WO2012147517A1 - Pipe and rolling stock - Google Patents

Pipe and rolling stock Download PDF

Info

Publication number
WO2012147517A1
WO2012147517A1 PCT/JP2012/059919 JP2012059919W WO2012147517A1 WO 2012147517 A1 WO2012147517 A1 WO 2012147517A1 JP 2012059919 W JP2012059919 W JP 2012059919W WO 2012147517 A1 WO2012147517 A1 WO 2012147517A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat radiating
heat
present
base material
Prior art date
Application number
PCT/JP2012/059919
Other languages
French (fr)
Japanese (ja)
Inventor
隆弘 丹羽
聡直 平岡
佳史 藤田
塚原 啓二
正剛 小野寺
安藤 大介
阿部 勇美
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2012147517A1 publication Critical patent/WO2012147517A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/20Exhaust treating devices having provisions not otherwise provided for for heat or sound protection, e.g. using a shield or specially shaped outer surface of exhaust device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/02Surface coverings for thermal insulation

Definitions

  • the present invention relates to piping and vehicles.
  • Combustion gas (exhaust gas) discharged from an automobile engine is discharged to the outside through an exhaust manifold, an exhaust manifold direct catalytic converter, a front tube, an underfloor catalytic converter, a center muffler, a main muffler, etc. that are sequentially connected to the engine.
  • exhaust manifold direct catalytic converter
  • front tube front tube
  • underfloor catalytic converter underfloor catalytic converter
  • center muffler center muffler
  • main muffler a main muffler
  • the amount of fuel is increased in a high-load high-rotation region.
  • a large amount of heat is released to the side of the vehicle body facing the main muffler etc. due to the high-temperature exhaust gas flowing through the main muffler etc.
  • thermal deterioration of a resin member such as a bumper constituting the vehicle main body, a rubber member, or grease applied to a member constituting the vehicle main body is promoted.
  • an automobile exhaust pipe (automobile exhaust gas exhaust pipe) that can suppress thermal deterioration of the vehicle body during high-speed operation of the automobile engine has been demanded.
  • the present invention provides a novel pipe capable of suppressing the thermal deterioration of the opposing member and suitably suppressing the temperature rise inside even when a high-temperature fluid circulates inside the pipe. It is an object to provide a vehicle having the following.
  • a heat radiating portion and a heat radiating suppression portion are provided on the outer surface of the tubular base material, and radiation at a wavelength of 2 to 15 ⁇ m of the heat radiating portion. It has been found that the above-mentioned object can be achieved by piping having a rate higher than the emissivity of the heat radiation suppressing portion at a wavelength of 2 to 15 ⁇ m, and the present invention has been completed based on this finding.
  • the present invention (1) A heat radiating portion and a heat radiating suppression portion are provided on the outer surface of the tubular base material, and the emissivity of the heat radiating portion at a wavelength of 2 to 15 ⁇ m is higher than the emissivity of the heat radiating suppression portion at a wavelength of 2 to 15 ⁇ m. Piping characterized by high, (2) The piping according to (1), wherein the heat radiating portion is formed of a ceramic thin film or a carbon thin film, (3) The pipe according to (1), wherein the tubular base material is a metal tube, and the heat dissipation portion is formed of a metal oxide film constituting the metal tube.
  • the heat radiating portion and the heat radiating suppression portion are provided on the outer surface of the tubular base material, even when a high-temperature fluid circulates inside, it is opposed by the heat radiating suppression portion. It is possible to provide a new pipe capable of suppressing thermal deterioration of the member to be performed, and radiating heat from the heat radiating portion to suppress an internal temperature rise, and it is possible to provide a vehicle having the above pipe.
  • FIG. 1 It is a figure explaining the example of a use form of piping concerning the present invention.
  • the present invention it is a schematic diagram of a high-temperature reflectance / transmittance measuring device used for measuring emissivity.
  • this invention it is sectional drawing of the heating part of the high temperature reflectance and transmittance
  • a heat radiating part and a heat radiating suppression part are provided on the outer surface of the tubular base material, and the emissivity of the heat radiating part at a wavelength of 2 to 15 ⁇ m is the radiation of the heat radiating suppressor at a wavelength of 2 to 15 ⁇ m. It is characterized by being higher than the rate.
  • the tubular base material means a tubular material through which a fluid flows, and is made of a material corresponding to the temperature of the fluid flowing through the inside, and has a structure that does not cause deterioration or leakage. It is preferable to select appropriately.
  • the tubular base material is preferably one having heat resistance. Specifically, a metal pipe or a resin pipe made of a heat-resistant resin can be mentioned, and a metal pipe is preferred.
  • a stainless steel pipe As the metal pipe, a stainless steel pipe (SUS pipe) is mainly used from the viewpoint of heat resistance and corrosion resistance.
  • the tubular substrate is preferably made of aluminum (aluminum pipe), and the temperature of the fluid flowing inside is 600 to 900.
  • a SUS tube is preferable as the tubular base material.
  • the cross-sectional shape of the tubular base material is not particularly limited, and examples thereof include a circular shape or an oval shape.
  • the average thickness of the tubular substrate is suitably 0.5 to 3.0 mm, more preferably 0.8 to 2.0 mm, and 1.0 to 1.5 mm. It is more appropriate.
  • the average thickness of a tubular base material means the arithmetic mean value when the thickness of three places is measured with a caliper.
  • the outer diameter of the tubular substrate is suitably 20 to 110 mm, more suitably 30 to 80 mm, and even more suitably 35 to 65 mm.
  • the outer diameter of a tubular base material means the value when measured with a caliper.
  • the temperature inside and outside the pipe can be suitably controlled.
  • a heat radiating portion and a heat radiating suppression portion are provided on the outer surface of the tubular base material.
  • the heat radiating part means one that is controlled so that the emissivity is higher than that of the tubular base material or the heat radiating suppression part, and the heat radiating suppression part is compared with the tubular base material or the heat radiating part. It means what is controlled so that the emissivity is low.
  • the heat radiation part and the heat radiation suppression part are preferably formed in a film shape.
  • the emissivity of the heat radiating portion and the heat radiating suppression portion can be controlled by appropriately selecting the material for forming the heat radiating portion and the heat radiating suppression portion or adjusting the surface smoothness as will be described later. .
  • the heat radiating portion is preferably formed of a ceramic thin film or a carbon thin film.
  • a ceramic thin film what consists of materials containing ceramics, such as an alumina (aluminum oxide), a silicon carbide, a titanium oxide, can be mentioned, What consists of a material containing an alumina is preferable.
  • An example of the carbon thin film is a diamond-like carbon (DLC) thin film.
  • the ceramic thin film is formed by spraying a ceramic material corresponding to the target ceramic thin film on the surface of the tubular base material or by CVD. It can be provided by forming a film by (Chemical Vapor Deposition) method or PVD (Physical Vapor Deposition) method.
  • the ceramic thin film is formed by applying and drying a coating liquid for forming the target ceramic thin film on the surface of the tubular substrate.
  • a coating liquid for forming the target ceramic thin film on the surface of the tubular substrate.
  • the coating liquid include 40 to 200 parts by mass of an inorganic binder (in terms of solid content), 0.1 to 1.0 part by mass of an organic binder, and 0.1 to 1 thickener with respect to 100 parts by mass of the ceramic powder.
  • examples include those containing 0.0 part by mass and 60 to 130 parts by mass of water as a solvent.
  • the inorganic binder can include one or more selected from borosilicate glass, colloidal silica, colloidal alumina, and the like, and the organic binder can include one or more selected from acrylic binder, cationic starch, and the like.
  • the sticking agent include one or more selected from hymetroses, bentonite, kaolin and the like.
  • Examples of means for applying the coating liquid include spraying and brushing.
  • the heat radiating portion is formed of a carbon thin film
  • the carbon thin film is formed by subjecting the target ceramic thin film forming material to the surface of the tubular substrate by a CVD method or a PVD method. Can be provided by forming a film.
  • the heat radiating portion may be formed of a metal oxide film constituting the metal tube.
  • the heat dissipation part is preferably formed of an aluminum oxide film.
  • the heat dissipation part is formed of a stainless steel oxide film. What is made is preferable.
  • the metal oxide film constituting the metal tube can be formed by subjecting the metal tube, which is a tubular base material, to alumite treatment or heat treatment with a burner or the like for a desired time.
  • the thickness of the heat dissipating part is preferably 0.1 to 500 ⁇ m, more preferably 0.1 to 200 ⁇ m, and further preferably 0.1 to 100 ⁇ m.
  • the temperature inside the pipe can be suitably suppressed when the thickness of the heat radiating portion is within the above range.
  • the thickness of a thermal radiation part means the value measured when a piping cross-section part is observed with a scanning electron microscope (SEM).
  • the heat radiating section may be formed by improving the emissivity as compared with the heat radiation suppressing section by forming irregularities on the surface of the tubular base material. Specifically, it is preferable to form irregularities by blasting the surface of the tubular base material.
  • blasting methods mainly air blasting is used to project blasting material from nozzles using compressed air such as an air compressor, or blasting material is projected by the centrifugal force of a wear-resistant alloy impeller using the power of the motor.
  • Examples thereof include a shot blasting method, and a wet blasting method in which a blasting material mixed in a liquid using an underwater pump or compressed air is projected.
  • the type of blast material When blasting the surface of a tubular substrate, the type of blast material, the average particle diameter of the blast material, the pressure when projecting the blast material, the projection time of the blast material, etc. Depth can be controlled.
  • the blast material used for the blast treatment examples include silicon carbide and alumina.
  • the blast material preferably has an average particle diameter of 3 to 53 ⁇ m.
  • the average particle diameter of a blast material means the particle size (D50) of 50% by the integrated particle size in a volume reference
  • the depth Rz of the irregularities formed on the surface of the tubular substrate is preferably 1 to 50 ⁇ m, more preferably 2 to 40 ⁇ m, and further preferably 3 to 25 ⁇ m.
  • the depth of the unevenness means a value measured by a stylus type surface shape measuring instrument (surface roughness meter).
  • the formation position and area of the heat radiating portion provided on the outer surface of the tubular base material may be appropriately determined according to the position where the piping is disposed, the shape of the opposing member, the heat dissipation to be obtained, and the like. Good.
  • the heat dissipating part is formed on the side of the vehicle body at the time of installation when the entire outer surface of the tubular base material is divided into two semi-cylindrical parts. It is preferable that it is the whole outer surface of the semi-cylindrical part located in the other side.
  • the entire outer surface of the tubular base material 1 is divided into two semi-cylindrical parts, and a heat radiating part a and a heat radiating suppression part b are provided, respectively. Is preferably formed on the entire outer surface of the semi-cylindrical portion located on the side opposite to the vehicle body 3 side.
  • the heat dissipating part a As described above, it is possible to effectively dissipate heat to the side opposite to the vehicle body 3 side, and to suitably suppress the thermal deterioration of the constituent members and the like on the vehicle body 3 side.
  • the area where the heat radiating portion is formed is preferably 20 to 80%, more preferably 30 to 70%, and more preferably 40 to 60% of the total outer surface area of the tubular base material. Further preferred.
  • the emissivity of the heat radiation part at a wavelength of 2 to 15 ⁇ m is preferably 60 to 99%, more preferably 70 to 99%, and further preferably 80 to 99%.
  • the heat of the fluid flowing through the pipe can be suitably radiated from the heat radiating part.
  • the emissivity (%) is the reflectivity (%) and transmissivity (%) measured when a sample (pipe) is irradiated with an electromagnetic wave having a wavelength of 2 to 15 ⁇ m under a temperature condition of 25 ° C. ) From the following formula.
  • Transmittance (%) (transmitted light intensity / incident light intensity) ⁇ 100
  • the reflectance and the transmittance mean values measured by a high-temperature reflectance / transmittance measuring device.
  • FIG. 2 As a high-temperature reflectance / transmittance measuring apparatus, the one shown schematically in FIG. 2 can be mentioned.
  • incident light 51 having a wavelength of 2 to 15 ⁇ m irradiated from a Fourier transform infrared spectrophotometer (FT-IR6100 type manufactured by JASCO Corporation) 4 is reflected.
  • the light is reflected by the mirror 6, guided into the sample chamber, and irradiated on the sample 8 attached to the center of the turntable 7.
  • the sample 8 is heated by a halogen heater (UL-SH-V500 manufactured by USHIO INC.) 9 while attached to a holder h provided at the center of the turntable 7.
  • a halogen heater UL-SH-V500 manufactured by USHIO INC.
  • the intensity of the reflected light or transmitted light 52 from the sample 8 is detected by a detector 10 that is separately provided on the arm of the turntable 7 with the mounting portion as a rotation axis and circulates around the sample 8.
  • a structural example of the heating part of the high-temperature reflectance / transmittance measuring apparatus X is shown in a sectional view in FIG.
  • halogen heaters 9 are installed on the front and back portions of the sample 8, and when the detector 10 captures reflected light and transmitted light from the sample 8, the halogen heater 9 blocks the optical path. It is installed at an angle on the top of the sample 8 so that there is no.
  • the halogen heater 9 When measuring reflected light or transmitted light, the halogen heater 9 is also rotated together with the sample 8 so that the surface temperature of the sample 8 can always be kept constant. Cooling water 11 is introduced into the bottom of the turntable 7 on which the sample 8 is installed and the halogen heater 9 from the outside, and is circulated and cooled.
  • the tubular base material is a metal tube
  • the heat radiation suppressing portion is formed of an antioxidant coating film that suppresses oxidation of the metal constituting the metal tube.
  • silicon alkoxides such as ethyl silicate and other metal alkoxides are preferable.
  • Examples of the method of forming the antioxidant coating film include coating by spraying or brushing, and after coating the antioxidant, the reaction is allowed to proceed for a predetermined time, followed by drying to form the coating film. be able to.
  • the heat radiation suppressing portion may be formed of a thin film containing aluminum, gold, or platinum, and more preferably formed of an aluminum thin film.
  • the heat dissipation suppressing portion when the heat dissipation suppressing portion is formed of a thin film containing aluminum, gold, or platinum, the thin film is formed by applying a material corresponding to the target thin film to the surface of the tubular substrate. It can be provided by forming a film by a thermal spraying method, a CVD method or a PVD method.
  • the heat dissipation suppressing part when the tubular base material is a metal pipe, the heat dissipation suppressing part may be a mirror surface treated on the pipe surface.
  • Mirror surface treatment is a process of smooth polishing like a mirror surface. After polishing the surface of a tubular substrate with a fine-grained grindstone, whether it is further ground with an ultrafine grindstone or a fine powdery elastic grindstone. It can be performed by lapping with loose abrasive grains.
  • Examples of the abrasive grains constituting the fine-grained grindstone or ultrafine grindstone include diamond abrasive grains, silicon carbide abrasive grains, chromium oxide abrasive grains, bengara abrasive grains, magnesium oxide abrasive grains, and cerium oxide abrasive grains. It can.
  • Examples of the elastic grindstone include a rubber grindstone, a PVA grindstone, and a shrack grindstone.
  • the thickness of the heat dissipation suppressing portion is preferably 0.001 to 100 ⁇ m, more preferably 0.001 to 50 ⁇ m, and further preferably 0.001 to 10 ⁇ m.
  • the thickness of the heat dissipation suppression unit means a value measured by an X-ray photoelectron spectroscopy (XPS).
  • the emissivity of the heat dissipation suppressing portion at a wavelength of 2 to 15 ⁇ m is preferably 0.1 to 40%, more preferably 0.1 to 35%, and more preferably 0.1 to 30%. More preferably.
  • the heat radiation to the member facing the pipe can be suitably suppressed when the emissivity of the heat radiation suppressing portion is within the above range.
  • the formation position and area of the heat radiation suppressing portion provided on the outer surface of the tubular base material are appropriately determined according to the position where the piping is disposed, the shape of the opposing member, the heat radiation suppressing property to be obtained, and the like. do it.
  • the heat radiation suppressing portion is formed at the position where the vehicle body is disposed when the entire outer surface of the tubular base material is divided into two semi-cylindrical portions. It is preferable to form it on the entire outer surface of the semi-cylindrical part located on the side. Specifically, as shown in a cross-sectional shape in FIG. 1, the entire outer surface of the tubular base material 1 is divided into two semi-cylindrical parts, and a heat radiating part a and a heat radiating suppression part b are provided, respectively.
  • the heat dissipation suppressing portion b is formed on the entire outer surface of the semi-cylindrical portion located on the vehicle body 3 side.
  • the area where the heat dissipation suppressing portion is formed is preferably 20 to 80%, more preferably 30 to 70%, and more preferably 40 to 60% of the total outer surface area of the tubular base material. Is more preferable.
  • the heat radiating portion and the heat radiating suppression portion are provided adjacent to the entire surface of the tubular base material.
  • the area ratio of the heat radiating portion and the heat radiating suppression portion is preferably 20:80 to 80:20, more preferably 30:70 to 70:30, and still more preferably 40:60 to 60:40.
  • a member (heated member) that is opposed at the time of installation is coated with a resin member such as a bumper, a member made of a low heat resistant material such as a rubber member, or a low heat resistant material such as resin or grease. It can be particularly preferably used when the member is a member.
  • the pipe of the present invention can be suitably used as a pipe for various vehicles and semiconductor manufacturing apparatuses, and can be particularly suitably used as a pipe for exhausting automobile exhaust gas.
  • Exhaust gas exhaust piping includes exhaust manifolds, exhaust manifold direct catalytic converters, front tubes, underfloor catalytic converters, exhaust pipes connected to exhaust units built under the floor of the vehicle, such as a center muffler, main muffler, and the above exhausts. Mention may be made of exhaust pipes built into the unit.
  • the heat radiating section and the heat radiating suppression section can be appropriately provided according to the heat-resistant temperature of the member facing the pipe, but the temperature of the member facing the pipe is 160 ° C. or lower. It is preferable to provide a heat dissipating part and a heat dissipating suppressing part.
  • the heat radiating part is arranged to face the side where the heat release of the pipe is to be promoted and the heat radiating suppression part faces the side where the heat release of the pipe is to be suppressed.
  • the distance from the member (heated member) facing the pipe is preferably 1 to 100 mm, more preferably 10 to 75 mm, and more preferably 20 to 50 mm. Is more preferable.
  • the heat radiating portion and the heat radiating suppression portion are provided on the outer surface of the tubular base material, even when a high-temperature fluid circulates inside, it is opposed by the heat radiating suppression portion.
  • the heat radiating suppression portion since it is possible to provide a novel pipe that can suppress heat deterioration of a member that performs heat dissipation from the heat dissipation portion and suppress an internal temperature rise.
  • the vehicle of the present invention has the piping of the present invention.
  • the vehicle of the present invention preferably has the pipe of the present invention as an automobile exhaust gas discharge pipe.
  • a member made of a low heat-resistant material such as a resin member such as a bumper, a rubber member, or a low heat-resistant material such as resin or grease is applied as a member (heated member) facing the pipe.
  • a member heat-resistant material
  • thermal deterioration can be suppressed especially suitably.
  • the pipe according to the present invention can be used as an exhaust manifold, an exhaust manifold direct catalytic converter, a front tube, an underfloor catalytic converter, a center muffler, and a main muffler.
  • the exhaust pipe connected to each exhaust unit incorporated under the floor of a vehicle such as the above, and the exhaust pipe incorporated in each exhaust unit can be exemplified.
  • the pipe is arranged so that the heat radiating portion faces the side where the heat release of the pipe is to be promoted and the heat radiating suppression portion faces the side where the heat release of the pipe is desired to be suppressed.
  • the vehicle of the present invention is preferably arranged such that the distance between the pipe and the member (heated member) facing the pipe is 1 to 100 mm, and preferably 10 to 75 mm. What is arranged is more preferable, and what is disposed so as to be 20 to 50 mm is further preferable.
  • vehicle of the present invention include automobiles, motorcycles, agricultural vehicles and the like.
  • the present invention by having a pipe in which a heat radiating part and a heat radiating suppression part are provided on the outer surface of the tubular base material, even if a high-temperature fluid circulates inside the pipe, It is possible to provide a novel vehicle that can radiate heat from the heat radiating portion and suppress a temperature rise inside the pipe while suppressing thermal deterioration of the constituent members of the opposing vehicle body.
  • Example 1 As shown in FIG. 1, a SUS tube (length 500 mm, outer diameter 48.6 mm, thickness 1 mm) is used as the tubular base material 1, and the entire outer surface of the tubular base material 1 is divided into two semi-cylindrical parts. Then, an aluminum thin film having a thickness of 0.04 ⁇ m is provided on the surface of the upper semi-cylindrical portion by vacuum deposition to form a heat dissipation suppressing portion b, and an oxidation of 80 ⁇ m thickness is applied to the surface of the lower semi-cylindrical portion by spraying. An aluminum thin film was provided to form the heat dissipating material a, and the pipe 2 was produced.
  • a SUS tube length 500 mm, outer diameter 48.6 mm, thickness 1 mm
  • the heat radiation part a and the heat radiation suppression part b are adjacent to each other, the formation area of the heat radiation part a is 50% of the total outer surface area of the tubular substrate 1, and the heat radiation suppression part b is formed.
  • the area was 50% of the total outer surface area of the tubular substrate.
  • the emissivity ⁇ 1 at a wavelength of 2 to 15 ⁇ m in the heat radiation part a was 80%, and the emissivity ⁇ 2 at a wavelength of 2 to 15 ⁇ m in the heat radiation suppression part b was 10%.
  • PI (polyimide) resin member (length 500 mm, virtual diameter of semi-tubular part (R part) 88.6 mm, thickness 1 mm simulating resin member 3 constituting the vehicle main body. , Heat resistant temperature 350 ° C.).
  • the emissivity ⁇ 3 of this resin member 3 at a wavelength of 2 to 15 ⁇ m was 95%.
  • Example 1 (Comparative Example 1)
  • a SUS pipe (length 500 mm, outer diameter 48.6 mm, thickness 1 mm) was used instead of the pipe 2, and the same resin member 3 used in Example 1 was spaced by 20 mm.
  • air at 750 ° C. was supplied to the inside of the SUS tube at a supply rate of 0.01 kg / sec for 30 minutes at room temperature (20 ° C.) as in Example 1.
  • the average surface temperature of the lower side of the SUS pipe (opposite side of the resin member 3) during the air flow is 411 ° C.
  • the average surface temperature of the upper side of the SUS pipe (side facing the resin member 3) was 441 ° C.
  • the average surface temperature of the resin member 3 during the air circulation was 204 ° C.
  • the maximum surface temperature was 249 ° C.
  • the pipe 2 used in Example 1 is provided with a heat radiating part a and a heat radiating suppression part b on the outer surface of the tubular substrate 1, and the emissivity of the heat radiating part a at a wavelength of 2 to 15 ⁇ m is determined by the heat radiating suppression part b. Therefore, the average surface temperature of the resin member 3 can be suppressed to 153 ° C., and the maximum surface temperature can also be suppressed to 195 ° C. For this reason, when the pipe 2 is used as an automobile exhaust gas discharge pipe such as a muffler, it is possible to suppress the thermal deterioration of the resin member 3 constituting the vehicle body and to use it appropriately.
  • Comparative Example 1 since the emissivity on the entire outer surface of the SUS tube is uniform, the average surface temperature of the resin member 3 is as high as 204 ° C., and the maximum surface temperature is also as high as 249 ° C. From the SUS tube The release of heat cannot be sufficiently suppressed. For this reason, when the said SUS pipe
  • the heat radiating portion and the heat radiating suppression portion are provided on the outer surface of the tubular base material, even when a high-temperature fluid circulates inside, it is opposed by the heat radiating suppression portion. While suppressing the thermal deterioration of the member to be performed, it is possible to provide a new pipe that can radiate heat from the heat radiating portion and suppress an internal temperature rise, and it is possible to provide a vehicle having the above pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

Provided are: a novel pipe capable of minimizing an increase in internal temperature while minimizing thermal degradation of an opposing member even when a high-temperature fluid is circulated inside the pipe; and rolling stock having the pipe. The pipe is characterized in that a heat-dissipation unit and a heat-dissipation-minimizing unit are provided on the outer surface of a pipe-shaped substrate, and the emissivity of the heat-dissipation unit at a wavelength of 2 to 15 µm is higher than the emissivity of the heat-dissipation-minimizing unit at a wavelength of 2 to 15 µm. The rolling stock is characterized in having the pipe, the rolling stock preferably having the pipe as a pipe for discharging vehicle exhaust gas.

Description

配管および車輌Piping and vehicles
 本発明は、配管および車輌に関する。 The present invention relates to piping and vehicles.
 自動車エンジンから排出される燃焼ガス(排気ガス)は、エンジンに対して順次接続された、エキゾーストマニフォールド、エキマニ直下型触媒コンバータ、フロントチューブ、床下触媒コンバータ、センターマフラー、メインマフラー等を経て外部に放出される(例えば、特許文献1(特開平11-81976号公報)参照)。 Combustion gas (exhaust gas) discharged from an automobile engine is discharged to the outside through an exhaust manifold, an exhaust manifold direct catalytic converter, a front tube, an underfloor catalytic converter, a center muffler, a main muffler, etc. that are sequentially connected to the engine. (For example, see Patent Document 1 (Japanese Patent Laid-Open No. 11-81976)).
 上記自動車エンジンにおいては、高負荷高回転領域で燃料が増量されるが、この場合、高温の排気ガスがメインマフラー等を流れることにより、メインマフラー等に対向する車輌本体側に多量の熱が放出され、車輌本体を構成するバンパー等の樹脂製部材やゴム製部材、または車輌本体を構成する部材に塗布されるグリース等の熱劣化を促進してしまう。 In the above-mentioned automobile engine, the amount of fuel is increased in a high-load high-rotation region. In this case, a large amount of heat is released to the side of the vehicle body facing the main muffler etc. due to the high-temperature exhaust gas flowing through the main muffler etc. In addition, thermal deterioration of a resin member such as a bumper constituting the vehicle main body, a rubber member, or grease applied to a member constituting the vehicle main body is promoted.
 このため、自動車用排気管(自動車排気ガス排出用配管)としては、自動車エンジンの高速運転時において、車輌本体の熱劣化を抑制し得るものが求められるようになっている。 Therefore, an automobile exhaust pipe (automobile exhaust gas exhaust pipe) that can suppress thermal deterioration of the vehicle body during high-speed operation of the automobile engine has been demanded.
特開平11-81976号公報Japanese Patent Laid-Open No. 11-81976
 従って、本発明は、高温の流体が内部を流通した場合であっても、対向する部材の熱劣化を抑制するとともに内部の温度上昇を好適に抑制し得る新規な配管を提供するとともに、上記配管を有する車輌を提供することを目的とするものである。 Therefore, the present invention provides a novel pipe capable of suppressing the thermal deterioration of the opposing member and suitably suppressing the temperature rise inside even when a high-temperature fluid circulates inside the pipe. It is an object to provide a vehicle having the following.
 上記目的を達成するために、本発明者等が鋭意検討を行った結果、管状基材の外表面に放熱部と放熱抑制部とが設けられてなり、前記放熱部の波長2~15μmにおける放射率が、前記放熱抑制部の波長2~15μmにおける放射率よりも高い配管により、上記目的を達成し得ることを見出し、本知見に基づいて本発明を完成するに至った。 In order to achieve the above object, as a result of intensive studies by the present inventors, a heat radiating portion and a heat radiating suppression portion are provided on the outer surface of the tubular base material, and radiation at a wavelength of 2 to 15 μm of the heat radiating portion. It has been found that the above-mentioned object can be achieved by piping having a rate higher than the emissivity of the heat radiation suppressing portion at a wavelength of 2 to 15 μm, and the present invention has been completed based on this finding.
 すなわち、本発明は、
(1)管状基材の外表面に放熱部と放熱抑制部とが設けられてなり、前記放熱部の波長2~15μmにおける放射率が、前記放熱抑制部の波長2~15μmにおける放射率よりも高いことを特徴とする配管、
(2)前記放熱部がセラミックス薄膜またはカーボン薄膜により形成されてなる上記(1)に記載の配管、
(3)前記管状基材が金属管であって、前記放熱部が前記金属管を構成する金属の酸化物膜により形成されてなる上記(1)に記載の配管、
(4)前記放熱部の波長2~15μmにおける放射率が60~99%である上記(1)~(3)のいずれかに記載の配管、
(5)前記管状基材が金属管であって、前記放熱抑制部が前記金属管を構成する金属の酸化を抑制する酸化防止剤の塗布膜により形成されてなる上記(1)~(4)のいずれかに記載の配管、
(6)前記放熱抑制部の波長2~15μmにおける放射率が0.1~40%である上記(1)~(5)のいずれかに記載の配管、
(7)上記(1)~(6)のいずれかに記載の配管を有することを特徴とする車輌、
(8)上記(1)~(6)のいずれかに記載の配管を自動車排気ガス排出用配管として有する上記(7)に記載の車輌を提供するものである。
That is, the present invention
(1) A heat radiating portion and a heat radiating suppression portion are provided on the outer surface of the tubular base material, and the emissivity of the heat radiating portion at a wavelength of 2 to 15 μm is higher than the emissivity of the heat radiating suppression portion at a wavelength of 2 to 15 μm. Piping characterized by high,
(2) The piping according to (1), wherein the heat radiating portion is formed of a ceramic thin film or a carbon thin film,
(3) The pipe according to (1), wherein the tubular base material is a metal tube, and the heat dissipation portion is formed of a metal oxide film constituting the metal tube.
(4) The piping according to any one of the above (1) to (3), wherein the emissivity of the heat radiating part at a wavelength of 2 to 15 μm is 60 to 99%,
(5) The above (1) to (4), wherein the tubular base material is a metal tube, and the heat dissipation suppressing portion is formed of an antioxidant coating film that suppresses oxidation of the metal constituting the metal tube. Piping according to any one of
(6) The pipe according to any one of the above (1) to (5), wherein the radiation rate of the heat radiation suppressing portion at a wavelength of 2 to 15 μm is 0.1 to 40%.
(7) A vehicle comprising the pipe according to any one of (1) to (6) above,
(8) The vehicle according to the above (7), which has the pipe according to any one of the above (1) to (6) as an automobile exhaust gas exhaust pipe.
 本発明によれば、管状基材の外表面に放熱部と放熱抑制部とが設けられてなるものであることにより、高温の流体が内部を流通した場合であっても、放熱抑制部によって対向する部材の熱劣化を抑制し、放熱部から放熱して内部の温度上昇を抑制し得る新規な配管を提供することができるとともに、上記配管を有する車輌を提供することができる。 According to the present invention, since the heat radiating portion and the heat radiating suppression portion are provided on the outer surface of the tubular base material, even when a high-temperature fluid circulates inside, it is opposed by the heat radiating suppression portion. It is possible to provide a new pipe capable of suppressing thermal deterioration of the member to be performed, and radiating heat from the heat radiating portion to suppress an internal temperature rise, and it is possible to provide a vehicle having the above pipe.
本発明に係る配管の使用形態例を説明する図である。It is a figure explaining the example of a use form of piping concerning the present invention. 本発明において、放射率の測定に使用される高温反射率・透過率測定装置の概略図である。In the present invention, it is a schematic diagram of a high-temperature reflectance / transmittance measuring device used for measuring emissivity. 本発明において、放射率の測定に使用される高温反射率・透過率測定装置の加熱部の断面図である。In this invention, it is sectional drawing of the heating part of the high temperature reflectance and transmittance | permeability measuring apparatus used for the measurement of emissivity.
 先ず、本発明の配管について説明する。
 本発明の配管は、管状基材の外表面に放熱部と放熱抑制部とが設けられてなり、前記放熱部の波長2~15μmにおける放射率が、前記放熱抑制部の波長2~15μmにおける放射率よりも高いことを特徴とするものである。
First, the piping of the present invention will be described.
In the pipe of the present invention, a heat radiating part and a heat radiating suppression part are provided on the outer surface of the tubular base material, and the emissivity of the heat radiating part at a wavelength of 2 to 15 μm is the radiation of the heat radiating suppressor at a wavelength of 2 to 15 μm. It is characterized by being higher than the rate.
 本出願書類において、管状基材とは、内部を流体が流通する管状物を意味し、内部を流通する流体の温度等に対応した材質からなり、劣化や漏洩等を生じない構造を有するものを適宜選択することが好ましい。
 本発明の配管において、管状基材としては耐熱性を有するものが好適であり、具体的には、金属管や耐熱性樹脂からなる樹脂管を挙げることができ、金属管であることが好ましい。
In the present application documents, the tubular base material means a tubular material through which a fluid flows, and is made of a material corresponding to the temperature of the fluid flowing through the inside, and has a structure that does not cause deterioration or leakage. It is preferable to select appropriately.
In the pipe of the present invention, the tubular base material is preferably one having heat resistance. Specifically, a metal pipe or a resin pipe made of a heat-resistant resin can be mentioned, and a metal pipe is preferred.
 金属管としては、耐熱性や耐食性の観点からステンレス鋼製のもの(SUS管)が主に使用される。本発明の配管において、内部を流通する流体の温度が500℃未満である場合には、管状基材としてはアルミニウム製のもの(アルミ管)が好ましく、内部を流通する流体の温度が600~900℃である場合には、管状基材としてはSUS管が好ましい。 As the metal pipe, a stainless steel pipe (SUS pipe) is mainly used from the viewpoint of heat resistance and corrosion resistance. In the pipe of the present invention, when the temperature of the fluid flowing inside is less than 500 ° C., the tubular substrate is preferably made of aluminum (aluminum pipe), and the temperature of the fluid flowing inside is 600 to 900. When the temperature is ° C., a SUS tube is preferable as the tubular base material.
 管状基材の断面形状としても特に制限されず、円形または楕円形等を挙げることができる。 The cross-sectional shape of the tubular base material is not particularly limited, and examples thereof include a circular shape or an oval shape.
 管状基材の平均厚みは、0.5~3.0mmであることが適当であり、0.8~2.0mmであることがより適当であり、1.0~1.5mmであることがさらに適当である。
 なお、本出願書類において、管状基材の平均厚みは、ノギスにより3箇所の厚みを測定したときの算術平均値を意味する。 
 また、管状基材の外径は、20~110mmであることが適当であり、30~80mmであることがより適当であり、35~65mmであることがさらに適当である。
 なお、本出願書類において、管状基材の外径は、ノギスにより測定したときの値を意味する。
The average thickness of the tubular substrate is suitably 0.5 to 3.0 mm, more preferably 0.8 to 2.0 mm, and 1.0 to 1.5 mm. It is more appropriate.
In addition, in this application document, the average thickness of a tubular base material means the arithmetic mean value when the thickness of three places is measured with a caliper.
Further, the outer diameter of the tubular substrate is suitably 20 to 110 mm, more suitably 30 to 80 mm, and even more suitably 35 to 65 mm.
In addition, in this application document, the outer diameter of a tubular base material means the value when measured with a caliper.
 管状基材の平均厚みや外径が上記範囲内にあることにより、配管内部および外部の温度を好適に制御することができる。 When the average thickness and outer diameter of the tubular base material are within the above ranges, the temperature inside and outside the pipe can be suitably controlled.
 本発明の配管において、管状基材の外表面には放熱部と放熱抑制部とが設けられてなる。
 本発明の配管において、放熱部とは、管状基材や放熱抑制部に比べ放射率が高くなるように制御されてなるものを意味し、放熱抑制部とは、管状基材や放熱部に比べ放射率が低くなるように制御されてなるものを意味する。
 本発明の配管において、放熱部や放熱抑制部は、膜状に形成されてなるものが好適である。
 本発明の配管において、放熱部や放熱抑制部の放射率は、後述するように、放熱部や放熱抑制部の形成材料を適宜選択したり、表面平滑性を調整することにより制御することができる。
In the pipe of the present invention, a heat radiating portion and a heat radiating suppression portion are provided on the outer surface of the tubular base material.
In the pipe of the present invention, the heat radiating part means one that is controlled so that the emissivity is higher than that of the tubular base material or the heat radiating suppression part, and the heat radiating suppression part is compared with the tubular base material or the heat radiating part. It means what is controlled so that the emissivity is low.
In the pipe of the present invention, the heat radiation part and the heat radiation suppression part are preferably formed in a film shape.
In the piping of the present invention, the emissivity of the heat radiating portion and the heat radiating suppression portion can be controlled by appropriately selecting the material for forming the heat radiating portion and the heat radiating suppression portion or adjusting the surface smoothness as will be described later. .
 本発明の配管において、放熱部としては、セラミックス薄膜またはカーボン薄膜により形成されてなるものが好ましい。
 上記セラミックス薄膜としては、アルミナ(酸化アルミニウム)、炭化ケイ素、酸化チタン等のセラミックスを含有する材料からなるものを挙げることができ、アルミナを含有する材料からなるものが好ましい。
 また、カーボン薄膜としては、ダイヤモンドライクカーボン(DLC)薄膜を挙げることができる。
In the pipe of the present invention, the heat radiating portion is preferably formed of a ceramic thin film or a carbon thin film.
As said ceramic thin film, what consists of materials containing ceramics, such as an alumina (aluminum oxide), a silicon carbide, a titanium oxide, can be mentioned, What consists of a material containing an alumina is preferable.
An example of the carbon thin film is a diamond-like carbon (DLC) thin film.
 本発明の配管において、放熱部がセラミックス薄膜により形成されてなるものである場合、セラミックス薄膜は、目的とするセラミックス薄膜に対応するセラミックス材料を、管状基材の表面に対し、溶射法や、CVD(Chemical Vapor Deposition)法、PVD(Physical Vapor Deposition)法により膜形成することにより設けることができる。 In the pipe of the present invention, when the heat radiating portion is formed of a ceramic thin film, the ceramic thin film is formed by spraying a ceramic material corresponding to the target ceramic thin film on the surface of the tubular base material or by CVD. It can be provided by forming a film by (Chemical Vapor Deposition) method or PVD (Physical Vapor Deposition) method.
 本発明の配管において、放熱部がセラミックス薄膜により形成されてなるものである場合、セラミック薄膜は、目的とするセラミックス薄膜形成用のコーティング液を、管状基材の表面に対して塗布、乾燥することによっても形成することができる。
 上記コーティング液としては、例えば、セラミックス粉末100質量部に対し、無機バインダー40~200質量部(固形分換算量)、有機バインダー0.1~1.0質量部、増粘剤0.1~1.0質量部および溶媒である水を60~130質量部含むものを挙げることができる。
In the pipe of the present invention, when the heat radiation part is formed of a ceramic thin film, the ceramic thin film is formed by applying and drying a coating liquid for forming the target ceramic thin film on the surface of the tubular substrate. Can also be formed.
Examples of the coating liquid include 40 to 200 parts by mass of an inorganic binder (in terms of solid content), 0.1 to 1.0 part by mass of an organic binder, and 0.1 to 1 thickener with respect to 100 parts by mass of the ceramic powder. Examples include those containing 0.0 part by mass and 60 to 130 parts by mass of water as a solvent.
 無機バインダーとしては、ホウ珪酸ガラス、コロイダルシリカ、コロイダルアルミナ等から選ばれる一種以上を挙げることができ、有機バインダーとしては、アクリル系バインダー、カチオン澱粉等から選ばれる一種以上を挙げることができ、増粘剤としてはハイメトローズ、ベントナイト、カオリン等から選らばれる一種以上を挙げることができる。 The inorganic binder can include one or more selected from borosilicate glass, colloidal silica, colloidal alumina, and the like, and the organic binder can include one or more selected from acrylic binder, cationic starch, and the like. Examples of the sticking agent include one or more selected from hymetroses, bentonite, kaolin and the like.
 上記コーティング液の塗布手段としては、スプレーや刷毛塗り等を挙げることができる。 Examples of means for applying the coating liquid include spraying and brushing.
 また、本発明の配管において、放熱部がカーボン薄膜により形成されてなるものである場合、カーボン薄膜は、目的とするセラミックス薄膜の形成材料を、管状基材の表面に対し、CVD法やPVD法により膜形成することにより設けることができる。 Further, in the pipe of the present invention, when the heat radiating portion is formed of a carbon thin film, the carbon thin film is formed by subjecting the target ceramic thin film forming material to the surface of the tubular substrate by a CVD method or a PVD method. Can be provided by forming a film.
 本発明の配管において、管状基材が金属管である場合、放熱部が金属管を構成する金属の酸化物膜により形成されてなるものであってもよい。
 例えば、管状基材がアルミ管である場合、放熱部は酸化アルミニウム膜により形成されてなるものが好ましく、管状基材がステンレス鋼管(SUS管)である場合、放熱部はステンレス鋼酸化膜により形成されてなるものが好ましい。
In the pipe of the present invention, when the tubular base material is a metal tube, the heat radiating portion may be formed of a metal oxide film constituting the metal tube.
For example, when the tubular base material is an aluminum tube, the heat dissipation part is preferably formed of an aluminum oxide film. When the tubular base material is a stainless steel pipe (SUS tube), the heat dissipation part is formed of a stainless steel oxide film. What is made is preferable.
 上記金属管を構成する金属の酸化物膜は、管状基材である金属管を、アルマイト処理したり、バーナー等で所望時間加熱処理することにより形成することができる。 The metal oxide film constituting the metal tube can be formed by subjecting the metal tube, which is a tubular base material, to alumite treatment or heat treatment with a burner or the like for a desired time.
 本発明の配管において、放熱部がセラミックス薄膜またはカーボン薄膜により形成されてなるものである場合や、管状基材である金属管を構成する金属の酸化物膜により形成されてなるものである場合、放熱部の厚みは0.1~500μmであることが好ましく、0.1~200μmであることがより好ましく、0.1~100μmであることがさらに好ましい。
 本発明の配管において、放熱部の厚みが上記範囲内にあることにより、配管内部の温度を好適に抑制することができる。
 なお、本出願書類において、放熱部の厚みは走査型電子顕微鏡(SEM)により配管断面部を観察したときに測定される値を意味する。
In the pipe of the present invention, when the heat radiating portion is formed by a ceramic thin film or a carbon thin film, or when it is formed by a metal oxide film constituting a metal tube that is a tubular base material, The thickness of the heat dissipating part is preferably 0.1 to 500 μm, more preferably 0.1 to 200 μm, and further preferably 0.1 to 100 μm.
In the pipe of the present invention, the temperature inside the pipe can be suitably suppressed when the thickness of the heat radiating portion is within the above range.
In addition, in this application document, the thickness of a thermal radiation part means the value measured when a piping cross-section part is observed with a scanning electron microscope (SEM).
 本発明の配管において、放熱部は、管状基材の表面に凹凸を形成することにより、放熱抑制部に比べて放射率を向上させてなるものであってもよい。
 具体的には、管状基材の表面をブラスト処理すること等により凹凸を形成してなるものが好ましい。
In the pipe of the present invention, the heat radiating section may be formed by improving the emissivity as compared with the heat radiation suppressing section by forming irregularities on the surface of the tubular base material.
Specifically, it is preferable to form irregularities by blasting the surface of the tubular base material.
 ブラスト処理方法としては、主としてエアーコンプレッサーなどの圧縮空気を使ってノズルからブラスト材を投射するエアーブラスト法や、モーターの動力を使って耐摩耗合金製の羽根車の遠心力によりブラスト材を投射するショットブラスト法や、水中ポンプや圧縮エアーを使って液体に混ぜたブラスト材を投射するウエットブラスト法等を挙げることができる。 As blasting methods, mainly air blasting is used to project blasting material from nozzles using compressed air such as an air compressor, or blasting material is projected by the centrifugal force of a wear-resistant alloy impeller using the power of the motor. Examples thereof include a shot blasting method, and a wet blasting method in which a blasting material mixed in a liquid using an underwater pump or compressed air is projected.
 管状基材の表面をブラスト処理する場合、ブラスト材の種類、ブラスト材の平均粒子径、ブラスト材を投射する際の圧力、ブラスト材の投射時間等を適宜調整することにより表面に形成する凹凸の深さを制御することができる。 When blasting the surface of a tubular substrate, the type of blast material, the average particle diameter of the blast material, the pressure when projecting the blast material, the projection time of the blast material, etc. Depth can be controlled.
 ブラスト処理に用いるブラスト材としては、炭化珪素、アルミナ等を挙げることができる。また、ブラスト材は、平均粒子径が3~53μmであるものが好ましい。
 なお、本出願書類において、ブラスト材の平均粒子径は、レーザー回折式粒度分布測定装置により測定された、体積基準積算粒度分布における積算粒度で50%の粒径(D50)を意味する(光透過沈降法)。
Examples of the blast material used for the blast treatment include silicon carbide and alumina. The blast material preferably has an average particle diameter of 3 to 53 μm.
In addition, in this application document, the average particle diameter of a blast material means the particle size (D50) of 50% by the integrated particle size in a volume reference | standard integrated particle size distribution measured with the laser diffraction type particle size distribution measuring apparatus (light transmission). Sedimentation method).
 また、管状基材の表面に形成する凹凸の深さRzは、1~50μmであることが好ましく、2~40μmであることがより好ましく、3~25μmであることがさらに好ましい。
 本出願書類において、上記凹凸の深さは、触針式表面形状測定器(表面粗さ計)により測定した値を意味する。
Further, the depth Rz of the irregularities formed on the surface of the tubular substrate is preferably 1 to 50 μm, more preferably 2 to 40 μm, and further preferably 3 to 25 μm.
In the present application document, the depth of the unevenness means a value measured by a stylus type surface shape measuring instrument (surface roughness meter).
 本発明の配管において、管状基材の外表面に設ける放熱部の形成位置および面積は、配管を配設する位置、対向する部材の形状、得ようとする放熱性等に応じて適宜決定すればよい。 In the piping of the present invention, the formation position and area of the heat radiating portion provided on the outer surface of the tubular base material may be appropriately determined according to the position where the piping is disposed, the shape of the opposing member, the heat dissipation to be obtained, and the like. Good.
 例えば、本発明の配管を自動車排気ガス排出用配管として用いる場合、放熱部の形成位置は、管状基材の全外表面を二つの半筒状部に区分した場合に、配設時に車輌本体側とは反対側に位置する半筒状部の全外表面であることが好ましい。
 具体的には、図1に断面形状で示すように、管状基材1の全外表面を二つの半筒状部に区分して、それぞれ放熱部aと放熱抑制部bとを設けて配管2を成した場合において、上記放熱部aが車輌本体3側とは反対側に位置する半筒状部の全外表面に形成されていることが好ましい。
 放熱部aを上記のとおり形成することにより、車輌本体3側とは反対側に効果的に放熱させ、車輌本体3側の構成部材等の熱劣化を好適に抑制することができる。
For example, when the pipe of the present invention is used as an automobile exhaust gas exhaust pipe, the heat dissipating part is formed on the side of the vehicle body at the time of installation when the entire outer surface of the tubular base material is divided into two semi-cylindrical parts. It is preferable that it is the whole outer surface of the semi-cylindrical part located in the other side.
Specifically, as shown in a cross-sectional shape in FIG. 1, the entire outer surface of the tubular base material 1 is divided into two semi-cylindrical parts, and a heat radiating part a and a heat radiating suppression part b are provided, respectively. Is preferably formed on the entire outer surface of the semi-cylindrical portion located on the side opposite to the vehicle body 3 side.
By forming the heat dissipating part a as described above, it is possible to effectively dissipate heat to the side opposite to the vehicle body 3 side, and to suitably suppress the thermal deterioration of the constituent members and the like on the vehicle body 3 side.
 本発明の配管において、放熱部の形成面積は、管状基材の全外表面積の20~80%であることが好ましく、30~70%であることがより好ましく、40~60%であることがさらに好ましい。 In the pipe of the present invention, the area where the heat radiating portion is formed is preferably 20 to 80%, more preferably 30 to 70%, and more preferably 40 to 60% of the total outer surface area of the tubular base material. Further preferred.
 本発明の配管において、波長2~15μmにおける放熱部の放射率は、60~99%であることが好ましく、70~99%であることがより好ましく、80~99%であることがさらに好ましい。 In the pipe of the present invention, the emissivity of the heat radiation part at a wavelength of 2 to 15 μm is preferably 60 to 99%, more preferably 70 to 99%, and further preferably 80 to 99%.
 本発明の配管において、放熱部の放射率が上記範囲内にあることにより、配管内部を流通する流体の熱を放熱部から好適に放射することができる。 In the pipe of the present invention, when the emissivity of the heat radiating part is within the above range, the heat of the fluid flowing through the pipe can be suitably radiated from the heat radiating part.
 本出願書類において、放射率(%)は、25℃の温度条件下、試料(配管)に対して波長2~15μmの電磁波を照射したときに測定される反射率(%)および透過率(%)から、下記式により算出した値を意味する。
    放射率(%)=100-反射率-透過率
    反射率(%)=(反射光強度/入射光強度)×100
    透過率(%)=(透過光強度/入射光強度)×100
 ここで、反射率および透過率は、高温反射率・透過率測定装置により測定した値を意味する。
In this application document, the emissivity (%) is the reflectivity (%) and transmissivity (%) measured when a sample (pipe) is irradiated with an electromagnetic wave having a wavelength of 2 to 15 μm under a temperature condition of 25 ° C. ) From the following formula.
Emissivity (%) = 100−reflectance−transmittance Reflectivity (%) = (reflected light intensity / incident light intensity) × 100
Transmittance (%) = (transmitted light intensity / incident light intensity) × 100
Here, the reflectance and the transmittance mean values measured by a high-temperature reflectance / transmittance measuring device.
 高温反射率・透過率測定装置としては、図2に概略図で示すものが挙げられる。
 図2に示す高温反射率・透過率測定装置Xにおいて、フーリエ変換赤外分光光度計(日本分光(株)製FT-IR6100型)4から照射された波長2~15μmの入射光51は、反射鏡6により反射されて試料室内に導かれ、回転台7の中心部に取り付けた試料8に照射される。上記試料8は回転台7の中心部に設けたホルダーhに取り付けられた状態で、ハロゲンヒータ(ウシオ電機(株)製UL-SH-V500)9によって加熱される構造になっており、試料8の取り付け部を回転軸とする回転台7の腕部に別途設けられ試料8の周囲を周回する検出器10によって、試料8からの反射光または透過光52の強度が検出される。
 上記高温反射率・透過率測定装置Xの加熱部の構造例を図3に断面図で示す。
 図3に示すように、試料8の前面部と背面部には、ハロゲンヒータ9が設置され、試料8からの反射光および透過光を検出器10が捉える際に、ハロゲンヒータ9が光路を遮らないように試料8の上部に角度をつけて設置される。反射光または透過光の測定時においては、ハロゲンヒータ9も試料8と共に回転させることで、常に試料8の表面温度を一定に保つことができる構造となっている。試料8が設置される回転台7の底部及びハロゲンヒータ9には、外部から冷却水11が導入され、循環、冷却される。
As a high-temperature reflectance / transmittance measuring apparatus, the one shown schematically in FIG. 2 can be mentioned.
In the high-temperature reflectivity / transmittance measuring apparatus X shown in FIG. 2, incident light 51 having a wavelength of 2 to 15 μm irradiated from a Fourier transform infrared spectrophotometer (FT-IR6100 type manufactured by JASCO Corporation) 4 is reflected. The light is reflected by the mirror 6, guided into the sample chamber, and irradiated on the sample 8 attached to the center of the turntable 7. The sample 8 is heated by a halogen heater (UL-SH-V500 manufactured by USHIO INC.) 9 while attached to a holder h provided at the center of the turntable 7. The intensity of the reflected light or transmitted light 52 from the sample 8 is detected by a detector 10 that is separately provided on the arm of the turntable 7 with the mounting portion as a rotation axis and circulates around the sample 8.
A structural example of the heating part of the high-temperature reflectance / transmittance measuring apparatus X is shown in a sectional view in FIG.
As shown in FIG. 3, halogen heaters 9 are installed on the front and back portions of the sample 8, and when the detector 10 captures reflected light and transmitted light from the sample 8, the halogen heater 9 blocks the optical path. It is installed at an angle on the top of the sample 8 so that there is no. When measuring reflected light or transmitted light, the halogen heater 9 is also rotated together with the sample 8 so that the surface temperature of the sample 8 can always be kept constant. Cooling water 11 is introduced into the bottom of the turntable 7 on which the sample 8 is installed and the halogen heater 9 from the outside, and is circulated and cooled.
 本発明の配管においては、管状基材が金属管であって、放熱抑制部が金属管を構成する金属の酸化を抑制する酸化防止剤の塗布膜により形成されてなるものが好ましい。 In the pipe of the present invention, it is preferable that the tubular base material is a metal tube, and the heat radiation suppressing portion is formed of an antioxidant coating film that suppresses oxidation of the metal constituting the metal tube.
 酸化防止剤としては、エチルシリケート等のシリコンアルコキシドや、その他の金属アルコキシド等が好ましい。 As the antioxidant, silicon alkoxides such as ethyl silicate and other metal alkoxides are preferable.
 上記酸化防止剤の塗布膜を形成する方法としては、スプレーや刷毛等による塗布を挙げることができ、酸化防止剤の塗布後、所定時間反応を進行させ、さらに乾燥することにより塗布膜を形成することができる。 Examples of the method of forming the antioxidant coating film include coating by spraying or brushing, and after coating the antioxidant, the reaction is allowed to proceed for a predetermined time, followed by drying to form the coating film. be able to.
 本発明の配管において、放熱抑制部は、アルミニウム、金、白金を含む薄膜により形成されてなるものであってもよく、アルミニウム薄膜により形成されてなるものがより好適である。 In the pipe of the present invention, the heat radiation suppressing portion may be formed of a thin film containing aluminum, gold, or platinum, and more preferably formed of an aluminum thin film.
 本発明の配管において、放熱抑制部が、アルミニウム、金、白金を含む薄膜により形成されてなるものである場合、上記薄膜は、目的とする薄膜に対応する材料を、管状基材の表面に対し、溶射法や、CVD法、PVD法により膜形成することにより設けることができる。 In the pipe of the present invention, when the heat dissipation suppressing portion is formed of a thin film containing aluminum, gold, or platinum, the thin film is formed by applying a material corresponding to the target thin film to the surface of the tubular substrate. It can be provided by forming a film by a thermal spraying method, a CVD method or a PVD method.
 本発明の配管において、管状基材が金属管である場合、放熱抑制部は配管表面を鏡面処理してなるものであってもよい。
 鏡面処理は、鏡の面のように平滑に研摩加工する処理であり、管状基材の表面を細粒の砥石で研摩した後、さらに超微細な砥石または微粉状の弾性砥石により研摩加工するか遊離砥粒によりラップ加工することにより行うことができる。 
 上記細粒の砥石または超微細な砥石を構成する砥粒としては、ダイヤモンド砥粒、炭化ケイ素砥粒、酸化クロム砥粒、ベンガラ砥粒、酸化マグネシウム砥粒、酸化セリウム砥粒等を挙げることができる。また、上記弾性砥石としては、ゴム砥石、PVA砥石、シュラック砥石等を挙げることができる。
In the pipe of the present invention, when the tubular base material is a metal pipe, the heat dissipation suppressing part may be a mirror surface treated on the pipe surface.
Mirror surface treatment is a process of smooth polishing like a mirror surface. After polishing the surface of a tubular substrate with a fine-grained grindstone, whether it is further ground with an ultrafine grindstone or a fine powdery elastic grindstone. It can be performed by lapping with loose abrasive grains.
Examples of the abrasive grains constituting the fine-grained grindstone or ultrafine grindstone include diamond abrasive grains, silicon carbide abrasive grains, chromium oxide abrasive grains, bengara abrasive grains, magnesium oxide abrasive grains, and cerium oxide abrasive grains. it can. Examples of the elastic grindstone include a rubber grindstone, a PVA grindstone, and a shrack grindstone.
 本発明の配管において、放熱抑制部の厚みは0.001~100μmであることが好ましく、0.001~50μmであることがより好ましく、0.001~10μmであることがさらに好ましい。
 本発明の配管において、放熱抑制部の厚みが上記範囲内にあることにより、配管に対向する部材への放熱を所望範囲に容易に抑制することができる。
 なお、本出願書類において、放熱抑制部の厚みは、X線光電子分光装置(XPS;X-ray Photoelectron Spectroscopy)により測定した値を意味する。
In the pipe of the present invention, the thickness of the heat dissipation suppressing portion is preferably 0.001 to 100 μm, more preferably 0.001 to 50 μm, and further preferably 0.001 to 10 μm.
In the pipe of the present invention, when the thickness of the heat dissipation suppressing portion is within the above range, heat dissipation to the member facing the pipe can be easily suppressed within a desired range.
In the present application document, the thickness of the heat dissipation suppression unit means a value measured by an X-ray photoelectron spectroscopy (XPS).
 本発明の配管において、波長2~15μmにおける放熱抑制部の放射率は、0.1~40%であることが好ましく、0.1~35%であることがより好ましく、0.1~30%であることがさらに好ましい。 In the pipe of the present invention, the emissivity of the heat dissipation suppressing portion at a wavelength of 2 to 15 μm is preferably 0.1 to 40%, more preferably 0.1 to 35%, and more preferably 0.1 to 30%. More preferably.
 本発明の配管において、放熱抑制部の放射率が上記範囲内にあることにより、配管に対向する部材への放熱を好適に抑制することができる。 In the pipe of the present invention, the heat radiation to the member facing the pipe can be suitably suppressed when the emissivity of the heat radiation suppressing portion is within the above range.
 本発明の配管において、管状基材の外表面に設ける放熱抑制部の形成位置および面積は、配管を配設する位置、対向する部材の形状、得ようとする放熱抑制性等に応じて適宜決定すればよい。 In the piping of the present invention, the formation position and area of the heat radiation suppressing portion provided on the outer surface of the tubular base material are appropriately determined according to the position where the piping is disposed, the shape of the opposing member, the heat radiation suppressing property to be obtained, and the like. do it.
 例えば、本発明の配管を自動車排気ガス排出用配管として用いる場合、放熱抑制部の形成位置は、管状基材の全外表面を二つの半筒状部に区分した場合に、配設時に車輌本体側に位置する半筒状部の全外表面に形成することが好ましい。
 具体的には、図1に断面形状で示すように、管状基材1の全外表面を二つの半筒状部に区分して、それぞれ放熱部aと放熱抑制部bとを設けて配管2とした場合において、上記放熱抑制部bが車輌本体3側に位置する半筒状部の全外表面に形成されていることが好ましい。
 放熱抑制部bを上記のとおり形成することにより、車輌本体3側への放熱を効果的に抑制して、車輌本体3側の構成部材の熱劣化を好適に抑制することができる。
For example, when the pipe of the present invention is used as an automobile exhaust gas discharge pipe, the heat radiation suppressing portion is formed at the position where the vehicle body is disposed when the entire outer surface of the tubular base material is divided into two semi-cylindrical portions. It is preferable to form it on the entire outer surface of the semi-cylindrical part located on the side.
Specifically, as shown in a cross-sectional shape in FIG. 1, the entire outer surface of the tubular base material 1 is divided into two semi-cylindrical parts, and a heat radiating part a and a heat radiating suppression part b are provided, respectively. In this case, it is preferable that the heat dissipation suppressing portion b is formed on the entire outer surface of the semi-cylindrical portion located on the vehicle body 3 side.
By forming the heat dissipation suppressing portion b as described above, it is possible to effectively suppress heat dissipation to the vehicle main body 3 side and suitably suppress thermal deterioration of the constituent members on the vehicle main body 3 side.
 本発明の配管において、放熱抑制部の形成面積は、管状基材の全外表面積の20~80%であることが好ましく、30~70%であることがより好ましく、40~60%であることがさらに好ましい。 In the pipe of the present invention, the area where the heat dissipation suppressing portion is formed is preferably 20 to 80%, more preferably 30 to 70%, and more preferably 40 to 60% of the total outer surface area of the tubular base material. Is more preferable.
 本発明の配管においては、管状基材の全表面に放熱部と放熱抑制部が隣接するように設けられていることが好ましく、この場合、放熱部と放熱抑制部の面積比(放熱部の面積:放熱抑制部の面積)は、20:80~80:20が好ましく、30:70~70:30がより好ましく、40:60~60:40がさらに好ましい。 In the pipe of the present invention, it is preferable that the heat radiating portion and the heat radiating suppression portion are provided adjacent to the entire surface of the tubular base material. In this case, the area ratio of the heat radiating portion and the heat radiating suppression portion (area of the heat radiating portion) : Area of the heat radiation suppressing portion) is preferably 20:80 to 80:20, more preferably 30:70 to 70:30, and still more preferably 40:60 to 60:40.
 本発明の配管は、配設時に対向する部材(被熱部材)が、バンパー等の樹脂製部材、ゴム製部材等の低耐熱材料からなる部材、樹脂やグリース等の低耐熱材料が塗布されている部材である場合等に特に好適に使用することができる。 In the pipe of the present invention, a member (heated member) that is opposed at the time of installation is coated with a resin member such as a bumper, a member made of a low heat resistant material such as a rubber member, or a low heat resistant material such as resin or grease. It can be particularly preferably used when the member is a member.
 本発明の配管は、各種車輌や半導体製造装置の配管として好適に使用することができ、自動車排気ガス排出用配管として特に好適に使用することができる。
 自動車排気ガス排出用配管としては、エキゾーストマニフォールド、エキマニ直下型触媒コンバータ、フロントチューブ、床下触媒コンバータ、センターマフラー、メインマフラー等の車輌の床下に組み込まれる各排気ユニットに接続する排気管や、上記各排気ユニットに組み込まれる排気管を挙げることができる。
 また、本発明の配管をメインマフラーとして用いる場合、放熱部や放熱抑制部は、配管に対向する部材の耐熱温度に応じて適宜設けることができるが、配管に対向する部材の温度が160℃以下になるように放熱部や放熱抑制部を設けることが好ましい。
The pipe of the present invention can be suitably used as a pipe for various vehicles and semiconductor manufacturing apparatuses, and can be particularly suitably used as a pipe for exhausting automobile exhaust gas.
Exhaust gas exhaust piping includes exhaust manifolds, exhaust manifold direct catalytic converters, front tubes, underfloor catalytic converters, exhaust pipes connected to exhaust units built under the floor of the vehicle, such as a center muffler, main muffler, and the above exhausts. Mention may be made of exhaust pipes built into the unit.
When the pipe of the present invention is used as a main muffler, the heat radiating section and the heat radiating suppression section can be appropriately provided according to the heat-resistant temperature of the member facing the pipe, but the temperature of the member facing the pipe is 160 ° C. or lower. It is preferable to provide a heat dissipating part and a heat dissipating suppressing part.
 本発明の配管を使用する場合、配管の熱放出を促進させたい側に放熱部、配管の熱放出を抑制させたい側に放熱抑制部がそれぞれ面するように、配設する。 When using the pipe of the present invention, the heat radiating part is arranged to face the side where the heat release of the pipe is to be promoted and the heat radiating suppression part faces the side where the heat release of the pipe is to be suppressed.
 本発明の配管を配設する場合、配管に対向する部材(被熱部材)との距離は、1~100mmであることが好ましく、10~75mmであることがより好ましく、20~50mmであることがさらに好ましい。 When the pipe of the present invention is disposed, the distance from the member (heated member) facing the pipe is preferably 1 to 100 mm, more preferably 10 to 75 mm, and more preferably 20 to 50 mm. Is more preferable.
 本発明によれば、管状基材の外表面に放熱部と放熱抑制部とが設けられてなるものであることにより、高温の流体が内部を流通した場合であっても、放熱抑制部によって対向する部材の熱劣化を抑制しつつ、放熱部から放熱して内部の温度上昇を抑制し得る新規な配管を提供することができる。 According to the present invention, since the heat radiating portion and the heat radiating suppression portion are provided on the outer surface of the tubular base material, even when a high-temperature fluid circulates inside, it is opposed by the heat radiating suppression portion. Thus, it is possible to provide a novel pipe that can suppress heat deterioration of a member that performs heat dissipation from the heat dissipation portion and suppress an internal temperature rise.
 次に、本発明の車輌について説明する。
 本発明の車輛は、本発明の配管を有することを特徴とするものである。本発明の車輌としては、本発明の配管を自動車排気ガス排出用配管として有するものであることが好ましい。
Next, the vehicle of the present invention will be described.
The vehicle of the present invention has the piping of the present invention. The vehicle of the present invention preferably has the pipe of the present invention as an automobile exhaust gas discharge pipe.
 本発明の配管の詳細は、上述したとおりである。 The details of the piping of the present invention are as described above.
 本発明の車輌は、配管に対向する部材(被熱部材)として、バンパー等の樹脂製部材、ゴム製部材等の低耐熱材料からなる部材、樹脂やグリース等の低耐熱材料が塗布されている部材等を有する場合に、特に好適に熱劣化を抑制することができる。 In the vehicle of the present invention, a member made of a low heat-resistant material such as a resin member such as a bumper, a rubber member, or a low heat-resistant material such as resin or grease is applied as a member (heated member) facing the pipe. When it has a member etc., thermal deterioration can be suppressed especially suitably.
 本発明の車輌が、本発明の配管を自動車排気ガス排出用配管として有するものである場合、本発明の配管を、エキゾーストマニフォールド、エキマニ直下型触媒コンバータ、フロントチューブ、床下触媒コンバータ、センターマフラー、メインマフラー等の車輌の床下に組み込まれる各排気ユニットに接続する排気管や、上記各排気ユニットに組み込まれる排気管として有するものを挙げることができる。 When the vehicle according to the present invention has the pipe according to the present invention as a pipe for exhausting an automobile exhaust gas, the pipe according to the present invention can be used as an exhaust manifold, an exhaust manifold direct catalytic converter, a front tube, an underfloor catalytic converter, a center muffler, and a main muffler. The exhaust pipe connected to each exhaust unit incorporated under the floor of a vehicle such as the above, and the exhaust pipe incorporated in each exhaust unit can be exemplified.
 本発明の車輌において、上記配管は、配管の熱放出を促進させたい側に放熱部、配管の熱放出を抑制させたい側に放熱抑制部がそれぞれ面するように、配設されてなる。 In the vehicle according to the present invention, the pipe is arranged so that the heat radiating portion faces the side where the heat release of the pipe is to be promoted and the heat radiating suppression portion faces the side where the heat release of the pipe is desired to be suppressed.
 本発明の車輌は、上記配管および該配管に対向する部材(被熱部材)との距離が、1~100mmであるように配設されてなるものが好ましく、10~75mmであるように配設されてなるものがより好ましく、20~50mmであるように配設されてなるものがさらに好ましい。 The vehicle of the present invention is preferably arranged such that the distance between the pipe and the member (heated member) facing the pipe is 1 to 100 mm, and preferably 10 to 75 mm. What is arranged is more preferable, and what is disposed so as to be 20 to 50 mm is further preferable.
 本発明の車輌として、具体的には、自動車、二輪車、農耕車等を挙げることができる。 Specific examples of the vehicle of the present invention include automobiles, motorcycles, agricultural vehicles and the like.
 本発明によれば、管状基材の外表面に放熱部と放熱抑制部とが設けられてなる配管を有することにより、高温の流体が配管内部を流通した場合であっても、放熱抑制部によって対向する車輌本体の構成部材の熱劣化を抑制しつつ、放熱部から放熱して配管内部の温度上昇を抑制し得る新規な車輌を提供することができる。 According to the present invention, by having a pipe in which a heat radiating part and a heat radiating suppression part are provided on the outer surface of the tubular base material, even if a high-temperature fluid circulates inside the pipe, It is possible to provide a novel vehicle that can radiate heat from the heat radiating portion and suppress a temperature rise inside the pipe while suppressing thermal deterioration of the constituent members of the opposing vehicle body.
 以下、本発明を実施例および比較例によりさらに詳細に説明するが、本発明は以下の例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1)
 図1に示すように、管状基材1としてSUS管(長さ500mm、外径48.6mm、厚さ1mm)を用い、この管状基材1の全外表面を二つの半筒状部に区分し、上部側の半筒状部表面に真空蒸着法により0.04μm厚のアルミニウム薄膜を設けて放熱抑制部bを成すとともに、下部側の半筒状部表面に、溶射法により80μm厚の酸化アルミニウム薄膜を設けて放熱物aを成し、配管2を作製した。
Example 1
As shown in FIG. 1, a SUS tube (length 500 mm, outer diameter 48.6 mm, thickness 1 mm) is used as the tubular base material 1, and the entire outer surface of the tubular base material 1 is divided into two semi-cylindrical parts. Then, an aluminum thin film having a thickness of 0.04 μm is provided on the surface of the upper semi-cylindrical portion by vacuum deposition to form a heat dissipation suppressing portion b, and an oxidation of 80 μm thickness is applied to the surface of the lower semi-cylindrical portion by spraying. An aluminum thin film was provided to form the heat dissipating material a, and the pipe 2 was produced.
 得られた配管2において、放熱部aと放熱抑制部bとは隣接しており、放熱部aの形成面積は、管状基材1の全外表面積の50%であり、放熱抑制部bの形成面積は、管状基材の全外表面積の50%であった。また、放熱部aにおける波長2~15μmにおける放射率εは80%であり、放熱抑制部bにおける波長2~15μmにおける放射率εは10%であった In the obtained pipe 2, the heat radiation part a and the heat radiation suppression part b are adjacent to each other, the formation area of the heat radiation part a is 50% of the total outer surface area of the tubular substrate 1, and the heat radiation suppression part b is formed. The area was 50% of the total outer surface area of the tubular substrate. In addition, the emissivity ε 1 at a wavelength of 2 to 15 μm in the heat radiation part a was 80%, and the emissivity ε 2 at a wavelength of 2 to 15 μm in the heat radiation suppression part b was 10%.
 図1に示すように、車輌本体を構成する樹脂製部材3を模擬して、PI(ポリイミド)樹脂製部材(長さ500mm、半管状部(R部)の仮想直径88.6mm、厚さ1mm、耐熱温度350℃)を作製した。この樹脂製部材3の波長2~15μmにおける放射率εは95%であった。 As shown in FIG. 1, PI (polyimide) resin member (length 500 mm, virtual diameter of semi-tubular part (R part) 88.6 mm, thickness 1 mm simulating resin member 3 constituting the vehicle main body. , Heat resistant temperature 350 ° C.). The emissivity ε 3 of this resin member 3 at a wavelength of 2 to 15 μm was 95%.
 図1に示すように、上記樹脂製部材3の半管状部(R部)に対し放熱抑制部bが20mmの間隔で対面するように配管2を配置した上で、室温(20℃)下において、配管2の内部に750℃の空気を供給速度0.01kg/秒で30分間供給した。
 上記空気流通定常時における、配管2を構成する放熱部aの平均表面温度は413℃であり、放熱抑制部bの平均表面温度は551℃であった。また、上記空気流通定常時における、樹脂製部材3の平均表面度は153℃であり、最高表面温度は195℃であった。
As shown in FIG. 1, after arranging the piping 2 so that the heat radiation suppression part b faces the semi-tubular part (R part) of the resin member 3 at an interval of 20 mm, at room temperature (20 ° C.) The air at 750 ° C. was supplied to the inside of the pipe 2 at a supply rate of 0.01 kg / second for 30 minutes.
The average surface temperature of the heat dissipating part a constituting the pipe 2 at the time of steady air circulation was 413 ° C., and the average surface temperature of the heat dissipating suppressing part b was 551 ° C. Further, the average surface degree of the resin member 3 at the time of steady air circulation was 153 ° C., and the maximum surface temperature was 195 ° C.
(比較例1)
 実施例1において、配管2に代えてSUS管(長さ500mm、外径48.6mm、厚さ1mm)を用い、実施例1で用いたものと同じ樹脂製部材3に対して20mmの間隔で対面するように配置した上で、実施例1と同様に、室温(20℃)下において、SUS管の内部に750℃の空気を供給速度0.01kg/秒で30分間供給した。
 上記空気流通時における、SUS管の下部側(樹脂製部材3とは反対側)の平均表面温度は411℃であり、SUS管の上部側(樹脂製部材3と対向する側)の平均表面温度は441℃であった。また、上記空気流通時における、樹脂製部材3の平均表面温度は204℃であり、最高表面温度は249℃であった。
(Comparative Example 1)
In Example 1, a SUS pipe (length 500 mm, outer diameter 48.6 mm, thickness 1 mm) was used instead of the pipe 2, and the same resin member 3 used in Example 1 was spaced by 20 mm. After arranging so as to face each other, air at 750 ° C. was supplied to the inside of the SUS tube at a supply rate of 0.01 kg / sec for 30 minutes at room temperature (20 ° C.) as in Example 1.
The average surface temperature of the lower side of the SUS pipe (opposite side of the resin member 3) during the air flow is 411 ° C., and the average surface temperature of the upper side of the SUS pipe (side facing the resin member 3) Was 441 ° C. Further, the average surface temperature of the resin member 3 during the air circulation was 204 ° C., and the maximum surface temperature was 249 ° C.
 実施例1で用いた配管2は、管状基材1の外表面に放熱部aと放熱抑制部bとが設けられてなり、放熱部aの波長2~15μmにおける放射率が、放熱抑制部bの波長2~15μmにおける放射率よりも高いことから、樹脂製部材3の平均表面温度を153℃に抑制することができ、最高表面温度も195℃に抑制することができる。このため、配管2をマフラー等の自動車排気ガス排出用配管として用いた場合には、車輌本体を構成する樹脂製部材3の熱劣化を抑制し、好適に使用することができる。
 一方、比較例1においては、SUS管全外表面における放射率が一様であることから、樹脂製部材3の平均表面温度が204℃と高く、最高表面温度も249℃と高く、SUS管からの熱の放出を充分に抑制することができない。このため、上記SUS管をマフラー等の自動車排気ガス排出用配管として用いた場合には、車輌本体を構成する樹脂製部材3の熱劣化を促進してしまうことが分かる。
The pipe 2 used in Example 1 is provided with a heat radiating part a and a heat radiating suppression part b on the outer surface of the tubular substrate 1, and the emissivity of the heat radiating part a at a wavelength of 2 to 15 μm is determined by the heat radiating suppression part b. Therefore, the average surface temperature of the resin member 3 can be suppressed to 153 ° C., and the maximum surface temperature can also be suppressed to 195 ° C. For this reason, when the pipe 2 is used as an automobile exhaust gas discharge pipe such as a muffler, it is possible to suppress the thermal deterioration of the resin member 3 constituting the vehicle body and to use it appropriately.
On the other hand, in Comparative Example 1, since the emissivity on the entire outer surface of the SUS tube is uniform, the average surface temperature of the resin member 3 is as high as 204 ° C., and the maximum surface temperature is also as high as 249 ° C. From the SUS tube The release of heat cannot be sufficiently suppressed. For this reason, when the said SUS pipe | tube is used as piping for exhaust gas exhausts, such as a muffler, it turns out that the thermal deterioration of the resin members 3 which comprise a vehicle main body is accelerated | stimulated.
 本発明によれば、管状基材の外表面に放熱部と放熱抑制部とが設けられてなるものであることにより、高温の流体が内部を流通した場合であっても、放熱抑制部によって対向する部材の熱劣化を抑制しつつ、放熱部から放熱して内部の温度上昇を抑制し得る新規な配管を提供することができるとともに、上記配管を有する車輌を提供することができる。 According to the present invention, since the heat radiating portion and the heat radiating suppression portion are provided on the outer surface of the tubular base material, even when a high-temperature fluid circulates inside, it is opposed by the heat radiating suppression portion. While suppressing the thermal deterioration of the member to be performed, it is possible to provide a new pipe that can radiate heat from the heat radiating portion and suppress an internal temperature rise, and it is possible to provide a vehicle having the above pipe.
1   管状基材
2   配管
3  車輌本体
4  フーリエ変換赤外分光光度計
51 入射光
52 反射光または透過光
6  反射鏡
7  回転台
8  試料
9  ハロゲンヒータ
10 検出器
11 冷却水
a  放熱部
b  放熱抑制部
X  高温反射率・透過率測定装置
h  ホルダー
DESCRIPTION OF SYMBOLS 1 Tubular base material 2 Piping 3 Vehicle body 4 Fourier transform infrared spectrophotometer 51 Incident light 52 Reflected light or transmitted light 6 Reflecting mirror 7 Turntable 8 Sample 9 Halogen heater 10 Detector 11 Cooling water a Heat radiation part b Heat radiation suppression part X High temperature reflectance / transmittance measuring device h Holder

Claims (8)

  1.  管状基材の外表面に放熱部と放熱抑制部とが設けられてなり、前記放熱部の波長2~15μmにおける放射率が、前記放熱抑制部の波長2~15μmにおける放射率よりも高いことを特徴とする配管。 A heat radiating portion and a heat radiating suppression portion are provided on the outer surface of the tubular base material, and the emissivity of the heat radiating portion at a wavelength of 2 to 15 μm is higher than the emissivity of the heat radiating suppression portion at a wavelength of 2 to 15 μm. Characteristic piping.
  2.  前記放熱部がセラミックス薄膜またはカーボン薄膜により形成されてなる請求項1に記載の配管。 The piping according to claim 1, wherein the heat radiating portion is formed of a ceramic thin film or a carbon thin film.
  3.  前記管状基材が金属管であって、前記放熱部が前記金属管を構成する金属の酸化物膜により形成されてなる請求項1に記載の配管。 2. The pipe according to claim 1, wherein the tubular base material is a metal tube, and the heat radiating portion is formed of a metal oxide film constituting the metal tube.
  4.  前記放熱部の波長2~15μmにおける放射率が60~99%である請求項1に記載の配管。 The piping according to claim 1, wherein the emissivity of the heat radiating part at a wavelength of 2 to 15 µm is 60 to 99%.
  5.  前記管状基材が金属管であって、前記放熱抑制部が前記金属管を構成する金属の酸化を抑制する酸化防止剤の塗布膜により形成されてなる請求項1に記載の配管。 2. The pipe according to claim 1, wherein the tubular base material is a metal tube, and the heat dissipation suppressing portion is formed of an anti-oxidant coating film that suppresses oxidation of the metal constituting the metal tube.
  6.  前記放熱抑制部の波長2~15μmにおける放射率が0.1~40%である請求項1に記載の配管。 2. The pipe according to claim 1, wherein the radiation rate of the heat radiation suppressing portion at a wavelength of 2 to 15 μm is 0.1 to 40%.
  7.  請求項1~請求項6のいずれかに記載の配管を有することを特徴とする車輌。 A vehicle comprising the pipe according to any one of claims 1 to 6.
  8.  請求項1~請求項6のいずれかに記載の配管を自動車排気ガス排出用配管として有する請求項7に記載の車輌。 The vehicle according to claim 7, comprising the pipe according to any one of claims 1 to 6 as an automobile exhaust gas exhaust pipe.
PCT/JP2012/059919 2011-04-27 2012-04-11 Pipe and rolling stock WO2012147517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011099464 2011-04-27
JP2011-099464 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147517A1 true WO2012147517A1 (en) 2012-11-01

Family

ID=47072040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059919 WO2012147517A1 (en) 2011-04-27 2012-04-11 Pipe and rolling stock

Country Status (1)

Country Link
WO (1) WO2012147517A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733406A4 (en) * 2011-07-12 2015-03-18 Nichias Corp Pipe cover, pipe structure and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157120U (en) * 1984-09-19 1986-04-17
JP2008001309A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Vehicular underfloor structure
JP2008240589A (en) * 2007-03-27 2008-10-09 Kokusan Buhin Kogyo Kk Engine exhaust structure
JP2010168998A (en) * 2009-01-22 2010-08-05 Ibiden Co Ltd Exhaust pipe paint, method of using exhaust pipe paint, and exhaust pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157120U (en) * 1984-09-19 1986-04-17
JP2008001309A (en) * 2006-06-26 2008-01-10 Toyota Motor Corp Vehicular underfloor structure
JP2008240589A (en) * 2007-03-27 2008-10-09 Kokusan Buhin Kogyo Kk Engine exhaust structure
JP2010168998A (en) * 2009-01-22 2010-08-05 Ibiden Co Ltd Exhaust pipe paint, method of using exhaust pipe paint, and exhaust pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733406A4 (en) * 2011-07-12 2015-03-18 Nichias Corp Pipe cover, pipe structure and vehicle
US9593798B2 (en) 2011-07-12 2017-03-14 Nichias Corporation Pipe cover, pipe structure and vehicle

Similar Documents

Publication Publication Date Title
WO2013008810A1 (en) Pipe cover, pipe structure and vehicle
TW303498B (en)
JP5137362B2 (en) Structure comprising a metal substrate and an inorganic material surface layer
WO2013125704A1 (en) Engine combustion chamber structure and inner wall structure of flow path
WO2006062183A1 (en) Transfer robot and transfer apparatus
TWI600787B (en) Methods and apparatus for delivering process gases to a substrate
JP6518664B2 (en) Substrate support including surface features that reduce reflection, and manufacturing techniques for fabricating the substrate support
TW202207286A (en) A coated liner assembly for a semiconductor processing chamber
CN100398696C (en) Emissivity-change-free pumping plate kit in a single wafer chamber
US20060027165A1 (en) Heated gas box for PECVD applications
EP1685585A1 (en) Tailored temperature uniformity
CN1833044A (en) Method of shielding effluents in spray devices
WO2012147517A1 (en) Pipe and rolling stock
TW201907048A (en) Thermal chamber with improved thermal uniformity
CN101915308A (en) Novel spraying cylinder sleeve and production process thereof
TWI819950B (en) Liner for processing chamber
JP2009150636A (en) High efficiency heat exchanger and air conditioner including it
JP7282769B2 (en) SUBSTRATE PROCESSING APPARATUS, METHOD OF PROCESSING SUBSTRATE, AND METHOD OF PRODUCING PROCESSED WORK
JPH0487178A (en) Heating device for semiconductor wafer
CN109778309A (en) Silicon epitaxial wafer manufacturing device
KR102461305B1 (en) Surface coating method of cooling jacket for ingot growing device
JP2003342752A (en) Heat resistant and corrosion resistant member for vacuum use, vacuum apparatus having parts obtained by using the same member and coating method therefor
KR100642377B1 (en) Apparatus of blocking radiant heat in MCVD process and Method of blocking radiant heat using the same
TW202241004A (en) Method of providing a reaction chamber, reaction chamber and laser evaporation system
TW201214570A (en) Transparent reflector plate for rapid thermal processing chamber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP