WO2012146004A1 - 一种功率放大管以及功率放大方法 - Google Patents

一种功率放大管以及功率放大方法 Download PDF

Info

Publication number
WO2012146004A1
WO2012146004A1 PCT/CN2011/081390 CN2011081390W WO2012146004A1 WO 2012146004 A1 WO2012146004 A1 WO 2012146004A1 CN 2011081390 W CN2011081390 W CN 2011081390W WO 2012146004 A1 WO2012146004 A1 WO 2012146004A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
hvhbt
ldmos
tube
die
Prior art date
Application number
PCT/CN2011/081390
Other languages
English (en)
French (fr)
Inventor
何钢
陈化璋
崔晓俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/503,970 priority Critical patent/US20130214866A1/en
Priority to EP11832079.5A priority patent/EP2541766A4/en
Publication of WO2012146004A1 publication Critical patent/WO2012146004A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers

Definitions

  • the present invention relates to the technical field of radio frequency power amplifier design, and in particular, to a power amplifier tube and a power amplification method.
  • Doherty technology provides high-power transmitters for broadcast, and its architecture is simple and efficient.
  • the traditional Doherty structure consists of two power amplifiers: one main power amplifier (also known as carrier power amplifier, ie Carrier Power Amplifier), one auxiliary power amplifier (also known as peak power amplifier, ie Peak Power Amplifier), the main power amplifier works in class B or Class AB, auxiliary power amplifier works in category C.
  • the two amplifiers do not work in turn, but the main amplifier always works, and the auxiliary amplifier works until the set peak (so the auxiliary amplifier is also called the peak amplifier).
  • the 90-degree quarter-wavelength line after the output of the main power amplifier functions as an impedance transformation. The purpose is to reduce the apparent impedance of the main power amplifier when the auxiliary power amplifier works, and to ensure the auxiliary power amplifier works.
  • the active load impedance of the subsequent circuit becomes lower, so that the output current of the main power amplifier becomes larger. Since the quarter-wavelength line after the output of the main power amplifier, in order to make the two power amplifier outputs in phase, a 90° phase shift is also required in front of the auxiliary power amplifier, as shown in Fig. 1.
  • the main power amplifier works in class B. When the total input signal is small, only the main power amplifier is in working state; when the output voltage of the main power amplifier tube reaches the peak saturation point, the theoretical power amplifier efficiency can reach 78.5 %. If the incentive is doubled at this time, then the main power amplifier appears when it reaches half of the peak. When saturated, the power amplifier efficiency also reached the maximum of 78.5 %. At this time, the auxiliary power amplifier also started working with the main power amplifier. The introduction of the auxiliary power amplifier makes the load decrease from the perspective of the main power amplifier, because the auxiliary power amplifier acts as a load on the load equivalent to a negative impedance in series, so even if the output voltage of the main power amplifier is saturated, the output power is due to the load.
  • the auxiliary power amplifier also reaches its maximum efficiency, so that the efficiency of the two power amplifiers is much higher than the efficiency of a single power amplifier.
  • the maximum efficiency of a single asteroid amplifier is 78.5 % at the peak, and now 78.5 % of the efficiency occurs at half the peak, so this system structure can achieve high efficiency (maximum output efficiency per amplifier).
  • the traditional Doherty amplifier is realized by two power amplifier tubes of the same type and independently packaged as a combination of a main amplifier and a peak amplifier.
  • the most widely used one is the Laterally Diffused Metal Oxide Semiconductor (LDMOS) amplifier. tube.
  • LDMOS Laterally Diffused Metal Oxide Semiconductor
  • the power supply voltage and biasing method are the same, so the bias circuit is simple in design; since each power amplifier tube is of the same type, the dispersion of mass production is relatively easy to control.
  • the layout of two independently packaged power amplifier tubes has a large layout area, which is far from meeting the requirements of small volume.
  • Doherty's high-efficiency, d-, and volume-powered amplifiers such as Freescale's dual-ended devices, are shown in Figure 2. These devices integrate two independent power amplifier tubes in one package (currently LDMOS power amplifier dies, which can be used as the carrier amplifier and Peak amplifier of the Doherty amplifier, respectively.
  • the internal structure is shown in Figure 3), which can be flexibly implemented.
  • the small-volume Doherty amplifier, but still used is the LDMOS power amplifier tube, and the LDMOS device has been developed to the eighth generation. Although its cost is low, the performance improvement space is very limited, and it is far from meeting the green environmental protection requirements. Therefore, how to design a small-volume and high-efficiency power amplifier tube for Doherty applications is a technical problem that needs to be solved.
  • the technical problem to be solved by the present invention is to provide a power amplifying tube and a power amplifying method, which realize high-efficiency power amplification on the basis of ensuring the d and volume of the power amplifying tube.
  • the present invention provides a power amplifying tube for a Doherty power amplifier device, which includes a high voltage heterojunction bipolar transistor (HVHBT) power amplifier die and A laterally diffused metal oxide semiconductor field effect transistor (LDMOS) power amplifier die, and the HVHBT power amplifier die and the LDMOS power amplifier die are integrated in the same package.
  • HVHBT high voltage heterojunction bipolar transistor
  • LDMOS laterally diffused metal oxide semiconductor field effect transistor
  • the power amplifier tube is a dual-channel structure amplifying tube
  • one way is set to use the HVHBT power amplifier die and the other way is set to use the LDMOS power amplifier die.
  • the power amplifier tube is a multi-channel structure amplifying tube
  • the HVHBT is based on gallium arsenide (GaAs)
  • the LDMOS is based on silicon
  • the present invention also provides another power amplifying tube, which is applied to a Doherty power amplifier device, wherein the power amplifier tube includes a main power amplifier and an auxiliary power amplifier, wherein
  • the auxiliary power amplifier and the main power amplifier are integrated in the same package in which the power amplifier tube is located; in the auxiliary power amplifier and the main power amplifier in the power amplifier tube, a part of the power amplifier is set to use HVHBT device for signal power For amplification, other power amplifiers are set to use LDMOS devices for signal power amplification.
  • the auxiliary power amplifier is configured to use an HVHBT device and the main power amplifier is configured to use an LDMOS device, or the auxiliary power amplifier It is set to use the LDMOS device and the main power amplifier is set to use the HVHBT device.
  • a part of the auxiliary power amplifier is set to use the HVHBT device, and the other auxiliary power amplifiers and the main power amplifier are set to use the LDMOS device, or the main power amplifier It is set to use the HVHBT device and the auxiliary power amplifier is set to use the LDMOS device, or the main power amplifier and a part of the auxiliary power amplifier are set to use the HVHBT device and the other auxiliary power amplifiers are set to use the LDMOS device.
  • the HVHBT device is a gallium arsenide (GaAs) based device
  • the LDMOS The device is a silicon (Si) based device.
  • the invention also provides a power amplification method, comprising:
  • Signal power amplification is performed using the HVHBT power amplifier die and the LDMOS power amplifier die, and the HVHBT power amplifier die and the LDMOS power amplifier die are integrated in the same package of the power amplifier tube.
  • the power amplifier tube is a two-way structure amplifying tube
  • one way is set to use the
  • the HVHBT power amplifier die and the other is configured to use the LDMOS power amplifier die.
  • the HVHBT is used in one way.
  • the method further includes:
  • the HVHBT device and the LDMOS device are selected according to power amplifier parameters of the power amplifier tube.
  • the present invention also provides another power amplification method, including:
  • the auxiliary power amplifier and the main power amplifier are integrated in the same package in which the power amplifier tube is located; in the auxiliary power amplifier and the main power amplifier of the power amplifier tube, a part of the power amplifier uses HVHBT device for signal power amplification, and other power amplifiers ⁇ Signal power amplification with LDMOS devices.
  • the auxiliary power amplifier uses an HVHBT device and the main power amplifier uses an LDMOS device, or the auxiliary power amplifier uses an LDMOS device and The main power amplifier uses HVHBT devices.
  • the power amplifier tube is a multi-channel structure amplifying tube
  • a part of the auxiliary power amplifier uses the HVHBT device and the other auxiliary power amplifier and the main power amplifier use the LDMOS device
  • the main power amplifier uses the HVHBT device and assists
  • the power amplifier uses an LDMOS device
  • the main power amplifier and a part of the auxiliary power amplifier use the HVHBT device and the other auxiliary power amplifiers use the LDMOS device.
  • the above solution is applied to the Doherty amplifier, and the power tube is designed with a breakthrough new power amplifier die combination method.
  • the small volume basis of the power amplifier tube can be ensured. Achieve high efficiency power amplification. Since the GaAs-based HVHBT is 2-3 times more expensive than the LDMOS, the HVHBT is fully used with the power amplifier die. Compared with the current power amplifier tube, the cost will also decrease while the performance is improved.
  • Figure 1 is a structural diagram of a conventional Doherty power amplifier
  • FIG. 2 is an outline view of a dual-channel power amplifier tube independently packaged in the related art
  • the power amplifier tube in the embodiment of the present invention is applied to a Doherty power amplifier device, and the power amplifier tube includes a high voltage Heteroj unction Bipolar Transistor (HVHBT) power amplifier die and a lateral diffusion metal oxide semiconductor. Lateral double-diffused metal-oxide semiconductor (LDMOS) power amplifier die, and HVHBT and LDMOS power amplifier die are integrated in the same package.
  • HVHBT Heteroj unction Bipolar Transistor
  • LDMOS Lateral double-diffused metal-oxide semiconductor
  • the HVHBT device refers to an HBT process device that can operate at a high voltage
  • the high voltage refers to an operating voltage higher than 12V. It includes, but is not limited to, Triquint's Tripower series of power amplifier components.
  • the HVHBT device can be a gallium arsenide (GaAs) based device.
  • GaAs gallium arsenide
  • the LDMOS device can be a silicon (Si) based device.
  • the power amplifier tube comprises a main power amplifier and an auxiliary power amplifier.
  • Both the main power amplifier and the auxiliary power amplifier are integrated in the same package in which the power amplifier tube is located; one or more of the main power amplifier and the auxiliary power amplifier in the power amplifier tube are set to use HVHBT devices for signal power amplification, and other amplifiers are used for ⁇ LDMOS devices for signal power amplification.
  • the power amplifying tube is a two-way structure amplifying tube
  • one way is set to use the HVHBT die and the other way is set to use the LDMOS die. Integrate the two power amplifier dies into the same package of the power amplifier tube to ensure that the power amplifier tube is small and simultaneously High efficiency of high power amplifier.
  • the power amplifying tube is a multi-channel structure amplifying tube, one way is set to use
  • the HVHBT die and the other few are set to use the LDMOS die, or one is set to use the LDMOS die and the other is set to use the LDMOS die.
  • the multi-channel power amplifier die is integrated into the same package of the power amplifier tube to ensure the small size of the power amplifier tube and improve the high efficiency of the power amplifier.
  • HVHBT devices are based on gallium arsenide (GaAs) devices.
  • LDMOS devices are silicon (Si) based devices.
  • the power amplification method in the embodiment of the present invention includes: integrating the HVHBT power amplifier die and the LDMOS power amplifier die in the same package of the power amplifier tube.
  • the main power amplifier and the auxiliary power amplifier are integrated in the same package in which the power amplifier tube is located; one or more of the main power amplifier and the auxiliary power amplifier of the power amplifier tube are used for signal power amplification by the HVHBT device, and other amplifiers ⁇ LDMOS devices for signal power amplification.
  • the auxiliary power amplifier uses the HVHBT device and the main power amplifier uses the LDMOS device, or the auxiliary power amplifier uses the LDMOS device and the main power amplifier
  • the device uses HVHBT devices. Integrate the two power amplifier dies into the same package of the power amplifier tube to ensure that the power amplifier tube is small and the efficiency of the power amplifier is improved.
  • the power amplifier tube is a multi-channel structure amplifying tube
  • one or more auxiliary power amplifiers use HVHBT devices and other auxiliary power amplifiers and main power amplifiers use LDMOS devices, or the main power amplifiers use HVHBT devices.
  • the auxiliary power amplifier uses the LDMOS device, or the main power amplifier and one or more auxiliary power amplifiers use the HVHBT device and the other auxiliary power amplifiers use the LDMOS device.
  • the multi-channel power amplifier die is integrated into the same package of the power amplifier tube to ensure the small size of the power amplifier tube and improve the high efficiency of the power amplifier.
  • HVHBT devices are based on gallium arsenide (GaAs) devices.
  • LDMOS devices are silicon (Si) based devices.
  • the HVHBT device and the LDMOS are selected according to the power amplifier parameters of the power amplifier tube. Device.
  • the Doherty power amplifier design determine the HVHBT power amplifier die type and LDMOS power amplifier die type according to the required power amplifier parameters; determine the Doherty power amplifier structure (two-way or multi-way structure), and collect the two types of dies
  • the internal matching design and the package specific package are completed in the same package structure, and the signal is amplified by using the Doherty power amplifier.
  • the power is 55W with a peak-to-average ratio of 6dB.
  • the Doherty power amplifier design requires two independent power amplifier tubes to achieve a total saturation power of at least 200W.
  • two 120W LDMOS power amplifier tubes can be realized by a symmetric Doherty structure.
  • the efficiency of the single final stage power amplifier is about 52%; and the implementation based on the present invention is adopted. In this way, the efficiency of the single final stage power amplifier is about 57%, which is increased by nearly 10%, but the layout area of the PCB design can be nearly doubled.
  • the LDMOS die is integrated into the same package to achieve small size while increasing amplification efficiency.
  • the HVHBT die can be used as the main amplifier of the Doherty amplifier to achieve optimal performance by taking advantage of the high efficiency of the HVHBT power amplifier.
  • the advantages of high maturity and low cost of LDMOS power amplifier technology are realized, and the cost is optimal, and finally the perfect combination of performance, cost and volume is achieved.
  • the embodiments of the present invention can be widely applied to the design of various Doherty amplifiers, so that their efficiency indexes are significantly improved.
  • the above embodiment is applied to the Doherty amplifier, and the power tube is designed with a breakthrough new power amplifier die combination method, which can ensure the small volume of the power amplifier tube compared with the existing Doherty amplifiers of the power amplifier die of the LDMOS. Based on high efficiency power amplification. Since the GaAs-based HVHBT is 2-3 times more expensive than the LDMOS, the cost is reduced and the cost is reduced as compared with the power amplifier tube that is implemented by the HVHBT.

Description

一种功率放大管以及功率放大方法
技术领域
本发明涉及射频功率放大器设计技术领域, 尤其涉及一种功率放大管以 及功率放大方法。
背景技术
随着移动通讯业务的快速增长, 对相应器件的低耗、 高效、 小体积的性 能要求也迅速增加, 基站产品的效率高低、 体积大小已经成为行业竟争的焦 点, 基站中对决定效率的主要部件即功放器件的效率提升也成为了核心点, 射频功率放大器广泛用于各种无线发射设备中, 效率和线性是功率放大 器两个最重要的指标, 设计线性高效率的功率放大器, 是目前该领域研究的 热点和难点。 多赫蒂(Doherty )放大器技术是目前提高功率放大器效率中最 有效和最广泛使用的技术。
Doherty技术最初应用于行波管, 为广播提供大功率发射机, 其架构简 单易行, 效率高。
传统的 Doherty结构由 2个功放组成: 一个主功放(也称为载波功放, 即 Carrier Power Amplifier ) , —个辅助功放 (也称为峰值功放, 即 Peak Power Amplifier), 主功放工作在 B类或者 AB类,辅助功放工作在 C类。 两个功放 不是轮流工作, 而是主功放一直工作, 辅助功放到设定的峰值才工作 (所以 辅助功放也称为峰值功放)。主功放输出端后的 90度四分之一波长线起到阻 抗变换的作用, 目的是在辅助功放工作时, 起到将主功放的视在阻抗减小的 作用, 保证辅助功放工作的时候和后续电路组成的有源负载阻抗变低, 这样 主功放输出电流就变大。 由于主功放输出端后的四分之一波长线, 为了使两 个功放输出同相, 在辅助功放前面也需要 90°相移, 如图 1所示。
主功放工作在 B类, 当总的输入信号比较小时, 只有主功放处于工作状 态;当主功放管的输出电压达到峰值饱和点时,理论上的功放效率能达到 78.5 %。 如果这时将激励加大一倍, 那么, 主功放管在达到峰值的一半时就出现 饱和了, 功放效率也达到最大的 78.5 % , 此时辅助功放也开始与主功放一起 工作。 辅助功放的引入, 使得从主功放的角度看, 负载减小了, 因为辅助功 放对负载的作用相当于串连了一个负阻抗, 所以, 即使主功放的输出电压饱 和恒定, 但输出功率因为负载的减小却持续增大 (流过负载的电流变大了)。 当达到激励的峰值时, 辅助功放也达到了本身效率的最大点, 这样两个功放 合在一起的效率就远远高于单个 Β类功放的效率。单个 Β类功放的最大效率 78.5 %出现在峰值处, 现在 78.5 %的效率在峰值的一半就出现了, 所以这种 系统结构能达到很高的效率(每个放大器均达到最大的输出效率) 。
传统的 Doherty放大器由两只同一类型且独立封装的功放管来分别作为 主放大器和峰值放大器组合实现, 目前业界釆用最多的是横向扩散金属氧化 物半导体( Laterally Diffused Metal Oxide Semiconductor, 简称 LDMOS ) 功 放管。 釆用同一类型的功放管, 其供电电压及偏置方式相同, 因此偏置电路 设计简单; 由于各功放管为同一类型, 其批量生产的离散也相对容易控制。 但两只独立封装的功放管设计布局面积较大,已远远不能满足小体积的要求。
针对这一现状, 各功放管厂家都纷纷投入大量研究, 研发出了针对
Doherty技术的高效率、 d、体积应用的功放管, 例如 Freescale的双端器件, 如图 2 所示。 此类器件在一个封装中集成了两个独立的功放管 (目前均为 LDMOS功放管芯,可分别作为 Doherty放大器的 Carrier放大器和 Peak放大 器使用, 其内部结构如图 3所示) , 可灵活实现小体积的 Doherty放大器, 但由于釆用的仍然是 LDMOS功放管, 而 LDMOS器件已经发展到第八代, 虽然其成本低廉, 性能的提升空间却非常有限, 已远远不能满足绿色环保要 求。 因此, 如何针对 Doherty应用来设计小体积且高效率的功放管是需要解 决的技术问题。
发明内容
本发明要解决的技术问题是提供一种功率放大管以及功率放大方法, 在 保证功率放大管的 d、体积基础上实现高效率的功率放大。 为解决上述技术问题, 本发明提供了一种功率放大管, 应用于多赫蒂 功放装置, 该功率放大管包括高压异质结双极晶体管(HVHBT )功放管芯和 横向扩散金属氧化物半导体场效应管(LDMOS )功放管芯, 且所述 HVHBT 功放管芯和所述 LDMOS功放管芯集成在同一封装中。
可选的, 所述功率放大管为双路结构放大管时, 一路是设置为釆用所 述 HVHBT功放管芯并且另一路是设置为釆用所述 LDMOS功放管芯。
可选的, 所述功率放大管为多路结构放大管时,
一路是设置为釆用所述 HVHBT功放管芯并且其余的几路是设置为釆用 LDMOS管芯, 或者,
一路是设置为釆用所述 LDMOS功放管芯并且其余的几路是设置为釆用 所述 HVHBT管芯。
可选的, 所述 HVHBT是基于砷化镓( GaAs ) , 所述 LDMOS是基于硅
( Si ) 。
本发明还提供了另一种功率放大管, 应用于多赫蒂功放装置, 所述功率 放大管包括主功放器和辅助功放器, 其中,
所述辅助功放器和主功放器均集成在所述功率放大管所在的同一封装 中; 所述功率放大管中辅助功放器和主功放器中, 一部分功放器设置为釆用 HVHBT器件进行信号功率放大, 其它功放器设置为釆用 LDMOS器件进行 信号功率放大。 可选的, 所述功率放大管为双路结构放大管时, 所述辅助功放器是设置 为釆用 HVHBT器件并且所述主功放器是设置为釆用 LDMOS器件, 或者, 所述辅助功放器是设置为釆用 LDMOS 器件并且主功放器是设置为釆用 HVHBT器件。
可选的, 所述功率放大管为多路结构放大管时, 一部分辅助功放器是设 置为釆用 HVHBT 器件并且其它辅助功放器以及主功放器是设置为釆用 LDMOS器件, 或者, 主功放器是设置为釆用 HVHBT器件并且辅助功放器 是设置为釆用 LDMOS器件, 或者, 主功放器以及一部分辅助功放器是设置 为釆用 HVHBT器件并且其它辅助功放器是设置为釆用 LDMOS器件。
可选的,所述 HVHBT器件是基于砷化镓 ( GaAs )的器件,所述 LDMOS 器件是基于硅 ( Si ) 的器件。
本发明还提供一种功率放大方法, 包括:
使用 HVHBT功放管芯和 LDMOS功放管芯进行信号功率放大, 且所述 HVHBT功放管芯和所述 LDMOS功放管芯集成在功率放大管的同一封装中。
可选的, 所述功率放大管为双路结构放大管时, 一路是设置为釆用所述
HVHBT功放管芯并且另一路是设置为釆用所述 LDMOS功放管芯。
可选的, 所述功率放大管为多路结构放大管时, 一路釆用所述 HVHBT
可选的, 所述方法还包括:
根据功率放大管的功放参数选择所述 HVHBT器件和所述 LDMOS器件。 本发明还提供另一种功率放大方法, 其包括:
将辅助功放器和主功放器集成在功率放大管所在的同一封装中; 所述功 率放大管的辅助功放器和主功放器中, 一部分功放器釆用 HVHBT器件进行 信号功率放大, 其它功放器釆用 LDMOS器件进行信号功率放大。
可选的, 所述功率放大管为双路结构放大管时, 所述辅助功放器釆用 HVHBT器件并且所述主功放器釆用 LDMOS器件, 或者, 所述辅助功放器 釆用 LDMOS器件并且所述主功放器釆用 HVHBT器件。
可选的, 所述功率放大管为多路结构放大管时, 一部分辅助功放器釆用 HVHBT器件并且其它辅助功放器以及主功放器釆用 LDMOS器件, 或者, 主功放器釆用 HVHBT器件并且辅助功放器釆用 LDMOS器件, 或者, 主功 放器以及一部分辅助功放器釆用 HVHBT 器件并且其它辅助功放器釆用 LDMOS器件。
上述方案应用于 Doherty放大器, 釆用突破性的全新功放管芯组合方式 设计功率管,与现有的全部釆用 LDMOS的功放管芯的 Doherty放大器相比, 可在保证功率放大管的小体积基础上实现高效率的功率放大。由于基于 GaAs 的 HVHBT较 LDMOS成本高 2-3倍, 因此与功放管芯全部釆用 HVHBT实 现的功放管相比, 在性能提升的同时成本也会下降。 附图概述
图 1为传统的 Doherty功率放大器结构图;
图 2 为相关技术中独立封装的双路功放管外形图;
本发明的较佳实施方式
本发明实施方式中的功率放大管, 应用于多赫蒂功放装置, 该功率放大 管包括高压异质结双极晶体管 ( High Voltage Heteroj unction Bipolar Transistor, HVHBT )功放管芯和横向扩散金属氧化物半导体场效应管( Lateral double-diffused metal-oxide semiconductor, LDMOS ) 功放管芯, 且 HVHBT 和 LDMOS功放管芯集成在同一封装中。
其中, HVHBT器件是指能工作在高电压下的 HBT工艺器件, 该高电 压是指高于 12V 以上的工作电压。 它包括但不限于美国 Triquint公司的 Tripower系列功率放大器件。
HVHBT器件可以是基于砷化镓 ( GaAs ) 的器件。
LDMOS器件可以是基于硅(Si ) 的器件。
可选的, 此功率放大管包括主功放器和辅助功放器。
主功放器和辅助功放器均集成功率放大管所在的同一封装; 功率放大管 中主功放器和辅助功放器中的一个或多个放大器设置为釆用 HVHBT器件进 行信号功率放大, 其它放大器用于釆用 LDMOS器件进行信号功率放大。
实施例一中, 如图 4 所示, 功率放大管为双路结构放大管时, 一路 是设置为釆用 HVHBT管芯并且另一路是设置为釆用 LDMOS管芯。 将两路 功放管芯集成到功率放大管的同一封装中, 保证功率放大管体积小同时提 高功放的高效率。
实施例二中, 功率放大管为多路结构放大管时, 一路是设置为釆用
HVHBT管芯并且其它几路是设置为釆用 LDMOS管芯, 或者, 一路是设置 为釆用 LDMOS管芯并且其它几路是设置为釆用 LDMOS管芯。 将多路功放 管芯均集成到功率放大管的同一封装中, 保证功率放大管体积小同时提高 功放的高效率。
HVHBT器件是基于砷化镓( GaAs )的器件。 LDMOS器件是基于硅( Si ) 的器件。
本发明实施方式中功率放大方法包括: 将 HVHBT功放管芯和 LDMOS 功放管芯集成在功率放大管的同一封装中。
可选的, 将主功放器和辅助功放器集成功率放大管所在的同一封装; 功 率放大管的主功放器和辅助功放器中的一个或多个放大器釆用 HVHBT器件 进行信号功率放大, 其它放大器釆用 LDMOS器件进行信号功率放大。
实施例一中, 如图 4 所示, 功率放大管为双路结构放大管时, 辅助 功放器釆用 HVHBT器件并且主功放器釆用 LDMOS器件, 或者, 辅助功放 器釆用 LDMOS器件并且主功放器釆用 HVHBT器件。 将两路功放管芯集成 到功率放大管的同一封装中,保证功率放大管体积小同时提高功放的高效 率。
实施例二中, 功率放大管为多路结构放大管时, 一个或多个辅助功 放器釆用 HVHBT器件并且其它辅助功放器以及主功放器釆用 LDMOS器件, 或者,主功放器釆用 HVHBT器件并且辅助功放器釆用 LDMOS器件,或者, 主功放器以及一个或多个辅助功放器釆用 HVHBT器件并且其它辅助功放器 釆用 LDMOS器件。将多路功放管芯均集成到功率放大管的同一封装中,保 证功率放大管体积小同时提高功放的高效率。
HVHBT器件是基于砷化镓( GaAs )的器件。 LDMOS器件是基于硅( Si ) 的器件。
上述方法中, 根据功率放大管的功放参数选择 HVHBT器件和 LDMOS 器件。
在进行 Doherty功放设计时,根据所需的功放参数,确定所用的 HVHBT 功放管芯型号和 LDMOS的功放管芯型号; 确定 Doherty功放结构 (两路还 是多路结构) , 将两种管芯集到同一封装结构中并完成内匹配设计及管壳专 封装, 使用本 Doherty功放进行信号放大。
应用示例:
针对 2.1GHz UMTS系统应用的功率为 55W峰均比为 6dB Doherty功放 设计, 需要用到两只独立封装的功放管合计至少 200W以上的饱和功率。 结 合功放管厂家现有器件, 可釆用两个 120W 的 LDMOS 功放管通过对称 Doherty结构实现, 按照业界目前的器件水平, 其单末级功放效率约 52%左 右; 而釆用基于本发明的实施方式, 其单末级功放效率约 57%左右, 提高近 10%, 但 PCB设计布局面积可减少近一倍。
和 LDMOS管芯集成到同一个封装中来实现小体积同时提高放大效率。 具体 应用时可充分利用 HVHBT 功放管芯效率高的优势, 将 HVHBT 管芯作为 Doherty放大器的主放大器来实现性能最优。 同时利用 LDMOS功放管芯技 术成熟度高、 成本低廉的优势, 实现成本最优, 最终实现性能、 成本、 体积 的完美结合。 本发明实施方式可广泛应用于各种 Doherty放大器的设计中, 使其效率指标显著提升。
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互任意组合。 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
上述实施方式应用于 Doherty放大器, 釆用突破性的全新功放管芯组合 方式设计功率管, 与现有的全部釆用 LDMOS的功放管芯的 Doherty放大器 相比, 可在保证功率放大管的小体积基础上实现高效率的功率放大。 由于基 于 GaAs的 HVHBT较 LDMOS成本高 2-3倍, 因此与功放管芯全部釆用 HVHBT实现的功放管相比, 在性能提升的同时成本也会下降。

Claims

权 利 要 求 书
1、 一种功率放大管, 应用于多赫蒂功放装置, 该功率放大管包括高压 异质结双极晶体管 ( HVHBT )功放管芯和横向扩散金属氧化物半导体场效应 管( LDMOS )功放管芯, 且所述 HVHBT功放管芯和所述 LDMOS功放管芯 集成在同一封装中。
2、 如权利要求 1所述的功率放大管, 其中,
所述功率放大管为双路结构放大管时, 一路是设置为釆用所述 HVHBT功放管芯并且另一路是设置为釆用所述 LDMOS功放管芯。
3、 如权利要求 1所述的功率放大管, 其中, 所述功率放大管为多路结 构放大管时,
一路是设置为釆用所述 HVHBT功放管芯并且其余的几路是设置为釆用 LDMOS管芯, 或者,
一路是设置为釆用所述 LDMOS功放管芯并且其余的几路是设置为釆用 所述 HVHBT管芯。
4、 如权利要求 1所述的功率放大管, 其中,
所述 HVHBT是基于砷化镓(GaAs ) , 所述 LDMOS是基于硅( Si ) 。
5、一种功率放大管,应用于多赫蒂功放装置, 所述功率放大管包括主功 放器和辅助功放器, 其中,
所述辅助功放器和主功放器均集成在所述功率放大管所在的同一封装 中;
所述功率放大管中辅助功放器和主功放器中, 一部分功放器设置为釆用 高压异质结双极晶体管 (HVHBT ) 器件进行信号功率放大, 其它功放器设 置为釆用横向扩散金属氧化物半导体(LDMOS ) 器件进行信号功率放大。
6、 如权利要求 5所述的功率放大管, 其中,
所述功率放大管为双路结构放大管时, 所述辅助功放器是设置为釆用
HVHBT器件并且所述主功放器是设置为釆用 LDMOS器件, 或者, 所述辅 助功放器是设置为釆用 LDMOS器件并且主功放器是设置为釆用 HVHBT器 件。
7、 如权利要求 6所述的功率放大管, 其中,
所述功率放大管为多路结构放大管时, 一部分辅助功放器是设置为釆用 HVHBT器件并且其它辅助功放器以及主功放器是设置为釆用 LDMOS器件, 或者, 主功放器是设置为釆用 HVHBT 器件并且辅助功放器是设置为釆用 LDMOS器件,或者,主功放器以及一部分辅助功放器是设置为釆用 HVHBT 器件并且其它辅助功放器是设置为釆用 LDMOS器件。
8、 如权利要求 5、 6或 7所述的功率放大管, 其中,
所述 HVHBT器件是基于砷化镓 ( GaAs )的器件, 所述 LDMOS器件是 基于硅(Si ) 的器件。
9、 一种功率放大方法, 其包括:
使用高压异质结双极晶体管 ( HVHBT )功放管芯和横向扩散金属氧化物 半导体场效应管 (LDMOS ) 功放管芯进行信号功率放大, 且所述 HVHBT 功放管芯和所述 LDMOS功放管芯集成在功率放大管的同一封装中。
10、如权利要求 13所述的方法, 其中, 所述功率放大管为双路结构放大 管时, 一路是设置为釆用所述 HVHBT功放管芯并且另一路是设置为釆用所 述 LDMOS功放管芯。
11、如权利要求 13所述的方法, 其中, 所述功率放大管为多路结构放大 管时, 一路釆用所述 HVHBT功放管芯并且其余的几路釆用所述 LDMOS功 放管芯, 或者, 一路釆用所述 LDMOS 功放管芯并且其余的几路釆用所述 HVHBT功放管芯。
12、 如权利要求 9、 10或 11所述的方法, 其还包括:
根据功率放大管的功放参数选择所述 HVHBT器件和所述 LDMOS器件。
13、 一种功率放大方法, 其包括:
将辅助功放器和主功放器集成在功率放大管所在的同一封装中; 所述功 率放大管的辅助功放器和主功放器中, 一部分功放器釆用高压异质结双极晶 体管(HVHBT )器件进行信号功率放大, 其它功放器釆用横向扩散金属氧化 物半导体(LDMOS ) 器件进行信号功率放大。
14、 如权利要求 13所述的方法, 其中,
所述功率放大管为双路结构放大管时, 所述辅助功放器釆用 HVHBT器 件并且所述主功放器釆用 LDMOS器件,或者,所述辅助功放器釆用 LDMOS 器件并且所述主功放器釆用 HVHBT器件。
15、 如权利要求 13所述的方法, 其中,
所述功率放大管为多路结构放大管时, 一部分辅助功放器釆用 HVHBT 器件并且其它辅助功放器以及主功放器釆用 LDMOS器件, 或者, 主功放器 釆用 HVHBT器件并且辅助功放器釆用 LDMOS器件, 或者, 主功放器以及 一部分辅助功放器釆用 HVHBT器件并且其它辅助功放器釆用 LDMOS器件。
PCT/CN2011/081390 2011-04-29 2011-10-27 一种功率放大管以及功率放大方法 WO2012146004A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/503,970 US20130214866A1 (en) 2011-04-29 2011-10-27 Power amplifier tube and power amplification method
EP11832079.5A EP2541766A4 (en) 2011-04-29 2011-10-27 POWER AMPLIFIER TUBE AND POWER AMPLIFICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101108630A CN102158175A (zh) 2011-04-29 2011-04-29 一种功率放大管以及功率放大方法
CN201110110863.0 2011-04-29

Publications (1)

Publication Number Publication Date
WO2012146004A1 true WO2012146004A1 (zh) 2012-11-01

Family

ID=44439407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081390 WO2012146004A1 (zh) 2011-04-29 2011-10-27 一种功率放大管以及功率放大方法

Country Status (4)

Country Link
US (1) US20130214866A1 (zh)
EP (1) EP2541766A4 (zh)
CN (1) CN102158175A (zh)
WO (1) WO2012146004A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170271A (zh) * 2011-04-29 2011-08-31 中兴通讯股份有限公司 功率放大装置及功放电路
CN102158175A (zh) * 2011-04-29 2011-08-17 中兴通讯股份有限公司 一种功率放大管以及功率放大方法
CN103580612A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 功率放大管装置、多路射频功率放大电路及其实现方法
EP3121960B1 (en) * 2015-07-22 2019-10-23 Ampleon Netherlands B.V. Amplifier assembly
US10903357B2 (en) * 2017-10-05 2021-01-26 Qualcomm Incorporated Laterally diffused metal oxide semiconductor (LDMOS) transistor on a semiconductor on insulator (SOI) layer with a backside device
CN108964622A (zh) * 2018-06-26 2018-12-07 合肥市汤诚集成电路设计有限公司 一种基于bcd高压工艺f类音频功率放大器
CN114553149A (zh) * 2020-11-24 2022-05-27 苏州华太电子技术有限公司 一种基于新型DreaMOS工艺的Doherty射频功率放大器模组及其输出匹配网络

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400742A (zh) * 2001-06-08 2003-03-05 Trw公司 微波功率放大器
US7498878B2 (en) * 2006-08-11 2009-03-03 Lg-Nortel Co., Ltd. Multi-path doherty amplifier and control method of a multi-path doherty amplifier
CN101589550A (zh) * 2006-09-29 2009-11-25 北方电讯网络有限公司 具有非对称半导体的增强型Doherty放大器
CN102158175A (zh) * 2011-04-29 2011-08-17 中兴通讯股份有限公司 一种功率放大管以及功率放大方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080122542A1 (en) * 2006-11-27 2008-05-29 Gregory Bowles Enhanced amplifier with auxiliary path bias modulation
JP2009260472A (ja) * 2008-04-14 2009-11-05 Mitsubishi Electric Corp 電力増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400742A (zh) * 2001-06-08 2003-03-05 Trw公司 微波功率放大器
US7498878B2 (en) * 2006-08-11 2009-03-03 Lg-Nortel Co., Ltd. Multi-path doherty amplifier and control method of a multi-path doherty amplifier
CN101589550A (zh) * 2006-09-29 2009-11-25 北方电讯网络有限公司 具有非对称半导体的增强型Doherty放大器
CN102158175A (zh) * 2011-04-29 2011-08-17 中兴通讯股份有限公司 一种功率放大管以及功率放大方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541766A4 *

Also Published As

Publication number Publication date
CN102158175A (zh) 2011-08-17
EP2541766A1 (en) 2013-01-02
EP2541766A4 (en) 2014-11-26
US20130214866A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
WO2012146004A1 (zh) 一种功率放大管以及功率放大方法
EP2536025A1 (en) Power amplifier device and power amplifier circuit
WO2012146017A1 (zh) 功率放大装置及功放电路
WO2012146015A1 (zh) 功率放大装置及功放电路
WO2011144150A1 (zh) 一种功率放大器、不对称达赫笛功率放大设备和基站
US8773206B2 (en) Power amplifier apparatus and power amplifier circuit
WO2012146013A1 (zh) 一种多合体功率放大器及其实现方法
WO2012146003A1 (zh) 一种功率放大管以及功率放大方法
WO2012146002A1 (zh) 一种多合体功率放大器及其实现方法
WO2012146007A1 (zh) 一种多合体功率放大器及其实现方法
Kawai et al. A high-efficiency low-distortion GaN HEMT Doherty power amplifier with a series-connected load
CN104393843A (zh) 采用多级式辅路放大器的Doherty功率放大器
WO2012146011A1 (zh) 一种功率放大管以及功率放大方法
CN111342787A (zh) 一种负载调制差分功率放大器、基站和移动终端
US8797099B2 (en) Power amplifier device and power amplifier circuit thereof
WO2012146009A1 (zh) 一种多赫蒂功放装置及功率放大方法
CN204376835U (zh) 采用多级式辅路放大器的Doherty功率放大器
CN104796089A (zh) 一种使用电压结合的Doherty差分功放
WO2012146010A1 (zh) 一种多赫蒂功放装置及功率放大方法
WO2012146008A1 (zh) 一种多赫蒂功放装置及功率放大方法
Li et al. A highly-efficient BiCMOS cascode Class-E power amplifier using both envelope-tracking and transistor resizing for LTE-like applications
CN103326678A (zh) 一种功率放大器、不对称达赫笛功率放大设备和基站

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011832079

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13503970

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE