or hydride-based compounds such as SbH3 and these precursors have low thermal stability, low vaporization, There are various drawbacks, including difficulty in synthesis and high delivery temperatures. (Sugiura, 0., Kameda, H., Shiina, K., Mataumura, M., J. Electron. Mater., 1988, 17, 11 .; Biefeld, RM, Hebner, GA, Appl. Phys. Lett. 1990 , 57, 1563; Stauf, GT, Gaskill, DK, Bottka, N., Gedridge, RW Jr., Appl.Phys. Lett. 1991, 58, 1311.)
또한, 이러한 현재 이용 가능한 안티몬 전구체와 게르마늄 또는 텔루륨 전구체의 상용성은 마이크로 전자 장치 품질 GST 막을 재생 가능하게 성장시키는 능력에 관해서는 미확인되었고, 안티몬화물 막의 성장은 Ⅴ/Ⅲ 비율 및 분해온도에 대한 민감성을 비롯한 관련된 공정 어려움을 갖는다. 이러한 전구체로부터 형성된 침착 금속 막은 낮은 성장률, 빈약한 형태 및 막의 조성 편차를 일으킬 수 있는 전구체 유래 탄소 또는 이종원자 오염물에 민감하다(대한민국 특허 공개번호 10-2009-0091107).In addition, the compatibility of these currently available antimony precursors with germanium or tellurium precursors has not been confirmed in terms of the ability to reproducibly grow microelectronic device quality GST films, and the growth of antimonide films is sensitive to V / III ratios and decomposition temperatures. Has associated process difficulties. Deposition metal films formed from such precursors are susceptible to precursor-derived carbon or heteroatomic contaminants that can result in low growth rates, poor morphology, and film composition variations (Korean Patent Publication No. 10-2009-0091107).
일반적으로 박막이나 나노 물질용 전구체를 고안하고 합성하기 위하여 높은 휘발성을 갖는 화합물의 합성이 가장 중요한 문제가 되고 있다. In general, the synthesis of a compound having high volatility is the most important problem in order to design and synthesize a thin film or a precursor for nanomaterials.
이상과 같이 종래에 알려진 안티몬 3가 화합물은 충분하지 못한 휘발성, 외부로부터 산소의 공급, 제조된 막에 생기는 탄소 및 염소의 오염 등의 문제점을 가지고 있다. 따라서 높은 휘발성을 갖고 있어 안티몬과 삼산화안티몬 박막 제조에 사용될 수 있는 전구체로서 안티몬 3가 화합물의 개발은 그 의미가 상당히 크다고 할 수 있다.As described above, the antimony trivalent compounds known in the art have problems such as insufficient volatility, supply of oxygen from the outside, contamination of carbon and chlorine generated in the prepared membrane, and the like. Therefore, the development of the antimony trivalent compound as a precursor that can be used in the production of antimony and antimony trioxide thin film is highly significant.
또한, 종래에 알려진 통상적인 PRAM의 GST 막 제조 공정은 물리적 증착인 스퍼터링 방법으로 제조하거나, 또는 화학적 증착인 CVD를 이용하여 제조하였다. 그러나, 이와 같은 방법으로는 GST 막의 균일성을 확보할 수 없고, 숏 채널 효과 등의 문제들을 야기하였다. In addition, GST film manufacturing processes of conventional PRAMs known in the art are manufactured by sputtering method, which is physical vapor deposition, or by using CVD, which is chemical vapor deposition. However, such a method cannot secure uniformity of the GST film and causes problems such as a short channel effect.
이러한 이유로 ALD 공정을 적용하고자 하는 시도들이 있었지만, 종래의 GST 막 제조에 사용되던 전구체 물질 중 특히 안티몬 전구체가 ALD 공정에 적용되기 어려워 ALD 공정으로 GST 박막을 제조하는 것이 곤란하였다. For this reason, there have been attempts to apply the ALD process, but it was difficult to produce a GST thin film by the ALD process because the antimony precursor, especially the antimony precursor, used in the conventional GST film production is difficult to apply to the ALD process.
본 발명의 목적은 열안정성 및 휘발성이 우수하면서 보존성이 유리한 신규한 안티몬 아미노 알콕사이드 및 이의 제조방법을 제공하는 것이다.It is an object of the present invention to provide a novel antimony amino alkoxide having excellent thermal stability and volatility and having an advantageous preservation, and a method for preparing the same.
또한, 본 발명의 목적은 낮은 온도에서 순수한 안티몬 또는 삼산화안티몬 제조가 가능하고, 할로겐 원소를 포함하지 않는 신규한 안티몬 아미노 알콕사이드 화합물 및 이의 제조 방법을 제공하는 것이다.It is also an object of the present invention to provide novel antimony amino alkoxide compounds which are capable of producing pure antimony or antimony trioxide at low temperatures and which do not contain halogen elements and methods for their preparation.
또한, 본 발명의 목적은 질이 우수한 박막을 제조할 수 있으며, 특히 유기 금속 화학기상 증착법(MOCVD)이나 원자층 증착법(ALD)으로도 박막을 성장시킬 수 있는 신규한 안티몬 아미노 알콕사이드 화합물 및 이의 제조방법을 제공하는 것이다.In addition, an object of the present invention is to produce a thin film of excellent quality, in particular a novel antimony amino alkoxide compound capable of growing the thin film also by organic metal chemical vapor deposition (MOCVD) or atomic layer deposition (ALD) and its preparation To provide a way.
또한, 본 발명은 ALD 공정에 적합한 상기 안티몬 전구체를 활용하여 ALD 공정으로 안티몬 박막을 제조하는 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for producing an antimony thin film by the ALD process using the antimony precursor suitable for the ALD process.
본 발명의 또다른 목적은 ALD 공정에 의해서 제조된 안티몬 박막을 제공하는 것이다. It is another object of the present invention to provide an antimony thin film produced by the ALD process.
본 발명은 하기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물을 제공한다:The present invention provides an antimony amino alkoxide compound represented by Formula 1:
<화학식 1><Formula 1>
Sb[O-A-NR1R2]3 Sb [O-A-NR1R2] 3
상기 화학식 1에서,In Chemical Formula 1,
A는 C1-C10 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2-C5의 알킬렌이고;A is C2-C5 alkylene unsubstituted or substituted with a C1-C10 linear or branched alkyl group;
R1 및 R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이다.R1 and R2 are each independently a C1-C10 linear or branched alkyl group.
본 발명은 하기 화학식 3으로 표시되는 안티몬 할라이드 화합물과 화학식 4로 표시되는 알코올의 알칼리 금속염을 반응시키는 것을 특징으로 하는 하기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물의 제조방법을 제공한다:The present invention provides a method for preparing an antimony amino alkoxide compound represented by the following Chemical Formula 1, comprising reacting an antimony halide compound represented by the following Chemical Formula 3 with an alkali metal salt of an alcohol represented by the Chemical Formula 4.
<화학식 3><Formula 3>
SbX3SbX3
<화학식 4><Formula 4>
M[O-A-NR1R2]M [O-A-NR1R2]
상기 화학식 1, 화학식 3 및 화학식 4에서, In Formula 1, Formula 3 and Formula 4,
A는 C1-C10의 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2-C5의 알킬렌이고; A is C2-C5 alkylene unsubstituted or substituted with C1-C10 linear or branched alkyl groups;
R1 및 R2는 서로 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고; R 1 and R 2 are, independently from each other, a C 1 -C 10 linear or branched alkyl group;
M은 Li, Na 또는 K이고; M is Li, Na or K;
X는 Cl, Br 또는 I이다.X is Cl, Br or I.
본 발명은 하기 화학식 3의 안티몬 할라이드 화합물과 하기 화학식 5로 표시되는 알칼리금속 화합물을 유기 용매 하에서 반응하여 하기 화학식 6으로 표시되는 안티몬 화합물을 제조하는 단계; 및 하기 화학식 6으로 표시되는 안티몬 화합물과 하기 화학식 7로 표시되는 알코올을 유기용매에서 반응시키는 단계를 포함하는 것을 특징으로 하는 화학식 1의 안티몬 아미노 알콕사이드 화합물의 제조방법을 제공한다.The present invention comprises the steps of preparing an antimony compound represented by the following formula (6) by reacting the antimony halide compound of formula 3 and the alkali metal compound represented by the formula (5) in an organic solvent; And it provides a method for producing an antimony amino alkoxide compound of formula (1) comprising the step of reacting the antimony compound represented by the formula (6) and the alcohol represented by the formula (7) in an organic solvent.
<화학식 1><Formula 1>
Sb[O-A-NR1R2]3Sb [O-A-NR1R2] 3
<화학식 3><Formula 3>
SbX3SbX3
<화학식 5><Formula 5>
M[NR52]M [NR52]
<화학식 6><Formula 6>
Sb[NR52]3Sb [NR52] 3
<화학식 7><Formula 7>
HO-A-NR1R2HO-A-NR1R2
상기 화학식 1, 화학식 3, 화학식 5, 화학식 6, 및 화학식 7에서, In Chemical Formula 1, Chemical Formula 3, Chemical Formula 5, Chemical Formula 6, and Chemical Formula 7,
A는 C1-C10 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2-C5의 알킬렌이고; A is C2-C5 alkylene unsubstituted or substituted with a C1-C10 linear or branched alkyl group;
R1 및 R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고; R 1 and R 2 are each independently C 1 -C 10 linear or branched alkyl groups;
R5는 C1-C10의 선형 또는 분지형 알킬기, 또는 SiR63이고, R6는 C1-C10의 선형 또는 분지형 알킬기이고;R5 is a C1-C10 linear or branched alkyl group, or SiR63, and R6 is a C1-C10 linear or branched alkyl group;
M은 Li, Na 또는 K이며;M is Li, Na or K;
X는 Cl, Br 또는 I이다.X is Cl, Br or I.
본 발명은 상기 안티몬 아미노 알콕사이드 화합물을 전구체로 사용하여 안티몬을 포함하는 박막을 형성하는 것을 특징으로 하는 박막의 형성방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for forming a thin film, wherein the antimony amino alkoxide compound is used as a precursor to form a thin film containing antimony.
상기한 목적을 달성하기 위한 본 발명에 따른 안티몬 박막을 제조하는 방법은 진공 챔버 내에 기판을 준비하는 단계;Method for producing an antimony thin film according to the present invention for achieving the above object comprises the steps of preparing a substrate in a vacuum chamber;
안티몬 전구체 물질을 준비하는 단계;Preparing an antimony precursor material;
상기 안티몬 전구체 물질로 소스가스를 준비하는 단계;Preparing a source gas from the antimony precursor material;
수소 가스를 포함하는 반응가스를 준비하는 단계;Preparing a reaction gas including hydrogen gas;
퍼지가스를 준비하는 단계; Preparing a purge gas;
금속 전구체 물질로 금속 전구체 가스를 준비하는 단계; 및Preparing a metal precursor gas from the metal precursor material; And
상기 진공챔버 내에 상기 소스가스, 반응가스, 퍼지가스 및 상기 금속 전구체 가스를 순차적으로 공급하는 1사이클의 공정을 실시하여 상기 기판 상에 안티몬-금속의 단원자층 박막을 형성하는 단계;를 포함하고, And performing a one-cycle process of sequentially supplying the source gas, the reaction gas, the purge gas, and the metal precursor gas into the vacuum chamber to form an antimony-metal monolayer layer thin film on the substrate.
상기 안티몬 전구체 물질은 상기 화학식 1로 표시되는 안티몬 아미노알콕사이드인 것을 특징으로 한다. The antimony precursor material is characterized in that the antimony amino alkoxide represented by the formula (1).
상기 안티몬 박막의 제조 방법은 상기 기판 상에 안티몬-금속의 단원자층 박막을 형성하는 단계를 반복 수행하여 상기 박막의 두께를 제어하는 것이 바람직하다. In the method for manufacturing the antimony thin film, it is preferable to repeat the step of forming an antimony-metal monolayer thin film on the substrate to control the thickness of the thin film.
상기 기판은 60℃ 내지 160℃ 이내의 온도 범위로 유지되는 것이 바람직하다. The substrate is preferably maintained in a temperature range of 60 ℃ to 160 ℃.
상기 퍼지가스는 아르곤인 것이 바람직하다. Preferably, the purge gas is argon.
상기 금속은 텔루라이드인 것이 바람직하다. Preferably, the metal is telluride.
상기 진공챔버 내에 상기 소스가스, 반응가스, 퍼지가스 및 상기 금속 전구체 가스를 순차적으로 공급하는 1사이클의 공정에 있어서, 상기 소스가스를 공급한 후 제1 플라즈마를 더 공급하는 단계, 및 상기 금속 전구체 가스를 공급한 후 제2 플라즈마를 더 공급하는 단계,를 추가적으로 더 포함하는 것이 바람직하다. In the one-cycle process of sequentially supplying the source gas, reaction gas, purge gas and the metal precursor gas into the vacuum chamber, further supplying a first plasma after supplying the source gas, and the metal precursor And further supplying the second plasma after supplying the gas.
상기 안티몬 전구체는 하기 화학식 2로 표시되는 화합물인 것이 바람직하다. The antimony precursor is preferably a compound represented by the following formula (2).
<화학식 2><Formula 2>
Sb[O-CR3R4(CH2)m-NR1R2]3 Sb [O-CR 3 R 4 (CH 2 ) m-NR 1 R 2 ] 3
상기 화학식 2에서, In Chemical Formula 2,
R3 및 R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고; R 3 and R 4 are each independently C 1 -C 10 linear or branched alkyl groups;
m은 1 내지 3의 정수이다.m is an integer of 1-3.
상기 화학식 2에서, In Chemical Formula 2,
R1, R2, R3 및 R4는 각각 독립적으로 메틸, 에틸, n-프로필, i-프로필 또는 t-부틸이고;R 1 , R 2 , R 3 and R 4 are each independently methyl, ethyl, n-propyl, i-propyl or t-butyl;
상기 m이 1 또는 2인 것이 바람직하다. It is preferable that said m is 1 or 2.
상기한 목적을 달성하기 위한 본 발명에 따른 안티몬 박막은 상기한 방법에 의해서 제조된 것을 특징으로 한다. Antimony thin film according to the present invention for achieving the above object is characterized in that it is produced by the above method.
본 발명에 따른 신규한 안티몬 전구체는 산소 원자 리간드와 결합하므로, 안티몬을 포함하는 박막의 제조에 유리하다.Since the novel antimony precursor according to the present invention binds to an oxygen atom ligand, it is advantageous for the production of a thin film containing antimony.
또한, 본 발명에 따른 신규한 안티몬 전구체는 아미노 알콕사이드와 결합하므로, 열안정성 및 휘발성이 우수해지고 이로 인해 보존성이 우수해진다.In addition, since the novel antimony precursor according to the present invention binds to amino alkoxides, the thermal stability and the volatility are excellent, and thus the preservation is excellent.
또한, 본 발명에 따른 신규한 안티몬 전구체는 질이 우수한 박막을 제조할 수 있으며, 특히 유기 금속 화학기상 증착법(MOCVD)이나 원자층 증착법(ALD)으로 박막을 제조할 때 유용하게 이용할 수 있다.In addition, the novel antimony precursor according to the present invention can produce a thin film of excellent quality, and can be particularly useful when manufacturing a thin film by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
또한, ALD 공정에 의해서 저온에서 안티몬 박막을 제조할 수 있어서 양산성을 향상시키는 효과가 있다. In addition, the antimony thin film can be produced at a low temperature by the ALD process, thereby improving the mass productivity.
도 1은 실시예1에서 제조한 Sb(dmamp)3 화합물의 1H NMR 분석 결과이다.1 is a result of 1 H NMR analysis of Sb (dmamp) 3 compound prepared in Example 1.
도 2는 실시예1에서 제조한 Sb(dmamp)3 화합물의 13C NMR 스펙트럼이다.FIG. 2 is a 13C NMR spectrum of Sb (dmamp) 3 compound prepared in Example 1. FIG.
도 3은 실시예1에서 제조한 Sb(dmamp)3 화합물의 열중량 분석(TGA) 및 시차열분석(DTA) 결과를 나타내는 그래프이다.3 is a graph showing the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of the Sb (dmamp) 3 compound prepared in Example 1.
도 4는 실시예3에서 제조한 Sb(dmamb)3 화합물의 1H NMR 분석 결과이다.Figure 4 is a 1H NMR analysis of the Sb (dmamb) 3 compound prepared in Example 3.
도 5는 실시예3에서 제조한 Sb(dmamb)3 화합물의 13C NMR 스펙트럼이다.5 is a 13C NMR spectrum of a Sb (dmamb) 3 compound prepared in Example 3. FIG.
도 6은 실시예3에서 제조한 Sb(dmamb)3 화합물의 열중량 분석(TGA) 및 시차열분석(DTA) 결과를 나타내는 그래프이다.Figure 6 is a graph showing the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of the Sb (dmamb) 3 compound prepared in Example 3.
도 7은 본 발명의 일 실시예에 따라 안티몬 박막을 제조하는 성장율과 성장 온도에 대한 상관 관계를 그래프로 도시한 것이다. 7 is a graph illustrating a correlation between a growth rate and a growth temperature for manufacturing an antimony thin film according to an embodiment of the present invention.
도 8의 a는 본 발명의 일 실시예에 따라 60℃에서 제조한 안티몬 박막의 SEM 이미지를 나타낸 것이고, b는 본 발명의 일 실시예에 따라 80℃에서 제조한 안티몬 박막의 SEM 이미지를 나타낸 것이며, c는 본 발명의 일 실시예에 따라 100℃에서 제조한 안티몬 박막의 SEM 이미지를 나타낸 것이다. Figure 8a shows an SEM image of the antimony thin film prepared at 60 ℃ in accordance with an embodiment of the present invention, b is a SEM image of the antimony thin film prepared at 80 ℃ in accordance with an embodiment of the present invention , c shows the SEM image of the antimony thin film prepared at 100 ℃ according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따라 제조된 안티몬 박막의 XRD 회절패턴 부석 결과를 그래프로 도시한 것이다. FIG. 9 is a graph showing the XRD diffraction pattern pumice results of the antimony thin film manufactured according to an embodiment of the present invention.
이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 하기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물을 제공한다.The present invention provides an antimony amino alkoxide compound represented by the following formula (1).
<화학식 1><Formula 1>
Sb[O-A-NR1R2]3Sb [O-A-NR1R2] 3
상기 화학식 1에서, C1-C10의 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2-C5의 알킬렌이고; R1 및 R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이다.In Formula 1, C2-C5 alkylene unsubstituted or substituted with a linear or branched alkyl group of C1-C10; R1 and R2 are each independently a C1-C10 linear or branched alkyl group.
상기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물의 형태는 특별히 한정하지 않으나, 액체상태인 것이 바람직하다.The form of the antimony amino alkoxide compound represented by Formula 1 is not particularly limited, but is preferably in a liquid state.
상기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물은 하기 화학식 2로 표시되는 안티몬 아미노 알콕사이드 화합물일 수 있다.The antimony amino alkoxide compound represented by Formula 1 may be an antimony amino alkoxide compound represented by Formula 2 below.
