WO2012147291A1 - Communication node and network node - Google Patents
Communication node and network node Download PDFInfo
- Publication number
- WO2012147291A1 WO2012147291A1 PCT/JP2012/002509 JP2012002509W WO2012147291A1 WO 2012147291 A1 WO2012147291 A1 WO 2012147291A1 JP 2012002509 W JP2012002509 W JP 2012002509W WO 2012147291 A1 WO2012147291 A1 WO 2012147291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- request
- handover
- connection request
- connection
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0066—Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Definitions
- the present invention provides a communication node for performing communication by switching connection to a network using different RATs (Radio Access Technology), and a handover for the communication node (Inter-RAT Handover (HO)). It relates to a network node capable of
- FIG. 1 shows a UE 100, an MTC device 105, a base station wirelessly connected to the UE 100 and the MTC device 105 (eNB (eNode B) 110 in E-UTRAN 114, NB (Node B) 111 in UTRAN 115), E-UTRAN 114, An exchange in charge of communication line control and movement control of the UE 100 and the MTC device 105 on the UTRAN 115 (the exchange connected to the E-UTRAN 114 is MME (Mobility Management Entity) 120, and the exchange connected to the UTRAN 115 is SGSN (Service General packet).
- MME Mobility Management Entity
- radio service support node 121
- the radio channel of UE 100 and MTC device 105 on UTRAN 115 SGW (Serving Gateway: Serving Gateway, MAG (Mobility Anchor Gateway: MG) that controls user data distribution to RNC (Radio Network Controller) 112 of UE and MTC device 105 UTRAN 115 and E-UTRAN 114. 130), PGW (Packet Data Network Gateway, HA (Home) that performs address control and user data transfer between PDN (Packet Data Network: packet data network) 155 and SGW 130, and path control.
- SGW Serving Gateway
- MAG Mobility Anchor Gateway
- RNC Radio Network Controller
- PGW Packet Data Network Gateway
- HA Home
- Agent Home Agent Interface
- server MME 120
- MME 120 that manages and holds the subscription data (subscription data) of the UE 100 and the MTC device 105, the communication context, and the like, and the LMA (Local Mobility Anchor).
- HSS Home Subscriber Server
- SGSN Serving GPRS Support Node
- MTC device 105 Network including MTC server 150 that is a server that provides communication control and status management, and application services, and MTC user 160 that performs application management and control and application data management for MTC device 105 and MTC server 150
- MTC server 150 that is a server that provides communication control and status management, and application services
- MTC user 160 that performs application management and control and application data management for MTC device 105 and MTC server 150
- MTC server 150 that is a server that provides communication control and status management, and application services
- MTC user 160 performs application management and control and application data management for MTC device 105 and MTC server 150
- An example configuration is shown.
- the UE 100 when the UE 100 communicates with an external network (for example, the PDN 155 illustrated in FIG. 1) through the E-UTRAN 114, the UE 100 communicates with the PGW 140 through a PDN connection and an EPS bearer (EPS Bearer, bearer). Must be established).
- the UE 100 acquires an IP (Internet Protocol) address through the establishment of the PDN connection, and establishes an EPS bearer for communicating with the PDN 155 (see Non-Patent Document 1 below).
- IP Internet Protocol
- the entity of the core network 145 can transfer, for example, data transmitted from the PDN 155 to the UE 100.
- the UE 100 establishes a PDN connection with the PGW 140 by transmitting a request message such as “Attach request” or “PDN connectivity request” disclosed in Non-Patent Document 1 to the network.
- the MME 120 or the PGW 140 discloses a request message (for example, Attach request, PDN connectivity request, etc.) for establishing a PDN connection transmitted from the UE 100 in Non-Patent Document 1.
- a request message for example, Attach request, PDN connectivity request, etc.
- APS Access Point Name: access point name, usage will be described later
- Activation of EPS bearers per APN E.g., establishment request
- rate e.g., transmission rate
- maximum rate no response from one or more PGWs 140 associated with APN (link is broken (broken)
- the MME 120 is notified of the congestion state of the APN (notified), “the ratio of the MM signaling requests by the UE 100 related to the specific subscribed APN reaches the maximum rate”, “network management setting May be rejected based on criteria such as
- each PDN 155 is identified by an identifier called APN.
- APN is used as information indicating a connection destination of a connection (PDN connection) in a request message exchanged between the UE 100 and the network.
- the MME 120 and the PGW 140 select the PGW 140 and the PDN 155 based on the APN and the operator policy of the connection destination information stored in the request message transmitted from the UE 100.
- the MME 120 and the PGW 140 reject the request message transmitted from the UE 100.
- the priority (hereinafter also referred to as Priority) held by the UE 100 can be used.
- a low priority hereinafter, also referred to as “low priority”
- a standard priority hereinafter, also referred to as “normal priority”
- the priority is controlled in order from the UE 100 of the low priority. That is, when the PDN 155 is congested, as soon as it is detected by the MME 120 or the PGW 140, the congestion countermeasure is controlled from the UE 100 of the low priority based on the operator policy or the determination of the entity in the network. For example, when the APN of the connection destination information of the request message transmitted from the UE 100 indicates “PDN1” and it is detected that “PDN1” is congested, the MME 120 or the PGW 140 determines that the UE 100 has a low priority. The request message sent from is preferentially rejected.
- the network stores priority information stored in the request message transmitted from the UE 100 (based on LAPI (Low Access Priority Indicator) disclosed in Non-Patent Document 1 or whether LAPI is stored. It is defined to determine whether to reject the request message based on whether or not (see Non-Patent Document 1).
- LAPI Low Access Priority Indicator
- this priority is also considered when it is assigned to a connection (PDN connection) established by the UE 100. For example, if the UE 100 has already established two connections with the network, one connection may have a priority of Low priority and another connection may have a priority of Normal priority.
- this priority information includes priority information related to the application held by the UE 100 (for example, “If the amount of data exchanged by the MTC application is small, the connection of the low priority ( Context information or setting file in which “Use (PDN connection)” is registered) or priority information notified from the network operator or the MTC server 150 / user 160 (for example, “sensing data required by the MTC application”) May be set on the basis of high priority (information instructing “use of connection (PDN connection))” etc. Also in a request message in which such priority information is stored The network is transmitted from the UE 100. Based on the priority information stored in the Est message, or based on whether LAPI is stored, it may reject the request message.
- priority information related to the application held by the UE 100 for example, “If the amount of data exchanged by the MTC application is small, the connection of the low priority ( Context information or setting file in which “Use (PDN connection)” is registered) or priority information notified from the network operator or the MTC server 150
- the network waits to avoid retransmission of the request message for a certain period of time.
- the UE 100 may be notified of the time (standby time, also called a back-off timer) stored in the rejection message.
- the UE 100 that has received the rejection message storing the waiting time sends a request message (for example, Attach Request or Bearer Resource Modification Request disclosed in Non-Patent Document 1) to the same APN until the waiting time expires. ) Is not sent. This waiting time does not affect request messages for other APNs.
- Non-Patent Document 1 a message for mobility management of the UE 100 (for example, Attach request, Tracking Area Update Request, Service Request, Extended Service Request, and Detach Management MM) ) Back-off timer (also called EMM back-off timer).
- Attach request for example, Attach request, Tracking Area Update Request, Service Request, Extended Service Request, and Detach Management MM
- EMM back-off timer also called EMM back-off timer
- the network device can reject the request message even when, for example, the number of request messages transmitted from the UE 100 is too large and is in a congested state (overload state) ( (Refer nonpatent literature 1).
- the eNB 110 requests the eNB 110 to restrict request messages addressed to the MME 120, and the eNB 110 requests messages from the UE 100 (messages exchanged between the UE 100 and the eNB 110). Includes a message called an RRC connection request message (see Non-Patent Document 2 below), thereby restricting request messages from the UE 100 to the MME 120 and means for distributing the load among the MMEs 120.
- RRC connection request message see Non-Patent Document 2 below
- other MMEs 120 that are not overloaded
- the MME 120 itself may preferentially reject (reject) a request message transmitted from the low priority UE 100 because the network device is overloaded.
- a message requesting the MME 120 to restrict the request message from the UE 100 to the eNB 110 is referred to as an OVERLOAD START message.
- the MME 120 determines that the overload state of the MME 120 is eliminated and the eNB 110 does not need to further reject the request message from the UE 100, the MME 120 transmits an OVERLOAD STOP message to the eNB 110, and the request message from the UE 100.
- the state of the eNB 110 that rejects may be reset.
- the MME 120 can control the UE 100 that is the transmission source of the request message rejected by the eNB 110 for each Subcategory (subcategory) by sending this OVERLOAD START message.
- This Subcategory may be classified based on the priority used in the congestion avoiding method based on the congestion state of the PDN 155 or the network device as described above, and whether the UE 100 is roaming (for example, It may be classified based on PLMN (Public Land Mobile Network) type (see Non-Patent Document 1).
- PLMN Public Land Mobile Network
- the Back-off timer may be used in order to avoid retransmission of the request message from the UE 100 in a short time.
- the MM back-off timer disclosed in Non-Patent Document 1 may be used for avoiding the congested state in the MME 120, the PGW 140, and the like.
- Non-Patent Document 1 discloses “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” and the like.
- “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” disclosed in Non-Patent Document 1 is a conventional technique used when a handover from UTRAN 115 to E-UTRAN 114 is performed.
- This “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” is divided into two phases, “Preparation phase” and “Execution phase”. By correctly completing these two phases, the UE 100 can be changed from the UTRAN 115 to the ETRAN. -Hand over to UTRAN 114.
- Preparation phase and “Execution phase” will be described.
- FIG. 2 is a sequence diagram for explaining the “Preparation phase” of the conventional technique “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”.
- a device that is used in the network to which the UE 100 is currently connected, and that is changed by executing “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” (the UE 100 uses before handover) Device) is prefixed with the word “Source” (for example, the source SGSN 121), and the device that the UE 100 intends to use in the network after the handover is preceded by the device name.
- the word “Target” is used (for example, the target MME 120).
- the source RNC 112 decides to hand over the UE 100 from the UTRAN 115 to the E-UTRAN 114 based on an operator policy such as a communication state of the UE 100 and a load state of the NB 110 supporting the UE 100 (step S201 in FIG. 2). ).
- the source RNC 112 is a device used in the handover destination network of the UE 100 (for example, the target eNB 110, the target MME 120, and the target SGW 130). A message is transmitted (step S202 in FIG. 2).
- the source SGSN 121 determines a handover from the parameter (for example, Target eNB Identifier) stored in the Relocation Required message received in step S202 to the E-UTRAN 114. Subsequently, the source SGSN 121 starts a Handover Required resource allocation procedure by transmitting a Forward Relocation Request message to the target MME 120 in order to secure resources for the EPS bearer established before the handover by the UE 100 (Step S203 in FIG. 2). .
- the parameter for example, Target eNB Identifier
- the target MME 120 establishes the EPS bearer indicated by the parameter stored in the Forward Relocation Request message received in step S203. Also, the target MME 120 determines whether reassignment of the SGW 130 is necessary. If the SGW 130 is to be reassigned, the target MME 120 selects the target SGW 130 and transmits a Create Session Request message to the SGW 130 (step S204 in FIG. 2). In the configuration example illustrated in FIG. 1, the source SGW 130 and the target SGW 130 are the same.
- the SGW 130 that has received the Create Session Request message allocates resources for the UE 100, and transmits a Create Session Response message to the target MME 120 (Step S205 in FIG. 2). Note that when the SGW 130 is not reassigned, the message exchange in steps S204 and S205 in FIG. 2 can be omitted.
- the target MME 120 transmits a Handover Request message to the target eNB 110 in order to request radio resource allocation by the target eNB 110. (Step S206 in FIG. 2).
- the target eNB 110 that has received the Handover Request message allocates radio resources for the UE 100, stores parameters applied for the radio resources of the UE 100 in the Handover Request Acknowledgment message, and transmits them to the target MME 120 (Step S207 in FIG. 2). . At this time, the target eNB 110 prepares to receive user data sent from the SGW 140.
- the target MME 120 sends a Forward Relocation Response message to the source SGSN 121 that stores a result of securing radio resources, a parameter indicating that a new SGW 130 has been selected, and the like, as a result of processing by the E-UTRAN 114 and the target MME 120 of the handover destination. Transmit (step S210 in FIG. 2).
- FIG. 3 is a sequence diagram for explaining “Extraction phase” of “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”, which is a conventional technique.
- the source SGSN 121 completes the “Preparation phase” by sending a Relocation Command message to the source RNC 112. Further, the source SGSN 121 stores, in the Relocation Command message, parameters necessary for the UE 100 generated by the “Preparation phase” to transfer data via the handover destination E-UTRAN 114 (step S301 in FIG. 3).
- the source RNC 112 that has received the Relocation Command message transmits a HO from E-UTRAN Complete message to the UE 100 in order to hand over the UE 100 to the handover destination E-UTRAN 114 (step S302 in FIG. 3).
- the UE 100 After this step, the UE 100 performs a general “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”, and hands over from the UTRAN 115 to the E-UTRAN 114.
- an Inter-RAT handover procedure from UTRAN to E-UTRAN is implemented based on the network operator policy after establishing a PDN connection via UTRAN.
- Request message for Inter-RAT handover (“Forward Relocation Requests” shown in FIG. 2) ") Latency (e.g., back-off timer (hereinafter to a request message for handover, HO (Handover) is called a back-off timer) is considered to be rejected with a).
- the present invention attempts to perform a handover when a handover (Inter-RAT Handover) is rejected for a connection of a communication node (UE) and a waiting time (HO back-off timer) occurs.
- the purpose is to connect efficiently to the network. It is another object of the present invention to perform processing with a small processing load and a small number of exchanged messages.
- the communication node of the present invention is configured by first and second networks using different radio access technologies, and the communication node is connected between the first network and the second network.
- a communication node connected to a communication system for handing over A first connection request transmitter for transmitting a first connection request to the first network; Connection until the first connection request can be retransmitted to the first network when the first connection request to the first network by the first connection request transmission unit is rejected.
- a waiting time acquisition unit for acquiring a request waiting time;
- a second connection request transmitter for transmitting a second connection request to the second network when the first connection request to the first network by the first connection request transmitter is rejected;
- a connection establishment unit for establishing a connection with the second network;
- the second network sends a handover request for handing over the connection established with the communication node to the first network, and the first network rejects the handover request.
- switching the connection to the first network transmitted from the second network when notifying the second network of a handover waiting time until a handover request can be retransmitted to the first network.
- a message receiver for receiving a trigger message including an instruction;
- a determination unit that determines whether the first connection request transmission unit retransmits the first connection request to the first network based on the trigger message received by the message reception unit; Have.
- the network node of the present invention includes first and second networks using different radio access technologies, and a communication node between the first network and the second network.
- a handover Inter-RAT Handover
- UE communication node
- HO back-off timer HO back-off timer
- a connection request transmitted from a communication node (UE) to a certain network (first network) is rejected and a first waiting time (MM back-off timer) is set.
- MM back-off timer the second standby time (HO back) set by the handover from the second network to the first network
- Inter-RAT Handover is established by establishing a connection with another network (second network).
- a communication node can connect to the first network earlier, leading to improved service quality and improved user convenience.
- the communication node selects an optimal network by determining whether or not to switch the connection in consideration of the communication status of the communication node (for example, the remaining amount of data to be transmitted / received). Is possible.
- FIG. 3 is a sequence diagram for explaining an example of a system operation according to the first and second embodiments of the present invention, which is an example of a system operation according to a conventional technique.
- Sequence diagram for explaining an example of the operation of Attach procedure in the prior art The sequence diagram for demonstrating an example of the system operation
- FIG. 1 is a diagram showing an example of a system configuration common to the first and second embodiments of the present invention and the conventional technology.
- the network illustrated in FIG. 1 includes at least a base station (to E-UTRAN 114) that is wirelessly connected to UE 100 or MTC device 105 (UE 100 and MTC device 105 are collectively referred to as UE 100).
- ENB 110 that provides a connection to the UTRAN 115, or an NB 111 that provides a connection to the UTRAN 115
- RNC 112 that performs radio channel control and mobility control of the UE 100 connected to the UTRAN 115, and is responsible for mobility management of the UE 100 (MME 120 or SGSN 121).
- MTC server 150 provides a server for such application services. Note that the UE 100 and the MTC user 160 can communicate with this network.
- the MTC server 150 is located in the PDN 155, but may be located in the core network 145.
- the PGW 140 may be responsible for the function of the MTC server 150.
- the UE 100 has at least one communication interface and can be connected to a network (for example, the E-UTRAN 114 or the UTRAN 115).
- the UE 100 may be connected to the illustrated network (for example, the E-UTRAN 114 or the UTRAN 115) simultaneously or exclusively. Only.
- the UE 100 can communicate with the MTC server 150 through the connected communication system, and the MTC server 150 can communicate with the MTC user 160.
- the MME 120 and the PGW 140 of the core network request messages transmitted from the UE 100 with a waiting time when the PDN 155 is congested or the entities (such as the MME 120 and the PGW 140) of the core network 145 are overloaded. Can be rejected.
- the UE 100 can perform handover between different RATs (for example, from the UTRAN 115 to the E-UTRAN 114) while maintaining communication by using the procedure established by 3GPP.
- a handover is mainly performed from the UTRAN 115 to the E-UTRAN 114 will be described, but the present invention can also be applied when a handover is performed from the E-UTRAN 114 to the UTRAN 115.
- E-UTRAN 114 and UTRAN 115 are illustrated as a plurality of RATs to which UE 100 can be connected.
- the present invention is also applicable.
- FIG. 4 is a sequence diagram for explaining an example of a system operation according to the prior art, and an example of a system operation assumed in the first and second embodiments of the present invention.
- the UE 100 establishes a connection via either the MME 120 (connected via the E-UTRAN 114) or the SGSN 121 (connected via the UTRAN 115). This will be described using a case where
- UE 100 transmits a request message (for example, Attach request) to MME 120 in order to establish a PDN connection via E-UTRAN 114 (step S401 in FIG. 4).
- the MME 120 that has received the Attach request transmitted from the UE 100 is in an overload state, for example, due to processing of a request message from another UE 100 or a message transmitted from an entity of the core network 145, and is a rejection for rejecting the Attach request.
- a message (for example, Attach reject) is returned to the UE 100 (step S402 in FIG. 4).
- the MME 120 wants to return from the overload state to a normal state (a state in which a request message from the UE 100 can be processed) as soon as possible, or a waiting time (MM back) to avoid a request message retransmitted from the UE 100 for a certain period of time.
- -Off timer is stored in the rejection message.
- the processing in steps S401 and S402 represents processing in which the UE 100 to which the connection via the E-UTRAN 114 is rejected receives a waiting time (MM back-off timer).
- the UE 100 that has received the rejection message including the MM back-off timer transmits a request message (for example, Attach request) for establishing a PDN connection via a different network (for example, UTRAN 115 which is a different RAT) (FIG. 4).
- a request message for example, Attach request
- the SGSN 121 that has received the Attach request transmitted from the UE 100 performs processing in accordance with a general Attach procedure established by 3GPP in order to authorize the Attach request, and returns an authorization message (for example, Attach accept) to the UE 100.
- Step S404 in FIG. 4 the UE 100 can establish a PDN connection with the PGW 140 via the UTRAN 115 and, for example, can transmit user data to the PDN 155.
- the processing in steps S403 and S404 represents processing in which the UE 100 to which connection via the E-UTRAN 114 is rejected establishes a PDN connection via the UTRAN 115.
- a flag indicating an instruction to use the MM back-off timer or the HO back-off timer is inserted into the Attach request transmitted from the UE 100 in step S403.
- a handover process from the UTRAN 115 to the E-UTRAN 114 is triggered by the network operator policy, and a message (for example, Forward Relocation Request) from the SGSN 121 to the MME 120 (details) The sequence will be described later) (step S405 in FIG. 4).
- the MME 120 that has received the Forward Relocation Request transmitted from the SGSN 121 is in an overload state due to processing of a request message from another UE 100 or a message transmitted from an entity of the core network 145, and so on to reject the Forward Relocation Request.
- a rejection message (for example, Forward Relocation Response storing parameters indicating “No resource available” and “Relocation failure” disclosed in Non-Patent Document 5) is returned to the SGSN 121 (step S406 in FIG. 4).
- the MME 120 wants to return as soon as possible from an overload state to a normal state (a state in which a request message from the UE or a message from an entity of the core network (for example, a handover request) can be processed), or a request retransmitted from the SGSN 121 In order to avoid the message for a certain period of time, it is possible to store a waiting time (HO back-off timer) in the rejection message.
- the MME 120 returns to the normal state and receives the Handover request in Step S405, the Inter-RAT handover procedure is executed.
- the processing in steps S405 and S406 represents processing in which the Inter-RAT handover from the UTRAN 115 to the E-UTRAN 114 is rejected and a waiting time (HO back-off timer) is received.
- the MME 120 in the overload state receives an attach request including an MM back-off timer in response to an attach request from the UE 100. (Reject message) is returned, and Forward Relocation Response (reject message) including HO back-off timer is returned to Forward Relocation Request from SGSN 121.
- the SGSN 121 that has received the Forward Relocation Response including the HO back-off timer transmits the Forward Relocation Request to the MME 120 again after the HO back-off timer has elapsed (step S407 in FIG. 4).
- the MME 120 that has received the Forward Relocation Request accepts the Forward Relocation Request when the overload state is resolved, and stores a handover permission message (for example, a parameter indicating “Request Accepted” disclosed in Non-Patent Document 5).
- Forward Relocation Response is returned to the SGSN 121 (step S408 in FIG. 4).
- the SGSN 121 performs the handover process by retransmitting the Forward Relocation Request after the completion of the HO back-off timer, but this handover process (Inter-RAT handover procedure) has a high processing load on the network device. In addition, there is a problem that a large number of messages are exchanged.
- FIG. 5 is a sequence diagram for explaining an example of the operation of the conventional technique “UTRAN to E-UTRAN lu mode Inter RAT handover” (handover case from UTRAN 115 to E-UTRAN 114).
- the device used by the UE 100 before the Inter-RAT handover procedure is prefixed with the word “Source” before the device name (for example, the source SGSN 121), and after the Inter-RAT handover procedure, the UE 100 A device scheduled to be used in the network is prefixed with the word “Target” (for example, target MME 120).
- the reassignment of the SGW 130 is not taken into consideration, and when the reassignment of the SGW 130 is performed, the messages indicated by the dotted lines in FIGS. 2 and 3 are exchanged.
- step S501 in FIG. 5 execution of Inter-RAT handover from the UTRAN 115 to the E-UTRAN 114 is determined based on the network operator policy.
- the source RNC 112 is a device used in the handover destination network of the UE 100 (for example, the target eNB 110, the target MME 120, the target SGW 130), and the UE 100 is established before the handover.
- a relocation required message for securing resources for the EPS bearer is transmitted to the source SGSN 121 (step S502 in FIG. 5).
- the source SGSN 121 that has received the Relocation required message from the source RNC 112 determines the handover from the parameters stored in the Relocation required message (for example, Target eNB Identifier) to the E-UTRAN 114 according to the general Inter-RAT handover procedure.
- a Forward Relocation Request message is transmitted to the target MME 120 (step S503 in FIG. 5).
- a general Inter-RAT handover procedure process (for example, after executing Step S 506 to Step S 508 shown in FIG. Process).
- a message that rejects the Forward Relocation Request message (for example, a parameter indicating “No resource available” or “Relocation failure” disclosed in Non-Patent Document 5) is stored.
- the Forward Relocation Response message is returned to the source SGSN 121 (step S504 in FIG. 5).
- the target MME 120 wants to return as soon as possible from the overload state to a normal state (a state in which a request message from the UE 100 or a message from a core network entity (for example, a Handover request) can be processed).
- a normal state a state in which a request message from the UE 100 or a message from a core network entity (for example, a Handover request) can be processed.
- a waiting time (HO back-off timer) is stored in the Forward Relocation Response message transmitted in step S504.
- 4C corresponds to step S501 to step S504 in FIG.
- the source SGSN 121 transmits a Forward Relocation Request message to the target MME 120 again (step S505 in FIG. 5).
- the overload state of the target MME 120 has been resolved (when the target MME 120 has returned to the normal state)
- steps S506 to S508 in FIG. The request is accepted, and then the execution phase process shown in FIG. 5 is executed.
- 4D corresponds to steps S505 to S508 in FIG.
- the Inter-RAT HO procedure for example, when a message (Forward Relocation Response message) rejecting the Forward Relocation request from the target MME 120 to the source SGSN 121 is returned from the source SGSN 121 to the Target MME 120, the Forward Requeue Request It takes a minimum of 18 steps from the time when the message is sent again until Inter-RAT HO procedure is completed (the processing after step S505 in FIG. 5), and various message exchanges (for example, dotted lines in FIGS. 2 and 3). (For example, when the SGW 130 changes) A.
- Inter-RAT HO procedure has a problem that the processing load on the network device is high and the number of messages to be exchanged is large.
- FIG. 6 is a sequence diagram for explaining an example of the operation of the first exemplary embodiment of the present invention. 6 is created based on FIG. 5, step S601 in FIG. 6 is shown in FIG. 4A, step S602 in FIG. 6 is in FIG. 4B, and steps S603 to S606 in FIG. Corresponds to (C) in FIG. 4 and steps S501 to S504 in FIG.
- the UE 100 when the UE 100 transmits an Attach request to the SGSN (source SGSN) 121 via the UTRAN 115, the MM back- stored in the Attach reject message received via the E-UTRAN 114.
- a flag indicating an instruction to use the off timer or the HO back-off timer is stored in the Attach request (step S6021 in FIG. 6).
- Step S603 to S606 are performed.
- the Forward Relocation Request in Inter-RAT HO transmitted from the source SGSN 121 is rejected by the target MME 120, and Steps S603 to S606 in FIG. 6 are performed from Step S501 to Step S606 in FIG. Since it is the same as S504, the description is omitted.
- the source SGSN 121 receives the Forward Relocation Response message including the HO back-off timer transmitted from the target MME 120, the source SGSN 121 receives the MM back-off timer notified from the UE 100 in step S6021, and the target MME 120 in step S606. Each end time (elapsed state) of the notified HO back-off timer is compared (step S607 in FIG. 6).
- the trigger request message for triggering the Attach procedure by the UE 100 for example, NAS (Non Access Signal)
- the UE 100 for example, NAS (Non Access Signal)
- the source SGSN 121 indicates an instruction to use the HO back-off timer, for example.
- the UE 100 does not need to store the MM back-off timer in the Attach request in step S6021 if it is possible to determine whether to use the HO back-off timer according to the presence or absence of the flag.
- step S607 the process of comparing the end time between the MM Back-off timer and the HO Back-off timer by the source SGSN 121 in step S607 can also be omitted, and the source SGSN 121 performs step S608 after the completion of the HO Back-off timer.
- a Trigger request message is transmitted to the UE 100.
- the source SGSN 121 receives a normal Attach request in step S6021, a flag that explicitly indicates that the MM back-off timer and the HO back-off timer are used for the Attach request. Even when the HO back-off timer is terminated, a Trigger request may be transmitted to the UE 100.
- step S609 Upon receiving the Trigger request message in step S608, the UE 100 transmits an Attach request to the target MME 120 via the E-UTRAN 114, and establishes a PDN connection with the PGW 140 via the E-UTRAN 114 (step S609 in FIG. 6).
- the process executed in step S609 is a normal Attach procedure, and specifically, a series of processes illustrated in FIG. 12 is executed (here, a detailed description of the normal Attach procedure in FIG. 12 is given). (Omitted).
- the UE 100 transmits an Attach request via the E-UTRAN 114 in step S609
- the waiting time (MM back-off timer) notified from the MME 120 in step S601 in FIG. 6 has not yet ended.
- the UE 100 disables the MM back-off timer (stop / ignore / pause, etc.) so that the Attach request can be transmitted.
- the target MME 120 generally notifies the UE SG 100 of the MM back-off timer (step S601) and the source SGSN 121 to determine the length of the back-off timer according to the overload state.
- the length of the waiting time is different from the HO back-off timer (step S606).
- the end time of the HO back-off timer may be earlier than the end time of the MM back-off timer.
- the source SGSN 121 transmits a trigger request to the UE 100 in step S608, and the UE 100 After waiting for only the HO back-off timer notified from the target MME 120 to the source SGSN 121, the Attach request is transmitted via the E-UTRAN 114, and the E-UTRAN It is possible to establish a PDN connection via 14.
- FIG. 7 is a diagram illustrating an example of a configuration of the UE in the first embodiment of the present invention.
- a UE 100 is connected to a network (for example, E-UTRAN 114 or UTRAN 115) to perform communication processing in a lower layer and packet communication processing such as IP in an upper layer, mobility management and communication path Communication control unit 702 that performs management (for example, PDN connection established with PGW 140, QoS control for EPS bearer, etc.) and RAT (for example, E-UTRAN 114 and UTRAN 115), wait time received from the network (for example, , MM back-off timer, etc.) and at least a timer control unit 703 for measuring time based on the waiting time.
- management for example, PDN connection established with PGW 140, QoS control for EPS bearer, etc.
- RAT for example, E-UTRAN 114 and UTRAN 115
- wait time received from the network for example, , MM back-off timer, etc.
- the timer control unit 703 can be omitted. Further, when the timer control unit 703 exchanges information with only the communication control unit 702, only a direct link may be provided between the timer control unit 703 and the communication control unit 702.
- the communication control unit 702 illustrated in FIG. 7 creates and processes a message for connecting to the E-UTRAN 114 and the UTRAN 115 (for example, extracts information such as an MM back-off timer from the message). To establish a connection with the E-UTRAN 114 and the UTRAN 115. Furthermore, the communication control unit 702 extracts information included in, for example, the Trigger indication field illustrated in FIG. 11 and creates and processes a new message (for example, a connection switching process to another RAT). It is also possible to determine whether or not to perform.
- the UE 100 converts hardware (for example, a message or a packet) into an electrical signal or modulates and demodulates a signal that is physically connected to the network (for example, to communicate with the network). Interface), an integrated circuit for realizing the functions of the UE 100, or a processor capable of executing software (program).
- the functions for connecting to the network (transmission of connection requests and connection establishment) and the functions for determining whether or not to perform connection requests or connection establishment are as described above. It may be realized by hardware, or may be realized by causing a processor to execute a program.
- the UE 100 may have a memory for temporarily storing information, and information such as an MM back-off timer may be temporarily stored in the memory.
- the timer control unit 703 may be realized by hardware as described above, or may be realized by causing a processor to execute a program.
- FIG. 8 is a flowchart showing an example of the operation of the UE in the first embodiment of the present invention.
- the UE 100 transmits an Attach request in order to establish a PDN connection via the E-UTRAN 114 (step S801 in FIG. 8). However, the UE 100 receives the Attach reject message for the Attach request because the MME 120 that has received the Attach request is in an overload state. At this time, the MME 120 stores the MM back-off timer in the Attach reject message in order to avoid the Attach request transmitted from the UE for a certain period of time (step S802 in FIG. 8).
- the UE 100 confirms whether or not the Attach request can be transmitted via the UTRAN 115 (for example, the setting information of the UE 100 (for example, the RAN priority information (for example, the E-UTRAN 114 is the UTRAN 115 with the high priority)). For example, a medium priority, etc.) or a file showing accessible RAT Type), or whether it is located within the UTRAN 115 cover area). That is, the UE 100 confirms whether or not an Attach request message can be transmitted via the UTRAN 115 (step S803 in FIG. 8).
- the setting information of the UE 100 for example, the RAN priority information (for example, the E-UTRAN 114 is the UTRAN 115 with the high priority)
- the UE 100 confirms whether or not an Attach request message can be transmitted via the UTRAN 115 (step S803 in FIG. 8).
- the UE 100 stores the MM back-off timer received via the E-UTRAN 114 in the Attach request that is transmitted via the UTRAN 115, and the Attach with the MM back-off timer inserted. Request is transmitted (step S804 in FIG. 8). And UE100 establishes a PDN connection between PGW140 by receiving an Attach accept message from SGSN121 via UTRAN115 (Step S805 of Drawing 8).
- the Inter-RAT HO is triggered on the network side based on the network operator policy.
- a request message for example, Forward Relocation Request
- the target MME 120 stores the reply time (HO back-off timer) in a rejection message (for example, Forward Relocation Response) and returns it to avoid retransmission of the request message from the source SGSN 121 for a certain period of time. .
- the source SGSN 121 compares the end times of the HO back-off timer received from the target MME 120 and the MM back-off timer received from the UE 100 in step S802. If the source SGSN 121 determines that the end time of the HO back-off timer is earlier, the UE 100 receives a trigger request message from the source SGSN 121 after the end of the HO back-off timer (step S806 in FIG. 8). .
- the UE 100 that has received the Trigger request transmits the Attach request again via E-UTRAN (step S807 in FIG. 8). Since the UE 100 receives the Trigger request after transmitting the HO back-off timer and transmits the Attach request, the target MME 120 is likely to have an overloaded state (and further communicates with the UE 100). It ’s likely that you have resources.) When the target MME 120 accepts an Attach request from the UE 100, a PDN connection is established between the UE 100 and the PGW 140 via the E-UTRAN 114.
- the UE 100 waits until the MM back-off timer ends (step S808 in FIG. 8), and ends the MM back-off timer. Thereafter, the Attach request is transmitted again via the E-UTRAN 114 (step S807 in FIG. 8).
- the UE 100 inserts a flag explicitly indicating that the HO back-off timer is used without inserting the MM back-off timer into the Attach request message transmitted in step S804.
- a normal Attach request message may be transmitted.
- FIG. 9 is a diagram illustrating an example of the configuration of the source SGSN according to the first embodiment of the present invention.
- the source SGSN 121 performs communication processing on the UTRAN 115, a communication processing unit 901 that performs packet communication processing such as IP, a HO back-off timer transmitted from the target MME 120, and an MM back ⁇ transmitted from the UE 100.
- the timer comparison unit 902 that compares the end time of the off timer, the NAS message generation unit 903 that generates the trigger request message to be transmitted to the UE 100 when it is determined that the HO back-off timer ends earlier, and the UE 100 has transmitted It has at least a communication control unit 904 that manages the mobility of the UE 100 such as Attach request.
- the NAS message generation unit 903 retains the function of the timer comparison unit 902, the timer comparison unit 902 can be omitted.
- the communication control unit 904 holds the functions of the NAS message generation unit 903 and the timer comparison unit 902, the NAS message generation unit 903 and the timer comparison unit 902 can be omitted.
- the communication control unit 904 illustrated in FIG. 9 creates and processes a message for enabling the UE 100 to connect to the network (for example, extracts information such as an MM back-off timer from the message). Etc.) to establish a connection with the UE 100. Further, the communication control unit 904 has a function of executing Inter-RAT Handover procedure.
- the source SGSN 121 converts hardware (for example, a message or a packet) to be electrically connected to the network (for example, to perform communication with the network), or performs signal modulation and demodulation. Interface), an integrated circuit for realizing the function of the source SGSN 121, or a processor capable of executing software (program).
- Function for managing connection to the network by UE 100 (establishing network connection by UE 100), function for executing Inter-RAT Handover procedure, function for determining whether or not to accept a connection request from UE 100, function for processing communication messages (
- the functions included in the communication processing unit 901, the NAS message generation unit 903, and the communication control unit 904) may be realized by hardware as described above, or may be realized by causing a processor to execute a program.
- the source SGSN 121 may have a memory for temporarily storing information, and may temporarily store information such as the MM back-off timer and the HO back-off timer in the memory. Further, the timer comparison unit 903 may be realized by hardware as described above, or may be realized by causing a processor to execute a program.
- FIG. 10 is a flowchart showing an example of the operation of the SGSN 121 according to the first embodiment of this invention.
- the SGSN 121 receives the Attach request in which the MM back-off timer is stored from the UE 100 (step S1001 in FIG. 10).
- the SGSN 121 confirms the operator policy and the load state (confirms that it is not an overload state), and if it can accept the Attach request, it returns an Attach accept to the UE 100 (Step S1002 in FIG. 10).
- a PDN connection is established between the UE 100 and the PGW 140 via the UTRAN 115.
- the UTRAN 115 determines that the E-UTRAN 114 causes the Inter-RAT HO for the PDN connection of the UE 100 based on the policy of the operator of the UTRAN 115.
- the source SGSN 121 receives an Inter-RAT HO request message (for example, Relocation Required) from the source RNC 112 (step S1003 in FIG. 10).
- the source SGSN 121 that has received the Inter-RAT HO request message transmits an Inter-RAT HO request message (for example, Forward Relocation Request) to the target MME 120 (step S1004 in FIG. 10).
- an Inter-RAT HO request message for example, Forward Relocation Request
- the target MME 120 since the target MME 120 is overloaded, it is assumed that the Inter-RAT HO request message is rejected. At this time, in order to avoid retransmission of the request message from the source SGSN 121 for a certain time, the target MME 120 sets a waiting time (HO back-off timer) as a rejection message (for example, “No resource available” disclosed in Non-Patent Document 5).
- the SGSN 121 receives this refusal message (step S1005 in FIG. 10).
- the SGSN 121 stores the response in the Forward Relocation Response) in which a parameter indicating “or“ Relocation failure ”is stored.
- the source SGSN 121 that has received the rejection message (for example, Forward Relocation Response) in which the HO back-off timer is stored compares the end times of the HO back-off timer and the MM back-off timer received from the UE 100 in step S1001. (Step S1006 in FIG. 10).
- the rejection message for example, Forward Relocation Response
- the source SGSN 121 performs an Attach procedure via the E-UTRAN 114 by the UE 100 after the HO back-off timer ends.
- a request message (for example, Trigger request) for triggering is transmitted (step S1007 in FIG. 10).
- step S1006 If it is determined in step S1006 that the end time of the HO back-off timer is later than the end time of the MM back-off timer, the source SGSN 121 ends the process. In this case, the UE 100 can transmit an Attach request via the UTRAN 115 after the MM back-off timer ends (that is, earlier than the end time of the HO back-off timer). In addition, as described above, when it is clear that the source SGSN 121 uses the HO back-off timer without receiving the MM back-off timer from the UE 100 in step S1001 (for example, the HO back-off timer is used).
- the source SGSN 121 transmits a Trigger request message to the UE 100 in step S608 after the HO Back-off timer ends.
- the description of the first embodiment of the present invention mainly assumes Inter-RAT HO from UTRAN 115 to E-UTRAN 114, but Inter-RAT from E-UTRAN 114 to UTRAN 115.
- HO is executed, the processing flow of FIG. 10 is applied to the MME 120.
- step S1007 of FIG. 10 as an example of a request message (Trigger request) configuration transmitted from the source SGSN 121 to the UE 100 in order to trigger the Attach procedure performed via the E-UTRAN of the UE 100, FIG. An example of the format of the request message will be described.
- FIG. 11 includes a “conventional NAS message field” in which information necessary for general NAS signaling is stored, and a “Trigger indicator field” for triggering the UE's Attach procedure.
- Trigger indicator field information indicating that the UE 100 can transmit an Attach request via the E-UTRAN 114 (information for instructing connection switching) is stored.
- the Attach request transmission of the UE 100 is triggered. May be.
- NAS signaling disclosed in Non-Patent Document 3 for example, Downlink NAS Transport, EMM INFORMATION message, EMM STATUS message, etc.
- a paging message is transmitted from the SGSN 121 via the UTRAN 115 to instruct the UE 100 to perform an Attach request transmission process.
- the UE 100 may be instructed to read the information stored in the system information in the paging message, and an instruction to transmit the Attach request may be stored in the system information.
- the Inter-RAT HO procedure when the Inter-RAT HO procedure is rejected, the Inter-RAT HO procedure has a high processing load on the network device and a large number of messages to be exchanged. Instead, it is possible to realize switching of the RAT by the Attach procedure where the processing load of the network device is lower and the number of exchanged messages is smaller.
- Inter-RAT HO procedure (see Fig. 5) requires a minimum of 18 steps (additional additional steps exist), whereas Attach procedure (see Fig. 12) requires a maximum of 17 steps. It is possible to realize connection to the RAT (RAT switching).
- the RAT is switched according to the HO back-off timer. As a result, more rapid RAT switching can be realized.
- FIG. 13 is a sequence diagram for explaining an example of a system operation (handover case from UTRAN 115 to E-UTRAN 114) according to the second embodiment of the present invention.
- the device used by the UE 100 before the Inter-RAT handover procedure is prefixed with the word “Source” (for example, the device name).
- the second embodiment of the present invention is based on the first embodiment of the present invention and will be described focusing on differences.
- steps S1301 to S1307 in FIG. 13 are the same as steps S601 to S607 in FIG. 6 in the first embodiment of the present invention, description thereof will be omitted.
- the source SGSN 121 determines that the end time of the HO back-off timer is earlier than the end time of the MM back-off timer, the source SGSN 121 inserts the HO back-off timer into the Trigger request message and transmits it to the UE 100 (FIG. 13). Step S1308). After receiving the Trigger request message, the UE 100 confirms information related to transmission / reception data (for example, the remaining amount of data transmitted or received by the UE 100 (for example, a state where data transmission is completed in the remaining few seconds)). The optimal RAN (E-UTRAN 114 or UTRAN 115) is selected (step S1309 in FIG. 13).
- the source SGSN 121 sends the Trigger request message with the HO back-off timer inserted to the UE 100 at an arbitrary timing (for example, immediately after acquiring the HO back-off timer). You may send it.
- the UE 100 refers to the HO back-off timer stored in the Trigger request message, for example, the time until the Attach accept can be transmitted via the E-UTRAN 114 (the HO back-off timer End time).
- the Trigger back request message need not necessarily include the HO back-off timer. In this case, the UE 100 can recognize that the HO back-off timer has already ended by receiving the Trigger request message.
- the UE 100 can transmit an Attach accept via the E-UTRAN 114 and / or information related to transmission / reception data (In consideration of the remaining amount of data to be transmitted or received), it may be selected to send Attach accept to E-UTRAN 114 again to establish a connection via E-UTRAN 114, or to continue to connect to UTRAN 115 May be.
- the remaining amount of data transmitted by the UE 100 is very small (for example, the state in which data transmission is completed in the remaining few seconds)
- the Attach procedure is performed via the E-UTRAN 114
- the load on the UE 100 and the network side as a result
- the RAN priority information held by the UE 100 for example, E-UTRAN 114 is a high priority and UTRAN 115 is a medium priority, etc.
- Optimal RAN using available priority information, information statically held by the UE 100, information assigned by network operators (eg, GBR (Guaranteed Bit Rate) or QCI (QoS Class Identifier)), etc. (RAT) may be selected.
- a UE identifier may be generated (step S1310 in FIG. 13). This UE identifier can be inserted into the Attach request transmitted in Step S1311 described later, and the target MME 120 that has received the Attach request refers to the UE identifier in the Attach request, and rejects the UE 100 with the Inter-RAT HO procedure. And the correlation (that is, the same) with the UE 100 that is the transmission source of the Attach request may be recognized.
- the MME 120 recognizes the correlation between the UE 100 rejected by the Inter-RAT HO procedure and the UE 100 that is the transmission source of the Attach request, so that the MME back-off timer is not terminated due to the reason that the MM back-off timer has not ended. Without rejection, it is possible to identify that the target of the communication resource secured after the end of the HO back-off timer is the UE 100 that is the transmission source of the Attach request, and accept the Attach request.
- the UE 100 is also used in UE-specific information such as IMSI (International Mobile Subscriber Identity), IMEI (International Mobile Equipment Identity), IP address, etc. as Inter-RAT HO procedure, and MME 120 is Inter- If the information that can identify the UE 100 that rejected the RAT HO procedure is stored in the conventional Attach request by a general process, there is no need to store it, so step S1310 can be omitted.
- IMSI International Mobile Subscriber Identity
- IMEI International Mobile Equipment Identity
- IP address etc.
- MME 120 is Inter- If the information that can identify the UE 100 that rejected the RAT HO procedure is stored in the conventional Attach request by a general process, there is no need to store it, so step S1310 can be omitted.
- the UE 100 may generate a UE identifier using information stored in the Trigger request message (information notified from the source SGSN 121). For example, in the message exchange (Inter-RAT HO procedure processing) executed between the source SGSN 121 and the target MME 120, the source SGSN 121 shares some information (hereinafter referred to as token information) with the target MME 120, and By notifying the token information to the UE 100, the UE 100 may generate a UE identifier based on the token information.
- token information some information
- the target MME 120 that confirms the Attach request By inserting the UE identifier based on the token information into the Attach request transmitted in Step 1311 described later, the target MME 120 that confirms the Attach request, the UE 100 rejected by the Inter-RAT HO procedure, and the transmission source of the Attach request It is possible to recognize the correlation (that is, it is the same) with UE100 which is.
- the UE 100 that has received the Trigger request message in step S1308 transmits the Attach request to the target MME 120 via the E-UTRAN 114 and establishes a PDN connection with the PGW 140 via the E-UTRAN 114 (step 13 in FIG. 13). Step S1311).
- the UE 100 transmits an Attach request via the E-UTRAN 114 in step S1311, the waiting time (MM back-off timer) notified from the MME 120 in step S1301 in FIG.
- the UE 100 disables the MM back-off timer (stop / ignore / pause, etc.) so that the Attach request can be transmitted.
- FIG. 14 is a diagram illustrating an example of a configuration of the UE according to the second embodiment of the present invention.
- a UE 100 is connected to a network (for example, E-UTRAN 114 or UTRAN 115) to perform communication processing in a lower layer and packet communication processing such as IP in an upper layer, mobility management and communication path Communication control unit 1402 for performing management (for example, PDN connection established with PGW 140, QoS control for EPS bearer, etc.), RAT (for example, E-UTRAN 114 or UTRAN 115), waiting time received from network (for example, In addition to the timer control unit 1403 that manages the MM back-off timer, etc., the optimal RAT (E-UTRAN 114 or UTRAN 115) is selected by checking information related to transmission / reception data, for example.
- a network for example, E-UTRAN 114 or UTRAN 115
- the optimal RAT is selected by checking information related to transmission / reception data, for example.
- Inter-RAT HO procedure generates information indicating that the UE100 was rejected.
- the communication processing unit 1401, the communication control unit 1402, and the timer control unit 1403 illustrated in FIG. 14 are basically the same as the communication processing unit 701, the communication control unit 702, and the timer control unit 703 illustrated in FIG. These functions may be realized by hardware, or may be realized by causing a processor to execute a program. Similarly, the optimum RAT selection processing unit 1404 and the UE identifier generation processing unit 1405 may be realized by hardware, or may be realized by causing a processor to execute a program.
- the optimum RAT selection processing unit 1404 can be omitted. The same applies to other processing units. For example, when the optimum RAT selection processing unit 1404 exchanges information with only the communication control unit 1402, only a direct link may be provided between the optimum RAT selection processing unit 1404 and the communication control unit 1402.
- the communication control unit 1402 illustrated in FIG. 14 creates and processes a message for connecting to the E-UTRAN 114 and the UTRAN 115 (for example, extracts information such as an MM back-off timer from the message). To establish a connection with the E-UTRAN 114 and the UTRAN 115. Further, the communication control unit 702 or the optimum RAT selection processing unit 1404 extracts information included in the Trigger indicator field shown in FIG. 16, for example, and creates and processes a new message (for example, another message). It is also possible to determine whether or not to perform a connection switching process to the RAT.
- steps S1501 to S1505 (until Attach accept is received) in FIG. 15 are the same as steps S801 to S805 in FIG.
- the UE 100 receives a trigger request including a HO back-off timer (step S1506 in FIG. 15).
- the UE 100 that has received the trigger request confirms, for example, the HO back-off timer and / or information related to transmission / reception data, and selects the optimum network (E-UTRAN 114 or UTRAN 115) (step in FIG. 15). S1507).
- the UE 100 is the UE 100 that is rejected in the Inter-RAT HO procedure.
- a UE identifier indicating that the UE 100 is rejected in step S1306 in FIG. 13 is generated (step S1508 in FIG. 15).
- UE100 also uses UE-specific information such as IMSI (International Mobile Subscriber Identity), IMEI (International Mobile Equipment Identity), IP address, etc., as Inter-RAT HO Procedure. If the information that can identify the UE that rejected the RAT HO procedure is stored in the conventional Attach request by a general process, there is no need to store it, so step S1508 can be omitted.
- UE100 transmits Attach request which stored the information (UE identifier) which can identify UE100 via E-UTRAN114 (Step S1509 of Drawing 15). Note that the UE 100 needs to transmit the Attach request in step S1509 after waiting for at least the HO back-off timer to end.
- the MME 120 accepts the Attach request, the general Attach procedure is continued, and the PDN connection is established between the UE 100 and the PGW 140 via the E-UTRAN 114.
- the MME 120 may reserve communication resources for the UE 100 after the HO back-off timer.
- the MME 120 uses the UE identifier to make the UE 100 that rejects the Inter-RAT HO procedure (the UE 100 that has secured the communication resource after the HO back-off timer). It becomes possible to recognize that there is.
- a request message (Trigger request) storing a HO back-off timer transmitted from the source SGSN 121 to the UE 100 to trigger an Attach procedure performed via the E-UTRAN of the UE.
- Trigger request storing a HO back-off timer transmitted from the source SGSN 121 to the UE 100 to trigger an Attach procedure performed via the E-UTRAN of the UE.
- FIG. 16 shows a target in addition to the “conventional NAS message field” in which information necessary for general NAS signaling shown in FIG. 11 is stored and the “Trigger indicator field” for triggering the Attach procedure of the UE. It is composed of a “HO back-off timer field” for storing a waiting time received from the MME 120 (for example, a HO back-off timer). If the UE 100 can recognize that the Attach procedure by the UE 100 is triggered only by the HO back-off timer field, the Trigger indication field can be omitted.
- the HO back-off timer field when the source SGSN 121 transmits this Trigger request to the UE 100 after the HO back-off timer elapses, the HO back-off timer field can be omitted. Further, as described above, the source SGSN 121 may notify the UE 100 of token information that can be used to generate a UE identifier, and a field for storing this token information may be provided.
- FIG. 17 shows a “conventional Attach request message field” in which information necessary for a general Attach request is stored, and the target device (for example, the target MME 120) is the UE 100 that rejects the Inter-RAT HO procedure. It consists of a “UE identifier field” for storing a UE identifier for identifying the ID.
- the target MME 120 identifies the UE 100 that rejects the Inter-RAT HO procedure by the IMSI, and the IMSI is included in the Attach request. If stored), the UE identifier field can be omitted.
- the processing load on the network device is high, and RAT switching can be realized not by Inter-RAT HO procedure with a large number of messages to be exchanged but by Attach procedure with a lower processing load on the network device and a smaller number of messages to be exchanged.
- the end time of the HO back-off timer is earlier than the end time of the MM back-off timer, as in the first embodiment of the present invention. By switching the RAT according to the HO back-off timer, the RAT can be switched more quickly.
- the UE 100 can perform RAT switching timing (for example, the HO back-off timer end time) and transmission / reception data related information (for example, the UE 100 can transmit or receive).
- RAT switching timing for example, the HO back-off timer end time
- transmission / reception data related information for example, the UE 100 can transmit or receive.
- the network side for example, the target MME 120
- the network side identifies the UE 100 rejected by the Inter-RAT HO procedure and the UE 100 that is the transmission source of the Attach request.
- the present invention has been described by dividing it into the first embodiment and the second embodiment, but the technical features disclosed in each embodiment may be combined.
- the UE identifier may be used in the first embodiment of the present invention.
- the target MME 120 rejects the Inter-RAT HO procedure with the UE 100 and the Attach request. You may enable it to recognize the correlation (that is, it is the same) with UE100 which is a transmission source.
- LSI Large Scale Integration
- IC Integrated Circuit
- system LSI super LSI
- ultra LSI ultra LSI
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- An FPGA Field Programmable Gate Array
- a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
- the present invention has an effect of efficiently connecting to a network to be handed over when a handover (Inter-RAT Handover) is rejected and a waiting time (HO back-off timer) is generated with respect to connection of a communication node (UE). At that time, it has the effect of performing processing with a small processing load and a small number of messages to be exchanged, and connecting to a network using a different RAT (Radio Access Technology: radio access technology). It can be applied to a communication technology for performing communication by switching between.
- RAT Radio Access Technology: radio access technology
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Disclosed is a technology for restraining the occurrence of a processing load caused by a handover between different RATs (radio access technologies) in order to reduce the number of messages to be exchanged. According to this technology, if connection to a first network (MME 120 of E-UTRAN) is rejected, and a first back-off time is set for the transmission of the next connection request, a communication node (UE100) notifies a second network (SGSN 121 of UTRAN) of the first back-off time, for example, when transmitting a connection request (Step S6021). When the SGSN has subsequently made an attempt to hand over the connection of the applicable UE, but the handover is rejected by the MME, and a second back-off time is set for the transmission of the next handover request, if the expiration of the second back-off time is sooner than the expiration of the first back-off time, a message is transmitted to the UE so as to switch to the first network after the second back-off time is expired, for example (Step S608).
Description
本発明は、異なるRAT(Radio Access Technology:無線アクセス技術)を利用したネットワークへの接続を切り替えて通信を行う通信ノード、及び、通信ノードに関する接続をハンドオーバ(Inter-RAT Handover(HO))させることが可能なネットワークノードに関する。
The present invention provides a communication node for performing communication by switching connection to a network using different RATs (Radio Access Technology), and a handover for the communication node (Inter-RAT Handover (HO)). It relates to a network node capable of
現在、携帯電話(User Equipment:UE、通信ノードとも呼ぶ)に用いる技術の標準化活動は、3GPP(The third Generation Partnership Project)で行われていて、ネットワークへの接続手順やハンドオーバ手順などが定義されている。また、近年、MTC(Machine Type Communication)デバイス(例えば、自動販売機や街頭広告ディスプレイ、煙センサ、セキュリティカメラ、人感センサなどの装置や機械に組み込まれた通信モジュール、又は、その総称)によるデータ交換をUEのためのネットワーク上で実現させる取り組みがある。つまり、UEとMTCデバイスは、従来UEのみが使用してきたネットワークを共有して通信を行えるようにする取り組みがある。しかしながら、3GPPでは、MTCデバイスの数はUEと比較して非常に数が多いと推測されているため、ネットワークが混雑して既存システムに損失(例えば、システムダウン)を与えないように混雑回避方法の策定を行っている。このUEとMTCデバイスが共有するネットワーク(通信システム)の構成の一例を図1に示す。
Currently, standardization activities for technologies used in mobile phones (User Equipment: UE, also referred to as communication nodes) are being conducted by 3GPP (The Third Generation Partnership Project), and network connection procedures and handover procedures are defined. Yes. In recent years, data from MTC (Machine Type Communication) devices (for example, communication modules incorporated in machines and machines such as vending machines, street advertising displays, smoke sensors, security cameras, and human sensors, or generic names thereof). There are efforts to implement the exchange on the network for the UE. That is, there is an effort to enable the UE and the MTC device to communicate by sharing a network that has been used only by the UE. However, in 3GPP, since the number of MTC devices is estimated to be very large compared to the UE, a congestion avoiding method is provided so that the network is not congested and a loss (for example, system down) is not caused to an existing system. Is being formulated. An example of the configuration of a network (communication system) shared by the UE and the MTC device is shown in FIG.
図1には、UE100、MTCデバイス105、UE100やMTCデバイス105と無線接続する基地局(E-UTRAN114ではeNB(eNode B)110、UTRAN115ではNB(Node B)111と呼ばれる)、E-UTRAN114やUTRAN115上のUE100やMTCデバイス105の通信回線制御や移動制御を担当する交換器(E-UTRAN114と接続する交換器はMME(Mobility Management Entity)120、UTRAN115と接続する交換器はSGSN(Service General packet radio service Support Node)121と呼ばれる)、UTRAN115上のUE100やMTCデバイス105の無線回線制御や移動制御を行う装置のRNC(Radio Network Controller)112、UE100やMTCデバイス105のUTRAN115やE-UTRAN114に対するユーザデータ配信制御を行うSGW(Serving Gateway:サービングゲートウェイ、MAG(Mobility Anchor Gateway:モビリティアンカポイント)などとも呼ばれる)130、UE100やMTCデバイス105に対するアドレス割り当てやPDN(Packet Data Network:パケットデータネットワーク)155とSGW130間のユーザデータ転送並びに経路制御を行うPGW(Packet Data Network Gateway、HA(Home Agent:ホームエージェント)やLMA(Local Mobility Anchor:ローカルモビリティアンカ)などとも呼ばれる)140、UE100やMTCデバイス105のサブスクリプションデータ(Subscription data)並びに通信コンテキストなどを管理保持しているサーバ(MME120との間にインタフェースを持つ(E-UTRAN114を利用するUE100やMTCデバイス105を対象とする)ものはHSS(Home Subscriber Server)125、SGSN121とインタフェースを持つ(UTRAN115を利用するUE100やMTCデバイス105を対象とする)ものはHLR(Home Location Register)126と呼ばれる)、MTCデバイス105による通信の制御や状態管理、アプリケーションサービスを提供するサーバであるMTCサーバ150、MTCデバイス105やMTCサーバ150に対してアプリケーションの管理・制御やアプリケーションデータの管理を実施するMTCユーザ160から構成されるネットワーク構成の一例が図示されている。なお、以下では、説明を容易にするため、UE100とMTCデバイス105を総称して、UE100と呼ぶ。
FIG. 1 shows a UE 100, an MTC device 105, a base station wirelessly connected to the UE 100 and the MTC device 105 (eNB (eNode B) 110 in E-UTRAN 114, NB (Node B) 111 in UTRAN 115), E-UTRAN 114, An exchange in charge of communication line control and movement control of the UE 100 and the MTC device 105 on the UTRAN 115 (the exchange connected to the E-UTRAN 114 is MME (Mobility Management Entity) 120, and the exchange connected to the UTRAN 115 is SGSN (Service General packet). radio service support node) 121), the radio channel of UE 100 and MTC device 105 on UTRAN 115 SGW (Serving Gateway: Serving Gateway, MAG (Mobility Anchor Gateway: MG) that controls user data distribution to RNC (Radio Network Controller) 112 of UE and MTC device 105 UTRAN 115 and E-UTRAN 114. 130), PGW (Packet Data Network Gateway, HA (Home) that performs address control and user data transfer between PDN (Packet Data Network: packet data network) 155 and SGW 130, and path control. Agent: Home Agent Interface) with the server (MME 120) that manages and holds the subscription data (subscription data) of the UE 100 and the MTC device 105, the communication context, and the like, and the LMA (Local Mobility Anchor). (With the target of UE 100 and MTC device 105 using E-UTRAN 114) having an interface with HSS (Home Subscriber Server) 125 and SGSN 121 (targeting UE 100 and MTC device 105 using UTRAN 115) (Referred to as HLR (Home Location Register) 126) and MTC device 105 Network including MTC server 150 that is a server that provides communication control and status management, and application services, and MTC user 160 that performs application management and control and application data management for MTC device 105 and MTC server 150 An example configuration is shown. In the following, for ease of explanation, UE 100 and MTC device 105 are collectively referred to as UE 100.
図1において、UE100がE-UTRAN114を通り、外部のネットワーク(例えば、図1に図示されているPDN155)と通信を行う際、UE100はPGW140との間でPDNコネクション及びEPSベアラ(EPS Bearer、ベアラなどと呼ばれる)を確立しなければならない。UE100は、このPDNコネクションの確立を通じてIP(Internet Protocol:インターネットプロトコル)アドレスを取得し、PDN155と通信するためのEPSベアラを確立する(下記の非特許文献1を参照)。PDNコネクションを確立する際、UE100に割り当てたIPアドレスやUE100が使用するSGW130のアドレスなどの情報が、UE100のコンテキスト情報として扱われ、コアネットワーク145のエンティティで保持される。その結果、コアネットワーク145のエンティティは、例えばPDN155から送られてきたデータをUE100に転送することができる。UE100は非特許文献1で開示されている“Attach request”や“PDN connectivity request”などのリクエストメッセージをネットワークに送信して、PGW140との間にPDNコネクションを確立する。
In FIG. 1, when the UE 100 communicates with an external network (for example, the PDN 155 illustrated in FIG. 1) through the E-UTRAN 114, the UE 100 communicates with the PGW 140 through a PDN connection and an EPS bearer (EPS Bearer, bearer). Must be established). The UE 100 acquires an IP (Internet Protocol) address through the establishment of the PDN connection, and establishes an EPS bearer for communicating with the PDN 155 (see Non-Patent Document 1 below). When establishing a PDN connection, information such as the IP address assigned to the UE 100 and the address of the SGW 130 used by the UE 100 is treated as context information of the UE 100 and held in the entity of the core network 145. As a result, the entity of the core network 145 can transfer, for example, data transmitted from the PDN 155 to the UE 100. The UE 100 establishes a PDN connection with the PGW 140 by transmitting a request message such as “Attach request” or “PDN connectivity request” disclosed in Non-Patent Document 1 to the network.
しかしながら、PDN155が混雑している場合には、MME120又はPGW140は、UE100から送信されるPDNコネクションを確立するためのリクエストメッセージ(例えば、Attach requestやPDN connectivity requestなど)を、非特許文献1で開示されているように「APN(Access Point Name:アクセスポイントネーム、利用方法は後述する)単位でアクティブなEPSベアラの数が最大値に達する(達した)」、「APN単位でEPSベアラのアクティベーション(例えば、確立リクエスト)の割合(例えば、送信レート)が最大レートに達する(達した)」、「APNと関連する1つ以上のPGW140からの応答がない(リンクが切れる(切れた))、又は、MME120にAPNの混雑状態が通知される(通知された)」、「特定のSubscribed APNと関連するUE100によるMMシグナリングリクエストの割合が最大レートに達する(達した)」、「ネットワークマネジメントの設定」などの基準に基づいて、拒絶する場合がある。
However, when the PDN 155 is congested, the MME 120 or the PGW 140 discloses a request message (for example, Attach request, PDN connectivity request, etc.) for establishing a PDN connection transmitted from the UE 100 in Non-Patent Document 1. As described above, “APS (Access Point Name: access point name, usage will be described later) reaches the maximum number of active EPS bearers (has reached)”, “Activation of EPS bearers per APN” (E.g., establishment request) rate (e.g., transmission rate) reaches (reached) maximum rate "," no response from one or more PGWs 140 associated with APN (link is broken (broken)) Or, the MME 120 is notified of the congestion state of the APN (notified), “the ratio of the MM signaling requests by the UE 100 related to the specific subscribed APN reaches the maximum rate”, “network management setting May be rejected based on criteria such as
図1に示すように、PDN155は複数存在しており、各PDN155はAPNと呼ばれる識別子で識別される。APNは、UE100とネットワークとの間で交換されるリクエストメッセージにおいて、接続(PDNコネクション)の接続先を表す情報として使用される。MME120やPGW140は、UE100から送信されるリクエストメッセージに格納されている接続先情報のAPNやオペレータポリシに基づいて、PGW140やPDN155などを選択する。このように選択されたPDN155が混雑していると判断された場合には、MME120やPGW140は、UE100から送信されたリクエストメッセージを拒絶する。
As shown in FIG. 1, there are a plurality of PDNs 155, and each PDN 155 is identified by an identifier called APN. The APN is used as information indicating a connection destination of a connection (PDN connection) in a request message exchanged between the UE 100 and the network. The MME 120 and the PGW 140 select the PGW 140 and the PDN 155 based on the APN and the operator policy of the connection destination information stored in the request message transmitted from the UE 100. When it is determined that the PDN 155 selected in this way is congested, the MME 120 and the PGW 140 reject the request message transmitted from the UE 100.
また、このPDN155の混雑状態に基づく混雑回避方法として、UE100が保持する優先度(以降、Priorityとも呼ぶ)を利用することができる。この優先度には、低優先度(以降、Low priorityとも呼ぶ)と標準の優先度(以降、Normal priorityとも呼ぶ)が定義されている。なお、現在は、Low priorityのUE100、Low priorityではない(Normal priorityの)UE100の2種類しか定義されていないが、今後、例えば、高優先度(High priority)が導入されることにより、Low/Normal/Highの3種類、あるいはそれ以上の数の種類になる場合も考えられる。
Also, as a congestion avoiding method based on the congestion state of the PDN 155, the priority (hereinafter also referred to as Priority) held by the UE 100 can be used. In this priority, a low priority (hereinafter, also referred to as “low priority”) and a standard priority (hereinafter, also referred to as “normal priority”) are defined. Currently, there are only two types defined: Low priority UE100 and non-low priority (normal priority) UE100, but in the future, for example, by introducing high priority (High priority), Low / There may be cases in which there are three types of Normal / High or more types.
優先度に基づく混雑回避方法では、Low priorityのUE100から順に、制御の対象となる。つまり、PDN155が混雑しているとMME120やPGW140に検知され次第、オペレータポリシやネットワーク内のエンティティの判断に基づいて、Low priorityのUE100から混雑対策の制御となる。例えば、UE100から送信されてきたリクエストメッセージの接続先情報のAPNが「PDN1」を示しており、かつ、「PDN1」が混雑していると検知された場合、MME120又はPGW140は、Low priorityのUE100から送信されたリクエストメッセージを優先的に拒絶(リジェクト)する。さらに、短時間で混雑状態を解消したいなどの理由がある場合には、Low priorityに続いて、Normal Prority、High priorityの順に、拒絶する対象を広げることも可能である。なお、現在、ネットワークは、UE100から送信されるリクエストメッセージに格納される優先度情報(非特許文献1で開示されているLAPI(Low Access Priority Indicator)に基づいて、又は、LAPIが格納されているか否かに基づいて、リクエストメッセージを拒絶するか判断するように定義されている(非特許文献1を参照)。
In the congestion avoidance method based on priority, the priority is controlled in order from the UE 100 of the low priority. That is, when the PDN 155 is congested, as soon as it is detected by the MME 120 or the PGW 140, the congestion countermeasure is controlled from the UE 100 of the low priority based on the operator policy or the determination of the entity in the network. For example, when the APN of the connection destination information of the request message transmitted from the UE 100 indicates “PDN1” and it is detected that “PDN1” is congested, the MME 120 or the PGW 140 determines that the UE 100 has a low priority. The request message sent from is preferentially rejected. Furthermore, if there is a reason such as wanting to eliminate the congestion state in a short time, it is possible to expand the object of rejection in the order of Normal Priority, High Priority, followed by Low Priority. Currently, the network stores priority information stored in the request message transmitted from the UE 100 (based on LAPI (Low Access Priority Indicator) disclosed in Non-Patent Document 1 or whether LAPI is stored. It is defined to determine whether to reject the request message based on whether or not (see Non-Patent Document 1).
また、この優先度は、UE100に割り当てられている以外に、UE100が確立する接続(PDNコネクション)に割り当てられる場合も検討されている。例えば、UE100が2つの接続をネットワークとの間に確立済みである場合、ある接続はLow priorityの優先度を有し、もう1つの接続はNormal priorityの優先度を有する場合がある。優先度が接続(PDNコネクション)に割り当てられる場合、この優先度情報は、UE100が保持するアプリケーションに関する優先度情報(例えば、「MTCアプリケーションで交換するデータ量が少量の場合、低優先度(の接続(PDNコネクション)を用いる」などが登録されているコンテキスト情報や設定ファイルなど)や、ネットワークオペレータやMTCサーバ150/ユーザ160から通知される優先度情報(例えば、「MTCアプリケーションで要求されるセンシングデータの送信は高優先度(の接続(PDNコネクション))を利用する」などが指示される情報)などに基づいて、設定されてもよい。このような優先度情報が格納されるリクエストメッセージにおいても、ネットワークは、UE100から送信されるリクエストメッセージに格納される優先度情報に基づいて、又は、LAPIが格納されているか否かに基づいて、リクエストメッセージを拒絶してもよい。
Further, in addition to being assigned to the UE 100, this priority is also considered when it is assigned to a connection (PDN connection) established by the UE 100. For example, if the UE 100 has already established two connections with the network, one connection may have a priority of Low priority and another connection may have a priority of Normal priority. When the priority is assigned to the connection (PDN connection), this priority information includes priority information related to the application held by the UE 100 (for example, “If the amount of data exchanged by the MTC application is small, the connection of the low priority ( Context information or setting file in which “Use (PDN connection)” is registered) or priority information notified from the network operator or the MTC server 150 / user 160 (for example, “sensing data required by the MTC application”) May be set on the basis of high priority (information instructing “use of connection (PDN connection))” etc. Also in a request message in which such priority information is stored The network is transmitted from the UE 100. Based on the priority information stored in the Est message, or based on whether LAPI is stored, it may reject the request message.
このようにネットワークが、Low priorityのUE100から送信されるリクエストメッセージ、又は、Low priorityの接続を確立しようとするリクエストメッセージを拒絶する際、一定時間の間におけるリクエストメッセージの再送を回避するために待ち時間(待機時間、Back-off timer(バックオフタイマ)とも呼ぶ)を拒絶メッセージに格納して、UE100に通知する場合がある。この待ち時間が格納された拒絶メッセージを受信したUE100は、待ち時間が満了するまでは、同じAPNに対して、リクエストメッセージ(例えば、非特許文献1で開示されているAttach RequestやBearer Resource Modification Request)を送信しない。なお、この待ち時間は、他のAPNに対するリクエストメッセージには影響しない。
In this way, when the network rejects a request message transmitted from the Low priority UE 100 or a request message for establishing a Low priority connection, the network waits to avoid retransmission of the request message for a certain period of time. The UE 100 may be notified of the time (standby time, also called a back-off timer) stored in the rejection message. The UE 100 that has received the rejection message storing the waiting time sends a request message (for example, Attach Request or Bearer Resource Modification Request disclosed in Non-Patent Document 1) to the same APN until the waiting time expires. ) Is not sent. This waiting time does not affect request messages for other APNs.
また、非特許文献1で開示されている待ち時間には、UE100の移動管理向けのメッセージ(例えば、Attach requestやTracking Area Update Request、Service Request、Extended Service Request、Detach requestなど)に対するMM(Mobility Management) back-off timer(EMM back-off timerとも呼ばれる)などがある。
In addition, in the waiting time disclosed in Non-Patent Document 1, a message for mobility management of the UE 100 (for example, Attach request, Tracking Area Update Request, Service Request, Extended Service Request, and Detach Management MM) ) Back-off timer (also called EMM back-off timer).
また、上記のようにPDN155が混雑していることによって、UE100からのリクエストメッセージを拒絶する場合以外に、ネットワークの装置(コアネットワーク145やRAN(Radio Area Network、図1のE-UTRAN114とUTRAN115に相当)のエンティティ)が、例えばUE100から送信されるリクエストメッセージの数が多すぎて、混雑状態(過負荷(オーバーロード)状態)になっている場合においても、リクエストメッセージを拒絶することもできる(非特許文献1を参照)。
In addition to the case where the request message from the UE 100 is rejected due to the congestion of the PDN 155 as described above, the network device (core network 145 or RAN (Radio Area Network, E-UTRAN 114 and UTRAN 115 in FIG. 1) (Equivalent) entity) can reject the request message even when, for example, the number of request messages transmitted from the UE 100 is too large and is in a congested state (overload state) ( (Refer nonpatent literature 1).
例えば、コアネットワーク145のMME120がオーバーロードになっている場合、MME120宛てのリクエストメッセージを制限するようにeNB110へリクエストし、eNB110がUE100からのリクエストメッセージ(UE100とeNB110との間で交換されるメッセージには、RRC connection Requestメッセージなどと呼ばれるメッセージがある(下記の非特許文献2を参照))を拒絶することで、UE100からMME120へのリクエストメッセージを制限したり、MME120間で負荷を分散する手段(例えば、非特許文献1で開示されているMME Load rebalancing procedure)などを行うことによって、オーバーロードではない他のMME120にUE100からのリクエストメッセージを転送することにより、UE100からオーバーロードのMME120へのリクエストメッセージを制御したりすることができる。また、MME120自身が、ネットワークの装置がオーバーロードのため、Low priorityのUE100から送信されたリクエストメッセージを優先的に拒絶(リジェクト)してもよい。なお、他のコアネットワーク145やRANのエンティティの場合も同様である。
For example, when the MME 120 of the core network 145 is overloaded, the eNB 110 requests the eNB 110 to restrict request messages addressed to the MME 120, and the eNB 110 requests messages from the UE 100 (messages exchanged between the UE 100 and the eNB 110). Includes a message called an RRC connection request message (see Non-Patent Document 2 below), thereby restricting request messages from the UE 100 to the MME 120 and means for distributing the load among the MMEs 120. (For example, by performing MME Load rebalancing procedure disclosed in Non-Patent Document 1), other MMEs 120 that are not overloaded By transferring the request message from the E100, it is possible to and control the request message to MME120 from UE100 overload. Further, the MME 120 itself may preferentially reject (reject) a request message transmitted from the low priority UE 100 because the network device is overloaded. The same applies to other core networks 145 and RAN entities.
また、3GPPでは、MME120からeNB110に対して、UE100からのリクエストメッセージを制限するようにリクエストするメッセージをOVERLOAD STARTメッセージと呼ぶ。MME120のオーバーロード状態が解消され、eNB110によるUE100からのリクエストメッセージの拒絶処理をこれ以上行う必要がないとMME120が判断した場合、MME120はOVERLOAD STOPメッセージをeNB110に送信して、UE100からのリクエストメッセージを拒絶するeNB110の状態をリセットしてもよい。
In 3GPP, a message requesting the MME 120 to restrict the request message from the UE 100 to the eNB 110 is referred to as an OVERLOAD START message. When the MME 120 determines that the overload state of the MME 120 is eliminated and the eNB 110 does not need to further reject the request message from the UE 100, the MME 120 transmits an OVERLOAD STOP message to the eNB 110, and the request message from the UE 100. The state of the eNB 110 that rejects may be reset.
MME120は、このOVERLOAD STARTメッセージを送ることによって、eNB110が拒絶するリクエストメッセージの送信元のUE100をSubcategory(サブカテゴリ)毎に制御することができる。このSubcategoryは、上記のようなPDN155やネットワークの装置の混雑状態に基づく混雑回避方法で用いられる優先度(Priority)に基づいて分類されてもよく、また、ローミングしているUE100かどうか(例えば、PLMN(Public Land Mobile Network)タイプを利用)に基づいて分類されてもよい(非特許文献1を参照)。
The MME 120 can control the UE 100 that is the transmission source of the request message rejected by the eNB 110 for each Subcategory (subcategory) by sending this OVERLOAD START message. This Subcategory may be classified based on the priority used in the congestion avoiding method based on the congestion state of the PDN 155 or the network device as described above, and whether the UE 100 is roaming (for example, It may be classified based on PLMN (Public Land Mobile Network) type (see Non-Patent Document 1).
また、ネットワークの装置がオーバーロードしている状態も同様に、短時間の間にUE100からのリクエストメッセージの再送を回避するために、Back-off timerを利用する可能性がある。また、PDN155が混雑している場合と同様に、非特許文献1で開示されているMM back-off timerなどが、MME120やPGW140などにおける混雑状態回避のために利用されることもある。
Similarly, in a state where the network device is overloaded, the Back-off timer may be used in order to avoid retransmission of the request message from the UE 100 in a short time. Similarly to the case where the PDN 155 is congested, the MM back-off timer disclosed in Non-Patent Document 1 may be used for avoiding the congested state in the MME 120, the PGW 140, and the like.
また、図1に示すE-UTRAN114とUTRAN115のように異なるRATが存在する場合に、UE100とネットワークとの間の通信を維持したまま、異なるRAT間でUE100のコネクションを移動させることができる方法として、例えば非特許文献1には、“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”などが開示されている。非特許文献1に開示されている“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”は、UTRAN115からE-UTRAN114にハンドオーバする際に用いられる従来の技術である。この“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”は、“Preparation phase”と“Execution phase”の2つのフェーズに分けられており、2つのフェーズを正しく完了することで、UE100はUTRAN115からE-UTRAN114にハンドオーバすることができる。以下、“Preparation phase”と“Execution phase”について説明する。
Further, when different RATs such as E-UTRAN 114 and UTRAN 115 shown in FIG. 1 exist, a method of moving the connection of UE 100 between different RATs while maintaining communication between UE 100 and the network. For example, Non-Patent Document 1 discloses “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” and the like. “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” disclosed in Non-Patent Document 1 is a conventional technique used when a handover from UTRAN 115 to E-UTRAN 114 is performed. This “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” is divided into two phases, “Preparation phase” and “Execution phase”. By correctly completing these two phases, the UE 100 can be changed from the UTRAN 115 to the ETRAN. -Hand over to UTRAN 114. Hereinafter, “Preparation phase” and “Execution phase” will be described.
最初に“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”の“Preparation phase”の詳細な動作について、図2を参照しながら説明する。図2は、従来の技術である“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”の“Preparation phase”を説明するためのシーケンス図である。また、UE100が現在接続しているネットワークにおいて使用している装置で、かつ、“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”を実施することで変更される装置(UE100がハンドオーバ前に使用している装置)には、装置名の前にソース(Source)という文言を付しており(例えば、ソースSGSN121)、UE100がハンドオーバ後のネットワークで使用する予定の装置には、装置名の前にターゲット(Target)という文言を付している(例えば、ターゲットMME120)。
First, the detailed operation of “Preparation phase” of “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” will be described with reference to FIG. FIG. 2 is a sequence diagram for explaining the “Preparation phase” of the conventional technique “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”. In addition, a device that is used in the network to which the UE 100 is currently connected, and that is changed by executing “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” (the UE 100 uses before handover) Device) is prefixed with the word “Source” (for example, the source SGSN 121), and the device that the UE 100 intends to use in the network after the handover is preceded by the device name. The word “Target” is used (for example, the target MME 120).
