WO2012145323A1 - Large crystal, organic-free chabazite, methods of making and using the same - Google Patents
Large crystal, organic-free chabazite, methods of making and using the same Download PDFInfo
- Publication number
- WO2012145323A1 WO2012145323A1 PCT/US2012/033948 US2012033948W WO2012145323A1 WO 2012145323 A1 WO2012145323 A1 WO 2012145323A1 US 2012033948 W US2012033948 W US 2012033948W WO 2012145323 A1 WO2012145323 A1 WO 2012145323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chabazite
- zeolite
- iron
- silica
- potassium
- Prior art date
Links
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 title claims abstract description 64
- 229910052676 chabazite Inorganic materials 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000013078 crystal Substances 0.000 title claims abstract description 33
- 239000002178 crystalline material Substances 0.000 claims abstract description 23
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 238000010531 catalytic reduction reaction Methods 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 36
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 36
- 239000010457 zeolite Substances 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 229910021536 Zeolite Inorganic materials 0.000 claims description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 26
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 229910001868 water Inorganic materials 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- LXPCOISGJFXEJE-UHFFFAOYSA-N oxifentorex Chemical compound C=1C=CC=CC=1C[N+](C)([O-])C(C)CC1=CC=CC=C1 LXPCOISGJFXEJE-UHFFFAOYSA-N 0.000 claims description 13
- 229910021529 ammonia Inorganic materials 0.000 claims description 12
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 11
- 229910052700 potassium Inorganic materials 0.000 claims description 11
- 239000011591 potassium Substances 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- -1 hexafluorosilicate salt Chemical class 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 5
- 238000005342 ion exchange Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 239000007791 liquid phase Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 239000004111 Potassium silicate Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000012297 crystallization seed Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 3
- 235000019353 potassium silicate Nutrition 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 150000004761 hexafluorosilicates Chemical class 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- 239000004005 microsphere Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000008188 pellet Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 17
- 238000001354 calcination Methods 0.000 abstract description 4
- 239000008367 deionised water Substances 0.000 description 18
- 229910021641 deionized water Inorganic materials 0.000 description 18
- 238000003756 stirring Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000001878 scanning electron micrograph Methods 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 7
- 230000032683 aging Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7015—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/763—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
- B01D2253/1085—Zeolites characterized by a silicon-aluminium ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/16—After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/32—Reaction with silicon compounds, e.g. TEOS, siliconfluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
Definitions
- the present disclosure is related to a method of synthesizing large crystal chabazite that does not require organic structural directing agent.
- the present disclosure is also related hydrothermally stable microporous crystalline materials comprising a metal containing, organic-free chabazite, that is able to retain a certain percentage of its surface area and micropore volume after treatment with heat and moisture and features large crystal size.
- the present disclosure is also related to methods of using the disclosed large crystal chabazite materials, such as in reducing contaminants in exhaust gases. Such methods include the selective catalytic reduction ("SCR") of exhaust gases contaminated with nitrogen oxides ("NO x ").
- Microporous crystalline materials and their uses as catalysts and molecular sieve adsorbents are known in the art.
- Microporous crystalline materials include crystalline aluminosilicate zeolites, metal organosilicates, and
- aluminophosphates among others.
- One catalytic use of the materials is in the SCR of NO x with ammonia in the presence of oxygen and in the conversion process of different feed stocks, such as an oxygenate to olefin reaction system.
- SAPOs Silicoaluminophosphates
- R represents at least one organic templating agent present in the
- Si x AlyP z 0 2 and has a value from zero to 0.3; and x, y, and z represent the mole fractions of silicon, aluminum, and phosphorous, respectively, present as tetrahedral oxides.
- a microporous crystalline material comprising an aluminosilicate zeolite synthesized without the use of an organic structural directing agent, wherein the zeolite comprises a chabazite (CHA) structure having copper and/or iron, a silica-to-alumina ratio (SAR) ranging from 5 to 15, and a crystal size greater than 0.5 microns.
- CHA chabazite
- SAR silica-to-alumina ratio
- microporous crystalline material described herein retains at least 60% of surface area after exposure to 700°C for 16 hours in the presence of up to 10 volume percent of water vapor.
- the microporous crystalline material described herein has a Cu/AI molar ratio of at least 0.08.
- the microporous crystalline material contains iron in an amount of at least 0.5 weight percent of the total weight of the material, such as in an amount ranging from 0.5 to 10.0 weight percent of the total weight of the material.
- the method may comprise: contacting exhaust gas with an article comprising a metal-containing CHA type zeolite synthesized without the use of an organic structural directing agent, the zeolite having a crystal size greater than 0.5 microns and a silica-to- alumina ratio (SAR) ranging from 5 and 5.
- SCR selective catalytic reduction
- the metal comprises copper and/or iron which may be introduced by liquid-phase or solid ion-exchange or by direct-synthesis.
- a method of making a microporous crystalline material comprising a aluminosilicate zeolite having a CHA structure, a silica-to-alumina ratio (SAR) ranging from 5 to 15, and a crystal size greater than 0.5 microns.
- SAR silica-to-alumina ratio
- the method comprises: mixing sources of potassium, alumina, silica, water and optionally a chabazite seed material to form a gel, wherein the gel has potassium to silica (K/S1O2) molar ratio of less than 0.5 and hydroxide to silica (OH/Si0 2 ) molar ratio less than 0.35; heating the gel in a vessel at a temperature ranging from 80 °C to 200 °C to form a crystalline large crystal chabazite product; ammonium-exchanging the product.
- K/S1O2 potassium to silica
- hydroxide to silica OH/Si0 2
- the method further comprises adding zeolite crystallization seeds to the product prior to the heating step.
- the SAR of the product may be increased by further treating the product with a hexafluorosilicate salt, such as ammonium
- the potassium source is chosen from potassium hydroxide or potassium silicate.
- the alumina and at least a portion of the silica source are chosen from potassium-exchanged, proton-exchanged or ammonium-exchanged zeolite Y.
- the zeolite Y has a SAR between 4 and 20.
- Table 1 compares the surface area retention of Cu-Chabazite materials with varying SAR and CuO after steaming at 700 ° C for 16 h in 10 percent water/air.
- Figure 2 is a scanning electron micrograph (SEM) of the chabazite material described in Example 1 .
- Figure 3 is a scanning electron micrograph (SEM) of the chabazite material described in Example 2.
- Figure 4 is a scanning electron micrograph (SEM) of the chabazite material described in Example 3.
- Figure 5 is a scanning electron micrograph (SEM) of the chabazite material described in Example 4.
- Figure 6 is an X-ray diffraction pattern of the chabazite material described in Example 2.
- Figure 7 is an X-ray diffraction pattern of the chabazite material described in Example 3.
- Figure 8 is an X-ray diffraction pattern of the chabazite material described in Example 4. DETAILED DESCRIPTION OF THE INVENTION
- Hydrothermally stable means having the ability to retain a certain percentage of initial surface area and/or microporous volume after exposure to elevated temperature and/or humidity conditions (compared to room temperature) for a certain period of time. For example, in one embodiment, it is intended to mean retaining at least 60%, such as at least 70%, or even at least 80%, of its surface area and micropore volume after exposure to conditions simulating those present in an automobile exhaust, such as temperatures ranging up to 700 °C in the presence of up to 10 volume percent (vol%) water vapor for times ranging from up to 1 hour, or even up to 16 hours, such as for a time ranging from 1 to 16 hours.
- Initial Surface Area means the surface area of the freshly made crystalline material before exposing it to any aging conditions.
- Initial Micropore Volume means the micropore volume of the freshly made crystalline material before exposing it to any aging conditions.
- Direct synthesis refers to a method that does not require a metal-doping process after the zeolite has been formed, such as a subsequent ion-exchange or impregnation method.
- SCR Selective Catalytic Reduction
- NO x typically with ammonia, ammonia generating compound such as urea, or hydrocarbon
- the reduction is catalyzed to preferentially promote the reduction of the NO x over the oxidation of ammonia by the oxygen, hence “selective catalytic reduction.”
- exhaust gas refers to any waste gas formed in an industrial process or operation and by internal combustion engines, such as from any form of motor vehicle.
- Non-limiting examples of the types of exhaust gases include both automotive exhaust, as well as exhaust from stationary sources, such as power plants, stationary diesel engines, and coal-fired plants.
- phrases ''chosen from” or “selected from” as used herein refers to selection of individual components or the combination of two (or more) components.
- the metal portion of the large crystal, organic-free chabazite described herein may be chosen from copper and iron, which means the metal may comprise copper, or iron, or a combination of copper and iron.
- the copper comprises at least 1.0 weight percent of the total weight of the material, such as a range from 1.0-15.0 weight percent of the total weight of the material.
- the metal portion of the large crystal, organic-free chabazite may comprise iron instead of or in addition to copper.
- the iron comprises at least 0.5 weight percent of the total weight of the material, such as an amount ranging from 0.5-10.0 weight percent of the total weight of the material.
- the present invention is directed to reduction of the class of nitrogen oxides identified as NO x .
- SCR selective catalytic reduction
- the method comprises contacting, typically in the presence of ammonia or urea, exhaust gas with a metal containing large crystal, organic-free chabazite as described herein.
- the method comprises contacting exhaust gas with a metal containing chabazite having a crystal size greater than 0.5 microns and a silica-to-alumina ratio (SAR) ranging from 5 to 15.
- SCR silica-to-alumina ratio
- the metal containing large crystal, organic-free chabazite typically retains at least 60% and even 80% of its initial surface area and micropore volume after exposure to temperatures of up to 700 °C in the presence of up to 10 volume percent water vapor for up to 16 hours.
- the inventive method for SCR of exhaust gases may comprise (1 ) adding ammonia or urea to the exhaust gas to form a gas mixture; and (2) contacting the gas mixture with a microporous crystalline composition comprising large crystal, organic-free chabazite, having a crystal size larger than 0.5 microns, and SAR ranging from 5 to 15.
- a microporous crystalline composition comprising large crystal, organic-free chabazite, having a crystal size larger than 0.5 microns, and SAR ranging from 5 to 15.
- microporous crystalline materials of the present invention may also be useful in the conversion of oxygenate- containing feedstock into one or more olefins in a reactor system.
- the compositions may be used to convert methanol to olefins.
- this includes mixing sources of a potassium salt, a zeolite Y, water and optionally a chabazite seed material to form a gel; heating the gel in a vessel at a temperature ranging from 90 °C to 180 °C to form a crystalline large crystal, organic-free chabazite product; ammonium-exchanging the product.
- the method may comprise adding zeolite crystallization seeds to the product prior to the heating step.
- the method further comprises a step of treating the product with a hexafluorosilicate salt, such as ammonium hexafluorosilicate (AFS) to increase the SAR of the product.
- a hexafluorosilicate salt such as ammonium hexafluorosilicate (AFS)
- the present disclosure is also directed to a catalyst composition
- a catalyst composition comprising the large crystal, organic-free chabazite material described herein.
- the catalyst composition may also be cation-exchanged, such as with iron or copper.
- Any suitable physical form of the catalyst may be utilized, including, but not limited to: a channeled or honeycom bed-type body; a packed bed of balls, pebbles, pellets, tablets, extrudates or other particles; microspheres; and structural pieces, such as plates or tubes.
- the channeled or honeycombed-shaped body or structural piece is formed by extruding a mixture comprising the chabazite molecular sieve.
- the channeled or honeycombed-shaped body or structural piece is formed by coating or depositing a mixture comprising the chabazite molecular sieve on a preformed substrate.
- the gel was stirred at room temperature for about 30 min before adding about 1.5 wt% of a chabazite seed and stirring for another 30 min.
- the gel was then charged to an autoclave.
- the autoclave was heated to 30 °C and maintained at the temperature for 24 hours while stirring at 300 rpm. After cooling, the product was recovered by filtration and washed with deionized water. The resulting product had the XRD pattern of chabazite.
- the gel was stirred at room temperature for about 30 min before adding 1.5 wt% of a chabazite seed (product from Example 1 ) and stirring for another 30 min.
- the gel was then charged to an autoclave.
- the autoclave was heated to 140 °C and maintained at the temperature for 30 hours while stirring at 300 rpm.
- the product was recovered by filtration and washed with deionized water.
- the resulting product had the XRD pattern of chabazite, a silica-to-alumina ratio (SAR) of 5.5 and contained 7.0 wt% K 2 0.
- SAR silica-to-alumina ratio
- the gel was stirred at room temperature for about 30 min before adding 1.5 wt% of a chabazite seed (product from Example 1 ) and stirring for another 30 min.
- the gel was then charged to an autoclave.
- the autoclave was heated to 160 °C and maintained at the temperature for 48 hours while stirring at 300 rpm. After cooling, the product was recovered by filtration and washed with deionized water.
- the resulting product had the XRD pattern of chabazite, an SAR of 5.5 and contained 16.9 wt% K 2 0.
- the gel was stirred at room temperature for about 30 min before charging the gel to an autoclave.
- the autoclave was heated to 95 °C and maintained at the temperature for 72 hours while stirring at 50 rpm. After cooling, the product was recovered by filtration and washed with deionized water.
- the resulting product had the XRD pattern of chabazite, an SAR of 4.6 and contained 19.6 wt% K 2 0.
- Low-silica chabazite (structure code CHA) was synthesized according to examples of U.S. Patent 5,026,532, which is herein incorporated by reference. After filtering, washing, and drying, the product was calcined at 550 °C. To remove residual sodium and potassium, the product was then washed in a solution containing 0.25 M HN03 and 4 M NH4N03 at 80 °C for 2 hours.
- Example 6 (NH4-exchange and AFS-treatment of Example 2)
- the product from Example 2 was exchanged with ammonium nitrate twice to reduce the potassium content to 3.2 wt% K 2 0.
- the NH4-exchanged material was treated with ammonium hexafluorosilicate in order to increase the SAR. 12 g on an anhydrous basis of the NH4-exchanged material was slurried in 100 g deionized water and heated to 75 °C. An ammonium hexafluorosilicate solution was made by dissolving 2.3 g ammonium hexafluorosilicate in 400 g deionized water.
- the ammonium hexafluorosilicate solution was added to the chabazite slurry over a period of 3 hours while stirring. After 3 hours, 25 g deionized water was added. Following the water addition, a solution of 7.8 g AI 2 (S0 4 )3-18 H 2 0 in 100 g deionized water was added to the slurry. After 15 minutes, the product was recovered by filtration and washed with deionized water. The resulting product had an SAR of 7.3 and contained 2.3 wt% K 2 0. This material was further ammonium-exchanged twice to reach 0.24 wt% K 2 0.
- Example 7 (NH4-exchange and calcination of Example 2)
- Example 2 The product from Example 2 was exchanged with ammonium nitrate twice to reduce the potassium content to 3.2 wt% K 2 0. This material was then calcined at 540 °C for 4 hours. Following the calcination, the material was exchanged with ammonium nitrate twice resulting in a potassium content of 0.06 wt% K 2 0.
- Comparable Example 8 I NH4-exchange and AFS-treatment of Comparable Example 4)
- the product from Comparable Example 4 was exchanged with ammonium nitrate twice.
- the NH4-exchanged material was treated with ammonium hexafluorosilicate in order to increase the SAR.
- 24 g on an anhydrous basis of the NH4-exchanged material was slurried in 200 g deionized water and heated to 75 °C.
- An ammonium hexafluorosilicate solution was made by dissolving 3.5 g ammonium hexafluorosilicate in 600 g deionized water.
- the ammonium hexafluorosilicate solution was added to the chabazite slurry over a period of 3 hours while stirring.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12773612.2A EP2699345A4 (en) | 2011-04-18 | 2012-04-17 | Large crystal, organic-free chabazite, methods of making and using the same |
KR1020187004270A KR101948254B1 (en) | 2011-04-18 | 2012-04-17 | Large crystal, organic-free chabazite, methods of making and using the same |
CN201280025744.8A CN103561865B (en) | 2011-04-18 | 2012-04-17 | Big crystal, without its method of organic chabasie and manufacture and use |
KR1020137030394A KR101830326B1 (en) | 2011-04-18 | 2012-04-17 | Large crystal, organic-free chabazite, methods of making and using the same |
JP2014506486A JP6169069B2 (en) | 2011-04-18 | 2012-04-17 | Large crystals of organic chabazite and methods for making and using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161476575P | 2011-04-18 | 2011-04-18 | |
US61/476,575 | 2011-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012145323A1 true WO2012145323A1 (en) | 2012-10-26 |
Family
ID=47021502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/033948 WO2012145323A1 (en) | 2011-04-18 | 2012-04-17 | Large crystal, organic-free chabazite, methods of making and using the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120269719A1 (en) |
EP (1) | EP2699345A4 (en) |
JP (1) | JP6169069B2 (en) |
KR (2) | KR101830326B1 (en) |
CN (1) | CN103561865B (en) |
WO (1) | WO2012145323A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013082560A1 (en) * | 2011-12-02 | 2013-06-06 | Pq Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox |
DE102013005749A1 (en) | 2013-04-05 | 2014-10-09 | Umicore Ag & Co. Kg | CuCHA material for SCR catalysis |
JP2015511919A (en) * | 2011-11-11 | 2015-04-23 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing zeolitic material, zeolitic material and method for using zeolitic material |
WO2015084817A1 (en) * | 2013-12-02 | 2015-06-11 | Johnson Matthey Public Limited Company | Mixed template synthesis of high silica cu-cha |
US9527751B2 (en) | 2011-11-11 | 2016-12-27 | Basf Se | Organotemplate-free synthetic process for the production of a zeolitic material of the CHA-type structure |
US9656253B2 (en) | 2014-07-07 | 2017-05-23 | Ibiden Co., Ltd. | Zeolite, method for manufacturing zeolite, honeycomb catalyst, and exhaust gas purifying apparatus |
US9878315B2 (en) | 2014-07-07 | 2018-01-30 | Ibiden Co., Ltd. | Zeolite, method for manufacturing zeolite, honeycomb catalyst, and exhaust gas purifying apparatus |
CN108698841A (en) * | 2015-12-22 | 2018-10-23 | 巴斯夫公司 | The method for preparing the zeolite compositions of iron (III) exchange |
EP2340103B2 (en) † | 2008-10-15 | 2020-07-22 | Johnson Matthey Public Limited Company | A method of converting nitrogen oxides with transition metal-containing aluminosilicate zeolite |
US11267717B2 (en) | 2018-03-21 | 2022-03-08 | Basf Corporation | CHA zeolite material and related method of synthesis |
EP4015454A1 (en) * | 2020-12-21 | 2022-06-22 | Tosoh Corporation | Cha-type zeolite and manufacturing method thereof |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8535629B2 (en) * | 2010-12-02 | 2013-09-17 | Johnson Matthey Public Limited Company | Zeolite catalyst containing metal |
JP5895510B2 (en) * | 2010-12-22 | 2016-03-30 | 東ソー株式会社 | Chabazite-type zeolite and method for producing the same, low-silica zeolite supporting copper, nitrogen oxide reduction and removal catalyst containing the zeolite, and nitrogen oxide reduction and removal method using the catalyst |
US20120269719A1 (en) * | 2011-04-18 | 2012-10-25 | Pq Corporation | Large crystal, organic-free chabazite, methods of making and using the same |
US9802831B2 (en) * | 2014-07-23 | 2017-10-31 | Chevron U.S.A. Inc. | Synthesis of high silica zeolite via interzeolite transformation without OSDAs |
US9938157B2 (en) | 2014-07-23 | 2018-04-10 | Chevron U.S.A. Inc. | Interzeolite transformation and metal encapsulation in the absence of an SDA |
JP6546731B2 (en) * | 2014-10-09 | 2019-07-17 | イビデン株式会社 | Honeycomb catalyst |
JP2016073959A (en) * | 2014-10-09 | 2016-05-12 | イビデン株式会社 | Honeycomb catalyst |
US10173211B2 (en) | 2014-10-14 | 2019-01-08 | California Institute Of Technology | Organic-free synthesis of small pore zeolite catalysts |
JP6934818B2 (en) * | 2015-06-12 | 2021-09-15 | ビーエーエスエフ コーポレーション | Exhaust gas treatment system |
JP6879680B2 (en) * | 2015-06-29 | 2021-06-02 | 日揮触媒化成株式会社 | Method for producing high silica chabazite type zeolite and high silica chabazite type zeolite |
JP6817022B2 (en) * | 2016-06-07 | 2021-01-20 | 日揮触媒化成株式会社 | Highly water-resistant chabazite type zeolite and its manufacturing method |
WO2017213022A1 (en) * | 2016-06-07 | 2017-12-14 | 日揮触媒化成株式会社 | Chabazite zeolite with high hydrothermal resistance and method for producing same |
JP6792264B2 (en) * | 2016-11-25 | 2020-11-25 | 国立大学法人広島大学 | Crystalline aluminosilicate containing gallium and its manufacturing method |
JP7069797B2 (en) | 2017-02-22 | 2022-05-18 | 東ソー株式会社 | Chabazite-type zeolite and its manufacturing method |
CA3069255A1 (en) * | 2017-07-11 | 2019-01-17 | Shell Internationale Research Maatschappij B.V. | Catalyst and method of use thereof in the conversion of nox and n2o |
CN112020478A (en) * | 2018-05-03 | 2020-12-01 | 沙特基础工业全球技术公司 | SDA-free synthesis of Chabazite (CHA) and uses thereof |
KR20210046808A (en) * | 2018-09-11 | 2021-04-28 | 바스프 코포레이션 | Method of making zeolitic material with framework type AEI |
US11027983B2 (en) * | 2019-06-13 | 2021-06-08 | Pq Corporation | Chabazite zeolite synthesis with organic templates |
EP3812034A1 (en) | 2019-10-24 | 2021-04-28 | Dinex A/S | Durable copper-scr catalyst |
CN111268691A (en) * | 2020-03-12 | 2020-06-12 | 上海索易分子筛有限公司 | Small-grain chabazite as well as preparation method and application thereof |
DE102022202106A1 (en) | 2022-03-01 | 2023-09-07 | Carl von Ossietzky Universität Oldenburg Körperschaft des öffentlichen Rechts | Catalyst for oxidation with hydroxyl radicals |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5011667A (en) * | 1988-09-08 | 1991-04-30 | Engelhard Corporation | Self-bound sodium chabazite aggregates and methods for preparation thereof |
US20050074397A1 (en) * | 2000-05-25 | 2005-04-07 | Board Of Trustees Of Michigan State University | Ultrastable porous aluminosilicate structures |
US20080139860A1 (en) * | 2005-06-28 | 2008-06-12 | Laurent Simon | Method for the Treatment of a Small-and/or Medium-Pore Zeolite and Use Thereof in the Oligomerisation of Light Olefins |
US20080226545A1 (en) * | 2007-02-27 | 2008-09-18 | Ivor Bull | Copper CHA Zeolinte Catalysts |
US20090048095A1 (en) * | 2007-08-13 | 2009-02-19 | Hong-Xin Li | Novel iron-containing aluminosilicate zeolites and methods of making and using same |
US20100092362A1 (en) * | 2007-03-26 | 2010-04-15 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
US20110020204A1 (en) * | 2008-11-06 | 2011-01-27 | Basf Catalysts Llc | Chabazite Zeolite Catalysts Having Low Silica to Alumina Ratios |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2513983B1 (en) * | 1981-09-14 | 1986-10-24 | Raffinage Cie Francaise | PROCESS FOR THE PREPARATION OF SYNTHETIC ZEOLITES AND ZEOLITES OBTAINED BY THIS PROCESS |
AU1050597A (en) * | 1995-11-15 | 1997-06-05 | California Institute Of Technology | Synthesis of zeolites by hydrothermal reaction of zeolite p1 |
US20090196812A1 (en) * | 2008-01-31 | 2009-08-06 | Basf Catalysts Llc | Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure |
ES2465004T3 (en) * | 2008-05-21 | 2014-06-04 | Basf Se | Method of direct synthesis of zeolites containing Cu that have a CHA structure |
GB2464478A (en) * | 2008-10-15 | 2010-04-21 | Johnson Matthey Plc | Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment |
JP2011064882A (en) * | 2009-09-16 | 2011-03-31 | Fuji Xerox Co Ltd | Image forming apparatus |
RU2600565C2 (en) * | 2009-10-14 | 2016-10-27 | Басф Се | MOLECULAR SIEVE CONTAINING COPPER OF THE CULTURE FOR SELECTIVE REDUCTION OF NOx |
JP5895510B2 (en) * | 2010-12-22 | 2016-03-30 | 東ソー株式会社 | Chabazite-type zeolite and method for producing the same, low-silica zeolite supporting copper, nitrogen oxide reduction and removal catalyst containing the zeolite, and nitrogen oxide reduction and removal method using the catalyst |
US20120269719A1 (en) * | 2011-04-18 | 2012-10-25 | Pq Corporation | Large crystal, organic-free chabazite, methods of making and using the same |
-
2012
- 2012-04-17 US US13/449,230 patent/US20120269719A1/en not_active Abandoned
- 2012-04-17 CN CN201280025744.8A patent/CN103561865B/en active Active
- 2012-04-17 WO PCT/US2012/033948 patent/WO2012145323A1/en active Application Filing
- 2012-04-17 KR KR1020137030394A patent/KR101830326B1/en active IP Right Grant
- 2012-04-17 JP JP2014506486A patent/JP6169069B2/en active Active
- 2012-04-17 KR KR1020187004270A patent/KR101948254B1/en active IP Right Grant
- 2012-04-17 EP EP12773612.2A patent/EP2699345A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5011667A (en) * | 1988-09-08 | 1991-04-30 | Engelhard Corporation | Self-bound sodium chabazite aggregates and methods for preparation thereof |
US20050074397A1 (en) * | 2000-05-25 | 2005-04-07 | Board Of Trustees Of Michigan State University | Ultrastable porous aluminosilicate structures |
US20080139860A1 (en) * | 2005-06-28 | 2008-06-12 | Laurent Simon | Method for the Treatment of a Small-and/or Medium-Pore Zeolite and Use Thereof in the Oligomerisation of Light Olefins |
US20080226545A1 (en) * | 2007-02-27 | 2008-09-18 | Ivor Bull | Copper CHA Zeolinte Catalysts |
US20100092362A1 (en) * | 2007-03-26 | 2010-04-15 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
US20090048095A1 (en) * | 2007-08-13 | 2009-02-19 | Hong-Xin Li | Novel iron-containing aluminosilicate zeolites and methods of making and using same |
US20110020204A1 (en) * | 2008-11-06 | 2011-01-27 | Basf Catalysts Llc | Chabazite Zeolite Catalysts Having Low Silica to Alumina Ratios |
Non-Patent Citations (1)
Title |
---|
See also references of EP2699345A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2340103B2 (en) † | 2008-10-15 | 2020-07-22 | Johnson Matthey Public Limited Company | A method of converting nitrogen oxides with transition metal-containing aluminosilicate zeolite |
JP2015511919A (en) * | 2011-11-11 | 2015-04-23 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing zeolitic material, zeolitic material and method for using zeolitic material |
EP2776369A4 (en) * | 2011-11-11 | 2015-08-05 | Basf Se | Organotemplate-free synthetic process for the production of a zeolitic material of the cha-type structure |
US9527751B2 (en) | 2011-11-11 | 2016-12-27 | Basf Se | Organotemplate-free synthetic process for the production of a zeolitic material of the CHA-type structure |
CN103987662A (en) * | 2011-12-02 | 2014-08-13 | Pq公司 | Stabilized microporous crystalline material, method of making same, and use for selective catalytic reduction of nox |
WO2013082560A1 (en) * | 2011-12-02 | 2013-06-06 | Pq Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox |
US9517458B2 (en) | 2011-12-02 | 2016-12-13 | Pq Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx |
DE102013005749A1 (en) | 2013-04-05 | 2014-10-09 | Umicore Ag & Co. Kg | CuCHA material for SCR catalysis |
WO2014161860A1 (en) * | 2013-04-05 | 2014-10-09 | Umicore Ag & Co. Kg | Cucha material for scr catalysis |
DE202013012229U1 (en) | 2013-04-05 | 2015-10-08 | Umicore Ag & Co. Kg | CuCHA material for SCR catalysis |
WO2015084817A1 (en) * | 2013-12-02 | 2015-06-11 | Johnson Matthey Public Limited Company | Mixed template synthesis of high silica cu-cha |
RU2703462C1 (en) * | 2013-12-02 | 2019-10-17 | Джонсон Мэтти Паблик Лимитед Компани | MIXED TEMPLATE SYNTHESIS OF Cu-CHA WITH HIGH CONTENT OF SILICON DIOXIDE |
JP2017504558A (en) * | 2013-12-02 | 2017-02-09 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Mixed template synthesis of high silica Cu-CHA |
US11207666B2 (en) | 2013-12-02 | 2021-12-28 | Johnson Matthey Public Limited Company | Mixed template synthesis of high silica Cu-CHA |
US9656253B2 (en) | 2014-07-07 | 2017-05-23 | Ibiden Co., Ltd. | Zeolite, method for manufacturing zeolite, honeycomb catalyst, and exhaust gas purifying apparatus |
US9878315B2 (en) | 2014-07-07 | 2018-01-30 | Ibiden Co., Ltd. | Zeolite, method for manufacturing zeolite, honeycomb catalyst, and exhaust gas purifying apparatus |
CN108698841A (en) * | 2015-12-22 | 2018-10-23 | 巴斯夫公司 | The method for preparing the zeolite compositions of iron (III) exchange |
CN108698841B (en) * | 2015-12-22 | 2023-01-17 | 巴斯夫公司 | Process for preparing iron (III) -exchanged zeolite compositions |
US11267717B2 (en) | 2018-03-21 | 2022-03-08 | Basf Corporation | CHA zeolite material and related method of synthesis |
EP4015454A1 (en) * | 2020-12-21 | 2022-06-22 | Tosoh Corporation | Cha-type zeolite and manufacturing method thereof |
US12023659B2 (en) | 2020-12-21 | 2024-07-02 | Tosoh Corporation | CHA-type zeolite and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2014515723A (en) | 2014-07-03 |
KR20140027280A (en) | 2014-03-06 |
US20120269719A1 (en) | 2012-10-25 |
EP2699345A1 (en) | 2014-02-26 |
JP6169069B2 (en) | 2017-07-26 |
KR101830326B1 (en) | 2018-02-20 |
CN103561865B (en) | 2016-09-07 |
CN103561865A (en) | 2014-02-05 |
KR20180021204A (en) | 2018-02-28 |
EP2699345A4 (en) | 2015-05-06 |
KR101948254B1 (en) | 2019-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120269719A1 (en) | Large crystal, organic-free chabazite, methods of making and using the same | |
US11786864B2 (en) | Metal-containing zeolite beta for NOx reduction and methods of making the same | |
US10384162B2 (en) | High silica chabazite for selective catalytic reduction, methods of making and using same | |
CA2681135C (en) | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same | |
US20120251422A1 (en) | Fe-SAPO-34 CATALYST AND METHODS OF MAKING AND USING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12773612 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014506486 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012773612 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137030394 Country of ref document: KR Kind code of ref document: A |