WO2012144678A1 - Drug delivery composition containing biocompatible cross-linked hyaluronic acid product - Google Patents

Drug delivery composition containing biocompatible cross-linked hyaluronic acid product Download PDF

Info

Publication number
WO2012144678A1
WO2012144678A1 PCT/KR2011/003070 KR2011003070W WO2012144678A1 WO 2012144678 A1 WO2012144678 A1 WO 2012144678A1 KR 2011003070 W KR2011003070 W KR 2011003070W WO 2012144678 A1 WO2012144678 A1 WO 2012144678A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
drug delivery
delivery composition
drug
hydrogel
Prior art date
Application number
PCT/KR2011/003070
Other languages
French (fr)
Korean (ko)
Inventor
김은진
신일균
김동곤
Original Assignee
주식회사 엠아이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠아이텍 filed Critical 주식회사 엠아이텍
Publication of WO2012144678A1 publication Critical patent/WO2012144678A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]

Definitions

  • the present invention relates to a composition comprising a biocompatible hyaluronic acid crosslinked product.
  • hydrogels are suitable for constructing similar substrates for such tissue engineering.
  • the hydrogel's properties allow for excellent flow of nutrients into cells and product flow outside the cells to promote cell adhesion, proliferation and growth in hydrogels.
  • the main characteristics are the possibility of modifying the surface by bonding.
  • Hyaluronic acid generally has a molecular weight of about 1,000 ⁇ 10,000,000 Da and has the unique physicochemical properties and specific biological functions as mentioned above.
  • the hyaluronic acid-based biomaterial is very suitable as a tissue support for biocompatibility and cell growth induction. Nevertheless, hyaluronic acid alone is not very elastic and has a disadvantage in that it easily breaks down. Limited. In addition, the surfaces of these skeletons are so hydrophilic that they have poor adhesion and cell differentiation. For this reason, a method of modifying hyaluronic acid by mixing or crosslinking hyaluronic acid with biocompatible natural polymers such as collagen and gelatin, or by modifying hyaluronic acid with a hydrophobic group has been proposed.
  • crosslinking agent A small amount of crosslinking agent must be used to obtain biomaterials for physiological use and sufficient purification is required when using an excess of crosslinking agent. It is also important that the crosslinking agent used does not itself cause toxicity to the living body.
  • Background Art Many biocompatible polymer materials have been of interest as carriers for efficiently transporting drugs into the human body. Various techniques have been developed for the purpose of increasing the bioabsorption rate of the existing drug, or targeted drug delivery to release the drug specifically to the required area.
  • S. Patent No. 5416071 discloses a sustained release formulation of interferon, including hyaluronic acid and plasma protein, but reported that blood concentration rapidly decreased to 1/10 of the initial concentration within 24 hours.
  • hyaluronic acid microparticles were prepared, coated with a lipophilic substance such as lecithin, and then dispersed in oil to control drug release.
  • oil in water of lecithin-coated microparticles was controlled. emulsion). Therefore, there is a need for the development of formulations and compositions that exhibit excellent sustained release effects over a period of time while maintaining the physiological activity of protein drugs.
  • the present invention was created to solve the problems of the prior art as described above, it is possible to physically enclose a protein drug or anti-inflammatory drug and to control the drug release, such as inducing drug release for a certain period of time to effect the effect of the drug It is an object of the present invention to provide an excellent drug delivery composition including a hydrogel by cross-linking of hyaluronic acid polymer that maximizes and solves the cytotoxicity problem generated during crosslinking.
  • the biodegradable polymer is characterized in that it is selected from homopolymers of lactic acid having a molecular weight ranging from 6,000 to 100,000, copolymer derivatives of lactic acid and glycolic acid, or mixtures thereof.
  • the anti-inflammatory drug is characterized in that it is selected from the group consisting of pyroxicam, meloxium, ibuprofen, metoprofen, diclofenac, indomethacin, tetracycline, monocycline, doxycycline and mixtures thereof.
  • the present invention has the following effects.
  • the drug delivery composition according to the present invention may exhibit long-term persistence while the protein drug or anti-inflammatory agent maintains biological activity.
  • the drug delivery composition according to the present invention can be prepared in a biocompatible, biodegradable scaffold to control the inflammatory response that may occur when the biomaterial is inserted into the human body as a support for tissue engineering to increase histological healing power.
  • the manufacturing process for the final composition is simple and simple compared to other methods, the manufacturing cost can be much reduced.
  • 1 is a graph showing the water content according to the weight fraction of hyaluronic acid in the cross-linked hyaluronic acid / polysaccharide hydrogel component.
  • Figure 2 is a cytotoxicity test results of hyaluronic acid and cross-linked hyaluronic acid hydrogel prepared by the present invention.
  • 1% (w / v) hyaluronic acid solution was prepared and 50mM EDC (1-Ethyl-3- (3-dimethylaminopropyl) -carbodiimide) was added thereto, and the solution was stirred at 4 o C for 24 hours. Thereafter, 1% (w / v) gelatin solution was mixed, stirred well for about 5 minutes, and then crosslinked for 6 hours. pH was adjusted to 7.4.
  • 1% (w / v) hyaluronic acid solution was prepared and 50mM EDC (1-Ethyl-3- (3-dimethylaminopropyl) -carbodiimide) was added thereto, and the solution was stirred at 4 o C for 24 hours. Thereafter, the 1% (w / v) collagen solution was mixed and stirred well for about 5 minutes, and then crosslinked for 6 hours. pH was adjusted to 7.4.
  • the water content of the hydrogel was stably increased between 20 to 80% by weight of the hyaluronic acid in the crosslinked hyaluronic acid hydrogel.
  • These experimental results were confirmed in all crosslinked hydrogels such as gelatin, chitosan and collagen. This confirms that the basic swelling characteristics that should be present as drug carriers are relatively well implemented.
  • aqueous solution was prepared by using albumin powder at a constant concentration.
  • the crosslinked hyaluronic acid hydrogel was placed therein so that all of the albumin solution was absorbed into the hydrogel.
  • the loading amount of albumin could be adjusted by changing the initial albumin concentration in aqueous solution.
  • Albumin-containing hyaluronic acid hydrogel was dried for 24 hours.
  • the crosslinked hyaluronic acid / gelatin hydrogel prepared as in Preparation Example 1 was placed in an aqueous albumin solution so that all the albumin solution was absorbed into the hydrogel.
  • the crosslinked hyaluronic acid collagen hydrogel containing albumin was dried for 24 hours.
  • the crosslinked hyaluronic acid / chitosan hydrogel prepared as in Preparation Example 3 was placed in an aqueous albumin solution so that all the albumin solutions were absorbed into the hydrogel.
  • Albumin-sealed crosslinked hyaluronic acid / collagen hydrogel was dried for 24 hours.
  • the crosslinked hyaluronic acid / collagen hydrogel prepared as in Preparation Example 4 was placed in an albumin aqueous solution so that all the albumin solutions were absorbed into the hydrogel.
  • the crosslinked hyaluronic acid collagen hydrogel containing albumin was dried for 24 hours.
  • the albumin-containing crosslinked hyaluronic acid / gelatin hydrogel was placed in PBS at 37 ° C. and a predetermined amount of solution was taken at a predetermined time to measure the amount of albumin released from the hyaluronic acid hydrogel using a UV spectrometer (FIG. 3).
  • a 1% w / v hyaluronic acid solution was prepared at room temperature, followed by adding 1 mol% adipic dihydrazide and mixing at room temperature to proceed the crosslinking reaction.
  • the cross-linked hyaluronic acid prepared by using adipic dihydrazide (AD) as a crosslinking agent was sufficiently washed with distilled water and then crosslinked hyaluronic acid was dried in a vacuum dryer and subjected to cytotoxicity experiments in the same manner as in Experimental Example 2. ( Figure 2)
  • hyaluronic acid cross-linked using adipic dihydrazide (AD) and poly (ethylene glycol) diglycidyl ether (PEGDE) as crosslinking agents showed cytotoxicity potential from very low cellular activity compared to control. Therefore, the composition according to the present invention was found to be extremely safe in order to be implanted or injected in vivo to express the pharmaceutical function.
  • hyaluronic acid / gelatin hyaluronic acid / chitosan cross-linked hydrogel prepared using EDC as shown in Figure 2, although the general differentiation and proliferation of cells after 24 hours has been confirmed using AD and PEGDE as a crosslinking agent Hyaluronic acid cross-linked products have been shown to inhibit cell proliferation due to toxicity.
  • a 1% w / v hyaluronic acid solution was prepared at room temperature, mixed with an aqueous albumin solution to prepare hyaluronic acid containing albumin, and then dried for 48 hours.
  • the amount of drug released from hyaluronic acid cross-linked hyaluronic acid prepared by the present invention shows a slowly increasing pattern over 12 hours.
  • the initial drug burst occurred in the non-crosslinked hyaluronic acid and drug mixture phase.
  • the hyaluronic acid / polysaccharide cross-linked hydrogel as shown in Figure 4 when changing the weight fraction of hyaluronic acid in the cross-linked hydrogel was confirmed the effect on drug release.
  • the weight fraction of hyaluronic acid in the cross-linked hydrogel is 30 to 80%, the drug is slowly released over 12 hours, but when 20% or less, or 90% or more, it was confirmed that the drug release mechanism was not expressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dermatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides a drug delivery composition comprising: a protein drug or an anti-inflammatory drug in a carrier or a support essentially comprising a polysaccharide such as a polysaccharide and the like used in a pharmaceutical dosage form such as in an injectable form and the like or in a preparation for tissue engineering; and a cross-linked product of hyaluronic acid, a polysaccharide, and a biocompatible polymer for controlling the release amount. According to the present invention, the drug delivery composition can show an extended release property, improves tissue engineering healing, is safe, and can reduce manufacturing costs.

Description

생체적합성 히알루론산 가교물을 포함하는 약물 전달 조성물Drug Delivery Compositions Including Biocompatible Hyaluronic Acid Crosslinks
본 발명은 생체적합성 히알루론산 가교물을 포함하는 조성물에 관한 것이다.The present invention relates to a composition comprising a biocompatible hyaluronic acid crosslinked product.
히알루론산(hyaluronic acid)은 1934년 소 눈의 유리체로부터 이전에 알려지지 않던 새로운 성분을 추출해냄으로써 시작되었다. 히알루론산이란 이름은 유리막체(hyaloid)와 우론산(uronic acid)이라는 뜻으로 붙인 이름으로, 콘드로이친 설페이트 등과 같은 중요한 뮤코다당류이다. 이 성분은 동물의 유리체, 관절액, 연골, 피부 등에 많이 존재하는 성분으로 많은 양의 물과 결합하여 겔 상태가 되어 관절의 윤활작용이나 피부의 유연성등에 관여하며 점성이 크므로 세균의 침입이나 독물의 피부 침투를 막는데에도 중요한 역할을 하는 것으로 알려져 있다. 피부조직에서 히알루론산은 콜라겐, 엘라스틴, 섬유조직 사이에 들어 있는 젤 상태의 물질이다. 히알루론산은 살아 있는 유기체에 자연상태로 존재하는 성분으로 특히 인체의 여러부분에 존재한다. 특히 피부에 많이 존재하여 피부를 탄력있게 하고 볼륨을 만드는 역할을 하는데 만약 히알루론산이 부족하면 피부가 건조하고 탄력이 없고 주름이 지게 된다. 근래에 이를 이용하여 주름을 방지하기 위한 주사약으로 널리 이용되기도 한다. 주름과 같이 골이 진 피부의 볼륨을 보충하기 위한 필터로 대표적인 것이 콜라겐과 히알루론산이다. 또한 현재 필터로 이 두 종류가 가장 많이 사용되어 지고 있는데 주사 또는 캡슐제나 화장품등으로 만들어져서 이용되어 진다. 히알루론산 성분은 피부에도 좋은 역할을 하지만 골 관절염 치료에 더 중요한 역할을 하는데 히알루론산은 뼈와 뼈 사이에 완충작용을 하는 연골과 관절을 부드럽게 하도록 관절에서 분비되는 연골 활액의 한 부분이라고 할 수 있으며 연골조직에서 히알루론산은 분자간의결합을 도와서 관절의 움직임과 무게에 잘 견뎌내도록 연골을 보강해 주는 역할을 하기도 한다.Hyaluronic acid began in 1934 by extracting a previously unknown new ingredient from the vitreous of the bovine eye. The name hyaluronic acid is used to mean hyaloid and uronic acid, and it is an important mucopolysaccharide such as chondroitin sulfate. This component is present in animal vitreous, joint fluid, cartilage, skin, etc. It is combined with a large amount of water and becomes a gel state. It is involved in lubrication of joints and flexibility of the skin. It is also known to play an important role in preventing skin penetration. In skin tissues, hyaluronic acid is a gel-like substance between collagen, elastin, and fibrous tissue. Hyaluronic acid is a natural component of living organisms, especially in many parts of the human body. In particular, it exists in the skin to make the skin elastic and make volume. If hyaluronic acid is insufficient, the skin becomes dry, elastic and wrinkled. Recently, it is widely used as an injection medicine to prevent wrinkles. Collagen and hyaluronic acid are two typical filters to replenish the volume of boned skin such as wrinkles. In addition, these two types are the most commonly used as a filter and are made by injection or capsule or cosmetics. Hyaluronic acid is also good for the skin, but plays a more important role in the treatment of osteoarthritis. Hyaluronic acid is part of the cartilage synovial fluid secreted from the joints to soften the cartilage, which buffers the bones between the bones and the joints. In cartilage tissues, hyaluronic acid helps to bond between molecules and reinforces cartilage to withstand joint movement and weight.
히알루론산은 글루크로닉산 (glucuronic acid)와 아세틸글루코스아민(acetylglucosamine)으로 구성된 선형 폴리사카리드로서 세포외기질(extracellular matrix, ECM), 관절의 윤활액(synovial fluid), 연골을 구성하는 지지체에 존재하는 글리코스아미노 글리칸(glycosamino glycan)중의 하나이다. 히알루론산은 또한 세포의 운동성, 세포분화, 상처치유 및 암 전이에 있어서 시그널 분자(signaling molecule)로서 중요한 역할을 하고 있다. 히알루론산과 가교된 히알루론산의 특이한 점탄성적인 성질은 관절 윤활액으로서의 그 중요성을 더하고 있다. 또한 면역적인 측면에 있어서도 히알루론산은 전혀 문제를 가지고 있지 않고 있기 때문에 조직공학(tiussue engineering)과 약물전달시스템(drug delivery system)에 이용되어질 수 있는 우수한 생체적합성을 가진 생체재료이다. 히알루론산과 히알루론산 올리고사카리드는 용액상에서 3차원적인 구조를 가지고 있으며 이로 인해 광범위한 내부 히드로겐 결합, 고분자 사슬의 제한적인 유동성, 독특한 2차(helical), 3차(coiled coil)반응을 유발하게 된다. Hyaluronic acid is a linear polysaccharide composed of glucuronic acid and acetylglucosamine, which is present in the extracellular matrix (ECM), synovial fluid of joints, and scaffolds that make up cartilage. One of the glycosamino glycans. Hyaluronic acid also plays an important role as a signaling molecule in cell motility, cell differentiation, wound healing and cancer metastasis. The unique viscoelastic properties of hyaluronic acid crosslinked with hyaluronic acid add to its importance as joint lubricants. In addition, since hyaluronic acid has no problem in terms of immunity, it is a biomaterial having excellent biocompatibility that can be used for tissue engineering and drug delivery system. Hyaluronic acid and hyaluronic acid oligosaccharides have a three-dimensional structure in solution, which causes a wide range of internal hydrogen bonds, limited fluidity of the polymer chains, and unique helical and coiled coil reactions. do.
하이드로젤은 화학적 결합이나 정전기적 힘에의해 상호작용하는 이 분자들은 친수성 가교 결합된 중합체를 형성하고 건조중량의 수백배 범위의 양으로 물을 흡수 할수 있다. 하이드로젤은 우수한 생체적합성과 친수성 특성 등으로 인해 제약 및 의학분야에서 많은 이용이 가능한 것으로 알려져 있다. 한편 하이드로젤은 손상된 인체조직을 치유하는 목적으로 하는 조직공학 기질의 제조에 훌륭한 후보이다. 조직공학은 인간의 손상된 조직의 재생 또는 이들의 재현을 달성하는데 유용한 기술의 개발을 다루는 실질적으로 새로운 과학분야이다. 회복중인 조직세포, 예를 들면 섬유아세포, 연골세포, 골아세포 등,의 성장과 분화 및 세포외 기질의 침착이 가능하도로록 3차원적인 구조, 특히 다공성 미세구조를 통하여 세포는 부착 및 증식하여 새로운 세포외 기질을 형성시킬수 있다. 이들 3차원구조는 통상적으로 지지체(scaffold)라고 하며 하이드로젤은 이러한 조직공학을 위한 유사기질을 구성하는데 적합하다. 특히 하이드로젤 내에서 세포의 부착,증식,성장을 촉진하기 위하여 영양분의 세포로의 우수한 유동과 세포외부로 산물의 유동을 가능하게 하는 하이드로젤의 특성, 우수한 생체적합성과 생체 흡수성, 공유결합이나 물리적 결합등으로 그 표면을 개질할수 있는 가능성 등이 그 주요한 특성들이라 할 수 있다.Hydrogels interact by chemical bonds or electrostatic forces to form hydrophilic cross-linked polymers and absorb water in amounts ranging from several hundred times their dry weight. Hydrogels are known to be widely used in the pharmaceutical and medical fields due to their excellent biocompatibility and hydrophilic properties. Hydrogels, on the other hand, are excellent candidates for the manufacture of tissue engineering substrates aimed at healing damaged human tissue. Tissue engineering is a substantially new field of science dealing with the development of techniques useful for achieving regeneration of damaged tissues or reproduction of humans. Cells adhere and proliferate through three-dimensional structures, particularly porous microstructures, to allow for the growth and differentiation of restoring tissue cells, such as fibroblasts, chondrocytes, osteoblasts, etc., and deposition of extracellular matrix. It can form new extracellular matrix. These three-dimensional structures are commonly referred to as scaffolds and hydrogels are suitable for constructing similar substrates for such tissue engineering. Particularly, the hydrogel's properties allow for excellent flow of nutrients into cells and product flow outside the cells to promote cell adhesion, proliferation and growth in hydrogels. The main characteristics are the possibility of modifying the surface by bonding.
히알루론산은 일반적으로 1,000 ~ 10,000,000 Da 정도의 분자량을 가지고 있으며 앞서 언급한 바와 같이 독특한 물리화학적 성질과 특이한 생물학적 기능을 가지고 있다. Hyaluronic acid generally has a molecular weight of about 1,000 ~ 10,000,000 Da and has the unique physicochemical properties and specific biological functions as mentioned above.
히알루론산은 세포조직의 항상성(hemostasis), 관절의 윤활작용에 주요한 역할을 담당하고 있으며 세포표면에서 특정 단백질과 특이성 결합을 하고 이를 통해 세포의 유동성, 성장인자 작용, 염증반응 등에서도 매우 중요한 역할을 한다. Hyaluronic acid plays a major role in hemostasis of the tissues and lubrication of the joints, and it binds to specific proteins on the surface of the cells and plays a very important role in cell fluidity, growth factors, and inflammatory reactions. do.
조직공학 적용에는 관절 연골재생을 위한 생물분해성 스펀지 또는 생물분해성 필름을 이용하거나 또는 화상, 질병에 의해 유발되는 상처를 보호하거나 이를 치유하는 가능성이 포함된다. 이러한 경우 상처에 하이드로젤을 적용함으로써 빠른 재생활성을 뒷받침하는 할 수 있으며 이들 섬유아세포는 골격에 부착된 이후 새로운 ECM을 빠르게 합성하고 상처를 치유한다. 유사한 피부 질환제는 상처로부터 감염위험을 감소시킬 수 있는 일시적 보호기능을 수행한다. 약제로 선택적으로 채워진 골격은 약제전달기능을 수행하고 실례로서 상처의 유행에 따라 항생제 또는 성장인자의 방출을 지연시킬 수 있다. 히알루론산은 동물조직에서 널리 분포하는 세포외기질의 기초 성분인데, 히알루론산은 세포증식과 분화를 조절하는 기능을 한다. 이는 중요한 생물학적 공정, 앞에서 언급한 세포이동성, 조직치유에 관여하며 이는 염증반응을 조절한다. 히알루론산은 세포표면에 위치하는 특정 수용체와 상호작용으로써 종양성장에 관여하는 것으로 확인되었다. 이는 상기 개질 히알루론산이 항종양 활성을 갖는 거대분자 프로드러그(prodrug)의 생산에서 가용성 담체로 적용될 가능성에 대한 많은 관심을 끌고 있다. Tissue engineering applications include the possibility of using biodegradable sponges or biodegradable films for joint cartilage regeneration or to protect or heal wounds caused by burns, diseases. In this case, hydrogel may be applied to the wound to support rapid regenerative activity, and these fibroblasts rapidly synthesize new ECM and heal the wound after attaching to the skeleton. Similar skin disease agents perform temporary protective functions that can reduce the risk of infection from wounds. Skeletons that are selectively filled with drugs can perform drug delivery and, for example, delay the release of antibiotics or growth factors depending on the prevalence of the wound. Hyaluronic acid is a basic component of the extracellular matrix widely distributed in animal tissues. Hyaluronic acid functions to regulate cell proliferation and differentiation. It is involved in important biological processes, the aforementioned cell mobility and tissue healing, which regulate the inflammatory response. Hyaluronic acid has been shown to be involved in tumor growth by interacting with specific receptors located on the cell surface. This draws much attention to the possibility of the modified hyaluronic acid being applied as a soluble carrier in the production of macromolecular prodrugs having antitumor activity.
상기의 내용으로부터 히알루론산에 기초한 생체 재료는 생체적합성과 세포성장유도 물질로서 유용한 조직공학적 지지체로 매우 적합하다 하지만 그럼에도 히알루론산은 단독으로 그다지 탄력적이지 않고 쉽게 부서지는 골격을 발생시키는 단점으로 그 사용이 제한된다. 또한 이들 골격의 표면은 친수성이 너무 강하여 부착과 세포분화가 불량하다. 이러한 이유로 히알루론산을 콜라겐, 겔라틴과 같은 생체적합성 천연고분자 등과 함께 혼합하거나 가교 결합함으로써, 또는 히알루론산을 소수성기로 변형함으로써 히알루론산을 개질하는 방법 등이 제안되고 있다. 이와 비슷하게 히알루론산의 표면에 관능기를 도입함으로써 다당류 분자내의 화학적 개질은 히알루론산내에 도입된 약물의 방출속도를 늦추거나 하는 제약학적 약물방출제어 시스템(Drug Delivery System, DDS)을 얻고자하는 목표이며 여기서 약제는 히알루론산에 직접 화학적으로 결합된 상태로 작용부위에 운반되고 이의 생체이용효율을 증가 시킬수 있는 방법이거나 혹은 화학적으로 개질된 히알루론산에 물리적으로 약제가 봉입되어 그 개질된 히알루론산의 특성에 따라 약물의 방출기전을 제어할 수 있는 시스템이다. 개질되지 않은 히알루론산은 그 자체로도 약물전달 및 외과적 수술에 중요한 기능을 한다. 히알루론산은 안과적 약물방출에 있어서 보조제로서 역할을 하고 있다(Mucoadhesive ophthalmic vehicles: evaluation of polymeric low-viscosity formulations, J. Ocular Pharm. 10 (1994) 83-92). 또한 점막 조직을 통한 약물과 단백질 흡수를 향상시키는 것이 발견되었다(Efficacy of hyaluronic acid / nonsteroidal anti-in- flammatory drug systems in preventing postsurgical tendon adhesions, J. Biomed. Mater. Res. (Appl. Biomater.) 38 (1997) 25-33). 히알루론산은 약물전달시스템, 조직공학적 적용에 있어서 가능성이 많은 생체적합성, 생분해성 고분자 재료이다. 히알루론산 자체의 생체적합성, 생분해성, 비면역성등의 성질을 그대로 유지하면서 화학적 개질을 통해 물리화학적 성질을 향상시키고 in vivo에서의 분해도를 변화시킴으로써 적용되는 상황에 따라 그 물리화학적 성질을 변형시킬 수 있다. 히알루론산의 카르복실기의 반응, 약물방출기전 조절을 위한 고분자-약물 결합, 하이드로젤로 가교화, 표면 코팅 등의 방법 등과 다른 재료와 혼합한 조성물에 대해서도 논의가 되었다. 많은 히알루론산 유도체 (예를 들어, 자체 가교화된 히알루론산)는 in vitro, in vivo에서의 평가가 이루어졌다. 히알루론산과 다양한 약물과의 에스테르화반응은 약물방출제어 및 조직공학에 사용가능한 새로운 물리화학적 성질을 제공하는 것으로 알려져 있다.From the above, the hyaluronic acid-based biomaterial is very suitable as a tissue support for biocompatibility and cell growth induction. Nevertheless, hyaluronic acid alone is not very elastic and has a disadvantage in that it easily breaks down. Limited. In addition, the surfaces of these skeletons are so hydrophilic that they have poor adhesion and cell differentiation. For this reason, a method of modifying hyaluronic acid by mixing or crosslinking hyaluronic acid with biocompatible natural polymers such as collagen and gelatin, or by modifying hyaluronic acid with a hydrophobic group has been proposed. Similarly, by introducing functional groups on the surface of hyaluronic acid, chemical modification in polysaccharide molecules aims to obtain a drug delivery system (DDS) that slows the release rate of drugs introduced into hyaluronic acid. The drug can be transported to the site of action in the state of being directly chemically bound to hyaluronic acid and can increase its bioavailability, or it can be physically enclosed in chemically modified hyaluronic acid and according to the characteristics of the modified hyaluronic acid. It is a system that can control the release mechanism of drug. Unmodified hyaluronic acid, by itself, plays an important role in drug delivery and surgical operations. Hyaluronic acid plays a role as an adjuvant in ophthalmic drug release (Mucoadhesive ophthalmic vehicles: evaluation of polymeric low-viscosity formulations, J. Ocular Pharm. 10 (1994) 83-92). It has also been found to enhance drug and protein absorption through mucosal tissues (Efficacy of hyaluronic acid / nonsteroidal anti-in-flammatory drug systems in preventing postsurgical tendon adhesions, J. Biomed. Mater. Res. (Appl. Biomater.) 38 (1997) 25-33). Hyaluronic acid is a biocompatible, biodegradable polymeric material that is likely to be used in drug delivery systems and tissue engineering applications. While maintaining the biocompatibility, biodegradability, and non-immunity properties of hyaluronic acid itself, the physical and chemical properties can be modified according to the applied situation by improving the physicochemical properties through chemical modification and changing the resolution in vivo. have. The composition of hyaluronic acid and the reaction of carboxyl groups, polymer-drug coupling for controlling drug release mechanisms, crosslinking with hydrogels, surface coating, and the like and other compositions were also discussed. Many hyaluronic acid derivatives (eg, self-crosslinked hyaluronic acid) have been evaluated in vitro and in vivo. The esterification of hyaluronic acid with various drugs is known to provide new physicochemical properties that can be used for drug release control and tissue engineering.
생체 내에서 적용시에 충분한 강도를 유지하는 히알루론산 유도체를 얻는 것은 쉬운 일이 아니다. 가장 좋은 방법은 고분자 하이드로젤 제조과정에 약물이나 세포에 문제를 야기하지 않는 정도의 온도 조건에서 히알루론산의 가교를 높이는 방법이다.It is not easy to obtain hyaluronic acid derivatives that maintain sufficient strength when applied in vivo. The best method is to increase the crosslinking of hyaluronic acid at temperature conditions that do not cause drug or cell problems in the polymer hydrogel manufacturing process.
생리학적인 사용을 위해 생체재료를 얻기 위해서는 소량의 가교제를 사용해야하며 과량의 가교제를 사용 시 충분한 정제가 필요하다. 또한 사용되는 가교제는 자체로 생체에 독성을 일으키지 않는 것이 중요하다. 종래에 약물을 효율적으로 인체 내로 운반하기 위한 전달체로서, 많은 생체적합 고분자 재료가 관심을 받아왔다. 이는 기존의 약물의 생체흡수율을 증가시키거나, 필요한 부위에만 특이적으로 약물을 방출시키고자하는 표적지향적 약물전달 등의 목적으로 다양한 기술이 개발되어 왔다. A small amount of crosslinking agent must be used to obtain biomaterials for physiological use and sufficient purification is required when using an excess of crosslinking agent. It is also important that the crosslinking agent used does not itself cause toxicity to the living body. Background Art Many biocompatible polymer materials have been of interest as carriers for efficiently transporting drugs into the human body. Various techniques have been developed for the purpose of increasing the bioabsorption rate of the existing drug, or targeted drug delivery to release the drug specifically to the required area.
가교된 히알루론산 유도체를 위한 방법들이 많은 문헌에서 제시하였다. 즉, 디비닐술폰, 비스에폭사이드, 비스할라이드, 포름알데히드 등과 같이 작용기가 두 개인 화합물을 사용하여 제조하는 방법들이 보고 되고 있는데 미국특허 제4582865호는 히알루론산의 가교를 위해 디비닐술폰을 사용한 예를 개시하고 있으며 미국특허 제 4713448호에는 포름알데히드를 이용하여 가교반응을 수행한 것이 보고되어 있다. 이들은 미반응 화학물질의 독성 및 미반응 물질로 인해 고순도 생체적합성 물질로 활용하기에는 무리가 있다. 또 미국특허 제 5356883호는 다양한 카르보디이미드를 사용하여 O-아실우레아 또는 N-아실우레아로 카르복실기가 변형된 히알루론산 유도체 하이드로젤의 합성예를 개시하고 있다. 하지만 이들 특허에서의 방법으로 제조된 히알루론산 가교물은 분해효소에 대한 안정성이 낮은 문제점이 있다. 미국특허출원공개 제 2006/0105022A1호에는 물성을 향상시키기위해 히알루론산을 과량사용하고 가교제의 사용비율을 낮추면서 우수한 점탄성을 나타내는 히알루론산 가교물의 제조가 개시되어 있다. 이 방법에서는 가교제를 많이 첨가하여 가교결합율을 높여서 점탄성의 증대 및 장시간 조직 보정의 증대에 초점을 맞추고 있다, 이 경우 고농도로 제조하기가 용이하지 않은 단점이 있다. 또한 한국특허공개 10-2009-0013696에서는 물-알코올 혼합용매 중에서 히알루론산 또는 그의 염 또는 유도체를 카르복실기 활성화제의 존재하에 지방족 다카르복실산의 다하이드라자이드 화합물과 반응시켜 하알루론산 가교 하이드로젤을 제조하는 방법을 제시한바 있다. Luo등은(Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery, Journal of Controlled Release 69 (2000) 169-184) 히알루론산을 먼저 adipic dihydrazide 유도체로 만들고 다시 이를 폴리에틸렌 글리콜-프로피온알데히드를 이용하여 히알루론산을 가교된 하이드로젤로 제조하였으며 이러한 가교 히알루론산 하이드로젤로부터 하이드로코르티손, 프레드니솔론, 코르티손, 덱사메타손 등의 항박테리아성 약물 혹은 항염증제등의 약물방출기전을 확인한바 있다. Lee등은(An injectable hyaluronic acid-tyramine hydrogel system for protein delivery, Journal of Controlled Release 134 (2009) 186.193) 과산화수소 (H2O2)와 horseradish peroxide (HRP)를 이용하여 티라민의 산화 반응으로 히알루론산과 티라민이 결합(conjugate)된 주사투여가능한 히알루론산 하이드로젤 시스템을 개발하였고 이러한 히알루론산 젤에 리소자임이나 아밀라아제와 같은 단백질 약물의 방출속도를 조절하도록 설계하였다. 하지만 위와 같은 방법들은 목표하고자 하는 최종 물질까지 수차례의 화학반응 등을 필요로 하므로 아직 상업화에 바로 적용하기에는 어려운 문제가 남아 있다.Methods for crosslinked hyaluronic acid derivatives have been proposed in many literatures. That is, a method of preparing a compound having two functional groups, such as divinyl sulfone, bisepoxide, bishalide, formaldehyde, and the like, has been reported. US Pat. No. 4,458,865 uses divinyl sulfone for crosslinking hyaluronic acid. An example is disclosed and US Patent No. 4713448 reports crosslinking reactions using formaldehyde. Because of the toxicity and unreacted substances of unreacted chemicals, they are not suitable for use as high purity biocompatible materials. U.S. Patent No. 5356883 discloses a synthesis example of a hyaluronic acid derivative hydrogel in which a carboxyl group is modified with O-acylurea or N-acylurea using various carbodiimides. However, the hyaluronic acid cross-linked product prepared by the method of these patents has a problem of low stability to degrading enzymes. U.S. Patent Application Publication No. 2006 / 0105022A1 discloses the preparation of hyaluronic acid crosslinked products that exhibit excellent viscoelasticity while using excessive hyaluronic acid to improve physical properties and lowering the ratio of crosslinking agents. In this method, a large amount of crosslinking agent is added to increase the crosslinking rate, thereby focusing on increasing viscoelasticity and increasing long-term tissue correction. In this case, there is a disadvantage in that it is not easy to manufacture at high concentration. In addition, Korean Patent Publication No. 10-2009-0013696 discloses a hyaluronic acid crosslinked hydrogel by reacting hyaluronic acid or a salt or derivative thereof with a polyhydrazide compound of an aliphatic polycarboxylic acid in the presence of a carboxyl activator in a water-alcohol mixed solvent. It has been presented a method of preparation. Luo et al. (Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery, Journal of Controlled Release 69 (2000) 169-184) Hyaluronic acid was first made into adipic dihydrazide derivatives and then hyaluronic acid using polyethylene glycol-propionaldehyde Lonic acid was prepared with a crosslinked hydrogel and the drug release mechanism of antibacterial drugs such as hydrocortisone, prednisolone, cortisone, dexamethasone, or anti-inflammatory agent was confirmed from the crosslinked hyaluronic acid hydrogel. Lee et al. (An injectable hyaluronic acid-tyramine hydrogel system for protein delivery, Journal of Controlled Release 134 (2009) 186.193). The oxidation of tyramine with hydrogen peroxide (H 2 O 2 ) and horseradish peroxide (HRP) An injectable hyaluronic acid hydrogel system conjugated with tyramine was developed and designed to control the release rate of protein drugs such as lysozyme or amylase in the hyaluronic acid gel. However, these methods require several chemical reactions to the final material to be targeted, so there is still a problem that is difficult to apply directly to commercialization.
한국특허 10-0818659에서는 10000~2x107 분자량 히알루론산의 카르복실기를 이용하여 유리 황산화기를 도입하고 이를 약물과 함께 수용액상에서 용해시키고 기름 속 물 역에멀전(Water in oil reverse emulsion)을 형성시켜 이황화 결합에 의해 자가 가교된 100~900nm 직경의 히알루론산 나노젤을 제조하는 기술을 공지하였다. In Korean Patent 10-0818659, a free sulfate group is introduced by using a carboxyl group of 10000-2x107 molecular weight hyaluronic acid, dissolved in an aqueous solution with a drug, and a water in oil reverse emulsion is formed by disulfide bonds. It is known to manufacture a self-crosslinked hyaluronic acid nanogel of 100 ~ 900nm diameter.
한편, 단백질 약물은 다양한 질병의 치료에 유용하게 사용되지만 생체내 반감기가 짧고 흡수율이 낮아 치료효과를 내기에 한계를 갖는다. 이렇듯이 낮은 체내흡수율로 인하여 대부분 주사투여를 하며 주사투여시에도 생체내 반감기가 2~4시간으로 짧아서 반복적인 약물투여가 필요하다. 단백질제제등과 같은 거대분자 약물과 관련하여서는 폴리락티드산이나 폴리글리콜산등의 생분해성 합성고분자로서 기름 속 물 에멀젼(water in oil emulsion)으로 마이크로/나노입자 등을 제조하여 사용하거나 폴리에틸렌 글리콘(polyethylene glycol)을 이용한 PEGylation, 혹은 음이온과 양이온간의 반응을 이용하여 고분자 재료간의 complex를 이용하는 방법들이 사용되었다. 하지만 폴리락티드산이나 폴리락티드-글리콜상 공중합체를 이용하여 제조된 미세입자의 경우 고분자 재료의 소수성으로 인해 단백질 약물의 변성이 유발되어지는 단점이 있으며 체내에서 폴리락티드산의 분해시 생성되는 산으로 인해 pH가 떨어지고 약물의 변성과 응집을 촉진하게 된다. 또한 노스피 어 등의 방법은 약물 봉입율이 낮고 약물의 전달율이 낮아 효율성이 떨어진다. PEGylation 또한 전달효율이 낮고 이온성 고분자를 활용시 세포독성에 부정적 영향이 있으며 면역반응에 있어서도 안전성을 뒷받침하지 못하고 있는 실정이다. 이러한 관점에서 히알루론산등의 천연 고분자가 약물전달체로 이용가능하나 그 자체만으로는 생체내에서 분해등으로 그 점도와 밀도가 급격히 감소하여 약물보유활성을 잃어 버리게 된다.On the other hand, protein drugs are useful for the treatment of various diseases, but the short half-life and low absorption rate in vivo has a limit in producing a therapeutic effect. Due to the low body absorption rate, most of the injections are administered, and the half-life of the body is short as 2 ~ 4 hours even during the injection. Therefore, repeated drug administration is required. Regarding macromolecular drugs such as protein preparations, biodegradable synthetic polymers such as polylactic acid and polyglycolic acid are used to prepare micro / nanoparticles using water in oil emulsion, or polyethylene glycol PEGylation with (polyethylene glycol) or complexes between polymer materials using anions and cations are used. However, in the case of microparticles prepared using polylactic acid or polylactide-glycolic copolymers, there is a disadvantage in that degeneration of protein drugs is caused due to the hydrophobicity of the polymer material. The resulting acid lowers the pH and promotes denaturation and aggregation of the drug. Norpeare's method is less efficient because of low drug loading and low drug delivery. PEGylation also has low delivery efficiency and negative effects on cytotoxicity when using ionic polymers and does not support safety in immune responses. From this point of view, natural polymers such as hyaluronic acid can be used as drug carriers, but in itself, their viscosity and density are drastically reduced due to decomposition in vivo, and thus drug retention activity is lost.
Glen등은 (Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives, Journal of controlled release 53 (1998) 93-103) 가교 히알루론산에 항염증제인 하이드로코르티손 헤미썩시네이트 (hydrocortisone hemisuccinate)를 화학적으로 결합시켜 그 방출거동을 제시한바 있다. 일반적으로 히알루론산의 점도가 높을 수록 약물의 지속 방출이 효과적이다. 그러나 히알루론산의 함량이 높은 조성물의 경우 점성이 너무 높아서 환자에게 주사투여하는 것이 곤란하다. 일본특허공개 제1987-287041호에서는 히알루론산을 포함하는 인슐린 제제를 토끼에 주사할 경우 인슐린에 의한 글루코스 혈중농도 강하 효과가 지속되지 않는 것으로 보고 한바 있다. 또한 미국특허 제5416071호에는 히알루론산과 혈장단백질을 포함하는 인터페론의 지속 방출제형이 제시되었으나 24시간이내에 그 혈중농도가 초기 농도의 1/10으로 급격히 감소하는 것으로 보고한바 있다. 미국특허공개 제2003/0064105호에서는 히알루론산 미세입자를 제조하고 이를 레시틴과 같은 친유성 물질로 피복한 후 오일에 분산시킴으로써 약물방출을 제어하였으며 더불어 레시틴-코팅 미세 입자의 물속 기름에멀젼(oil in water emulsion)도 개시한바 있다. 이에 단백질 약물의 생리학적 활성을 유지하면서 일정기간에 탁월한 지속방출효과를 나타내는 제형 및 조성물의 개발이 필요하다.Glen et al. (Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives, Journal of controlled release 53 (1998) 93-103). The release behavior has been suggested by chemical bonding. In general, the higher the viscosity of hyaluronic acid, the more effective the sustained release of the drug. However, in the case of a composition having a high content of hyaluronic acid, the viscosity is so high that it is difficult to administer to the patient. In Japanese Patent Laid-Open No. 1987-287041, it has been reported that when insulin is injected into a rabbit, an insulin preparation containing hyaluronic acid does not sustain a glucose-lowering effect by insulin. In addition, U. S. Patent No. 5416071 discloses a sustained release formulation of interferon, including hyaluronic acid and plasma protein, but reported that blood concentration rapidly decreased to 1/10 of the initial concentration within 24 hours. In U.S. Patent Publication No. 2003/0064105, hyaluronic acid microparticles were prepared, coated with a lipophilic substance such as lecithin, and then dispersed in oil to control drug release. In addition, oil in water of lecithin-coated microparticles was controlled. emulsion). Therefore, there is a need for the development of formulations and compositions that exhibit excellent sustained release effects over a period of time while maintaining the physiological activity of protein drugs.
본 발명은 상기와 같은 종래기술의 문제를 해결하기 위해 창출된 것으로 단백질 약물 혹은 항염증 약물을 물리적으로 봉입하는 것이 가능하며 일정기간 동안 약물 방출을 유도하는 등의 약물 방출을 조절하여 약물의 효과를 극대화하고, 가교시 발생했던 세포독성 문제를 해결한 히알루론산 고분자의 가교에 의한 하이드로젤을 포함하는 우수한 약물 전달 조성물을 제공하는데 그 목적이 있다.The present invention was created to solve the problems of the prior art as described above, it is possible to physically enclose a protein drug or anti-inflammatory drug and to control the drug release, such as inducing drug release for a certain period of time to effect the effect of the drug It is an object of the present invention to provide an excellent drug delivery composition including a hydrogel by cross-linking of hyaluronic acid polymer that maximizes and solves the cytotoxicity problem generated during crosslinking.
이러한 목적을 달성하기 위하여 본 발명의 일 태양으로 약물 전달 조성물은 주사제 등의 약제학적 제형 또는 조직공학용 제제로 사용되는 히알루론산 등 폴리사카리드를 필수적으로 포함하는 담체 또는 지지체에 단백질 약물 또는 항염제 약물을 함유하고 그 방출량을 제어 조절하기 위하여 폴리사카리드인 히알루론산 및 생체적합성 고분자와의 가교물로 구성되어 있다.In one aspect of the present invention, a drug delivery composition comprises a protein drug or an anti-inflammatory drug in a carrier or a support, which essentially includes a polysaccharide, such as hyaluronic acid, which is used as a pharmaceutical formulation such as an injection or a formulation for tissue engineering. And a crosslinked product with hyaluronic acid, a polysaccharide, and a biocompatible polymer in order to control and control the release amount thereof.
상기 히알루론산의 분자량이 30,000 달톤(Da) 내지 3,000,000 달톤(Da)인 것을 특징으로 한다.The molecular weight of the hyaluronic acid is characterized in that 30,000 Daltons (Da) to 3,000,000 Daltons (Da).
상기 약물 전달 조성물은, 히알루론산의 0.5 내지 10 중량% 수용액에서 EDC(1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide)를 사용하여 히알루론산의 카르복실기와 다른 생체적합성 고분자 및 생분해성 고분자로 이루어진 군에서 선택된 어느 하나와의 아미드 반응에 의해 가교되어진 히알루론산 하이드로젤; 및 단백질 약물 또는 비스테로이드성 항염증제; 를 함유하는 것을 특징으로 한다.The drug delivery composition comprises a carboxyl group of hyaluronic acid and other biocompatible polymers and biodegradable polymers using EDC (1-Ethyl-3- (3-dimethylaminopropyl) -carbodiimide) in a 0.5 to 10% by weight aqueous solution of hyaluronic acid. Hyaluronic acid hydrogels crosslinked by an amide reaction with any one selected from the group; And protein drugs or nonsteroidal anti-inflammatory agents; It is characterized by containing.
상기 생체적합성 고분자는 메틸셀룰로즈, 카복시메틸셀룰로즈, 하이드록시 프로필메틸셀룰로즈, 알기네이트, 키토산, 젤라틴, 콜라겐 및 그 혼합물 또는 이들의 유도체로 이루어진 군 중에서 선택된 것임을 특징으로 한다.The biocompatible polymer is characterized in that selected from the group consisting of methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose, alginate, chitosan, gelatin, collagen and mixtures thereof or derivatives thereof.
상기 생분해성 고분자는, 분자량 6,000 내지 100,000 범위의 락트산의 단독중합체, 락트산과 글리콜산의 공중합체 유도체 또는 이들의 혼합물 중에서 선택된 것임을 특징으로 한다.The biodegradable polymer is characterized in that it is selected from homopolymers of lactic acid having a molecular weight ranging from 6,000 to 100,000, copolymer derivatives of lactic acid and glycolic acid, or mixtures thereof.
상기 단백질 약물은 알부민, 인슐린, erythropoietin, 인슐린 성장인자, 혈소판 유래 성장인자, 변형 성장인자 알파, 변형 성장인자 베타, 뼈형성 단백질 및 이들의 혼합물로 이루어진 군 중에서 선택된 것임을 특징으로 한다.The protein drug is characterized in that selected from the group consisting of albumin, insulin, erythropoietin, insulin growth factor, platelet-derived growth factor, modified growth factor alpha, modified growth factor beta, bone-forming protein and mixtures thereof.
상기 항염제 약물은 피록시캄, 멜록시캄, 이부프로펜, 켑토프로펜, 디클로페낙, 인도메타신, 테트라사이클린, 모노사이클린, 독시사이클린 및 이들의 혼합물로 이루어진 군 중에서 선택된 것임을 특징으로 한다.The anti-inflammatory drug is characterized in that it is selected from the group consisting of pyroxicam, meloxium, ibuprofen, metoprofen, diclofenac, indomethacin, tetracycline, monocycline, doxycycline and mixtures thereof.
상기 가교된 히알루론산 하이드로젤 중 히알루론산의 함량이 30 내지 80 중량%인 것을 특징으로 한다.The content of hyaluronic acid in the cross-linked hyaluronic acid hydrogel is characterized in that 30 to 80% by weight.
이상에서 설명한 바와 같이 본 발명에 의하면 다음과 같은 효과가 있다.As described above, the present invention has the following effects.
첫째, 본 발명에 따른 약물 전달 조성물은 단백질 약물 또는 항염증 치료제가 생물학적 활성을 유지하면서 장기 지속성을 나타낼 수 있다.First, the drug delivery composition according to the present invention may exhibit long-term persistence while the protein drug or anti-inflammatory agent maintains biological activity.
둘째, 본 발명에 따른 약물 전달 조성물은 주사용 제제 등의 제형으로 제조될 수 있다.Second, the drug delivery composition according to the present invention may be prepared in a formulation such as an injectable preparation.
셋째, 본 발명에 따른 약물 전달 조성물은 생체적합성, 생분해성 스캐폴드로 제조되어 조직공학용 지지체로써 그 생체재료가 인체에 삽입되었을 때 일어날 수 있는 염증반응을 제어하여 조직공학적 치유력을 증대시킬 수 있다.Third, the drug delivery composition according to the present invention can be prepared in a biocompatible, biodegradable scaffold to control the inflammatory response that may occur when the biomaterial is inserted into the human body as a support for tissue engineering to increase histological healing power.
넷째, 최종 조성물의 세포독성이 기존에 제시되어 온 가교 히알루론산 하이드로젤 제제방법보다 더 안전하다.Fourth, the cytotoxicity of the final composition is safer than the crosslinked hyaluronic acid hydrogel preparation methods that have been proposed previously.
다섯째, 최종 조성물을 위한 제조과정이 다른 방법에 비해 단순하고 간단하여 제조비용이 훨씬 절감될 수 있다.Fifth, the manufacturing process for the final composition is simple and simple compared to other methods, the manufacturing cost can be much reduced.
도 1은 가교된 히알루론산/폴리사카리드 하이드로젤 성분 중 히알루론산의 중량 분율에 따른 함수율을 나타내는 그래프이다.1 is a graph showing the water content according to the weight fraction of hyaluronic acid in the cross-linked hyaluronic acid / polysaccharide hydrogel component.
도 2는 히알루론산과 본 발명에 의해 제조된 가교 히알루론산 하이드로젤의 세포독성 실험 결과이다.Figure 2 is a cytotoxicity test results of hyaluronic acid and cross-linked hyaluronic acid hydrogel prepared by the present invention.
도 3은 알부민을 가교된 히알루론산, 히알루론산/겔라틴, 히알루론산/키토산, 히알루론산/콜라겐 히드로젤에 봉입 후 방출되어지는 양을 시간에 따라 확인한 결과이다.Figure 3 is the result of confirming the amount released after the addition of albumin to the cross-linked hyaluronic acid, hyaluronic acid / gelatin, hyaluronic acid / chitosan, hyaluronic acid / collagen hydrogel over time.
도 4는 본 발명에 의해 히알루론산/겔라틴 가교 하이드로젤을 제조시에 가교 하이드로젤 중 히알루론산의 중량분율을 변화시켰다.이 후 제조된 각각의 가교 하이드로젤에 알부민을 봉입 후 방출되어지는 알부민 양을 시간에 따라 확인한 결과이다. FIG. 4 shows the weight fraction of hyaluronic acid in the crosslinked hydrogel when the hyaluronic acid / gelatin crosslinked hydrogel is prepared according to the present invention. Albumin is released after the albumin is added to each of the prepared crosslinked hydrogels. This is the result of checking the quantity over time.
이하, 본 발명을 실시예에 의해 상세히 설명한다. Hereinafter, the present invention will be described in detail by way of examples.
본 발명은 실시예를 참조로 더욱 상세히 설명되지만 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.The present invention is described in more detail with reference to the examples, but it is only illustrative of the present invention, and the content of the present invention is not limited by the following examples.
제조예 1Preparation Example 1
히알루론산 용액을 1%(w/v) 만들고 여기에 50mM EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide)를 넣고 잘 흔들어주면서 4oC에서 24시간 동안 두었다. 그 후 1%(w/v) 젤라틴 용액을 혼합하여 약 5분간 잘 저어 준 후 6시간동안 가교 반응을 진행하였다. pH는 7.4로 맞추었다. 1% (w / v) hyaluronic acid solution was prepared and 50mM EDC (1-Ethyl-3- (3-dimethylaminopropyl) -carbodiimide) was added thereto, and the solution was stirred at 4 o C for 24 hours. Thereafter, 1% (w / v) gelatin solution was mixed, stirred well for about 5 minutes, and then crosslinked for 6 hours. pH was adjusted to 7.4.
제조예 2Preparation Example 2
히알루론산 용액을 1%(w/v) 만들고 여기에 50mM EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide)를 넣고 잘 흔들어주면서 4oC에서 24시간 동안 두었다. 그 후 1%(w/v) 키토산 용액을 혼합하여 약 5분간 잘 저어 준 후 6시간동안 가교 반응을 진행하였다. pH는 7.4로 맞추었다. 1% (w / v) hyaluronic acid solution was prepared and 50mM EDC (1-Ethyl-3- (3-dimethylaminopropyl) -carbodiimide) was added thereto, and the solution was stirred at 4 o C for 24 hours. Thereafter, a 1% (w / v) chitosan solution was mixed and stirred well for about 5 minutes, followed by crosslinking reaction for 6 hours. pH was adjusted to 7.4.
제조예 3Preparation Example 3
히알루론산 용액을 1%(w/v) 만들고 여기에 50mM EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide)를 넣고 잘 흔들어주면서 4oC에서 24시간 동안 두었다. 그 후 1%(w/v) 콜라겐 용액을 혼합하여 약 5분간 잘 저어 준 후 6시간동안 가교 반응을 진행하였다. pH는 7.4로 맞추었다. 1% (w / v) hyaluronic acid solution was prepared and 50mM EDC (1-Ethyl-3- (3-dimethylaminopropyl) -carbodiimide) was added thereto, and the solution was stirred at 4 o C for 24 hours. Thereafter, the 1% (w / v) collagen solution was mixed and stirred well for about 5 minutes, and then crosslinked for 6 hours. pH was adjusted to 7.4.
실험예 1Experimental Example 1
제조예 1, 제조예 2, 제조예 3과 같은 방법으로 가교된 히알루론산 하이드로젤의 함수율을 아래와 같은 방법으로 실험 확인 하였다. 이때 가교 히알루론산 하이드로젤 중에서 히알루론산의 중량분율을 10, 20, 40, 60, 80, 90 %로 각각 변화시켜 최종 가교 하이드로젤을 제조 하였다. 제조된 가교 하이드로젤은 37℃에서 24시간 동안 PBS (phosphate-buffered saline)에 담가두었다. 그리고 정해진 시간에 꺼내어 부드럽게 물기를 닦아내었다. 팽윤된 하이드로젤과 건조된 하이드로젤의 무게를 각각 측정하였고 하기의 계산식으로 함수율을 계산하였다.(도 1)The water content of the hyaluronic acid hydrogel crosslinked in the same manner as in Preparation Example 1, Preparation Example 2, Preparation Example 3 was experimentally confirmed by the following method. At this time, the weight fraction of hyaluronic acid in the crosslinked hyaluronic acid hydrogel was changed to 10, 20, 40, 60, 80, 90%, respectively, to prepare a final crosslinked hydrogel. The prepared crosslinked hydrogel was immersed in PBS (phosphate-buffered saline) for 24 hours at 37 ℃. It was taken out at a fixed time and gently wiped dry. The weights of the swollen hydrogels and the dried hydrogels were measured, respectively, and the water content was calculated by the following formula.
[계산식][formula]
함수율(%) = [(팽윤된 히알루론산 하이드로젤 무게 - 건조된 히알루론산 하이드로젤 무게)/ 팽윤된 히알루론산 하이드로젤 무게] X 100 Water content (%) = [(Swelled hyaluronic acid hydrogel weight-Dried hyaluronic acid hydrogel weight) / Swelled hyaluronic acid hydrogel weight] X 100
도 1에서와 같이 가교 히알루론산 하이드로젤 중에서 히알루론산의 중량분율이 20~80% 사이에서 하이드로젤의 함수율이 안정적으로 높이 나타났다. 이러한 실험 결과는 젤라틴, 키토산, 콜라젠 등 모든 가교 하이드로젤에서 확인되었다. 이는 약물전달체로 가져야되는 기본적인 팽윤특성이 비교적 잘 구현되었음을 확인하여다. As shown in FIG. 1, the water content of the hydrogel was stably increased between 20 to 80% by weight of the hyaluronic acid in the crosslinked hyaluronic acid hydrogel. These experimental results were confirmed in all crosslinked hydrogels such as gelatin, chitosan and collagen. This confirms that the basic swelling characteristics that should be present as drug carriers are relatively well implemented.
실험예 2Experimental Example 2
10% FBS (fetal bovine serum), RPMI (rosewell park memorial institute medium) 및 1% 페니실린/스트렙토마이신 (penicillin/streptomycin)을 함유하는 배지를 이용하여 RAW 264.7 mouse macrophage의 1x104세포/ml를 함유하는 현탁액액을 제조하였다. 제조된 현탁액을 94 well의 각 well에 주입하여 24 시간 동안 배양 하였다. 이 때 샘플 당 각 3개의 well에 주입하였다 (n=3). 24시간 경과 후 각 well에서 배지를 제거하고 PBS (phosphate buffered saline) 용액으로 세척하고 가교된 히알루론산 샘플 (100μl)으로 각각 처리하였다. 가교된 히알루론산 샘플들은 0.22μm 주사기 필터로 필터링을 하여 살균하였다. 가교 히알루론산 샘플로 처리 후 24시간 후 세포독성 실험을 시행하였다. 즉 각각의 배지에 MTT시약과 가교 히알루론산 재료를 함유하는 세포액을 각 well에 이동시키고 1, 2일간 인큐베이트에 두었다. 생체재료에 기인하는 세포독성을 알아보기 위해 각각 MTT 용액(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazlium bromide)을 첨가하고 추가로 4시간 배양하였고 550nm에서 ELIZA 분석기를 이용하여 흡광도를 측정하였다. (도 2) Suspension solution containing 1 × 10 4 cells / ml of RAW 264.7 mouse macrophage using medium containing 10% FBS (fetal bovine serum), RPMI (rosewell park memorial institute medium) and 1% penicillin / streptomycin Was prepared. The prepared suspension was injected into each well of 94 wells and incubated for 24 hours. At this time, each well was injected into three wells (n = 3). After 24 hours, the medium was removed from each well, washed with PBS (phosphate buffered saline) solution, and treated with a crosslinked hyaluronic acid sample (100 μl), respectively. Crosslinked hyaluronic acid samples were sterilized by filtering with a 0.22 μm syringe filter. Cytotoxicity experiments were performed 24 hours after treatment with crosslinked hyaluronic acid samples. That is, the cell solution containing the MTT reagent and the crosslinked hyaluronic acid material in each medium was transferred to each well and placed in the incubation for 1 or 2 days. To determine the cytotoxicity due to biomaterials, MTT solution (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazlium bromide) was added and incubated for an additional 4 hours and ELIZA analyzer at 550 nm. Absorbance was measured using. (Figure 2)
실험예 3Experimental Example 3
약물이 봉입된 가교 히알루론산 하이드로젤의 제조 및 약물 방출실험을 위하여 먼저 알부민 파우더를 일정 농도로하여 수용액을 제조하였다. 여기에 가교된 히알루론산 하이드로젤을 놓아두고 알부민 용액이 모두 하이드로젤에 흡수되도록 하였다. 알부민의 봉입량은 수용액상의 초기 알부민 농도를 변화시킴으로써 조절할 수 있었다. 알부민이 봉입된 히알루론산 하이드로젤은 24시간 건조하였다.For the preparation of drug-encapsulated cross-linked hyaluronic acid hydrogel and drug release experiment, first, an aqueous solution was prepared by using albumin powder at a constant concentration. The crosslinked hyaluronic acid hydrogel was placed therein so that all of the albumin solution was absorbed into the hydrogel. The loading amount of albumin could be adjusted by changing the initial albumin concentration in aqueous solution. Albumin-containing hyaluronic acid hydrogel was dried for 24 hours.
알부민이 봉입된 히알루론산 가교 하이드로젤은 37℃의 PBS에 두고 부드럽게 흔들어 주며 정해진 시간에 일정약의 용액을 취하여 히알루론산 하이드로젤로부터 방출되어진 알부민의 양을 UV spectrometer를 이용하여 측정하였다. (도 3)The hyaluronic acid cross-linked hydrogel filled with albumin was placed in PBS at 37 ° C., gently shaken, and a predetermined amount of solution was taken at a predetermined time to measure the amount of albumin released from the hyaluronic acid hydrogel using a UV spectrometer. (Figure 3)
또한 히알루론산/젤라틴 가교 하이드로젤을 제조시에 가교 하이드로젤 중에 히알루론산의 중량분율을 5,20,40,80,90%로 변화시켜 가교 하이드로젤을 제조한 후 위와 같은 방법으로 각각의 가교 하이드로젤로 부터의 약물방출을 확인하였다.(도 4)In addition, when the hyaluronic acid / gelatin crosslinked hydrogel is prepared, the weight fraction of hyaluronic acid in the crosslinked hydrogel is changed to 5,20,40,80,90% to prepare a crosslinked hydrogel. Drug release from the gel was confirmed (FIG. 4).
실시예 1Example 1
제조예 1과 같이 제조된 가교 히알루론산/젤라틴 하이드로젤을 알부민 수용액에 놓아 두고 알부민 용액이 모두 하이드로젤에 흡수되도록 하였다. 알부민이 봉입된 가교 히알루론산콜라겐 하이드로젤은 24시간 건조하였다.The crosslinked hyaluronic acid / gelatin hydrogel prepared as in Preparation Example 1 was placed in an aqueous albumin solution so that all the albumin solution was absorbed into the hydrogel. The crosslinked hyaluronic acid collagen hydrogel containing albumin was dried for 24 hours.
알부민이 봉입된 가교히알루론산/콜라겐 하이드로젤은 37℃의 PBS에 두고 정해진 시간에 일정약의 용액을 취하여 히알루론산 하이드로젤로부터 방출되어진 알부민의 양을 UV spectrometer를 이용하여 측정하였다. (도 3)The albumin-containing crosslinked hyaluronic acid / collagen hydrogel was placed in PBS at 37 ° C. and a predetermined amount of solution was taken at a predetermined time to measure the amount of albumin released from the hyaluronic acid hydrogel using a UV spectrometer. (Figure 3)
실시예 2Example 2
제조예 3과 같이 제조된 가교 히알루론산/키토산 하이드로젤을 알부민 수용액에 놓아 두고 알부민 용액이 모두 하이드로젤에 흡수되도록 하였다. 알부민이 봉입된 가교 히알루론산/콜라겐 하이드로젤은 24시간 건조하였다.The crosslinked hyaluronic acid / chitosan hydrogel prepared as in Preparation Example 3 was placed in an aqueous albumin solution so that all the albumin solutions were absorbed into the hydrogel. Albumin-sealed crosslinked hyaluronic acid / collagen hydrogel was dried for 24 hours.
알부민이 봉입된 가교 히알루론산/젤라틴 하이드로젤은 37℃의 PBS에 두고 정해진 시간에 일정약의 용액을 취하여 히알루론산 하이드로젤로부터 방출되어진 알부민의 양을 UV spectrometer를 이용하여 측정하였다.(도 3)The albumin-containing crosslinked hyaluronic acid / gelatin hydrogel was placed in PBS at 37 ° C. and a predetermined amount of solution was taken at a predetermined time to measure the amount of albumin released from the hyaluronic acid hydrogel using a UV spectrometer (FIG. 3).
실시예 3Example 3
제조예 4과 같이 제조된 가교 히알루론산/콜라젠 하이드로젤을 알부민 수용액에 놓아 두고 알부민 용액이 모두 하이드로젤에 흡수되도록 하였다. 알부민이 봉입된 가교 히알루론산콜라겐 하이드로젤은 24시간 건조하였다.The crosslinked hyaluronic acid / collagen hydrogel prepared as in Preparation Example 4 was placed in an albumin aqueous solution so that all the albumin solutions were absorbed into the hydrogel. The crosslinked hyaluronic acid collagen hydrogel containing albumin was dried for 24 hours.
알부민이 봉입된 가교 히알루론산/젤라틴 하이드로젤은 37℃의 PBS에 두고 정해진 시간에 일정약의 용액을 취하여 히알루론산 하이드로젤로부터 방출되어진 알부민의 양을 UV spectrometer를 이용하여 측정하였다.(도 3)The albumin-containing crosslinked hyaluronic acid / gelatin hydrogel was placed in PBS at 37 ° C. and a predetermined amount of solution was taken at a predetermined time to measure the amount of albumin released from the hyaluronic acid hydrogel using a UV spectrometer (FIG. 3).
비교예 1Comparative Example 1
1% w/v 히알루론산 용액을 상온에서 제조한 후 1 mol % adipic dihydrazide 를 투입하고 상온에서 혼합하면서 가교반응을 진행하였다. 이렇게 adipic dihydrazide(AD) 를 가교제로 이용하여 제조된 가교 히알루론산을 반응 후 증류수로 가교 히알루론산을 충분히 세척하고 진공건조기에서 건조하였고 실험예 2와 같은 방법으로 세포독성 실험을 실시하였다. (도 2)A 1% w / v hyaluronic acid solution was prepared at room temperature, followed by adding 1 mol% adipic dihydrazide and mixing at room temperature to proceed the crosslinking reaction. The cross-linked hyaluronic acid prepared by using adipic dihydrazide (AD) as a crosslinking agent was sufficiently washed with distilled water and then crosslinked hyaluronic acid was dried in a vacuum dryer and subjected to cytotoxicity experiments in the same manner as in Experimental Example 2. (Figure 2)
비교예 2Comparative Example 2
제조예 1과 같이 1% w/v 히알루론산 용액을 상온에서 제조한 후 1 mol % poly(ethylene glycol) diglycidyl ether(PEGDE)를 투입하고 상온에서 혼합하면서 가교반응을 진행하였다. 이렇게 poly(ethylene glycol) diglycidyl ether를 가교제로 이용하여 제조된 가교 히알루론산을 반응 후 증류수로 가교 히알루론산을 충분히 세척하고 진공건조기에서 건조하였고 실험예 2와 같은 방법으로 세포독성 실험을 실시하였다. (도 2)As in Preparation Example 1, a 1% w / v hyaluronic acid solution was prepared at room temperature, and then 1 mol% poly (ethylene glycol) diglycidyl ether (PEGDE) was added thereto, followed by crosslinking reaction at room temperature. The cross-linked hyaluronic acid prepared using poly (ethylene glycol) diglycidyl ether as a crosslinking agent was sufficiently washed with distilled water and then cross-linked hyaluronic acid was dried in a vacuum dryer, and cytotoxicity experiments were carried out in the same manner as in Experimental Example 2. (Figure 2)
도 2에서와 같이 EDC를 이용하여 제조된 히알루론산/키토산, 히알루론산/젤라틴, 히알루론산/콜라젠 가교 하이드로젤에서는 세포독성이 거의 관찰되지 않았다. 하지만 adipic dihydrazide(AD)와 poly(ethylene glycol) diglycidyl ether(PEGDE)를 가교제로 사용하여 가교된 히알루론산에서는 control에 비해서 매우 낮은 세포 활성을 나타내는 것으로 부터 세포독성 가능성을 확인하였다. 따라서 약제학적 기능을 발현 시키기 위해 생체 내에 이식되거나 주입되기 위해서는 본 발명에 의한 조성물이 월등히 안전한 것으로 확인되었다. 즉, 도 2에서 보여지는 것과 같이 EDC를 이용하여 제조된 히알루론산/젤라틴, 히알루론산/키토산 가교 하이드로젤에서는 24시간 후에도 세포가 일반적인 분화,증식이 확인되고 있지만 AD 및 PEGDE를 가교제로 이용하여 제조된 히알루론산 가교물에서는 독성으로 인해 세포의 증식이 억제되고 있는 것으로 나타났다.Cytotoxicity was hardly observed in hyaluronic acid / chitosan, hyaluronic acid / gelatin, hyaluronic acid / collagen crosslinked hydrogels prepared using EDC as shown in FIG. 2. However, hyaluronic acid cross-linked using adipic dihydrazide (AD) and poly (ethylene glycol) diglycidyl ether (PEGDE) as crosslinking agents showed cytotoxicity potential from very low cellular activity compared to control. Therefore, the composition according to the present invention was found to be extremely safe in order to be implanted or injected in vivo to express the pharmaceutical function. That is, in the hyaluronic acid / gelatin, hyaluronic acid / chitosan cross-linked hydrogel prepared using EDC as shown in Figure 2, although the general differentiation and proliferation of cells after 24 hours has been confirmed using AD and PEGDE as a crosslinking agent Hyaluronic acid cross-linked products have been shown to inhibit cell proliferation due to toxicity.
비교예 3Comparative Example 3
1% w/v 히알루론산 용액을 상온에서 제조한 후 알부민 수용액과 혼합하여 알부민을 함유하는 히알루론산을 제조한 후 이를 48시간 건조하였다. A 1% w / v hyaluronic acid solution was prepared at room temperature, mixed with an aqueous albumin solution to prepare hyaluronic acid containing albumin, and then dried for 48 hours.
알부민을 함유하는 히알루론산은 37℃의 PBS에 두고 정해진 시간에 일정량의 용액을 취하여 히알루론산 하이드로젤로부터 방출되어진 알부민의 양을 UV spectrometer를 이용하여 측정하였다. (도 3)Hyaluronic acid containing albumin was placed in PBS at 37 ° C. and a predetermined amount of solution was taken at a predetermined time to measure the amount of albumin released from the hyaluronic acid hydrogel using a UV spectrometer. (Figure 3)
비교예 4Comparative Example 4
히알루론산/젤라틴 가교 하이드로젤을 제조시에 가교 하이드로젤 중에 히알루론산의 중량분율을 5,20,40,80,90%로 변화시켜 가교 하이드로젤을 제조한 후 실험예 3과 같은 방법으로 각각의 가교 하이드로젤로 부터의 약물방출을 확인 비교하였다.(도 4)When preparing the hyaluronic acid / gelatin crosslinked hydrogel, the weight fraction of hyaluronic acid in the crosslinked hydrogel was changed to 5,20,40,80,90% to prepare the crosslinked hydrogel, Drug release from the crosslinked hydrogels was compared and confirmed. (FIG. 4).
도 3에서 확인되는 바와 같이 본 발명에 의해 제조된 히알루론산 가교 히알루론산으로부터 방출되는 약물의 양은 12시간에 걸쳐 서서히 증가하는 패턴을 나타내고 있다. 하지만 가교되어지지 않은 히알루론산과 약물의 혼합 상에서는 초기 약물의 burst가 발생하였다. 또한 도 4에서와 같이 히알루론산/폴리사카리드 가교 하이드로젤을 제조시에 가교 하이드로젤 중 히알루론산의 중량분율을 변화시켰을 때 약물방출에 대한 영향을 확인하였다. 가교 하이드로젤 중 히알루론산의 중량분율이 30~80% 사이에서는 약물이 12시간에 걸쳐 서서히 방출되고 있으나 20% 이하 일 때, 또는 90% 이상일 때는 이러한 지속적 약물방출 기전을 발현하지 못하는 것을 확인하였다.As can be seen in Figure 3 the amount of drug released from hyaluronic acid cross-linked hyaluronic acid prepared by the present invention shows a slowly increasing pattern over 12 hours. However, the initial drug burst occurred in the non-crosslinked hyaluronic acid and drug mixture phase. In addition, when the hyaluronic acid / polysaccharide cross-linked hydrogel as shown in Figure 4 when changing the weight fraction of hyaluronic acid in the cross-linked hydrogel was confirmed the effect on drug release. When the weight fraction of hyaluronic acid in the cross-linked hydrogel is 30 to 80%, the drug is slowly released over 12 hours, but when 20% or less, or 90% or more, it was confirmed that the drug release mechanism was not expressed.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예에만 국한되는 것으로 이해되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings. However, since the above-described embodiments have only been described with reference to preferred examples of the present invention, the present invention is limited to the above embodiments. It should not be understood that the scope of the present invention is to be understood by the claims and equivalent concepts described below.

Claims (8)

  1. 주사제 등의 약제학적 제형 또는 조직공학용 제제로 사용되는 히알루론산 등 폴리사카리드를 필수적으로 포함하는 담체 또는 지지체에 단백질 약물 또는 항염제 약물을 함유하고 그 방출량을 제어 조절하기 위하여 폴리사카리드인 히알루론산 및 생체적합성 고분자와의 가교물로 구성되어 있는 약물 전달 조성물Polysaccharides, such as hyaluronic acid, which are used in pharmaceutical formulations or tissue engineering preparations, such as injections, contain protein drugs or anti-inflammatory drugs, and polysaccharides hyaluronic acid and Drug Delivery Composition Consisting of Crosslinked Biocompatible Polymers
  2. 제 1 항에 있어서,The method of claim 1,
    상기 히알루론산의 분자량이 30,000 달톤(Da) 내지 3,000,000 달톤(Da)인 것을 특징으로 하는 약물 전달 조성물Drug delivery composition, characterized in that the molecular weight of the hyaluronic acid is 30,000 Daltons (Da) to 3,000,000 Daltons (Da)
  3. 제 1 항에 있어서,The method of claim 1,
    상기 약물 전달 조성물은, The drug delivery composition,
    히알루론산의 0.5 내지 10 중량% 수용액에서 EDC(1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide)를 사용하여 히알루론산의 카르복실기와 다른 생체적합성 고분자 및 생분해성 고분자로 이루어진 군에서 선택된 어느 하나와의 아미드 반응에 의해 가교된 히알루론산 하이드로젤; 및 Any one selected from the group consisting of carboxyl groups of hyaluronic acid and other biocompatible polymers and biodegradable polymers using EDC (1-Ethyl-3- (3-dimethylaminopropyl) -carbodiimide) in a 0.5 to 10 wt% aqueous solution of hyaluronic acid Hyaluronic acid hydrogels crosslinked by an amide reaction of; And
    단백질 약물 또는 비스테로이드성 항염증제; 를 함유하는 것을 특징으로 하는 약물 전달 조성물Protein drugs or nonsteroidal anti-inflammatory agents; Drug delivery composition characterized in that it contains
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 생체적합성 고분자는 메틸셀룰로즈, 카복시메틸셀룰로즈, 하이드록시 프로필메틸셀룰로즈, 알기네이트, 키토산, 젤라틴, 콜라겐 및 그 혼합물 또는 이들의 유도체로 이루어진 군 중에서 선택된 것임을 특징으로 하는 약물 전달 조성물The biocompatible polymer is a drug delivery composition, characterized in that selected from the group consisting of methyl cellulose, carboxymethyl cellulose, hydroxy propylmethyl cellulose, alginate, chitosan, gelatin, collagen and mixtures or derivatives thereof
  5. 제 3 항에 있어서, The method of claim 3, wherein
    상기 생분해성 고분자는,The biodegradable polymer,
    분자량 6,000 내지 100,000 범위의 락트산의 단독중합체, 락트산과 글리콜산의 공중합체 유도체 또는 이들의 혼합물 중에서 선택된 것임을 특징으로 하는 약물 전달 조성물Drug delivery composition, characterized in that it is selected from homopolymers of lactic acid in the range of molecular weights from 6,000 to 100,000, copolymer derivatives of lactic acid and glycolic acid, or mixtures thereof
  6. 제 1 항에 있어서,The method of claim 1,
    상기 단백질 약물은 알부민, 인슐린, erythropoietin, 인슐린 성장인자, 혈소판 유래 성장인자, 변형 성장인자 알파, 변형 성장인자 베타, 뼈형성 단백질 및 이들의 혼합물로 이루어진 군 중에서 선택된 것임을 특징으로 하는 약물 전달 조성물The protein drug is a drug delivery composition, characterized in that selected from the group consisting of albumin, insulin, erythropoietin, insulin growth factor, platelet-derived growth factor, modified growth factor alpha, modified growth factor beta, bone-forming protein and mixtures thereof
  7. 제 1 항에 있어서,The method of claim 1,
    상기 항염제 약물은 피록시캄, 멜록시캄, 이부프로펜, 켑토프로펜, 디클로페낙, 인도메타신, 테트라사이클린, 모노사이클린, 독시사이클린 및 이들의 혼합물로 이루어진 군 중에서 선택된 것임을 특징으로 하는 약물 전달 조성물The anti-inflammatory drug is a drug delivery composition, characterized in that it is selected from the group consisting of pyroxicam, meloxycampin, ibuprofen, metoprofen, diclofenac, indomethacin, tetracycline, monocycline, doxycycline and mixtures thereof
  8. 제 3 항에 있어서,The method of claim 3, wherein
    상기 가교된 히알루론산 하이드로젤 중 히알루론산의 함량이 30 내지 80 중량%인 것을 특징으로 하는 약물 전달 조성물Drug delivery composition, characterized in that the content of hyaluronic acid in the cross-linked hyaluronic acid hydrogel is 30 to 80% by weight
PCT/KR2011/003070 2011-04-19 2011-04-27 Drug delivery composition containing biocompatible cross-linked hyaluronic acid product WO2012144678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110035989A KR101379380B1 (en) 2011-04-19 2011-04-19 Drug Delivery Composition Comprising Biocompatible Crosslinked Hyaluronic Acid
KR10-2011-0035989 2011-04-19

Publications (1)

Publication Number Publication Date
WO2012144678A1 true WO2012144678A1 (en) 2012-10-26

Family

ID=47041761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003070 WO2012144678A1 (en) 2011-04-19 2011-04-27 Drug delivery composition containing biocompatible cross-linked hyaluronic acid product

Country Status (2)

Country Link
KR (1) KR101379380B1 (en)
WO (1) WO2012144678A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10369101B2 (en) 2013-03-15 2019-08-06 Latitude Pharmaceuticals Inc. Parenteral diclofenac composition
CN115427023A (en) * 2020-02-03 2022-12-02 Mnh生物技术株式会社 Controlled release formulations for the treatment of hearing loss and methods of making the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477021B1 (en) * 2013-03-20 2014-12-30 강릉원주대학교산학협력단 Manufacturing method of drug loaded nanofiber chip for dental use
KR101806735B1 (en) * 2015-09-11 2017-12-07 성균관대학교산학협력단 Drug delivery composition and producing method thereof
KR101877894B1 (en) * 2016-12-09 2018-07-12 서울대학교병원 Injectable combination drug for treating hearing loss and method of preparing the same
KR102201482B1 (en) * 2019-07-29 2021-01-13 주식회사 피움바이오 Method for cross-linked hyaluronic acid-based functional biocompatible polymer complex having excellent injection force
WO2024049058A1 (en) * 2022-09-01 2024-03-07 (주)시지바이오 Composition for hard tissue regeneration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050226937A1 (en) * 1998-06-01 2005-10-13 Chiron Corporation Use of hyaluronic acid polymers for mucosal delivery of vaccine and adjuvants
US20060024373A1 (en) * 2000-11-14 2006-02-02 N.V.R. Labs Ltd. Cross-linked hyaluronic acid-laminin gels and use thereof in cell culture and medical implants
US20060280797A1 (en) * 2005-04-25 2006-12-14 Shoichet Molly S Blends of temperature sensitive and anionic polymers for drug delivery
WO2009005790A2 (en) * 2007-06-29 2009-01-08 Carbylan Biosurgery, Inc. Sterile thiol-derivatized hyaluronic acid polymer compositions and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050226937A1 (en) * 1998-06-01 2005-10-13 Chiron Corporation Use of hyaluronic acid polymers for mucosal delivery of vaccine and adjuvants
US20060024373A1 (en) * 2000-11-14 2006-02-02 N.V.R. Labs Ltd. Cross-linked hyaluronic acid-laminin gels and use thereof in cell culture and medical implants
US20060280797A1 (en) * 2005-04-25 2006-12-14 Shoichet Molly S Blends of temperature sensitive and anionic polymers for drug delivery
WO2009005790A2 (en) * 2007-06-29 2009-01-08 Carbylan Biosurgery, Inc. Sterile thiol-derivatized hyaluronic acid polymer compositions and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10369101B2 (en) 2013-03-15 2019-08-06 Latitude Pharmaceuticals Inc. Parenteral diclofenac composition
CN115427023A (en) * 2020-02-03 2022-12-02 Mnh生物技术株式会社 Controlled release formulations for the treatment of hearing loss and methods of making the same

Also Published As

Publication number Publication date
KR20120118559A (en) 2012-10-29
KR101379380B1 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
Seidi et al. Chitosan-based blends for biomedical applications
WO2012144678A1 (en) Drug delivery composition containing biocompatible cross-linked hyaluronic acid product
JP3094074B2 (en) Polysaccharide gel composition
US6156345A (en) Crosslinkable macromers bearing initiator groups
US5502081A (en) Water-insoluble derivatives of hyaluronic acid and their methods of preparation and use
RU2230073C2 (en) Method for cross-linking carboxylated polysaccharides
US6924370B2 (en) Crosslinkable macromers
DE69921158T2 (en) YELLOW AND MULTILAYER SURFACE STRUCTURES OF BORONIC ACIDIC POLYMERS
DE60104703T2 (en) NEW NETWORKED DERIVATIVES OF HYALURONIC ACID.
AU2006292752A1 (en) Polymeric compositions and methods of making and using thereof
CZ296842B6 (en) Cross-linked hyaluronic acids
CA2769470A1 (en) Modified hyaluronic acid polymer compositions and related methods
ZA200509953B (en) Anti-adhesion composites and methods of use thereof
AU2001278943A1 (en) Hydrogel films and methods of making and using therefor
CN113214507B (en) Preparation method of antibacterial glycopeptide hydrogel
CA2449964A1 (en) Crosslinkable macromers
CA3163069A1 (en) Hydrogel of mercapto-modified macromolecular compound, and preparation method therefor and use thereof
JP2014528406A (en) Multilayer implant for delivering therapeutic agents
WO2010011857A2 (en) Parenteral administration of a glucosamine
Mengyuan et al. Modification and preparation of four natural hydrogels and their application in biopharmaceutical delivery
CN114479124B (en) Self-healing hydrogel, preparation method and application thereof
Lee et al. Preparation of collagen modified hyaluronan microparticles as antibiotics carrier
Younas et al. Thiolated Polymeric Hydrogels for Biomedical Applications: A Review
KR20240008551A (en) Injectable pH-responsive hydrogel
AU2001275315A1 (en) Crosslinkable macromers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863757

Country of ref document: EP

Kind code of ref document: A1