<화학식 2><Formula 2>
Sb[O-CR3R4(CH2)m-NR1R2]3Sb [O-CR3R4 (CH2) m-NR1R2] 3
상기 화학식 2에서, In Chemical Formula 2,
R1, R2, R3 및 R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고, 바람직하게는 R1, R2, R3 및 R4는 각각 독립적으로 메틸, 에틸, n-프로필, i-프로필 또는 t-부틸이다.R1, R2, R3 and R4 are each independently a C1-C10 linear or branched alkyl group, preferably R1, R2, R3 and R4 are each independently methyl, ethyl, n-propyl, i-propyl or t- Butyl.
그리고, m은 1 내지 3의 정수이고, 바람직하게는 1 또는 2인 것이다.And m is an integer of 1-3, Preferably it is 1 or 2.
본 발명에 따른 상기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물은 하기 두 가지 방법으로 제조될 수 있다.The antimony amino alkoxide compound represented by Chemical Formula 1 according to the present invention may be prepared by the following two methods.
첫번째 방법은, 본 발명에 따른 상기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물은 하기 화학식 3으로 표시되는 안티몬 할라이드 화합물과 화학식 4로 표시되는 알코올의 알칼리 금속염을 반응시켜 제조하는 것이다. 반응식은 하기 반응식 1로 나타낼 수 있다.In the first method, the antimony amino alkoxide compound represented by Formula 1 according to the present invention is prepared by reacting an antimony halide compound represented by Formula 3 with an alkali metal salt of an alcohol represented by Formula 4. The reaction scheme may be represented by the following scheme 1.
<화학식 3><Formula 3>
SbX3SbX3
<화학식 4><Formula 4>
M[O-A-NR1R2]M [O-A-NR1R2]
상기 화학식 3 및 화학식 4에서, In Chemical Formulas 3 and 4,
M은 Li, Na 또는 K이고; X는 Cl, Br 또는 I이다.M is Li, Na or K; X is Cl, Br or I.
별도로 기재되지 않은 치환기는 상기 화학식 1과 설명이 동일하다.Substituents, which are not otherwise described, have the same description as in Formula 1 above.
상기 화학식 3으로 표시되는 안티몬 할라이드 화합물과 화학식 4로 표시되는 알코올의 알칼리 금속염은 유기용매의 존재 하에 반응시키는 것이 바람직한데, 상온에서 12시간~36시간 동안 반응시키는 것이 바람직하다. 상기 유기용매는 당 업계에서 이용하는 것이라면 특별히 한정하지 않으나, 헥산, 톨루엔, 에틸 에테르, 테트라하이드로퓨란, 디클로로메탄을 이용할 수 있다.The antimony halide compound represented by Chemical Formula 3 and the alkali metal salt of the alcohol represented by Chemical Formula 4 are preferably reacted in the presence of an organic solvent, preferably 12 to 36 hours at room temperature. The organic solvent is not particularly limited as long as it is used in the art, but hexane, toluene, ethyl ether, tetrahydrofuran, and dichloromethane may be used.
<반응식 1><Scheme 1>
SbX3 + M[O-A-NR1R2] → Sb[O-A-NR1R2]3SbX3 + M [O-A-NR1R2] → Sb [O-A-NR1R2] 3
그리고, 두번째 방법은 본 발명에 따른 상기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물이, 상기 화학식 3의 안티몬 할라이드 화합물과 하기 화학식 5로 표시되는 알칼리금속 화합물을 유기 용매 하에서 반응하여 하기 화학식 6으로 표시되는 안티몬 화합물을 제조하는 단계; 및 하기 화학식 6으로 표시되는 안티몬 화합물과 하기 화학식 7로 표시되는 알코올, 바람직하게는 3당량을 유기용매에서 반응시키는 단계로 제조되는 것이다. 반응식은 하기 반응식 2로 나타낼 수 있다.In the second method, the antimony amino alkoxide compound represented by Chemical Formula 1 according to the present invention is reacted with an antimony halide compound represented by Chemical Formula 3 and an alkali metal compound represented by Chemical Formula 5 under an organic solvent to be represented by Chemical Formula 6 below. Preparing an antimony compound; And reacting an antimony compound represented by the following Chemical Formula 6 with an alcohol represented by the following Chemical Formula 7, preferably 3 equivalents in an organic solvent. The reaction scheme may be represented by the following scheme 2.
<화학식 5><Formula 5>
M[NR52]M [NR52]
<화학식 6><Formula 6>
Sb[NR52]3Sb [NR52] 3
<화학식 7><Formula 7>
HO-A-NR1R2HO-A-NR1R2
상기 화학식 5, 화학식 6, 및 화학식 7에서, In Chemical Formula 5, Chemical Formula 6, and Chemical Formula 7,
R5는 C1-C10의 선형 또는 분지형 알킬기, 또는 SiR63이고, R6는 C1-C10의 선형 또는 분지형 알킬기이고; M은 Li, Na 또는 K이며; X는 Cl, Br 또는 I이다.R5 is a C1-C10 linear or branched alkyl group, or SiR63, and R6 is a C1-C10 linear or branched alkyl group; M is Li, Na or K; X is Cl, Br or I.
별도로 기재되지 않은 치환기는 상기 화학식 1 내지 화학식 3과 설명이 동일하다.Substituents not otherwise described are the same as those of Formulas 1 to 3.
상기 유기용매는 당 업계에서 이용하는 것이라면 특별히 한정하지 않으나, 헥산, 톨루엔, 에틸 에테르, 테트라하이드로퓨란, 디클로로메탄을 이용할 수 있다.The organic solvent is not particularly limited as long as it is used in the art, but hexane, toluene, ethyl ether, tetrahydrofuran, and dichloromethane may be used.
<반응식 2><Scheme 2>
SbX3 + M[NR52] → Sb[NR52]3 + HO-A-NR1R2 → Sb[O-A-NR1R2]3SbX3 + M [NR52] → Sb [NR52] 3 + HO-A-NR1R2 → Sb [O-A-NR1R2] 3
한편, 본 발명은 상기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물을 전구체로 사용하여 안티몬을 포함하는 박막을 형성하는 것을 특징으로 하는 박막의 형성방법을 제공한다.On the other hand, the present invention provides a method for forming a thin film, using the antimony amino alkoxide compound represented by the formula (1) as a precursor to form a thin film containing antimony.
여기서, 상기 안티몬을 포함하는 박막은 유기 금속 화학 기상 증착법(MOCVD) 또는 원자층 증착법(ALD)으로 형성하는 것이 바람직하다.Here, the antimony thin film is preferably formed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
본 발명에 따른 신규한 안티몬 전구체는 산소 원자 리간드와 결합하므로, 안티몬을 포함하는 박막의 제조에 유리하다. 또한, 본 발명에 따른 신규한 안티몬 전구체는 아미노 알콕사이드와 결합하므로, 열안정성 및 휘발성이 우수해지고 이로 인해 보존성이 우수해진다. 또한, 본 발명에 따른 신규한 안티몬 전구체는 질이 우수한 박막을 제조할 수 있으며, 유기 금속 화학기상 증착법(MOCVD)이나 원자층 증착법(ALD)으로 박막을 제조할 때 유용하게도 이용할 수 있다.Since the novel antimony precursor according to the present invention binds to an oxygen atom ligand, it is advantageous for the production of a thin film containing antimony. In addition, since the novel antimony precursor according to the present invention binds to amino alkoxides, the thermal stability and the volatility are excellent, and thus the preservation is excellent. In addition, the novel antimony precursor according to the present invention can produce a thin film having excellent quality, and can be usefully used when preparing a thin film by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
특히, 본 발명의 안티몬 전구체에서 알콕사이드 산소에 대해 α-탄소 위치에 비극성 알킬기가 결합해 있는 경우, 유기 용매에 대한 친화성이 높고, 중심 금속이 이웃한 리간드의 산소와 분자간 상호작용을 일으키지 못하도록 입체 장애를 주기 때문에 단위체로 존재할 수 있다. 이러한 구조적 특징으로 인해, 본 발명의 안티몬 전구체는 상온에서 안정한 액체로서 유기용매, 예를 들면 벤젠, 테트라하이드로퓨란, 톨루엔, 클로로포름 등에 대한 용해도가 높고, 휘발성이 뛰어날 뿐만 아니라, 할로겐 원소를 포함하지 않기 때문에, 이들을 사용하여 질이 더 좋은 안티몬을 포함하는 박막을 얻을 수 있다.In particular, in the antimony precursor of the present invention, when the non-polar alkyl group is bonded to the a-carbon position with respect to the alkoxide oxygen, the affinity for the organic solvent is high, and the stereometal is prevented from causing intermolecular interaction with the oxygen of the neighboring ligand. It can be present as a monomer because of its disability. Due to these structural features, the antimony precursor of the present invention is a stable liquid at room temperature, has high solubility in organic solvents such as benzene, tetrahydrofuran, toluene, chloroform, and the like, and is highly volatile and does not contain a halogen element. Therefore, these can be used to obtain a thin film containing antimony having better quality.
본 발명은 또한 ALD 공정을 이용하여 안티몬 박막을 제조하는 방법 및 그에 의해서 제조된 안티몬 박막에 대한 것이다. The present invention also relates to a method for producing an antimony thin film using an ALD process and an antimony thin film produced thereby.
