WO2012147402A1 - Printing blanket and method for producing same - Google Patents

Printing blanket and method for producing same Download PDF

Info

Publication number
WO2012147402A1
WO2012147402A1 PCT/JP2012/054409 JP2012054409W WO2012147402A1 WO 2012147402 A1 WO2012147402 A1 WO 2012147402A1 JP 2012054409 W JP2012054409 W JP 2012054409W WO 2012147402 A1 WO2012147402 A1 WO 2012147402A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
canvas
polyurethane elastic
polyurethane
elastic body
Prior art date
Application number
PCT/JP2012/054409
Other languages
French (fr)
Japanese (ja)
Inventor
永見 晴資
貴則 岩崎
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2013511961A priority Critical patent/JPWO2012147402A1/en
Publication of WO2012147402A1 publication Critical patent/WO2012147402A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N10/00Blankets or like coverings; Coverings for wipers for intaglio printing
    • B41N10/02Blanket structure
    • B41N10/04Blanket structure multi-layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • G03G15/162Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support details of the the intermediate support, e.g. chemical composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N2210/00Location or type of the layers in multi-layer blankets or like coverings
    • B41N2210/04Intermediate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N2210/00Location or type of the layers in multi-layer blankets or like coverings
    • B41N2210/10Location or type of the layers in multi-layer blankets or like coverings characterised by inorganic compounds, e.g. pigments

