WO2012147721A1 - Power system for on-board devices - Google Patents

Power system for on-board devices Download PDF

Info

Publication number
WO2012147721A1
WO2012147721A1 PCT/JP2012/060923 JP2012060923W WO2012147721A1 WO 2012147721 A1 WO2012147721 A1 WO 2012147721A1 JP 2012060923 W JP2012060923 W JP 2012060923W WO 2012147721 A1 WO2012147721 A1 WO 2012147721A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
engine
unit
control unit
battery
Prior art date
Application number
PCT/JP2012/060923
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 前田
順 坂田
良行 宮武
潮 谷川
Original Assignee
シンフォニアテクノロジー株式会社
いすゞ車体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シンフォニアテクノロジー株式会社, いすゞ車体株式会社 filed Critical シンフォニアテクノロジー株式会社
Priority to CN201280020482.6A priority Critical patent/CN103492211B/en
Publication of WO2012147721A1 publication Critical patent/WO2012147721A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K2025/005Auxiliary drives driven by electric motors forming part of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • B60K2025/026Auxiliary drives directly from an engine shaft by a hydraulic transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • B60W2300/121Fork lift trucks, Clarks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/144Garbage trucks, e.g. refuse trucks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a power system for an in-vehicle device for operating an in-vehicle device mounted on a work vehicle such as a garbage truck or an aerial work vehicle.
  • Patent Document 1 As a configuration for driving an in-vehicle device using the electric motor, for example, one described in Patent Document 1 below is known. This is configured so that one hydraulic pump can be operated by using either the engine or the electric motor or a combination of both in order to drive the in-vehicle device. With this configuration, the hydraulic pump is normally driven by an electric motor, and when the remaining amount of the battery is insufficient, it is possible to operate continuously for a long time by using the driving force of the engine. .
  • An object of the present invention is to effectively solve such a problem. Specifically, the drive source of the in-vehicle device can be switched while the operation is continued, and at the same time, the switching is smoothly performed. It aims at providing the power system for vehicle equipment which can be performed to.
  • a power system for an in-vehicle device includes a first auxiliary output shaft that distributes power from an output shaft that transmits engine power, and a clutch that connects or disconnects the output shaft and the first auxiliary output shaft. And a pump that is driven by the first auxiliary output shaft, and a pressure device that is operated by a pressure medium that is sent out by the pump, and is a clutch that controls the operation of the clutch.
  • a control unit a motor coupled to the first auxiliary output shaft; and a motor that rotates synchronously; an engine rotation speed detection unit that detects a rotation speed of the engine; and a value detected from the engine rotation speed detection unit while monitoring the engine
  • An engine control unit that rotates the motor, a motor rotation speed detection unit that detects the rotation speed of the motor, and a motor that detects the torque of the motor.
  • a torque control unit a motor control unit that rotates the motor while monitoring a detection value from at least one of the motor rotation speed detection unit and the motor torque detection unit, and the engine for switching the drive source of the pump
  • a basic command unit that issues a command to each of the clutch control unit, the engine control unit, and the motor control unit so as to connect or disconnect the clutch while interlocking the rotation of the motor.
  • the pump drive source is changed from the motor to the engine.
  • the basic command unit changes the control of the motor to a torque control method with respect to the motor control unit and Instructing the clutch control unit to connect the clutch, and the basic command unit instructing the motor control unit to rotate the motor. It is preferable that the step of instructing to gradually reduce the rotational torque is sequentially executed.
  • the pump drive source is changed from the engine to the motor.
  • the basic command unit instructs the engine control unit to rotate the engine at the same rotational speed by a speed control method
  • the basic command unit instructs the motor control unit to Instructing the motor to rotate by a torque control method to increase the rotational torque until reaching the target rotational torque; and detecting the arrival of the rotational torque of the motor to the target rotational torque by the basic command unit;
  • the basic command unit changes the control of the motor to the speed control method with respect to the motor control unit and And a step in which the basic command unit instructs the clutch control unit to disengage the clutch in order. Is preferred.
  • the connection destination of the electric circuit of the in-vehicle device battery can be appropriately switched depending on the situation to appropriately change the case of supplying power and the case of charging.
  • it comprises an inverter that rotates the motor based on a command from the motor control unit, and an in-vehicle device battery that supplies electricity for driving the motor via the inverter,
  • a first charge controller for generating electricity when the motor is driven by the driving force of the engine via the first auxiliary output shaft, converting the electricity and storing it in the on-vehicle device battery; Converting the electricity generated by the generator driven by the engine via the second auxiliary output shaft to charge the battery for the vehicle
  • a second charge controller for storing in the device battery and a third charge controller for converting electricity stored in the in-vehicle device battery and storing it in the in-vehicle device battery.
  • a battery circuit switching unit for switching to a state connected to any one of the inverter, the first charge controller,
  • the electric circuit of the motor is connected to either the inverter or the first charge controller.
  • a motor circuit switching unit for switching to an unconnected state is provided.
  • the battery remaining amount detection unit for detecting the remaining battery level of the on-vehicle device battery is provided. It is preferable to provide a notification means for notifying when the amount detection unit detects the fully charged state of the on-vehicle device battery, or when detecting that the remaining battery level is equal to or less than a predetermined value. .
  • the schematic diagram which shows the structure of the power system for vehicle equipment which concerns on one Embodiment of this invention.
  • the flowchart which shows the process sequence at the time of the drive source switching from the motor to an engine in the power system for in-vehicle apparatuses.
  • the flowchart which shows the process sequence at the time of the drive source switching from the engine to a motor in the same motive power system for vehicle equipment.
  • the flowchart which shows the process sequence of the connection destination determination of the battery electric circuit for vehicle-mounted apparatuses in the same motive power system for vehicle-mounted apparatuses.
  • the power system for in-vehicle devices of this embodiment adopts a configuration as schematically shown in FIG. 1 and supplies power to the in-vehicle device 2 mounted on the vehicle 1 by two means of an engine 11 and a motor 41. It is configured to be.
  • the vehicle 1 in the figure is described in a simplified manner by extracting only the portions related to the present invention.
  • the vehicle 1 is driven by the engine 11 and the engine 11 for extracting power to the outside. It has a drive shaft 12 as an output shaft and drive wheels 13 driven by the drive shaft 12. Furthermore, it has a second auxiliary output shaft 14 that distributes power from the engine 11, a generator 16 driven by the second auxiliary output shaft 14 via a belt 15, and electricity generated by the generator 16
  • the vehicle battery 17 to be stored is provided.
  • the vehicle battery 17 is provided to operate devices necessary for driving a vehicle such as a starter, a direction indicator, and a wiper (not shown), and is substantially the same as that of a general vehicle. It is.
  • a vehicle-mounted device 2 is mounted on such a vehicle 1, and the vehicle-mounted device 2 is driven by the driving force of the engine 11 and a pump 24 driven by the first auxiliary output shaft 23. And a pressure device 25 that is operated by being fed with a pressure medium by the pump 24.
  • the pump 24 uses a hydraulic pump and uses oil as a pressure medium.
  • a transmission mechanism 21 is provided for the drive shaft 12 of the engine 11 to transmit power to the first auxiliary output shaft 23, and between the transmission mechanism 21 and the first auxiliary output shaft 23. Is provided with a clutch 22, which allows the drive shaft 12 and the first auxiliary output shaft 23 to be connected and disconnected as appropriate through the transmission mechanism 21. Yes.
  • a motor 41 is connected to the first auxiliary output shaft 23 via a belt 42 and a speed reducer (not shown), and the first auxiliary output shaft 23 can be driven by the motor 41, and conversely the first auxiliary output shaft 23.
  • the motor 41 is rotated by the output shaft 23 so that power generation can be performed.
  • the in-vehicle apparatus power system 3 in this embodiment includes the motor 41 and a device for operating the motor 41, and a pressure medium for driving the first auxiliary output shaft 23 to cause the pressure device 25 to perform a desired operation. It is comprised as what is provided with the control means which can send in.
  • an electric IPM motor is used as the motor 41, and an in-vehicle device battery 44 is provided as a power source, and the motor 41 is rotated by converting electric power supplied from the in-vehicle device battery 44.
  • An inverter 43 is provided.
  • an engine control unit 34 that controls the rotation of the engine 11
  • a clutch control unit 35 that controls the operation of the clutch 22, and a motor control unit 36 that controls the rotation of the motor 41
  • the basic command unit 31 is configured to issue a command to each.
  • the basic command unit 31 is configured such that an instruction from the operator is input through the operation receiving unit 32, and a control command corresponding to the instruction is transmitted from the basic command unit 31 to the control units 34, 35, 36.
  • the basic command section 31 can notify the operator of various states such as the charging state of the in-vehicle device battery 44 through the notification means 33 that turns on the notification lamp and generates a notification sound.
  • the operator can be urged to perform the operation or can be provided with the judgment material necessary for the operation.
  • a command corresponding to the command is given from the basic command unit 31 to the engine control unit 34.
  • the engine control unit 34 monitors the rotation speed of the engine 11 detected by the engine rotation speed (Ve) detection unit 51 and controls the engine 11 to operate according to the command value given from the basic command unit 31. Do. Information about the control state is output from the engine control unit 34 to the basic command unit 31.
  • the motor control unit 36 has two control methods, a speed control method and a torque control method. Normally, the motor control unit 36 is based on the speed control method. For example, when the source is switched between the engine 11 and the motor 41, a torque control method is used depending on the situation.
  • the motor 41 is provided with a motor rotation speed (Vm) detection unit 52 and a motor torque (Tm) detection unit 53.
  • the motor control unit 36 monitors at least one of detection values obtained from these.
  • control is performed so that the motor 41 is operated in accordance with the command value given from the basic command unit 31. Furthermore, information on the control state is output from the motor control unit 36 to the basic command unit 31.
  • a rotary encoder is used as the motor rotation speed detection unit 52 and a driving current measuring instrument in the inverter is used as the motor torque detection unit 53.
  • the rotation speed and torque of the motor 41 can be measured. It is possible to use means other than these as long as they are used.
  • the clutch control unit 35 performs the clutch 22 based on an instruction from the basic command unit 31. Is controlled to connect or disconnect the drive shaft 12 and the first auxiliary output shaft 22.
  • the clutch 22 is connected, the engine 11, the drive shaft 12, the first auxiliary output shaft 22, the pump 24, and the motor 41 are all connected. Therefore, in this state, the pump 24 is operated using the engine 11 as a drive source, and the motor 41 can be rotated to generate electric power.
  • the clutch 22 is disconnected, the engine 11 and the drive shaft 12 are disconnected from the first auxiliary output shaft 22, and only the motor 41 is connected to the first auxiliary output shaft 23 and the pump 24. It will be in the state. Therefore, in this state, only the motor 41 can drive the pump 24.
  • the electric circuit of the motor 41 is provided with two switching circuits SW1 and SW2.
  • the electric circuit of the motor 41 is connected to the inverter 43 so that the motor 41 is The inverter 43 can be driven.
  • the other switching circuit SW ⁇ b> 2 is turned on, the electric circuit of the motor 41 is connected to the first charge controller 61, and the electricity generated when the motor 41 generates power is transmitted to the in-vehicle device via the first charge controller 61.
  • the battery 44 can be stored. Either one of these switching circuits SW1 and SW2 is turned on, or both are turned off, and any one of three connection patterns in which the electric circuit of the motor 41 is not connected to any of them. In this way, the circuit is switched.
  • Such circuit switching is configured such that the motor circuit switching unit 37 controls the switching circuits SW1 and SW2 based on a command from the basic command unit 31.
  • the switching circuit SW3 to SW6 is provided in the electric circuit of the in-vehicle device battery 44. By turning on any of these switching circuits SW3 to SW6, the in-vehicle device battery 44 can be electrically connected. Can be switched between the case where the vehicle is supplied and the case where the vehicle-mounted device battery 44 is charged by various means.
  • the switching circuit SW3 by turning on the switching circuit SW3, power can be supplied from the in-vehicle device battery 44 to the inverter 43.
  • the energy supply source for driving the motor 41 is the in-vehicle device battery 44.
  • the switching circuit SW4 When the switching circuit SW4 is turned on, the electric circuit of the in-vehicle device battery 44 is connected to the first charge controller 61 described above. When power is generated by the motor 41, the vehicle-mounted device battery 44 is charged via the first charge controller 61 by turning on the switching circuit SW2 and turning on the switching circuit SW4.
  • the first charge controller 61 has an AC to DC conversion function and a voltage conversion function inside. The first charge controller 61 controls the voltage and current values in a state suitable for charging as appropriate. It can be charged.
  • the second charge controller 62 When the switching circuit SW5 is turned on, the electric circuit of the in-vehicle device battery 44 is connected to the second charge controller 62.
  • the second charge controller 62 is normally supplied with electricity from the generator 16 that charges the vehicle battery 17 and charges the in-vehicle device battery 44. In a state where the pump 24 is not started, And it is used in the state which has started the engine 11. FIG. In other words, this corresponds to an idling state of the engine 11 and a traveling state of the vehicle 1.
  • the second charge controller 62 since the vehicle battery 17 and the vehicle-mounted device battery 44 use different voltages, the second charge controller 62 also has a built-in function as a step-up converter, and the voltage is appropriately adjusted to a state suitable for charging.
  • the vehicle-mounted device battery 44 can be charged while controlling the current value.
  • the third charge controller 63 is for charging the vehicle-mounted device battery 44 by electricity supplied from the commercial power source 91, and is connected to the commercial power source 91 in a state where neither the motor 41 nor the engine 11 is activated. Used when done.
  • the third charge controller 63 has an AC to DC conversion function and a voltage conversion function inside, and appropriately controls the voltage and current values in a state suitable for charging to the in-vehicle device battery 44. Can be charged.
  • any of the switching circuits SW3 to SW6 when any of the switching circuits SW3 to SW6 is turned on, electricity for driving the motor 41 is supplied from the in-vehicle device battery 44, and the in-vehicle device battery 44 is charged. Can be switched between the three charging means for performing the switching, and can be in an unconnected state that is not connected to any of them, and the circuit is switched so that any one of these five connection patterns is selected. Is called.
  • Such circuit switching is configured such that the battery circuit switching unit 38 controls the switching circuits SW3 to SW6 based on the command from the basic command unit 31.
  • a battery remaining amount detection unit 54 is connected to the in-vehicle device battery 44, and the battery remaining amount detection unit 54 constantly detects the remaining amount of the battery of the in-vehicle device battery 44 and outputs the detected value to the basic command. It outputs to the part 31.
  • the notification means 33 turns on a notification lamp, generates a notification sound, etc. To notify the fully charged state and prompt the operator to determine the next operation.
  • the basic command unit 31 is configured to give a command to the battery circuit switching unit 38 to make the electric circuit of the in-vehicle device battery 44 unconnected.
  • the notification means 33 turns on the battery low warning lamp, An alarm is given to warn of the battery running out, and the operator is prompted to determine the next operation.
  • the motor 41 is driven by the in-vehicle device battery 44 to cause the in-vehicle device 2 to perform the work, and when it is necessary to continue the work, the operator uses the notification means 33 to By grasping the disconnection, usually, an instruction is given through the operation receiving unit 32 to switch the drive source of the in-vehicle device 2 from the motor 41 to the engine 11. If the command is not issued by the operator, the motor 24 is stopped after the rotational speed of the motor 24 is gradually reduced after a predetermined time has elapsed.
  • a driving force can be applied to the in-vehicle apparatus 2 as follows.
  • the operator selects an operation to be performed by the in-vehicle device 2 using the notification as a determination material, and the basic command unit 31 through the operation reception unit 32 is selected. Give instructions.
  • the operator When operating the vehicle-mounted device 2, the operator first turns on the operation power by the operation reception unit 32, and then selects and starts either the engine 11 or the motor 41 as a drive source of the vehicle-mounted device 2.
  • the basic command unit 31 appropriately gives instructions to the clutch control unit 35, the motor circuit switching unit 37, and the battery circuit switching unit 38 to form appropriate circuits, and then the engine control unit 34 or motor control
  • the pump 24 is driven by giving a command to the unit 36 to drive the engine 11 or the motor 41.
  • the engine control unit 34 or the motor control unit 36 monitors the engine rotation speed or the motor rotation speed in order to operate the pump 24 in accordance with an instruction from the operation receiving unit 32.
  • the rotational speed of the engine 11 or the motor 41 is controlled.
  • the operator selects the motor 41 as a drive source and drives the vehicle-mounted device 2 with electric energy so as to reduce the environmental load.
  • the in-vehicle device battery 44 is always fully charged before work, and it is convenient to increase the number of charging opportunities by having a large number of charging means as in this embodiment. Even if it is used frequently, the risk of running out of the battery is reduced.
  • the notification means 33 issues a warning to the operator as described above.
  • the number of rotations of the motor 41 gradually decreases after a certain period of time and then stops.
  • a stop signal is input by the operation reception unit 32, and when the operation needs to be continued, the operation reception unit 32 uses the motor 41 as a drive source.
  • a signal for switching to the engine 11 is input.
  • the basic command unit 31 controls each unit so as to sequentially execute each step in accordance with the flowchart shown in FIG. 2, and the motor 41 (see FIG. 1) to the engine 11 (see FIG. 1). 1), the drive source can be changed smoothly.
  • the procedure will be described based on FIG. 2 with reference to FIG.
  • the basic command unit 31 first gives a command to the engine control unit 34 to start the engine 11 after receiving the switching signal (ST001), and further corresponds to the rotational speed of the motor 41 at that time.
  • a command is issued so as to increase the engine 41 at the target rotation speed as the target rotation speed (ST002).
  • the engine control unit 34 is instructed to maintain the rotational speed (ST004).
  • the motor control unit 36 is instructed to switch to the torque control while maintaining the output torque at that time (ST005), and the clutch is connected to the clutch control unit 35.
  • the motor 41 which is torque control, tries to increase speed because the load is reduced, but the engine 11, which is speed control, acts in the deceleration direction in order to maintain a constant rotational speed. The balance is maintained at, and a constant rotational speed can be obtained immediately. It is also preferable to provide a limiter circuit to limit the control range in case the current value of the motor 41 changes excessively when the clutch is connected.
  • the basic The command unit 31 instructs the motor circuit switching unit 37 to switch the connection destination of the electric circuit of the motor 41 to the first charge controller (SW2 ON) (ST008), and sets the connection destination of the electric circuit of the on-vehicle device battery 44 to the first.
  • the battery circuit switching unit 38 is instructed to switch to one charge controller (SW4 is on) (ST009), so that the in-vehicle device battery 44 can be charged with electricity generated by the motor 41.
  • the different speeds of the pump 24 can be controlled without stopping the in-vehicle device 2 by driving different driving sources using different control methods and performing integrated control so as to be linked by one basic command unit 31.
  • the drive source can be switched smoothly while suppressing fluctuations, and the vehicle-mounted device battery 44 is quickly charged to shorten the time until the remaining battery level is recovered. Yes.
  • the drive source can be switched to the motor 41 while the pump 24 is driven by the engine 11.
  • the basic command unit 31 integrates and controls the respective units so as to sequentially execute the respective steps according to the flowchart shown in FIG. 3, and the engine 11 (see FIG. 1) to the motor 41 (see FIG. 1). Smoothly change the drive source.
  • the procedure will be described based on FIG. 3 with reference to FIG.
  • the basic command unit 31 When the switching command is input, the basic command unit 31 has a sufficient remaining amount to drive the motor 41 because the remaining amount of the battery is equal to or greater than a certain value from the detection signal from the remaining battery level detection unit 54. If the remaining amount is insufficient, the drive source switching command is rejected and a notification to that effect is given (ST110). If it can be determined that the remaining amount is sufficient, the drive source is switched in the following steps.
  • the engine control unit 34 is commanded to maintain the rotational speed of the engine 11 by speed control (ST102). Further, the battery circuit switching unit 38 is instructed to switch the connection destination of the electric circuit of the in-vehicle device battery 44 to the inverter 43 (SW3 ON) (ST103), and the connection destination of the electric circuit of the motor 41 is switched to the inverter 43 ( The motor circuit switching unit 37 is commanded to switch on SW1 (ST104). Then, the motor control unit 36 is instructed to gradually increase the rotational torque until the motor 41 being rotated by the engine 11 reaches a target value as torque control (ST105). The target value of the rotational torque is determined in advance based on the drive rated torque of the pump 24. By controlling as described above, the output of the motor 41 increases.
  • the rotational speed of the pump 24 hardly changes. Then, after detecting that the rotational torque of the motor 41 has reached the target value via the motor control unit 36 (ST106), a command to release the clutch is issued to the clutch control unit 35 (ST107).
  • the motor control unit 36 is commanded to perform normal operation using the control method as the speed control method (ST108), and the engine control unit 34 is commanded to stop the engine 11 (ST109).
  • the in-vehicle device power system 3 includes three charging means so that the in-vehicle device battery 44 with a low remaining battery capacity can be quickly charged.
  • the connection destination of the electric circuit can be changed.
  • the basic command unit 2 sequentially executes the determinations shown in the respective steps according to the flowchart shown in FIG. 3, selects an appropriate electric circuit, and responds to the selection by the battery circuit switching unit 38 (see FIG. 1). ) Is given a command.
  • the determination procedure will be described based on FIG. 3 with reference to FIG.
  • the in-vehicle device battery 44 is connected to the third charge controller 63 (SW6).
  • the vehicle-mounted device battery 44 is charged with electricity obtained from the commercial power source (ST210).
  • all connections to the electric circuit of the in-vehicle device battery 44 are cut off (SW 3 to 6 off), and the battery circuit switching unit 38 is instructed to be in an unconnected state (ST205).
  • the basic command unit 31 can appropriately manage power supply and charge to the in-vehicle device battery 44 while monitoring the status of each unit, so that the operation can be performed simply and efficiently. Is possible.
  • the in-vehicle apparatus power system 3 includes the first auxiliary output shaft 23 that distributes power from the drive shaft 12 that transmits the power of the engine 11, the drive shaft 12, and the first auxiliary output.
  • the in-vehicle apparatus 2 includes a clutch 22 that connects or disconnects the shaft 23, a pump 24 that is driven by the first auxiliary output shaft 23, and a pressure device 25 that is operated by a pressure medium sent out by the pump 24.
  • a clutch control unit 35 that controls the operation of the clutch 22, a motor 41 that is connected to the first auxiliary output shaft 23 and rotates synchronously, and an engine rotation that detects the rotation speed of the engine 11.
  • Engine control for rotating the engine 11 while monitoring a detection value from the speed detection unit 51 and the engine rotation speed detection unit 51 34, a motor rotation speed detection unit 52 for detecting the rotation speed of the motor 41, a motor torque detection unit 53 for detecting the torque of the motor 41, and at least of the motor rotation speed detection unit 52 and the motor torque detection unit 53.
  • a motor control unit 37 that rotates the motor 41 while monitoring a detection value from either one, and the clutch 22 while rotating the engine 11 and the motor 41 in order to switch the drive source of the pump 24.
  • the clutch control unit 35, the engine control unit 34, and the motor control unit 36 are each provided with a basic command unit 31 that issues commands to perform connection or disconnection.
  • the basic command unit 31 causes the motor control unit 36 to rotate the motor 41 at the same rotational speed by a speed control method. And a command from the basic command unit 31 to the engine control unit 34 to increase the speed of the engine 11 to a target rotation speed corresponding to the rotation speed of the motor 41 by a speed control method. A step in which the basic command unit 31 detects that the rotational speed of the engine 11 has reached the target rotational speed, and the basic command unit 31 torques the motor control unit 36 to control the motor 41.
  • the command unit 31 commands the clutch control unit 35 to connect the clutch 22, and the basic command unit 31 gradually reduces the rotational torque of the motor 41 to the motor control unit 36. Therefore, when the drive source is switched from the motor 41 to the engine 11 while the on-vehicle device 2 is operated, the speed variation of the pump 24 can be suppressed. It is possible to reduce fluctuations in the operating speed of the in-vehicle device 2.
  • the basic command unit 31 causes the engine control unit 34 to rotate the engine 11 at the same rotational speed by a speed control method. Instructing the motor control unit 36 to rotate the motor 41 by a torque control method to increase the rotational torque until the target rotational torque is reached.
  • the basic command unit 31 detects that the rotational torque of the motor 41 has reached the target rotational torque, and the basic command unit 31 controls the motor 41 with respect to the motor control unit 36 as a speed control method.
  • the drive source is set to the engine while the in-vehicle device 2 is operated.
  • the speed fluctuation of the pump 24 can be suppressed, and the fluctuation of the operating speed of the in-vehicle device 2 can be reduced.
  • an inverter 43 that rotates the motor 41 based on a command from the motor control unit 36 and an in-vehicle device battery 44 that supplies electricity for driving the motor 41 via the inverter 43 are provided.
  • the motor 41 is driven by the driving force of the engine 11 through the first auxiliary output shaft 23 to generate electricity, and the electricity is converted and stored in the in-vehicle device battery 44.
  • the second charge controller 62 and the electric power input from the commercial power source 91 are converted into the in-vehicle device battery 44.
  • a third charge controller 63, and the electric circuit of the in-vehicle device battery 44 is the inverter 43, the first charge controller 61, the second charge controller 62, and the third charge controller 63.
  • the battery circuit switching unit 38 is configured to be switched to a state of being connected to any one of them, or to a state of not being connected to any of them.
  • the connection destination of the circuit can be switched as appropriate, and when the motor 41 is driven, various charging means can be appropriately selected for charging.
  • a motor circuit switching unit 37 is provided for switching the electric circuit of the motor 41 to a state where it is connected to either the inverter 43 or the first charge controller 61, or to a state where neither is connected. Therefore, the connection destination of the electric circuit of the motor 41 can be appropriately switched by the motor circuit switching unit 37 according to the state.
  • the battery remaining amount detection unit 54 for detecting the remaining amount of battery of the in-vehicle device battery 44 is provided, and when the fully charged state of the in-vehicle device battery 44 is detected by the battery remaining amount detection unit 54, or Since the notification means 33 is provided to notify when it is detected that the remaining battery level is equal to or less than the predetermined value, the remaining battery level of the in-vehicle device battery 44 is detected and notified according to the state. Therefore, it is possible to prompt the operator to select an appropriate operation.
  • each unit is not limited to the above-described embodiment.
  • a hydraulic pump is used as the pump 24, and oil is used as a pressure medium sent from the pump 24 to the pressure device 25.
  • Another type of pump or pressure medium may be used, and even in such a case, the effects of the present invention can be obtained in the same manner as described above.
  • the switching of the drive source of the in-vehicle device 2 is configured to be performed by sequentially executing each step triggered by an instruction given by the operator from the operation receiving unit 32.
  • the drive source can be automatically switched without the operator's operation. Even if configured in this way, the effects of the present invention can be obtained in the same manner as described above.
  • the drive shaft 12 that rotates the drive wheels is used as the output shaft that extracts the power from the engine 11, but the power of the engine 11 is compared with the first auxiliary output shaft 23 that drives the pump 24.
  • the output shaft is not limited to the drive shaft 12 as long as the rotary shaft is capable of distributing the power.
  • the shaft and the transmission mechanism 21 are connected to each other.
  • the second auxiliary output shaft 14 provided for driving the generator 16 may be configured to be used also as the output shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Provided is a power system for on-board devices, with which it is possible to change power sources smoothly while on-board devices are being operated, the power system for on-board devices (3) being applied to on-board devices (2) equipped with a first auxiliary output shaft (23) that obtains the power of the engine (11) from a drive shaft (12), a clutch (22) that connects and disconnects the drive shaft (12) and the first auxiliary output shaft (23), a pump (24) that is driven by the first auxiliary output shaft (23), and a hydraulic device (25) operated thereby. The power system (3) is provided with a clutch control unit (35), a motor (41) coupled to the first auxiliary output shaft (23), an engine speed detection unit (51), an engine control unit (34) that performs control on the basis of that detected value, a motor speed detection unit (52), a motor torque detection unit (53), a motor control unit (37) that performs control on the basis of the values detected by the detection units, a clutch control unit (35), and a basic instruction unit (31) that issues instructions to the engine control unit (34) and the motor control unit (36).

Description

車載装置用動力システムPower system for in-vehicle devices
 本発明は、塵芥収集車や高所作業車等の作業用車両に搭載される車載装置を作動させるための車載装置用動力システムに関するものである。 The present invention relates to a power system for an in-vehicle device for operating an in-vehicle device mounted on a work vehicle such as a garbage truck or an aerial work vehicle.
 従来より、作業用車両として塵芥収集車、高所作業車、タンクローリ車などの様々なタイプのものが知られている。こうした作業用車両は、車両に対して目的に応じた形式の車載装置が搭載されることによって構成されるものであるが、これらの車載装置は大出力を要するものが大半であるために、油圧ポンプを駆動源とする油圧機器をアクチュエータとして用いることによって構成されているものが多い。当該油圧ポンプを駆動する動力を得るために、従来は車両を駆動するためのエンジンによる駆動力を補助出力軸を介して分配していたが、燃料消費の抑制、二酸化炭素の排出量削減および騒音対策等の環境問題を考慮して電動モータを利用することが提案されている。 Conventionally, various types of vehicles such as garbage trucks, aerial work platforms, and tank trucks are known as working vehicles. Such work vehicles are configured by mounting an in-vehicle device of a type according to the purpose on the vehicle. However, most of these in-vehicle devices require a large output. In many cases, a hydraulic device using a pump as a drive source is used as an actuator. In order to obtain power to drive the hydraulic pump, conventionally, the driving force by the engine for driving the vehicle has been distributed through the auxiliary output shaft. However, the fuel consumption is reduced, the carbon dioxide emission is reduced, and the noise is reduced. It has been proposed to use an electric motor in consideration of environmental problems such as countermeasures.
 上記電動モータを利用して車載装置を駆動する構成としては、例えば、下記特許文献1に記載されるものが知られている。このものは、車載装置を駆動するためにエンジンと電動モータの何れか、若しくは、両者を併用して一個の油圧ポンプを動作させることができるように構成されている。このように構成しておくことで、通常は電動モータによって油圧ポンプを駆動させ、バッテリの残量が不足した際にはエンジンの駆動力を利用することで長時間連続運転させることも可能になる。 As a configuration for driving an in-vehicle device using the electric motor, for example, one described in Patent Document 1 below is known. This is configured so that one hydraulic pump can be operated by using either the engine or the electric motor or a combination of both in order to drive the in-vehicle device. With this configuration, the hydraulic pump is normally driven by an electric motor, and when the remaining amount of the battery is insufficient, it is possible to operate continuously for a long time by using the driving force of the engine. .
特開2005-329871号公報JP 2005-329871 A
 上述の特許文献1を始め、従来開示されているエンジンと電動モータとを駆動源として利用する車載装置用の動力システムにおいては、駆動源をエンジンと電動モータとの間で円滑に切替えるといった観点での技術については開示されていない。そのため、これまでに開示されている車載装置用の動力システムを用いる場合には、駆動源の切替に際しては一旦油圧ポンプの動作を停止させた上で、油圧ポンプとの接続を変更してから再度油圧ポンプを始動させることを前提にしているものといえる。 In the power system for in-vehicle devices that uses the engine and the electric motor disclosed in the prior art as the driving source, including the above-mentioned Patent Document 1, the driving source is smoothly switched between the engine and the electric motor. This technique is not disclosed. Therefore, when using the power system for in-vehicle devices disclosed so far, when switching the drive source, once stop the operation of the hydraulic pump, change the connection with the hydraulic pump, and then again It can be said that it is assumed that the hydraulic pump is started.
 しかしながら、上記作業用車両の中でも消防活動に用いる車両等、車載装置の運転停止による作業の中断をできる限り避ける必要のあるものがあり、油圧ポンプの動作を継続したままで駆動源を変更することが要求されている。こうした要求に応えるため、上記特許文献1に記載された構成を用いて油圧ポンプの動作を継続したままで駆動源を変更させようとした場合には、上述のように駆動源の切替に関する配慮が何らなされていないため、駆動源の切替に際して衝撃が生じることによって、車載装置の動作速度が大きく変動したり、機器に損傷が生じたりすることが考えられる。 However, some of the above working vehicles, such as vehicles used for fire fighting activities, need to avoid interruption of work due to the suspension of operation of on-vehicle devices as much as possible. Change the drive source while continuing the operation of the hydraulic pump. Is required. In order to meet such a demand, when the drive source is changed using the configuration described in Patent Document 1 while the operation of the hydraulic pump is continued, there is a consideration regarding switching of the drive source as described above. Since nothing has been done, it is conceivable that when the drive source is switched, an impact is generated, so that the operating speed of the in-vehicle device largely fluctuates or the device is damaged.
 本発明は、このような課題を有効に解決することを目的としており、具体的には、車載装置の駆動源の切替を、動作を継続させた状態で行えるようにすると同時に、その切替を
円滑に行うことができる車載装置用動力システムを提供することを目的としている。
An object of the present invention is to effectively solve such a problem. Specifically, the drive source of the in-vehicle device can be switched while the operation is continued, and at the same time, the switching is smoothly performed. It aims at providing the power system for vehicle equipment which can be performed to.
 本発明は、かかる目的を達成するために、次のような手段を講じたものである。 In the present invention, in order to achieve such an object, the following measures are taken.
 すなわち、本発明の車載装置用動力システムは、エンジンの動力を伝達する出力軸から動力を分配する第1補助出力軸と、前記出力軸および前記第1補助出力軸の接続または接続解除を行うクラッチと、前記第1補助出力軸により駆動されるポンプと、当該ポンプによって送り出される圧力媒体によって作動する圧力機器とを具備する車載装置に適用されるものであって、前記クラッチの動作を制御するクラッチ制御部と、前記第1補助出力軸に連結され同期回転するモータと、前記エンジンの回転速度を検出するエンジン回転速度検出部と、当該エンジン回転速度検出部からの検出値を監視しつつ前記エンジンを回転させるエンジン制御部と、前記モータの回転速度を検出するモータ回転速度検出部と、前記モータのトルクを検出するモータトルク検出部と、それらモータ回転速度検出部およびモータトルク検出部の少なくともいずれか一方からの検出値を監視しつつ前記モータを回転させるモータ制御部と、前記ポンプの駆動源を切替えるために前記エンジンと前記モータの回転を連動させつつ前記クラッチの接続または接続解除を行うように前記クラッチ制御部、前記エンジン制御部および前記モータ制御部のそれぞれに指令を出す基本指令部とを備えたことを特徴とする。 That is, a power system for an in-vehicle device according to the present invention includes a first auxiliary output shaft that distributes power from an output shaft that transmits engine power, and a clutch that connects or disconnects the output shaft and the first auxiliary output shaft. And a pump that is driven by the first auxiliary output shaft, and a pressure device that is operated by a pressure medium that is sent out by the pump, and is a clutch that controls the operation of the clutch. A control unit; a motor coupled to the first auxiliary output shaft; and a motor that rotates synchronously; an engine rotation speed detection unit that detects a rotation speed of the engine; and a value detected from the engine rotation speed detection unit while monitoring the engine An engine control unit that rotates the motor, a motor rotation speed detection unit that detects the rotation speed of the motor, and a motor that detects the torque of the motor. A torque control unit, a motor control unit that rotates the motor while monitoring a detection value from at least one of the motor rotation speed detection unit and the motor torque detection unit, and the engine for switching the drive source of the pump And a basic command unit that issues a command to each of the clutch control unit, the engine control unit, and the motor control unit so as to connect or disconnect the clutch while interlocking the rotation of the motor. And
 このように構成すると、モータ制御部と、エンジン制御部によって各々モータとエンジンの基本的な動作を制御させつつ、基本指令部によってこれらを統合して監視しつつ連動させて制御するとともに、クラッチの制御を行わせることで、車載装置を動作させたまま駆動源の切替を行うことができるとともに、その切替を円滑に行うことが可能になる。 If comprised in this way, while controlling basic operation of a motor and an engine by a motor control part and an engine control part, respectively, these are integrated and supervised and controlled by a basic command part, By performing the control, the drive source can be switched while the in-vehicle device is operated, and the switching can be performed smoothly.
 さらに、車載装置を動作させたまま、駆動源をモータからエンジンに切替える際の衝撃を抑え、車載装置の動作速度の変動を抑制するためには、前記ポンプの駆動源を前記モータから前記エンジンに切替える際に、前記基本指令部より前記モータ制御部に対して前記モータを速度制御方式によって同一の回転速度で回転させるよう命令するステップと、前記基本指令部より前記エンジン制御部に対して前記エンジンを速度制御方式によって前記モータの回転速度に相当する目標回転速度となるまで昇速させるように命令するステップと、前記基本指令部が前記エンジンの回転速度の前記目標回転速度への到達を検知するステップと、前記基本指令部が前記モータ制御部に対して前記モータの制御をトルク制御方式に変更して前記モータを同一の回転トルクで回転させるように命令するステップと前記基本指令部が前記クラッチ制御部に対して前記クラッチを接続させるように命令するステップと、前記基本指令部が前記モータ制御部に対して前記モータの回転トルクを漸減させていくように命令するステップとを順次実行するように構成されていることが好適である。 Furthermore, in order to suppress the impact when switching the drive source from the motor to the engine while operating the in-vehicle device, and to suppress fluctuations in the operating speed of the in-vehicle device, the pump drive source is changed from the motor to the engine. When switching, the step of commanding the motor control unit from the basic command unit to rotate the motor at the same rotational speed by a speed control method, and the engine control unit from the basic command unit to the engine control unit Command to increase the speed until the target rotational speed corresponding to the rotational speed of the motor is reached by the speed control method, and the basic command section detects the arrival of the rotational speed of the engine to the target rotational speed. And the basic command unit changes the control of the motor to a torque control method with respect to the motor control unit and Instructing the clutch control unit to connect the clutch, and the basic command unit instructing the motor control unit to rotate the motor. It is preferable that the step of instructing to gradually reduce the rotational torque is sequentially executed.
 また、車載装置を動作させたまま、駆動源をエンジンからモータに切替える際の衝撃を抑え、車載装置の動作速度の変動を抑制するためには、前記ポンプの駆動源を前記エンジンから前記モータに切替える際に、前記基本指令部により前記エンジン制御部に対して前記エンジンを速度制御方式によって同一の回転速度で回転させるように命令するステップと、前記基本指令部により前記モータ制御部に対して前記モータをトルク制御方式によって回転させて目標回転トルクとなるまで回転トルクを増大させるように命令するステップと、前記基本指令部が前記モータの回転トルクの前記目標回転トルクへの到達を検知するステップと、前記基本指令部が前記モータ制御部に対して前記モータの制御を速度制御方式に変更して前記モータを同一の回転速度で回転させるように命令するステップと、前記基本指令部が前記クラッチ制御部に対して前記クラッチの接続を解除させるように命令するステップとを順次実行するように構成されていることが好適である。 In order to suppress the impact of switching the drive source from the engine to the motor while operating the in-vehicle device, and to suppress fluctuations in the operating speed of the in-vehicle device, the pump drive source is changed from the engine to the motor. When switching, the basic command unit instructs the engine control unit to rotate the engine at the same rotational speed by a speed control method, and the basic command unit instructs the motor control unit to Instructing the motor to rotate by a torque control method to increase the rotational torque until reaching the target rotational torque; and detecting the arrival of the rotational torque of the motor to the target rotational torque by the basic command unit; The basic command unit changes the control of the motor to the speed control method with respect to the motor control unit and And a step in which the basic command unit instructs the clutch control unit to disengage the clutch in order. Is preferred.
 また、上記モータが電動モータであることを前提とした場合に、状況に応じて車載装置用バッテリの電気回路の接続先を適宜切替え、電源供給させる場合と、充電させる場合とを適切に変更できるようにするためには、前記モータ制御部からの指令に基づき前記モータを回転させるインバータと、当該インバータを介して前記モータを駆動するための電気を供給する車載装置用バッテリとを具備するとともに、前記モータが前記第1補助出力軸を介して前記エンジンの駆動力によって駆動されることで電気を発生し、その電気を変換して前記車載装置用バッテリに蓄えるための第1充電コントローラと、車両用バッテリを充電するために前記エンジンによって第2補助出力軸を介して駆動される発電機により発生する電気を変換して前記車載装置用バッテリに蓄えるための第2充電コントローラと、商用電源より入力された電気を変換して前記車載装置用バッテリに蓄えるための第3充電コントローラとを備え、前記車載装置用バッテリの電気回路を、前記インバータと、前記第1充電コントローラと、前記第2充電コントローラと、前記第3充電コントローラのうちいずれかと接続した状態に、あるいは、いずれとも未接続の状態に切替えるためのバッテリ回路切替部を備えるように構成することが好適である。 Moreover, when it is assumed that the motor is an electric motor, the connection destination of the electric circuit of the in-vehicle device battery can be appropriately switched depending on the situation to appropriately change the case of supplying power and the case of charging. In order to do so, it comprises an inverter that rotates the motor based on a command from the motor control unit, and an in-vehicle device battery that supplies electricity for driving the motor via the inverter, A first charge controller for generating electricity when the motor is driven by the driving force of the engine via the first auxiliary output shaft, converting the electricity and storing it in the on-vehicle device battery; Converting the electricity generated by the generator driven by the engine via the second auxiliary output shaft to charge the battery for the vehicle A second charge controller for storing in the device battery; and a third charge controller for converting electricity stored in the in-vehicle device battery and storing it in the in-vehicle device battery. A battery circuit switching unit for switching to a state connected to any one of the inverter, the first charge controller, the second charge controller, and the third charge controller, or to an unconnected state. It is suitable to comprise.
 また、状況に応じてモータの電気回路の接続先を適切に切替えることができるようにするためには、前記モータの電気回路を、前記インバータおよび前記第1の充電コントローラのいずれかと接続した状態に、あるいはいずれとも未接続の状態に切替えるためのモータ回路切替部を備えるように構成することが好適である。 Further, in order to be able to appropriately switch the connection destination of the electric circuit of the motor according to the situation, the electric circuit of the motor is connected to either the inverter or the first charge controller. Alternatively, it is preferable that a motor circuit switching unit for switching to an unconnected state is provided.