본 발명의 안티몬 박막의 제조 방법은 진공 챔버 내에 기판을 준비하는 단계;Method for producing an antimony thin film of the present invention comprises the steps of preparing a substrate in a vacuum chamber;
안티몬 전구체 물질을 준비하는 단계;Preparing an antimony precursor material;
상기 안티몬 전구체 물질로 소스가스를 준비하는 단계;Preparing a source gas from the antimony precursor material;
수소 가스를 포함하는 반응가스를 준비하는 단계;Preparing a reaction gas including hydrogen gas;
퍼지가스를 준비하는 단계; Preparing a purge gas;
금속 전구체 물질로 금속 전구체 가스를 준비하는 단계; 및Preparing a metal precursor gas from the metal precursor material; And
상기 진공챔버 내에 상기 소스가스, 반응가스, 퍼지가스 및 상기 금속 전구체 가스를 순차적으로 공급하는 1사이클의 공정을 실시하여 상기 기판 상에 안티몬-금속의 단원자층 박막을 형성하는 단계;를 포함하고, And performing a one-cycle process of sequentially supplying the source gas, the reaction gas, the purge gas, and the metal precursor gas into the vacuum chamber to form an antimony-metal monolayer layer thin film on the substrate.
상기 안티몬 전구체 물질은 다음 화학식 1로 표시되는 안티몬 아미노알콕사이드인 것을 특징으로 하는 안티몬 박막의 제조 방법:The antimony precursor material is a method for producing an antimony thin film, characterized in that the antimony amino alkoxide represented by the following formula (1):
<화학식 Ⅰ><Formula I>
Sb[O-A-NR1R2]3 Sb [OA-NR 1 R 2 ] 3
상기 식 중, A는 C1 내지 C10 의 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2 내지 C5 의 알킬렌이고;Wherein A is C 2 to C 5 alkylene unsubstituted or substituted with a C 1 to C 10 linear or branched alkyl group;
R1 및 R2 는 각각 독립적으로 C1 내지 C10 의 선형 또는 분지형 알킬기이다.R 1 and R 2 are each independently a C 1 to C 10 linear or branched alkyl group.
ALD 공정이란 Atomic Layer Depostion의 약칭으로 원자층 증착 공정으로서 화학적으로 달라붙는 단원자층의 현상을 이용한 나노 박막 증착 기술이다. 화학기상증착보다 낮은 온도에서 막을 형성할 수 있어서 시스템온칩 등에 적합한 기술로 이해된다. ALD process is an abbreviation of Atomic Layer Depostion and is an atomic layer deposition process using nano thin film deposition technology using the phenomenon of monoatomic layer that is chemically attached. Since the film can be formed at a lower temperature than chemical vapor deposition, it is understood as a suitable technology for system-on-chip.
PRAM용 GST 박막의 제조 공정에도 응용이 될 수 있지만, ALD 공정에 적용하기 위해서는 저온에서 증착이 가능한 전구체가 필요하다. GST 박막을 제조하는 데 있어서 필요한 전구체 물질 중, 특히 안티몬 전구체가 저온 증착이 곤란한 점이 있어서 ALD 공정 적용이 힘들었다. Although it may be applied to the manufacturing process of the GST thin film for PRAM, precursors that can be deposited at low temperatures are required to be applied to the ALD process. Application of the ALD process was difficult due to the difficulty in low temperature deposition of the precursor material, particularly the antimony precursor, required to prepare the GST thin film.
본 발명에서는 화학식 1의 안티몬 전구체를 사용하여 ALD 공정에 적용함으로써, 안티몬을 포함하는 박막을 형성한다. 화학식 1의 안티몬 전구체는 산소 원자 리간드와 결합하고 있어서 안티몬 박막의 제조에 유리한 것으로 추측된다. In the present invention, by applying to the ALD process using an antimony precursor of Formula 1, to form a thin film containing antimony. The antimony precursor of the formula (1) is bound to the oxygen atom ligand, it is assumed that it is advantageous for the production of antimony thin film.
먼저 진공 챔버 내에 기판을 준비한다. 기판은 반도체 공정에서 사용가능한 공지의 기판을 사용할 수 있으며, 예를 들면, 실리콘 기판, 이산화실리콘 기판 등이 있다. 실리콘 기판은 예를 들면, 비정질 실리콘 또는 다결정질 실리콘 기판일 수 있다. First, prepare a substrate in a vacuum chamber. The substrate may be a known substrate that can be used in a semiconductor process, for example, a silicon substrate, a silicon dioxide substrate and the like. The silicon substrate can be, for example, an amorphous silicon or a polycrystalline silicon substrate.
진공 챔버 내에 기판이 준비되면, 챔버 내의 기판의 온도가 안티몬 막을 형성하기에 적절한 온도가 되도록 가열한다. When the substrate is prepared in the vacuum chamber, it is heated so that the temperature of the substrate in the chamber is a temperature suitable for forming an antimony film.
기판이 원하는 공정 온도까지 승온이 되면, ALD 방법에 의해 안티몬 막을 형성한다. 기판의 공정 온도는 60 내지 160℃인 것이 바람직하며, 반응이 계속되는 동안 이 온도 범위 내로 유지되는 것이 바람직하다. When the substrate is heated up to a desired process temperature, an antimony film is formed by the ALD method. The process temperature of the substrate is preferably 60 to 160 ° C., and is preferably kept within this temperature range while the reaction continues.
온도가 이 범위를 벗어나게 되면 반응이 일어나지 않거나, 원하지 않는 반응들이 생겨 안티몬 원자층의 형성을 방해하게 된다. If the temperature is outside this range, no reaction occurs or unwanted reactions interfere with the formation of the antimony atomic layer.
그러나, 본 발명은 이에 한정되는 것은 아니며, 공정 온도가 비교적 낮거나 높은 경우에도 다른 공정 변수, 예를 들면 압력 및 소스 가스의 유량을 제어함으로써 반응 속도를 증가시켜 안티몬 원자를 증착할 수도 있다. However, the present invention is not limited thereto, and even when the process temperature is relatively low or high, antimony atoms may be deposited by increasing the reaction rate by controlling other process variables such as pressure and flow rate of the source gas.
그 다음, 안티몬 전구체 물질로 소스가스를 준비하여 챔버 내로 공급하여 기판 상에 안티몬 원자층으로 이루어지는 소정 두께의 안티몬 층을 형성한다. Then, a source gas is prepared from the antimony precursor material and supplied into the chamber to form an antimony layer having a predetermined thickness of an antimony atomic layer on the substrate.
여기서, 안티몬 전구체로 상기 화학식 1의 안티몬 전구체를 사용하며, 바람직하기로는 <화학식 2>의 Sb[O-CR3R4(CH2)m-NR1R2]3 이다. Here, the antimony precursor of the formula (1) is used as the antimony precursor, preferably Sb [O-CR 3 R 4 (CH 2 ) m-NR 1 R 2 ] 3 of the formula ( 2 ).
이 화학식 에서, R3 및 R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고; m은 1 내지 3의 정수이다. 더욱 바람직하기로는 R1, R2, R3 및 R4는 각각 독립적으로 메틸, 에틸, n-프로필, i-프로필 또는 t-부틸이고; 상기 m이 1 또는 2인 것이 바람직하다. In this formula, R 3 and R 4 are each independently a C 1 -C 10 linear or branched alkyl group; m is an integer of 1-3. More preferably R 1 , R 2 , R 3 and R 4 are each independently methyl, ethyl, n-propyl, i-propyl or t-butyl; It is preferable that said m is 1 or 2.
안티몬 전구체 물질을 챔버 내로 공급할 때 필요에 따라 캐리어 가스로서 불활성 가스, 예를 들면 아르곤을 사용할 수 있으며, 다만 사용할 수 있는 캐리어 가스가 이에 한정되는 것은 아니다. When supplying the antimony precursor material into the chamber, an inert gas, such as argon, may be used as a carrier gas as necessary, but the carrier gas that can be used is not limited thereto.
안티몬 전구체 물질을 챔버 내로 공급한 후, 선택적으로 챔버 내에 플라즈마를 공급하여 반응을 촉진할 수 있다. After the antimony precursor material is fed into the chamber, a plasma may be optionally fed into the chamber to facilitate the reaction.
그 다음, 기판 상에 형성된 안티몬 원자층 위에 반응가스를 공급하여 상기 안티몬 원자층의 표면에 안티몬-프리사이트를 제공한다. 반응 가스로는 수소 가스를 공급할 수 있으며, 반드시 이에 한정되는 것은 아니다. Then, a reaction gas is supplied on the antimony atomic layer formed on the substrate to provide antimony-presite on the surface of the antimony atomic layer. Hydrogen gas may be supplied as the reaction gas, but is not necessarily limited thereto.
그 다음, 퍼지 가스를 챔버 내로 공급하여 퍼지 공정을 수행한다. 퍼지 가스로는 불활성 가스, 예를 들면 아르곤 가스를 사용할 수 있으며, 반드시 이에 한정되는 것은 아니다. Then, purge gas is supplied into the chamber to perform the purge process. An inert gas such as argon gas may be used as the purge gas, but is not limited thereto.
그 다음, 안티몬과 결합을 하게 될 금속 전구체 물질로 형성된 가스를 공급한다. Then, a gas formed of a metal precursor material to be combined with antimony is supplied.
금속 전구체 물질을 챔버 내로 공급할 때 필요에 따라 캐리어 가스로서 불활성 가스, 예를 들면 아르곤을 사용할 수 있으며, 다만 사용할 수 잇는 캐리어 가스가 이에 한정되는 것은 아니다. When supplying the metal precursor material into the chamber, an inert gas such as argon may be used as the carrier gas as necessary, but the carrier gas that can be used is not limited thereto.
금속 전구체 물질을 챔버 내로 공급한 후, 선택적으로 챔버 내에 플라즈마를 공급하여 반응을 촉진할 수 있다. After the metal precursor material has been fed into the chamber, a plasma can optionally be fed into the chamber to facilitate the reaction.