Definitions

  • the present invention relates to a printing blanket and a manufacturing method thereof, and more particularly to a printing blanket including a polyurethane elastic body layer containing a conductivity imparting agent and a manufacturing method thereof.
  • a transfer mechanism for transferring ink to a printing material such as paper is constituted by a printing blanket and a blanket cylinder.
  • This printing blanket is required to exhibit desired characteristics not only in the thickness direction but also in the surface direction in order to exhibit excellent print quality.
  • printing blankets are required to have not only thickness characteristics such as surface hardness and compression strain but also surface characteristics such as tensile strength within a predetermined range.
  • a canvas is adopted as a component of the printing blanket, and a polyurethane elastic body is laminated on one or both sides of the canvas to form a laminated structure of the canvas layer and the polyurethane elastic body layer on the printing blanket.
  • a desired tensile strength is exhibited by the canvas layer and a desired characteristic is exhibited in the thickness direction by the polyurethane elastic layer.
  • a printing blanket When a printing blanket is used for the transfer mechanism of the liquid developing electrophotographic apparatus, it has a predetermined conductivity in the thickness direction in order to use an electrical action for transferring the toner to the substrate. It will be required. On the other hand, it is not particularly required to impart conductivity in the thickness direction to a printing blanket used in conventional applications such as offset printing. For example, as shown in Patent Document 1 below, Adjustment of the surface resistivity for the purpose of countermeasures is being studied. For this reason, there has been little research on a printing blanket having conductivity in the thickness direction.
  • a printing blanket In a liquid developing electrophotographic apparatus or the like, a printing blanket is required to have a volume resistivity in the range of 1 ⁇ 10 4 ⁇ ⁇ cm to 1 ⁇ 10 10 ⁇ ⁇ cm. If a canvas layer is formed in the same manner as in the printing blanket, no matter how many conductivity-imparting agents are contained and the electrical resistance value of the polyurethane elastic layer is lowered, the electrical resistance of the canvas layer causes the thickness direction. It becomes difficult to impart desired conductivity to the surface.
  • the blanket for printing is formed only with the polyurethane elastic layer without the canvas layer, the tensile strength may be insufficient. That is, the conventional printing blanket has a problem that it is difficult to provide conductivity in the thickness direction which is required in a liquid developing electrophotographic apparatus or the like. Such a problem is common to not only printing blankets used in liquid development electrophotographic apparatuses but also printing blankets that require conductivity in the thickness direction.
  • An object of the present invention is to provide a printing blanket having predetermined mechanical characteristics and conductivity in the thickness direction, and thus used in a liquid developing electrophotographic apparatus. It is an object to provide a printing blanket suitable for the above.
  • the present invention related to a printing blanket for solving the above problems is a printing blanket used by being mounted on a blanket cylinder, the first polyurethane elastic layer, canvas layer from the blanket cylinder side to the outside,
  • the first polyurethane elastic body has at least a three-layer structure in order of the second polyurethane elastic body layer, and the first polyurethane elastic body layer and the second polyurethane elastic body layer contain a conductivity-imparting agent.
  • Layer and the second polyurethane elastic body layer are connected through an opening between the yarns of the canvas constituting the canvas layer, and the tensile stress at 3% elongation in the circumferential direction of the blanket cylinder is 100 MPa.
  • the volume resistivity is 1 ⁇ 10 4 ⁇ ⁇ cm or more and 1 ⁇ 10 10 ⁇ ⁇ cm or less.
  • the “tensile stress at 3% elongation” in the present invention intends a value obtained by conducting a tensile test based on JIS K6251. That is, the tensile stress is obtained by taking a dumbbell-shaped test piece from the printing blanket so that the circumferential direction of the blanket cylinder is the longitudinal direction, performing a tensile test on the dumbbell-shaped test piece, and then extending. A value obtained by dividing the load at the time when 3% reaches the sample cross-sectional area is intended.
  • volume resistivity of the printing blanket is intended to be a value measured at a DC voltage of 250 V based on JIS K 6911.
  • volume resistivity based on JIS K 6911 is measured on a sheet sample or the like formed of different materials on the front and back sides, the measured value is more than can be determined as an error depending on which side is the positive side. May be different.
  • volume resistivity is 1 ⁇ 10 4 ⁇ ⁇ cm or more and 1 ⁇ 10 10 ⁇ ⁇ cm or less” means that the inner surface in contact with the blanket cylinder is the positive electrode side and the outer surface in contact with the substrate is the negative electrode side. It is intended that both the measured value and the value measured by reversing these are within the above range.
  • the present invention provides a polyurethane raw material liquid containing a polyol, a polyisocyanate, and a conductivity-imparting agent, and immersing a canvas having openings between yarns on both sides of the canvas.
  • a first polyurethane elastic body layer and a second polyurethane elastic layer which are made to impregnate the canvas with the polyurethane raw material liquid and harden the polyurethane raw material liquid and are connected to both sides of the canvas layer made of the canvas through the openings.
  • a printing blanket manufacturing method is provided, wherein a printing blanket as described above is manufactured by forming a body layer.
  • the first polyurethane elastic layer and the second polyurethane elastic layer are provided inside and outside the canvas layer, desired mechanical properties are imparted to the printing blanket in the thickness direction and the plane direction. Yes.
  • the conductivity imparting agent is contained in both of these polyurethane elastic layers, and the first polyurethane elastic layer and the second polyurethane elastic layer are connected through the opening between the yarns of the canvas. It is possible to suppress the current flowing in the thickness direction of these polyurethane elastic layers from being blocked by the canvas. That is, according to the present invention, a printing blanket having predetermined mechanical characteristics and conductivity in the thickness direction is provided. For example, for printing suitable for use in a liquid developing electrophotographic apparatus. A blanket may be provided.
  • FIG. 1 is a schematic sectional view showing a sectional structure of a printing blanket according to an embodiment.
  • the printing blanket according to the present embodiment has a laminated structure as shown in FIG. 1, and the innermost layer in contact with the blanket cylinder (not shown) is constituted by the polyurethane elastic body layer 11.
  • the printing blanket according to the present embodiment is the outermost layer in addition to the three-layer structure in which the polyurethane elastic body layer 11, the canvas layer 12, and the polyurethane elastic body layer 13 are arranged in this order from the blanket cylinder side to the outside. It has a four-layer structure having the resin coating layer 14.
  • the polyurethane elastic layer 11 (hereinafter also referred to as “first polyurethane elastic layer 11”) serving as the innermost layer and the polyurethane elastic layer 13 (hereinafter referred to as “second polyurethane elastic layer 13”) outside the canvas layer 12 are used. Is connected through an opening between the yarns of the canvas forming the canvas layer 12.
  • the printing blanket 1 according to the present embodiment has the laminated structure as described above, and is mainly formed of the first polyurethane elastic body layer 11 and the second polyurethane elastic body layer 13 in the thickness direction such as compression elastic modulus and hardness.
  • the mechanical characteristics are adjusted to a desired value.
  • the mechanical properties in the plane direction such as tensile strength and elongation are mainly adjusted by the canvas layer 12, and 3 in the direction that is the circumferential direction of the blanket cylinder. It is formed so that the tensile stress at% elongation is 100 MPa or more.
  • the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 are connected to the printing blanket 1 of the present embodiment by forming the canvas layer 12 with a canvas having a predetermined opening. Moreover, by adding a conductivity-imparting agent to these polyurethane elastic body layers, predetermined conductivity in the thickness direction is imparted, and specifically, the volume resistivity is 1 ⁇ 10 4 ⁇ ⁇ cm or more, It is formed to be 1 ⁇ 10 10 ⁇ ⁇ cm or less.
  • a canvas having a gap portion between yarns is used instead of a general canvas in which warps and wefts are closely plain-woven.
  • the canvas used in the present embodiment is woven so that warps and wefts are provided at a predetermined interval, and the canvas is opened to a predetermined size between the yarns. A gap is provided.
  • the canvas layer 12 is formed using a canvas having an opening, and the first polyurethane elastic body layer 11 and the second polyurethane elastic body layer 13 are connected through the opening.
  • an electric flow path through the opening is formed in the thickness direction so that the volume resistivity of the printing blanket 1 is 1 ⁇ 10 4 ⁇ ⁇ cm or more and 1 ⁇ 10 10 ⁇ ⁇ cm or less. Is formed.
  • the canvas layer 12 can be formed by overlapping one or more canvases having openings.
  • the canvas layer 12 is preferably formed of a canvas having an opening size of 0.1 mm square or more, and may be formed of a canvas having an opening size of 0.1 mm square or more and 4 mm square or less.
  • the area ratio (opening ratio) of the opening in the entire canvas is preferably 5% or more and 70% or less, and more preferably 10% or more and 30% or less.
  • a dimension measuring instrument such as a video microscope or a magnifying projector.
  • the canvas natural fibers such as cotton and hemp, synthetic fibers such as polyester, polyamide, polyetheretherketone, and those made of semi-synthetic fibers such as acetate can be adopted, twisted yarns made of such fibers, Spun yarn and flat yarn can be used for warp and weft.
  • a predetermined opening in the canvas is required to cause the printing blanket 1 to exert a tensile stress of 100 MPa or more while forming a gap between the yarns in order to prevent this.
  • the canvas is formed of a thread having excellent strength, and a canvas formed of a thread made of aromatic polyamide (aramid) fiber is preferably used for forming the canvas layer 12.
  • both the warp and the weft of the canvas may be formed of aramid fibers, or only one of them may be formed of aramid fibers.
  • the aramid yarn is used so that at least this aramid yarn is effectively used for the tensile strength of the printing blanket.
  • the canvas layer is formed by adjusting the direction of the canvas so as to extend in the circumferential direction of the blanket cylinder.
  • a spun yarn made of para-aramid fiber which is a polymer of p-phenylenediamine and terephthalic acid chloride, or a twisted yarn having a thickness of 180 dTex to 350 dTex and warp and weft
  • the canvas adopted in any of the above can be mentioned.
  • the canvas forming the canvas layer 12 is subjected to surface treatment on warps and wefts for the purpose of improving the adhesion between the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13. Also good.
  • the first polyurethane elastic body layer 11 in contact with the canvas layer 12 from the inside and the second polyurethane elastic body layer 13 in contact with the canvas layer 12 from the outside are mechanical characteristics in the thickness direction of the printing blanket 1 as described above. It has a big influence on. Therefore, it is preferable that both polyurethane elastic body layers are adjusted to a predetermined hardness in that the printing blanket 1 of the present embodiment can exhibit excellent printability, the first polyurethane elastic body layer 11,
  • the second polyurethane elastic body layer 13 preferably has a JIS-A hardness of not less than 30 degrees and not more than 60 degrees.
  • the innermost layer for contacting the blanket cylinder is constituted by the first polyurethane elastic body layer 11, the first polyurethane elastic body layer 11, the blanket cylinder, From the viewpoint of adhesion, the surface roughness of the first polyurethane elastic layer 11 is preferably 20 ⁇ m or less in terms of the 10-point average roughness (Rz) defined in JIS B0601.
  • the first polyurethane elastic layer 11 is usually formed with a uniform thickness, and the printing blanket 1 of the present embodiment is thinner than the second polyurethane elastic layer 13. .
  • the second polyurethane elastic body layer 13 and the resin coating layer 14 are also usually formed so that their thicknesses are uniform.
  • the printing blanket 1 usually has a total thickness of 0.3 mm to 5.0 mm when used in a liquid developing electrophotographic apparatus, depending on the application.
  • the first polyurethane elastic body layer 11 is usually 20 ⁇ m to 1.0 mm in thickness
  • the second polyurethane elastic body layer 13 is usually 200 ⁇ m to 4.9 mm in thickness.
  • the canvas layer 12 is usually set to a thickness of 100 ⁇ m to 1.0 mm
  • the resin coating layer 14 is usually set to a thickness of 5 ⁇ m to 60 ⁇ m.
  • the raw materials used for forming the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 may be made common or different.
  • the polyurethane for forming these polyurethane elastic body layers may be a thermosetting polyurethane or a thermoplastic polyurethane, but the physical properties can be easily adjusted, and a conductivity-imparting agent.
  • Thermosetting polyurethane is preferable in that it can be easily dispersed.
  • the polyol constituting the thermosetting polyurethane is not particularly limited, and examples thereof include polyester polyols, polyolefin polyols, polyether polyols, polycarbonate polyols, polyacrylic polyols, and polyether ester polyols. These polyols can be used singly or in combination of two or more.
  • the hydroxyl value (OHV) of the polyol is not particularly limited, but is preferably 50 to 160 in that a cured product having an appropriate hardness can be formed.
  • the said hydroxyl value is a value calculated
  • the average number of functional groups of the polyol is not particularly limited, but is preferably 2 to 3 in that a polyurethane having an appropriate hardness can be formed.
  • the said average functional group number means the theoretical functional group number determined by the number of active hydrogen groups of the initiator molecule
  • the actual number of functional groups may be different due to the influence of side reactions during polymerization.
  • polyester polyol examples include compounds having 2 or more ester bonds and 2 or more hydroxyl groups in the molecule.
  • ring-opening polymers such as propionlactone, valerolactone, and caprolactone can be used.
  • polyolefin-based polyol examples include compounds having 4 or more olefins and 2 or more hydroxyl groups in the molecule.
  • a diene compound such as butadiene and isoprene and optionally styrene and acrylonitrile in the presence of an anionic polymerization catalyst such as metal lithium, metal potassium and metal sodium, ethylene oxide
  • polyether polyol examples include compounds having two or more ether bonds and two or more hydroxyl groups in the molecule. Specifically, for example, ethylene oxide, propylene oxide, propylene oxide, butylene oxide, or an alkylene oxide such as a mixture thereof in ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, or the like in the presence of an alkali catalyst or the like.
  • alkylene polyols obtained by addition polymerization, polytetramethylene glycol obtained by polymerizing tetrahydrofuran under a cationic catalyst, or a mixture thereof.
  • polycarbonate polyol examples include 1,6-hexanediol polycarbonate polyol, 1,6-hexanediol and 1,4-butanediol polycarbonate polyol, 1,6-hexanediol and 1,5-pentanediol.
  • examples thereof include polycarbonate polyol, polycarbonate polyol of 1,6-hexanediol and 3-methyl-1,5-pentanediol.
  • polyacrylic polyol examples include a polymer compound obtained by polymerizing an acrylic acid derivative monomer, or a polymer compound obtained by copolymerizing an acrylic acid derivative monomer and other monomers, with a hydroxyl group at the terminal. What you have. Among them, those obtained by polymerizing acrylic acid derivative monomers such as ethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate alone, and acrylic polyols copolymerized by adding other monomers such as styrene are preferably used. .
  • polyether ester-based polyol examples include compounds having two or more ether bonds, two or more ester bonds, and two or more hydroxyl groups in the molecule.
  • the polyether ester polyol preferably has a hydroxyl value (OHV) of 50 to 160 and an average number of functional groups of 2 to 3 in that a polyurethane elastic layer having an appropriate hardness can be formed.
  • the polyether ester-based polyol has a hydroxyl value (OHV) of 57 to 64 and the average number of functional groups of 2 to 3, and a hydroxyl value (OHV) of 150. It is more preferable to mix with a polyetherester polyol having an average functional group number of 2 to 3 and use it for forming the polyurethane elastic layer.
  • the polyether ester polyol having a hydroxyl value (OHV) of 150 to 160 and an average functional group number of 2 to 3 is a polyether having a hydroxyl value (OHV) of 57 to 64 and an average functional group number of 2 to 3. It has a function of reducing the viscosity of the mixture with the ester-based polyol, and can be expected to improve workability when forming the polyurethane elastic body layer. More specifically, the polyetherester polyol is preferably a polycondensate of adipic acid, diethylene glycol, and trimethylolpropane.
  • the polyether ester polyol having a hydroxyl value (OHV) of 150 to 160 and an average number of functional groups of 2 to 3 is 10 to 30% by mass in the polyol. It is preferably included.
  • the liquid developing electrophotographic apparatus includes 10 to 30% by mass of the polyether ester-based polyol having a hydroxyl value (OHV) of 150 to 160 and an average functional group number of 2 to 3 in the total polyol.
  • the polyurethane elastic body layer can be provided with an appropriate hardness required for a printing blanket for printing.
  • the polyisocyanate for forming a polyurethane together with such a polyol is not particularly limited. Specifically, for example, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diene is used.
  • Aromatic polyisocyanates such as polyphenylene polyisocyanate, tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate , Norbornene diisocyanate methyl (NBDI), xylylene diisocyanate (XDI), tetramethyl xylylene diisocyanate (TMXDI) and other aliphatic polyisocyanates, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate,
  • the second polyurethane elastic body layer 13 inside the resin coating layer 14 preferably exhibits excellent resistance to liquid paraffin, silicon oil, mineral oil, vegetable oil and the like used as a carrier for toner particles. . That is, when the thickness of the second polyurethane elastic layer 13 is changed by swelling by the carrier, or the compression elastic modulus or the like is changed, the print quality may be deteriorated, so that excellent print quality can be maintained. It is preferable that carrier resistance is imparted to at least the second polyurethane elastic layer 13. In order to exhibit such carrier resistance, it is preferable to form the second polyurethane elastic body layer 13 with polyurethane by a combination of polyester polyol and difunctional isocyanate.
  • Examples of the conductivity-imparting agent to be contained in the polyurethane elastic layer include inorganic particles such as carbon black, graphite, and metal particles, organic particles such as metal-coated resin particles and conductive polymer particles, carbon fibers, metal fibers, Examples thereof include inorganic fibers such as metal-coated glass fibers, and organic fibers such as metal-coated resin fibers and conductive polymer fibers.
  • the conductivity imparting agent carbon black and graphite are preferable, and in particular, both of the first polyurethane elastic body layer 11 and the second polyurethane elastic body layer 13 contain them. It is preferable.
  • Carbon black usually has a size of 1 ⁇ m or less (several tens of nm), whereas the graphite usually has a size exceeding 1 ⁇ m, and the particle size is larger than that of carbon black. Is larger than 1 order and has a crystal structure developed compared to carbon black. Therefore, graphite has a semi-metallic electronic state, and the conductivity of the particles themselves is usually superior to that of carbon black.
  • Examples of the carbon black include furnace black produced by a furnace method in which oil and gas are incompletely burned in a high-temperature gas, acetylene black produced by thermally decomposing hydrocarbons such as acetylene, and channel black. Can be adopted.
  • furnace black is employed as a conductivity imparting agent, for example, carbon blacks such as FEF, ISAF, and HAF that are classified by general names can be employed.
  • the carbon black although not particularly limited DBP oil absorption is preferably 65 ⁇ 168cm 3 / 100g.
  • DBP oil absorption of the carbon black is 65cm 3/100 g or more, it is ongoing voltage application to the printing blanket 1 according to the present embodiment first, second polyurethane elastomer layer 11 and 13
  • DBP oil absorption amount is less 168cm 3/100 g, has the advantage of capable of facilitating the formation of the polyurethane elastomer layer.
  • the DBP oil absorption amount is obtained by substituting the void volume in carbon black having a constant mass with a liquid and using the capacity as an index. Specifically, it refers to the amount of oil (cm 3 ) contained per 100 g of carbon black, and is a value measured by a method based on ASTM D3493-85a.
  • the DBP oil absorption can be an index representing the three-dimensional state of the aggregate of primary particles of the carbon black. That is, it is considered that carbon black tends to form a chain-like aggregate (structure) when the DBP oil absorption amount is large. Therefore, the one where the DBP oil absorption amount is larger can exhibit conductivity with a smaller content, and can further suppress the change in the electric resistance value due to continuous voltage application.
  • the graphite preferably has an average particle size of 8 ⁇ m or less, and preferably has an average particle size of 3 to 5 ⁇ m.
  • average particle size used for the size of graphite and the like is intended to be a D50 value measured by a particle size distribution analyzer using a laser diffraction scattering method.
  • the particle size of carbon black is usually determined by direct observation with an electron microscope and is represented by an arithmetic average value of measured values obtained by measuring the size of a plurality of particles.
  • the polyurethane elastic body layer preferably contains carbon black in any proportion within the range of 1% by mass to 4% by mass, and graphite is preferably within the range of 3% by mass to 6% by mass. It is preferable to make it contain in either ratio. It is preferable that the carbon black is included in the amount of 1 to 4% by mass.
  • the polyurethane elastic layer is imparted with appropriate conductivity. It is because it can do.
  • the carbon black also functions as a reinforcing material, an appropriate hardness can be imparted to the polyurethane elastic layer by containing 1% by mass or more in the polyurethane elastic layer.
  • the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 both have a JIS-A hardness of 30 degrees to 60 degrees, By containing 1% by mass or more of carbon black, these can exhibit excellent conductivity, and these can be made preferable hardness as described above.
  • the carbon black content is 4% by mass or less. Even if carbon black is excessively contained, not only the polyurethane elastic layer can exhibit more conductivity than necessary, but also the polyurethane elastic layer. This is because there is a possibility that dispersion in the inside becomes non-uniform, and there is a possibility that an aggregate due to carbon black is contained.
  • the content of the graphite is 3% by mass or more and 6% by mass or less because when the graphite is contained in the polyurethane elastic body layer by 3% by mass or more, the graphite blanket 1 is continuous. Even if electricity is applied, the electric resistance value can be made more difficult to change, and by setting the content to 6% by mass or less, there is an advantage that the hardness of the polyurethane elastic body layer can be adjusted more appropriately. It is.
  • the resin coating layer 14 provided so as to cover the surface of the second polyurethane elastic body layer 13 may be formed of a resin composition containing a conductivity-imparting agent. it can.
  • the resin coating layer 14 is formed of a polyester-based thermoplastic polyurethane or the like. It is preferable to make it.
  • the same conductivity-imparting agent as exemplified with respect to the material for forming the polyurethane elastic layer can be employed.
  • the resin coating layer 14 has unevenness on the surface or has a possibility of affecting the printing quality if the electric characteristics are locally different, the surface is smooth and has a fine conductivity. It is preferable that the imparting agent is uniformly dispersed. More specifically, the resin coating layer 14 is preferably formed such that the surface roughness is 7 ⁇ m or less in terms of the 10-point average roughness (Rz) defined in JIS B0601.
  • the resin coating layer 14 does not contain a material having a large particle size such as graphite as the conductivity-imparting agent, and the conductivity-imparting agent contained in the resin coating layer 14 is substantially only carbon black. It is preferable.
  • carbon black contained in the resin coating layer 14 has a smaller particle diameter than that used for forming the polyurethane elastic body layer, and has a high DBP oil absorption, which is advantageous for structure formation. Black is preferred.
  • the particle size is 60nm or less, DBP oil absorption, 160cm 3/100 g or more, is preferably not more than 190 cm 3/100 g.
  • content of carbon black in the resin coating layer 14 is set to any ratio within the range of more than 0 mass% and 50 mass% or less.
  • the printing blanket 1 has the canvas layer 12 formed of the canvas having an opening as described above, the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 are formed as described above. And the resin coating layer 14 can be made excellent in electroconductivity. And by this, desired electroconductivity can be provided with respect to the printing blanket 1, and the printing blanket can have the volume resistivity calculated
  • such a volume resistivity is required for the printing blanket because it exhibits a high volume resistivity exceeding the above range. If the thickness is not reduced, a desired conductivity is provided in the thickness direction. This is because it cannot be demonstrated. That is, the thickness is limited and it is difficult to adjust the mechanical properties in the thickness direction such as the compression modulus within a suitable range. Further, if it is intended to obtain a material having a low volume resistivity less than the above range, there is a possibility that a large amount of a conductivity imparting agent must be contained, and as a result, the first polyurethane elastic layer 11 and the second This is because it becomes difficult to impart desired elasticity to the polyurethane elastic layer 13.
  • the printing blanket according to the present embodiment is preferably formed of thermosetting polyurethane in adjusting the physical properties of the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 as described above.
  • a conductivity imparting agent such as carbon black or graphite is contained in the polyurethane in a liquid state before thermosetting. If it does so, the viscosity of the polyurethane raw material liquid used for formation of the 1st polyurethane elastic body layer 11 or the 2nd polyurethane elastic body layer 13 will become high, and it will become difficult to employ
  • the printing blanket 1 of the present embodiment can be manufactured by cast molding as described above.
  • a raw material liquid adjusting step for adjusting a polyurethane raw material liquid containing a polyisocyanate, a polyol, and a conductivity-imparting agent An impregnation step of immersing a canvas for forming the canvas layer 12 in the polyurethane raw material liquid so that the polyurethane raw material liquid is present in a predetermined thickness on both sides of the canvas and impregnating the canvas with the polyurethane raw material liquid;
  • the raw material liquid adjusting step is carried out, for example, by dispersing a conductivity-imparting agent such as carbon black or graphite in a polyester polyol, vacuum degassing, and further mixing a bifunctional polyisocyanate with the polyester polyol. be able to. Dispersion of the conductivity-imparting agent in the polyester polyol can be carried out using a general stirring device such as a homogenizer.
  • the impregnation step can be carried out using a mold having an outer mold and an inner mold that can be combined to form a cylindrical cavity.
  • a mold having an outer mold and an inner peripheral surface having a diameter larger than the outer periphery of the inner mold the inner mold is accommodated in the inner space, and the cavity is interposed between the inner mold and the inner mold.
  • a mold having an outer mold capable of forming a tee can be mentioned. Since the impregnation step is preferably performed under reduced pressure, a mold that can make the cavity into a sealed space and make the cavity into a reduced pressure state by evacuation or the like is used. Is preferred.
  • the impregnation step will be described in more detail.
  • the canvas is wound around the outer periphery of the inner mold to be accommodated in the outer mold, and the canvas is held in a cylindrical shape in the cavity. It can be carried out by injecting the polyurethane raw material liquid into a state in which the inside of the cavity is evacuated and decompressed.
  • the canvas is immersed in the polyurethane raw material liquid in the cavity, and the polyurethane raw material liquid can be present at a predetermined thickness on both sides of the canvas.
  • the polyurethane raw material liquid is impregnated from the outside to the inside of the canvas so that the inside of the canvas.
  • the polyurethane raw material liquid can be made to wrap around, and bubbles can be prevented from being mixed into the canvas layer formed by the canvas and the polyurethane elastic body layer formed by the polyurethane raw material liquid present on both surfaces of the canvas.
  • short cylindrical spacers whose inner diameter is slightly larger than the inner mold and whose outer diameter is equal to or less than the inner circumference of the outer mold are attached to both ends of the inner mold in the longitudinal direction.
  • the canvas By wrapping the canvas around the outer periphery of the spacer, inside the spacer, the canvas can be separated from the surface of the inner mold by the thickness of the spacer so that the canvas is wound around the inner mold.
  • the thickness of the polyurethane raw material liquid existing inside the canvas can be adjusted by the spacer. That is, an inner portion of the canvas is a portion that becomes the first polyurethane elastic body layer 11, and the thickness of the first polyurethane elastic body layer 11 formed by using the spacer can be adjusted.
  • the said polyurethane raw material liquid can be heated with this metal mold
  • the temperature and time in the curing step may be appropriately adjusted depending on the content of the polyurethane raw material liquid to be used. For example, when the polyurethane raw material liquid is semi-cured to such an extent that it can be demolded, the semi-cured product is removed from the mold. Then, it may be post-cured (aftercured) in a heating furnace.
  • the printing blanket 1 of this embodiment can be provided by providing the resin coating layer 14 by applying a solution to the outer peripheral surface of the molded product and drying the solution. If necessary, the surface smoothness of the resin coating layer may be improved by polishing the outer surface of the molded product before applying the resin solution.
  • the inner mold having a predetermined surface roughness is used.
  • the printing blanket according to the present embodiment is formed so that the surface of the first polyurethane elastic layer 11 has a 10-point average roughness (Rz) specified in JIS B0601 of 20 ⁇ m or less as described above. Therefore, it is preferable to use an inner mold having a surface roughness (10-point average roughness) of 20 ⁇ m or less as the inner mold.
  • the first polyurethane elastic body layer 11 is formed by the polyurethane raw material liquid impregnated from the outside through the canvas, the above-described inner mold is used, and thus the above-described after the curing step.
  • the above-described inner mold is used, and thus the above-described after the curing step.
  • the printing blanket obtained by such a manufacturing method since the first polyurethane elastic layer and the second polyurethane elastic layer are connected through the opening between the yarns of the canvas, these polyurethane elastic layers are arranged in the thickness direction. It can suppress that the electric current which flows is interrupted
  • Polyurethane elastic layer For the formation of the polyurethane elastic layer, a polyurethane raw material liquid consisting of “Formulation 1” in Table 1 below was used.
  • a blanket for printing has an inner mold having an outer diameter of 565 mm and a length of 400 mm, and an outer mold having an inner diameter of 584 mm and a length of 560 mm, and is sealed when the inner mold and the outer mold are combined.
  • a mold capable of forming a cylindrical cavity was used. Specifically, first, a canvas is wound around the inner mold so that the warp is in the circumferential direction, and the inner mold is accommodated in the outer mold, and the inside of the cavity is decompressed to 1300 Pa. The polyurethane raw material liquid produced based on this was poured into the cavity, and the canvas was immersed in the polyurethane raw material liquid. In this state, thermosetting at 150 ° C.
  • a 10 mm-thick test piece was prepared using a polyurethane raw material liquid having the same composition as that used in the production of the printing blanket, and the JIS-A hardness of the test piece was measured using a type A durometer hardness meter. .
  • a dumbbell-shaped test piece JIS No. 3 dumbbell was sampled so that the circumferential direction (warp direction) of the printing blanket was the length direction, and a tensile test was conducted according to JIS K6251. Tensile stress at 1% elongation And tensile stress at 3% elongation.
  • volume resistivity and surface resistivity were measured at 250 VDC using a resistivity meter “HIRESTA UP” manufactured by Mitsubishi Chemical Analytech.
  • the measurement is performed in two ways: when the measurement ring probe (model name “URSS”) is brought into contact with the surface of the resin coating layer, and when the ring probe is brought into contact with the first polyurethane elastic layer. It carried out in. Further, the surface roughness (10-point average roughness (Rz) defined in JIS B0601) was measured on both sides of the printing blanket. In addition, regarding the surface of the first polyurethane elastic layer, the surface roughness was measured in two ways, the warp direction and the weft direction of the canvas.
  • Printing blankets were prepared using the three canvases A to C, and the above evaluation was performed on these three printing blankets.
  • the evaluation results are summarized in Table 4 below.
  • the canvas B When the canvas B is used, the canvas does not have an opening, so that the polyurethane raw material liquid is not impregnated inside the canvas and the first polyurethane elastic body layer is not formed.
  • the volume resistivity and surface resistivity from the elastic layer side were measured by bringing the probe into contact with the canvas exposed.
  • the printing blanket of Example 1 and the printing blanket of Comparative Example 2 were able to exert a sufficient transfer electric field on the surface of the resin coating layer.
  • a sufficient transfer electric field could not be obtained.
  • the printing blanket of Example 1 showed no problem with respect to the tensile strength, but the printing blanket of Comparative Example 2 had a low tensile strength, so that when the blanket cylinder was rotated, the surface of the printing blanket surface was reduced. As a result, the peripheral speed fluctuated.
  • the printing blanket of Comparative Example 2 has a rough inner surface roughness in contact with the blanket cylinder, the image corresponding to the canvas texture appears in the transferred image.

Abstract

This printing blanket of the invention has at least a three-layer structure composed of a first polyurethane elastic body layer, a canvas layer, and a second polyurethane elastic body layer. The tensile stress under 3% elongation in the direction that becomes the peripheral direction of the blanket cylinder is 100 MPa or greater. The first polyurethane elastic body layer and second polyurethane elastic body layer contain a conductivity-imparting agent, and the first polyurethane elastic body layer and second polyurethane elastic body layer are joined via openings between the threads of the canvas that forms the canvas layer.

Description

印刷用ブランケット、及び、その製造方法Blanket for printing and manufacturing method thereof
 本発明は、印刷用ブランケットとその製造方法とに関し、より詳しくは、導電性付与剤を含有するポリウレタン弾性体層を備えた印刷用ブランケットとその製造方法とに関する。 The present invention relates to a printing blanket and a manufacturing method thereof, and more particularly to a printing blanket including a polyurethane elastic body layer containing a conductivity imparting agent and a manufacturing method thereof.
 従来、オフセット印刷機などにおいては紙などの被印刷物にインクを転写するための転写機構が印刷用ブランケットとブランケット胴とによって構成されている。
 この印刷用ブランケットには、優れた印刷品質を発揮させるために、厚み方向のみならず面方向においても所望の特性を示すことが求められている。例えば、印刷用ブランケットには、表面硬さ、圧縮歪みなどの厚み方向の特性のみならず抗張力などの面方向の特性を所定範囲内にさせることが求められている。
 このようなことから印刷用ブランケットの構成部材として帆布を採用し、該帆布の片面、又は、両面にポリウレタン弾性体を積層して印刷用ブランケットに帆布層とポリウレタン弾性体層との積層構造を形成させ、前記帆布層によって所望の抗張力を発揮させるとともに前記ポリウレタン弾性体層によって厚み方向に所望の特性を発揮させることが行われている。
2. Description of the Related Art Conventionally, in an offset printing machine or the like, a transfer mechanism for transferring ink to a printing material such as paper is constituted by a printing blanket and a blanket cylinder.
This printing blanket is required to exhibit desired characteristics not only in the thickness direction but also in the surface direction in order to exhibit excellent print quality. For example, printing blankets are required to have not only thickness characteristics such as surface hardness and compression strain but also surface characteristics such as tensile strength within a predetermined range.
For this reason, a canvas is adopted as a component of the printing blanket, and a polyurethane elastic body is laminated on one or both sides of the canvas to form a laminated structure of the canvas layer and the polyurethane elastic body layer on the printing blanket. In addition, a desired tensile strength is exhibited by the canvas layer and a desired characteristic is exhibited in the thickness direction by the polyurethane elastic layer.
 ところで、近年、複写機やレーザープリンターなどの電子写真装置においては、更なる印刷品質の向上が求められるようになってきており、1μm前後にまで微細化させたトナー粒子をキャリアと呼ばれる液体中に分散させた液体トナーの利用が検討されている。
 このような液体トナーを用いた液体現像電子写真装置においては、従来の乾式現像方式において利用されているような感光ドラム方式のもの以外に前記のような印刷用ブランケットとブランケット胴とを組み合わせた方式の転写機構を採用することが検討されている。
Incidentally, in recent years, in electrophotographic apparatuses such as copying machines and laser printers, further improvement in printing quality has been demanded, and toner particles that have been refined to about 1 μm are contained in a liquid called a carrier. The use of dispersed liquid toner is being studied.
In such a liquid developing electrophotographic apparatus using a liquid toner, a method in which a printing blanket and a blanket cylinder are combined in addition to the photosensitive drum method used in the conventional dry developing method. The adoption of this transfer mechanism is being studied.
 なお、液体現像電子写真装置の転写機構に印刷用ブランケットを採用するのに際しては、被印刷物へのトナーの転写に電気的な作用を利用すべく、その厚み方向に所定の導電性を有することが求められることになる。一方で、従来のオフセット印刷などの用途において用いられている印刷用ブランケットには、厚み方向への導電性を付与することが特に求められてはおらず、例えば、下記特許文献1に示すように静電気対策などを目的とした表面抵抗率の調整が検討されている程度である。
 そのため、厚み方向に導電性を有する印刷用ブランケットについてはこれまで殆ど検討がされていない。
When a printing blanket is used for the transfer mechanism of the liquid developing electrophotographic apparatus, it has a predetermined conductivity in the thickness direction in order to use an electrical action for transferring the toner to the substrate. It will be required. On the other hand, it is not particularly required to impart conductivity in the thickness direction to a printing blanket used in conventional applications such as offset printing. For example, as shown in Patent Document 1 below, Adjustment of the surface resistivity for the purpose of countermeasures is being studied.
For this reason, there has been little research on a printing blanket having conductivity in the thickness direction.
日本国特開2003-001964号公報Japanese Unexamined Patent Publication No. 2003-001964
 なお、液体現像電子写真装置などにおいては、印刷用ブランケットを1×10Ω・cm~1×1010Ω・cmの範囲の内のいずれかの体積抵抗率とすることが求められるが、従来の印刷用ブランケットと同様にして帆布層を形成させてしまうと、いかに多くの導電性付与剤を含有させてポリウレタン弾性体層の電気抵抗値を低下させても前記帆布層の電気抵抗によって厚み方向に所望の導電性を付与することが難しくなる。 In a liquid developing electrophotographic apparatus or the like, a printing blanket is required to have a volume resistivity in the range of 1 × 10 4 Ω · cm to 1 × 10 10 Ω · cm. If a canvas layer is formed in the same manner as in the printing blanket, no matter how many conductivity-imparting agents are contained and the electrical resistance value of the polyurethane elastic layer is lowered, the electrical resistance of the canvas layer causes the thickness direction. It becomes difficult to impart desired conductivity to the surface.
 逆に、帆布層を無くしてポリウレタン弾性体層のみで印刷用ブランケットを形成させると抗張力が不十分なものとなってしまうおそれを有する。
 即ち、従来の印刷用ブランケットは、液体現像電子写真装置などにおいて要望されている厚み方向への導電性を付与することが困難であるという問題を有している。
 なお、このような問題は、液体現像電子写真装置に利用される印刷用ブランケットのみならず、厚み方向への導電性が求められる印刷用ブランケットにおいて共通する問題である。
Conversely, if the blanket for printing is formed only with the polyurethane elastic layer without the canvas layer, the tensile strength may be insufficient.
That is, the conventional printing blanket has a problem that it is difficult to provide conductivity in the thickness direction which is required in a liquid developing electrophotographic apparatus or the like.
Such a problem is common to not only printing blankets used in liquid development electrophotographic apparatuses but also printing blankets that require conductivity in the thickness direction.
 本発明は、このような問題を解決することを課題としており、所定の機械的特性を有しつつ厚み方向への導電性を有する印刷用ブランケットを提供し、ひいては液体現像電子写真装置に利用するのに適した印刷用ブランケットを提供することを課題としている。 SUMMARY OF THE INVENTION An object of the present invention is to provide a printing blanket having predetermined mechanical characteristics and conductivity in the thickness direction, and thus used in a liquid developing electrophotographic apparatus. It is an object to provide a printing blanket suitable for the above.
 前記課題を解決するための印刷用ブランケットに係る本発明は、ブランケット胴に装着させて用いられる印刷用ブランケットであって、前記ブランケット胴側から外側に向けて第一ポリウレタン弾性体層、帆布層、第二ポリウレタン弾性体層の順となる3層構造を少なくとも有しており、前記第一ポリウレタン弾性体層及び前記第二ポリウレタン弾性体層に導電性付与剤が含有され、該第一ポリウレタン弾性体層と前記第二ポリウレタン弾性体層とが前記帆布層を構成している帆布の糸間の開口を通じて接続されており、前記ブランケット胴の周方向となる方向での3%伸びにおける引張応力が100MPa以上で、体積抵抗率が1×10Ω・cm以上、1×1010Ω・cm以下であることを特徴としている。 The present invention related to a printing blanket for solving the above problems is a printing blanket used by being mounted on a blanket cylinder, the first polyurethane elastic layer, canvas layer from the blanket cylinder side to the outside, The first polyurethane elastic body has at least a three-layer structure in order of the second polyurethane elastic body layer, and the first polyurethane elastic body layer and the second polyurethane elastic body layer contain a conductivity-imparting agent. Layer and the second polyurethane elastic body layer are connected through an opening between the yarns of the canvas constituting the canvas layer, and the tensile stress at 3% elongation in the circumferential direction of the blanket cylinder is 100 MPa. As described above, the volume resistivity is 1 × 10 4 Ω · cm or more and 1 × 10 10 Ω · cm or less.
 なお、本発明における「3%伸びにおける引張応力」とは、JIS K6251に基づく引張試験を行って得られる値を意図している。すなわち、前記引張応力は、ブランケット胴の周方向となる方向が長手方向となるようにダンベル状試験片を印刷用ブランケットから採取して、該ダンベル状試験片に対して引張試験を実施して伸びが3%に至った際の荷重を試料断面積で除した値を意図している。 The “tensile stress at 3% elongation” in the present invention intends a value obtained by conducting a tensile test based on JIS K6251. That is, the tensile stress is obtained by taking a dumbbell-shaped test piece from the printing blanket so that the circumferential direction of the blanket cylinder is the longitudinal direction, performing a tensile test on the dumbbell-shaped test piece, and then extending. A value obtained by dividing the load at the time when 3% reaches the sample cross-sectional area is intended.
 また、印刷用ブランケットの「体積抵抗率」については、JIS K 6911に基づいて直流250Vの電圧で測定される値を意図している。
 なお、表裏が異なる材質によって形成されているシート試料等にJIS K 6911に基づく体積抵抗率の測定を行った場合には、表裏何れを正極側とするかで誤差として判断できる以上に測定値を異ならせることがある。本明細書における「体積抵抗率が1×10Ω・cm以上、1×1010Ω・cm以下」とは、ブランケット胴に接する内面を正極側とし、且つ被印刷物に接する外面を負極側として測定した値、及び、これらを逆にして測定した値のいずれもが上記範囲内であることを意図する。
Further, the “volume resistivity” of the printing blanket is intended to be a value measured at a DC voltage of 250 V based on JIS K 6911.
In addition, when the volume resistivity based on JIS K 6911 is measured on a sheet sample or the like formed of different materials on the front and back sides, the measured value is more than can be determined as an error depending on which side is the positive side. May be different. In this specification, “volume resistivity is 1 × 10 4 Ω · cm or more and 1 × 10 10 Ω · cm or less” means that the inner surface in contact with the blanket cylinder is the positive electrode side and the outer surface in contact with the substrate is the negative electrode side. It is intended that both the measured value and the value measured by reversing these are within the above range.
 また、本発明は、上記課題を解決すべく、ポリオールとポリイソシアネートと導電性付与剤とを含有するポリウレタン原料液中に糸間に開口を有する帆布を浸漬させて該帆布の両面において前記ポリウレタン原料液を存在させるとともに該帆布に前記ポリウレタン原料液を含浸させ、該ポリウレタン原料液を硬化させて前記帆布からなる帆布層の両側に前記開口を通じて接続された第一ポリウレタン弾性体層と第二ポリウレタン弾性体層とを形成させて前記のような印刷用ブランケットを製造することを特徴とする印刷用ブランケットの製造方法を提供する。 In order to solve the above problems, the present invention provides a polyurethane raw material liquid containing a polyol, a polyisocyanate, and a conductivity-imparting agent, and immersing a canvas having openings between yarns on both sides of the canvas. A first polyurethane elastic body layer and a second polyurethane elastic layer which are made to impregnate the canvas with the polyurethane raw material liquid and harden the polyurethane raw material liquid and are connected to both sides of the canvas layer made of the canvas through the openings. A printing blanket manufacturing method is provided, wherein a printing blanket as described above is manufactured by forming a body layer.
 本発明においては、帆布層の内外に第一ポリウレタン弾性体層と第二ポリウレタン弾性体層とが設けられていることから厚み方向、及び、面方向において所望の機械的特性を印刷用ブランケットに付与しうる。
 しかも、これらのポリウレタン弾性体層の両方に導電性付与剤が含有されており、且つ、帆布の糸間の開口を通じて第一ポリウレタン弾性体層と第二ポリウレタン弾性体層を接続させていることからこれらのポリウレタン弾性体層を厚み方向に流れる電流が帆布で遮断されることを抑制させることができる。
 即ち、本発明によれば、所定の機械的特性を有しつつ厚み方向への導電性を有する印刷用ブランケットが提供され、例えば、液体現像電子写真装置などに利用されるのに適した印刷用ブランケットが提供され得る。
In the present invention, since the first polyurethane elastic layer and the second polyurethane elastic layer are provided inside and outside the canvas layer, desired mechanical properties are imparted to the printing blanket in the thickness direction and the plane direction. Yes.
In addition, the conductivity imparting agent is contained in both of these polyurethane elastic layers, and the first polyurethane elastic layer and the second polyurethane elastic layer are connected through the opening between the yarns of the canvas. It is possible to suppress the current flowing in the thickness direction of these polyurethane elastic layers from being blocked by the canvas.
That is, according to the present invention, a printing blanket having predetermined mechanical characteristics and conductivity in the thickness direction is provided. For example, for printing suitable for use in a liquid developing electrophotographic apparatus. A blanket may be provided.
一実施形態に係る印刷用ブランケットの断面構造を示した概略断面図。1 is a schematic sectional view showing a sectional structure of a printing blanket according to an embodiment.
 以下に本発明に係る印刷用ブランケットを液体現像電子写真装置に用いる場合を主たる例として具体的に説明する。 Hereinafter, the case where the printing blanket according to the present invention is used in a liquid developing electrophotographic apparatus will be specifically described as a main example.
 本実施形態に係る印刷用ブランケットは、図1に示すように積層構造を有しており、ブランケット胴(図示せず)に当接される最内層がポリウレタン弾性体層11によって構成されている。
 そして、本実施形態に係る印刷用ブランケットは、前記ブランケット胴側から外側に向けてポリウレタン弾性体層11、帆布層12、ポリウレタン弾性体層13の順となる3層構造に加え、最外層となる樹脂被覆層14を有する4層構造となっている。
 なお、前記最内層となるポリウレタン弾性体層11(以下「第一ポリウレタン弾性体層11」ともいう)と帆布層12の外側のポリウレタン弾性体層13(以下「第二ポリウレタン弾性体層13」ともいう)とは、前記帆布層12を形成している帆布の糸間の開口を通じて接続されている。
The printing blanket according to the present embodiment has a laminated structure as shown in FIG. 1, and the innermost layer in contact with the blanket cylinder (not shown) is constituted by the polyurethane elastic body layer 11.
The printing blanket according to the present embodiment is the outermost layer in addition to the three-layer structure in which the polyurethane elastic body layer 11, the canvas layer 12, and the polyurethane elastic body layer 13 are arranged in this order from the blanket cylinder side to the outside. It has a four-layer structure having the resin coating layer 14.
The polyurethane elastic layer 11 (hereinafter also referred to as “first polyurethane elastic layer 11”) serving as the innermost layer and the polyurethane elastic layer 13 (hereinafter referred to as “second polyurethane elastic layer 13”) outside the canvas layer 12 are used. Is connected through an opening between the yarns of the canvas forming the canvas layer 12.
 本実施形態に係る印刷用ブランケット1は、上記のような積層構造を有し、主として、前記第一ポリウレタン弾性体層11、及び、第二ポリウレタン弾性体層13によって圧縮弾性率や硬度といった厚み方向の機械的特性が所望の値となるように調整されている。
 また、本実施形態に係る印刷用ブランケット1は、引張強さ、伸びといった面方向の機械的特性が、主として前記帆布層12によって調整されており、前記ブランケット胴の周方向となる方向での3%伸びにおける引張応力が100MPa以上となるように形成されている。
 さらに、本実施形態の印刷用ブランケット1には、前記帆布層12を所定の開口を有する帆布で形成させることによって前記第一ポリウレタン弾性体層11と前記第二ポリウレタン弾性体層13とを接続させ、しかも、これらのポリウレタン弾性体層に導電性付与剤を含有させることによって厚み方向における所定の導電性が付与されており、具体的には、体積抵抗率が1×10Ω・cm以上、1×1010Ω・cm以下となるように形成されている。
The printing blanket 1 according to the present embodiment has the laminated structure as described above, and is mainly formed of the first polyurethane elastic body layer 11 and the second polyurethane elastic body layer 13 in the thickness direction such as compression elastic modulus and hardness. The mechanical characteristics are adjusted to a desired value.
In the printing blanket 1 according to the present embodiment, the mechanical properties in the plane direction such as tensile strength and elongation are mainly adjusted by the canvas layer 12, and 3 in the direction that is the circumferential direction of the blanket cylinder. It is formed so that the tensile stress at% elongation is 100 MPa or more.
Furthermore, the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 are connected to the printing blanket 1 of the present embodiment by forming the canvas layer 12 with a canvas having a predetermined opening. Moreover, by adding a conductivity-imparting agent to these polyurethane elastic body layers, predetermined conductivity in the thickness direction is imparted, and specifically, the volume resistivity is 1 × 10 4 Ω · cm or more, It is formed to be 1 × 10 10 Ω · cm or less.
 上記のような特性を印刷用ブランケット1に付与するために、本実施形態においては、経糸と緯糸とが緊密に平織りされた一般的な帆布ではなく、糸間に間隙部を備えた帆布が帆布層12の形成に用いられており、本実施形態における前記帆布は、経糸どうし、及び、緯糸どうしが所定の間隔を設けるようにして織成されており、糸間に所定の大きさに開口する間隙部を備えている。 In order to provide the printing blanket 1 with the characteristics as described above, in this embodiment, a canvas having a gap portion between yarns is used instead of a general canvas in which warps and wefts are closely plain-woven. The canvas used in the present embodiment is woven so that warps and wefts are provided at a predetermined interval, and the canvas is opened to a predetermined size between the yarns. A gap is provided.
 なお、従来の印刷用ブランケットでは、糸どうしが緊密な状態となるように織成された帆布が用いられているが、本実施形態においては、厚み方向への導電性を印刷用ブランケットに付与することからこのように開口を有する帆布を用いることが重要な要件となる。
 即ち、帆布は、通常、合成繊維や天然繊維からなる糸を用いて形成されているために導電性を有しておらず、従来の印刷用ブランケットのように糸どうしが緊密な状態となっている帆布を用いると、いかにポリウレタン弾性体層に多量の導電性付与剤を含有させてその電気抵抗値を低下させても該帆布層が障壁となって厚み方向に所望の導電性を付与することが難しくなる。
In the conventional printing blanket, a canvas woven so that the yarns are in close contact with each other is used, but in this embodiment, conductivity in the thickness direction is imparted to the printing blanket. Therefore, it is an important requirement to use a canvas having an opening in this way.
That is, since canvas is usually formed using yarns made of synthetic fibers or natural fibers, it does not have conductivity, and the yarns are in a tight state like conventional printing blankets. If the canvas elastic layer is made to contain a large amount of conductivity imparting agent and its electrical resistance value is lowered, the canvas layer becomes a barrier and imparts desired conductivity in the thickness direction. Becomes difficult.
 本実施形態に係る印刷用ブランケット1においては、開口を有する帆布を用いて帆布層12を形成させ、しかも、この開口を通じて第一ポリウレタン弾性体層11と第二ポリウレタン弾性体層13とを接続させることでこの開口を通じた電気の流路を厚み方向に形成させており、当該印刷用ブランケット1の体積抵抗率が1×10Ω・cm以上、1×1010Ω・cm以下となるように形成されている。
 なお、前記帆布層12は、開口を有する帆布を1枚又は複数枚重ね合わせて形成させることができる。
In the printing blanket 1 according to the present embodiment, the canvas layer 12 is formed using a canvas having an opening, and the first polyurethane elastic body layer 11 and the second polyurethane elastic body layer 13 are connected through the opening. Thus, an electric flow path through the opening is formed in the thickness direction so that the volume resistivity of the printing blanket 1 is 1 × 10 4 Ω · cm or more and 1 × 10 10 Ω · cm or less. Is formed.
The canvas layer 12 can be formed by overlapping one or more canvases having openings.
 この開口は、広い方が印刷用ブランケット1の導電性を確保する上において有利となる反面、過度に広い開口を帆布に形成させると印刷用ブランケット1に十分な抗張力を発揮させることが困難になる。
 このようなことから前記帆布層12は、開口の大きさが0.1mm角以上の帆布によって形成させることが好ましく、開口の大きさが0.1mm角以上4mm角以下の帆布によって形成させることが好ましい。
 また、帆布全体に占める開口の面積割合(開口率)は、5%以上、70%以下であることが好ましく、10%以上、30%以下であることがより好ましい。
A wider opening is advantageous in securing the conductivity of the printing blanket 1, but if an excessively wide opening is formed in the canvas, it becomes difficult to exert a sufficient tensile strength on the printing blanket 1. .
For this reason, the canvas layer 12 is preferably formed of a canvas having an opening size of 0.1 mm square or more, and may be formed of a canvas having an opening size of 0.1 mm square or more and 4 mm square or less. preferable.
Further, the area ratio (opening ratio) of the opening in the entire canvas is preferably 5% or more and 70% or less, and more preferably 10% or more and 30% or less.
 なお、帆布を選択するのにあたって、どのような開口がどの程度の面積割合で形成されているかについてはビデオマイクロスコープや拡大投影機などの寸法測定機器によって確認すればよい。 In selecting a canvas, what kind of opening is formed and what area ratio may be confirmed by a dimension measuring instrument such as a video microscope or a magnifying projector.
 前記帆布としては、綿、麻などの天然繊維、ポリエステル、ポリアミド、ポリエーテルエーテルケトンなどの合成繊維、アセテートなどの半合成繊維からなるものを採用することができ、このような繊維からなる撚糸、紡績糸、フラットヤーンを経糸や緯糸に採用することができる。
 ただし、本実施形態においては、上記のように帆布に所定の開口このようなことを防止するために糸間を形成させながらも印刷用ブランケット1に100MPa以上の引張応力を発揮させる必要があるために、帆布を強度に優れた糸で形成させていることが好ましく、芳香族ポリアミド(アラミド)繊維からなる糸で形成された帆布を前記帆布層12の形成に用いることが好ましい。
As the canvas, natural fibers such as cotton and hemp, synthetic fibers such as polyester, polyamide, polyetheretherketone, and those made of semi-synthetic fibers such as acetate can be adopted, twisted yarns made of such fibers, Spun yarn and flat yarn can be used for warp and weft.
However, in the present embodiment, as described above, a predetermined opening in the canvas is required to cause the printing blanket 1 to exert a tensile stress of 100 MPa or more while forming a gap between the yarns in order to prevent this. In addition, it is preferable that the canvas is formed of a thread having excellent strength, and a canvas formed of a thread made of aromatic polyamide (aramid) fiber is preferably used for forming the canvas layer 12.
 なお、帆布の経糸と緯糸との両方をアラミド繊維で形成させていても、片方のみをアラミド繊維で形成させていてもよい。
 ただし、経糸と緯糸との内の片方のみをアラミド撚糸、アラミド紡績糸、アラミドヤーンといったアラミド糸とする場合には、少なくともこのアラミド糸が印刷用ブランケットの抗張力に有効活用されるように該アラミド糸をブランケット胴の周方向に延在させるように帆布の向きを調整して帆布層を形成させることが好ましい。
Note that both the warp and the weft of the canvas may be formed of aramid fibers, or only one of them may be formed of aramid fibers.
However, when only one of the warp and the weft is an aramid yarn such as an aramid twisted yarn, an aramid spun yarn, an aramid yarn, the aramid yarn is used so that at least this aramid yarn is effectively used for the tensile strength of the printing blanket. Preferably, the canvas layer is formed by adjusting the direction of the canvas so as to extend in the circumferential direction of the blanket cylinder.
 このような好ましい帆布としては、例えば、p-フェニレンジアミンとテレフタル酸クロライドとの重合物であるパラ系アラミド繊維からなる紡績糸、又は、撚糸で太さ180dTex以上350dTex以下のものが経糸と緯糸とのいずれかに採用された帆布を挙げることができる。
 なお、該帆布層12を形成する帆布には、第一ポリウレタン弾性体層11、及び、第二ポリウレタン弾性体層13との接着性向上を図る目的で経糸や緯糸に表面処理を施すなどしてもよい。
As such a preferred canvas, for example, a spun yarn made of para-aramid fiber, which is a polymer of p-phenylenediamine and terephthalic acid chloride, or a twisted yarn having a thickness of 180 dTex to 350 dTex and warp and weft The canvas adopted in any of the above can be mentioned.
The canvas forming the canvas layer 12 is subjected to surface treatment on warps and wefts for the purpose of improving the adhesion between the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13. Also good.
 前記帆布層12に内側から接する第一ポリウレタン弾性体層11、及び、前記帆布層12に外側から接する第二ポリウレタン弾性体層13は、前記のように印刷用ブランケット1の厚み方向における機械的特性に大きな影響を与える。したがって、本実施形態の印刷用ブランケット1に優れた印刷性を発揮させ得る点においては、両ポリウレタン弾性体層が所定の硬さに調整されていることが好ましく前記第一ポリウレタン弾性体層11、及び、前記第二ポリウレタン弾性体層13は、いずれもがJIS-A硬度で30度以上60度以下の硬さを有していることが好ましい。 The first polyurethane elastic body layer 11 in contact with the canvas layer 12 from the inside and the second polyurethane elastic body layer 13 in contact with the canvas layer 12 from the outside are mechanical characteristics in the thickness direction of the printing blanket 1 as described above. It has a big influence on. Therefore, it is preferable that both polyurethane elastic body layers are adjusted to a predetermined hardness in that the printing blanket 1 of the present embodiment can exhibit excellent printability, the first polyurethane elastic body layer 11, The second polyurethane elastic body layer 13 preferably has a JIS-A hardness of not less than 30 degrees and not more than 60 degrees.
 また、本実施形態の印刷用ブランケット1は、ブランケット胴に当接させるための最内層を前記第一ポリウレタン弾性体層11で構成させているため、該第一ポリウレタン弾性体層11とブランケット胴との密着性の観点から、前記第一ポリウレタン弾性体層11の表面粗さがJIS B0601に規定の10点平均粗さ(Rz)で20μm以下となるように形成されていることが好ましい。 In the printing blanket 1 of the present embodiment, since the innermost layer for contacting the blanket cylinder is constituted by the first polyurethane elastic body layer 11, the first polyurethane elastic body layer 11, the blanket cylinder, From the viewpoint of adhesion, the surface roughness of the first polyurethane elastic layer 11 is preferably 20 μm or less in terms of the 10-point average roughness (Rz) defined in JIS B0601.
 なお、前記第一ポリウレタン弾性体層11は、通常、その厚みが均一に形成されており、本実施形態の印刷用ブランケット1においては、前記第二ポリウレタン弾性体層13よりも薄肉となっている。
 また、前記第二ポリウレタン弾性体層13や前記樹脂被覆層14も、通常、その厚みがそれぞれ均一となるように形成されている。
The first polyurethane elastic layer 11 is usually formed with a uniform thickness, and the printing blanket 1 of the present embodiment is thinner than the second polyurethane elastic layer 13. .
The second polyurethane elastic body layer 13 and the resin coating layer 14 are also usually formed so that their thicknesses are uniform.
 本実施形態に係る印刷用ブランケット1は、その用途にもよるが、液体現像電子写真装置において用いられるような場合には、通常、0.3mm~5.0mmの総厚みを有する。
 この内、前記第一ポリウレタン弾性体層11が、通常、20μm~1.0mmの厚みとされ、前記第二ポリウレタン弾性体層13は、通常、200μm~4.9mmの厚みとされる。
 また、前記帆布層12が、通常、100μm~1.0mmの厚みとされ、前記樹脂被覆層14は、通常、5μm~60μmの厚みとされる。
The printing blanket 1 according to the present embodiment usually has a total thickness of 0.3 mm to 5.0 mm when used in a liquid developing electrophotographic apparatus, depending on the application.
Of these, the first polyurethane elastic body layer 11 is usually 20 μm to 1.0 mm in thickness, and the second polyurethane elastic body layer 13 is usually 200 μm to 4.9 mm in thickness.
The canvas layer 12 is usually set to a thickness of 100 μm to 1.0 mm, and the resin coating layer 14 is usually set to a thickness of 5 μm to 60 μm.
 本実施形態に係る印刷用ブランケット1は、前記第一ポリウレタン弾性体層11と前記第二ポリウレタン弾性体層13との形成に用いる原材料を共通させていても良く異ならせていても良い。
 これらのポリウレタン弾性体層を形成させるためのポリウレタンとしては、熱硬化性のポリウレタンであっても熱可塑性のポリウレタンであっても良いが、物性の調整が容易であること、及び、導電性付与剤の分散が容易である点において熱硬化性ポリウレタンが好ましい。
In the printing blanket 1 according to the present embodiment, the raw materials used for forming the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 may be made common or different.
The polyurethane for forming these polyurethane elastic body layers may be a thermosetting polyurethane or a thermoplastic polyurethane, but the physical properties can be easily adjusted, and a conductivity-imparting agent. Thermosetting polyurethane is preferable in that it can be easily dispersed.
 該熱硬化性ポリウレタンを構成するポリオールとしては特に限定されず、例えば、ポリエステル系ポリオール、ポリオレフィン系ポリオール、ポリエーテル系ポリオール、ポリカーボネート系ポリオール、ポリアクリル系ポリオール、ポリエーテルエステル系ポリオール等が挙げられる。
 これらポリオールは、1種が単独で、又は2種以上が組み合わされて用いられ得る。
The polyol constituting the thermosetting polyurethane is not particularly limited, and examples thereof include polyester polyols, polyolefin polyols, polyether polyols, polycarbonate polyols, polyacrylic polyols, and polyether ester polyols.
These polyols can be used singly or in combination of two or more.
 前記ポリオールの水酸基価(OHV)としては、特に限定されるものではないが、適度な硬度を有する硬化物を形成させ得る点において、50~160が好ましい。
 なお、前記水酸基価は、JIS K0070に準じた方法により求められる値である。
The hydroxyl value (OHV) of the polyol is not particularly limited, but is preferably 50 to 160 in that a cured product having an appropriate hardness can be formed.
In addition, the said hydroxyl value is a value calculated | required by the method according to JISK0070.
 前記ポリオールの平均官能基数としては、特に限定されるものではないが、適度な硬度を有するポリウレタンを構成させ得る点において、2~3が好ましい。
 なお、前記平均官能基数とは、ポリオールの製造に用いられる開始剤分子の活性水素基の数によって決定される理論的官能基数を意味する。
 ただし、重合時の副反応等による影響で実際の官能基数とは異なり得る。
The average number of functional groups of the polyol is not particularly limited, but is preferably 2 to 3 in that a polyurethane having an appropriate hardness can be formed.
In addition, the said average functional group number means the theoretical functional group number determined by the number of active hydrogen groups of the initiator molecule | numerator used for manufacture of a polyol.
However, the actual number of functional groups may be different due to the influence of side reactions during polymerization.
 前記ポリエステル系ポリオールとしては、分子中に2以上のエステル結合及び2以上の水酸基を有する化合物が例示できる。
 具体的には、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、グリセリン、1,1,1-トリメチロールプロパン、その他の低分子ポリオールの1種または2種以上と、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、テレフタル酸、イソフタル酸、ダイマー酸、その他の低分子カルボン酸やオリゴマー酸の1種または2種以上との縮合重合体、又は、プロピオンラクトン、バレロラクトン、カプロラクトンのような開環重合体などが挙げられる。
Examples of the polyester polyol include compounds having 2 or more ester bonds and 2 or more hydroxyl groups in the molecule.
Specifically, for example, ethylene glycol, diethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, cyclohexanedimethanol, glycerin, 1,1,1-trimethylolpropane, and one or two other low molecular polyols A condensation polymer of at least one species with one or more of glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, terephthalic acid, isophthalic acid, dimer acid, other low molecular carboxylic acid and oligomeric acid, Alternatively, ring-opening polymers such as propionlactone, valerolactone, and caprolactone can be used.
 前記ポリオレフィン系ポリオールとしては、分子中に炭素数4以上のオレフィン及び2以上の水酸基を有する化合物が例示できる。
 具体的には、例えば、ブタジエン、イソプレンなどのジエン化合物と必要によりスチレン、アクリロニトリルなどを、例えば、金属リチウム、金属カリウム、金属ナトリウムなどのアニオン重合触媒の存在下で重合させた後、エチレンオキサイド、プロピレンオキサイドなどのアルキレンオキサイドを付加重合させて得られるポリオール、または前記ジエン化合物を、例えば過酸化水素などの水酸基を有するラジカル開始剤によりラジカル重合させて得られるポリオール、又は、これらのものを水素添加したもの等が挙げられる。
Examples of the polyolefin-based polyol include compounds having 4 or more olefins and 2 or more hydroxyl groups in the molecule.
Specifically, for example, after polymerizing a diene compound such as butadiene and isoprene and optionally styrene and acrylonitrile in the presence of an anionic polymerization catalyst such as metal lithium, metal potassium and metal sodium, ethylene oxide, A polyol obtained by addition polymerization of alkylene oxide such as propylene oxide, or a polyol obtained by radical polymerization of the diene compound with a radical initiator having a hydroxyl group such as hydrogen peroxide, or hydrogenating these And the like.
 前記ポリエーテル系ポリオールとしては、分子中に2以上のエーテル結合及び2以上の水酸基を有する化合物が例示できる。
 具体的には、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパンなどに、エチレンオキサイド、プロピレンオキサイド、又はブチレンオキサイド、又は、それらの混合物などのアルキレンオキサイドをアルカリ触媒などの存在下で付加重合させたポリアルキレンポリオール、又はテトラヒドロフランをカチオン触媒下で重合させたポリテトラメチレングリコール、又はこれらの混合物等が挙げられる。
Examples of the polyether polyol include compounds having two or more ether bonds and two or more hydroxyl groups in the molecule.
Specifically, for example, ethylene oxide, propylene oxide, propylene oxide, butylene oxide, or an alkylene oxide such as a mixture thereof in ethylene glycol, diethylene glycol, propylene glycol, glycerin, trimethylolpropane, or the like in the presence of an alkali catalyst or the like. Examples include polyalkylene polyols obtained by addition polymerization, polytetramethylene glycol obtained by polymerizing tetrahydrofuran under a cationic catalyst, or a mixture thereof.
 前記ポリカーボネート系ポリオールとしては、例えば、1,6-ヘキサンジオールのポリカーボネートポリオール、1,6-ヘキサンジオールと1,4-ブタンジオールのポリカーボネートポリオール、1,6-ヘキサンジオールと1,5-ペンタンジオールのポリカーボネートポリオール、1,6-ヘキサンジオールと3-メチル-1,5-ペンタンジオールのポリカーボネートポリオール等が挙げられる。 Examples of the polycarbonate polyol include 1,6-hexanediol polycarbonate polyol, 1,6-hexanediol and 1,4-butanediol polycarbonate polyol, 1,6-hexanediol and 1,5-pentanediol. Examples thereof include polycarbonate polyol, polycarbonate polyol of 1,6-hexanediol and 3-methyl-1,5-pentanediol.
 前記ポリアクリル系ポリオールとしては、アクリル酸誘導体モノマーを重合させて得られる高分子化合物もしくは、アクリル酸誘導体モノマー及びその他のモノマーとを共重合させて得られる高分子化合物のうち、末端にヒドロキシル基を持つものが挙げられる。
 なかでもエチルメタクリレート、ヒドロキシエチルメタクリレートやヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレート等のアクリル酸誘導体モノマーを単独で重合させたものや、スチレン等のその他のモノマーを加えて共重合させたアクリルポリオールが好ましく用いられる。
Examples of the polyacrylic polyol include a polymer compound obtained by polymerizing an acrylic acid derivative monomer, or a polymer compound obtained by copolymerizing an acrylic acid derivative monomer and other monomers, with a hydroxyl group at the terminal. What you have.
Among them, those obtained by polymerizing acrylic acid derivative monomers such as ethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate alone, and acrylic polyols copolymerized by adding other monomers such as styrene are preferably used. .
 前記ポリエーテルエステル系ポリオールとしては、分子中に2以上のエーテル結合、2以上のエステル結合、及び2以上の水酸基を有する化合物が例示できる。
 具体的には、例えば、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、テレフタル酸、イソフタル酸、ダイマー酸、その他の低分子カルボン酸やオリゴマー酸の1種または2種以上と、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、グリセリン、1,1,1-トリメチロールプロパン、その他の低分子ポリオールの1種または2種以上とを従来公知の方法で重縮合させたものが挙げられる。
 具体的には、例えば、アジピン酸とジエチレングリコールとトリメチロールプロパンとの重縮合物などが挙げられる。
Examples of the polyether ester-based polyol include compounds having two or more ether bonds, two or more ester bonds, and two or more hydroxyl groups in the molecule.
Specifically, for example, one or more of glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, terephthalic acid, isophthalic acid, dimer acid, other low molecular carboxylic acid and oligomeric acid, and ethylene Glycol, diethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, cyclohexanedimethanol, glycerin, 1,1,1-trimethylolpropane, and other low molecular polyols, one or more conventionally known methods And those obtained by polycondensation with.
Specifically, for example, a polycondensate of adipic acid, diethylene glycol, and trimethylolpropane can be used.
 前記ポリエーテルエステル系ポリオールとしては、適度な硬度を有するポリウレタン弾性体層を形成させ得る点において、前記水酸基価(OHV)が50~160で、前記平均官能基数が2~3であるものが好ましい。
 詳しくは、前記ポリエーテルエステル系ポリオールとしては、前記水酸基価(OHV)が57~64であり、前記平均官能基数が2~3であるポリエーテルエステル系ポリオールと、前記水酸基価(OHV)が150~160であり、前記平均官能基数が2~3であるポリエーテルエステル系ポリオールとを混合して前記ポリウレタン弾性体層の形成に用いることがより好ましい。
 前記水酸基価(OHV)が150~160で、前記平均官能基数が2~3であるポリエーテルエステル系ポリオールは、水酸基価(OHV)が57~64で、平均官能基数が2~3のポリエーテルエステル系ポリオールとの混合物の粘度を低下させる機能を有し、ポリウレタン弾性体層を形成させる際における作業性の改善効果を期待することができる。
 より具体的には、上記ポリエーテルエステル系ポリオールは、アジピン酸とジエチレングリコールとトリメチロールプロパンとの重縮合物であることが好ましい。
The polyether ester polyol preferably has a hydroxyl value (OHV) of 50 to 160 and an average number of functional groups of 2 to 3 in that a polyurethane elastic layer having an appropriate hardness can be formed. .
Specifically, the polyether ester-based polyol has a hydroxyl value (OHV) of 57 to 64 and the average number of functional groups of 2 to 3, and a hydroxyl value (OHV) of 150. It is more preferable to mix with a polyetherester polyol having an average functional group number of 2 to 3 and use it for forming the polyurethane elastic layer.
The polyether ester polyol having a hydroxyl value (OHV) of 150 to 160 and an average functional group number of 2 to 3 is a polyether having a hydroxyl value (OHV) of 57 to 64 and an average functional group number of 2 to 3. It has a function of reducing the viscosity of the mixture with the ester-based polyol, and can be expected to improve workability when forming the polyurethane elastic body layer.
More specifically, the polyetherester polyol is preferably a polycondensate of adipic acid, diethylene glycol, and trimethylolpropane.
 なお、前記ポリエーテルエステル系ポリオール混合物において、前記水酸基価(OHV)が150~160であり、前記平均官能基数が2~3であるポリエーテルエステル系ポリオールが、前記ポリオール中に10~30質量%含まれていることが好ましい。
 前記水酸基価(OHV)が150~160で、前記平均官能基数が2~3であるポリエーテルエステル系ポリオールが、全ポリオール中に10~30質量%含まれていることにより、液体現像電子写真装置用の印刷用ブランケットに求められる適度な硬度をポリウレタン弾性体層に付与させうる。
In the polyether ester polyol mixture, the polyether ester polyol having a hydroxyl value (OHV) of 150 to 160 and an average number of functional groups of 2 to 3 is 10 to 30% by mass in the polyol. It is preferably included.
The liquid developing electrophotographic apparatus includes 10 to 30% by mass of the polyether ester-based polyol having a hydroxyl value (OHV) of 150 to 160 and an average functional group number of 2 to 3 in the total polyol. The polyurethane elastic body layer can be provided with an appropriate hardness required for a printing blanket for printing.
 このようなポリオールとともにポリウレタンを形成させるための前記ポリイソシアネートとしては、特に限定されないが、具体的には、例えば、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI)、1,4-フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、トリジンジイソシアネート(TODI)、1,5-ナフタレンジイソシアネート(NDI)などの芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HDI)、トリメチルヘキサメチレンジイソシアネート(TMHDI)、リジンジイソシアネート、ノルボルネンジイソシアナートメチル(NBDI)、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの脂肪族ポリイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート(IPDI)、H6XDI(水添XDI)、H12MDI(水添MDI)などの脂環式ポリイソシアネート、上記の各ポリイソシアネートのカルボジイミド変性ポリイソシアネート、又は、これらのイソシアヌレート変性ポリイソシアネートなどが挙げられる。
 なお、これらのポリイソシアネートは、1種が単独で、又は2種以上が組み合わされて用いられ、好ましくは、2,4-TDIと2,6-TDIとの混合物(2,4-TDI/2,6-TDI=80/20質量比)が用いられ得る。
The polyisocyanate for forming a polyurethane together with such a polyol is not particularly limited. Specifically, for example, 2,4-tolylene diisocyanate (2,4-TDI), 2,6-tolylene diene is used. Isocyanate (2,6-TDI), 4,4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 1,4-phenylene diisocyanate, polymethylene Aromatic polyisocyanates such as polyphenylene polyisocyanate, tolidine diisocyanate (TODI), 1,5-naphthalene diisocyanate (NDI), hexamethylene diisocyanate (HDI), trimethylhexamethylene diisocyanate (TMHDI), lysine diisocyanate , Norbornene diisocyanate methyl (NBDI), xylylene diisocyanate (XDI), tetramethyl xylylene diisocyanate (TMXDI) and other aliphatic polyisocyanates, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate (IPDI), H6XDI ( Examples thereof include alicyclic polyisocyanates such as hydrogenated XDI) and H12MDI (hydrogenated MDI), carbodiimide-modified polyisocyanates of the above polyisocyanates, or isocyanurate-modified polyisocyanates.
These polyisocyanates are used singly or in combination of two or more, preferably a mixture of 2,4-TDI and 2,6-TDI (2,4-TDI / 2 , 6-TDI = 80/20 mass ratio) can be used.
 なお、上記のポリオールとポリイソシアネートとの組み合わせに関し、本実施形態に係る印刷用ブランケット1を液体現像電子写真装置に用いる場合には、前記樹脂被覆層14の表面に液体トナーが直接接触することになるため、少なくとも前記樹脂被覆層14の内側の第二ポリウレタン弾性体層13は、トナー粒子のキャリアとして用いられる流動パラフィン、シリコンオイル、鉱物油、植物油などに対して優れた耐性を示すことが好ましい。
 即ち、キャリアによって膨潤されて第二ポリウレタン弾性体層13の厚みが変化したり、圧縮弾性率等が変化したりすると印刷品質を低下させるおそれがあることから優れた印刷品質を維持させうる点において少なくとも第二ポリウレタン弾性体層13には耐キャリア性を付与することが好ましい。
 このような耐キャリア性を発揮させる上においては、ポリエステルポリオールと二官能イソシアネートとの組み合わせによるポリウレタンで第二ポリウレタン弾性体層13を形成させることが好ましい。
In addition, regarding the combination of the above polyol and polyisocyanate, when the printing blanket 1 according to this embodiment is used in a liquid development electrophotographic apparatus, the liquid toner directly contacts the surface of the resin coating layer 14. Therefore, at least the second polyurethane elastic body layer 13 inside the resin coating layer 14 preferably exhibits excellent resistance to liquid paraffin, silicon oil, mineral oil, vegetable oil and the like used as a carrier for toner particles. .
That is, when the thickness of the second polyurethane elastic layer 13 is changed by swelling by the carrier, or the compression elastic modulus or the like is changed, the print quality may be deteriorated, so that excellent print quality can be maintained. It is preferable that carrier resistance is imparted to at least the second polyurethane elastic layer 13.
In order to exhibit such carrier resistance, it is preferable to form the second polyurethane elastic body layer 13 with polyurethane by a combination of polyester polyol and difunctional isocyanate.
 前記ポリウレタン弾性体層に含有させる前記導電性付与剤としては、例えば、カーボンブラック、黒鉛、金属粒子などの無機物粒子、金属被覆樹脂粒子、導電性ポリマー粒子などの有機物粒子、カーボンファイバー、金属ファイバー、金属被覆ガラス繊維などの無機繊維、金属被覆樹脂繊維、導電性ポリマー繊維などの有機繊維が挙げられる。
 これらのなかでも、前記導電性付与剤としては、カーボンブラック、黒鉛が好ましく、特に、前記第一ポリウレタン弾性体層11、及び、前記第二ポリウレタン弾性体層13には、これらを両方とも含有させることが好ましい。
Examples of the conductivity-imparting agent to be contained in the polyurethane elastic layer include inorganic particles such as carbon black, graphite, and metal particles, organic particles such as metal-coated resin particles and conductive polymer particles, carbon fibers, metal fibers, Examples thereof include inorganic fibers such as metal-coated glass fibers, and organic fibers such as metal-coated resin fibers and conductive polymer fibers.
Among these, as the conductivity imparting agent, carbon black and graphite are preferable, and in particular, both of the first polyurethane elastic body layer 11 and the second polyurethane elastic body layer 13 contain them. It is preferable.
 なお、カーボンブラックが、通常、1μm以下(数十nm)の大きさを有しているのに対して前記黒鉛は、通常、1μmを超える大きさを有しており、粒子サイズがカーボンブラックよりも1オーダー以上大きなもので、カーボンブラックに比べて結晶構造を発達させている。
 そのため、黒鉛は、電子状態が半金属的であり、通常、粒子自体の導電性がカーボンブラックに比べて優れたものとなっている。
Carbon black usually has a size of 1 μm or less (several tens of nm), whereas the graphite usually has a size exceeding 1 μm, and the particle size is larger than that of carbon black. Is larger than 1 order and has a crystal structure developed compared to carbon black.
Therefore, graphite has a semi-metallic electronic state, and the conductivity of the particles themselves is usually superior to that of carbon black.
 また、カーボンブラックによる導電性の発現は、ストラクチャーの形成具合によって大きく影響を受けるために、例えば、カーボンブラックのみでポリウレタン弾性体層に対して導電性を付与した場合には、カーボンブラックの含有量と電気特性との間に相間性が認められ難く、ある含有量を境にして急激に電気特性を変化させることがある。
 一方で黒鉛は、粒子自体の導電性が優れているために含有量による電気特性の調整がカーボンブラックに比べて容易である。
In addition, since the expression of conductivity due to carbon black is greatly affected by the formation of the structure, for example, when conductivity is imparted to the polyurethane elastic layer with only carbon black, the content of carbon black It is difficult to recognize the interrelation between the electric characteristics and the electric characteristics, and the electric characteristics may be suddenly changed at a certain content.
On the other hand, since graphite is excellent in the conductivity of the particles themselves, it is easier to adjust the electrical properties depending on the content compared to carbon black.
 さらに、導電性付与剤としてカーボンブラックのみが採用されているポリウレタン弾性体層に電圧を継続的に印加すると、その内部に形成されているカーボンブラックのストラクチャーにおけるトンネル効果などに変化を生じ、しかも、このような変化が短い期間で生じるおそれを有する。
 即ち、ポリウレタン弾性体層の導電性付与剤をカーボンブラックのみとすると印刷用ブランケットの電気特性をすぐに変化させてしまうおそれがある。一方で、黒鉛を併用することでこのような影響を受け難く継続的な課電を実施しても電気特性を変化させにくいものとすることができる。
Furthermore, when a voltage is continuously applied to the polyurethane elastic body layer in which only carbon black is employed as a conductivity imparting agent, a change occurs in the tunnel effect in the structure of carbon black formed therein, and Such a change may occur in a short period.
That is, if the conductivity imparting agent for the polyurethane elastic layer is only carbon black, the electrical characteristics of the printing blanket may be changed immediately. On the other hand, the combined use of graphite makes it difficult to be affected by such effects, and it is possible to make it difficult to change the electrical characteristics even when continuous power application is performed.
 前記カーボンブラックとしては、高温ガス中で油やガスを不完全燃焼させるファーネス法で製造されるファーネスブラック、アセチレンなどの炭化水素を熱分解させて製造されるアセチレンブラックなどの他、チャンネルブラックなどを採用することができる。
 前記ファーネスブラックを導電性付与剤として採用する場合には、例えば、一般呼称で分類されるFEF系、ISAF系、HAF系等のカーボンブラックを採用することができる。
Examples of the carbon black include furnace black produced by a furnace method in which oil and gas are incompletely burned in a high-temperature gas, acetylene black produced by thermally decomposing hydrocarbons such as acetylene, and channel black. Can be adopted.
When the furnace black is employed as a conductivity imparting agent, for example, carbon blacks such as FEF, ISAF, and HAF that are classified by general names can be employed.
 該カーボンブラックは、DBP吸油量が特に限定されるものではないが、65~168cm/100gであることが好ましい。
 前記カーボンブラックのDBP吸油量が65cm/100g以上であることにより、本実施形態に係る印刷用ブランケット1に継続的な課電がされても第一、第二ポリウレタン弾性体層11,13の電気抵抗値をより変化させにくくなるという利点があり、DBP吸油量が168cm/100g以下であることにより、ポリウレタン弾性体層の形成を容易にさせ得るという利点を有する。
The carbon black, although not particularly limited DBP oil absorption is preferably 65 ~ 168cm 3 / 100g.
By DBP oil absorption of the carbon black is 65cm 3/100 g or more, it is ongoing voltage application to the printing blanket 1 according to the present embodiment first, second polyurethane elastomer layer 11 and 13 There is an advantage that less likely to alter the electrical resistance value, by DBP oil absorption amount is less 168cm 3/100 g, has the advantage of capable of facilitating the formation of the polyurethane elastomer layer.
 なお、前記DBP吸油量とは、一定質量のカーボンブラック中の空隙容積を液体で置換し、その容量を指標とするものである。
 具体的には、カーボンブラック100gあたりに包含される油の量(cm)をいい、ASTM D3493-85aに準拠した方法で測定した値である。
 なお、前記DBP吸油量は、前記カーボンブラックの一次粒子の凝集体の三次元状態を表す指標となり得る。
 即ち、カーボンブラックは、前記DBP吸油量の多い方が、鎖状の集合体(ストラクチャー)を形成しやすいと考えられる。従って、前記DBP吸油量の多い方が、より少ない含有量で導電性を発現させ、連続課電による電気抵抗値の変化をより一層抑制させ得る。
The DBP oil absorption amount is obtained by substituting the void volume in carbon black having a constant mass with a liquid and using the capacity as an index.
Specifically, it refers to the amount of oil (cm 3 ) contained per 100 g of carbon black, and is a value measured by a method based on ASTM D3493-85a.
The DBP oil absorption can be an index representing the three-dimensional state of the aggregate of primary particles of the carbon black.
That is, it is considered that carbon black tends to form a chain-like aggregate (structure) when the DBP oil absorption amount is large. Therefore, the one where the DBP oil absorption amount is larger can exhibit conductivity with a smaller content, and can further suppress the change in the electric resistance value due to continuous voltage application.
 一方で前記黒鉛としては、その平均粒子径が8μm以下であることが好ましく、平均粒子径が3~5μmであることが好ましい。 On the other hand, the graphite preferably has an average particle size of 8 μm or less, and preferably has an average particle size of 3 to 5 μm.
 なお、黒鉛の大きさなどについて用いる“平均粒子径”との用語は、レーザー回折散乱法を用いた粒度分布測定器によるD50値を意図している。
 また、カーボンブラックの粒子径については、通常、電子顕微鏡による直接観察によって求められ、複数個の粒子の大きさを測定した測定値の算術平均値で表される。
The term “average particle size” used for the size of graphite and the like is intended to be a D50 value measured by a particle size distribution analyzer using a laser diffraction scattering method.
The particle size of carbon black is usually determined by direct observation with an electron microscope and is represented by an arithmetic average value of measured values obtained by measuring the size of a plurality of particles.
 なお、前記ポリウレタン弾性体層にはカーボンブラックを1質量%以上4質量%以下の範囲の内のいずれかの割合で含有させることが好ましく黒鉛を3質量%以上6質量%以下の範囲の内のいずれかの割合で含有させることが好ましい。
 前記カーボンブラックを、前記1~4質量%含ませることが好ましいのは、カーボンブラックを前記ポリウレタン弾性体層に1質量%以上含有させることで当該ポリウレタン弾性体層に適度な導電性を付与することができるためである。
 また、前記カーボンブラックは、補強材としても機能するため、前記ポリウレタン弾性体層に1質量%以上含有させることで当該ポリウレタン弾性体層に適度な硬度を付与し得る。
 即ち、前記第一ポリウレタン弾性体層11、及び、前記第二ポリウレタン弾性体層13は、いずれもがJIS-A硬度で30度以上60度以下の硬さを有していることが好ましいが、カーボンブラックを1質量%以上含有させることでこれらに優れた導電性を発揮させうるとともにこれらを上記のような好ましい硬さとすることができる。
The polyurethane elastic body layer preferably contains carbon black in any proportion within the range of 1% by mass to 4% by mass, and graphite is preferably within the range of 3% by mass to 6% by mass. It is preferable to make it contain in either ratio.
It is preferable that the carbon black is included in the amount of 1 to 4% by mass. By adding 1% by mass or more of the carbon black to the polyurethane elastic layer, the polyurethane elastic layer is imparted with appropriate conductivity. It is because it can do.
Moreover, since the carbon black also functions as a reinforcing material, an appropriate hardness can be imparted to the polyurethane elastic layer by containing 1% by mass or more in the polyurethane elastic layer.
That is, it is preferable that the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 both have a JIS-A hardness of 30 degrees to 60 degrees, By containing 1% by mass or more of carbon black, these can exhibit excellent conductivity, and these can be made preferable hardness as described above.
 また、カーボンブラックの含有量が4質量%以下であるのが好ましいのは、カーボンブラックを過度に含有させても、必要以上の導電性をポリウレタン弾性体層に発揮させるばかりでなくポリウレタン弾性体層中における分散が不均一になるおそれを有し、カーボンブラックによる凝集塊を含有させるおそれを有するためである。 In addition, it is preferable that the carbon black content is 4% by mass or less. Even if carbon black is excessively contained, not only the polyurethane elastic layer can exhibit more conductivity than necessary, but also the polyurethane elastic layer. This is because there is a possibility that dispersion in the inside becomes non-uniform, and there is a possibility that an aggregate due to carbon black is contained.
 前記黒鉛の含有量が、3質量%以上6質量%以下とされることが好ましいのは、前記黒鉛を前記ポリウレタン弾性体層に3質量%以上含有させることにより、印刷用ブランケット1に連続的な課電がされても電気抵抗値をより変化させにくくすることができ、6質量%以下の含有量とすることにより、ポリウレタン弾性体層の硬度をより適度なもの調整し得るという利点を有するためである。 It is preferable that the content of the graphite is 3% by mass or more and 6% by mass or less because when the graphite is contained in the polyurethane elastic body layer by 3% by mass or more, the graphite blanket 1 is continuous. Even if electricity is applied, the electric resistance value can be made more difficult to change, and by setting the content to 6% by mass or less, there is an advantage that the hardness of the polyurethane elastic body layer can be adjusted more appropriately. It is.
 本実施形態の印刷用ブランケット1において、前記第二ポリウレタン弾性体層13の表面を覆う形で設けられている前記樹脂被覆層14は、導電性付与剤を含有する樹脂組成物によって形成させることができる。なお、該樹脂被覆層14にも前記第二ポリウレタン弾性体層13と同様に耐キャリア性を付与させることが好ましいことから、例えば、前記樹脂被覆層14は、ポリエステル系の熱可塑性ポリウレタンなどで形成させることが好ましい。 In the printing blanket 1 of the present embodiment, the resin coating layer 14 provided so as to cover the surface of the second polyurethane elastic body layer 13 may be formed of a resin composition containing a conductivity-imparting agent. it can. In addition, since it is preferable to give the resin coating layer 14 carrier resistance similarly to the second polyurethane elastic body layer 13, for example, the resin coating layer 14 is formed of a polyester-based thermoplastic polyurethane or the like. It is preferable to make it.
 なお、この樹脂被覆層14に含有させる導電性付与剤としては、ポリウレタン弾性体層の形成材料に関して例示したものと同様の導電性付与剤を採用することができる。
 ただし、該樹脂被覆層14は、その表面に凹凸が生じていたり、局所的に電気特性を異ならせていたりすると印刷品質に影響を与えるおそれを有することから表面平滑で、且つ、微細な導電性付与剤を均一分散させていることが好ましい。
 より具体的には、樹脂被覆層14は、その表面粗さがJIS B0601に規定の10点平均粗さ(Rz)で7μm以下となるように形成されていることが好ましい。そのためには、樹脂被覆層14には導電性付与剤として黒鉛のような粒径の大きなものを含有させずに、樹脂被覆層14に含有させる導電性付与剤を実質的にカーボンブラックのみとすることが好ましい。
 なお、上記のようなことから、樹脂被覆層14に含有させるカーボンブラックとしては、ポリウレタン弾性体層の形成に用いられるものよりも粒径が小さく、ストラクチャーの形成に有利なDBP吸油量の高いカーボンブラックが好ましい。
 具体的には、粒径が60nm以下であることが好ましく、DBP吸油量は、160cm/100g以上、190cm/100g以下であることが好ましい。
 なお、樹脂被覆層14におけるカーボンブラックの含有量は、0質量%を超え、50質量%以下の範囲の内のいずれかの割合とされることが好ましい。
As the conductivity-imparting agent contained in the resin coating layer 14, the same conductivity-imparting agent as exemplified with respect to the material for forming the polyurethane elastic layer can be employed.
However, since the resin coating layer 14 has unevenness on the surface or has a possibility of affecting the printing quality if the electric characteristics are locally different, the surface is smooth and has a fine conductivity. It is preferable that the imparting agent is uniformly dispersed.
More specifically, the resin coating layer 14 is preferably formed such that the surface roughness is 7 μm or less in terms of the 10-point average roughness (Rz) defined in JIS B0601. For this purpose, the resin coating layer 14 does not contain a material having a large particle size such as graphite as the conductivity-imparting agent, and the conductivity-imparting agent contained in the resin coating layer 14 is substantially only carbon black. It is preferable.
In addition, from the above, carbon black contained in the resin coating layer 14 has a smaller particle diameter than that used for forming the polyurethane elastic body layer, and has a high DBP oil absorption, which is advantageous for structure formation. Black is preferred.
Specifically, we are preferable that the particle size is 60nm or less, DBP oil absorption, 160cm 3/100 g or more, is preferably not more than 190 cm 3/100 g.
In addition, it is preferable that content of carbon black in the resin coating layer 14 is set to any ratio within the range of more than 0 mass% and 50 mass% or less.
 本実施形態に係る印刷用ブランケット1は、前記のように開口を有する帆布で帆布層12を形成させていることから、上記のように第一ポリウレタン弾性体層11、第二ポリウレタン弾性体層13、及び、樹脂被覆層14を導電性に優れたものとすることができる。そして、このことによって、印刷用ブランケット1に対して所望の導電性を付与することができ、印刷用ブランケットを、この種の用途において求められる体積抵抗率を有するものとすることができる。具体的には、印刷用ブランケットを、1×10Ω・cm以上1×1010Ω・cm以下の体積抵抗率とすることができる。 Since the printing blanket 1 according to this embodiment has the canvas layer 12 formed of the canvas having an opening as described above, the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 are formed as described above. And the resin coating layer 14 can be made excellent in electroconductivity. And by this, desired electroconductivity can be provided with respect to the printing blanket 1, and the printing blanket can have the volume resistivity calculated | required in this kind of application. Specifically, the printing blanket can have a volume resistivity of 1 × 10 4 Ω · cm to 1 × 10 10 Ω · cm.
 なお、印刷用ブランケットに対してこのような体積抵抗率が求められているのは、上記範囲を超えて高い体積抵抗率を示すものでは、厚みを薄くしなければ厚み方向に所望の導電性を発揮させることができないためである。
 すなわち、厚みが制限されて圧縮弾性率など厚み方向の機械的物性を好適な範囲内に調整することが難しくなるためである。
 また、上記範囲未満の低い体積抵抗率を示すものを得ようとすると、導電性付与剤を大量に含有させなければならなくなるおそれを有し、結果的に第一ポリウレタン弾性体層11や第二ポリウレタン弾性体層13に所望の弾性を付与することが難しくなるためである。
In addition, such a volume resistivity is required for the printing blanket because it exhibits a high volume resistivity exceeding the above range. If the thickness is not reduced, a desired conductivity is provided in the thickness direction. This is because it cannot be demonstrated.
That is, the thickness is limited and it is difficult to adjust the mechanical properties in the thickness direction such as the compression modulus within a suitable range.
Further, if it is intended to obtain a material having a low volume resistivity less than the above range, there is a possibility that a large amount of a conductivity imparting agent must be contained, and as a result, the first polyurethane elastic layer 11 and the second This is because it becomes difficult to impart desired elasticity to the polyurethane elastic layer 13.
 なお、本実施形態に係る印刷用ブランケットは、前記のように第一ポリウレタン弾性体層11や第二ポリウレタン弾性体層13の物性を調整する上においてこれらを熱硬化性ポリウレタンによって形成させることが好ましいものではあるが、これらに大量のカーボンブラックや黒鉛を含有させようとすると熱硬化前の液体状態のポリウレタンにカーボンブラックや黒鉛などの導電性付与剤を大量に含有させることになる。
 そうすると、第一ポリウレタン弾性体層11や第二ポリウレタン弾性体層13の形成に用いるポリウレタン原料液の粘度が高くなって注型成形等の一般的な成形方法を採用することが難しくなる。
 即ち、印刷用ブランケットの体積抵抗率を前記のように規定することで、該印刷用ブランケットを注型成形のような簡便な製造方法で作製可能なものとすることができる。
The printing blanket according to the present embodiment is preferably formed of thermosetting polyurethane in adjusting the physical properties of the first polyurethane elastic layer 11 and the second polyurethane elastic layer 13 as described above. However, if an attempt is made to contain a large amount of carbon black or graphite in these, a large amount of a conductivity imparting agent such as carbon black or graphite is contained in the polyurethane in a liquid state before thermosetting.
If it does so, the viscosity of the polyurethane raw material liquid used for formation of the 1st polyurethane elastic body layer 11 or the 2nd polyurethane elastic body layer 13 will become high, and it will become difficult to employ | adopt general shaping | molding methods, such as cast molding.
That is, by defining the volume resistivity of the printing blanket as described above, the printing blanket can be manufactured by a simple manufacturing method such as cast molding.
 次いで、この印刷用ブランケット1の製造方法について説明する。
 本実施形態の印刷用ブランケット1は、前記のように注型成形によって製造することができ、例えば、ポリイソシアネートとポリオールと導電性付与剤とを含有するポリウレタン原料液を調整する原料液調整工程、前記ポリウレタン原料液中に前記帆布層12を形成させるための帆布を浸漬させて該帆布の両面において前記ポリウレタン原料液を所定の厚みで存在させるとともに該帆布に前記ポリウレタン原料液を含浸させる含浸工程、及び、前記帆布が浸漬されている前記ポリウレタン原料液を硬化させる硬化工程を実施して作製することができ、前記帆布として糸間に開口を有する帆布を用いることにより該帆布で形成される帆布層の両側に前記開口を通じて接続された第一ポリウレタン弾性体層と第二ポリウレタン弾性体層とを形成させることができる。
Next, a method for manufacturing the printing blanket 1 will be described.
The printing blanket 1 of the present embodiment can be manufactured by cast molding as described above. For example, a raw material liquid adjusting step for adjusting a polyurethane raw material liquid containing a polyisocyanate, a polyol, and a conductivity-imparting agent, An impregnation step of immersing a canvas for forming the canvas layer 12 in the polyurethane raw material liquid so that the polyurethane raw material liquid is present in a predetermined thickness on both sides of the canvas and impregnating the canvas with the polyurethane raw material liquid; And a canvas layer formed by using a canvas having an opening between yarns as the canvas, which can be prepared by performing a curing process for curing the polyurethane raw material liquid in which the canvas is immersed. Forming a first polyurethane elastic layer and a second polyurethane elastic layer connected to each other through the opening. Rukoto can.
 なお、前記原料液調整工程は、例えば、カーボンブラックや黒鉛といった導電性付与剤をポリエステルポリオールに分散させた後に真空脱泡し、該ポリエステルポリオールにさらに二官能ポリイソシアネートを混合するなどして実施することができる。
 前記ポリエステルポリオールへの導電性付与剤の分散は、ホモジナイザーなどの一般的な攪拌装置を用いて実施させることができる。
The raw material liquid adjusting step is carried out, for example, by dispersing a conductivity-imparting agent such as carbon black or graphite in a polyester polyol, vacuum degassing, and further mixing a bifunctional polyisocyanate with the polyester polyol. be able to.
Dispersion of the conductivity-imparting agent in the polyester polyol can be carried out using a general stirring device such as a homogenizer.
 また、前記含浸工程は、組み合わせて円筒状のキャビティーを形成させることができる外型と内型とを有する金型を用いて実施することができる。
 例えば、円筒状又は円柱状の内型と、該内型の外周よりも径大な内周面を有し、その内部空間内に前記内型を収容させて該内型との間に前記キャビティーを形成可能な外型とを備えた金型を挙げることができる。
 なお、前記含浸工程は、減圧下において実施することが好ましいことから、前記キャビティーを密閉空間とすることができ、真空引き等によって前記キャビティーを減圧状態にすることができる金型を用いることが好ましい。
The impregnation step can be carried out using a mold having an outer mold and an inner mold that can be combined to form a cylindrical cavity.
For example, a cylindrical or columnar inner mold and an inner peripheral surface having a diameter larger than the outer periphery of the inner mold, the inner mold is accommodated in the inner space, and the cavity is interposed between the inner mold and the inner mold. A mold having an outer mold capable of forming a tee can be mentioned.
Since the impregnation step is preferably performed under reduced pressure, a mold that can make the cavity into a sealed space and make the cavity into a reduced pressure state by evacuation or the like is used. Is preferred.
 この含浸工程の手順についてより詳しく述べると、該含浸工程は、例えば、前記内型の外周に前記帆布を1周巻き付けて前記外型内に収容させ、前記キャビティー内において帆布を筒状に保持させた状態とし、該キャビティー内を真空引きして減圧させたところに前記ポリウレタン原料液を注入させることによって実施することができる。 The impregnation step will be described in more detail. In the impregnation step, for example, the canvas is wound around the outer periphery of the inner mold to be accommodated in the outer mold, and the canvas is held in a cylindrical shape in the cavity. It can be carried out by injecting the polyurethane raw material liquid into a state in which the inside of the cavity is evacuated and decompressed.
 このことによって前記キャビティー内で帆布がポリウレタン原料液に浸漬され、且つ、帆布の両面において前記ポリウレタン原料液を所定の厚みで存在させることができる。
 しかも、真空引きによって前記キャビティー内が十分に減圧された後に、該キャビティー内に前記ポリウレタン原料液を注入するため前記帆布の外側から内側に向けて前記ポリウレタン原料液を含浸させて帆布の内側にポリウレタン原料液を回り込ませることができ、前記帆布によって形成させる帆布層や、帆布の両面に存在するポリウレタン原料液によって形成させるポリウレタン弾性体層に気泡等が混入することを抑制させることができる。
As a result, the canvas is immersed in the polyurethane raw material liquid in the cavity, and the polyurethane raw material liquid can be present at a predetermined thickness on both sides of the canvas.
In addition, after the inside of the cavity is sufficiently decompressed by evacuation, in order to inject the polyurethane raw material liquid into the cavity, the polyurethane raw material liquid is impregnated from the outside to the inside of the canvas so that the inside of the canvas The polyurethane raw material liquid can be made to wrap around, and bubbles can be prevented from being mixed into the canvas layer formed by the canvas and the polyurethane elastic body layer formed by the polyurethane raw material liquid present on both surfaces of the canvas.
 なお、必要であれば、内径が前記内型よりも僅かに径大で、外径が外型の内周以下となる短い円筒状のスペーサーを内型の長手方向両端部に装着し、該スペーサーの外周に帆布を巻きつけることで該スペーサーの内側においては、内型の表面から前記スペーサーの厚み分だけ帆布を離間させた状態にして帆布を内型に巻き付けた状態にすることができ、該スペーサーによって帆布の内側に存在させるポリウレタン原料液の厚みを調整させることができる。
 即ち、この帆布の内側部分は、前記第一ポリウレタン弾性体層11となる部分であり、前記スペーサーの利用によって形成させる第一ポリウレタン弾性体層11の厚みを調整することができる。
If necessary, short cylindrical spacers whose inner diameter is slightly larger than the inner mold and whose outer diameter is equal to or less than the inner circumference of the outer mold are attached to both ends of the inner mold in the longitudinal direction. By wrapping the canvas around the outer periphery of the spacer, inside the spacer, the canvas can be separated from the surface of the inner mold by the thickness of the spacer so that the canvas is wound around the inner mold. The thickness of the polyurethane raw material liquid existing inside the canvas can be adjusted by the spacer.
That is, an inner portion of the canvas is a portion that becomes the first polyurethane elastic body layer 11, and the thickness of the first polyurethane elastic body layer 11 formed by using the spacer can be adjusted.
 なお、この含浸工程の後は、この金型ごと前記ポリウレタン原料液を加熱して、該ポリウレタン原料液を前記キャビティー内で硬化させて前記硬化工程を実施することができる。
 該硬化工程における温度や時間は、用いるポリウレタン原料液等の配合内容によって適宜調整すればよく、例えば、脱型可能な程度にポリウレタン原料液が半硬化した時点でこの半硬化品を金型から取り出して加熱炉中で後硬化(アフターキュア)させるようにしてもよい。
In addition, after this impregnation process, the said polyurethane raw material liquid can be heated with this metal mold | die, this polyurethane raw material liquid can be hardened in the said cavity, and the said hardening process can be implemented.
The temperature and time in the curing step may be appropriately adjusted depending on the content of the polyurethane raw material liquid to be used. For example, when the polyurethane raw material liquid is semi-cured to such an extent that it can be demolded, the semi-cured product is removed from the mold. Then, it may be post-cured (aftercured) in a heating furnace.
 このようにして、得られた円筒状の成形品には、内側から外側に向けてポリウレタン弾性体層/帆布層/ポリウレタン弾性体層の3層構造が形成されていることから、別途作製した樹脂溶液をこの成形品の外周面に塗布・乾燥させるなどして樹脂被覆層14を設け本実施形態の印刷用ブランケット1とすることができる。
 なお、必要であれば前記樹脂溶液の塗布前に成形品の外表面を研磨するなどして樹脂被覆層の表面平滑性向上を図ってもよい。
Thus, since the three-layer structure of the polyurethane elastic body layer / the canvas layer / the polyurethane elastic body layer is formed from the inside to the outside in the obtained cylindrical molded product, the resin prepared separately The printing blanket 1 of this embodiment can be provided by providing the resin coating layer 14 by applying a solution to the outer peripheral surface of the molded product and drying the solution.
If necessary, the surface smoothness of the resin coating layer may be improved by polishing the outer surface of the molded product before applying the resin solution.
 このような印刷用ブランケットの製造方法においては、内型の表面状態が第一ポリウレタン弾性体層11の表面状態に反映されることから、当該内型として所定の表面粗さを有するものを用いることが好ましい。
 即ち、本実施形態の印刷用ブランケットは、前記のように第一ポリウレタン弾性体層11の表面がJIS B0601に規定の10点平均粗さ(Rz)で20μm以下となるように形成されていることが好ましいことから、前記内型として外周面の表面粗さ(10点平均粗さ)が20μm以下の内型を用いることが好ましい。
In such a printing blanket manufacturing method, since the surface state of the inner mold is reflected in the surface state of the first polyurethane elastic body layer 11, the inner mold having a predetermined surface roughness is used. Is preferred.
That is, the printing blanket according to the present embodiment is formed so that the surface of the first polyurethane elastic layer 11 has a 10-point average roughness (Rz) specified in JIS B0601 of 20 μm or less as described above. Therefore, it is preferable to use an inner mold having a surface roughness (10-point average roughness) of 20 μm or less as the inner mold.
 特に、本実施形態においては、帆布を通じて外側から含浸されたポリウレタン原料液によって第一ポリウレタン弾性体層11を形成させるため、前記のような内型を用いることにより、前記硬化工程後に上記のような好適な印刷用ブランケットを得るために研磨処理を行って第一ポリウレタン弾性体層11の表面粗さを調整する必要性を大幅に低減させ得る。 In particular, in the present embodiment, since the first polyurethane elastic body layer 11 is formed by the polyurethane raw material liquid impregnated from the outside through the canvas, the above-described inner mold is used, and thus the above-described after the curing step. In order to obtain a suitable printing blanket, it is possible to greatly reduce the necessity of adjusting the surface roughness of the first polyurethane elastic body layer 11 by performing a polishing process.
 斯かる製造方法によって得られる印刷用ブランケットは、帆布の糸間の開口を通じて第一ポリウレタン弾性体層と第二ポリウレタン弾性体層とを接続させていることからこれらのポリウレタン弾性体層を厚み方向に流れる電流が帆布層によって遮断されることを抑制させることができ厚み方向に良好な導電性を示すことになる。
 しかも、斯かる製造方法によって得られる印刷用ブランケットは、ポリウレタン弾性体層の形成にポリエステルポリオールと2官能のポリイソシアネートとが用いられていることで液体現像電子写真装置に用いられた場合でもキャリアによる特性変化の抑制されたものとすることができる。
In the printing blanket obtained by such a manufacturing method, since the first polyurethane elastic layer and the second polyurethane elastic layer are connected through the opening between the yarns of the canvas, these polyurethane elastic layers are arranged in the thickness direction. It can suppress that the electric current which flows is interrupted | blocked by the canvas layer, and shows favorable electroconductivity in the thickness direction.
Moreover, the printing blanket obtained by such a production method is based on a carrier even when used in a liquid development electrophotographic apparatus because a polyester polyol and a bifunctional polyisocyanate are used for forming a polyurethane elastic layer. The characteristic change can be suppressed.
 なお、上記において具体的に記載されていない事項で従来の印刷用ブランケットやその製造方法において公知の事項に関しては、本発明の効果を著しく損なわない範囲において採用することが可能なものであり、本発明の印刷用ブランケットやその製造方法は、上記例示に限定されるものではない。 Note that the matters not specifically described above can be employed within the range that does not significantly impair the effects of the present invention with respect to known matters in the conventional printing blanket and its manufacturing method. The printing blanket of the invention and the manufacturing method thereof are not limited to the above examples.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples.
(ポリウレタン弾性体層)
 ポリウレタン弾性体層の形成には、下記表1の「配合1」からなるポリウレタン原料液を用いた。
Figure JPOXMLDOC01-appb-T000001
(Polyurethane elastic layer)
For the formation of the polyurethane elastic layer, a polyurethane raw material liquid consisting of “Formulation 1” in Table 1 below was used.
Figure JPOXMLDOC01-appb-T000001
(帆布)
 帆布層の形成には、下記表2に示す3種類の帆布を用いた。
Figure JPOXMLDOC01-appb-T000002
(Canvas)
For the formation of the canvas layer, three types of canvas shown in Table 2 below were used.
Figure JPOXMLDOC01-appb-T000002
(樹脂被覆層)
 樹脂被覆層の形成には、下記表3に示すような、固形分に占めるカーボンブラックの割合が約16.7質量%の樹脂溶液を用いた。
 
Figure JPOXMLDOC01-appb-T000003
(Resin coating layer)
For the formation of the resin coating layer, a resin solution having a carbon black content of about 16.7% by mass as shown in Table 3 below was used.

Figure JPOXMLDOC01-appb-T000003
(印刷用ブランケットの作製)
 印刷用ブランケットの作製には、外径565mm、長さ400mmの内型と、内径584mm、長さ560mmの外型とを有し、前記内型と前記外型とを組み合わせた際に、密封された円筒状のキャビティーを形成することができる金型を用いた。
 具体的には、まず、前記内型に前記経糸が周方向となるように帆布を巻き付けて前記外型内に収容させ、前記キャビティー内を1300Paまで減圧し、別途、表1の配合内容に基づいて作製したポリウレタン原料液を前記キャビティー内に注入し、前記帆布を該ポリウレタン原料液中に浸漬させた。
 この状態で、150℃×60minの熱硬化を実施し、脱型後120℃×120minのアフターキュアを行い、内側から第一ポリウレタン弾性体層/帆布層/第二ポリウレタン弾性体層の3層構造を有する円筒状の成形品を形成させた。
 この成形品の総厚みが2mmとなるまで外表面を研磨し、前記表3に示す配合内容の樹脂溶液を前記外表面に塗布乾燥し、最外層となる樹脂被覆層を厚み30μmとなるように形成させて印刷用ブランケットを作製した。
(Production of blanket for printing)
A blanket for printing has an inner mold having an outer diameter of 565 mm and a length of 400 mm, and an outer mold having an inner diameter of 584 mm and a length of 560 mm, and is sealed when the inner mold and the outer mold are combined. A mold capable of forming a cylindrical cavity was used.
Specifically, first, a canvas is wound around the inner mold so that the warp is in the circumferential direction, and the inner mold is accommodated in the outer mold, and the inside of the cavity is decompressed to 1300 Pa. The polyurethane raw material liquid produced based on this was poured into the cavity, and the canvas was immersed in the polyurethane raw material liquid.
In this state, thermosetting at 150 ° C. × 60 min is performed, after-molding is performed at 120 ° C. × 120 min after demolding, and the three-layer structure of the first polyurethane elastic layer / the canvas layer / the second polyurethane elastic layer from the inside A cylindrical molded article having
The outer surface is polished until the total thickness of the molded product is 2 mm, the resin solution having the composition shown in Table 3 is applied and dried on the outer surface, and the resin coating layer that is the outermost layer has a thickness of 30 μm. A blanket for printing was produced.
(評価)
 上記印刷用ブランケットの作製において用いたものと同じ配合内容のポリウレタン原料液を使って10mm厚みのテストピースを作製し、該テストピースのJIS-A硬度をタイプAデュロメータ硬さ計を用いて測定した。
 また、印刷用ブランケットの周方向(経糸方向)が長さ方向となるようにダンベル状試験片(JIS3号ダンベル)を採取し、JIS K6251に準じて引張試験を実施し、1%伸びにおける引張応力と3%伸びにおける引張応力とを測定した。
 さらに、三菱化学アナリテック社製の抵抗率計「ハイレスタUP」を用いて直流250Vで体積抵抗率と表面抵抗率とを測定した。
 なお、測定は、樹脂被覆層の表面に測定用リングプローブ(型名「URSS」)を当接させた場合と、第一ポリウレタン弾性体層に前記リングプローブを当接させた場合との2通りで実施した。
 また、印刷用ブランケットの両面において表面粗さ(JIS B0601に規定の10点平均粗さ(Rz))を測定した。なお、第一ポリウレタン弾性体層の表面に関しては、帆布の経糸方向と緯糸方向との2通りで表面粗さを測定した。
(Evaluation)
A 10 mm-thick test piece was prepared using a polyurethane raw material liquid having the same composition as that used in the production of the printing blanket, and the JIS-A hardness of the test piece was measured using a type A durometer hardness meter. .
In addition, a dumbbell-shaped test piece (JIS No. 3 dumbbell) was sampled so that the circumferential direction (warp direction) of the printing blanket was the length direction, and a tensile test was conducted according to JIS K6251. Tensile stress at 1% elongation And tensile stress at 3% elongation.
Furthermore, volume resistivity and surface resistivity were measured at 250 VDC using a resistivity meter “HIRESTA UP” manufactured by Mitsubishi Chemical Analytech.
The measurement is performed in two ways: when the measurement ring probe (model name “URSS”) is brought into contact with the surface of the resin coating layer, and when the ring probe is brought into contact with the first polyurethane elastic layer. It carried out in.
Further, the surface roughness (10-point average roughness (Rz) defined in JIS B0601) was measured on both sides of the printing blanket. In addition, regarding the surface of the first polyurethane elastic layer, the surface roughness was measured in two ways, the warp direction and the weft direction of the canvas.
 前記帆布A~帆布Cの3つの帆布を用いて印刷用ブランケットを作製し、これら3つの印刷用ブランケットに対して上記評価を行った。
 その評価結果をまとめて下記表4に示す。
 なお、前記帆布Bを用いた場合には、帆布が開口を有していないために帆布の内側にポリウレタン原料液が含浸されず、第一ポリウレタン弾性体層が形成されなかったため、該第一ポリウレタン弾性体層側からの体積抵抗率と表面抵抗率の測定は、帆布が露出している状態のままでプローブを当接させて実施した。
Printing blankets were prepared using the three canvases A to C, and the above evaluation was performed on these three printing blankets.
The evaluation results are summarized in Table 4 below.
When the canvas B is used, the canvas does not have an opening, so that the polyurethane raw material liquid is not impregnated inside the canvas and the first polyurethane elastic body layer is not formed. The volume resistivity and surface resistivity from the elastic layer side were measured by bringing the probe into contact with the canvas exposed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、これらの印刷用ブランケットを液体現像電子写真装置に利用したところ、実施例1の印刷用ブランケット、比較例2の印刷用ブランケットでは十分な転写電界を樹脂被覆層表面に発揮させることができたが、比較例1の印刷用ブランケットでは十分な転写電界を得ることができなかった。
 また、実施例1の印刷用ブランケットは、抗張力に関しての問題はみられなかったが、比較例2の印刷用ブランケットは、抗張力が低いために、ブランケット胴を回転させた際に印刷用ブランケット表面の周速に変動を生じる結果となった。
 さらに、比較例2の印刷用ブランケットは、ブランケット胴に接する内側の表面粗さが粗いために、転写画像に帆布の布目に相当する画像の濃淡が現れる結果となった。
When these printing blankets were used in the liquid developing electrophotographic apparatus, the printing blanket of Example 1 and the printing blanket of Comparative Example 2 were able to exert a sufficient transfer electric field on the surface of the resin coating layer. However, with the printing blanket of Comparative Example 1, a sufficient transfer electric field could not be obtained.
In addition, the printing blanket of Example 1 showed no problem with respect to the tensile strength, but the printing blanket of Comparative Example 2 had a low tensile strength, so that when the blanket cylinder was rotated, the surface of the printing blanket surface was reduced. As a result, the peripheral speed fluctuated.
Furthermore, since the printing blanket of Comparative Example 2 has a rough inner surface roughness in contact with the blanket cylinder, the image corresponding to the canvas texture appears in the transferred image.
 以上のことからも、本発明によれば、液体現像電子写真装置等の厚み方向への導電性を有することが求められる用途に適した印刷用ブランケットが提供され得ることがわかる。 From the above, it can be seen that according to the present invention, it is possible to provide a printing blanket suitable for an application required to have conductivity in the thickness direction, such as a liquid developing electrophotographic apparatus.

Claims (11)

  1.  ブランケット胴に装着させて用いられる印刷用ブランケットであって、
     前記ブランケット胴側から外側に向けて第一ポリウレタン弾性体層、帆布層、第二ポリウレタン弾性体層の順となる3層構造を少なくとも有しており、前記第一ポリウレタン弾性体層及び前記第二ポリウレタン弾性体層に導電性付与剤が含有され、該第一ポリウレタン弾性体層と前記第二ポリウレタン弾性体層とが前記帆布層を構成している帆布の糸間の開口を通じて接続されており、前記ブランケット胴の周方向となる方向での3%伸びにおける引張応力が100MPa以上で、体積抵抗率が1×10Ω・cm以上、1×1010Ω・cm以下であることを特徴とする印刷用ブランケット。
    A blanket for printing that is used by being attached to a blanket cylinder,
    It has at least a three-layer structure in the order of a first polyurethane elastic body layer, a canvas layer, and a second polyurethane elastic body layer from the blanket body side to the outside, and the first polyurethane elastic body layer and the second polyurethane elastic layer A conductivity-imparting agent is contained in the polyurethane elastic body layer, and the first polyurethane elastic body layer and the second polyurethane elastic body layer are connected through an opening between yarns of the canvas constituting the canvas layer, The tensile stress at 3% elongation in the circumferential direction of the blanket cylinder is 100 MPa or more, and the volume resistivity is 1 × 10 4 Ω · cm or more and 1 × 10 10 Ω · cm or less. Blanket for printing.
  2.  前記開口の大きさが0.1mm角以上の帆布によって前記帆布層が形成されている請求項1記載の印刷用ブランケット。 The printing blanket according to claim 1, wherein the canvas layer is formed of a canvas having a size of the opening of 0.1 mm square or more.
  3.  液体現像電子写真装置におけるトナーの転写に用いられ、少なくとも前記第二ポリウレタン弾性体層を構成するポリウレタンが、ポリエステルポリオールと二官能のポリイソシアネートとを反応させてなるポリウレタンである請求項1又は2記載の印刷用ブランケット。 3. The polyurethane used for transferring toner in a liquid developing electrophotographic apparatus and constituting at least the second polyurethane elastic layer is a polyurethane obtained by reacting a polyester polyol and a bifunctional polyisocyanate. Printing blanket.
  4.  前記第一ポリウレタン弾性体層がブランケット胴に当接される最内層を構成しており、該第一ポリウレタン弾性体層の表面粗さがJIS B0601に規定の10点平均粗さ(Rz)で20μm以下となるように形成されている請求項1乃至3のいずれか1項に記載の印刷用ブランケット。 The first polyurethane elastic body layer constitutes the innermost layer in contact with the blanket cylinder, and the surface roughness of the first polyurethane elastic body layer is 20 μm in terms of the 10-point average roughness (Rz) defined in JIS B0601. The printing blanket according to any one of claims 1 to 3, wherein the printing blanket is formed as follows.
  5.  前記第一ポリウレタン弾性体層、及び、前記第二ポリウレタン弾性体層のいずれもがJIS-A硬度で30度以上60度以下の硬さを有している請求項1乃至4のいずれか1項に記載の印刷用ブランケット。 The first polyurethane elastic body layer and the second polyurethane elastic body layer both have a JIS-A hardness of not less than 30 degrees and not more than 60 degrees. Blanket for printing described in 1.
  6.  前記導電性付与剤が、カーボンブラック及び黒鉛である請求項1乃至5のいずれか1項に記載の印刷用ブランケット。 The printing blanket according to any one of claims 1 to 5, wherein the conductivity-imparting agent is carbon black and graphite.
  7.  前記帆布層を構成している帆布が経糸と緯糸とによって織成されており、且つ、前記経糸又は前記緯糸をブランケット胴の周方向に延在させ、該周方向に延在する糸を芳香族ポリアミド繊維で形成させている請求項1乃至6のいずれか1項に記載の印刷用ブランケット。 The canvas constituting the canvas layer is woven with warps and wefts, and the warps or the wefts extend in the circumferential direction of the blanket cylinder, and the threads extending in the circumferential direction are aromatic. The printing blanket according to any one of claims 1 to 6, wherein the printing blanket is formed of a polyamide fiber.
  8.  樹脂被覆層をさらに有し、該樹脂被覆層が前記第二ポリウレタン弾性体層の外側に積層されて最外層を構成しており、該樹脂被覆層の表面粗さがJIS B0601に規定の10点平均粗さ(Rz)で7μm以下となるように形成されている請求項1乃至7のいずれか1項に記載の印刷用ブランケット。 The resin coating layer further has an outermost layer laminated on the outside of the second polyurethane elastic layer, and the surface roughness of the resin coating layer is 10 points as defined in JIS B0601. The printing blanket according to any one of claims 1 to 7, wherein the printing blanket is formed to have an average roughness (Rz) of 7 µm or less.
  9.  ポリオールとポリイソシアネートと導電性付与剤とを含有するポリウレタン原料液中に糸間に開口を有する帆布を浸漬させて該帆布の両面において前記ポリウレタン原料液を存在させるとともに該帆布に前記ポリウレタン原料液を含浸させ、該ポリウレタン原料液を硬化させて前記帆布からなる帆布層の両側に前記開口を通じて接続された第一ポリウレタン弾性体層と第二ポリウレタン弾性体層とを形成させて請求項1乃至8のいずれか1項に記載の印刷用ブランケットを製造することを特徴とする印刷用ブランケットの製造方法。 A polyurethane raw material liquid containing a polyol, a polyisocyanate, and a conductivity-imparting agent is immersed in a canvas having openings between yarns so that the polyurethane raw material liquid is present on both sides of the canvas and the polyurethane raw material liquid is added to the canvas. The first polyurethane elastic body layer and the second polyurethane elastic body layer connected through the opening are formed on both sides of the canvas layer made of the canvas by impregnating and curing the polyurethane raw material liquid. A method for producing a printing blanket according to any one of the preceding claims.
  10.  減圧下において前記帆布を前記ポリウレタン原料液中に浸漬させる請求項9記載の印刷用ブランケットの製造方法。 The method for producing a printing blanket according to claim 9, wherein the canvas is immersed in the polyurethane raw material solution under reduced pressure.
  11.  円筒状又は円柱状の内型と、該内型の外周よりも径大な内周面を有する外型とを有し、該外型内に前記内型を収容させて密閉された円筒状のキャビティーを形成させることができる金型を用い、前記内型の外周に前記帆布を巻き付けて前記外型内に収容させ、前記キャビティーを減圧させた後に前記ポリウレタン原料液を注入することにより前記減圧下において前記帆布を前記ポリウレタン原料液中に浸漬させ、該ポリウレタン原料液を前記キャビティー内で硬化させる請求項10記載の印刷用ブランケットの製造方法。 A cylindrical or columnar inner mold and an outer mold having an inner peripheral surface larger in diameter than the outer periphery of the inner mold, and the inner mold is accommodated in the outer mold and sealed cylindrical Using a mold capable of forming a cavity, wrapping the canvas around the outer periphery of the inner mold and storing it in the outer mold, and by injecting the polyurethane raw material liquid after depressurizing the cavity The method for producing a printing blanket according to claim 10, wherein the canvas is immersed in the polyurethane raw material liquid under reduced pressure, and the polyurethane raw material liquid is cured in the cavity.
PCT/JP2012/054409 2011-04-27 2012-02-23 Printing blanket and method for producing same WO2012147402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013511961A JPWO2012147402A1 (en) 2011-04-27 2012-02-23 Blanket for printing and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011099771 2011-04-27
JP2011-099771 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147402A1 true WO2012147402A1 (en) 2012-11-01

Family

ID=47071930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054409 WO2012147402A1 (en) 2011-04-27 2012-02-23 Printing blanket and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2012147402A1 (en)
WO (1) WO2012147402A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207291A (en) * 1983-05-10 1984-11-24 Fujikura Rubber Ltd Blanket for printing
JPH11512190A (en) * 1995-08-17 1999-10-19 インディゴ ナムローゼ フェンノートシャップ Intermediate transfer blanket and its manufacturing method
JP2000071415A (en) * 1998-08-28 2000-03-07 Kin Yosha Kk Printer
JP2002123104A (en) * 2000-10-04 2002-04-26 Nexpress Solutions Llc Intermediate transfer member provided with interchangeable sleeve, and the usage of the same
JP2007536582A (en) * 2004-05-07 2007-12-13 デイ インターナショナル インコーポレーテッド Intermediate transfer blanket used in electrophotographic printing
JP2011175208A (en) * 2010-02-25 2011-09-08 Mitsubishi Heavy Industries Printing & Packaging Machinery Ltd Intermediate transfer blanket and intermediate transfer body for electrophotographic printing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207291A (en) * 1983-05-10 1984-11-24 Fujikura Rubber Ltd Blanket for printing
JPH11512190A (en) * 1995-08-17 1999-10-19 インディゴ ナムローゼ フェンノートシャップ Intermediate transfer blanket and its manufacturing method
JP2000071415A (en) * 1998-08-28 2000-03-07 Kin Yosha Kk Printer
JP2002123104A (en) * 2000-10-04 2002-04-26 Nexpress Solutions Llc Intermediate transfer member provided with interchangeable sleeve, and the usage of the same
JP2007536582A (en) * 2004-05-07 2007-12-13 デイ インターナショナル インコーポレーテッド Intermediate transfer blanket used in electrophotographic printing
JP2011175208A (en) * 2010-02-25 2011-09-08 Mitsubishi Heavy Industries Printing & Packaging Machinery Ltd Intermediate transfer blanket and intermediate transfer body for electrophotographic printing

Also Published As

Publication number Publication date
JPWO2012147402A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
KR101667175B1 (en) Charging member, process cartridge, and electrophotographic apparatus
KR100683180B1 (en) Developing roller including carbone nanobube for electrophotographic device and method for fabricating the same
JP5143355B2 (en) Developing roll
JP2004067726A (en) Conductive urethane composition and conductive roller, charging roller, developing roller, and transfer roller using the composition
US9260606B2 (en) Silicone rubber sponge and rubber-covered roller
WO2008000824A1 (en) Elastic roll cover, covered roll and method of manufacturing a covered roll
US6393243B1 (en) Developing roller and developing device using the same
US8718518B2 (en) Development roll for electrophotographic equipment
US7144525B2 (en) Elastic member of semiconductive polymer and OA equipment using the same
WO2012147402A1 (en) Printing blanket and method for producing same
JP5144975B2 (en) Toner supply roller
JP2008170878A (en) Conductive roller and image forming apparatus
JP5649922B2 (en) Conductive elastomer member for electrophotographic apparatus
JP2009086217A (en) Manufacturing method for roller
JP2012073332A (en) Foamed elastic roller and process cartridge
JP2006323402A (en) Elastic member of semiconductive polymer, and oa component using the same
CN112740112B (en) Elastic roller
JP2009271328A (en) Conductive elastomer member for electrophotographic device
JP3759115B2 (en) Conductive intermediate transfer rubber belt
JP5897964B2 (en) Manufacturing method of conductive roller
KR100869122B1 (en) Manufacturing method of a conductive polyurethane roller for printer
EP3998410A1 (en) Developing roller
US20060177244A1 (en) Image forming roller
JP4885614B2 (en) Conductive roller
JP2009265236A (en) Toner supply roller and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777375

Country of ref document: EP

Kind code of ref document: A1