 さらに、バッテリの電池残量をオペレータに通知して適切な動作選択を促すようにするためには、前記車載装置用バッテリの電池残量を検知するバッテリ残量検出部を備えるとともに、当該バッテリ残量検出部によって前記車載装置用バッテリの満充電状態を検出した場合、あるいは、電池残量が所定値以下であることを検知した場合に報知する報知手段を備えるように構成することが好適である。 Further, in order to notify the operator of the remaining battery level of the battery and prompt an appropriate operation selection, the battery remaining amount detection unit for detecting the remaining battery level of the on-vehicle device battery is provided. It is preferable to provide a notification means for notifying when the amount detection unit detects the fully charged state of the on-vehicle device battery, or when detecting that the remaining battery level is equal to or less than a predetermined value. .
 以上説明した本発明によれば、車載装置の動作を継続させたまま駆動源の切替を行うことができるとともに、その切替を円滑に行うことができる車載装置用動力システムを提供することが可能となる。 According to the present invention described above, it is possible to provide a power system for an in-vehicle device that can switch the drive source while continuing the operation of the in-vehicle device and can smoothly perform the switching. Become.
本発明の一実施形態に係る車載装置用動力システムの構成を示す模式図。The schematic diagram which shows the structure of the power system for vehicle equipment which concerns on one Embodiment of this invention. 同車載装置用動力システムにおけるモータからエンジンへの駆動源切替時の処理手順を示すフローチャート。The flowchart which shows the process sequence at the time of the drive source switching from the motor to an engine in the power system for in-vehicle apparatuses. 同車載装置用動力システムにおけるエンジンからモータへの駆動源切替時の処理手順を示すフローチャート。The flowchart which shows the process sequence at the time of the drive source switching from the engine to a motor in the same motive power system for vehicle equipment. 同車載装置用動力システムにおける車載装置用バッテリ電気回路の接続先決定の処理手順を示すフローチャート。The flowchart which shows the process sequence of the connection destination determination of the battery electric circuit for vehicle-mounted apparatuses in the same motive power system for vehicle-mounted apparatuses.
 以下、本発明の実施形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 この実施形態の車載装置用動力システムは、図1に模式的に示したような構成を採り、車両1に搭載された車載装置2に対してエンジン11とモータ41という2つの手段によって動力を与えられるように構成されている。 The power system for in-vehicle devices of this embodiment adopts a configuration as schematically shown in FIG. 1 and supplies power to the in-vehicle device 2 mounted on the vehicle 1 by two means of an engine 11 and a motor 41. It is configured to be.
 同図における車両1は、本発明に関連する部分のみを抽出する形で簡略化して記載しており、一般の車両と同様に、エンジン11と当該エンジン11によって駆動され外部に動力を取り出すための出力軸としての駆動軸12と、当該駆動軸12によって駆動される駆動輪13とを有している。さらにはエンジン11からの動力を分配する第2補助出力軸14を有するとともに、当該第2補助出力軸14によってベルト15を介して駆動される発電機16と、当該発電機16によって生じた電気を蓄える車両用バッテリ17とを備えている。この車両用バッテリ17は、図示しないスタータや方向指示器やワイパー等の車両を走行させるために必要な機器を動作させるために設けられているものであり、一般的な車両が有するものとほぼ同一である。 The vehicle 1 in the figure is described in a simplified manner by extracting only the portions related to the present invention. Like a general vehicle, the vehicle 1 is driven by the engine 11 and the engine 11 for extracting power to the outside. It has a drive shaft 12 as an output shaft and drive wheels 13 driven by the drive shaft 12. Furthermore, it has a second auxiliary output shaft 14 that distributes power from the engine 11, a generator 16 driven by the second auxiliary output shaft 14 via a belt 15, and electricity generated by the generator 16 The vehicle battery 17 to be stored is provided. The vehicle battery 17 is provided to operate devices necessary for driving a vehicle such as a starter, a direction indicator, and a wiper (not shown), and is substantially the same as that of a general vehicle. It is.
 こうした車両1に対して車載装置2が搭載されており、当該車載装置2はエンジン11の駆動力によって駆動される第1補助出力軸23と、当該第1補助出力軸23によって駆動されるポンプ24と、当該ポンプ24によって圧力媒体を送り込まれて動作する圧力機器25とを備えるように構成されている。本実施形態においては、ポンプ24は油圧ポンプを用いており圧力媒体として油を用いている。また、上記第1補助出力軸23への動力の伝達のため、エンジン11の駆動軸12に対して伝動機構21が設けられているとともに、当該伝動機構21と上記第1補助出力軸23の間にはクラッチ22が設けられており、クラッチ22によって上記伝動機構21を介して駆動軸12と第1補助出力軸23との接続および接続の解除を適宜選択して行うことができるようになっている。 A vehicle-mounted device 2 is mounted on such a vehicle 1, and the vehicle-mounted device 2 is driven by the driving force of the engine 11 and a pump 24 driven by the first auxiliary output shaft 23. And a pressure device 25 that is operated by being fed with a pressure medium by the pump 24. In the present embodiment, the pump 24 uses a hydraulic pump and uses oil as a pressure medium. In addition, a transmission mechanism 21 is provided for the drive shaft 12 of the engine 11 to transmit power to the first auxiliary output shaft 23, and between the transmission mechanism 21 and the first auxiliary output shaft 23. Is provided with a clutch 22, which allows the drive shaft 12 and the first auxiliary output shaft 23 to be connected and disconnected as appropriate through the transmission mechanism 21. Yes.
 さらに、第1補助出力軸23にはベルト42と図示しない減速機を介してモータ41が接続されており、第1補助出力軸23をモータ41によって駆動することができるとともに、反対に第1補助出力軸23によってモータ41を回転させて発電を行わせることができるように構成している。 Further, a motor 41 is connected to the first auxiliary output shaft 23 via a belt 42 and a speed reducer (not shown), and the first auxiliary output shaft 23 can be driven by the motor 41, and conversely the first auxiliary output shaft 23. The motor 41 is rotated by the output shaft 23 so that power generation can be performed.
 本実施形態における車載装置用動力システム3は、上記モータ41とこれを動作させるための機器を含み、上記第1補助出力軸23を駆動させて圧力機器25に所望の動作をさせるための圧力媒体を送り込むことができる制御手段を備えるものとして構成されている。 The in-vehicle apparatus power system 3 in this embodiment includes the motor 41 and a device for operating the motor 41, and a pressure medium for driving the first auxiliary output shaft 23 to cause the pressure device 25 to perform a desired operation. It is comprised as what is provided with the control means which can send in.
 具体的には、上記モータ41としては電動IPMモータを使用するとともに、その動力源として車載装置用バッテリ44を備え、当該車載装置用バッテリ44より供給される電力を変換して上記モータ41を回転させるインバータ43を備えている。また、エンジン11の回転を制御するエンジン制御部34と、クラッチ22の動作を制御するクラッチ制御部35と、モータ41の回転を制御するモータ制御部36とを備えるとともに、これらを統合して制御するように各々に対して指令を出す基本指令部31を有している。また、基本指令部31に対しては、操作受付部32を通じてオペレータによる指示が入力されるように構成されており、当該指示に対応した制御指令が基本指令部31より各制御部34、35、36に与えられる。さらに、基本指令部31からは通知ランプの点灯や通知音の発生などを行う報知手段33を通じて、上記車載装置用バッテリ44の充電状態などの様々な状態をオペレータに対して通知できるようになっており、オペレータに対して操作を促したり操作に必要な判断材料を与えたりすることができるようになっている。 Specifically, an electric IPM motor is used as the motor 41, and an in-vehicle device battery 44 is provided as a power source, and the motor 41 is rotated by converting electric power supplied from the in-vehicle device battery 44. An inverter 43 is provided. In addition, an engine control unit 34 that controls the rotation of the engine 11, a clutch control unit 35 that controls the operation of the clutch 22, and a motor control unit 36 that controls the rotation of the motor 41 are provided. The basic command unit 31 is configured to issue a command to each. The basic command unit 31 is configured such that an instruction from the operator is input through the operation receiving unit 32, and a control command corresponding to the instruction is transmitted from the basic command unit 31 to the control units 34, 35, 36. Further, the basic command section 31 can notify the operator of various states such as the charging state of the in-vehicle device battery 44 through the notification means 33 that turns on the notification lamp and generates a notification sound. Thus, the operator can be urged to perform the operation or can be provided with the judgment material necessary for the operation.
 ポンプ24の駆動源としてエンジン11を使用する際には、操作受付部32を介してオペレータより与えられる指令に基づいて、当該指令に対応する命令が基本指令部31よりエンジン制御部34に与えられる。エンジン制御部34では、エンジン回転速度(Ve)検出部51によって検出されるエンジン11の回転速度を監視しつつ、基本指令部31から与えられた指令値通りにエンジン11を動作させるように制御を行う。また、当該制御状態についての情報が、エンジン制御部34より基本指令部31に対して出力されるようになっている。 When the engine 11 is used as a drive source of the pump 24, based on a command given by the operator via the operation receiving unit 32, a command corresponding to the command is given from the basic command unit 31 to the engine control unit 34. . The engine control unit 34 monitors the rotation speed of the engine 11 detected by the engine rotation speed (Ve) detection unit 51 and controls the engine 11 to operate according to the command value given from the basic command unit 31. Do. Information about the control state is output from the engine control unit 34 to the basic command unit 31.
 また、ポンプ24の駆動源としてモータ41を使用する際には、操作受付部32を介してオペレータより与えられる指令に基づいて、当該指令に対応する命令が基本指令部31よりモータ制御部36に与えられる。モータ制御部36はモータ41の制御を行うため、速度制御方式とトルク制御方式の2つの制御方式を有しており、通常は速度制御方式を基本としているものの、後述するようにポンプ24の駆動源をエンジン11とモータ41との間で切替える際など、状況に応じてトルク制御方式を用いるように構成している。モータ41にはモータ回転速度(Vm)検出部52と、モータトルク(Tm)検出部53とが設けられており、これらから得られる検出値の少なくともいずれか一方を監視しつつモータ制御部36では、基本指令部31から与えられた指令値通りにモータ41を動作させるように制御を行う。さらには、当該制御状態についての情報が、モータ制御部36より基本指令部31に対して出力されるようになっている。本実施形態においては、モータ回転速度検出部52としてロータリーエンコーダを用いるとともに、モータトルク検出部53としてはインバータにおける駆動用電流の計測器を用いているが、モータ41の回転速度、トルクを測定できる限りこれらとは別の手段を用いることも可能である。 Further, when the motor 41 is used as a drive source for the pump 24, a command corresponding to the command is sent from the basic command unit 31 to the motor control unit 36 based on a command given from the operator via the operation receiving unit 32. Given. In order to control the motor 41, the motor control unit 36 has two control methods, a speed control method and a torque control method. Normally, the motor control unit 36 is based on the speed control method. For example, when the source is switched between the engine 11 and the motor 41, a torque control method is used depending on the situation. The motor 41 is provided with a motor rotation speed (Vm) detection unit 52 and a motor torque (Tm) detection unit 53. The motor control unit 36 monitors at least one of detection values obtained from these. Then, control is performed so that the motor 41 is operated in accordance with the command value given from the basic command unit 31. Furthermore, information on the control state is output from the motor control unit 36 to the basic command unit 31. In this embodiment, a rotary encoder is used as the motor rotation speed detection unit 52 and a driving current measuring instrument in the inverter is used as the motor torque detection unit 53. However, the rotation speed and torque of the motor 41 can be measured. It is possible to use means other than these as long as they are used.
 上記のように、基本指令部31からの指示を基にしてエンジン11およびモータ41の駆動を制御するのと同様にして、クラッチ制御部35は基本指令部31からの指示を基にしてクラッチ22の動作を制御して、上記駆動軸12および第1補助出力軸22の接続または接続解除を行う。クラッチ22が接続されることによって、エンジン11、駆動軸12、第1補助出力軸22、ポンプ24およびモータ41は全て接続された状態となる。そのため、この状態においてはエンジン11を駆動源としてポンプ24を作動させるとともに、モータ41を回転させて発電させることができるようになる。他方、クラッチ22が接続解除されることによって、エンジン11と駆動軸12とが第1補助出力軸22との間で切り離され、第1補助出力軸23とポンプ24に対してモータ41のみが接続された状態となる。そのため、この状態ではポンプ24の駆動はモータ41のみが行うことができる。 As described above, in the same manner as controlling the driving of the engine 11 and the motor 41 based on an instruction from the basic command unit 31, the clutch control unit 35 performs the clutch 22 based on an instruction from the basic command unit 31. Is controlled to connect or disconnect the drive shaft 12 and the first auxiliary output shaft 22. When the clutch 22 is connected, the engine 11, the drive shaft 12, the first auxiliary output shaft 22, the pump 24, and the motor 41 are all connected. Therefore, in this state, the pump 24 is operated using the engine 11 as a drive source, and the motor 41 can be rotated to generate electric power. On the other hand, when the clutch 22 is disconnected, the engine 11 and the drive shaft 12 are disconnected from the first auxiliary output shaft 22, and only the motor 41 is connected to the first auxiliary output shaft 23 and the pump 24. It will be in the state. Therefore, in this state, only the motor 41 can drive the pump 24.
 上述のモータ41の電気回路には2つのスイッチング回路SW1、SW2が設けられており、一方のスイッチング回路SW1をオンにするとモータ41の電気回路は上記インバータ43に接続されることで、モータ41をインバータ43によって駆動させることができるようになる。他方のスイッチング回路SW2をオンにするとモータ41の電気回路は第1充電コントローラ61に接続され、モータ41によって発電を行わせた場合に発生した電気を、第1充電コントローラ61を介して車載装置用バッテリ44に蓄えることができるようになっている。これらのスイッチング回路SW1、SW2はいずれか一方がオンにされるか、双方ともオフにされてモータ41の電気回路を何れに対しても未接続状態とするかの3つの接続パターンのうち何れかになるようにして回路の切替が行われる。こうした回路の切替は、上記基本指令部31からの指令に基づいてモータ回路切替部37によりスイッチング回路SW1、SW2を制御することによって行われるように構成されている。 The electric circuit of the motor 41 is provided with two switching circuits SW1 and SW2. When one of the switching circuits SW1 is turned on, the electric circuit of the motor 41 is connected to the inverter 43 so that the motor 41 is The inverter 43 can be driven. When the other switching circuit SW <b> 2 is turned on, the electric circuit of the motor 41 is connected to the first charge controller 61, and the electricity generated when the motor 41 generates power is transmitted to the in-vehicle device via the first charge controller 61. The battery 44 can be stored. Either one of these switching circuits SW1 and SW2 is turned on, or both are turned off, and any one of three connection patterns in which the electric circuit of the motor 41 is not connected to any of them. In this way, the circuit is switched. Such circuit switching is configured such that the motor circuit switching unit 37 controls the switching circuits SW1 and SW2 based on a command from the basic command unit 31.
 また、上記車載装置用バッテリ44の電気回路には4つのスイッチング回路SW3~SW6が設けられており、これらのスイッチング回路SW3~SW6のいずれかをオンにすることで、車載装置用バッテリ44により電気の供給を行わせる場合と、車載装置用バッテリ44に対して種々の手段で充電を行わせる場合とを切替えることができるようになっている。 In addition, the switching circuit SW3 to SW6 is provided in the electric circuit of the in-vehicle device battery 44. By turning on any of these switching circuits SW3 to SW6, the in-vehicle device battery 44 can be electrically connected. Can be switched between the case where the vehicle is supplied and the case where the vehicle-mounted device battery 44 is charged by various means.
 具体的には、スイッチング回路SW3をオンにすることで、当該車載装置用バッテリ44からインバータ43への電源供給が行えるようになる。上述したようにモータ41をインバータ43によって駆動させる場合には、モータ41を駆動させるエネルギの供給源はこの車載装置用バッテリ44になる。 Specifically, by turning on the switching circuit SW3, power can be supplied from the in-vehicle device battery 44 to the inverter 43. As described above, when the motor 41 is driven by the inverter 43, the energy supply source for driving the motor 41 is the in-vehicle device battery 44.
 スイッチング回路SW4をオンにすると、車載装置用バッテリ44の電気回路は上述した第1充電コントローラ61に接続される。モータ41によって発電を行わせた場合には、前記スイッチング回路SW2をオンにすると共にスイッチング回路SW4をオンにすることで、第1充電コントローラ61を介して車載装置用バッテリ44に充電が行われる。なお、第1充電コントローラ61は、内部に交流から直流への変換機能と電圧変換機能とを備えており、適宜充電に適した状態に電圧及び電流値を制御しつつ車載装置用バッテリ44への充電を行わせることができるようになっている。 When the switching circuit SW4 is turned on, the electric circuit of the in-vehicle device battery 44 is connected to the first charge controller 61 described above. When power is generated by the motor 41, the vehicle-mounted device battery 44 is charged via the first charge controller 61 by turning on the switching circuit SW2 and turning on the switching circuit SW4. The first charge controller 61 has an AC to DC conversion function and a voltage conversion function inside. The first charge controller 61 controls the voltage and current values in a state suitable for charging as appropriate. It can be charged.
 スイッチング回路SW5をオンにすると、車載装置用バッテリ44の電気回路は第2充電コントローラ62に接続される。第2充電コントローラ62は、通常は車両用バッテリ17の充電を行う発電機16から電気を供給されて、車載装置用バッテリ44に対して充電を行うものであり、ポンプ24を起動しない状態で、かつ、エンジン11を起動させている状態の際に用いられる。すなわち、エンジン11のアイドリング状態や車両1の走行中の状態に該当する。本実施形態では車両用バッテリ17と車載装置用バッテリ44とで電圧が異なるものを使用としているため、第2充電コントローラ62には昇圧コンバータとしての機能も内蔵させ、適宜充電に適した状態に電圧及び電流値を制御しつつ車載装置用バッテリ44への充電を行わせることができるようになっている。 When the switching circuit SW5 is turned on, the electric circuit of the in-vehicle device battery 44 is connected to the second charge controller 62. The second charge controller 62 is normally supplied with electricity from the generator 16 that charges the vehicle battery 17 and charges the in-vehicle device battery 44. In a state where the pump 24 is not started, And it is used in the state which has started the engine 11. FIG. In other words, this corresponds to an idling state of the engine 11 and a traveling state of the vehicle 1. In the present embodiment, since the vehicle battery 17 and the vehicle-mounted device battery 44 use different voltages, the second charge controller 62 also has a built-in function as a step-up converter, and the voltage is appropriately adjusted to a state suitable for charging. In addition, the vehicle-mounted device battery 44 can be charged while controlling the current value.
 スイッチング回路SW6をオンにすると、車載装置用バッテリ44の電気回路は第3充電コントローラ63に接続される。第3充電コントローラ63は、商用電源91より供給された電気によって車載装置用バッテリ44の充電を行うものであり、モータ41もエンジン11も起動していない状態で、かつ商用電源91との接続を行った場合に用いられる。なお、第3充電コントローラ63は、内部に交流から直流への変換機能と電圧変換機能とを有しており、適宜充電に適した状態に電圧及び電流値を制御しつつ車載装置用バッテリ44への充電を行わせることができるようになっている。 When the switching circuit SW6 is turned on, the electric circuit of the in-vehicle device battery 44 is connected to the third charge controller 63. The third charge controller 63 is for charging the vehicle-mounted device battery 44 by electricity supplied from the commercial power source 91, and is connected to the commercial power source 91 in a state where neither the motor 41 nor the engine 11 is activated. Used when done. The third charge controller 63 has an AC to DC conversion function and a voltage conversion function inside, and appropriately controls the voltage and current values in a state suitable for charging to the in-vehicle device battery 44. Can be charged.
 上記のようにして、スイッチング回路SW3~SW6の何れかをオンにすることで、車載装置用バッテリ44によりモータ41を駆動するための電気を供給させる場合と、車載装置用バッテリ44に対して充電を行わせる3つの充電手段とを切替えることができるとともに、何れにも接続しない未接続状態にすることができ、これら合計5つの接続パターンの何れかが選択されるようにして回路の切替が行われる。こうした回路の切替は、上記基本指令部31からの指令に基づいてバッテリ回路切替部38によりスイッチング回路SW3~SW6を制御することによって行われるように構成されている。 As described above, when any of the switching circuits SW3 to SW6 is turned on, electricity for driving the motor 41 is supplied from the in-vehicle device battery 44, and the in-vehicle device battery 44 is charged. Can be switched between the three charging means for performing the switching, and can be in an unconnected state that is not connected to any of them, and the circuit is switched so that any one of these five connection patterns is selected. Is called. Such circuit switching is configured such that the battery circuit switching unit 38 controls the switching circuits SW3 to SW6 based on the command from the basic command unit 31.
 さらに、車載装置用バッテリ44にはバッテリ残量検出部54が接続されており、当該バッテリ残量検出部54では常時車載装置用バッテリ44の電池残量を検出しながら、当該検出値を基本指令部31に対して出力するようになっている。基本指令部31においては、入力された電池残量検出値を監視しつつ、これより満充電状態になっていることを検知した場合には報知手段33によって通知ランプの点灯、通知音の発生などで満充電状態を報知して、オペレータに次の操作判断を促すようになっている。また、当該報知を行った後に、オペレータからの操作受付部32を通じた充電停止の指示や、車載装置用バッテリ44を使用するモータ41の駆動などの指示がなく一定時間が経過した場合にも、自動的に充電停止を行うべく基本指令部31よりバッテリ回路切替部38に対して車載装置用バッテリ44の電気回路を未接続状態にするための命令を与えるように構成している。 Further, a battery remaining amount detection unit 54 is connected to the in-vehicle device battery 44, and the battery remaining amount detection unit 54 constantly detects the remaining amount of the battery of the in-vehicle device battery 44 and outputs the detected value to the basic command. It outputs to the part 31. In the basic command section 31, while monitoring the input remaining battery level detection value, if it is detected that the battery is fully charged, the notification means 33 turns on a notification lamp, generates a notification sound, etc. To notify the fully charged state and prompt the operator to determine the next operation. In addition, even after a certain period of time has elapsed without an instruction to stop charging from the operator through the operation accepting unit 32 or an instruction to drive the motor 41 using the in-vehicle device battery 44 after performing the notification, In order to automatically stop charging, the basic command unit 31 is configured to give a command to the battery circuit switching unit 38 to make the electric circuit of the in-vehicle device battery 44 unconnected.
 同様に、基本指令部31においては、入力された電池残量検出値により電池残量が一定値以下まで低下していることを検知した場合には、報知手段33によってバッテリ切れ警告ランプの点灯、警告音の発生などによりバッテリ切れを警告して、オペレータに次の操作判断を促すようになっている。この時、車載装置用バッテリ44によってモータ41を駆動させて車載装置2に作業を行わせている場合で、かつ、当該作業を継続させる必要がある場合には、オペレータは上記報知手段33によりバッテリ切れを把握することで、通常は操作受付部32を通じて命令を与えて車載装置2の駆動源をモータ41からエンジン11に切替えることになる。当該命令をオペレータが行わなかった場合には、一定時間経過後にモータ24の回転速度を徐々に減小させてからモータ24を停止させるようにしている。 Similarly, in the basic command unit 31, when it is detected by the input battery remaining amount detection value that the battery remaining amount has decreased to a certain value or less, the notification means 33 turns on the battery low warning lamp, An alarm is given to warn of the battery running out, and the operator is prompted to determine the next operation. At this time, when the motor 41 is driven by the in-vehicle device battery 44 to cause the in-vehicle device 2 to perform the work, and when it is necessary to continue the work, the operator uses the notification means 33 to By grasping the disconnection, usually, an instruction is given through the operation receiving unit 32 to switch the drive source of the in-vehicle device 2 from the motor 41 to the engine 11. If the command is not issued by the operator, the motor 24 is stopped after the rotational speed of the motor 24 is gradually reduced after a predetermined time has elapsed.
 上記のように構成した車載装置用動力システム3を用いて、車載装置2に対して以下のようにして駆動力を与えることができる。 Using the in-vehicle apparatus power system 3 configured as described above, a driving force can be applied to the in-vehicle apparatus 2 as follows.
 まず、オペレータに対して報知手段33によって種々の機器情報が通知されるため、オペレータは当該通知を判断材料として車載装置2に行わせる動作を選択し、操作受付部32を通じて基本指令部31に対して命令を与える。 First, since various kinds of device information are notified to the operator by the notification means 33, the operator selects an operation to be performed by the in-vehicle device 2 using the notification as a determination material, and the basic command unit 31 through the operation reception unit 32 is selected. Give instructions.
 オペレータは、車載装置2を動作させる場合には、まず操作受付部32によって操作電源をオンにした後、車載装置2の駆動源としてエンジン11とモータ41の何れかを選択して起動させる。こうした操作に対応して、適宜基本指令部31からクラッチ制御部35、モータ回路切替部37、バッテリ回路切替部38に命令を与えて適切な回路を形成した上で、エンジン制御部34またはモータ制御部36に命令を与えてエンジン11またはモータ41を駆動させることによってポンプ24を駆動させる。さらに、必要な圧力機器25の動作量を得るため、操作受付部32からの指示に従ってポンプ24を動作させるべく、エンジン制御部34またはモータ制御部36はエンジン回転速度またはモータ回転速度を監視しつつエンジン11またはモータ41の回転速度を制御していく。 When operating the vehicle-mounted device 2, the operator first turns on the operation power by the operation reception unit 32, and then selects and starts either the engine 11 or the motor 41 as a drive source of the vehicle-mounted device 2. In response to these operations, the basic command unit 31 appropriately gives instructions to the clutch control unit 35, the motor circuit switching unit 37, and the battery circuit switching unit 38 to form appropriate circuits, and then the engine control unit 34 or motor control The pump 24 is driven by giving a command to the unit 36 to drive the engine 11 or the motor 41. Further, in order to obtain the required operation amount of the pressure device 25, the engine control unit 34 or the motor control unit 36 monitors the engine rotation speed or the motor rotation speed in order to operate the pump 24 in accordance with an instruction from the operation receiving unit 32. The rotational speed of the engine 11 or the motor 41 is controlled.
 通常であれば、オペレータは環境負荷が少なくなるように、駆動源としてモータ41を選択して電気エネルギによって車載装置2を駆動する。そのためにも車載装置用バッテリ44は、作業前には常に満充電とされていることが好ましく、本実施形態のように数多くの充電手段を有するように構成することで充電の機会が増して利便性が向上し、頻繁に使用を行ったとしても電池切れの心配が少なくなる。 Normally, the operator selects the motor 41 as a drive source and drives the vehicle-mounted device 2 with electric energy so as to reduce the environmental load. For this purpose, it is preferable that the in-vehicle device battery 44 is always fully charged before work, and it is convenient to increase the number of charging opportunities by having a large number of charging means as in this embodiment. Even if it is used frequently, the risk of running out of the battery is reduced.
 しかしながら、電池残量は有限であるために車載装置2を長時間に渡って連続して駆動すると電池切れとなる恐れがある。電池残量が減少して一定値以下となり、車載装置用バッテリ44によって駆動できる時間が少なくなった場合には、上述したように報知手段33により、オペレータに対して警告が発せられる。オペレータがこれを認識しなかった場合等、そのまま報知していた場合には一定時間経過後にモータ41の回転数が徐々に減少していき、やがて停止するようにしてある。オペレータが上記警告を認識して、車載装置2を停止させる場合には操作受付部32によって停止信号を入力し、作業を継続させる必要がある場合には操作受付部32によって駆動源をモータ41よりエンジン11に切替えるための信号を入力する。当該切替信号が入力されることによって、基本指令部31は図2に示したフローチャートに従って各ステップを順次実行するように各部を統合して制御し、モータ41(図1参照)からエンジン11(図1参照)への駆動源の変更を円滑に行わせる。以下、その手順を、図1を参照しつつ図2を基にして説明する。 However, since the remaining amount of the battery is finite, the battery may run out if the in-vehicle device 2 is continuously driven for a long time. When the remaining battery level decreases to a certain value or less and the time that can be driven by the in-vehicle device battery 44 is reduced, the notification means 33 issues a warning to the operator as described above. In the case where the operator is noticing this, such as when the operator has not recognized this, the number of rotations of the motor 41 gradually decreases after a certain period of time and then stops. When the operator recognizes the warning and stops the vehicle-mounted device 2, a stop signal is input by the operation reception unit 32, and when the operation needs to be continued, the operation reception unit 32 uses the motor 41 as a drive source. A signal for switching to the engine 11 is input. When the switching signal is input, the basic command unit 31 controls each unit so as to sequentially execute each step in accordance with the flowchart shown in FIG. 2, and the motor 41 (see FIG. 1) to the engine 11 (see FIG. 1). 1), the drive source can be changed smoothly. Hereinafter, the procedure will be described based on FIG. 2 with reference to FIG.
 具体的には、基本指令部31は、まず、切替信号を受け付けた後にエンジン11を起動するようにエンジン制御部34に指令を与え(ST001)、さらに、その時点におけるモータ41の回転速度に相当する速度を目標回転速度としてエンジン41を昇速させるように指令を出す(ST002)。そして、エンジン制御部34を介してエンジン11の回転速度が目標の回転速度に到達したことを検知(ST003)した後に、当該回転速度を維持するようにエンジン制御部34に命令する(ST004)。さらに、モータ41の制御方式を、その時の出力トルクを維持させたままでトルク制御に切替えるようにモータ制御部36に命令(ST005)した上で、クラッチ制御部35に対してクラッチを接続するように命令し(ST006)、その後モータ41の出力を漸減させていく(ST007)。クラッチ22の接続により、トルク制御であるモータ41は負荷が減るために増速を行おうとするが、速度制御であるエンジン11は一定回転速度を維持させようとするために減速方向に作用することで均衡が保たれ、すぐに一定回転速度とすることができる。当該クラッチ接続に際して、モータ41の電流値が過大に変化する場合に備えて、リミッタ回路を設けて制御範囲に制限を設けることも好適である。モータ41の出力トルクを漸減してゼロ以下となった後、換言すれば、モータ41が車載装置用バッテリ44の電気エネルギを用いずエンジン11の駆動力によって回転させられる状態となった後、基本指令部31はモータ41の電気回路の接続先を第1充電コントローラに切替える(SW2オン)ようにモータ回路切替部37に命令し(ST008)、車載装置用バッテリ44の電気回路の接続先を第1充電コントローラに切替える(SW4オン)ようにバッテリ回路切替部38に命令し(ST009)、モータ41によって発生する電気を車載装置用バッテリ44に充電できるようにする。このようにして、異なる駆動源を異なる制御方式を用いて駆動させつつ、1つの基本指令部31によって連動させるように統合して制御することで、車載装置2を停止させることなくポンプ24の速度変動を抑制しながら駆動源の切替を円滑に行わせることが可能となるとともに、速やかに車載装置用バッテリ44の充電を行わせて電池残量の回復までの時間短縮を図れるように構成している。 Specifically, the basic command unit 31 first gives a command to the engine control unit 34 to start the engine 11 after receiving the switching signal (ST001), and further corresponds to the rotational speed of the motor 41 at that time. A command is issued so as to increase the engine 41 at the target rotation speed as the target rotation speed (ST002). Then, after detecting that the rotational speed of the engine 11 has reached the target rotational speed via the engine control unit 34 (ST003), the engine control unit 34 is instructed to maintain the rotational speed (ST004). Further, the motor control unit 36 is instructed to switch to the torque control while maintaining the output torque at that time (ST005), and the clutch is connected to the clutch control unit 35. Command (ST006), and then the output of the motor 41 is gradually decreased (ST007). Due to the connection of the clutch 22, the motor 41, which is torque control, tries to increase speed because the load is reduced, but the engine 11, which is speed control, acts in the deceleration direction in order to maintain a constant rotational speed. The balance is maintained at, and a constant rotational speed can be obtained immediately. It is also preferable to provide a limiter circuit to limit the control range in case the current value of the motor 41 changes excessively when the clutch is connected. After the output torque of the motor 41 is gradually reduced to zero or less, in other words, after the motor 41 is rotated by the driving force of the engine 11 without using the electric energy of the in-vehicle device battery 44, the basic The command unit 31 instructs the motor circuit switching unit 37 to switch the connection destination of the electric circuit of the motor 41 to the first charge controller (SW2 ON) (ST008), and sets the connection destination of the electric circuit of the on-vehicle device battery 44 to the first. The battery circuit switching unit 38 is instructed to switch to one charge controller (SW4 is on) (ST009), so that the in-vehicle device battery 44 can be charged with electricity generated by the motor 41. In this way, the different speeds of the pump 24 can be controlled without stopping the in-vehicle device 2 by driving different driving sources using different control methods and performing integrated control so as to be linked by one basic command unit 31. The drive source can be switched smoothly while suppressing fluctuations, and the vehicle-mounted device battery 44 is quickly charged to shorten the time until the remaining battery level is recovered. Yes.
 上記とは逆に、ポンプ24をエンジン11によって駆動している最中に、駆動源をモータ41に切替えることも可能である。この際には、基本指令部31は図3に示したフローチャートに従って各ステップを順次実行するように各部を統合して制御し、エンジン11(図1参照)からモータ41(図1参照)への駆動源の変更を円滑に行わせる。以下、その手順を、図1を参照しつつ図3を基にして説明する。 Contrary to the above, the drive source can be switched to the motor 41 while the pump 24 is driven by the engine 11. At this time, the basic command unit 31 integrates and controls the respective units so as to sequentially execute the respective steps according to the flowchart shown in FIG. 3, and the engine 11 (see FIG. 1) to the motor 41 (see FIG. 1). Smoothly change the drive source. Hereinafter, the procedure will be described based on FIG. 3 with reference to FIG.
 切替指令が入力された場合には、基本指令部31はバッテリ残量検出部54からの検出信号より、バッテリ残量が一定値以上であってモータ41を駆動するに足る十分な残量がある否かを判断し(ST101)、残量が不足している場合には駆動源切替指令を拒否して、その旨を報知手段33より報知する(ST110)。残量が十分と判断できれば、以下のようなステップで駆動源の切替えを行わせる。 When the switching command is input, the basic command unit 31 has a sufficient remaining amount to drive the motor 41 because the remaining amount of the battery is equal to or greater than a certain value from the detection signal from the remaining battery level detection unit 54. If the remaining amount is insufficient, the drive source switching command is rejected and a notification to that effect is given (ST110). If it can be determined that the remaining amount is sufficient, the drive source is switched in the following steps.
 まず、エンジン11の回転速度を速度制御によって維持するようにエンジン制御部34に対して命令する(ST102)。さらに、車載装置用バッテリ44の電気回路の接続先をインバータ43に切替える(SW3オン)ようにバッテリ回路切替部38に命令し(ST103)、モータ41の電気回路の接続先をインバータ43に切替える(SW1オン)ようにモータ回路切替部37に命令する(ST104)。そして、エンジン11によって回転させられている状態であるモータ41をトルク制御として目標値となるまで回転トルクを漸増させていくようにモータ制御部36に対して命令する(ST105)。当該回転トルクの目標値は、ポンプ24の駆動定格トルクを基に事前に決定しておく。上記のように制御することでモータ41の出力は増大していくが、エンジン11は一定回転速度となるように制御されているためにポンプ24の回転速度はほとんど変化することがない。そして、モータ41の回転トルクが目標値に達したことをモータ制御部36を介して検知(ST106)した後に、クラッチ制御部35に対してクラッチ接続解除の命令を発し(ST107)、モータ41の制御方式を速度制御方式として通常運転させるようにモータ制御部36に命令して(ST108)、エンジン11を停止するようエンジン制御部34に命令する(ST109)。 First, the engine control unit 34 is commanded to maintain the rotational speed of the engine 11 by speed control (ST102). Further, the battery circuit switching unit 38 is instructed to switch the connection destination of the electric circuit of the in-vehicle device battery 44 to the inverter 43 (SW3 ON) (ST103), and the connection destination of the electric circuit of the motor 41 is switched to the inverter 43 ( The motor circuit switching unit 37 is commanded to switch on SW1 (ST104). Then, the motor control unit 36 is instructed to gradually increase the rotational torque until the motor 41 being rotated by the engine 11 reaches a target value as torque control (ST105). The target value of the rotational torque is determined in advance based on the drive rated torque of the pump 24. By controlling as described above, the output of the motor 41 increases. However, since the engine 11 is controlled to have a constant rotational speed, the rotational speed of the pump 24 hardly changes. Then, after detecting that the rotational torque of the motor 41 has reached the target value via the motor control unit 36 (ST106), a command to release the clutch is issued to the clutch control unit 35 (ST107). The motor control unit 36 is commanded to perform normal operation using the control method as the speed control method (ST108), and the engine control unit 34 is commanded to stop the engine 11 (ST109).
 このようにして、駆動源をエンジン11からモータ41に変更する場合であっても、車載装置2を停止させることなくポンプ24の速度変動を抑制しながら円滑に行わせることが可能となっている。 In this way, even when the drive source is changed from the engine 11 to the motor 41, it is possible to perform smoothly while suppressing the speed variation of the pump 24 without stopping the in-vehicle device 2. .
 また、本車載装置用動力システム3は、上述したように、電池残量の少なくなった車載装置用バッテリ44を速やかに充電できるように3つの充電手段を有し、適宜車載装置用バッテリ44の電気回路の接続先を変更できるようにしている。基本指令部2は図3に示したフローチャートに従って各ステップに示した判断を順次実行するようにして、適切な電気回路を選択し、当該選択に対応するようにバッテリ回路切替部38(図1参照)に命令を与えるようにしてある。以下、その判断手順を、図1を参照しつつ図3を基にして説明する。 Further, as described above, the in-vehicle device power system 3 includes three charging means so that the in-vehicle device battery 44 with a low remaining battery capacity can be quickly charged. The connection destination of the electric circuit can be changed. The basic command unit 2 sequentially executes the determinations shown in the respective steps according to the flowchart shown in FIG. 3, selects an appropriate electric circuit, and responds to the selection by the battery circuit switching unit 38 (see FIG. 1). ) Is given a command. Hereinafter, the determination procedure will be described based on FIG. 3 with reference to FIG.
 まず、モータ41によりポンプ24を駆動させる状態であるか否かを判断し(ST201)、当該状態に該当する場合には車載装置用バッテリ44をインバータ43に接続(SW3オン)するようバッテリ回路切替部38に命令する(ST207)。それ以外の場合には次の判断に移行し、車載装置用バッテリ44が満充電状態であって充電が不要か否かを判断する(ST202)。充電が不要と判断できれば、車載装置用バッテリ44の電気回路に対する全ての接続を遮断して(SW3~6オフ)、未接続状態とすべくバッテリ回路切替部38に命令する(ST205)。充電が必要な状態であれば、次のステップ(ST203)に移行する。ここでは、エンジン11によってポンプ24を駆動しており、共にモータ41が駆動されている状態であるかを判断する。当該状態であれば、車載装置用バッテリ44を第1充電コントローラ61に接続(SW4オン)して、モータ41により発生する電気を車載装置用バッテリ44に充電する(ST208)。それ以外の状態であれば、エンジン11が動作中であるか否かを検出して(ST204)、動作中であれば車載装置用バッテリ44を第2充電コントローラ62に接続(SW5オン)して、発電機16により発生する電気を車載装置用バッテリ44に充電する(ST209)。それ以外の状態であれば、商用電源91に接続されているかを否かを判断して(ST205)、接続されている状態であれば車載装置用バッテリ44を第3充電コントローラ63に接続(SW6オン)して、商用電源から得られる電気を車載装置用バッテリ44に充電する(ST210)。それ以外の場合には、車載装置用バッテリ44の電気回路に対する全ての接続を遮断して(SW3~6オフ)、未接続状態とすべくバッテリ回路切替部38に命令する(ST205)。 First, it is determined whether or not the motor 41 is in a state of driving the pump 24 (ST201). If this state is satisfied, the battery circuit switching is performed so that the in-vehicle device battery 44 is connected to the inverter 43 (SW3 is turned on). Command unit 38 (ST207). Otherwise, the process proceeds to the next determination, and it is determined whether or not the in-vehicle device battery 44 is in a fully charged state and charging is not required (ST202). If it can be determined that charging is not necessary, all connections to the electric circuit of the in-vehicle device battery 44 are cut off (SW3 to 6 off), and an instruction is given to the battery circuit switching unit 38 to make it unconnected (ST205). If charging is required, the process proceeds to the next step (ST203). Here, it is determined whether the pump 24 is driven by the engine 11 and the motor 41 is driven. If it is the said state, battery 44 for in-vehicle devices is connected to the 1st charge controller 61 (SW4 ON), and electricity generated by motor 41 is charged in battery 44 for in-vehicle devices (ST208). If it is in any other state, it is detected whether or not the engine 11 is in operation (ST204). If it is in operation, the in-vehicle device battery 44 is connected to the second charge controller 62 (SW5 on). Then, the vehicle-mounted device battery 44 is charged with electricity generated by the generator 16 (ST209). If it is in any other state, it is determined whether or not it is connected to the commercial power supply 91 (ST205). If it is in the connected state, the in-vehicle device battery 44 is connected to the third charge controller 63 (SW6). The vehicle-mounted device battery 44 is charged with electricity obtained from the commercial power source (ST210). In other cases, all connections to the electric circuit of the in-vehicle device battery 44 are cut off (SW 3 to 6 off), and the battery circuit switching unit 38 is instructed to be in an unconnected state (ST205).
 このようにして、基本指令部31が各部の状況を監視しつつ、適切に車載装置用バッテリ44に対して電力供給や充電の管理を行うことができるため、簡便かつ効率的に運用を行うことが可能となっている。 In this way, the basic command unit 31 can appropriately manage power supply and charge to the in-vehicle device battery 44 while monitoring the status of each unit, so that the operation can be performed simply and efficiently. Is possible.
 以上のように、本実施形態における車載装置用動力システム3は、エンジン11の動力を伝達する駆動軸12から動力を分配する第1補助出力軸23と、前記駆動軸12および前記第1補助出力軸23の接続または接続解除を行うクラッチ22と、前記第1補助出力軸23により駆動されるポンプ24と、当該ポンプ24によって送り出される圧力媒体によって作動する圧力機器25とを具備する車載装置2に適用されるものであって、前記クラッチ22の動作を制御するクラッチ制御部35と、前記第1補助出力軸23に連結され同期回転するモータ41と、前記エンジン11の回転速度を検出するエンジン回転速度検出部51と、当該エンジン回転速度検出部51からの検出値を監視しつつ前記エンジン11を回転させるエンジン制御部34と、前記モータ41の回転速度を検出するモータ回転速度検出部52と、前記モータ41のトルクを検出するモータトルク検出部53と、それらモータ回転速度検出部52およびモータトルク検出部53の少なくともいずれか一方からの検出値を監視しつつ前記モータ41を回転させるモータ制御部37と、前記ポンプ24の駆動源を切替えるために前記エンジン11と前記モータ41の回転を連動させつつ前記クラッチ22の接続または接続解除を行うように前記クラッチ制御部35、前記エンジン制御部34および前記モータ制御部36のそれぞれに指令を出す基本指令部31とを備えるように構成したものである。 As described above, the in-vehicle apparatus power system 3 according to this embodiment includes the first auxiliary output shaft 23 that distributes power from the drive shaft 12 that transmits the power of the engine 11, the drive shaft 12, and the first auxiliary output. The in-vehicle apparatus 2 includes a clutch 22 that connects or disconnects the shaft 23, a pump 24 that is driven by the first auxiliary output shaft 23, and a pressure device 25 that is operated by a pressure medium sent out by the pump 24. A clutch control unit 35 that controls the operation of the clutch 22, a motor 41 that is connected to the first auxiliary output shaft 23 and rotates synchronously, and an engine rotation that detects the rotation speed of the engine 11. Engine control for rotating the engine 11 while monitoring a detection value from the speed detection unit 51 and the engine rotation speed detection unit 51 34, a motor rotation speed detection unit 52 for detecting the rotation speed of the motor 41, a motor torque detection unit 53 for detecting the torque of the motor 41, and at least of the motor rotation speed detection unit 52 and the motor torque detection unit 53. A motor control unit 37 that rotates the motor 41 while monitoring a detection value from either one, and the clutch 22 while rotating the engine 11 and the motor 41 in order to switch the drive source of the pump 24. The clutch control unit 35, the engine control unit 34, and the motor control unit 36 are each provided with a basic command unit 31 that issues commands to perform connection or disconnection.
 このように構成しているため、モータ41とエンジン11の動作を監視しつつそれらの動作を制御するとともに、クラッチ22の制御を行わせることによって、車載装置2を動作させたままで駆動源の切替ができるとともに、その切替を円滑に行うことが可能になる。 With this configuration, the operation of the motor 41 and the engine 11 is monitored while controlling their operation, and the clutch 22 is controlled, so that the drive source can be switched while the in-vehicle device 2 is operated. And can be switched smoothly.
 また、前記ポンプ24の駆動源を前記モータ41から前記エンジン11に切替える際に、前記基本指令部31より前記モータ制御部36に対して前記モータ41を速度制御方式によって同一の回転速度で回転させるよう命令するステップと、前記基本指令部31より前記エンジン制御部34に対して前記エンジン11を速度制御方式によって前記モータ41の回転速度に相当する目標回転速度となるまで昇速させるように命令するステップと、前記基本指令部31が前記エンジン11の回転速度の前記目標回転速度への到達を検知するステップと、前記基本指令部31が前記モータ制御部36に対して前記モータ41の制御をトルク制御方式に変更して前記モータ41を同一の回転トルクで回転させるように命令するステップと、前記基本指令部31が前記クラッチ制御部35に対して前記クラッチ22を接続させるように命令するステップと、前記基本指令部31が前記モータ制御部36に対して前記モータ41の回転トルクを漸減させていくように命令するステップとを順次実行するように構成しているため、車載装置2を動作させたまま、駆動源をモータ41からエンジン11に切替える際に、ポンプ24の速度変動を抑制することができ、車載装置2の動作速度の変動を小さくすることが可能となる。 Further, when the drive source of the pump 24 is switched from the motor 41 to the engine 11, the basic command unit 31 causes the motor control unit 36 to rotate the motor 41 at the same rotational speed by a speed control method. And a command from the basic command unit 31 to the engine control unit 34 to increase the speed of the engine 11 to a target rotation speed corresponding to the rotation speed of the motor 41 by a speed control method. A step in which the basic command unit 31 detects that the rotational speed of the engine 11 has reached the target rotational speed, and the basic command unit 31 torques the motor control unit 36 to control the motor 41. Changing to a control method and instructing the motor 41 to rotate with the same rotational torque; The command unit 31 commands the clutch control unit 35 to connect the clutch 22, and the basic command unit 31 gradually reduces the rotational torque of the motor 41 to the motor control unit 36. Therefore, when the drive source is switched from the motor 41 to the engine 11 while the on-vehicle device 2 is operated, the speed variation of the pump 24 can be suppressed. It is possible to reduce fluctuations in the operating speed of the in-vehicle device 2.
 さらに、前記ポンプ24の駆動源を前記エンジン11から前記モータ41に切替える際に、前記基本指令部31により前記エンジン制御部34に対して前記エンジン11を速度制御方式によって同一の回転速度で回転させるように命令するステップと、前記基本指令部31により前記モータ制御部36に対して前記モータ41をトルク制御方式によって回転させて目標回転トルクとなるまで回転トルクを増大させるように命令するステップと、前記基本指令部31が前記モータ41の回転トルクの前記目標回転トルクへの到達を検知するステップと、前記基本指令部31が前記モータ制御部36に対して前記モータ41の制御を速度制御方式に変更して前記モータ41を同一の回転速度で回転させるように命令するステップと、前記基本指令部31が前記クラッチ制御部35に対して前記クラッチ22の接続を解除させるように命令するステップとを順次実行するように構成しているため、車載装置2を動作させたまま、駆動源をエンジン11からモータ41に切替える際に、ポンプ24の速度変動を抑制することができ、車載装置2の動作速度の変動を小さくすることが可能となる。 Further, when the drive source of the pump 24 is switched from the engine 11 to the motor 41, the basic command unit 31 causes the engine control unit 34 to rotate the engine 11 at the same rotational speed by a speed control method. Instructing the motor control unit 36 to rotate the motor 41 by a torque control method to increase the rotational torque until the target rotational torque is reached. The basic command unit 31 detects that the rotational torque of the motor 41 has reached the target rotational torque, and the basic command unit 31 controls the motor 41 with respect to the motor control unit 36 as a speed control method. Changing and instructing the motor 41 to rotate at the same rotational speed; and Since the unit 31 sequentially executes the step of instructing the clutch control unit 35 to release the connection of the clutch 22, the drive source is set to the engine while the in-vehicle device 2 is operated. When switching from 11 to the motor 41, the speed fluctuation of the pump 24 can be suppressed, and the fluctuation of the operating speed of the in-vehicle device 2 can be reduced.
 また、前記モータ制御部36からの指令に基づき前記モータ41を回転させるインバータ43と、当該インバータ43を介して前記モータ41を駆動するための電気を供給する車載装置用バッテリ44とを具備するとともに、前記モータ41が前記第1補助出力軸23を介して前記エンジン11の駆動力によって駆動されることで電気を発生し、その電気を変換して前記車載装置用バッテリ44に蓄えるための第1充電コントローラ61と、車両用バッテリ17を充電するために前記エンジン11によって第2補助出力軸14を介して駆動される発電機16により発生する電気を変換して前記車載装置用バッテリ44に蓄えるための第2充電コントローラ62と、商用電源91より入力された電気を変換して前記車載装置用バッテリ44に蓄えるための第3充電コントローラ63とを備え、前記車載装置用バッテリ44の電気回路を、前記インバータ43と、前記第1充電コントローラ61と、前記第2充電コントローラ62と、前記第3充電コントローラ63のうちいずれかと接続した状態に、あるいは、いずれとも未接続の状態に切替えるためのバッテリ回路切替部38を備えるように構成しているため、バッテリ回路切替部38によって、車載装置用バッテリ44の電気回路の接続先を適宜切替えることができ、モータ41を駆動させる場合や、種々の充電手段を適切に選択して充電を行わせることができる。 In addition, an inverter 43 that rotates the motor 41 based on a command from the motor control unit 36 and an in-vehicle device battery 44 that supplies electricity for driving the motor 41 via the inverter 43 are provided. The motor 41 is driven by the driving force of the engine 11 through the first auxiliary output shaft 23 to generate electricity, and the electricity is converted and stored in the in-vehicle device battery 44. To convert the electricity generated by the generator 16 driven by the engine 11 via the second auxiliary output shaft 14 to charge the charge controller 61 and the vehicle battery 17 and store it in the in-vehicle device battery 44. The second charge controller 62 and the electric power input from the commercial power source 91 are converted into the in-vehicle device battery 44. A third charge controller 63, and the electric circuit of the in-vehicle device battery 44 is the inverter 43, the first charge controller 61, the second charge controller 62, and the third charge controller 63. The battery circuit switching unit 38 is configured to be switched to a state of being connected to any one of them, or to a state of not being connected to any of them. The connection destination of the circuit can be switched as appropriate, and when the motor 41 is driven, various charging means can be appropriately selected for charging.
 また、前記モータ41の電気回路を、前記インバータ43および前記第1の充電コントローラ61のいずれかと接続した状態に、あるいはいずれとも未接続の状態に切替えるためのモータ回路切替部37を備えるように構成しているため、モータ回路切替部37によって、状態に応じてモータ41の電気回路の接続先を適宜切替えることができる。 In addition, a motor circuit switching unit 37 is provided for switching the electric circuit of the motor 41 to a state where it is connected to either the inverter 43 or the first charge controller 61, or to a state where neither is connected. Therefore, the connection destination of the electric circuit of the motor 41 can be appropriately switched by the motor circuit switching unit 37 according to the state.
 さらに、前記車載装置用バッテリ44の電池残量を検知するバッテリ残量検出部54を備えるとともに、当該バッテリ残量検出部54によって前記車載装置用バッテリ44の満充電状態を検出した場合、あるいは、電池残量が所定値以下であることを検出した場合に報知する報知手段33を備えるように構成しているため、車載装置用バッテリ44の電池残量を検知してその状態に応じて報知することができるため、オペレータに対して適切な動作選択を促すことができる。 Further, the battery remaining amount detection unit 54 for detecting the remaining amount of battery of the in-vehicle device battery 44 is provided, and when the fully charged state of the in-vehicle device battery 44 is detected by the battery remaining amount detection unit 54, or Since the notification means 33 is provided to notify when it is detected that the remaining battery level is equal to or less than the predetermined value, the remaining battery level of the in-vehicle device battery 44 is detected and notified according to the state. Therefore, it is possible to prompt the operator to select an appropriate operation.
 なお、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。
例えば、上述の実施形態では、ポンプ24として油圧ポンプを用いて、ポンプ24から圧力機器25に対して送られる圧力媒体として油を用いていたが、車載装置2の形態および使用環境に応じて、別の種類のポンプや圧力媒体を用いることも可能であり、そのような場合でも上記と同様に本発明の効果を得ることが可能である。
The specific configuration of each unit is not limited to the above-described embodiment.
For example, in the above-described embodiment, a hydraulic pump is used as the pump 24, and oil is used as a pressure medium sent from the pump 24 to the pressure device 25. However, according to the form and the use environment of the in-vehicle device 2, Another type of pump or pressure medium may be used, and even in such a case, the effects of the present invention can be obtained in the same manner as described above.
 また、上述の実施形態では、車載装置2の駆動源の切替は、操作受付部32から与えられるオペレータによる指示を契機にして各ステップが順次実行されることで行われるように構成していたが、車載装置用バッテリ44の電池残量が一定の閾値以上となったこと、あるいは別の閾値以下となったことを検知することで、オペレータの操作を介することなく自動的に駆動源の切替が行われるように構成してもよく、そのように構成しても本発明の効果は上記と同様に得ることが可能である。 Further, in the above-described embodiment, the switching of the drive source of the in-vehicle device 2 is configured to be performed by sequentially executing each step triggered by an instruction given by the operator from the operation receiving unit 32. By detecting that the remaining battery level of the in-vehicle device battery 44 has become a certain threshold value or less than another threshold value, the drive source can be automatically switched without the operator's operation. Even if configured in this way, the effects of the present invention can be obtained in the same manner as described above.
 さらには、上述の実施形態では、エンジン11から動力を取り出す出力軸として駆動輪を回転させる駆動軸12を用いていたが、ポンプ24を駆動させる第1補助出力軸23に対してエンジン11の動力を分配可能である回転軸である限り、当該出力軸は駆動軸12に限られない。例えば、フライホイールとミッションとを連結する中間軸や、プロペラシャフト等のエンジン11と連結されて回転する軸であれば、こうした軸と伝動機構21とを連結した上で、出力軸以外の部分は上述の実施形態と同じ構成とすることで上記と同様の効果を得ることが可能である。また、発電機16を駆動するために設けてある第2補助出力軸14を、出力軸と兼用させた構成とすることも可能である。 Furthermore, in the above-described embodiment, the drive shaft 12 that rotates the drive wheels is used as the output shaft that extracts the power from the engine 11, but the power of the engine 11 is compared with the first auxiliary output shaft 23 that drives the pump 24. The output shaft is not limited to the drive shaft 12 as long as the rotary shaft is capable of distributing the power. For example, in the case of an intermediate shaft that connects the flywheel and the transmission, or a shaft that is connected to the engine 11 such as a propeller shaft and rotates, the shaft and the transmission mechanism 21 are connected to each other. By adopting the same configuration as that of the above-described embodiment, the same effect as described above can be obtained. In addition, the second auxiliary output shaft 14 provided for driving the generator 16 may be configured to be used also as the output shaft.
 その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 Other configurations can be variously modified without departing from the spirit of the present invention.
 以上に詳述した本発明によれば、車載装置の動作を継続させたまま駆動源の切替を行うことができるとともに、その切替を円滑に行うことができる車載装置用動力システムを提供することが可能となる。 According to the present invention described in detail above, it is possible to provide a power system for an in-vehicle device that can switch a drive source while continuing the operation of the in-vehicle device and can perform the switching smoothly. It becomes possible.
 1…車両
 2…車載装置
 3…車載装置用動力システム
 11…エンジン
 12…駆動軸(出力軸)
 14…第2補助出力軸
 16…発電機
 22…クラッチ
 23…第1補助出力軸
 24…ポンプ
 31…基本指令部
 32…操作受付部
 33…報知手段
 34…エンジン制御部
 35…クラッチ制御部
 36…モータ制御部
 37…モータ切替部
 38…バッテリ切替部
 41…モータ
 43…インバータ
 44…車載装置用バッテリ
 51…エンジン回転速度検出部
 52…モータ回転速度検出部
 53…モータトルク検出部
 54…バッテリ残量検出部
 SW1~SW6…スイッチング回路
DESCRIPTION OF SYMBOLS 1 ... Vehicle 2 ... In-vehicle apparatus 3 ... Power system for in-vehicle apparatus 11 ... Engine 12 ... Drive shaft (output shaft)
DESCRIPTION OF SYMBOLS 14 ... 2nd auxiliary output shaft 16 ... Generator 22 ... Clutch 23 ... 1st auxiliary output shaft 24 ... Pump 31 ... Basic command part 32 ... Operation reception part 33 ... Notification means 34 ... Engine control part 35 ... Clutch control part 36 ... Motor control unit 37 ... Motor switching unit 38 ... Battery switching unit 41 ... Motor 43 ... Inverter 44 ... Battery for in-vehicle device 51 ... Engine rotation speed detection unit 52 ... Motor rotation speed detection unit 53 ... Motor torque detection unit 54 ... Battery remaining amount Detector SW1 to SW6 ... Switching circuit

Claims (8)

  1. エンジンの動力を伝達する出力軸から動力を分配する第1補助出力軸と、前記出力軸および前記第1補助出力軸の接続または接続解除を行うクラッチと、前記第1補助出力軸により駆動されるポンプと、当該ポンプによって送り出される圧力媒体によって作動する圧力機器とを具備する車載装置に適用される車載装置用動力システムであって、前記クラッチの動作を制御するクラッチ制御部と、前記第1補助出力軸に連結され同期回転するモータと、前記エンジンの回転速度を検出するエンジン回転速度検出部と、当該エンジン回転速度検出部からの検出値を監視しつつ前記エンジンを回転させるエンジン制御部と、前記モータの回転速度を検出するモータ回転速度検出部と、前記モータのトルクを検出するモータトルク検出部と、それらモータ回転速度検出部およびモータトルク検出部の少なくともいずれか一方からの検出値を監視しつつ前記モータを回転させるモータ制御部と、前記ポンプの駆動源を切替えるために前記エンジンと前記モータの回転を連動させつつ前記クラッチの接続または接続解除を行うように前記クラッチ制御部、前記エンジン制御部および前記モータ制御部のそれぞれに指令を出す基本指令部とを備えたことを特徴とする車載装置用動力システム。 Driven by a first auxiliary output shaft that distributes power from an output shaft that transmits engine power, a clutch that connects or disconnects the output shaft and the first auxiliary output shaft, and the first auxiliary output shaft A power system for an in-vehicle device that is applied to an in-vehicle device including a pump and a pressure device that is operated by a pressure medium sent out by the pump, the clutch control unit that controls the operation of the clutch, and the first auxiliary A motor coupled to an output shaft and rotating synchronously; an engine rotation speed detection unit that detects a rotation speed of the engine; an engine control unit that rotates the engine while monitoring a detection value from the engine rotation speed detection unit; A motor rotation speed detection unit for detecting the rotation speed of the motor; a motor torque detection unit for detecting the torque of the motor; A motor control unit that rotates the motor while monitoring a detection value from at least one of a rotation speed detection unit and a motor torque detection unit, and rotation of the engine and the motor to switch the drive source of the pump. An in-vehicle power system comprising: a basic command unit that issues a command to each of the clutch control unit, the engine control unit, and the motor control unit so that the clutch is connected or disconnected while being interlocked. system.
  2. 前記ポンプの駆動源を前記モータから前記エンジンに切替える際に、前記基本指令部より前記モータ制御部に対して前記モータを速度制御方式によって同一の回転速度で回転させるよう命令するステップと、前記基本指令部より前記エンジン制御部に対して前記エンジンを速度制御方式によって前記モータの回転速度に相当する目標回転速度となるまで昇速させるように命令するステップと、前記基本指令部が前記エンジンの回転速度の前記目標回転速度への到達を検知するステップと、前記基本指令部が前記モータ制御部に対して前記モータの制御をトルク制御方式に変更して前記モータを同一の回転トルクで回転させるように命令するステップと前記基本指令部が前記クラッチ制御部に対して前記クラッチを接続させるように命令するステップと、前記基本指令部が前記モータ制御部に対して前記モータの回転トルクを漸減させていくように命令するステップとを順次実行するように構成されていることを特徴とする請求項1に記載の車載装置用動力システム。 When switching the pump drive source from the motor to the engine, the basic command unit instructs the motor control unit to rotate the motor at the same rotational speed by a speed control method; Commanding the engine control unit from the commanding unit to increase the engine speed to a target rotational speed corresponding to the rotational speed of the motor by a speed control method; and the basic commanding unit rotating the engine Detecting the arrival of the speed at the target rotational speed, and the basic command section changing the control of the motor to a torque control system with respect to the motor control section so as to rotate the motor with the same rotational torque. And a step in which the basic command unit instructs the clutch control unit to connect the clutch. And a step in which the basic command unit instructs the motor control unit to gradually reduce the rotational torque of the motor. The power system for vehicle-mounted devices described in 1.
  3. 前記ポンプの駆動源を前記エンジンから前記モータに切替える際に、前記基本指令部により前記エンジン制御部に対して前記エンジンを速度制御方式によって同一の回転速度で回転させるように命令するステップと、前記基本指令部により前記モータ制御部に対して前記モータをトルク制御方式によって回転させて目標回転トルクとなるまで回転トルクを増大させるように命令するステップと、前記基本指令部が前記モータの回転トルクの前記目標回転トルクへの到達を検知するステップと、前記基本指令部が前記モータ制御部に対して前記モータの制御を速度制御方式に変更して前記モータを同一の回転速度で回転させるように命令するステップと、前記基本指令部が前記クラッチ制御部に対して前記クラッチの接続を解除させるように命令するステップとを順次実行するように構成されていることを特徴とする請求項1に記載の車載装置用動力システム。 Instructing the engine control unit to rotate the engine at the same rotational speed by the speed control method when the drive source of the pump is switched from the engine to the motor; Instructing the motor control unit by the basic command unit to rotate the motor by a torque control method to increase the rotational torque until the target rotational torque is reached, and the basic command unit determines the rotational torque of the motor. Detecting the arrival of the target rotational torque, and the basic command unit commands the motor control unit to change the motor control to a speed control method and rotate the motor at the same rotational speed. And the basic command unit instructs the clutch control unit to disengage the clutch. Vehicle apparatus power system of claim 1, characterized in that it is configured to perform the steps in sequence of.
  4. 前記ポンプの駆動源を前記エンジンから前記モータに切替える際に、前記基本指令部により前記エンジン制御部に対して前記エンジンを速度制御方式によって同一の回転速度で回転させるように命令するステップと、前記基本指令部により前記モータ制御部に対して前記モータをトルク制御方式によって回転させて目標回転トルクとなるまで回転トルクを増大させるように命令するステップと、前記基本指令部が前記モータの回転トルクの前記目標回転トルクへの到達を検知するステップと、前記基本指令部が前記モータ制御部に対して前記モータの制御を速度制御方式に変更して前記モータを同一の回転速度で回転させるように命令するステップと、前記基本指令部が前記クラッチ制御部に対して前記クラッチの接続を解除させるように命令するステップとを順次実行するように構成されていることを特徴とする請求項2に記載の車載装置用動力システム。 Instructing the engine control unit to rotate the engine at the same rotational speed by the speed control method when the drive source of the pump is switched from the engine to the motor; Instructing the motor control unit by the basic command unit to rotate the motor by a torque control method to increase the rotational torque until the target rotational torque is reached, and the basic command unit determines the rotational torque of the motor. Detecting the arrival of the target rotational torque, and the basic command unit commands the motor control unit to change the motor control to a speed control method and rotate the motor at the same rotational speed. And the basic command unit instructs the clutch control unit to disengage the clutch. Vehicle apparatus power system of claim 2, characterized in that it is configured to perform the steps in sequence of.
  5. 前記モータ制御部からの指令に基づき前記モータを回転させるインバータと、当該インバータを介して前記モータを駆動するための電気を供給する車載装置用バッテリとを具備するとともに、前記モータが前記第1補助出力軸を介して前記エンジンの駆動力によって駆動されることで電気を発生し、その電気を変換して前記車載装置用バッテリに蓄えるための第1充電コントローラと、車両用バッテリを充電するために前記エンジンによって第2補助出力軸を介して駆動される発電機により発生する電気を変換して前記車載装置用バッテリに蓄えるための第2充電コントローラと、商用電源より入力された電気を変換して前記車載装置用バッテリに蓄えるための第3充電コントローラとを備え、前記車載装置用バッテリの電気回路を、前記インバータと、前記第1充電コントローラと、前記第2充電コントローラと、前記第3充電コントローラのうちいずれかと接続した状態に、あるいは、いずれとも未接続の状態に切替えるためのバッテリ回路切替部を備えたことを特徴とする請求項1~4のいずれかに記載の車載装置用動力システム。 An inverter that rotates the motor based on a command from the motor control unit; and a vehicle-mounted device battery that supplies electricity for driving the motor via the inverter. A first charge controller for generating electricity by being driven by the driving force of the engine via an output shaft, converting the electricity and storing it in the on-vehicle device battery, and for charging the vehicle battery A second charge controller for converting electricity generated by a generator driven by the engine via a second auxiliary output shaft and storing it in the on-vehicle device battery; and converting electricity input from a commercial power source A third charge controller for storing in the in-vehicle device battery, wherein the electric circuit of the in-vehicle device battery is A battery circuit switching unit for switching to a state in which the converter is connected to any one of the barter, the first charge controller, the second charge controller, and the third charge controller, or to the unconnected state. The power system for an in-vehicle device according to any one of claims 1 to 4.
  6. 前記モータの電気回路を、前記インバータおよび前記第1の充電コントローラのいずれかと接続した状態に、あるいはいずれとも未接続の状態に切替えるためのモータ回路切替部を備えたことを特徴とする請求項5に記載の車載装置用動力システム。 6. A motor circuit switching unit for switching an electric circuit of the motor to a state in which the electric circuit of the motor is connected to either the inverter or the first charge controller, or to an unconnected state. The power system for vehicle-mounted devices described in 1.
  7. 前記車載装置用バッテリの電池残量を検知するバッテリ残量検出部を備えるとともに、当該バッテリ残量検出部によって前記車載装置用バッテリの満充電状態を検出した場合、あるいは、電池残量が所定値以下であることを検知した場合に報知する報知手段を備えたことを特徴とする請求項5に記載の車載装置用動力システム。 A battery remaining amount detection unit that detects a remaining battery level of the in-vehicle device battery is detected, and when the fully charged state of the in-vehicle device battery is detected by the battery remaining amount detection unit, or the remaining battery level is a predetermined value 6. The in-vehicle apparatus power system according to claim 5, further comprising notifying means for notifying that the following is detected.
  8. 前記車載装置用バッテリの電池残量を検知するバッテリ残量検出部を備えるとともに、当該バッテリ残量検出部によって前記車載装置用バッテリの満充電状態を検出した場合、あるいは、電池残量が所定値以下であることを検知した場合に報知する報知手段を備えたことを特徴とする請求項6に記載の車載装置用動力システム。 A battery remaining amount detection unit that detects a remaining battery level of the in-vehicle device battery is detected, and when the fully charged state of the in-vehicle device battery is detected by the battery remaining amount detection unit, or the remaining battery level is a predetermined value The in-vehicle apparatus power system according to claim 6, further comprising an informing means for informing when the following is detected.
PCT/JP2012/060923 2011-04-25 2012-04-24 Power system for on-board devices WO2012147721A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280020482.6A CN103492211B (en) 2011-04-25 2012-04-24 Car-mounted device dynamical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011096703A JP5713785B2 (en) 2011-04-25 2011-04-25 Power system for in-vehicle devices
JP2011-096703 2011-04-25

Publications (1)

Publication Number Publication Date
WO2012147721A1 true WO2012147721A1 (en) 2012-11-01

Family

ID=47072239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060923 WO2012147721A1 (en) 2011-04-25 2012-04-24 Power system for on-board devices

Country Status (3)

Country Link
JP (1) JP5713785B2 (en)
CN (1) CN103492211B (en)
WO (1) WO2012147721A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344883B2 (en) * 2012-12-21 2018-06-20 極東開発工業株式会社 Garbage collection truck
JP6700021B2 (en) * 2015-10-22 2020-05-27 極東開発工業株式会社 Work vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10331674A (en) * 1997-06-03 1998-12-15 Nissan Motor Co Ltd Control device of composite driving system for vehicle
JP2003191762A (en) * 2001-12-28 2003-07-09 Honda Motor Co Ltd Vehicle driving device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195230U (en) * 1984-06-06 1985-12-26 三菱重工業株式会社 concrete pump truck
JP4399311B2 (en) * 2004-04-13 2010-01-13 株式会社豊田自動織機 Cargo handling equipment for industrial vehicles for cargo handling work
JP2005329871A (en) * 2004-05-21 2005-12-02 Shin Meiwa Ind Co Ltd Driving device of working vehicle
JP4462170B2 (en) * 2005-11-07 2010-05-12 日産自動車株式会社 Engine start control device for hybrid vehicle
US8032287B2 (en) * 2007-03-06 2011-10-04 Nissan Motor Co., Ltd. Control apparatus of driving system for vehicle
JP5311610B2 (en) * 2007-12-27 2013-10-09 現代自動車株式会社 Hybrid vehicle driving force control device
JP5500782B2 (en) * 2008-04-25 2014-05-21 新明和工業株式会社 Work vehicle
DE102008052288A1 (en) * 2008-10-18 2010-05-06 Voith Patent Gmbh Motor vehicle drive train
JP5550064B2 (en) * 2009-07-01 2014-07-16 住友重機械工業株式会社 Hybrid work machine
CN101863437A (en) * 2010-06-18 2010-10-20 上海市电力公司 Oil-electricity dual-power driving device of hydraulic lifting system of aerial operation car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10331674A (en) * 1997-06-03 1998-12-15 Nissan Motor Co Ltd Control device of composite driving system for vehicle
JP2003191762A (en) * 2001-12-28 2003-07-09 Honda Motor Co Ltd Vehicle driving device

Also Published As

Publication number Publication date
CN103492211A (en) 2014-01-01
JP5713785B2 (en) 2015-05-07
CN103492211B (en) 2016-09-07
JP2012228893A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
CN108602550B (en) Power system of ship
US9302589B2 (en) Method and device for operating a hybrid vehicle in the event of a fault in an energy system
JP5644322B2 (en) Countermeasure device for inappropriate battery replacement of electric vehicle
JP5107987B2 (en) Marine propulsion device
JP3381708B2 (en) VEHICLE, POWER SUPPLY SYSTEM CONTROL DEVICE, POWER SUPPLY SYSTEM CONTROL METHOD, AND VEHICLE START-UP CONTROL METHOD
KR20060132980A (en) System and method for starting a combustion engine of a hybrid vehicle
EP2620556B1 (en) Construction machine
JP5966962B2 (en) Hybrid vehicle travel control device
AU2006200623A1 (en) AC drive apparatus, vehicle control apparatus, and power conversion method and vehicle control method
JP5010288B2 (en) Control device for hybrid vehicle
TW201111266A (en) Hybrid electric power source device for crane and method for controlling hybrid electric power source device for crane
EP3128086B1 (en) Shovel
US10730509B2 (en) Fail-safe method for parallel hybrid electric vehicle
JP6496356B2 (en) vehicle
JP3911517B2 (en) Hybrid system
JP5713785B2 (en) Power system for in-vehicle devices
JP6275728B2 (en) Method and apparatus for monitoring / controlling start of a heat engine of a hybrid vehicle
JP4778562B2 (en) Pulse width modulation inverter with emergency generator mode
EP3127739A1 (en) Electric system and transport device provided therewith
JP5136612B2 (en) Hybrid vehicle power generation control device
WO2014041695A1 (en) Propulsion control device for hybrid vehicle
JP2013091378A (en) Hybrid working vehicle
JP3730246B2 (en) Control device and control method for hybrid vehicle
KR101776965B1 (en) Hybrid power supply and controlling method thereof
JP2016217087A (en) Construction machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12775934

Country of ref document: EP

Kind code of ref document: A1