금속은 텔루라이드를 사용할 수 있으며,반드시 이에 한정되는 것은 아니다. 텔루라이드는 PRAM의 상변화층인 GST 막의 한 구성인 성분으로서, 안티몬과 텔루라이드를 ALD 공정을 이용하여 제조할 경우, GST 막 전체를 ALD 공정으로 제조할 수 있음을 보여준다. The metal may use telluride, but is not limited thereto. Telluride is a component of the GST film, which is a phase change layer of PRAM, and shows that when antimony and telluride are prepared using the ALD process, the entire GST film can be prepared by the ALD process.
진공 챔버 내에 소스가스, 반응가스, 퍼지가스 및 금속 전구체 가스를 순차적으로 공급하는 1사이클의 공정을 실시하여 안티몬-금속의 원자층을 기판 상에 형성한 후, 박막의 두께가 원하는 두께가 되도록 사이클을 복수 회 실시할 수 있다. One cycle of sequentially supplying source gas, reaction gas, purge gas, and metal precursor gas into a vacuum chamber is performed to form an atomic layer of antimony-metal on the substrate, and then cycled so that the thickness of the thin film becomes a desired thickness. Can be performed multiple times.
원하는 두께의 박막을 형성한 후, 챔버 내에 잔류하는 증착 부산물들을 제거하기 위하여 챔버로부터 배기 공정을 행한다. After forming a thin film of a desired thickness, an exhaust process is performed from the chamber to remove deposition byproducts remaining in the chamber.
이러한 안티몬 박막의 제조 방법에 따르면, 저온에서 ALD 공정을 이용하여 박막의 표면층의 편평성이 향상된 안티몬 박막을 제공할 수 있고, 특히, 안티몬-텔루라이드 층을 제공할 수 있으므로, 궁극적으로 PRAM용 GST 막 형성에 유용하다. According to the antimony thin film manufacturing method, it is possible to provide an antimony thin film having improved flatness of the surface layer of the thin film using an ALD process at low temperature, and in particular, to provide an antimony-telluride layer, and ultimately, GST for PRAM It is useful for film formation.
이하 본 발명은 하기 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 보다 구체적으로 설명하는 것일 뿐이며 본 발명의 범위를 하기 실시예에 제한하는 것은 아니다.Hereinafter, the present invention will be described in detail by the following examples. However, the following examples are only to explain the present invention in more detail, and the scope of the present invention is not limited to the following examples.
실시예Example
안티몬 아미노 알콕사이드의 제조예Preparation Example of Antimony Amino Alkoxide
모든 실험은 장갑 상자 또는 슐렝크 관(Schlenk line)을 이용하여 비활성 아르곤 또는 질소 분위기에서 수행하였다. 반응 생성물의 구조는 양성자 핵자기 공명 분광법(1H NMR), 탄소 원자 핵자기 공명 분광법(13C NMR) 및 열무게 분석법/시차 열분석법(thermogravimetric analysis/differential thermal analysis, TGA/DTA)을 이용하여 분석하였다.All experiments were performed in an inert argon or nitrogen atmosphere using a glove box or Schlenk line. The structure of the reaction product was analyzed using proton nuclear magnetic resonance spectroscopy (1H NMR), carbon atom nuclear magnetic resonance spectroscopy (13C NMR) and thermogravimetric analysis / differential thermal analysis (TGA / DTA). .
실시예1: 트리스[1-디메틸아미노-2-메틸-2-프로폭시]안티몬[Sb(dmamp)3]의 합성 IExample 1 Synthesis of Tris [1-dimethylamino-2-methyl-2-propoxy] antimony [Sb (dmamp) 3] I
125㎖ 슐렝크 플라스크에 SbCl3[2.0g, 8.8mmol]와 Na(dmamp) [1-디메틸아미노-2-메틸-2-프로폭시 나트륨, 3.66g, 26.3mmol]을 첨가한 후 헥산 (100㎖)을 첨가했다. 이 혼합 용액을 하루 동안 상온 교반하고, 용액을 여과한 후 감압 하에서 용매를 제거하였다. 얻어진 액체를 진공 증류로 정제하여(120℃/10-2 Torr) 화학식 1로 나타낸 세 개의 아미노 알콕사이드가 결합한 안티몬 화합물을 무색 액체로 얻었다(3.2 g, 수율 77.7%). To a 125 mL Schlenk flask, SbCl 3 [2.0 g, 8.8 mmol] and Na (dmamp) [1-dimethylamino-2-methyl-2-propoxy sodium, 3.66 g, 26.3 mmol] were added followed by hexane (100 mL). Was added. The mixed solution was stirred at room temperature for one day, the solution was filtered and the solvent was removed under reduced pressure. The resulting liquid was purified by vacuum distillation (120 ° C / 10-2 Torr) to give an antimony compound bonded with three amino alkoxides represented by the formula (1) as a colorless liquid (3.2 g, yield 77.7%).
1H NMR (C6D6, 300.13MHz): 1.50, (s, 12H, OC(CH3)2), 2.25 (s, 4H, NCH2C), 2.45 (s, 12H, N(CH3)2). 1 H NMR (C 6 D 6, 300.13 MHz): 1.50, (s, 12H, OC (CH 3) 2), 2.25 (s, 4H, NCH 2 C), 2.45 (s, 12H, N (CH 3) 2).
13C NMR (C6D6, 75.47MHz): 33.2, 47.1, 70.7, 74.8.13 C NMR (C 6 D 6, 75.47 MHz): 33.2, 47.1, 70.7, 74.8.
실시예2: 트리스[1-디메틸아미노-2-메틸-2-프로폭시]안티몬[Sb(dmamp)3]의 합성 ⅡExample 2 Synthesis of Tris [1-dimethylamino-2-methyl-2-propoxy] antimony [Sb (dmamp) 3] II
125㎖ 슐렝크 플라스크에 SbCl3[2.0g, 8.8mmol]와 Li(btsa)[lithium bistrimethylsilylamide, 4.4 g, 26.3 mmol]를 넣은 후 톨루엔(100㎖)을 첨가한 후 반응하여 용액을 여과한 후 감압 하에서 용매를 제거하여 노란색 액체인 Sb(btsa)3를 얻었다. 헥산(50㎖)이 들어있는 125㎖ 슐렝크 플라스크에 Sb(btsa)3[5.3g, 8.8mmol]를 넣은 후, 헥산(20㎖)에 녹인 dmampH [1-디메틸아미노-2-메틸-2-프로판올, 3.09 g, 26.4 mmol]를 천천히 첨가했다. 이 혼합 용액을 하루 동안 교반하고, 감압 하에서 용매를 제거하였다. 얻어진 무색 액체를 정제하여(120℃/10-2Torr) 화학식 1로 나타낸 세 개의 아미노 알콕사이드가 결합한 안티몬 화합물을 무색 액체로 얻었다(3.0 g, 수율 72.8%).SbCl 3 [2.0 g, 8.8 mmol] and Li (btsa) [lithium bistrimethylsilylamide, 4.4 g, 26.3 mmol] were added to a 125 ml Schlenk flask, and toluene (100 ml) was added thereto. The solvent was removed to obtain Sb (btsa) 3 as a yellow liquid. Sb (btsa) 3 [5.3 g, 8.8 mmol] was added to a 125 ml Schlenk flask containing hexane (50 ml), and dmampH [1-dimethylamino-2-methyl-2- was dissolved in hexane (20 ml). Propanol, 3.09 g, 26.4 mmol] was added slowly. This mixed solution was stirred for one day and the solvent was removed under reduced pressure. The resultant colorless liquid was purified (120 ° C / 10-2 Torr) to obtain an antimony compound bonded with three amino alkoxides represented by the formula (1) as a colorless liquid (3.0 g, yield 72.8%).
상기 실시예1에서 합성한 안티몬 전구체의 양성자 핵자기 공명 분광(1H NMR) 분석 결과를 도 1에, 탄소 원자 핵자기 공명 분광(13C NMR) 분석 결과를 도 2에, 열중량 분석 (TGA) 및 시차열분석 (DTA) 결과를 도 3에 나타내었다. 도 3으로부터, Sb(dmamp)3 화합물은 180 ℃ 이하에서 급격한 무게 감소가 일어난다. 잔류량은 288 ℃에서 13%이다. 실시예2에서 제조한 안티몬 화합물의 결과도 동일하였다.Proton nuclear magnetic resonance spectroscopy (1H NMR) analysis results of the antimony precursor synthesized in Example 1 in Figure 1, carbon atom nuclear magnetic resonance spectroscopy (13C NMR) analysis results in Figure 2, thermogravimetric analysis (TGA) and Differential thermal analysis (DTA) results are shown in FIG. 3. From FIG. 3, the Sb (dmamp) 3 compound undergoes a sharp weight loss at 180 ° C. or lower. The residual amount is 13% at 288 ° C. The results of the antimony compound prepared in Example 2 were also the same.
실시예3: 트리스[1-디메틸아미노-2-메틸-2-부톡시] 안티몬 [Sb(dmamb)3]의 합성 ⅢExample 3: Synthesis of Tris [1-dimethylamino-2-methyl-2-butoxy] antimony [Sb (dmamb) 3] III
125㎖ 슐렝크 플라스크에 SbCl3[2.0g, 8.8mmol]와 Na(dmamb) [1-디메틸아미노-2-메틸-2-부톡시 나트륨, 4.03g, 26.3mmol]을 첨가한 후 헥산 (100㎖)을 첨가했다. 이 혼합 용액을 하루 동안 교반하고, 용액을 여과한 후 감압 하에서 용매를 제거하여 얻어진 연노란색 액체를 진공 증류로 정제하여(160 ℃/10-2 Torr) 화학식 1로 나타낸 세 개의 아미노 알콕사이드가 결합한 안티몬 화합물을 연노란색 액체로 얻었다. (3.1 g, 수율 69.1%).To a 125 mL Schlenk flask, SbCl 3 [2.0 g, 8.8 mmol] and Na (dmamb) [1-dimethylamino-2-methyl-2-butoxy sodium, 4.03 g, 26.3 mmol] were added followed by hexane (100 mL). Was added. The mixed solution was stirred for one day, the solution was filtered, and then the solvent was removed under reduced pressure, and the pale yellow liquid obtained was purified by vacuum distillation (160 ° C / 10-2 Torr) to combine antimony with three amino alkoxides represented by the formula (1). The compound was obtained as a pale yellow liquid. (3.1 g, yield 69.1%).
1H NMR (C6D6, 300.13MHz): 1.09, (t, 3H, CCH2CH3), 1.40 (bs, 3H, CCH3), 1.71, 1.83 (m, 2H, CCH2CH3), 2.23 (s, 6H, N(CH3)2), 2.45 (m, 2H, NCH2C). 1 H NMR (C6D6, 300.13 MHz): 1.09, (t, 3H, CCH2CH3), 1.40 (bs, 3H, CCH3), 1.71, 1.83 (m, 2H, CCH2CH3), 2.23 (s, 6H, N (CH3) 2 ), 2.45 (m, 2H, NCH 2 C).
13C NMR (C6D6, 75.47MHz): 9.6, 29.4, 38.0, 47.3, 69.5, 76.3.13 C NMR (C6D6, 75.47 MHz): 9.6, 29.4, 38.0, 47.3, 69.5, 76.3.
실시예4: 트리스[1-디메틸아미노-2-메틸-2-부톡시] 안티몬 [Sb(dmamb)3]의 합성 ⅣExample 4 Synthesis of Tris [1-dimethylamino-2-methyl-2-butoxy] antimony [Sb (dmamb) 3] IV
헥산 (50㎖)이 들어있는 125㎖ 슐렝크 플라스크에 Sb(btsa)3 [5.3 g, 8.8 mmol]를 첨가한 후 헥산 (20㎖)에 녹인 dmambH [1-디메틸아미노-2-메틸-2-부탄올, 3.46g, 26.4mmol]을 천천히 첨가했다. 이 혼합 용액을 하루 동안 교반하고, 감압 하에서 용매를 제거하여 얻어진 연노란색 액체를 정제하여(160℃/10-2Torr) 화학식 1로 나타낸 세 개의 아미노 알콕사이드가 결합한 안티몬 화합물을 연노란색 액체로 얻었다. (2.9 g, 수율 64.6%).In a 125 mL Schlenk flask containing hexane (50 mL), Sb (btsa) 3 [5.3 g, 8.8 mmol] was added and dmambH [1-dimethylamino-2-methyl-2- dissolved in hexane (20 mL). Butanol, 3.46 g, 26.4 mmol] was added slowly. The mixed solution was stirred for one day, and the light yellow liquid obtained by removing the solvent under reduced pressure was purified (160 ° C / 10-2 Torr) to obtain an antimony compound having three amino alkoxides represented by the formula (1) as a pale yellow liquid. (2.9 g, yield 64.6%).
상기 실시예3에서 합성한 안티몬 전구체의 양성자 핵자기 공명 분광(1H NMR) 분석 결과를 도 4에, 탄소 원자 핵자기 공명 분광(13C NMR) 분석 결과를 도 5에, 열중량 분석 (TGA) 및 시차열분석 (DTA) 결과를 도 6에 나타내었다. Sb(dmamb)3 화합물은 130℃ 이하에서 급격한 무게 감소가 일어난다. 잔류량은 309 ℃에서 19%이다. 실시예4에서 제조한 안티몬 화합물의 결과도 동일하였다.Proton nuclear magnetic resonance spectroscopy (1H NMR) analysis results of the antimony precursor synthesized in Example 3 is shown in Figure 4, carbon atom nuclear magnetic resonance spectroscopy (13C NMR) analysis results in Figure 5, thermogravimetric analysis (TGA) and Differential thermal analysis (DTA) results are shown in FIG. 6. Sb (dmamb) 3 compounds undergo rapid weight loss below 130 ° C. The residual amount is 19% at 309 ° C. The results of the antimony compound prepared in Example 4 were also the same.
실시예로부터 제조된 유기 안티몬 3가 화합물인 안티몬(Ⅲ) 아미노 알콕사이드 화합물은 상온에서 액체로서 디에틸에테르, 테트라하이드로퓨란, 톨루엔 및 헥산 등과 같은 유기 용매에 대한 용해도가 매우 좋은 것으로 나타났다. 이와 같이 본 발명의 화합물들의 높은 휘발성 및 유기 용매에 대한 뛰어난 용해도 등은 아미노 알콕사이드 리간드 3개가 안티몬 3가 이온에 6배위를 함으로써 안티몬 이온의 배위수를 충족시켜 준다. 뿐만 아니라 알파 탄소 위치에 있는 2개의 알킬기와 아민의 질소 원자에 치환된 2개의 메틸기가 효과적으로 산소와 질소를 가려 줌으로써 분자 간 상호 작용을 감소시켜 줌과 동시에 유기 용매에 대한 친화성을 높여준 것에서 기인한다.The antimony (III) amino alkoxide compound, which is an organic antimony trivalent compound prepared from Examples, was found to have very good solubility in organic solvents such as diethyl ether, tetrahydrofuran, toluene and hexane as a liquid at room temperature. As such, the high volatility of the compounds of the present invention and the excellent solubility in organic solvents satisfy the coordination number of the antimony ions by the three amino alkoxide ligands coordinating to the antimony trivalent ions. In addition, two alkyl groups in the alpha carbon position and two methyl groups substituted at the nitrogen atom of the amine effectively mask oxygen and nitrogen, thereby reducing intermolecular interactions and increasing affinity for organic solvents. .
안티몬 박막의 제조예Preparation Example of Antimony Thin Film
실시예 5Example 5
ALD 공정을 적용할 기판으로 Si 상에 이산화실리콘층이 형성되어 있는 기판을 사용하였다. As a substrate to which the ALD process was applied, a substrate in which a silicon dioxide layer was formed on Si was used.
챔버 내에 기판을 공급한 후, 기판의 온도가 60℃가 되도록 승온하였고, 반응이 끝날 때까지 기판의 온도를 60℃로 유지하였다. After the substrate was supplied into the chamber, the temperature of the substrate was raised to 60 ° C., and the temperature of the substrate was maintained at 60 ° C. until the reaction was completed.
기판을 공급한 후, 트리스[1-디메틸아미노-2-메틸-2-프로폭시]안티몬을 소스 가스로 하여 아르곤(50 sccm)과 함께 챔버 내로 공급하였다. After the substrate was fed, tris [1-dimethylamino-2-methyl-2-propoxy] antimony was fed into the chamber with argon (50 sccm) as the source gas.
트리스[1-디메틸아미노-2-메틸-2-프로폭시]안티몬을 공급한 후 20W로 플라즈마를 공급하였다. Tris [1-dimethylamino-2-methyl-2-propoxy] antimony was supplied followed by a plasma at 20W.
플라즈마 주입 후에 수소 가스(200 sccm)를 챔버 내로 공급하고, 이어서 아르곤 가스(200 sccm)를 챔버 내로 공급하였다. Hydrogen gas (200 sccm) was fed into the chamber after plasma injection, followed by argon gas (200 sccm) into the chamber.
아르곤 가스를 공급한 후 디실릴텔루라이드를 아르곤 가스(50 sccm)와 함께 챔버 내로 공급하였다. After argon gas was supplied disilyl telluride was fed into the chamber along with argon gas (50 sccm).
디실릴텔루라이드를 공급한 후, 20W로 플라즈마를 공급하였다. After supplying disilyl telluride, the plasma was supplied at 20W.
반응 전 과정에서 압력은 1Torr로 유지하였고, 전 과정이 완료된 후 반응 부산을 제거하기 위하여 배기 공정을 하였다. The pressure was maintained at 1 Torr in the entire process, and the exhaust process was performed to remove the reaction by-products after the whole process was completed.
이렇게 하여 챔버 내의 기판 상에 형성된 안티몬-텔루라이드(Sb2Te3) 박막의 두께는 60nm였고, 성장율은 사이클당 0.4nm 였다. 제조된 박막의 SEM 사진을 도 8a에 나타내었다. The thickness of the antimony-telluride (Sb 2 Te 3 ) thin film formed on the substrate in the chamber was 60 nm and the growth rate was 0.4 nm per cycle. SEM photographs of the prepared thin films are shown in FIG. 8A.
실시예 6Example 6
실시예 5에서 기판의 온도가 80℃로 하여 반응시키는 것을 제외하고는 상기 실시예 5과 동일한 방법으로 Sb2Te3의 박막을 제조하였다. A thin film of Sb 2 Te 3 was prepared in the same manner as in Example 5, except that the substrate was reacted at 80 ° C. in Example 5.
제조된 Sb2Te3의 박막의 두께는 60nm였고, 성장율은 사이클당 0.4nm 였다. 제조된 박막의 SEM 사진을 도 8B에 나타내었다. The thickness of the prepared Sb 2 Te 3 thin film was 60nm, the growth rate was 0.4nm per cycle. SEM pictures of the prepared thin film are shown in FIG. 8B.
실시예 7Example 7
실시예 5에서 기판의 온도가 100℃로 하여 반응시키는 것을 제외하고는 상기 실시예 5과 동일한 방법으로 Sb2Te3의 박막을 제조하였다. A thin film of Sb 2 Te 3 was prepared in the same manner as in Example 5, except that the substrate was reacted at 100 ° C. in Example 5.
제조된 Sb2Te3의 박막의 두께는 80nm였고, 성장율은 사이클당 0.53nm 였다. 제조된 박막의 SEM 사진을 도 8C에 나타내었다. The thickness of the prepared Sb 2 Te 3 thin film was 80nm, the growth rate was 0.53nm per cycle. SEM photographs of the prepared thin films are shown in FIG. 8C.
{평가}{evaluation}
상기 실시예 5 내지 실시예 7에 따라 제조된 안티몬-텔루라이드 박막에 대하여, 성장율과 성장온도간 상관 관계를 도 1에 나타내었다. For the antimony-telluride thin films prepared according to Examples 5 to 7, the correlation between the growth rate and the growth temperature is shown in FIG.
도 7을 참조하면, 제조 동안의 기판의 온도가 60℃ 내지 80℃ 의 범위 이내에서는 성장율이 사이클당 0.4nm인 것을 확인할 수 있다. 반면, 80℃ 내지 100℃ 의 범위에서는 온도가 상승하면 성장율도 높아짐을 알 수 있다. 즉, 60℃ 내지 80℃ 의 저온구간에서, 성장속도가 낮으면서 일정한 ALD 윈도우가 존재하는 것으로 확인되었다. Referring to FIG. 7, it can be seen that the growth rate is 0.4 nm per cycle when the temperature of the substrate during manufacture is within the range of 60 ° C to 80 ° C. On the other hand, it can be seen that in the range of 80 ° C to 100 ° C, the growth rate also increases as the temperature rises. That is, in the low temperature section of 60 ℃ to 80 ℃, it was confirmed that a constant ALD window with a low growth rate.
도 8a 내지 도 8c에 나타낸 SEM 사진을 참조하면, 저온에서 성장된 Sb2Te3의 박막의 SEM 사진을 보면, 대체적으로 편평한 표면을 형성한 것을 확인할 수 있으며, 특히, 상대적으로 저온(60℃)에서 증착된 박막의 경우(도 8a)의 경우가 100℃에서 증착된 경우(도 8C)보다 더 편평한 표면을 가지는 것을 확인할 수 있다. Referring to the SEM photographs shown in FIGS. 8A to 8C, when the SEM photographs of the thin film of Sb 2 Te 3 grown at low temperatures, it can be seen that a generally flat surface is formed, in particular, relatively low temperatures (60 ° C.) In the case of the thin film deposited in (Fig. 8a) it can be seen that the case has a flatter surface than when deposited at 100 ° C (Fig. 8c).
도 9은 실시예 5 내지 실시예 7에 의해 제조된 박막의 XRD 회절 패턴을 분석한 것을 나타낸 것이다. 도 9을 참조하면, 실시예 5 내지 실시예 7에 제시된 온도의 범위에 상관 없이 모든 온도 범위에서 다결정의 Sb2Te3의 박막이 확인되어, 해당 온도 범위에서 ALD 공정에 의한 Sb2Te3의 박막의 저온 증착이 가능함을 확인할 수 있다. Figure 9 shows the analysis of the XRD diffraction pattern of the thin film prepared by Examples 5-7. Referring to FIG. 9, a thin film of polycrystalline Sb 2 Te 3 was identified in all temperature ranges regardless of the temperature ranges shown in Examples 5 to 7, and thus, the Sb 2 Te 3 thin film of Sb 2 Te 3 by the ALD process was observed in the temperature range. It can be seen that the low temperature deposition of the thin film is possible.
이상에서는 본 발명의 일 실시예 및 첨부된 도면을 참조하여 본 발명을 설명하였으나, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.In the above description of the present invention with reference to an embodiment of the present invention and the accompanying drawings, the terms or words used in the present specification and claims should not be construed as being limited to the ordinary or dictionary meanings, the inventors In order to explain the invention in the best way, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the concept of terms can be properly defined.

Claims (14)

  1. 하기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물:An antimony amino alkoxide compound represented by the following formula (1):
    <화학식 1><Formula 1>
    Sb[O-A-NR1R2]3Sb [O-A-NR1R2] 3
    상기 화학식 1에서,In Chemical Formula 1,
    A는 C1-C10 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2-C5의 알킬렌이고;A is C2-C5 alkylene unsubstituted or substituted with a C1-C10 linear or branched alkyl group;
    R1 및 R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이다.R1 and R2 are each independently a C1-C10 linear or branched alkyl group.
  2. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는 안티몬 아미노 알콕사이드 화합물.The compound represented by Formula 1 is an antimony amino alkoxide compound, characterized in that the compound represented by the formula (2).
    <화학식 2><Formula 2>
    Sb[O-CR3R4(CH2)m-NR1R2]3Sb [O-CR3R4 (CH2) m-NR1R2] 3
    상기 화학식 2에서, In Chemical Formula 2,
    R3 및 R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고; R 3 and R 4 are each independently C 1 -C 10 linear or branched alkyl groups;
    m은 1 내지 3의 정수이다.m is an integer of 1-3.
  3. 제 2항에 있어서,The method of claim 2,
    상기 화학식 2에서,In Chemical Formula 2,
    R1, R2, R3 및 R4는 각각 독립적으로 메틸, 에틸, n-프로필, i-프로필 또는 t-부틸이고;R 1, R 2, R 3 and R 4 are each independently methyl, ethyl, n-propyl, i-propyl or t-butyl;
    상기 m이 1 또는 2인 것을 특징으로 하는 안티몬 아미노 알콕사이드. Antimony amino alkoxide, characterized in that m is 1 or 2.
  4. 하기 화학식 3으로 표시되는 안티몬 할라이드 화합물과 화학식 4로 표시되는 알코올의 알칼리 금속염을 반응시키는 것을 특징으로 하는 하기 화학식 1로 표시되는 안티몬 아미노 알콕사이드 화합물의 제조방법:A method for preparing an antimony amino alkoxide compound represented by Formula 1, comprising reacting an antimony halide compound represented by Formula 3 with an alkali metal salt of an alcohol represented by Formula 4:
    <화학식 1><Formula 1>
    Sb[O-A-NR1R2]3Sb [O-A-NR1R2] 3
    <화학식 3><Formula 3>
    SbX3SbX3
    <화학식 4><Formula 4>
    M[O-A-NR1R2]M [O-A-NR1R2]
    상기 화학식 1, 화학식 3 및 화학식 4에서, In Formula 1, Formula 3 and Formula 4,
    A는 C1-C10 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2-C5의 알킬렌이고;A is C2-C5 alkylene unsubstituted or substituted with a C1-C10 linear or branched alkyl group;
    R1 및 R2는 서로 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고;R 1 and R 2 are, independently from each other, a C 1 -C 10 linear or branched alkyl group;
    M은 Li, Na 또는 K이고; M is Li, Na or K;
    X는 Cl, Br 또는 I이다.X is Cl, Br or I.
  5. 하기 화학식 3의 안티몬 할라이드 화합물과 하기 화학식 5로 표시되는 알칼리금속 화합물을 유기 용매 하에서 반응하여 하기 화학식 6으로 표시되는 안티몬 화합물을 제조하는 단계; 및Preparing an antimony compound represented by Chemical Formula 6 by reacting an antimony halide compound of Chemical Formula 3 with an alkali metal compound represented by Chemical Formula 5 under an organic solvent; And
    하기 화학식 6으로 표시되는 안티몬 화합물과 하기 화학식 7로 표시되는 알코올을 유기용매에서 반응시키는 단계Reacting the antimony compound represented by the formula (6) and the alcohol represented by the formula (7) in an organic solvent
    를 포함하는 것을 특징으로 하는 화학식 1의 안티몬 아미노 알콕사이드 화합물의 제조방법:Method for producing an antimony amino alkoxide compound of Formula 1, comprising:
    <화학식 1><Formula 1>
    Sb[O-A-NR1R2]3Sb [O-A-NR1R2] 3
    <화학식 3><Formula 3>
    SbX3SbX3
    <화학식 5><Formula 5>
    M[NR52]M [NR52]
    <화학식 6><Formula 6>
    Sb[NR52]3Sb [NR52] 3
    <화학식 7><Formula 7>
    HO-A-NR1R2HO-A-NR1R2
    상기 화학식 1, 화학식 3, 화학식 5, 화학식 6, 및 화학식 7에서, In Chemical Formula 1, Chemical Formula 3, Chemical Formula 5, Chemical Formula 6, and Chemical Formula 7,
    A는 C1-C10 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2-C5의 알킬렌이고;A is C2-C5 alkylene unsubstituted or substituted with a C1-C10 linear or branched alkyl group;
    R1 및 R2는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고; R 1 and R 2 are each independently C 1 -C 10 linear or branched alkyl groups;
    R5는 C1-C10의 선형 또는 분지형 알킬기, 또는 SiR63이고, R6는 C1-C10의 선형 또는 분지형 알킬기이고;R5 is a C1-C10 linear or branched alkyl group, or SiR63, and R6 is a C1-C10 linear or branched alkyl group;
    M은 Li, Na 또는 K이며;M is Li, Na or K;
    X는 Cl, Br 또는 I이다.X is Cl, Br or I.
  6. 진공 챔버 내에 기판을 준비하는 단계;Preparing a substrate in a vacuum chamber;
    안티몬 전구체 물질을 준비하는 단계;Preparing an antimony precursor material;
    상기 안티몬 전구체 물질로 소스가스를 준비하는 단계;Preparing a source gas from the antimony precursor material;
    수소 가스를 포함하는 반응가스를 준비하는 단계;Preparing a reaction gas including hydrogen gas;
    퍼지가스를 준비하는 단계; Preparing a purge gas;
    금속 전구체 물질로 금속 전구체 가스를 준비하는 단계; 및Preparing a metal precursor gas from the metal precursor material; And
    상기 진공챔버 내에 상기 소스가스, 반응가스, 퍼지가스 및 상기 금속 전구체 가스를 순차적으로 공급하는 1사이클의 공정을 실시하여 상기 기판 상에 안티몬-금속의 단원자층 박막을 형성하는 단계;를 포함하고, And performing a one-cycle process of sequentially supplying the source gas, the reaction gas, the purge gas, and the metal precursor gas into the vacuum chamber to form an antimony-metal monolayer layer thin film on the substrate.
    상기 안티몬 전구체 물질은 다음 화학식 1로 표시되는 안티몬 아미노알콕사이드인 것을 특징으로 하는 안티몬 박막의 제조 방법:The antimony precursor material is a method for producing an antimony thin film, characterized in that the antimony amino alkoxide represented by the following formula (1):
    <화학식 1><Formula 1>
    Sb[O-A-NR1R2]3 Sb [OA-NR 1 R 2 ] 3
    상기 식 중, A는 C1 내지 C10 의 선형 또는 분지형 알킬기로 치환 또는 비치환된 C2 내지 C5 의 알킬렌이고;Wherein A is C 2 to C 5 alkylene unsubstituted or substituted with a C 1 to C 10 linear or branched alkyl group;
    R1 및 R2 는 각각 독립적으로 C1 내지 C10 의 선형 또는 분지형 알킬기이다. R 1 and R 2 are each independently a C 1 to C 10 linear or branched alkyl group.
  7. 제 6항에 있어서,The method of claim 6,
    상기 기판 상에 안티몬-금속의 단원자층 박막을 형성하는 단계를 반복 수행하여 상기 박막의 두께를 제어하는 것을 특징으로 하는 안티몬 박막의 제조 방법. And repeatedly forming the antimony-metal monolayer layer on the substrate to control the thickness of the thin film.
  8. 제 6항에 있어서,The method of claim 6,
    상기 기판은 60℃ 내지 160℃ 이내의 온도 범위로 유지되는 것을 특징으로 하는 안티몬 박막의 제조 방법. The substrate is a method for producing an antimony thin film, characterized in that maintained in the temperature range of 60 ℃ to 160 ℃.
  9. 제 6항에 있어서,The method of claim 6,
    상기 퍼지가스는 아르곤인 것을 특징으로 하는 안티몬 박막의 제조 방법. The purge gas is an argon thin film manufacturing method, characterized in that the argon.
  10. 제 6항에 있어서, The method of claim 6,
    상기 금속은 텔루라이드인 것을 특징으로 하는 안티몬 박막의 제조 방법. The metal is telluride manufacturing method of the antimony thin film, characterized in that.
  11. 제 6항에 있어서,The method of claim 6,
    상기 진공챔버 내에 상기 소스가스, 반응가스, 퍼지가스 및 상기 금속 전구체 가스를 순차적으로 불어넣는 1사이클의 공정에 있어서, 상기 소스가스를 불어 넣은 후 제1 플라즈마를 더 불어 넣는 단계, 및 상기 금속 전구체 가스를 불어 넣은 후 제2 플라즈마를 더 불어 넣는 단계,를 추가적으로 더 포함하는 것을 특징으로 하는 안티몬 박막의 제조 방법. In the one-cycle process of sequentially blowing the source gas, reaction gas, purge gas and the metal precursor gas into the vacuum chamber, the step of blowing the source gas and further blowing a first plasma, and the metal precursor And further blowing a second plasma after blowing the gas, further comprising a further antimony thin film.
  12. 제 6항에 있어서,The method of claim 6,
    상기 안티몬 전구체는 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는 안티몬 박막의 제조 방법. The antimony precursor is a method for producing an antimony thin film, characterized in that the compound represented by the formula (2).
    <화학식 2><Formula 2>
    Sb[O-CR3R4(CH2)m-NR1R2]3 Sb [O-CR 3 R 4 (CH 2 ) m-NR 1 R 2 ] 3
    상기 화학식 2에서, In Chemical Formula 2,
    R3 및 R4는 각각 독립적으로 C1-C10의 선형 또는 분지형 알킬기이고; R 3 and R 4 are each independently C 1 -C 10 linear or branched alkyl groups;
    m은 1 내지 3의 정수이다.m is an integer of 1-3.
  13. 제 12항에 있어서, The method of claim 12,
    상기 화학식 2에서, In Chemical Formula 2,
    R1, R2, R3 및 R4는 각각 독립적으로 메틸, 에틸, n-프로필, i-프로필 또는 t-부틸이고;R 1 , R 2 , R 3 and R 4 are each independently methyl, ethyl, n-propyl, i-propyl or t-butyl;
    상기 m이 1 또는 2인 것을 특징으로 하는 안티몬 박막의 제조 방법. M is 1 or 2, characterized in that the antimony thin film manufacturing method.
  14. 제 6항 내지 제13항 중 어느 한 항에 따른 방법에 의해서 제조된 것을 특징으로 하는 안티몬 박막. An antimony thin film produced by the method according to any one of claims 6 to 13.
PCT/KR2012/002056 2011-04-26 2012-03-22 Antimony amino alkoxide compound and method for preparing same, and method for forming a thin film containing antimony using the antimony amino alkoxide compound and an atomic layer deposition technique WO2012148085A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110039028A KR101294660B1 (en) 2011-04-26 2011-04-26 Antimony amino alkoxide complexes and method for preparing thereof
KR10-2011-0039028 2011-04-26
KR1020120026274A KR101335019B1 (en) 2012-03-14 2012-03-14 Preparation method of thin film including antimony useing atomic layer deposition
KR10-2012-0026274 2012-03-14

Publications (3)

Publication Number Publication Date
WO2012148085A2 true WO2012148085A2 (en) 2012-11-01
WO2012148085A3 WO2012148085A3 (en) 2013-01-17
WO2012148085A9 WO2012148085A9 (en) 2013-02-14

Family

ID=47072845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002056 WO2012148085A2 (en) 2011-04-26 2012-03-22 Antimony amino alkoxide compound and method for preparing same, and method for forming a thin film containing antimony using the antimony amino alkoxide compound and an atomic layer deposition technique

Country Status (1)

Country Link
WO (1) WO2012148085A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752837A (en) * 1970-05-18 1973-08-14 Takeda Chemical Industries Ltd Antimony aminoalkoxide
JP2006076943A (en) * 2004-09-10 2006-03-23 Nissan Chem Ind Ltd Manufacturing method of alkanolamine compound of metal
EP1754800A1 (en) * 2004-05-26 2007-02-21 Adeka Corporation Material for chemical vapor deposition and thin film forming method
US7501153B2 (en) * 2004-10-21 2009-03-10 Adeka Corporation Alkoxide compound, thin film-forming material and method for forming thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752837A (en) * 1970-05-18 1973-08-14 Takeda Chemical Industries Ltd Antimony aminoalkoxide
EP1754800A1 (en) * 2004-05-26 2007-02-21 Adeka Corporation Material for chemical vapor deposition and thin film forming method
JP2006076943A (en) * 2004-09-10 2006-03-23 Nissan Chem Ind Ltd Manufacturing method of alkanolamine compound of metal
US7501153B2 (en) * 2004-10-21 2009-03-10 Adeka Corporation Alkoxide compound, thin film-forming material and method for forming thin film

Also Published As

Publication number Publication date
WO2012148085A3 (en) 2013-01-17
WO2012148085A9 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
WO2012067439A2 (en) Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same
WO2012176988A1 (en) Organometallic compound, preparing method of the same, and preparing method of thin film using the same
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2010071364A9 (en) Organometallic precursor compound for thin film vapor deposition of metallic or metal oxide thin film and method for thin film vapor deposition using same
WO2019203407A1 (en) Precursor compound for atomic layer deposition (ald) or chemical vapor deposition (cvd), and ald/cvd method using same
WO2019156451A1 (en) Group iv metal element-containing compound, preparation method therefor, precursor composition comprising same compound for film formation, and film forming method using same composition
WO2015190900A1 (en) Precursor compound for film formation, and thin film formation method using same
WO2015190871A1 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
WO2020101437A1 (en) Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same
WO2021153986A1 (en) Silicon precursor compound, composition for forming silicon-containing film, comprising same, and method for forming silicon-containing film
WO2020116770A1 (en) Group 4 transition metal compound, method for preparing same and method for forming thin film using same
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2022019712A1 (en) Niobium precursor compound, film-forming precursor composition comprising same, and method for forming niobium-containing film
WO2023200154A1 (en) Ruthenium precursor composition, preparation method therefor, and formation method for ruthenium-containing film using same
WO2012148085A2 (en) Antimony amino alkoxide compound and method for preparing same, and method for forming a thin film containing antimony using the antimony amino alkoxide compound and an atomic layer deposition technique
WO2021085810A2 (en) Group 4 transition metal compound, preparation method therefor, and composition, comprising same, for depositing thin film
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2017082541A1 (en) Metal precursor, manufacturing method therefor, and method for forming thin film by using same
WO2021261890A1 (en) Precursor for formation of thin film, preparation method therefor, and method for forming thin film comprising same
WO2023121383A1 (en) Molybdenum precursor compound, method for preparing same, and method for depositing molybdenum-containing film using same
WO2024122883A1 (en) Novel germanium precursor, thin film deposition composition comprising same, and thin film manufacturing method employing same
WO2023158183A1 (en) Novel organoplatinum compound, method for manufacturing same, method for manufacturing thin film using same, and method for manufacturing high-performance optical sensor for detecting mid-infrared rays using same
WO2023171911A1 (en) Novel organotin compound, preparation method therefor, solution process composition comprising same, and thin film manufacturing method using same
WO2022055201A1 (en) Group 4 metal element-containing compound, precursor composition including same, and method for manufacturing thin film using same
WO2024177318A1 (en) Novel organic antimony compound, method for preparing same, and method for forming thin film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776394

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776394

Country of ref document: EP

Kind code of ref document: A2