まず前提として、UE100は、UTRAN115内でPDN155と通信するためのPDNコネクションを確立しており、EPSベアラを複数確立しているとする。ここで、ソースRNC112が、例えばUE100の通信状況やUE100をサポートしているNB110の負荷状態などのオペレータポリシに基づいて、UE100をUTRAN115からE-UTRAN114へハンドオーバさせることを決める(図2のステップS201)。
First, it is assumed that the UE 100 has established a PDN connection for communicating with the PDN 155 in the UTRAN 115 and has established a plurality of EPS bearers. Here, the source RNC 112 decides to hand over the UE 100 from the UTRAN 115 to the E-UTRAN 114 based on an operator policy such as a communication state of the UE 100 and a load state of the NB 110 supporting the UE 100 (step S201 in FIG. 2). ).
ソースRNC112は、UE100のハンドオーバ先ネットワークで使用される装置(例えば、ターゲットeNB110、ターゲットMME120、ターゲットSGW130)で、ハンドオーバ前にUE100が確立したEPSベアラ分のリソースを確保するためにソースSGSN121にRelocation Requiredメッセージを送信する(図2のステップS202)。
The source RNC 112 is a device used in the handover destination network of the UE 100 (for example, the target eNB 110, the target MME 120, and the target SGW 130). A message is transmitted (step S202 in FIG. 2).
ソースSGSN121は、ステップS202で受信したRelocation Requiredメッセージに格納されているパラメータ(例えば、Target eNB Identifier)からE-UTRAN114へのハンドオーバを決定する。続いて、ソースSGSN121は、UE100がハンドオーバ前に確立したEPSベアラのリソース確保を行うためにForward Relocation RequestメッセージをターゲットMME120に送信することでHandover Required resource allocation procedureを開始する(図2のステップS203)。
The source SGSN 121 determines a handover from the parameter (for example, Target eNB Identifier) stored in the Relocation Required message received in step S202 to the E-UTRAN 114. Subsequently, the source SGSN 121 starts a Handover Required resource allocation procedure by transmitting a Forward Relocation Request message to the target MME 120 in order to secure resources for the EPS bearer established before the handover by the UE 100 (Step S203 in FIG. 2). .
ターゲットMME120は、ステップS203で受信したForward Relocation Requestメッセージに格納されたパラメータで示されたEPSベアラを確立する。また、ターゲットMME120は、SGW130の再割り当てが必要であるかどうかを決定する。もし、SGW130の再割り当てを行う場合は、ターゲットMME120はターゲットSGW130を選択し、Create Session RequestメッセージをSGW130に送信する(図2のステップS204)。なお、図1に図示されている構成例では、ソースSGW130とターゲットSGW130は同一である。
The target MME 120 establishes the EPS bearer indicated by the parameter stored in the Forward Relocation Request message received in step S203. Also, the target MME 120 determines whether reassignment of the SGW 130 is necessary. If the SGW 130 is to be reassigned, the target MME 120 selects the target SGW 130 and transmits a Create Session Request message to the SGW 130 (step S204 in FIG. 2). In the configuration example illustrated in FIG. 1, the source SGW 130 and the target SGW 130 are the same.
Create Session Requestメッセージを受信したSGW130は、UE100のためのリソースを割り当てて、Create Session ResponseメッセージをターゲットMME120に送信する(図2のステップS205)。なお、SGW130の再割り当てが行われない場合は、図2のステップS204及びステップS205のメッセージ交換を省略することができる。
The SGW 130 that has received the Create Session Request message allocates resources for the UE 100, and transmits a Create Session Response message to the target MME 120 (Step S205 in FIG. 2). Note that when the SGW 130 is not reassigned, the message exchange in steps S204 and S205 in FIG. 2 can be omitted.
続いて、ターゲットMME120は、ターゲットeNB110による無線リソースの割り当てをリクエストするためにHandover RequestメッセージをターゲットeNB110に送信する。(図2のステップS206)。
Subsequently, the target MME 120 transmits a Handover Request message to the target eNB 110 in order to request radio resource allocation by the target eNB 110. (Step S206 in FIG. 2).
Handover Requestメッセージを受信したターゲットeNB110は、UE100のために無線リソースを割り当て、UE100の無線リソースのために適用するパラメータをHandover Request Acknowledgementメッセージに格納してターゲットMME120に送信する(図2のステップS207)。このとき、ターゲットeNB110は、SGW140から送られてくるユーザデータを受信するための準備をする。
The target eNB 110 that has received the Handover Request message allocates radio resources for the UE 100, stores parameters applied for the radio resources of the UE 100 in the Handover Request Acknowledgment message, and transmits them to the target MME 120 (Step S207 in FIG. 2). . At this time, the target eNB 110 prepares to receive user data sent from the SGW 140.
“Indirect Forwarding”でSGW130の再割り当てが適用される場合、若しくは、“Indirect Forwarding”で直接のトンネル(Direct Tunnel)が使用されない場合には、図2のステップS208及びステップS209で示すメッセージがターゲットMME120とSGW130間で交換される。
When the reassignment of the SGW 130 is applied in “Indirect Forwarding”, or when the direct tunnel (Direct Tunnel) is not used in “Indirect Forwarding”, the messages shown in Step S208 and Step S209 in FIG. And SGW 130 are exchanged.
続いて、ターゲットMME120は、ハンドオーバ先のE-UTRAN114やターゲットMME120で処理した結果に伴う無線リソース確保の結果や新しいSGW130が選択されたことを示すパラメータなどを格納したForward Relocation ResponseメッセージをソースSGSN121に送信する(図2のステップS210)。
Subsequently, the target MME 120 sends a Forward Relocation Response message to the source SGSN 121 that stores a result of securing radio resources, a parameter indicating that a new SGW 130 has been selected, and the like, as a result of processing by the E-UTRAN 114 and the target MME 120 of the handover destination. Transmit (step S210 in FIG. 2).
また、“Indirect Forwarding”が適用される場合には、さらに図2のステップS211及びS212で示すメッセージがソースSGSN121とSGW130との間で交換される。
Further, when “Indirect Forwarding” is applied, the messages shown in steps S211 and S212 in FIG. 2 are further exchanged between the source SGSN 121 and the SGW 130.
次に、“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”の“Execution phase”の詳細な動作について、図3を参照しながら説明する。図3は、従来の技術である“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”の“Execution phase”を説明するためのシーケンス図である。
Next, the detailed operation of “Execution phase” of “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” will be described with reference to FIG. FIG. 3 is a sequence diagram for explaining “Extraction phase” of “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”, which is a conventional technique.
“Execution phase”の最初に、ソースSGSN121はRelocation CommandメッセージをソースRNC112に送信することによって“Preparation phase”を完了させる。また、ソースSGSN121は、このRelocation Commandメッセージに、“Preparation phase”で生成したUE100がハンドオーバ先のE-UTRAN114経由でデータを転送する際に必要となるパラメータを格納する(図3のステップS301)。
At the beginning of “Execution phase”, the source SGSN 121 completes the “Preparation phase” by sending a Relocation Command message to the source RNC 112. Further, the source SGSN 121 stores, in the Relocation Command message, parameters necessary for the UE 100 generated by the “Preparation phase” to transfer data via the handover destination E-UTRAN 114 (step S301 in FIG. 3).
Relocation Commandメッセージを受信したソースRNC112は、ハンドオーバ先のE-UTRAN114にUE100をハンドオーバさせるためにHO from E-UTRAN CompleteメッセージをUE100に送信する(図3のステップS302)。
The source RNC 112 that has received the Relocation Command message transmits a HO from E-UTRAN Complete message to the UE 100 in order to hand over the UE 100 to the handover destination E-UTRAN 114 (step S302 in FIG. 3).
このステップ以降、UE100は、一般的な“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”を実施して、UTRAN115からE-UTRAN114にハンドオーバする。
After this step, the UE 100 performs a general “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”, and hands over from the UTRAN 115 to the E-UTRAN 114.
これら2つに分けられた“Preparation phase”と“Execution phase”を正確に実施することによって、“UTRAN Iu mode to E-UTRAN Inter RAT handover procedure”が完了し、UE100は、UTRAN115からE-UTRAN114にハンドオーバすることが可能となる。
By correctly implementing “Preparation phase” and “Execution phase” divided into these two, the “UTRAN Iu mode to E-UTRAN Inter RAT handover procedure” is completed, and the UE 100 moves from the UTRAN 115 to the E-UTRAN 114. Handover is possible.
なお、ここでは、非特許文献1の開示内容に従って、UE100がUTRAN115からE-UTRAN114へハンドオーバする場合について説明を行ったが、E-UTRAN114からE-UTRAN115へハンドオーバを行う場合も同様に、非特許文献1の開示内容に従ってハンドオーバすることが可能である。
Here, the case where the UE 100 is handed over from the UTRAN 115 to the E-UTRAN 114 according to the contents disclosed in the Non-Patent Document 1 has been described. Handover can be performed according to the disclosure of Document 1.
UEがE-UTRAN経由でMMEにPDNコネクションを確立するためのリクエストメッセージを送信し、MMEがオーバーロード状態のため、待ち時間(例えば、MM back-off timer)付きでリジェクトされた後に、UEがUTRAN経由でPDNコネクションを確立する環境において、UTRAN経由でPDNコネクションを確立した後にネットワークのオペレータポリシに基づいて、UTRANからE-UTRANへのInter-RAT handover procedureが実施されるが、MME(図2で示すターゲットMME)がオーバーロード状態のため、Inter-RAT handoverのためのリクエストメッセージ(図2で示す“Forward Relocation Request”)を待ち時間(例えば、ハンドオーバするためのリクエストメッセージに対するback-off timer(以降、HO(Handover) back-off timerと呼ぶ))付きでリジェクトすることが考えられる。
After the UE sends a request message for establishing a PDN connection to the MME via E-UTRAN and the MME is overloaded and rejected with a waiting time (eg MM back-off timer), the UE In an environment where a PDN connection is established via UTRAN, an Inter-RAT handover procedure from UTRAN to E-UTRAN is implemented based on the network operator policy after establishing a PDN connection via UTRAN. Request message for Inter-RAT handover (“Forward Relocation Requests” shown in FIG. 2) ") Latency (e.g., back-off timer (hereinafter to a request message for handover, HO (Handover) is called a back-off timer) is considered to be rejected with a).
このようなとき、HO back-off timerの終了後、再度Inter-RAT handoverのためのリクエストメッセージが送信され(図2のステップS203においてソースSGSN121からターゲットMME120に送信される“Forward Relocation Request”)、Inter-RAT Handoverの実行が試みられる。しかしながら、Inter-RAT Handover procedureの実行は、ネットワーク装置にとっては処理負荷が高く、かつ、ネットワーク装置間で交換されるメッセージ数が多いという問題がある。
In such a case, after completion of the HO back-off timer, a request message for the Inter-RAT handover is transmitted again (“Forward Relocation Request” transmitted from the source SGSN 121 to the target MME 120 in step S203 in FIG. 2), Execution of Inter-RAT Handover is attempted. However, the execution of Inter-RAT Handover procedure has a problem that the processing load is high for the network device and the number of messages exchanged between the network devices is large.
上記の問題を解決するために、本発明は、通信ノード(UE)の接続に関してハンドオーバ(Inter-RAT Handover)が拒絶されて待機時間(HO back-off timer)が発生した場合に、ハンドオーバしようとしたネットワークに効率良く接続することを目的とする。また、その際、処理負荷が少なく、かつ、交換されるメッセージ数が少ない処理が行われるようにすることを目的とする。
In order to solve the above problem, the present invention attempts to perform a handover when a handover (Inter-RAT Handover) is rejected for a connection of a communication node (UE) and a waiting time (HO back-off timer) occurs. The purpose is to connect efficiently to the network. It is another object of the present invention to perform processing with a small processing load and a small number of exchanged messages.
上記の目的を達成するため、本発明の通信ノードは、それぞれ異なる無線アクセス技術を用いた第1及び第2ネットワークによって構成され、前記第1ネットワークと前記第2ネットワークとの間で通信ノードの接続をハンドオーバさせる通信システムに接続する通信ノードであって、
前記第1ネットワークに対して第1の接続要求を送信する第1接続要求送信部と、
前記第1接続要求送信部による前記第1ネットワークへの前記第1の接続要求が拒絶された際に、前記第1ネットワークに対して前記第1の接続要求を再送信できるようになるまでの接続要求待機時間を取得する待機時間取得部と、
前記第1接続要求送信部による前記第1ネットワークへの前記第1の接続要求が拒絶された場合、前記第2ネットワークに対して第2の接続要求を送信する第2接続要求送信部と、
前記第2ネットワークとの間で接続を確立する接続確立部と、
前記第2ネットワークが、前記通信ノードとの間で確立されている前記接続を前記第1ネットワークへハンドオーバさせるハンドオーバ要求を前記第1ネットワークへ送信し、前記第1ネットワークが、前記ハンドオーバ要求を拒絶すると共に、前記第1ネットワークに対してハンドオーバ要求を再送信できるようになるまでのハンドオーバ待機時間を前記第2ネットワークへ通知した場合に、前記第2ネットワークから送信される前記第1ネットワークへの接続切り替え指示を含むトリガメッセージを受信するメッセージ受信部と、
前記メッセージ受信部で受信した前記トリガメッセージに基づいて、前記第1接続要求送信部が前記第1ネットワークに対して前記第1の接続要求を再送信するか否かを決定する判断部とを、
有する。
この構成により、通信ノード(UE)の接続に関してハンドオーバ(Inter-RAT Handover)が拒絶されて待機時間(HO back-off timer)が発生した場合に、ハンドオーバしようとしたネットワークに効率良く接続することが可能となり、また、その際、処理負荷が少なく、かつ、交換されるメッセージ数が少ない処理が行われるようにすることが可能となる。 In order to achieve the above object, the communication node of the present invention is configured by first and second networks using different radio access technologies, and the communication node is connected between the first network and the second network. A communication node connected to a communication system for handing over
A first connection request transmitter for transmitting a first connection request to the first network;
Connection until the first connection request can be retransmitted to the first network when the first connection request to the first network by the first connection request transmission unit is rejected. A waiting time acquisition unit for acquiring a request waiting time;
A second connection request transmitter for transmitting a second connection request to the second network when the first connection request to the first network by the first connection request transmitter is rejected;
A connection establishment unit for establishing a connection with the second network;
The second network sends a handover request for handing over the connection established with the communication node to the first network, and the first network rejects the handover request. And switching the connection to the first network transmitted from the second network when notifying the second network of a handover waiting time until a handover request can be retransmitted to the first network. A message receiver for receiving a trigger message including an instruction;
A determination unit that determines whether the first connection request transmission unit retransmits the first connection request to the first network based on the trigger message received by the message reception unit;
Have.
With this configuration, when a handover (Inter-RAT Handover) is rejected with respect to connection of a communication node (UE) and a waiting time (HO back-off timer) occurs, it is possible to efficiently connect to a network to be handed over. In this case, it is possible to perform processing with a small processing load and a small number of exchanged messages.
前記第1ネットワークに対して第1の接続要求を送信する第1接続要求送信部と、
前記第1接続要求送信部による前記第1ネットワークへの前記第1の接続要求が拒絶された際に、前記第1ネットワークに対して前記第1の接続要求を再送信できるようになるまでの接続要求待機時間を取得する待機時間取得部と、
前記第1接続要求送信部による前記第1ネットワークへの前記第1の接続要求が拒絶された場合、前記第2ネットワークに対して第2の接続要求を送信する第2接続要求送信部と、
前記第2ネットワークとの間で接続を確立する接続確立部と、
前記第2ネットワークが、前記通信ノードとの間で確立されている前記接続を前記第1ネットワークへハンドオーバさせるハンドオーバ要求を前記第1ネットワークへ送信し、前記第1ネットワークが、前記ハンドオーバ要求を拒絶すると共に、前記第1ネットワークに対してハンドオーバ要求を再送信できるようになるまでのハンドオーバ待機時間を前記第2ネットワークへ通知した場合に、前記第2ネットワークから送信される前記第1ネットワークへの接続切り替え指示を含むトリガメッセージを受信するメッセージ受信部と、
前記メッセージ受信部で受信した前記トリガメッセージに基づいて、前記第1接続要求送信部が前記第1ネットワークに対して前記第1の接続要求を再送信するか否かを決定する判断部とを、
有する。
この構成により、通信ノード(UE)の接続に関してハンドオーバ(Inter-RAT Handover)が拒絶されて待機時間(HO back-off timer)が発生した場合に、ハンドオーバしようとしたネットワークに効率良く接続することが可能となり、また、その際、処理負荷が少なく、かつ、交換されるメッセージ数が少ない処理が行われるようにすることが可能となる。 In order to achieve the above object, the communication node of the present invention is configured by first and second networks using different radio access technologies, and the communication node is connected between the first network and the second network. A communication node connected to a communication system for handing over
A first connection request transmitter for transmitting a first connection request to the first network;
Connection until the first connection request can be retransmitted to the first network when the first connection request to the first network by the first connection request transmission unit is rejected. A waiting time acquisition unit for acquiring a request waiting time;
A second connection request transmitter for transmitting a second connection request to the second network when the first connection request to the first network by the first connection request transmitter is rejected;
A connection establishment unit for establishing a connection with the second network;
The second network sends a handover request for handing over the connection established with the communication node to the first network, and the first network rejects the handover request. And switching the connection to the first network transmitted from the second network when notifying the second network of a handover waiting time until a handover request can be retransmitted to the first network. A message receiver for receiving a trigger message including an instruction;
A determination unit that determines whether the first connection request transmission unit retransmits the first connection request to the first network based on the trigger message received by the message reception unit;
Have.
With this configuration, when a handover (Inter-RAT Handover) is rejected with respect to connection of a communication node (UE) and a waiting time (HO back-off timer) occurs, it is possible to efficiently connect to a network to be handed over. In this case, it is possible to perform processing with a small processing load and a small number of exchanged messages.
また、上記の目的を達成するため、本発明のネットワークノードは、それぞれ異なる無線アクセス技術を用いた第1及び第2ネットワークによって構成され、前記第1ネットワークと前記第2ネットワークとの間で通信ノードの接続をハンドオーバさせる通信システムにおいて、前記第2ネットワークに位置するネットワークノードであって、
前記第1ネットワークへの第1の接続要求が拒絶された前記通信ノードから、前記第2ネットワークへの第2の接続要求を受信する接続要求受信部と、
前記通信ノードによる前記第2ネットワークへの前記第2の接続要求を受け入れることを示す接続応答を前記通信ノードへ送信する接続応答送信部と、
前記通信ノードとの間で確立されている接続を前記第1ネットワークへハンドオーバさせるハンドオーバ要求を前記第1ネットワークへ送信するハンドオーバ要求送信部と、
前記第1ネットワークが前記ハンドオーバ要求を拒絶した場合、前記第1ネットワークに対してハンドオーバ要求を再送信できるようになるまでのハンドオーバ待機時間を取得するハンドオーバ待機時間取得部と、
前記第1ネットワークへの接続切り替え指示を含むトリガメッセージを前記通信ノードに送信するメッセージ送信部とを、
有する。
この構成により、通信ノード(UE)の接続に関してハンドオーバ(Inter-RAT Handover)が拒絶されて待機時間(HO back-off timer)が発生した場合に、ハンドオーバしようとしたネットワークに効率良く接続することが可能となり、また、その際、処理負荷が少なく、かつ、交換されるメッセージ数が少ない処理が行われるようにすることが可能となる。 In order to achieve the above object, the network node of the present invention includes first and second networks using different radio access technologies, and a communication node between the first network and the second network. A network node located in the second network in a communication system for handing over the connection of:
A connection request receiving unit that receives a second connection request to the second network from the communication node in which the first connection request to the first network is rejected;
A connection response transmitting unit that transmits a connection response indicating acceptance of the second connection request to the second network by the communication node to the communication node;
A handover request transmitter for transmitting a handover request for handing over a connection established with the communication node to the first network, to the first network;
A handover standby time acquisition unit that acquires a handover standby time until the handover request can be retransmitted to the first network when the first network rejects the handover request;
A message transmitting unit that transmits a trigger message including a connection switching instruction to the first network to the communication node;
Have.
With this configuration, when a handover (Inter-RAT Handover) is rejected with respect to connection of a communication node (UE) and a waiting time (HO back-off timer) occurs, it is possible to efficiently connect to a network to be handed over. In this case, it is possible to perform processing with a small processing load and a small number of exchanged messages.
前記第1ネットワークへの第1の接続要求が拒絶された前記通信ノードから、前記第2ネットワークへの第2の接続要求を受信する接続要求受信部と、
前記通信ノードによる前記第2ネットワークへの前記第2の接続要求を受け入れることを示す接続応答を前記通信ノードへ送信する接続応答送信部と、
前記通信ノードとの間で確立されている接続を前記第1ネットワークへハンドオーバさせるハンドオーバ要求を前記第1ネットワークへ送信するハンドオーバ要求送信部と、
前記第1ネットワークが前記ハンドオーバ要求を拒絶した場合、前記第1ネットワークに対してハンドオーバ要求を再送信できるようになるまでのハンドオーバ待機時間を取得するハンドオーバ待機時間取得部と、
前記第1ネットワークへの接続切り替え指示を含むトリガメッセージを前記通信ノードに送信するメッセージ送信部とを、
有する。
この構成により、通信ノード(UE)の接続に関してハンドオーバ(Inter-RAT Handover)が拒絶されて待機時間(HO back-off timer)が発生した場合に、ハンドオーバしようとしたネットワークに効率良く接続することが可能となり、また、その際、処理負荷が少なく、かつ、交換されるメッセージ数が少ない処理が行われるようにすることが可能となる。 In order to achieve the above object, the network node of the present invention includes first and second networks using different radio access technologies, and a communication node between the first network and the second network. A network node located in the second network in a communication system for handing over the connection of:
A connection request receiving unit that receives a second connection request to the second network from the communication node in which the first connection request to the first network is rejected;
A connection response transmitting unit that transmits a connection response indicating acceptance of the second connection request to the second network by the communication node to the communication node;
A handover request transmitter for transmitting a handover request for handing over a connection established with the communication node to the first network, to the first network;
A handover standby time acquisition unit that acquires a handover standby time until the handover request can be retransmitted to the first network when the first network rejects the handover request;
A message transmitting unit that transmits a trigger message including a connection switching instruction to the first network to the communication node;
Have.
With this configuration, when a handover (Inter-RAT Handover) is rejected with respect to connection of a communication node (UE) and a waiting time (HO back-off timer) occurs, it is possible to efficiently connect to a network to be handed over. In this case, it is possible to perform processing with a small processing load and a small number of exchanged messages.
本発明によれば、通信ノード(UE)の接続に関してハンドオーバ(Inter-RAT Handover)が拒絶されて待機時間(HO back-off timer)が発生した場合に、ハンドオーバしようとしたネットワークに効率良く接続することが可能となる。また、その際、処理負荷が少なく、かつ、交換されるメッセージ数が少ない処理が行われるようにすることが可能となる。
According to the present invention, when a handover (Inter-RAT Handover) is rejected with respect to connection of a communication node (UE) and a waiting time (HO back-off timer) occurs, it efficiently connects to the network to be handed over. It becomes possible. At this time, it is possible to perform processing with a small processing load and a small number of exchanged messages.
また、本発明によれば、通信ノード(UE)が、あるネットワーク(第1ネットワーク)に対して送信した接続要求が拒絶されるとともに第1の待機時間(MM back-off timer)が設定された場合であっても、別のネットワーク(第2ネットワーク)との接続を確立し、上記第2ネットワークから第1ネットワークへのハンドオーバ(Inter-RAT Handover)で設定された第2の待機時間(HO back-off timer)を利用することで、ネットワーク間でのハンドオーバ処理(Inter-RAT Handover procedure)の実行を回避することが可能となる。
Further, according to the present invention, a connection request transmitted from a communication node (UE) to a certain network (first network) is rejected and a first waiting time (MM back-off timer) is set. Even in this case, the second standby time (HO back) set by the handover from the second network to the first network (Inter-RAT Handover) is established by establishing a connection with another network (second network). By using -off timer, it is possible to avoid the execution of a handover process (inter-RAT Handover procedure) between networks.
また、本発明によれば、上記第2の待機時間(HO back-off timer)の終了時間が、上記第1の待機時間(MM back-off timer)の終了時刻より早い場合には、通信ノードは、上記第1ネットワークへの接続をより早期に行うことが可能となり、サービスの品質向上やユーザ利便性の向上につながる。また、通信ノードが、当該通信ノードの通信状況(例えば、送信/受信するデータ残量)などを考慮して、接続の切り替えを行うか否かを決定することにより、最適なネットワークを選択することが可能となる。
Further, according to the present invention, when the end time of the second standby time (HO back-off timer) is earlier than the end time of the first standby time (MM back-off timer), a communication node Can connect to the first network earlier, leading to improved service quality and improved user convenience. In addition, the communication node selects an optimal network by determining whether or not to switch the connection in consideration of the communication status of the communication node (for example, the remaining amount of data to be transmitted / received). Is possible.
以下、図面を参照しながら、本発明の第1及び第2の実施の形態について説明する。
Hereinafter, first and second embodiments of the present invention will be described with reference to the drawings.
まず、図1を参照しながら、本発明の第1及び第2の実施の形態に共通するシステム構成について説明する。図1は、本発明の第1及び第2の実施の形態並びに従来の技術に共通するシステム構成の一例を示す図である。
First, a system configuration common to the first and second embodiments of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing an example of a system configuration common to the first and second embodiments of the present invention and the conventional technology.
上述のように、図1に図示されているネットワークは、少なくとも、UE100又はMTCデバイス105(なお、UE100及びMTCデバイス105を総称して、UE100と呼ぶ)と無線接続する基地局(E-UTRAN114への接続を提供するeNB110、又は、UTRAN115への接続を提供するNB111)、UTRAN115に接続するUE100の無線回線制御や移動制御を行うRNC112、UE100の移動管理を担当する(MME120又はSGSN121)、UE100のサブスクリプション情報を保持するサーバ(HSS125又はHLR126)、ユーザデータ配信制御を行うSGW130、UE100に対するアドレス割り当てやPDN155とSGW130との間のユーザデータ転送並びに経路制御を行うPGW140、MTCサービスを利用するUE100による通信の制御や状態管理、アプリケーションサービスの提供などを行うサーバであるMTCサーバ150を有している。なお、UE100及びMTCユーザ160は、このネットワークと通信可能である。また、図1において、MTCサーバ150はPDN155内に位置しているが、コアネットワーク145内に位置していてもよく、例えば、PGW140がMTCサーバ150の機能を担ってもよい。
As described above, the network illustrated in FIG. 1 includes at least a base station (to E-UTRAN 114) that is wirelessly connected to UE 100 or MTC device 105 (UE 100 and MTC device 105 are collectively referred to as UE 100). ENB 110 that provides a connection to the UTRAN 115, or an NB 111 that provides a connection to the UTRAN 115), an RNC 112 that performs radio channel control and mobility control of the UE 100 connected to the UTRAN 115, and is responsible for mobility management of the UE 100 (MME 120 or SGSN 121). Server holding subscription information (HSS 125 or HLR 126), SGW 130 for performing user data distribution control, address assignment for UE 100, user data transfer and routing between PDN 155 and SGW 130 The performed PGW140, utilizing MTC service UE100 by the control and state management of the communication has a MTC server 150 provides a server for such application services. Note that the UE 100 and the MTC user 160 can communicate with this network. In FIG. 1, the MTC server 150 is located in the PDN 155, but may be located in the core network 145. For example, the PGW 140 may be responsible for the function of the MTC server 150.
ここで、UE100は少なくとも1つ以上の通信インタフェースを持ち、ネットワーク(例えば、E-UTRAN114又はUTRAN115)に接続することが可能である。なお、UE100は、図示されているネットワーク(例えば、E-UTRAN114又はUTRAN115)に、同時に、あるいは排他的に接続するものであってもよいが、1つの通信インタフェースで同時に接続できるのは1つのネットワークのみとする。UE100は、接続した通信システムを通じて、MTCサーバ150と通信可能であり、MTCサーバ150はMTCユーザ160と通信可能である。なお、コアネットワークのMME120やPGW140は、PDN155が混雑している場合やコアネットワーク145のエンティティ(MME120やPGW140など)がオーバーロード状態の場合などにおいて、待ち時間付きで、UE100から送信されたリクエストメッセージを拒絶することができる。
Here, the UE 100 has at least one communication interface and can be connected to a network (for example, the E-UTRAN 114 or the UTRAN 115). Note that the UE 100 may be connected to the illustrated network (for example, the E-UTRAN 114 or the UTRAN 115) simultaneously or exclusively. Only. The UE 100 can communicate with the MTC server 150 through the connected communication system, and the MTC server 150 can communicate with the MTC user 160. Note that the MME 120 and the PGW 140 of the core network request messages transmitted from the UE 100 with a waiting time when the PDN 155 is congested or the entities (such as the MME 120 and the PGW 140) of the core network 145 are overloaded. Can be rejected.
また、上述したように、UE100は3GPPが制定する手順を用いることで、異なるRAT間(例えば、UTRAN115からE-UTRAN114)を、通信を維持したままハンドオーバすることができる。なお、以下では、主にUTRAN115からE-UTRAN114へハンドオーバが行われる場合について説明するが、E-UTRAN114からUTRAN115へハンドオーバが行われる場合においても、本発明は適用可能である。また、本明細書では、UE100が接続可能な複数のRATとして、E-UTRAN114及びUTRAN115が例示されているが、その他の種類のRAT(例えば、WLAN(Wireless LAN:無線LAN)ネットワークやWiMAXネットワーク)に対しても、本発明は適用可能である。
Further, as described above, the UE 100 can perform handover between different RATs (for example, from the UTRAN 115 to the E-UTRAN 114) while maintaining communication by using the procedure established by 3GPP. In the following, a case where a handover is mainly performed from the UTRAN 115 to the E-UTRAN 114 will be described, but the present invention can also be applied when a handover is performed from the E-UTRAN 114 to the UTRAN 115. In this specification, E-UTRAN 114 and UTRAN 115 are illustrated as a plurality of RATs to which UE 100 can be connected. However, the present invention is also applicable.
以下、本発明の第1と第2の実施の形態において前提とするシステム動作の一例について、図4を用いて説明する。図4は、従来の技術に係るシステム動作の一例であり、かつ、本発明の第1及び第2の実施の形態において前提とするシステム動作の一例を説明するためのシーケンス図である。ここでは、本発明の第1及び第2の実施の形態の説明例として、UE100が、MME120(E-UTRAN114経由で接続)とSGSN121(UTRAN115経由で接続)のいずれかを経由して接続を確立する場合を用いて説明する。
Hereinafter, an example of a system operation assumed in the first and second embodiments of the present invention will be described with reference to FIG. FIG. 4 is a sequence diagram for explaining an example of a system operation according to the prior art, and an example of a system operation assumed in the first and second embodiments of the present invention. Here, as an illustrative example of the first and second embodiments of the present invention, the UE 100 establishes a connection via either the MME 120 (connected via the E-UTRAN 114) or the SGSN 121 (connected via the UTRAN 115). This will be described using a case where
UE100は、E-UTRAN114経由でPDNコネクションを確立するために、MME120にリクエストメッセージ(例えば、Attach request)を送信する(図4のステップS401)。UE100から送信されたAttach requestを受信したMME120は、例えば他のUE100からのリクエストメッセージの処理やコアネットワーク145のエンティティから送信されるメッセージなどによってオーバーロード状態であり、Attach requestを拒絶するための拒絶メッセージ(例えば、Attach reject)をUE100に返信する(図4のステップS402)。なお、MME120はオーバーロード状態から通常の状態(UE100からのリクエストメッセージなどを処理できる状態)になるべく早く戻りたい、又は、UE100から再送されるリクエストメッセージを一定時間回避するために待ち時間(MM back-off timer)を拒絶メッセージに格納する。上述のように、ステップS401及びS402の処理は、E-UTRAN114経由の接続が拒絶されたUE100が、待ち時間(MM back-off timer)を受信する処理を表している。
UE 100 transmits a request message (for example, Attach request) to MME 120 in order to establish a PDN connection via E-UTRAN 114 (step S401 in FIG. 4). The MME 120 that has received the Attach request transmitted from the UE 100 is in an overload state, for example, due to processing of a request message from another UE 100 or a message transmitted from an entity of the core network 145, and is a rejection for rejecting the Attach request. A message (for example, Attach reject) is returned to the UE 100 (step S402 in FIG. 4). Note that the MME 120 wants to return from the overload state to a normal state (a state in which a request message from the UE 100 can be processed) as soon as possible, or a waiting time (MM back) to avoid a request message retransmitted from the UE 100 for a certain period of time. -Off timer) is stored in the rejection message. As described above, the processing in steps S401 and S402 represents processing in which the UE 100 to which the connection via the E-UTRAN 114 is rejected receives a waiting time (MM back-off timer).
MM back-off timerを含む拒絶メッセージを受信したUE100は、異なるネットワーク(例えば、異なるRATであるUTRAN115)経由でPDNコネクションを確立するためのリクエストメッセージ(例えば、Attach request)を送信する(図4のステップS403)。UE100から送信されたAttach requestを受信したSGSN121は、Attach requestを許可するために、3GPPが制定する一般的なAttach procedureに従った処理を行い、許可メッセージ(例えば、Attach accept)をUE100に返信する(図4のステップS404)。この結果、UE100はUTRAN115経由でPGW140との間にPDNコネクションを確立でき、例えば、PDN155にユーザデータを送信することができるようになる。上述のように、ステップS403及びS404の処理は、E-UTRAN114経由の接続が拒絶されたUE100が、UTRAN115経由でPDNコネクションを確立する処理を表している。なお、本発明では、後述のように、ステップS403でUE100から送信されるAttach requestには、MM back-off timer、又は、HO back-off timerを利用する指示を示すフラグが挿入される。
The UE 100 that has received the rejection message including the MM back-off timer transmits a request message (for example, Attach request) for establishing a PDN connection via a different network (for example, UTRAN 115 which is a different RAT) (FIG. 4). Step S403). The SGSN 121 that has received the Attach request transmitted from the UE 100 performs processing in accordance with a general Attach procedure established by 3GPP in order to authorize the Attach request, and returns an authorization message (for example, Attach accept) to the UE 100. (Step S404 in FIG. 4). As a result, the UE 100 can establish a PDN connection with the PGW 140 via the UTRAN 115 and, for example, can transmit user data to the PDN 155. As described above, the processing in steps S403 and S404 represents processing in which the UE 100 to which connection via the E-UTRAN 114 is rejected establishes a PDN connection via the UTRAN 115. In the present invention, as described later, a flag indicating an instruction to use the MM back-off timer or the HO back-off timer is inserted into the Attach request transmitted from the UE 100 in step S403.
UE100がUTRAN115経由でPGW140との間にPDNコネクション確立した後、ネットワークのオペレータポリシによって、UTRAN115からE-UTRAN114へのハンドオーバ処理がトリガされ、SGSN121からMME120にメッセージ(例えば、Forward Relocation Request)(詳細なシーケンスは後ほど説明する)を送信する(図4のステップS405)。SGSN121から送信されたForward Relocation Requestを受信したMME120は、他のUE100からのリクエストメッセージの処理やコアネットワーク145のエンティティから送信されるメッセージなどによってオーバーロード状態であり、Forward Relocation Requestを拒絶するための拒絶メッセージ(例えば、非特許文献5で開示される“No resource available”や“Relocation failure”を示すパラメータが格納されるForward Relocation Response)をSGSN121に返信する(図4のステップS406)。MME120は、オーバーロード状態から通常の状態(UEからのリクエストメッセージやコアネットワークのエンティティからのメッセージ(例えば、Handover request)などを処理できる状態)になるべく早く戻りたい、又は、SGSN121から再送されるリクエストメッセージを一定時間回避するために待ち時間(HO back-off timer)を拒絶メッセージに格納することが可能である。なお、MME120が通常の状態に戻った状態で、ステップS405のHandover requestを受信した場合には、Inter-RAT handover procedureが実行されることになる。
After the UE 100 establishes a PDN connection with the PGW 140 via the UTRAN 115, a handover process from the UTRAN 115 to the E-UTRAN 114 is triggered by the network operator policy, and a message (for example, Forward Relocation Request) from the SGSN 121 to the MME 120 (details) The sequence will be described later) (step S405 in FIG. 4). The MME 120 that has received the Forward Relocation Request transmitted from the SGSN 121 is in an overload state due to processing of a request message from another UE 100 or a message transmitted from an entity of the core network 145, and so on to reject the Forward Relocation Request. A rejection message (for example, Forward Relocation Response storing parameters indicating “No resource available” and “Relocation failure” disclosed in Non-Patent Document 5) is returned to the SGSN 121 (step S406 in FIG. 4). The MME 120 wants to return as soon as possible from an overload state to a normal state (a state in which a request message from the UE or a message from an entity of the core network (for example, a handover request) can be processed), or a request retransmitted from the SGSN 121 In order to avoid the message for a certain period of time, it is possible to store a waiting time (HO back-off timer) in the rejection message. When the MME 120 returns to the normal state and receives the Handover request in Step S405, the Inter-RAT handover procedure is executed.
上述のように、ステップS405及びS406の処理は、UTRAN115からE-UTRAN114へのInter-RAT handoverが拒絶され、待ち時間(HO back-off timer)を受信する処理を表している。本発明では、上述の一連の処理(ステップS401からステップS406の処理)に示すように、例えば、オーバーロード状態のMME120が、UE100からのAttach requestに対して、MM back-off timerを含むAttach reject(拒絶メッセージ)を返し、かつ、SGSN121からのForward Relocation Requestに対して、HO back-off timerを含むForward Relocation Response(拒絶メッセージ)を返した場合を前提とする。
As described above, the processing in steps S405 and S406 represents processing in which the Inter-RAT handover from the UTRAN 115 to the E-UTRAN 114 is rejected and a waiting time (HO back-off timer) is received. In the present invention, as shown in the above-described series of processing (processing from step S401 to step S406), for example, the MME 120 in the overload state receives an attach request including an MM back-off timer in response to an attach request from the UE 100. (Reject message) is returned, and Forward Relocation Response (reject message) including HO back-off timer is returned to Forward Relocation Request from SGSN 121.
従来の技術では、HO back-off timerを含むForward Relocation Responseを受信したSGSN121は、HO back-off timer経過後、再度Forward Relocation RequestをMME120へ送信する(図4のステップS407)。Forward Relocation Requestを受信したMME120は、オーバーロード状態が解消されている場合、Forward Relocation Requestを受け入れ、ハンドオーバの許可メッセージ(例えば、非特許文献5で開示される“Request Accepted”を示すパラメータが格納されるForward Relocation Response)をSGSN121に返信する(図4のステップS408)。上述のように、SGSN121は、HO back-off timerの終了後、Forward Relocation Requestを再送信してハンドオーバ処理を行うが、このハンドオーバ処理(Inter-RAT handover procedure)はネットワーク装置の処理負荷が高く、かつ、交換されるメッセージ数が多いという問題がある。
In the conventional technique, the SGSN 121 that has received the Forward Relocation Response including the HO back-off timer transmits the Forward Relocation Request to the MME 120 again after the HO back-off timer has elapsed (step S407 in FIG. 4). The MME 120 that has received the Forward Relocation Request accepts the Forward Relocation Request when the overload state is resolved, and stores a handover permission message (for example, a parameter indicating “Request Accepted” disclosed in Non-Patent Document 5). Forward Relocation Response) is returned to the SGSN 121 (step S408 in FIG. 4). As described above, the SGSN 121 performs the handover process by retransmitting the Forward Relocation Request after the completion of the HO back-off timer, but this handover process (Inter-RAT handover procedure) has a high processing load on the network device. In addition, there is a problem that a large number of messages are exchanged.
以下、従来の技術におけるInter-RAT handover procedureについて、図5を用いて詳しく説明する。図5は、従来の技術である“UTRAN to E-UTRAN lu mode Inter RAT handover”)の動作の一例(UTRAN115からE-UTRAN114へのハンドオーバケース)を説明するためのシーケンス図である。なお、Inter-RAT handover procedure前にUE100が使用していた装置には、装置名の前にソース(Source)という文言を付しており(例えば、ソースSGSN121)、Inter-RAT handover procedure後にUE100がネットワークで使用する予定の装置には、装置名の前にターゲット(Target)という文言を付している(例えば、ターゲットMME120)。また、図5では、SGW130の再割り当てを考慮しておらず、SGW130の再割り当てが実施されるときは、図2及び図3の点線で示すメッセージが交換される。
Hereinafter, the Inter-RAT handover procedure in the prior art will be described in detail with reference to FIG. FIG. 5 is a sequence diagram for explaining an example of the operation of the conventional technique “UTRAN to E-UTRAN lu mode Inter RAT handover” (handover case from UTRAN 115 to E-UTRAN 114). Note that the device used by the UE 100 before the Inter-RAT handover procedure is prefixed with the word “Source” before the device name (for example, the source SGSN 121), and after the Inter-RAT handover procedure, the UE 100 A device scheduled to be used in the network is prefixed with the word “Target” (for example, target MME 120). In FIG. 5, the reassignment of the SGW 130 is not taken into consideration, and when the reassignment of the SGW 130 is performed, the messages indicated by the dotted lines in FIGS. 2 and 3 are exchanged.
まず、UE100はUTRAN115経由でPGW140とPDNコネクションを確立済みであることを前提(図4の(A)と(B)を実施済み)とする。ここで、UE100の接続に関して、ネットワークのオペレータポリシに基づいて、UTRAN115からE-UTRAN114へのInter-RAT handoverの実行が決定される(図5のステップS501)。ネットワークのオペレータポリシに基づいて、Inter-RAT handoverを行う際、ソースRNC112がUE100のハンドオーバ先ネットワークで使用される装置(例えば、ターゲットeNB110、ターゲットMME120、ターゲットSGW130)で、ハンドオーバ前にUE100が確立したEPSベアラ分のリソースを確保するためのRelocation requiredメッセージをソースSGSN121に送信する(図5のステップS502)。
First, it is assumed that the UE 100 has already established a PDN connection with the PGW 140 via the UTRAN 115 ((A) and (B) in FIG. 4 have been performed). Here, regarding the connection of the UE 100, execution of Inter-RAT handover from the UTRAN 115 to the E-UTRAN 114 is determined based on the network operator policy (step S501 in FIG. 5). Based on the network operator policy, when Inter-RAT handover is performed, the source RNC 112 is a device used in the handover destination network of the UE 100 (for example, the target eNB 110, the target MME 120, the target SGW 130), and the UE 100 is established before the handover. A relocation required message for securing resources for the EPS bearer is transmitted to the source SGSN 121 (step S502 in FIG. 5).
Relocation requiredメッセージをソースRNC112から受信したソースSGSN121は、一般的なInter-RAT handover procedureに従って、Relocation requiredメッセージに格納されているパラメータ(例えば、Target eNB Identifier)からE-UTRAN114へのハンドオーバを決定し、Forward Relocation RequestメッセージをターゲットMME120に送信する(図5のステップS503)。
The source SGSN 121 that has received the Relocation required message from the source RNC 112 determines the handover from the parameters stored in the Relocation required message (for example, Target eNB Identifier) to the E-UTRAN 114 according to the general Inter-RAT handover procedure. A Forward Relocation Request message is transmitted to the target MME 120 (step S503 in FIG. 5).
Forward Relocation Requestメッセージを受信したターゲットMME120がオーバーロード状態でない場合には、一般的なInter-RAT handover procedureの処理(例えば、図5に図示されているステップS506からステップS508を実施後、Execution phaseの処理)が実施される。一方、ターゲットMME120はオーバーロード状態である場合には、Forward Relocation Requestメッセージを拒絶するメッセージ(例えば、非特許文献5で開示される“No resource available”や“Relocation failure”を示すパラメータが格納されるForward Relocation Responseメッセージ)をソースSGSN121に返信する(図5のステップS504)。なお、上述したように、ターゲットMME120が、オーバーロード状態から通常の状態(UE100からのリクエストメッセージやコアネットワークのエンティティからのメッセージ(例えば、Handover request)などを処理できる状態)になるべく早く戻りたい、又は、ソースSGSN121などから再送されるリクエストメッセージを一定時間回避したい場合には、ステップS504において送信されるForward Relocation Responseメッセージに待ち時間(HO back-off timer)を格納する。なお、図4の(C)は、図5のステップS501からステップS504に相当する。
If the target MME 120 that has received the Forward Relocation Request message is not in an overload state, a general Inter-RAT handover procedure process (for example, after executing Step S 506 to Step S 508 shown in FIG. Process). On the other hand, when the target MME 120 is in an overload state, a message that rejects the Forward Relocation Request message (for example, a parameter indicating “No resource available” or “Relocation failure” disclosed in Non-Patent Document 5) is stored. The Forward Relocation Response message) is returned to the source SGSN 121 (step S504 in FIG. 5). As described above, the target MME 120 wants to return as soon as possible from the overload state to a normal state (a state in which a request message from the UE 100 or a message from a core network entity (for example, a Handover request) can be processed). Alternatively, when a request message retransmitted from the source SGSN 121 or the like is to be avoided for a certain period of time, a waiting time (HO back-off timer) is stored in the Forward Relocation Response message transmitted in step S504. 4C corresponds to step S501 to step S504 in FIG.
HO back-off timer終了後、ソースSGSN121は再度Forward Relocation RequestメッセージをターゲットMME120に送信する(図5のステップS505)。このとき、例えば、ターゲットMME120のオーバーロード状態が解消されている場合(通常の状態に戻っている場合)には、図5のステップS506からステップS508において、ターゲットMME120は、ソースSGSN121からのForward Relocation Requestを受諾し、その後、図5に図示されているExecution phaseの処理が実施される。なお、図4の(D)は、図5のステップS505からステップS508に相当する。
After the completion of the HO back-off timer, the source SGSN 121 transmits a Forward Relocation Request message to the target MME 120 again (step S505 in FIG. 5). At this time, for example, when the overload state of the target MME 120 has been resolved (when the target MME 120 has returned to the normal state), in steps S506 to S508 in FIG. The request is accepted, and then the execution phase process shown in FIG. 5 is executed. 4D corresponds to steps S505 to S508 in FIG.
図5から分かるように、Inter-RAT HO procedureでは、例えば、ターゲットMME120からソースSGSN121へForward Relocation requestを拒絶するメッセージ(Forward Relocation Responseメッセージ)が返信された場合、ソースSGSN121からターゲットMME120へForward Relocation requestメッセージが再度送信されてからInter-RAT HO procedureが完了するまで(図5のステップS505以降の処理)に最小18ステップを要し、さらに、様々なメッセージ交換(例えば、図2及び図3の点線で示すメッセージなど)が生じる場合(例えば、SGW130が変更する場合)がある。すなわち、Inter-RAT HO procedureは、ネットワーク装置の処理負荷が高く、かつ、交換されるメッセージ数が多いという問題を抱えている。
As can be seen from FIG. 5, in the Inter-RAT HO procedure, for example, when a message (Forward Relocation Response message) rejecting the Forward Relocation request from the target MME 120 to the source SGSN 121 is returned from the source SGSN 121 to the Target MME 120, the Forward Requeue Request It takes a minimum of 18 steps from the time when the message is sent again until Inter-RAT HO procedure is completed (the processing after step S505 in FIG. 5), and various message exchanges (for example, dotted lines in FIGS. 2 and 3). (For example, when the SGW 130 changes) A. In other words, Inter-RAT HO procedure has a problem that the processing load on the network device is high and the number of messages to be exchanged is large.
<第1の実施の形態>
以下、本発明の第1の実施の形態について説明する。図6は、本発明の第1の実施の形態の動作の一例を説明するためのシーケンス図である。なお、図6は、図5をベースに作成されており、図6のステップS601が図4の(A)、図6のステップS602が図4の(B)、図6のステップS603からステップS606が図4の(C)や図5のステップS501からステップS504に相当している。 <First Embodiment>
Hereinafter, a first embodiment of the present invention will be described. FIG. 6 is a sequence diagram for explaining an example of the operation of the first exemplary embodiment of the present invention. 6 is created based on FIG. 5, step S601 in FIG. 6 is shown in FIG. 4A, step S602 in FIG. 6 is in FIG. 4B, and steps S603 to S606 in FIG. Corresponds to (C) in FIG. 4 and steps S501 to S504 in FIG.
以下、本発明の第1の実施の形態について説明する。図6は、本発明の第1の実施の形態の動作の一例を説明するためのシーケンス図である。なお、図6は、図5をベースに作成されており、図6のステップS601が図4の(A)、図6のステップS602が図4の(B)、図6のステップS603からステップS606が図4の(C)や図5のステップS501からステップS504に相当している。 <First Embodiment>
Hereinafter, a first embodiment of the present invention will be described. FIG. 6 is a sequence diagram for explaining an example of the operation of the first exemplary embodiment of the present invention. 6 is created based on FIG. 5, step S601 in FIG. 6 is shown in FIG. 4A, step S602 in FIG. 6 is in FIG. 4B, and steps S603 to S606 in FIG. Corresponds to (C) in FIG. 4 and steps S501 to S504 in FIG.
本発明の第1の実施の形態では、UE100は、UTRAN115経由でSGSN(ソースSGSN)121へAttach requestを送信する際に、E-UTRAN114経由で受信したAttach rejectメッセージに格納されていたMM back-off timer、又は、HO back-off timerを利用する指示を示すフラグをAttach requestに格納する(図6のステップS6021)。
In the first embodiment of the present invention, when the UE 100 transmits an Attach request to the SGSN (source SGSN) 121 via the UTRAN 115, the MM back- stored in the Attach reject message received via the E-UTRAN 114. A flag indicating an instruction to use the off timer or the HO back-off timer is stored in the Attach request (step S6021 in FIG. 6).
続いて、ネットワークのオペレータポリシによって、UTRAN115からE-UTRAN114へのInter-RAT HOがトリガされ、ステップS603からステップS606が実施される。なお、ここでは、ソースSGSN121から送信されたInter-RAT HOにおけるForward Relocation RequestがターゲットMME120によって拒絶される場合を想定しており、図6のステップS603からステップS606は、図5のステップS501からステップS504と同じなので、説明を省略する。
Subsequently, the Inter-RAT HO from the UTRAN 115 to the E-UTRAN 114 is triggered by the network operator policy, and Steps S603 to S606 are performed. Here, it is assumed that the Forward Relocation Request in Inter-RAT HO transmitted from the source SGSN 121 is rejected by the target MME 120, and Steps S603 to S606 in FIG. 6 are performed from Step S501 to Step S606 in FIG. Since it is the same as S504, the description is omitted.
続いて、ソースSGSN121が、ターゲットMME120から送信されたHO back-off timerを含むForward Relocation Responseメッセージを受信した後、ステップS6021でUE100から通知されたMM back-off timerと、ステップS606でターゲットMME120から通知されたHO back-off timerの各終了時間(経過状態)を比較する(図6のステップS607)。
Subsequently, after the source SGSN 121 receives the Forward Relocation Response message including the HO back-off timer transmitted from the target MME 120, the source SGSN 121 receives the MM back-off timer notified from the UE 100 in step S6021, and the target MME 120 in step S606. Each end time (elapsed state) of the notified HO back-off timer is compared (step S607 in FIG. 6).
ソースSGSN121は、HO back-off timerの終了時間の方が早いと判断した場合、HO back-off timer終了後、UE100によるAttach procedureをトリガするためのTrigger requestメッセージ(例えばNAS(Non Access Stratum)シグナリング)をUE100へ送信する(図6のステップS608)。
If the source SGSN 121 determines that the end time of the HO back-off timer is earlier, after the HO back-off timer ends, the trigger request message for triggering the Attach procedure by the UE 100 (for example, NAS (Non Access Signal) ) To the UE 100 (step S608 in FIG. 6).
なお、ソースSGSN121が、ステップS6021でUE100からMM back-off timerを受信しなくても、HO back-off timerを利用することが明らかな場合(例えば、HO back-off timerを利用する指示を示すフラグの有無でHO back-off timerを使用するか判断ができる)は、ステップS6021でUE100はMM back-off timerをAttach requestに格納する必要はない。また、この場合には、ステップS607のソースSGSN121によるMM Back-off timerとHO Back-off timerとの終了時間の比較処理も省略でき、ソースSGSN121は、HO Back-off timerの終了後、ステップS608においてTrigger requestメッセージをUE100へ送信する。さらに、ソースSGSN121は、ステップS6021で通常のAttach requestを受信した場合であっても(すなわち、Attach requestに、MM back-off timer及びHO back-off timerを利用することを明示的に示すフラグが挿入されていない場合であっても)、HO back-off timerの終了後に、Trigger requestをUE100へ送信してもよい。
If the source SGSN 121 clearly uses the HO back-off timer without receiving the MM back-off timer from the UE 100 in step S6021, the source SGSN 121 indicates an instruction to use the HO back-off timer, for example. The UE 100 does not need to store the MM back-off timer in the Attach request in step S6021 if it is possible to determine whether to use the HO back-off timer according to the presence or absence of the flag. In this case, the process of comparing the end time between the MM Back-off timer and the HO Back-off timer by the source SGSN 121 in step S607 can also be omitted, and the source SGSN 121 performs step S608 after the completion of the HO Back-off timer. , A Trigger request message is transmitted to the UE 100. Further, even when the source SGSN 121 receives a normal Attach request in step S6021, a flag that explicitly indicates that the MM back-off timer and the HO back-off timer are used for the Attach request. Even when the HO back-off timer is terminated, a Trigger request may be transmitted to the UE 100.
ステップS608でTrigger requestメッセージを受信したUE100は、E-UTRAN114経由でAttach requestをターゲットMME120に送信し、E-UTRAN114経由でPGW140とPDNコネクションを確立する(図6のステップS609)。ステップS609で実行される処理は、通常のAttach procedureであり、具体的には図12に図示されている一連の処理が実行される(ここでは、図12の通常のAttach procedureの詳細な説明は省略する)。
Upon receiving the Trigger request message in step S608, the UE 100 transmits an Attach request to the target MME 120 via the E-UTRAN 114, and establishes a PDN connection with the PGW 140 via the E-UTRAN 114 (step S609 in FIG. 6). The process executed in step S609 is a normal Attach procedure, and specifically, a series of processes illustrated in FIG. 12 is executed (here, a detailed description of the normal Attach procedure in FIG. 12 is given). (Omitted).
なお、ステップS609において、UE100がE-UTRAN114経由でAttach requestを送信する際には、図6のステップS601でMME120から通知された待ち時間(MM back-off timer)がまだ終了していない場合には、UE100は、MM back-off timerを無効にして(停止/無視/一時停止など)、Attach requestを送信できるようにする。
In addition, when the UE 100 transmits an Attach request via the E-UTRAN 114 in step S609, the waiting time (MM back-off timer) notified from the MME 120 in step S601 in FIG. 6 has not yet ended. The UE 100 disables the MM back-off timer (stop / ignore / pause, etc.) so that the Attach request can be transmitted.
また、ターゲットMME120は、一般的にオーバーロード状態に応じてback-off timerの長さを定めるため、UE100に対して通知したMM back-off timer(ステップS601)と、ソースSGSN121に対して通知したHO back-off timer(ステップS606)とは、待ち時間の長さが異なる。例えば、UE100に対してMM back-off timerを通知した際のオーバーロード状態よりも、ソースSGSN121に対してHO back-off timerを通知した際のオーバーロード状態のほうが緩和されている場合には、HO back-off timerの終了時間が、MM back-off timerの終了時間よりも早くなる場合があり、このような場合に、ソースSGSN121は、ステップS608においてTrigger requestをUE100へ送信し、UE100は、ターゲットMME120からソースSGSN121へ通知されたHO back-off timerだけ待機した後に、E-UTRAN114経由でAttach requestを送信して、E-UTRAN114経由のPDNコネクションを確立することが可能となる。
In addition, the target MME 120 generally notifies the UE SG 100 of the MM back-off timer (step S601) and the source SGSN 121 to determine the length of the back-off timer according to the overload state. The length of the waiting time is different from the HO back-off timer (step S606). For example, when the overload state when the HO back-off timer is notified to the source SGSN 121 is more relaxed than the overload state when the UE 100 notifies the MM back-off timer, The end time of the HO back-off timer may be earlier than the end time of the MM back-off timer. In such a case, the source SGSN 121 transmits a trigger request to the UE 100 in step S608, and the UE 100 After waiting for only the HO back-off timer notified from the target MME 120 to the source SGSN 121, the Attach request is transmitted via the E-UTRAN 114, and the E-UTRAN It is possible to establish a PDN connection via 14.
次に、図7を参照しながら、本発明の第1の実施の形態におけるUEの構成について説明する。図7は、本発明の第1の実施の形態におけるUEの構成の一例を示す図である。図7において、UE100は、ネットワーク(例えば、E-UTRAN114やUTRAN115)と接続して下位レイヤにおける通信処理と上位レイヤでIPなどのパケット通信処理を実施する通信処理部701、モビリティ管理や通信経路の管理(例えば、PGW140との間に確立するPDNコネクションやEPSベアラに関するQoS制御など)やRAT(例えば、E-UTRAN114やUTRAN115)の選択などを行う通信制御部702、ネットワークから受信した待ち時間(例えば、MM back-off timerなど)を管理し、待ち時間に基づく計時を行うタイマ制御部703を少なくとも有する。なお、通信制御部702がタイマ制御部703の機能を保持している場合は、タイマ制御部703を省略できる。また、タイマ制御部703は通信制御部702のみと情報を交換する場合は、タイマ制御部703と通信制御部702との間に直接的なリンクのみを設けてもよい。
Next, the configuration of the UE in the first embodiment of the present invention will be described with reference to FIG. FIG. 7 is a diagram illustrating an example of a configuration of the UE in the first embodiment of the present invention. In FIG. 7, a UE 100 is connected to a network (for example, E-UTRAN 114 or UTRAN 115) to perform communication processing in a lower layer and packet communication processing such as IP in an upper layer, mobility management and communication path Communication control unit 702 that performs management (for example, PDN connection established with PGW 140, QoS control for EPS bearer, etc.) and RAT (for example, E-UTRAN 114 and UTRAN 115), wait time received from the network (for example, , MM back-off timer, etc.) and at least a timer control unit 703 for measuring time based on the waiting time. When the communication control unit 702 has the function of the timer control unit 703, the timer control unit 703 can be omitted. Further, when the timer control unit 703 exchanges information with only the communication control unit 702, only a direct link may be provided between the timer control unit 703 and the communication control unit 702.
図7に図示されている通信制御部702は、具体的には、E-UTRAN114やUTRAN115と接続するためのメッセージの作成及び処理(例えば、メッセージ内からMM back-off timerなどの情報を抽出)などを行って、E-UTRAN114やUTRAN115との接続を確立する機能を有している。さらに、通信制御部702は、例えば、図11に図示されているTrigger indicationフィールドなどに含まれている情報を抽出し、新たなメッセージの作成及び処理(例えば、別のRATへの接続切り替え処理)を行うか否かを決定することも可能である。
Specifically, the communication control unit 702 illustrated in FIG. 7 creates and processes a message for connecting to the E-UTRAN 114 and the UTRAN 115 (for example, extracts information such as an MM back-off timer from the message). To establish a connection with the E-UTRAN 114 and the UTRAN 115. Furthermore, the communication control unit 702 extracts information included in, for example, the Trigger indication field illustrated in FIG. 11 and creates and processes a new message (for example, a connection switching process to another RAT). It is also possible to determine whether or not to perform.
なお、UE100は、ネットワークに物理的に接続するハードウェア(例えば、ネットワークと通信を行うために、情報(メッセージやパケット)を電気的な信号に変換したり、信号の変調及び復調を行ったりするインタフェース)や、UE100の機能を実現するための集積回路、又は、ソフトウェア(プログラム)の実行が可能なプロセッサなどを有している。ネットワークへ接続する機能(接続要求の送信や接続確立)や接続要求又は接続確立を行うか否かを判断する機能(通信処理部701又は通信制御部702に含まれる機能)は、上記のようにハードウェアで実現されてもよく、あるいは、プログラムをプロセッサに実行させることで実現されてもよい。また、UE100は、情報を一時的に記憶するためのメモリを有し、MM back-off timerなどの情報を一時的に当該メモリに記憶してもよい。さらに、タイマ制御部703も、上記のようにハードウェアで実現されてもよく、あるいは、プログラムをプロセッサに実行させることで実現されてもよい。
Note that the UE 100 converts hardware (for example, a message or a packet) into an electrical signal or modulates and demodulates a signal that is physically connected to the network (for example, to communicate with the network). Interface), an integrated circuit for realizing the functions of the UE 100, or a processor capable of executing software (program). The functions for connecting to the network (transmission of connection requests and connection establishment) and the functions for determining whether or not to perform connection requests or connection establishment (functions included in the communication processing unit 701 or the communication control unit 702) are as described above. It may be realized by hardware, or may be realized by causing a processor to execute a program. Further, the UE 100 may have a memory for temporarily storing information, and information such as an MM back-off timer may be temporarily stored in the memory. Further, the timer control unit 703 may be realized by hardware as described above, or may be realized by causing a processor to execute a program.
次に、図7に図示されている構成を有するUE100について、本発明における特徴的な処理を中心に、図8を用いて詳しく説明する。図8は、本発明の第1の実施の形態におけるUEの動作の一例を示すフローチャートである。
Next, the UE 100 having the configuration shown in FIG. 7 will be described in detail with reference to FIG. 8, focusing on the characteristic processing in the present invention. FIG. 8 is a flowchart showing an example of the operation of the UE in the first embodiment of the present invention.
UE100は、E-UTRAN114経由でPDNコネクションを確立するためにAttach requestを送信する(図8のステップS801)。しかしながら、UE100は、Attach requestを受信したMME120がオーバーロード状態のため、Attach requestに対するAttach rejectメッセージを受信する。また、このとき、MME120は一定時間、UEから送信されるAttach requestを回避するために、Attach rejectメッセージにMM back-off timerを格納する(図8のステップS802)。
The UE 100 transmits an Attach request in order to establish a PDN connection via the E-UTRAN 114 (step S801 in FIG. 8). However, the UE 100 receives the Attach reject message for the Attach request because the MME 120 that has received the Attach request is in an overload state. At this time, the MME 120 stores the MM back-off timer in the Attach reject message in order to avoid the Attach request transmitted from the UE for a certain period of time (step S802 in FIG. 8).
続いて、UE100はUTRAN115経由でAttach requestを送信することが可能であるか否かを確認する(例えば、UE100の設定情報(例えば、RAN優先度情報(例えば、E-UTRAN114が高優先度でUTRAN115が中優先度など)や、アクセス可能なRAT Typeが示されているファイルなど)を確認したり、UTRAN115のカバーエリア内に位置しているかを確認したりする)。すなわち、UE100は、UTRAN115経由でAttach requestメッセージを送信できるか否かを確認する(図8のステップS803)。
Subsequently, the UE 100 confirms whether or not the Attach request can be transmitted via the UTRAN 115 (for example, the setting information of the UE 100 (for example, the RAN priority information (for example, the E-UTRAN 114 is the UTRAN 115 with the high priority)). For example, a medium priority, etc.) or a file showing accessible RAT Type), or whether it is located within the UTRAN 115 cover area). That is, the UE 100 confirms whether or not an Attach request message can be transmitted via the UTRAN 115 (step S803 in FIG. 8).
UTRAN115経由でAttach requestの送信が可能な場合には、UE100はE-UTRAN114経由で受信したMM back-off timerをUTRAN115経由で送信するAttach requestに格納し、MM back-off timerが挿入されたAttach requestを送信する(図8のステップS804)。そして、UTRAN115経由でSGSN121からAttach acceptメッセージを受信することで、UE100は、PGW140との間にPDNコネクションを確立する(図8のステップS805)。
If the Attach request can be transmitted via the UTRAN 115, the UE 100 stores the MM back-off timer received via the E-UTRAN 114 in the Attach request that is transmitted via the UTRAN 115, and the Attach with the MM back-off timer inserted. Request is transmitted (step S804 in FIG. 8). And UE100 establishes a PDN connection between PGW140 by receiving an Attach accept message from SGSN121 via UTRAN115 (Step S805 of Drawing 8).
ここで、UTRAN115経由でPDNコネクションが確立された状態において、ネットワークのオペレータポリシに基づいて、ネットワーク側でInter-RAT HOがトリガされたが、ハンドオーバ先のターゲットMME120は、オーバーロード状態のため、ソースSGSN121からのリクエストメッセージ(例えば、Forward Relocation Request)を拒絶したとする。また、このとき、ターゲットMME120は一定時間、ソースSGSN121からリクエストメッセージの再送を回避するために、待ち時間(HO back-off timer)を拒絶メッセージ(例えば、Forward Relocation Response)に格納して、返信する。ソースSGSN121は、ターゲットMME120から受信したHO back-off timerと、ステップS802でUE100から受信したMM back-off timerの各終了時間を比較する。ソースSGSN121によって、HO back-off timerの終了時間の方が早いと判断された場合には、HO back-off timer終了後、UE100はソースSGSN121からTrigger requestメッセージを受信する(図8のステップS806)。
Here, in the state where the PDN connection is established via the UTRAN 115, the Inter-RAT HO is triggered on the network side based on the network operator policy. However, since the handover target MME 120 is overloaded, It is assumed that a request message (for example, Forward Relocation Request) from the SGSN 121 is rejected. At this time, the target MME 120 stores the reply time (HO back-off timer) in a rejection message (for example, Forward Relocation Response) and returns it to avoid retransmission of the request message from the source SGSN 121 for a certain period of time. . The source SGSN 121 compares the end times of the HO back-off timer received from the target MME 120 and the MM back-off timer received from the UE 100 in step S802. If the source SGSN 121 determines that the end time of the HO back-off timer is earlier, the UE 100 receives a trigger request message from the source SGSN 121 after the end of the HO back-off timer (step S806 in FIG. 8). .
Trigger requestを受信したUE100は、E-UTRAN経由で再度Attach requestを送信する(図8のステップS807)。UE100は、HO back-off timer終了後にTrigger requestを受信し、Attach requestを送信しているため、ターゲットMME120はオーバーロード状態が解消されている可能性が高い(さらには、UE100に対して、通信リソースを確保している可能性が高い)。ターゲットMME120がUE100からのAttach requestを受け入れる場合、E-UTRAN114経由でUE100とPGW140との間にPDNコネクションが確立される。
The UE 100 that has received the Trigger request transmits the Attach request again via E-UTRAN (step S807 in FIG. 8). Since the UE 100 receives the Trigger request after transmitting the HO back-off timer and transmits the Attach request, the target MME 120 is likely to have an overloaded state (and further communicates with the UE 100). It ’s likely that you have resources.) When the target MME 120 accepts an Attach request from the UE 100, a PDN connection is established between the UE 100 and the PGW 140 via the E-UTRAN 114.
なお、ステップS803において、UTRAN115経由でAttach requestを送信することができない場合には、UE100は、MM back-off timerが終了するまで待機し(図8のステップS808)、MM back-off timerの終了後に、再度E-UTRAN114経由でAttach requestを送信する(図8のステップS807)。
Note that if the Attach request cannot be transmitted via the UTRAN 115 in step S803, the UE 100 waits until the MM back-off timer ends (step S808 in FIG. 8), and ends the MM back-off timer. Thereafter, the Attach request is transmitted again via the E-UTRAN 114 (step S807 in FIG. 8).
また、上述のように、UE100は、ステップS804で送信するAttach requestメッセージに、MM back-off timerを挿入せずに、HO back-off timerを利用することを明示的に示すフラグを挿入してもよく、さらには、通常のAttach requestメッセージを送信してもよい。
Further, as described above, the UE 100 inserts a flag explicitly indicating that the HO back-off timer is used without inserting the MM back-off timer into the Attach request message transmitted in step S804. In addition, a normal Attach request message may be transmitted.
次に、図9を参照しながら、本発明の第1の実施の形態におけるソースSGSNの構成について説明する。図9は、本発明の第1の実施の形態におけるソースSGSNの構成の一例を示す図である。図9において、ソースSGSN121は、UTRAN115上で通信処理を行い、IPなどのパケット通信処理を実施する通信処理部901、ターゲットMME120から送信されるHO back-off timerとUE100から送信されるMM back-off timerの終了時間を比較するタイマ比較部902、HO back-off timerの方が早く終了すると判断した場合にUE100へ送信するTrigger requestメッセージを生成するNASメッセージ生成部903、UE100から送信されてきたAttach requestなど、UE100のモビリティを管理する通信制御部904を少なくとも有する。なお、NASメッセージ生成部903が、タイマ比較部902の機能を保持する場合、タイマ比較部902を省略できる。また、その逆でもよい。同様に、通信制御部904がNASメッセージ生成部903とタイマ比較部902の機能を保持する場合、NASメッセージ生成部903とタイマ比較部902を省略できる。
Next, the configuration of the source SGSN in the first embodiment of the present invention will be described with reference to FIG. FIG. 9 is a diagram illustrating an example of the configuration of the source SGSN according to the first embodiment of the present invention. In FIG. 9, the source SGSN 121 performs communication processing on the UTRAN 115, a communication processing unit 901 that performs packet communication processing such as IP, a HO back-off timer transmitted from the target MME 120, and an MM back− transmitted from the UE 100. The timer comparison unit 902 that compares the end time of the off timer, the NAS message generation unit 903 that generates the trigger request message to be transmitted to the UE 100 when it is determined that the HO back-off timer ends earlier, and the UE 100 has transmitted It has at least a communication control unit 904 that manages the mobility of the UE 100 such as Attach request. When the NAS message generation unit 903 retains the function of the timer comparison unit 902, the timer comparison unit 902 can be omitted. The reverse is also possible. Similarly, when the communication control unit 904 holds the functions of the NAS message generation unit 903 and the timer comparison unit 902, the NAS message generation unit 903 and the timer comparison unit 902 can be omitted.
図9に図示されている通信制御部904は、具体的には、UE100がネットワークと接続できるようにするためのメッセージの作成及び処理(例えば、メッセージ内からMM back-off timerなどの情報を抽出)などを行って、UE100との接続を確立する機能を有している。さらに、通信制御部904は、Inter-RAT Handover procedureを実行する機能を有している。
Specifically, the communication control unit 904 illustrated in FIG. 9 creates and processes a message for enabling the UE 100 to connect to the network (for example, extracts information such as an MM back-off timer from the message). Etc.) to establish a connection with the UE 100. Further, the communication control unit 904 has a function of executing Inter-RAT Handover procedure.
なお、ソースSGSN121は、ネットワークに物理的に接続するハードウェア(例えば、ネットワークと通信を行うために、情報(メッセージやパケット)を電気的な信号に変換したり、信号の変調及び復調を行ったりするインタフェース)や、ソースSGSN121の機能を実現するための集積回路、又は、ソフトウェア(プログラム)の実行が可能なプロセッサなどを有している。UE100によるネットワークへの接続を管理する機能(UE100によるネットワーク接続の確立)、Inter-RAT Handover procedureの実行機能、UE100からの接続要求を受け入れるか否かを判断する機能、通信メッセージを処理する機能(通信処理部901、NASメッセージ生成部903、通信制御部904に含まれる機能)は、上記のようにハードウェアで実現されてもよく、あるいは、プログラムをプロセッサに実行させることで実現されてもよい。また、ソースSGSN121は、情報を一時的に記憶するためのメモリを有し、MM back-off timerやHO back-off timerなどの情報を一時的に当該メモリに記憶してもよい。さらに、タイマ比較部903も、上記のようにハードウェアで実現されてもよく、あるいは、プログラムをプロセッサに実行させることで実現されてもよい。
Note that the source SGSN 121 converts hardware (for example, a message or a packet) to be electrically connected to the network (for example, to perform communication with the network), or performs signal modulation and demodulation. Interface), an integrated circuit for realizing the function of the source SGSN 121, or a processor capable of executing software (program). Function for managing connection to the network by UE 100 (establishing network connection by UE 100), function for executing Inter-RAT Handover procedure, function for determining whether or not to accept a connection request from UE 100, function for processing communication messages ( The functions included in the communication processing unit 901, the NAS message generation unit 903, and the communication control unit 904) may be realized by hardware as described above, or may be realized by causing a processor to execute a program. . The source SGSN 121 may have a memory for temporarily storing information, and may temporarily store information such as the MM back-off timer and the HO back-off timer in the memory. Further, the timer comparison unit 903 may be realized by hardware as described above, or may be realized by causing a processor to execute a program.
なお、本発明の第1の実施の形態の説明では、UTRAN115からE-UTRAN114へInter-RAT HOすることを主に想定しているが、E-UTRAN114からUTRAN115へInter-RAT HOする場合は、図9の構成はMME120に適用される。
In the description of the first embodiment of the present invention, it is mainly assumed that Inter-RAT HO is performed from UTRAN 115 to E-UTRAN 114. However, when Inter-RAT HO is performed from E-UTRAN 114 to UTRAN 115, The configuration in FIG. 9 is applied to the MME 120.
次に、図9に図示されている構成を有するSGSN121について、本発明における特徴的な処理を中心に、図10を用いて詳しく説明する。図10は、本発明の第1の実施の形態におけるSGSN121の動作の一例を示すフローチャートである。
Next, the SGSN 121 having the configuration shown in FIG. 9 will be described in detail with reference to FIG. 10, focusing on the characteristic processing in the present invention. FIG. 10 is a flowchart showing an example of the operation of the SGSN 121 according to the first embodiment of this invention.
SGSN121は、MM back-off timerが格納されたAttach requestをUE100から受信する(図10のステップS1001)。SGSN121は、オペレータポリシや負荷状態を確認(オーバーロード状態でないか確認)して、Attach requestを受け入れられる場合には、Attach acceptをUE100に返信する(図10のステップS1002)。その結果、UTRAN115経由でUE100とPGW140との間にPDNコネクションが確立される。
The SGSN 121 receives the Attach request in which the MM back-off timer is stored from the UE 100 (step S1001 in FIG. 10). The SGSN 121 confirms the operator policy and the load state (confirms that it is not an overload state), and if it can accept the Attach request, it returns an Attach accept to the UE 100 (Step S1002 in FIG. 10). As a result, a PDN connection is established between the UE 100 and the PGW 140 via the UTRAN 115.
ここで、UTRAN115のオペレータのポリシに基づいて、UE100のPDNコネクションに関して、E-UTRAN114へInter-RAT HOさせることがUTRAN115で決定されたとする。この場合、ソースSGSN121は、Inter-RAT HOのリクエストメッセージ(例えば、Relocation Required)をソースRNC112から受信する(図10のステップS1003)。
Here, it is assumed that the UTRAN 115 determines that the E-UTRAN 114 causes the Inter-RAT HO for the PDN connection of the UE 100 based on the policy of the operator of the UTRAN 115. In this case, the source SGSN 121 receives an Inter-RAT HO request message (for example, Relocation Required) from the source RNC 112 (step S1003 in FIG. 10).
Inter-RAT HOのリクエストメッセージを受信したソースSGSN121は、ターゲットMME120にInter-RAT HOのリクエストメッセージ(例えば、Forward Relocation Request)を送信する(図10のステップS1004)。
The source SGSN 121 that has received the Inter-RAT HO request message transmits an Inter-RAT HO request message (for example, Forward Relocation Request) to the target MME 120 (step S1004 in FIG. 10).
ここで、ターゲットMME120はオーバーロード状態であるため、Inter-RAT HOのリクエストメッセージを拒絶したとする。このとき、ターゲットMME120は一定時間、ソースSGSN121からのリクエストメッセージの再送を回避するために、待ち時間(HO back-off timer)を拒絶メッセージ(例えば、非特許文献5で開示される“No resource available”や“Relocation failure”を示すパラメータが格納されるForward Relocation Response)に格納して返信し、SGSN121は、この拒絶メッセージを受信する(図10のステップS1005)。
Here, since the target MME 120 is overloaded, it is assumed that the Inter-RAT HO request message is rejected. At this time, in order to avoid retransmission of the request message from the source SGSN 121 for a certain time, the target MME 120 sets a waiting time (HO back-off timer) as a rejection message (for example, “No resource available” disclosed in Non-Patent Document 5). The SGSN 121 receives this refusal message (step S1005 in FIG. 10). The SGSN 121 stores the response in the Forward Relocation Response) in which a parameter indicating “or“ Relocation failure ”is stored.
HO back-off timerが格納された拒絶メッセージ(例えば、Forward Relocation Response)を受信したソースSGSN121は、このHO back-off timerとステップS1001でUE100から受信したMM back-off timerの各終了時間を比較する(図10のステップS1006)。
The source SGSN 121 that has received the rejection message (for example, Forward Relocation Response) in which the HO back-off timer is stored compares the end times of the HO back-off timer and the MM back-off timer received from the UE 100 in step S1001. (Step S1006 in FIG. 10).
HO back-off timerの終了時間のほうがMM back-off timerの終了時間より早いと判断した場合には、ソースSGSN121は、HO back-off timerの終了後に、UE100によるE-UTRAN114経由のAttach procedureをトリガするためのリクエストメッセージ(例えば、Trigger request)を送信する(図10のステップS1007)。
If it is determined that the end time of the HO back-off timer is earlier than the end time of the MM back-off timer, the source SGSN 121 performs an Attach procedure via the E-UTRAN 114 by the UE 100 after the HO back-off timer ends. A request message (for example, Trigger request) for triggering is transmitted (step S1007 in FIG. 10).
なお、ステップS1006において、HO back-off timerの終了時間のほうがMM back-off timerの終了時間より遅いと判断した場合には、ソースSGSN121は、処理を終了する。この場合、UE100は、MM back-off timer終了後に(すなわち、HO back-off timerの終了時間よりも早く)、UTRAN115経由でAttach requestを送信することが可能である。また、上述したように、ソースSGSN121が、ステップS1001でUE100からMM back-off timerを受信しなくても、HO back-off timerを利用することが明らかな場合(例えば、HO back-off timerを利用する指示を示すフラグの有無でHO back-off timerを使用するか判断ができる)は、ステップS1006のソースSGSN121によるMM Back-off timerとHO Back-off timerとの終了時間の比較処理を省略でき、ソースSGSN121は、HO Back-off timerの終了後、ステップS608においてTrigger requestメッセージをUE100へ送信する。
If it is determined in step S1006 that the end time of the HO back-off timer is later than the end time of the MM back-off timer, the source SGSN 121 ends the process. In this case, the UE 100 can transmit an Attach request via the UTRAN 115 after the MM back-off timer ends (that is, earlier than the end time of the HO back-off timer). In addition, as described above, when it is clear that the source SGSN 121 uses the HO back-off timer without receiving the MM back-off timer from the UE 100 in step S1001 (for example, the HO back-off timer is used). (It is possible to determine whether to use the HO back-off timer by the presence or absence of a flag indicating an instruction to use), and the processing of comparing the end time between the MM Back-off timer and the HO Back-off timer by the source SGSN 121 in step S1006 is omitted. The source SGSN 121 transmits a Trigger request message to the UE 100 in step S608 after the HO Back-off timer ends.
また、上述したように、本発明の第1の実施の形態の説明では、UTRAN115からE-UTRAN114へのInter-RAT HOを主に想定しているが、E-UTRAN114からUTRAN115へのInter-RAT HOが実行される場合は、図10の処理フローはMME120に適用される。
Further, as described above, the description of the first embodiment of the present invention mainly assumes Inter-RAT HO from UTRAN 115 to E-UTRAN 114, but Inter-RAT from E-UTRAN 114 to UTRAN 115. When HO is executed, the processing flow of FIG. 10 is applied to the MME 120.
次に、図10のステップS1007で、UE100のE-UTRAN経由で行うAttach procedureをトリガするために、ソースSGSN121からUE100に対して送信されるリクエストメッセージ(Trigger request)構成の一例として、図11を用いて、リクエストメッセージのフォーマット例を説明する。
Next, in step S1007 of FIG. 10, as an example of a request message (Trigger request) configuration transmitted from the source SGSN 121 to the UE 100 in order to trigger the Attach procedure performed via the E-UTRAN of the UE 100, FIG. An example of the format of the request message will be described.
図11は、一般的なNASシグナリングで必要となる情報が格納される“従来のNASメッセージフィールド”と、UEのAttach procedureをトリガするための“Trigger indicatonフィールド”で構成される。Trigger indicatonフィールドには、UE100がE-UTRAN114経由でAttacch requestを送信できることを示す情報(接続切り替えを指示する情報)が格納される。
FIG. 11 includes a “conventional NAS message field” in which information necessary for general NAS signaling is stored, and a “Trigger indicator field” for triggering the UE's Attach procedure. In the Trigger indicator field, information indicating that the UE 100 can transmit an Attach request via the E-UTRAN 114 (information for instructing connection switching) is stored.
なお、例えば、図3のステップS301及びステップS302でソースSGSN121からソースRNC112を経由して、UE100に送信されるメッセージ(Relocation CommandとHO from UTRAN Command)を用いて、UE100のAttach request送信をトリガしてもよい。また、非特許文献3で開示されているNASシグナリング(例えば、Downlink NAS Transport、EMM INFORMATION message、EMM STATUS messageなど)を用いて、UE100に対してAttach requestをトリガするように示してもよい。また、例えば、非特許文献1、2、4で開示されているように、SGSN121からUTRAN115を経由して、UE100のAttach requestの送信処理をするように指示するために、ページングメッセージを送信してもよい。例えば、UE100にページングメッセージにシステムインフォメーションに格納されている情報を読みに行くように指示し、システムインフォメーションにAttach requestを送信するような指示を格納するなどをしてもよい。
Note that, for example, using the messages (Relocation Command and HO from UTRAN Command) transmitted from the source SGSN 121 to the UE 100 via the source RNC 112 in Step S301 and Step S302 of FIG. 3, the Attach request transmission of the UE 100 is triggered. May be. Further, NAS signaling disclosed in Non-Patent Document 3 (for example, Downlink NAS Transport, EMM INFORMATION message, EMM STATUS message, etc.) may be used to trigger the Attach request to the UE 100. Also, for example, as disclosed in Non-Patent Documents 1, 2, and 4, a paging message is transmitted from the SGSN 121 via the UTRAN 115 to instruct the UE 100 to perform an Attach request transmission process. Also good. For example, the UE 100 may be instructed to read the information stored in the system information in the paging message, and an instruction to transmit the Attach request may be stored in the system information.
以上、本発明の第1の実施の形態によれば、Inter-RAT HO procedureが拒絶された場合には、ネットワーク装置の処理負荷が高く、かつ、交換されるメッセージ数が多いInter-RAT HO procedureではなく、ネットワーク装置の処理負荷がより低く、かつ、交換されるメッセージ数がより少ないAttach procedureによってRATの切り替えを実現することが可能となる。具体的には、Inter-RAT HO procedure(図5を参照)では、最小18ステップ(更なる付加ステップも存在)を要するのに対して、Attach procedure(図12を参照)では、最大17ステップでRATへの接続(RATの切り替え)を実現することが可能である。さらに、本発明の第1の実施の形態によれば、HO back-off timerの終了時間のほうがMM back-off timerの終了時間より早い場合に、HO back-off timerに従ってRATの切り替えが行われることにより、より迅速なRATの切り替えが実現されるようになる。
As described above, according to the first embodiment of the present invention, when the Inter-RAT HO procedure is rejected, the Inter-RAT HO procedure has a high processing load on the network device and a large number of messages to be exchanged. Instead, it is possible to realize switching of the RAT by the Attach procedure where the processing load of the network device is lower and the number of exchanged messages is smaller. Specifically, Inter-RAT HO procedure (see Fig. 5) requires a minimum of 18 steps (additional additional steps exist), whereas Attach procedure (see Fig. 12) requires a maximum of 17 steps. It is possible to realize connection to the RAT (RAT switching). Furthermore, according to the first embodiment of the present invention, when the end time of the HO back-off timer is earlier than the end time of the MM back-off timer, the RAT is switched according to the HO back-off timer. As a result, more rapid RAT switching can be realized.
<第2の実施の形態>
次に、本発明の第2の実施の形態について説明する。以下、本発明の第2の実施の形態におけるシステム動作の一例について、図13を用いて詳しく説明する。図13は、本発明の第2の実施の形態におけるシステム動作の一例(UTRAN115からE-UTRAN114へのハンドオーバケース)を説明するためのシーケンス図である。なお、本発明の第1の実施の形態と同様に、Inter-RAT handover procedure前にUE100が使用していた装置には、装置名の前にソース(Source)という文言を付しており(例えば、ソースSGSN121)、UE100がInter-RAT handover procedure後のネットワークで使用する予定の装置には、装置名の前にターゲット(Target)という文言を付している(例えば、ターゲットMME120)。また、本発明の第2の実施の形態は、本発明の第1の実施の形態をベースとし、差分を中心に説明する。 <Second Embodiment>
Next, a second embodiment of the present invention will be described. Hereinafter, an example of the system operation in the second exemplary embodiment of the present invention will be described in detail with reference to FIG. FIG. 13 is a sequence diagram for explaining an example of a system operation (handover case fromUTRAN 115 to E-UTRAN 114) according to the second embodiment of the present invention. As in the first embodiment of the present invention, the device used by the UE 100 before the Inter-RAT handover procedure is prefixed with the word “Source” (for example, the device name). , The source SGSN 121), and the device that the UE 100 intends to use in the network after the Inter-RAT handover procedure, the word “Target” is attached before the device name (for example, the target MME 120). The second embodiment of the present invention is based on the first embodiment of the present invention and will be described focusing on differences.
次に、本発明の第2の実施の形態について説明する。以下、本発明の第2の実施の形態におけるシステム動作の一例について、図13を用いて詳しく説明する。図13は、本発明の第2の実施の形態におけるシステム動作の一例(UTRAN115からE-UTRAN114へのハンドオーバケース)を説明するためのシーケンス図である。なお、本発明の第1の実施の形態と同様に、Inter-RAT handover procedure前にUE100が使用していた装置には、装置名の前にソース(Source)という文言を付しており(例えば、ソースSGSN121)、UE100がInter-RAT handover procedure後のネットワークで使用する予定の装置には、装置名の前にターゲット(Target)という文言を付している(例えば、ターゲットMME120)。また、本発明の第2の実施の形態は、本発明の第1の実施の形態をベースとし、差分を中心に説明する。 <Second Embodiment>
Next, a second embodiment of the present invention will be described. Hereinafter, an example of the system operation in the second exemplary embodiment of the present invention will be described in detail with reference to FIG. FIG. 13 is a sequence diagram for explaining an example of a system operation (handover case from
図13のステップS1301からステップS1307は、本発明の第1の実施の形態における図6のステップS601からステップS607と同様であるため、説明を省略する。
Since steps S1301 to S1307 in FIG. 13 are the same as steps S601 to S607 in FIG. 6 in the first embodiment of the present invention, description thereof will be omitted.
ソースSGSN121は、HO back-off timerの終了時間がMM back-off timerの終了時間よりも早いと判断した場合、Trigger requestメッセージにHO back-off timerを挿入して、UE100へ送信する(図13のステップS1308)。UE100は、Trigger requestメッセージを受信した後、送信/受信データ関連の情報(例えば、UE100が送信又は受信するデータ残量が微量(例えば、残り数秒でデータ送信完了するような状態))を確認し、最適なRAN(E-UTRAN114又はUTRAN115)を選択する(図13のステップS1309)。
When the source SGSN 121 determines that the end time of the HO back-off timer is earlier than the end time of the MM back-off timer, the source SGSN 121 inserts the HO back-off timer into the Trigger request message and transmits it to the UE 100 (FIG. 13). Step S1308). After receiving the Trigger request message, the UE 100 confirms information related to transmission / reception data (for example, the remaining amount of data transmitted or received by the UE 100 (for example, a state where data transmission is completed in the remaining few seconds)). The optimal RAN (E-UTRAN 114 or UTRAN 115) is selected (step S1309 in FIG. 13).
なお、本発明の第2の実施の形態では、ソースSGSN121は、HO back-off timerを挿入したTrigger requestメッセージを、任意のタイミングで(例えば、HO back-off timerを取得するとすぐに)UE100へ送信してもよい。これにより、UE100は、Trigger requestメッセージに格納されているHO back-off timerを参照することで、例えば、E-UTRAN114経由でAttach acceptを送信できるようになるまでの時間(HO back-off timerの終了時間)を把握できる。また、ソースSGSN121がHO back-off timer終了後にTrigger requestメッセージを送信することが事前に定められている、又は、本発明の第1の実施の形態のように図11で示す“Trigger indication”が格納されている場合には、必ずしもTrigger requestメッセージにHO back-off timerが含まれている必要はない。この場合には、UE100は、Trigger requestメッセージの受信によって、既にHO back-off timerが終了していることを把握できる。
In the second embodiment of the present invention, the source SGSN 121 sends the Trigger request message with the HO back-off timer inserted to the UE 100 at an arbitrary timing (for example, immediately after acquiring the HO back-off timer). You may send it. Thereby, the UE 100 refers to the HO back-off timer stored in the Trigger request message, for example, the time until the Attach accept can be transmitted via the E-UTRAN 114 (the HO back-off timer End time). Further, it is predetermined that the source SGSN 121 transmits a Trigger request message after the HO back-off timer ends, or “Trigger indication” shown in FIG. 11 as in the first embodiment of the present invention is set. When stored, the Trigger back request message need not necessarily include the HO back-off timer. In this case, the UE 100 can recognize that the HO back-off timer has already ended by receiving the Trigger request message.
UE100は、現在UTRAN115経由でPDNコネクションを確立して通信を行っていることから、E-UTRAN114経由でAttach acceptを送信できるようになるまでの時間、及び/又は、送信/受信データ関連の情報(送信又は受信するデータ残量)を考慮し、E-UTRAN114へ再度Attach acceptを送信してE-UTRAN114経由の接続を確立することを選択してもよく、あるいは、UTRAN115に接続し続けることを選択してもよい。例えば、UE100が送信するデータ残量が微量(例えば、残り数秒でデータ送信完了するような状態)である場合、E-UTRAN114経由でAttach procedureを実施したとしても、結果としてUE100及びネットワーク側において負荷がより大きくなってしまう可能性があるが、このような場合には、UE100がUTRAN115に接続し続けることを選択することで、負荷の増大を抑えることができる。
Since the UE 100 is currently communicating by establishing a PDN connection via the UTRAN 115, the UE 100 can transmit an Attach accept via the E-UTRAN 114 and / or information related to transmission / reception data ( In consideration of the remaining amount of data to be transmitted or received), it may be selected to send Attach accept to E-UTRAN 114 again to establish a connection via E-UTRAN 114, or to continue to connect to UTRAN 115 May be. For example, when the remaining amount of data transmitted by the UE 100 is very small (for example, the state in which data transmission is completed in the remaining few seconds), even if the Attach procedure is performed via the E-UTRAN 114, the load on the UE 100 and the network side as a result However, in such a case, it is possible to suppress an increase in load by selecting that the UE 100 continues to connect to the UTRAN 115.
また、UE100は、最適なRANを選択する際に用いる情報として、UE100が保持するRAN優先度情報(例えば、E-UTRAN114が高優先度でUTRAN115が中優先度など)、使用しているアプリケーションから利用できる優先度情報、UE100が静的に保持する情報、ネットワークのオペレータから割り当てられている情報(例えば、GBR(Guaranteed Bit Rate)やQCI(QoS Class Identifier))などを利用して、最適なRAN(RAT)を選択してもよい。
In addition, as information used when the UE 100 selects an optimal RAN, the RAN priority information held by the UE 100 (for example, E-UTRAN 114 is a high priority and UTRAN 115 is a medium priority, etc.) Optimal RAN using available priority information, information statically held by the UE 100, information assigned by network operators (eg, GBR (Guaranteed Bit Rate) or QCI (QoS Class Identifier)), etc. (RAT) may be selected.
また、UE100がE-UTRAN114経由でAttach requestを送信することを選択した場合、UE100は、ソースSGSN121とターゲットMME120との間で開始されたInter-RAT HO procedureにおいて拒絶されたUE100であることを示すために、UE識別子を生成してもよい(図13のステップS1310)。このUE識別子は、後述のステップS1311で送信されるAttach requestに挿入可能であり、Attach requestを受信したターゲットMME120は、Attach request内のUE識別子を参照して、Inter-RAT HO procedureで拒絶したUE100と、Attach requestの送信元であるUE100との相関(すなわち、同一であること)を認識してもよい。MME120は、Inter-RAT HO procedureで拒絶されたUE100と、Attach requestの送信元であるUE100との相関性を認識することで、MM back-off timerが終了していないなどの理由によってAttach requestを拒絶せずに、HO back-off timer終了後に確保している通信リソースの対象が、Attach requestの送信元のUE100であることを識別して、当該Attach requestを受け入れることができるようになる。
In addition, when the UE 100 selects to send an Attach request via the E-UTRAN 114, the UE 100 indicates that the UE 100 is rejected in the Inter-RAT HO procedure started between the source SGSN 121 and the target MME 120. Therefore, a UE identifier may be generated (step S1310 in FIG. 13). This UE identifier can be inserted into the Attach request transmitted in Step S1311 described later, and the target MME 120 that has received the Attach request refers to the UE identifier in the Attach request, and rejects the UE 100 with the Inter-RAT HO procedure. And the correlation (that is, the same) with the UE 100 that is the transmission source of the Attach request may be recognized. The MME 120 recognizes the correlation between the UE 100 rejected by the Inter-RAT HO procedure and the UE 100 that is the transmission source of the Attach request, so that the MME back-off timer is not terminated due to the reason that the MM back-off timer has not ended. Without rejection, it is possible to identify that the target of the communication resource secured after the end of the HO back-off timer is the UE 100 that is the transmission source of the Attach request, and accept the Attach request.
なお、UE100がUE識別子の情報として、IMSI(International Mobile Subscriber Identity)やIMEI(International Mobile Equipment Identity)、IPアドレスなど、UE固有の情報やInter-RAT HO procedureでも使用されていて、MME120がInter-RAT HO procedureを拒絶したUE100であることを識別できる情報が、従来のAttach requestに一般的な処理で格納される場合は、新たに格納する必要はないため、ステップS1310は省略できる。
The UE 100 is also used in UE-specific information such as IMSI (International Mobile Subscriber Identity), IMEI (International Mobile Equipment Identity), IP address, etc. as Inter-RAT HO procedure, and MME 120 is Inter- If the information that can identify the UE 100 that rejected the RAT HO procedure is stored in the conventional Attach request by a general process, there is no need to store it, so step S1310 can be omitted.
また、UE100は、Trigger requestメッセージに格納されている情報(ソースSGSN121から通知された情報)を用いて、UE識別子を生成してもよい。例えば、ソースSGSN121とターゲットMME120との間で実行されたメッセージ交換(Inter-RAT HO procedureの処理)において、ソースSGSN121は、何らかの情報(以下、トークン情報と記載)をターゲットMME120と共有し、かつ、そのトークン情報をUE100に通知することで、UE100がこのトークン情報に基づくUE識別子を生成してもよい。後述のステップ1311で送信されるAttach requestに、トークン情報に基づくUE識別子が挿入されることで、Attach requestを確認するターゲットMME120は、Inter-RAT HO procedureで拒絶したUE100と、Attach requestの送信元であるUE100との相関(すなわち、同一であること)を認識することが可能である。
Also, the UE 100 may generate a UE identifier using information stored in the Trigger request message (information notified from the source SGSN 121). For example, in the message exchange (Inter-RAT HO procedure processing) executed between the source SGSN 121 and the target MME 120, the source SGSN 121 shares some information (hereinafter referred to as token information) with the target MME 120, and By notifying the token information to the UE 100, the UE 100 may generate a UE identifier based on the token information. By inserting the UE identifier based on the token information into the Attach request transmitted in Step 1311 described later, the target MME 120 that confirms the Attach request, the UE 100 rejected by the Inter-RAT HO procedure, and the transmission source of the Attach request It is possible to recognize the correlation (that is, it is the same) with UE100 which is.
ステップS1308でTrigger requestメッセージを受信したUE100は、図6のステップS609と同様に、E-UTRAN114経由でAttach requestをターゲットMME120に送信し、E-UTRAN114経由でPGW140とPDNコネクションを確立する(図13のステップS1311)。
The UE 100 that has received the Trigger request message in step S1308 transmits the Attach request to the target MME 120 via the E-UTRAN 114 and establishes a PDN connection with the PGW 140 via the E-UTRAN 114 (step 13 in FIG. 13). Step S1311).
なお、ステップS1311において、UE100がE-UTRAN114経由でAttach requestを送信する際には、図13のステップS1301でMME120から通知された待ち時間(MM back-off timer)がまだ終了していない場合には、UE100は、MM back-off timerを無効にして(停止/無視/一時停止など)、Attach requestを送信できるようにする。
When the UE 100 transmits an Attach request via the E-UTRAN 114 in step S1311, the waiting time (MM back-off timer) notified from the MME 120 in step S1301 in FIG. The UE 100 disables the MM back-off timer (stop / ignore / pause, etc.) so that the Attach request can be transmitted.
次に、図14を参照しながら、本発明の第2の実施の形態におけるUEの構成について説明する。図14は、本発明の第2の実施の形態におけるUEの構成の一例を示す図である。図14において、UE100は、ネットワーク(例えば、E-UTRAN114やUTRAN115)と接続して下位レイヤにおける通信処理と上位レイヤでIPなどのパケット通信処理を実施する通信処理部1401、モビリティ管理や通信経路の管理(例えば、PGW140との間に確立するPDNコネクションやEPSベアラに関するQoS制御など)やRAT(例えば、E-UTRAN114やUTRAN115)の選択などを行う通信制御部1402、ネットワークから受信した待ち時間(例えば、MM back-off timerなど)を管理するタイマ制御部1403に加えて、例えば送信/受信データ関連の情報などを確認することによって最適なRAT(E-UTRAN114かUTRAN115)を選択する最適RAT選択処理部1404、Inter-RAT HO procedureが拒絶されたUE100であることを示す情報を生成するUE識別子生成処理部1405を少なくとも有する。なお、図14に図示されている通信処理部1401、通信制御部1402、タイマ制御部1403は、図7に図示されている通信処理部701、通信制御部702、タイマ制御部703は、基本的に同一の機能を有しており、これらの各機能は、ハードウェアで実現されてもよく、あるいは、プログラムをプロセッサに実行させることで実現されてもよい。また、最適RAT選択処理部1404及びUE識別子生成処理部1405も同様に、ハードウェアで実現されてもよく、あるいは、プログラムをプロセッサに実行させることで実現されてもよい。
Next, the configuration of the UE in the second embodiment of the present invention will be described with reference to FIG. FIG. 14 is a diagram illustrating an example of a configuration of the UE according to the second embodiment of the present invention. In FIG. 14, a UE 100 is connected to a network (for example, E-UTRAN 114 or UTRAN 115) to perform communication processing in a lower layer and packet communication processing such as IP in an upper layer, mobility management and communication path Communication control unit 1402 for performing management (for example, PDN connection established with PGW 140, QoS control for EPS bearer, etc.), RAT (for example, E-UTRAN 114 or UTRAN 115), waiting time received from network (for example, In addition to the timer control unit 1403 that manages the MM back-off timer, etc., the optimal RAT (E-UTRAN 114 or UTRAN 115) is selected by checking information related to transmission / reception data, for example. At least with UE identifier generating unit 1405 T selection processing section 1404, Inter-RAT HO procedure generates information indicating that the UE100 was rejected. The communication processing unit 1401, the communication control unit 1402, and the timer control unit 1403 illustrated in FIG. 14 are basically the same as the communication processing unit 701, the communication control unit 702, and the timer control unit 703 illustrated in FIG. These functions may be realized by hardware, or may be realized by causing a processor to execute a program. Similarly, the optimum RAT selection processing unit 1404 and the UE identifier generation processing unit 1405 may be realized by hardware, or may be realized by causing a processor to execute a program.
また、通信制御部1402が最適RAT選択処理部1404の機能を保持している場合は、最適RAT選択処理部1404を省略できる。また、他の処理部も同様である。また、例えば、最適RAT選択処理部1404は通信制御部1402のみと情報を交換する場合は、最適RAT選択処理部1404と通信制御部1402との間に直接的なリンクのみを設けてもよい。
If the communication control unit 1402 has the function of the optimum RAT selection processing unit 1404, the optimum RAT selection processing unit 1404 can be omitted. The same applies to other processing units. For example, when the optimum RAT selection processing unit 1404 exchanges information with only the communication control unit 1402, only a direct link may be provided between the optimum RAT selection processing unit 1404 and the communication control unit 1402.
図14に図示されている通信制御部1402は、具体的には、E-UTRAN114やUTRAN115と接続するためのメッセージの作成及び処理(例えば、メッセージ内からMM back-off timerなどの情報を抽出)などを行って、E-UTRAN114やUTRAN115との接続を確立する機能を有している。さらに、通信制御部702又は最適RAT選択処理部1404は、例えば、図16に図示されているTrigger indicatonフィールドなどに含まれている情報を抽出し、新たなメッセージの作成及び処理(例えば、別のRATへの接続切り替え処理)を行うか否かを決定することも可能である。
Specifically, the communication control unit 1402 illustrated in FIG. 14 creates and processes a message for connecting to the E-UTRAN 114 and the UTRAN 115 (for example, extracts information such as an MM back-off timer from the message). To establish a connection with the E-UTRAN 114 and the UTRAN 115. Further, the communication control unit 702 or the optimum RAT selection processing unit 1404 extracts information included in the Trigger indicator field shown in FIG. 16, for example, and creates and processes a new message (for example, another message). It is also possible to determine whether or not to perform a connection switching process to the RAT.
次に、図14に図示されている構成を有するUEについて、本発明における特徴的な処理を中心に、図15を用いて詳しく説明する。なお、図15のステップS1501からステップS1505(Attach acceptを受信するまで)は、図8のステップS801からステップS805と同じであるため、説明を省略する。
Next, the UE having the configuration shown in FIG. 14 will be described in detail with reference to FIG. 15, focusing on the characteristic processing in the present invention. Note that steps S1501 to S1505 (until Attach accept is received) in FIG. 15 are the same as steps S801 to S805 in FIG.
続いて、UE100は、HO back-off timerを含むTrigger requestを受信する(図15のステップS1506)。Trigger requestを受信したUE100は、例えば、HO back-off timer、及び/又は、送信/受信データ関連の情報などを確認し、最適なネットワーク(E-UTRAN114又はUTRAN115)を選択する(図15のステップS1507)。
Subsequently, the UE 100 receives a trigger request including a HO back-off timer (step S1506 in FIG. 15). The UE 100 that has received the trigger request confirms, for example, the HO back-off timer and / or information related to transmission / reception data, and selects the optimum network (E-UTRAN 114 or UTRAN 115) (step in FIG. 15). S1507).
選択した最適なRANが、UE100の接続したいネットワークである場合(本発明の第2の実施の形態では、E-UTRAN114の場合)、UE100は、Inter-RAT HO procedureにおいて拒絶されたUE100であること(図13のステップS1306で拒絶されたUE100であること)を示すUE識別子を生成する(図15のステップS1508)。なお、UE100がUE識別子の情報として、IMSI(International Mobile Subscriber Identity)やIMEI(International Mobile Equipment Identity)、IPアドレスなど、UE固有の情報やInter-RAT HO procedureでも使用されていて、MME120がInter-RAT HO procedureを拒絶したUEであることを識別できる情報が、従来のAttach requestに一般的な処理で格納される場合は、新たに格納する必要はないため、ステップS1508は省略できる。
When the selected optimal RAN is a network to which the UE 100 is to be connected (in the second embodiment of the present invention, the E-UTRAN 114), the UE 100 is the UE 100 that is rejected in the Inter-RAT HO procedure. A UE identifier indicating that the UE 100 is rejected in step S1306 in FIG. 13 is generated (step S1508 in FIG. 15). Note that UE100 also uses UE-specific information such as IMSI (International Mobile Subscriber Identity), IMEI (International Mobile Equipment Identity), IP address, etc., as Inter-RAT HO Procedure. If the information that can identify the UE that rejected the RAT HO procedure is stored in the conventional Attach request by a general process, there is no need to store it, so step S1508 can be omitted.
そして、UE100は、UE100を識別可能な情報(UE識別子)を格納したAttach requestをE-UTRAN114経由で送信する(図15のステップS1509)。なお、UE100は、ステップS1509におけるAttach requestの送信を、少なくともHO back-off timerが終了するのを待ってから行う必要がある。MME120によって、Attach requestが受け入れられる場合には、一般的なAttach procedureが引き続き実施され、E-UTRAN114経由でUE100とPGW140との間にPDNコネクションが確立される。
And UE100 transmits Attach request which stored the information (UE identifier) which can identify UE100 via E-UTRAN114 (Step S1509 of Drawing 15). Note that the UE 100 needs to transmit the Attach request in step S1509 after waiting for at least the HO back-off timer to end. When the MME 120 accepts the Attach request, the general Attach procedure is continued, and the PDN connection is established between the UE 100 and the PGW 140 via the E-UTRAN 114.
また、MME120は、例えば、Inter-RAT HO procedureにおいて拒絶したUE100に関して、HO back-off timer後にこのUE100用の通信リソースを確保しておいてもよい。MME120は、Attach requestにUE識別子が格納されている場合には、このUE識別子を利用することで、Inter-RAT HO procedureを拒絶したUE100(HO back-off timer後に通信リソースを確保したUE100)であることを認識できるようになる。
Further, for example, regarding the UE 100 rejected in the Inter-RAT HO procedure, the MME 120 may reserve communication resources for the UE 100 after the HO back-off timer. When the UE identifier is stored in the Attach request, the MME 120 uses the UE identifier to make the UE 100 that rejects the Inter-RAT HO procedure (the UE 100 that has secured the communication resource after the HO back-off timer). It becomes possible to recognize that there is.
次に、図13のステップS1308で、UEのE-UTRAN経由で行うAttach procedureをトリガするために、ソースSGSN121からUE100に対して送信されるHO back-off timerが格納されるリクエストメッセージ(Trigger request)構成の一例として、図16を用いて、リクエストメッセージのフォーマット例を説明する。
Next, in step S1308 of FIG. 13, a request message (Trigger request) storing a HO back-off timer transmitted from the source SGSN 121 to the UE 100 to trigger an Attach procedure performed via the E-UTRAN of the UE. ) As an example of the configuration, a request message format example will be described with reference to FIG.
図16は、図11で示す一般的なNASシグナリングで必要となる情報が格納される“従来のNASメッセージフィールド”と、UEのAttach procedureをトリガするための“Trigger indicatonフィールド”に加えて、ターゲットMME120から受信した待ち時間(例えば、HO back-off timer)を格納するための“HO back-off timerフィールド”で構成される。なお、HO back-off timerフィールドのみで、UE100によるAttach procedureをトリガしていることをUE100が認識できる場合、Trigger indicationフィールドは省略できる。HO back-off timerフィールドも同様に、ソースSGSN121がHO back-off timer経過後に本Trigger requestをUE100に送信する場合は、HO back-off timerフィールドを省略できる。また、上述のように、ソースSGSN121は、UE識別子の生成に使用可能なトークン情報をUE100へ通知してもよく、このトークン情報を格納するためのフィールドが設けられていてもよい。
FIG. 16 shows a target in addition to the “conventional NAS message field” in which information necessary for general NAS signaling shown in FIG. 11 is stored and the “Trigger indicator field” for triggering the Attach procedure of the UE. It is composed of a “HO back-off timer field” for storing a waiting time received from the MME 120 (for example, a HO back-off timer). If the UE 100 can recognize that the Attach procedure by the UE 100 is triggered only by the HO back-off timer field, the Trigger indication field can be omitted. Similarly, in the HO back-off timer field, when the source SGSN 121 transmits this Trigger request to the UE 100 after the HO back-off timer elapses, the HO back-off timer field can be omitted. Further, as described above, the source SGSN 121 may notify the UE 100 of token information that can be used to generate a UE identifier, and a field for storing this token information may be provided.
また、図13のステップS1311で、UE100がE-UTRAN114経由で送信するAttach request構成の一例として、図17を用いて、Attach requestのフォーマット例を説明する。
Further, as an example of an Attach request configuration that the UE 100 transmits via the E-UTRAN 114 in Step S1311 in FIG. 13, an example format of the Attach request will be described with reference to FIG.
図17は、一般的なAttach requestで必要となる情報が格納される“従来のAttach requestメッセージフィールド”と、ターゲットの装置(例えば、ターゲットMME120)がInter-RAT HO procedureを拒絶したUE100であることを識別するためのUE識別子を格納するための“UE識別子フィールド”で構成される。なお、従来のAttach requestメッセージフィールドで、UE100を識別可能な情報がある場合(例えば、ターゲットMME120がInter-RAT HO procedureを拒絶したUE100かどうかをIMSIで識別する場合、かつ、Attach requestにIMSIが格納される場合)、UE識別子フィールドは省略できる。
FIG. 17 shows a “conventional Attach request message field” in which information necessary for a general Attach request is stored, and the target device (for example, the target MME 120) is the UE 100 that rejects the Inter-RAT HO procedure. It consists of a “UE identifier field” for storing a UE identifier for identifying the ID. In addition, when there is information that can identify the UE 100 in the conventional Attach request message field (for example, when the target MME 120 identifies the UE 100 that rejects the Inter-RAT HO procedure by the IMSI, and the IMSI is included in the Attach request. If stored), the UE identifier field can be omitted.
以上、本発明の第2の実施の形態によれば、本発明の第1の実施の形態と同様に、Inter-RAT HO procedureが拒絶された場合には、ネットワーク装置の処理負荷が高く、かつ、交換されるメッセージ数が多いInter-RAT HO procedureではなく、ネットワーク装置の処理負荷がより低く、かつ、交換されるメッセージ数がより少ないAttach procedureによってRATの切り替えを実現することが可能となる。また、本発明の第2の実施の形態によれば、本発明の第1の実施の形態と同様に、HO back-off timerの終了時間のほうがMM back-off timerの終了時間より早い場合に、HO back-off timerに従ってRATの切り替えが行われることにより、より迅速なRATの切り替えが実現されるようになる。さらに、本発明の第2の実施の形態によれば、UE100が、RATの切り替えタイミング(例えば、HO back-off timerの終了時間)や送信/受信データ関連の情報(例えば、UE100が送信又は受信するデータ残量が微量(例えば、残り数秒でデータ送信完了するような状態))を考慮して、最適なRATの選択を行うことにより、UE100及びネットワーク側の双方にとって余計な負荷が生じないでRATの切り替えが可能となる。さらに、本発明の第2の実施の形態によれば、ネットワーク側(例えば、ターゲットMME120)が、Inter-RAT HO procedureで拒絶したUE100、及び、Attach requestの送信元であるUE100を識別することによって、Inter-RAT HO procedureで拒絶したUE100と、Attach requestの送信元であるUE100との相関(すなわち、同一であること)を認識することが可能となる。
As described above, according to the second embodiment of the present invention, as in the first embodiment of the present invention, when Inter-RAT HO procedure is rejected, the processing load on the network device is high, and RAT switching can be realized not by Inter-RAT HO procedure with a large number of messages to be exchanged but by Attach procedure with a lower processing load on the network device and a smaller number of messages to be exchanged. Further, according to the second embodiment of the present invention, when the end time of the HO back-off timer is earlier than the end time of the MM back-off timer, as in the first embodiment of the present invention. By switching the RAT according to the HO back-off timer, the RAT can be switched more quickly. Furthermore, according to the second embodiment of the present invention, the UE 100 can perform RAT switching timing (for example, the HO back-off timer end time) and transmission / reception data related information (for example, the UE 100 can transmit or receive). By selecting the optimum RAT in consideration of a small amount of remaining data (for example, a state in which data transmission is completed in the remaining few seconds), there is no extra load on both the UE 100 and the network side. The RAT can be switched. Further, according to the second embodiment of the present invention, the network side (for example, the target MME 120) identifies the UE 100 rejected by the Inter-RAT HO procedure and the UE 100 that is the transmission source of the Attach request. Thus, it becomes possible to recognize the correlation (that is, the same) between the UE 100 rejected by the Inter-RAT HO procedure and the UE 100 that is the transmission source of the Attach request.
なお、本明細書では、本発明を第1の実施の形態と第2の実施の形態とに分けて説明を行ったが、各実施の形態に開示されている技術的特徴を組み合わせてもよい。例えば、本発明を第1の実施の形態においてUE識別子を用いてもよく、これにより、第1の実施の形態においても、ターゲットMME120が、Inter-RAT HO procedureで拒絶したUE100と、Attach requestの送信元であるUE100との相関(すなわち、同一であること)を認識できるようにしてもよい。
In the present specification, the present invention has been described by dividing it into the first embodiment and the second embodiment, but the technical features disclosed in each embodiment may be combined. . For example, the UE identifier may be used in the first embodiment of the present invention. Accordingly, in the first embodiment, the target MME 120 rejects the Inter-RAT HO procedure with the UE 100 and the Attach request. You may enable it to recognize the correlation (that is, it is the same) with UE100 which is a transmission source.
また、上記の本発明の実施の形態の説明で用いた機能ブロックは、典型的には集積回路であるLSI(Large Scale Integration)として実現される。これらは個別に1チップ化されてもよいし、一部又はすべてを含むように1チップ化されてもよい。なお、ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
Also, the functional blocks used in the description of the above-described embodiment of the present invention are typically realized as an LSI (Large Scale Integration) that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Here, LSI is used, but depending on the degree of integration, it may be called IC (Integrated Circuit), system LSI, super LSI, or ultra LSI.
また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。例えば、バイオ技術の適応などが可能性としてあり得る。
Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. For example, biotechnology can be applied.
本発明は、通信ノード(UE)の接続に関してハンドオーバ(Inter-RAT Handover)が拒絶されて待機時間(HO back-off timer)が発生した場合にハンドオーバしようとしたネットワークに効率良く接続するという効果、また、その際、処理負荷が少なく、かつ、交換されるメッセージ数が少ない処理が行われるようにするという効果を有し、異なるRAT(Radio Access Technology:無線アクセス技術)を利用したネットワークへの接続を切り替えて通信を行う通信技術に適用可能である。
The present invention has an effect of efficiently connecting to a network to be handed over when a handover (Inter-RAT Handover) is rejected and a waiting time (HO back-off timer) is generated with respect to connection of a communication node (UE). At that time, it has the effect of performing processing with a small processing load and a small number of messages to be exchanged, and connecting to a network using a different RAT (Radio Access Technology: radio access technology). It can be applied to a communication technology for performing communication by switching between.
Claims (15)
- それぞれ異なる無線アクセス技術を用いた第1及び第2ネットワークによって構成され、前記第1ネットワークと前記第2ネットワークとの間で通信ノードの接続をハンドオーバさせる通信システムに接続する通信ノードであって、
前記第1ネットワークに対して第1の接続要求を送信する第1接続要求送信部と、
前記第1接続要求送信部による前記第1ネットワークへの前記第1の接続要求が拒絶された際に、前記第1ネットワークに対して前記第1の接続要求を再送信できるようになるまでの接続要求待機時間を取得する待機時間取得部と、
前記第1接続要求送信部による前記第1ネットワークへの前記第1の接続要求が拒絶された場合、前記第2ネットワークに対して第2の接続要求を送信する第2接続要求送信部と、
前記第2ネットワークとの間で接続を確立する接続確立部と、
前記第2ネットワークが、前記通信ノードとの間で確立されている前記接続を前記第1ネットワークへハンドオーバさせるハンドオーバ要求を前記第1ネットワークへ送信し、前記第1ネットワークが、前記ハンドオーバ要求を拒絶すると共に、前記第1ネットワークに対してハンドオーバ要求を再送信できるようになるまでのハンドオーバ待機時間を前記第2ネットワークへ通知した場合に、前記第2ネットワークから送信される前記第1ネットワークへの接続切り替え指示を含むトリガメッセージを受信するメッセージ受信部と、
前記メッセージ受信部で受信した前記トリガメッセージに基づいて、前記第1接続要求送信部が前記第1ネットワークに対して前記第1の接続要求を再送信するか否かを決定する判断部とを、
有する通信ノード。 A communication node configured by first and second networks using different radio access technologies, and connected to a communication system for handing over the connection of the communication node between the first network and the second network,
A first connection request transmitter for transmitting a first connection request to the first network;
Connection until the first connection request can be retransmitted to the first network when the first connection request to the first network by the first connection request transmission unit is rejected. A waiting time acquisition unit for acquiring a request waiting time;
A second connection request transmitter for transmitting a second connection request to the second network when the first connection request to the first network by the first connection request transmitter is rejected;
A connection establishment unit for establishing a connection with the second network;
The second network sends a handover request for handing over the connection established with the communication node to the first network, and the first network rejects the handover request. And switching the connection to the first network transmitted from the second network when notifying the second network of a handover waiting time until a handover request can be retransmitted to the first network. A message receiver for receiving a trigger message including an instruction;
A determination unit that determines whether the first connection request transmission unit retransmits the first connection request to the first network based on the trigger message received by the message reception unit;
Having communication nodes. - 前記第2接続要求送信部は、前記第2の接続要求の送信と共に、前記接続要求待機時間を前記第2ネットワークへ通知する請求項1に記載の通信ノード。 The communication node according to claim 1, wherein the second connection request transmission unit notifies the second network of the connection request waiting time together with the transmission of the second connection request.
- 前記第2接続要求送信部は、前記第2の接続要求の送信と共に、前記第2ネットワークから前記第1への前記ハンドオーバ要求が拒絶された場合に前記ハンドオーバ待機時間を利用することを示す情報を前記第2ネットワークへ通知する請求項1に記載の通信ノード。 The second connection request transmission unit includes information indicating that the handover waiting time is used when the handover request from the second network to the first is rejected together with the transmission of the second connection request. The communication node according to claim 1, which notifies the second network.
- 前記トリガメッセージは、前記ハンドオーバ待機時間の満了後に前記第2ネットワークから送信される請求項1に記載の通信ノード。 The communication node according to claim 1, wherein the trigger message is transmitted from the second network after expiration of the handover standby time.
- 前記メッセージ受信部は、前記ハンドオーバ待機時間をさらに含む前記トリガメッセージを受信する請求項1に記載の通信ノード。 The communication node according to claim 1, wherein the message receiving unit receives the trigger message further including the handover waiting time.
- 前記判断部は、前記ハンドオーバ待機時間をさらに含む前記トリガメッセージを前記メッセージ受信部が受信した場合に、前記接続要求待機時間と前記ハンドオーバ待機時間とを比較して、前記第1の接続要求を再送信することを決定する請求項5に記載の通信ノード。 When the message reception unit receives the trigger message further including the handover waiting time, the determination unit compares the connection request waiting time with the handover waiting time, and re-establishes the first connection request. The communication node according to claim 5, which decides to transmit.
- 前記判断部は、前記第2ネットワークとの間で確立されている前記接続を利用して送信又は受信するデータ残量に基づいて、前記第1の接続要求を再送信するか否かを決定する請求項1に記載の通信ノード。 The determination unit determines whether to retransmit the first connection request based on a remaining amount of data transmitted or received using the connection established with the second network. The communication node according to claim 1.
- 前記第1接続要求送信部は、前記第1のネットワークへの前記第1の接続要求の前記再送信と共に、前記第1ネットワークによって拒絶された前記ハンドオーバ要求との関連性を示す識別情報を通知する請求項1に記載の通信ノード。 The first connection request transmission unit notifies the identification information indicating the relevance with the handover request rejected by the first network together with the retransmission of the first connection request to the first network. The communication node according to claim 1.
- 前記待機時間取得部で取得した前記接続要求待機時間を計時する計時部を有し、
前記第1接続要求送信部は、前記判断部において前記第1の接続要求を再送信することが決定された場合に、前記計時部による計時を無効にする請求項1に記載の通信ノード。 Having a timing unit for timing the connection request waiting time acquired by the waiting time acquisition unit;
2. The communication node according to claim 1, wherein the first connection request transmission unit invalidates timing by the timing unit when the determination unit determines to retransmit the first connection request. - それぞれ異なる無線アクセス技術を用いた第1及び第2ネットワークによって構成され、前記第1ネットワークと前記第2ネットワークとの間で通信ノードの接続をハンドオーバさせる通信システムにおいて、前記第2ネットワークに位置するネットワークノードであって、
前記第1ネットワークへの第1の接続要求が拒絶された前記通信ノードから、前記第2ネットワークへの第2の接続要求を受信する接続要求受信部と、
前記通信ノードによる前記第2ネットワークへの前記第2の接続要求を受け入れることを示す接続応答を前記通信ノードへ送信する接続応答送信部と、
前記通信ノードとの間で確立されている接続を前記第1ネットワークへハンドオーバさせるハンドオーバ要求を前記第1ネットワークへ送信するハンドオーバ要求送信部と、
前記第1ネットワークが前記ハンドオーバ要求を拒絶した場合、前記第1ネットワークに対してハンドオーバ要求を再送信できるようになるまでのハンドオーバ待機時間を取得するハンドオーバ待機時間取得部と、
前記第1ネットワークへの接続切り替え指示を含むトリガメッセージを前記通信ノードに送信するメッセージ送信部とを、
有するネットワークノード。 A network located in the second network in a communication system configured by first and second networks using different radio access technologies and handing over connection of a communication node between the first network and the second network A node,
A connection request receiving unit that receives a second connection request to the second network from the communication node in which the first connection request to the first network is rejected;
A connection response transmitting unit that transmits a connection response indicating acceptance of the second connection request to the second network by the communication node to the communication node;
A handover request transmitter for transmitting a handover request for handing over a connection established with the communication node to the first network, to the first network;
A handover standby time acquisition unit that acquires a handover standby time until the handover request can be retransmitted to the first network when the first network rejects the handover request;
A message transmitting unit that transmits a trigger message including a connection switching instruction to the first network to the communication node;
Have network nodes. - 前記接続要求受信部は、前記第2の接続要求と共に、前記通信ノードが前記第1ネットワークに対して前記第1の接続要求を再送信できるようになるまでの接続要求待機時間を受信する請求項10に記載のネットワークノード。 The connection request receiving unit receives, together with the second connection request, a connection request waiting time until the communication node can retransmit the first connection request to the first network. The network node according to 10.
- 前記メッセージ送信部は、前記ハンドオーバ待機時間の満了後に前記トリガメッセージを送信する請求項10に記載のネットワークノード。 The network node according to claim 10, wherein the message transmission unit transmits the trigger message after expiration of the handover standby time.
- 前記メッセージ送信部は、前記ハンドオーバ待機時間をさらに含む前記トリガメッセージを送信する請求項10に記載のネットワークノード。 The network node according to claim 10, wherein the message transmission unit transmits the trigger message further including the handover waiting time.
- 前記接続要求待機時間と前記ハンドオーバ待機時間とを比較し、前記ハンドオーバ待機時間が前記接続要求待機時間より早く終了する場合に、前記トリガメッセージの送信を行うよう前記メッセージ送信部へ指示する時間比較部を有する請求項11に記載のネットワークノード。 A time comparison unit that compares the connection request standby time with the handover standby time, and instructs the message transmission unit to transmit the trigger message when the handover standby time ends earlier than the connection request standby time. The network node according to claim 11, comprising:
- 前記接続要求受信部は、前記第2の接続要求と共に、前記第2ネットワークから前記第1ネットワークへの前記ハンドオーバ要求が拒絶された場合に前記ハンドオーバ待機時間を利用することを示す情報を受信する請求項10に記載のネットワークノード。 The connection request receiving unit receives, together with the second connection request, information indicating that the handover waiting time is used when the handover request from the second network to the first network is rejected. Item 11. The network node according to Item 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011101169 | 2011-04-28 | ||
JP2011-101169 | 2011-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147291A1 true WO2012147291A1 (en) | 2012-11-01 |
Family
ID=47071825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/002509 WO2012147291A1 (en) | 2011-04-28 | 2012-04-11 | Communication node and network node |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012147291A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015050110A1 (en) * | 2013-10-02 | 2015-04-09 | 株式会社Nttドコモ | Network device, wireless communication system, and communication control method |
JP2015537484A (en) * | 2012-12-04 | 2015-12-24 | クアルコム,インコーポレイテッド | Apparatus and method for enhanced mobile power management |
KR20160022387A (en) * | 2013-07-04 | 2016-02-29 | 닛본 덴끼 가부시끼가이샤 | Communication system, method, and device |
JP2017195639A (en) * | 2012-01-27 | 2017-10-26 | クアルコム,インコーポレイテッド | Systems and methods for priority based session and mobility management |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001036944A (en) * | 1999-07-21 | 2001-02-09 | Nec Commun Syst Ltd | Position registration control method and communication system for mobile object |
JP2011077635A (en) * | 2009-09-29 | 2011-04-14 | Panasonic Corp | Radio base station, and method of instructing handover |
-
2012
- 2012-04-11 WO PCT/JP2012/002509 patent/WO2012147291A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001036944A (en) * | 1999-07-21 | 2001-02-09 | Nec Commun Syst Ltd | Position registration control method and communication system for mobile object |
JP2011077635A (en) * | 2009-09-29 | 2011-04-14 | Panasonic Corp | Radio base station, and method of instructing handover |
Non-Patent Citations (1)
Title |
---|
3GPP TS23.401, V10.3.0, March 2011 (2011-03-01), pages 166 - 172 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017195639A (en) * | 2012-01-27 | 2017-10-26 | クアルコム,インコーポレイテッド | Systems and methods for priority based session and mobility management |
US10212747B2 (en) | 2012-01-27 | 2019-02-19 | Qualcomm Incorporated | Systems and methods for priority based session and mobility management |
JP2015537484A (en) * | 2012-12-04 | 2015-12-24 | クアルコム,インコーポレイテッド | Apparatus and method for enhanced mobile power management |
KR20160022387A (en) * | 2013-07-04 | 2016-02-29 | 닛본 덴끼 가부시끼가이샤 | Communication system, method, and device |
KR101651807B1 (en) | 2013-07-04 | 2016-08-26 | 닛본 덴끼 가부시끼가이샤 | Communication system, method, and device |
JP2017050895A (en) * | 2013-07-04 | 2017-03-09 | 日本電気株式会社 | Communication system, method, and apparatus |
WO2015050110A1 (en) * | 2013-10-02 | 2015-04-09 | 株式会社Nttドコモ | Network device, wireless communication system, and communication control method |
JP2015073184A (en) * | 2013-10-02 | 2015-04-16 | 株式会社Nttドコモ | Network device, radio communication system and communication control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10219143B2 (en) | Data transmission method, mobility management entity, and mobile terminal | |
US11405842B2 (en) | Access and mobility management function (AMF), user equipment (UE), session management function (SMF), communication control method for AMF, communication control method for UE, and communication control method for SMF | |
US11405829B2 (en) | Communication control method for a user equipment that configures a protocol data unit session to correspond to a non-IP packet data network connection | |
US12052783B2 (en) | User apparatus for performing a registration procedure | |
US20180352593A1 (en) | Method for (re)selection of control plane and user plane data transmission | |
US11800574B2 (en) | User equipment, control apparatus, and communication control method | |
US11576219B2 (en) | User equipment, control apparatus, and communication control method | |
US11758607B2 (en) | User equipment, control apparatus, and communication control method | |
US11612004B2 (en) | User equipment, control apparatus, and communication control method | |
US11265838B2 (en) | User equipment, control device, and communication control method | |
US9860869B2 (en) | Method and apparatus for offloading data traffic in a wireless communication system | |
US11259345B2 (en) | User equipment, control apparatus, and communication control method | |
US20220210670A1 (en) | Ue and control apparatus in core network | |
US20220345997A1 (en) | User equipment and core network apparatus | |
CN103428888B (en) | A kind of direct tunnel method for building up and system | |
WO2012147291A1 (en) | Communication node and network node | |
JP2020501410A (en) | Data packet processing method, control plane network element, and user plane network element | |
US11844130B2 (en) | User equipment, control device, and communication control method | |
EP2416606A1 (en) | Apparatus and method for moving wcdma mobile station inthe manner of the least packet loss | |
US11595930B2 (en) | User equipment (UE) and communication control method | |
KR102109604B1 (en) | Apparatus for processing message in wireless communication system, method thereof and computer recordable medium storing the method | |
US20220200856A1 (en) | Ue and control apparatus in core network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12776968 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12776968 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |