WO2012143973A1 - Wireless communication system and wireless communication device - Google Patents

Wireless communication system and wireless communication device Download PDF

Info

Publication number
WO2012143973A1
WO2012143973A1 PCT/JP2011/002306 JP2011002306W WO2012143973A1 WO 2012143973 A1 WO2012143973 A1 WO 2012143973A1 JP 2011002306 W JP2011002306 W JP 2011002306W WO 2012143973 A1 WO2012143973 A1 WO 2012143973A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot signal
wireless communication
communication system
terminal
unit
Prior art date
Application number
PCT/JP2011/002306
Other languages
French (fr)
Japanese (ja)
Inventor
栄里子 武田
藤嶋 堅三郎
矢野 隆
齋藤 利行
学 川辺
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013510738A priority Critical patent/JP5736449B2/en
Priority to PCT/JP2011/002306 priority patent/WO2012143973A1/en
Publication of WO2012143973A1 publication Critical patent/WO2012143973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present invention relates to a wireless communication system, a base station system, and a terminal.
  • the characteristics of the spatial propagation path formed between the base station and the terminal are estimated using known signals between the base station and the terminal.
  • the known signal is referred to as a pilot signal.
  • characteristics of a spatial propagation path when a signal is transmitted from a base station to a terminal are estimated on the terminal side by a pilot signal transmitted from the base station.
  • the base station can obtain information on the characteristics of the spatial propagation path when a signal is transmitted to the terminal.
  • the characteristics of the spatial propagation path when a signal is transmitted from the terminal to the base station are estimated by the base station receiving a pilot signal transmitted from the terminal.
  • Patent Document 1 discloses a transmission method of pilot signals and data signals in a distributed antenna system. Patent Document 1 discloses that communication data of another remote antenna is allocated to a resource used for transmitting a pilot signal of a remote antenna apparatus to which an antenna index is not allocated among a plurality of remote antenna apparatuses.
  • Patent Document 2 discloses a multiple input multiple output (MIMO) technique using a plurality of antennas and a transmission station and a plurality of receptions in order to increase the speed and / or quality of wireless communication.
  • MIMO multiple input multiple output
  • MU-MIMO multi-user MIMO
  • the antennas of the base station are distributed and the antenna that forms a good spatial propagation path with the terminal It is effective to communicate with.
  • Patent Document 1 discloses that a data signal is transmitted using a radio resource used for a pilot signal transmitted by an antenna with which one terminal does not communicate. However, when the technique disclosed in Patent Document 1 is used, when there are a plurality of users, communication is performed by dividing the frequency or time.
  • radio resources can be effectively used if the system is configured to communicate with a plurality of terminals simultaneously than with a single terminal.
  • pilot signal radio resources transmitted from the distributed antenna are used for pilot signal transmission, and pilot signal transmission overhead is reduced, and communication with multiple terminals is also considered.
  • Providing a pilot signal transmission method in a distributed antenna system is an issue.
  • a radio communication system comprising: a base station comprising a plurality of radio units that transmit and receive at least radio frequency signals; and a baseband unit that performs control for transmission signal creation and reception signal processing and base station operation; A base station that communicates with the base station, wherein the base station transmits pilot signals from the plurality of radio units, and arrangement of radio resources in which the pilot signals transmitted from the radio units are arranged, or It is assumed that at least one of the patterns of the pilot signal is changed based on information fed back from the terminal.
  • Another aspect is an aspect in which the arrangement of pilot signals transmitted from the base station is determined in accordance with the spatial propagation path between the radio transmission / reception units of the base stations arranged in a distributed manner and the terminals.
  • the distributed radio units are divided into several groups, and the arrangement or pattern of pilot signals is changed in each group.
  • Configuration diagram of wireless communication system Flow chart of base station operation in embodiment 1 Flowchart of base station operation in embodiment 2 Table showing the relationship between terminal rank and pilot signal allocation number Pilot signal layout that can identify pilot signals of four radio units Arrangement diagram of pilot signals that can distinguish pilot signals of two radio units Flow chart of base station operation in Embodiment 3 Table showing the relationship between negative response frequency and pilot signal allocation number Operation sequence between base station and terminal in embodiment 3 Configuration diagram of a wireless communication system when there are a plurality of terminals in the fourth embodiment Flow chart of base station operation in embodiment 4 Table showing the relationship between changes in total throughput and pilot signal allocation numbers Configuration diagram of wireless communication system when there are a plurality of terminals in the fifth embodiment Flowchart 1 of base station operation in the fifth embodiment Table showing the relationship between the change in the minimum value of the throughput of each terminal and the pilot signal arrangement number Flowchart 2 of base station operation in the fifth embodiment Configuration diagram of radio communication system in which radio unit is divided into two groups Sequence when base station and terminal operating according to the present invention start communication
  • radio units 1 to 7 (121 to 127) including an antenna (111) and radio modulation / demodulation units 1 to 7 (1121 to 1127), and the seven radio units transmit A baseband unit (110) for controlling generation of a signal to be processed, processing of a received signal, and operation of a base station.
  • Each of the radio units 1 to 7 has at least one antenna (111), and transmits and receives radio signals to and from the terminal 128.
  • a terminal (128) having four antennas (118) communicates with a base station.
  • a case where a signal is transmitted from a base station to a terminal will be described.
  • FIG. 5 shows a conceptual diagram of resources to which signals are allocated.
  • FIG. 5 shows the horizontal axis as the time direction and the vertical axis as the frequency direction.
  • the base station since the terminal can receive signals of up to four layers, the base station sets the initial value of the radio unit to be identified by the terminal as 4. Therefore, the pilot signals shown in FIGS. 5A to 5D are used so that the four pilot signals can be received separately.
  • a pilot signal is transmitted using a resource (155) indicating hatching.
  • the resource (159) from which the other radio unit outputs the pilot signal is configured not to output the signal.
  • Data signals and control signals are transmitted using other resources (160).
  • a pilot signal is transmitted using the resources indicated as 156 in FIG. 5B, 157 in (c), and 158 in (d).
  • the wireless unit 1 (121) is arranged as shown in FIG. 5A
  • the wireless unit 2 (122) is arranged as shown in FIG. 5B
  • the wireless unit 3 (123) is arranged as shown in FIG.
  • the radio unit 4 (124) is arranged as shown in FIG. 5D
  • the radio unit 5 (125) is arranged as shown in FIG. 5A
  • the radio unit 6 (126) is arranged as shown in FIG. 5B
  • the radio unit 7 (127). ) Is configured to transmit a pilot signal having the arrangement shown in FIG.
  • the base station (400) includes a radio unit (404) including an antenna and a radio modulation / demodulation unit (1404), and a baseband unit (403). Further, it is connected to the backhaul network (401) via the backhaul network interface (402), and exchanges data addressed to or from each terminal with the backhaul network.
  • the wiring (120) for connecting the wireless unit and the baseband unit may be an optical fiber or a wiring using copper.
  • the antenna of the radio unit is associated with an antenna identifier that is an individual number for identifying the antenna.
  • the antenna identifier is used to determine which antenna the terminal is connected to.
  • the baseband unit (403) includes a signal processing unit (407) that performs transmission signal generation and reception signal processing, and a control unit (405) that performs control for base station operation.
  • the signal processing unit 407 includes a demapping unit 421.
  • a signal received from the terminal is input to the demapping unit 421 via each radio unit, CP removing unit 418, FFT unit 419, and reception processing unit 420.
  • the signal input to the demapping unit is a signal mapped to the frequency / time resource shown in FIG.
  • the demapping unit separates the input signal into a control signal including feedback information fed back from the terminal and a data signal, and outputs each of them.
  • the control unit (405) includes a pilot signal control unit (425) that controls a pilot signal transmitted from each radio unit of the base station.
  • Feedback information required for changing the pilot signal for example, information regarding the rank of each terminal and information regarding negative acknowledgment are input to the pilot signal control unit (425).
  • the pilot signal control unit (425) includes a feedback information collection unit 801, a pilot signal change determination unit 802, and a pilot signal determination unit 803.
  • the feedback information collection unit 801 collects information fed back from the terminal that has received the signal from the base station via at least one radio unit.
  • the pilot signal change determination unit 802 monitors changes over time in collected information, checks whether there is a change from the conventional one, and determines a change in the pilot signal if there is a change from the conventional one.
  • the pilot signal determination unit 803 receives the result of the pilot signal change determination unit (802) and determines whether or not the pilot signal is changed.
  • the mapping control unit (431) controls the mapping (411) of the transmission signal, and the data signal, the synchronization signal (415), the control signal (416), and the pilot signal (417) output from the modulation unit (410) Mapping to frequency / time resource elements as shown in FIG.
  • the mapping control unit 431 notifies the mapping control information 490 to the mapping 411 and the demapping control information 495 to the demapping unit 421.
  • the base station (400) When the base station (400) receives data from the backhaul network (401) via the backhaul network interface (402), the base station 400 stores the received data in the transmission buffer (408). Next, the error control unit (409) encodes the data with an error detection code and an error correction code, and the modulation unit (410) modulates the encoded data.
  • the mapping unit 411 outputs the data signal output from the modulation unit (410), the synchronization signal (415), the control signal (416), and the pilot signal (417) according to the mapping control information 490 from the mapping control unit (431). , Mapping to time frequency elements (radio resource elements with time and frequency as axes).
  • the transmission processing unit (412) performs interference control and transmission weight multiplication
  • the IFFT unit (413) converts the signal into a time domain signal
  • the CP adding unit (414) adds a CP (cyclic prefix).
  • the transmission signal is input to the wireless modulation / demodulation unit (1404).
  • the wireless modulation / demodulation unit 1404 converts the input digital signal into an analog signal, converts it into a radio frequency signal, and outputs the signal from the antenna.
  • a signal transmitted from the terminal is received by the antenna, converted to a baseband frequency by the radio modem unit (1404), converted from an analog signal to a digital signal, and then input to the baseband unit (403). Is done.
  • CP is removed by the CP removing unit (418), and converted into a frequency domain signal by the FFT unit (419).
  • the reception processing unit (420) performs processing such as multiplication of reception weights on the converted frequency domain signal.
  • the demapping unit (421) separates the input signal into a data signal and a control signal and outputs the data signal and the control signal.
  • the control signal is input to the control unit (405), the data signal is input to the demodulation / decoding unit (422), and demodulated / decoded by the demodulation / decoding unit 422.
  • the demodulated / decoded signal is subjected to error correction and error detection by an error control unit (423) and input to a reception buffer (424).
  • the exchange between the signal processing unit (407) and the control unit (405) is performed via the bus (406).
  • FIG. 22 the processing from the transmission buffer to the transmission processing is shown as a system example.
  • FIG. 22 shows an example of the configuration of the base station, and other configurations may be used as long as they can be realized without changing the gist of the present invention.
  • the base station transmits a signal from each radio section 404 based on the pilot signal determined as the initial value, and starts communication with the terminal (101).
  • the base station collects the information fed back from the terminal that receives the signal from the base station in a timely manner (102) in the feedback information collection unit (801) of FIG.
  • the change with time of the collected information is monitored, and the pilot signal change determination unit (802) of FIG. 22 compares it with feedback information collected in the past to check whether there is a change from the past (103).
  • the pilot signal change determination unit (802) of FIG. 22 determines the change of the pilot signal, and if it is determined that the system performance is improved by the change of the pilot signal (104), the pilot of FIG. The pilot signal is changed by the signal from the signal determination unit (803) (105), and the new pilot signal is notified to the terminal (107).
  • the pilot signal is not changed (106).
  • the pilot signal can be identified not only from the arrangement of the pilot signal used in FIG. 5, but also from which radio section the pilot signal can be identified by changing the pattern of the pilot signal or by changing them in combination. Can do.
  • the pilot signal can be identified by using a Walsh code in the pattern of the pilot signal.
  • the pilot signal determination unit (803) can output two types of information of pilot arrangement and pattern.
  • Information on the pilot arrangement is transmitted to the mapping control unit 431.
  • Information about the pattern is transmitted to the pilot signal (417) via the bus 406.
  • the signal output from the pilot signal determining unit (803) is configured to be information on the pilot arrangement. You may do it.
  • Embodiment 2 of the present invention will be described with reference to FIG. 23, FIG. 3, FIG. 4, and FIG.
  • the base station collects information on the rank of the terminal as feedback information fed back from the terminal (132).
  • the base station checks whether the number of ranks has decreased (133). If the number of ranks decreases, the base station changes the pilot signal arrangement (134) and notifies the terminal of the new pilot signal arrangement number (135). If there is no decrease in the number of ranks, the pilot signal arrangement is not changed (136).
  • differences from the first embodiment will be described. About the point which description is abbreviate
  • FIG. 4 is a table (141) showing the relationship between the time (142), the rank number of terminals (143), and the pilot signal arrangement number (144).
  • the table 141 is held in a memory (811) that collects rank number information.
  • the pilot signal arrangement number 144 is associated with the number that is an identifier for specifying the arrangement pattern with respect to the arrangement of the pilot signal. That is, the table 141 stores the number of ranks fed back from the terminal and the arrangement of pilot signals in association with each other.
  • FIG. 21 is a table (701) showing the relationship between pilot signal arrangement and pilot signal arrangement number.
  • at least one pilot signal arrangement number 702 is associated with one or more pilot signal arrangement patterns corresponding to the arrangement number.
  • the pilot signal arrangement (703) associated with the pilot signal arrangement number 1 is associated with the pattern (A).
  • a pilot signal is arranged in the hatched resource (1701), and a signal other than the pilot signal, such as a data signal, is arranged in the other resource (1702).
  • Pilot signal arrangements associated with pilot signal arrangement number 2 are pattern (B) and pattern (C).
  • pilot signals are arranged in different resources.
  • no signal is arranged in the resource (1703) in which the pilot signal is arranged in the pattern (C).
  • no signal is allocated to the resource in which the pilot signal is allocated in pattern (B). With this signal arrangement, the terminal can identify the pilot signal.
  • Pilot signal arrangements associated with pilot signal arrangement number 3 are patterns (D), (E), and (F).
  • Pilot signal arrangements associated with pilot signal arrangement number 4 are patterns (G), (H), (I), and (J).
  • the arrangement method of pilot signals in these patterns is the same as the pattern associated with pilot signal arrangement number 2.
  • signals other than pilot signals, such as data signals are arranged in unhatched resources.
  • the pilot signal arrangement is notified by notifying the pilot signal arrangement itself, but the pilot signal arrangement number.
  • the side can grasp.
  • the base station may notify the pilot signal arrangement number corresponding to the pattern of the pilot signal arrangement used by each radio unit using the broadcast signal.
  • FIG. 23 shows the configuration of the base station according to the second embodiment.
  • information on the rank number of the terminal fed back from the terminal is held in the memory (811) included in the pilot signal control unit (425).
  • the number of ranks used in this embodiment is the number of layers that can be transmitted simultaneously in MIMO communication.
  • the pilot signal arrangement change determining unit (427) compares the number of ranks included in the information fed back from the terminal with the number of ranks fed back in the past and already held in the memory 811, and whether or not the number of ranks has decreased. And the information is transmitted to the pilot signal arrangement determining unit (428). That is, the pilot signal arrangement change determination unit 427 monitors the time change of the rank number by referring to the table 141.
  • the pilot signal arrangement determining unit (428) decides to change the pilot signal arrangement if the information from the pilot signal arrangement change determining unit (427) is “there is a decrease in the number of ranks”, and “no decrease in the number of ranks”. If so, it is determined not to change the pilot signal arrangement. That is, according to the number of ranks, pilot signal arrangement determining section 428 determines whether or not the pilot signal arrangement needs to be changed.
  • the pilot signal control unit 425 in the second embodiment holds a pilot signal arrangement number table in the memory (430) in advance, and the pilot signal arrangement number determination unit (428) performs mapping control on the determined pilot signal arrangement number. Part (431).
  • FIG. 3 shows the operation of the base station in the second embodiment.
  • the base station collects the rank number of the terminal fed back from the terminal in the memory (811) for collecting the rank number information of FIG. 23 (132).
  • the pilot signal arrangement change determination unit (427) of FIG. 23 refers to the information on the number of ranks held in the memory 811 and checks the change in the number of ranks (133). When the number of ranks decreases as a result of the check at 133, the base station changes the pilot signal arrangement in the pilot signal arrangement determining unit (428) of FIG. 23 (134), and assigns the changed pilot signal arrangement number to the terminal. Notification (135) is made. If there is no decrease in the number of ranks, the pilot signal arrangement determining unit does not change the pilot signal arrangement (136), and the base station returns to the process of checking the change in rank number.
  • the terminal (128) can be configured to transmit and receive signals of up to four layers.
  • communication is performed based on standardized specifications. In this case, the number of layers that can be transmitted from the base station to the terminal or from the terminal to the base station is determined by the specification.
  • the pilot signal arrangement number (144) at time t (0) is set to 4, and feedback from the terminal is performed between time t (0) and t (m ⁇ 1). Since the number of ranks (143) to be performed is 4, the pilot signal arrangement number (144) is communicated as 4, and it is known that the number of ranks is 2 by the information fed back when the time is t (m). Based on this, the pilot signal arrangement number is changed to the pilot signal arrangement of 2, and the subsequent communication is continued. By operating in this way, radio resources used for pilot signals can be reduced to 1 ⁇ 2, and radio resources that are no longer used for pilot signal transmission can be used as data signal resources. Can measure.
  • the number of ranks indicated by the terminal is the number of paths that can be formed between the terminal and the base station (that is, when the base station does not perform transmission diversity, The number of antennas that can form a path with the terminal), so that communication with the antennas of the radio unit exceeding the rank number is not possible.
  • the main reason for the decrease in rank means that the radio unit of the base station and the terminal, which have been able to communicate so far, can no longer communicate due to propagation path fluctuations. Since the base station can know which radio unit can communicate with the information fed back, the arrangement of the pilot signal may be changed so that the pilot signal from the radio unit can be identified.
  • Example 3 will be described with reference to FIGS. 24, 6, 7, 8, and 9.
  • the base station determines the change of the pilot signal arrangement based on the negative response included in the information fed back from the terminal.
  • FIG. 24 shows the configuration of the base station of the third embodiment.
  • the memory (812) in the pilot signal control unit (425) stores information on negative acknowledgment.
  • Other configurations are the same as those of the second embodiment shown in FIG.
  • FIG. 8 shows a table (191) showing the relationship between the information regarding the negative response fed back from the terminal stored in the memory (812) of the base station and the pilot signal arrangement number in the third embodiment.
  • the table (191) it is determined whether the frequency of negative responses is larger than a threshold value (193), and whether the frequency of negative responses after changing the modulation scheme / coding rate is larger than a threshold value (194), and the pilot at that time
  • the signal arrangement number (195) is recorded with time (192).
  • Example 3 there are mainly two reasons why the negative response from the terminal increases.
  • the first is deterioration of the propagation environment between the radio unit and the terminal.
  • the terminal (128) shown in FIG. 1 is in a propagation environment where signals from the radio unit 1 (121) and the radio unit 4 (124) can be received, and the base station is connected to the radio unit 1 (121) from FIG.
  • the terminal When communicating with the terminal using the pilot signal arrangement (161) shown in (a) and from the radio unit 4 (124) using the pilot signal arrangement (162) shown in FIG. 6 (b)
  • the propagation environment between the wireless unit 1 (121) and the terminal (128) deteriorates and an error occurs in the modulation scheme and coding rate used conventionally.
  • the demodulation can be correctly demodulated by performing communication with the modulation multi-level number and / or the coding rate lower than in the prior art.
  • a pilot signal did not reach the terminal, but a signal from another radio unit that transmits a pilot signal using the same radio resource may reach the terminal due to a change in the propagation environment.
  • the terminal (128) that was initially able to receive only the signals of the wireless unit 1 (121) and the wireless unit 4 (124) may change, for example, due to a change in the propagation environment.
  • a signal from the wireless unit 5 (125) that transmits a pilot signal using the same wireless resource as (121) can be received due to a change in the propagation environment.
  • the terminal (128) performs propagation path estimation using the pilot signal on which the pilot signal of the wireless unit 5 (125) is superimposed as a pilot signal received only from the wireless unit 1 (121), and the result is Give feedback to the station. Therefore, since the information fed back from the terminal is different from the actual propagation path, the terminal cannot correctly demodulate the signal transmitted from the base station. In this case, it is necessary to change the pilot signal arrangement so that the terminal can correctly receive the pilot signals from the radio unit 1, the radio unit 4, and the radio unit 5.
  • FIG. 9 is a sequence diagram of the terminal and the base station in the third embodiment.
  • FIG. 9 is a sequence in the case where it is determined that the negative response rate is greater than the threshold value, and the negative response rate is higher than the threshold value even when the modulation multi-level number and the coding rate are lowered.
  • the operation sequence of the base station and the terminal according to this embodiment will be described with reference to FIG.
  • the base station (712) transmits a data signal (713) to the terminal (711).
  • the terminal performs error correction / error detection (714) on the received signal, and feeds back (715) acknowledgment / negative acknowledgment information to the base station.
  • the base station determines that the negative response rate> threshold (716), and lowers the modulation multi-value number / coding rate from the modulation multi-value number / coding rate used in the communication so far (717).
  • a signal is transmitted (718).
  • the terminal performs error correction / error detection (719) on the received signal, and feeds back acknowledgment / negative acknowledgment information to the base station (720).
  • the base station determines that the negative response ratio> threshold (721), determines that a pilot signal collision has occurred (722), and determines the pilot signal arrangement change (723).
  • the base station notifies the terminal of the changed pilot signal allocation number (724), the terminal prepares for communication using the notified pilot signal allocation number (725), and feeds back an acknowledgment (726).
  • the base station receives the signal and transmits a data signal (727).
  • FIG. 7 is a flowchart for explaining the details of the base station operation related to the sequence described in FIG.
  • the base station starts communication with a pilot signal arrangement corresponding to the initial value (181), and collects negative acknowledgment information from the terminal (182). The result is stored in a table in memory.
  • the base station determines whether the negative response is larger than the threshold value using the threshold value held in advance (183), and if it is equal to or less than the threshold value, continues the communication without changing the pilot signal arrangement (189). On the other hand, if it is larger than the threshold value, the base station transmits the modulation multi-level number and the coding rate lower than the conventional one (184).
  • the base station In the case of a wireless system that feeds back a CQI (channel quality indicator), if the rate of negative response is larger than the threshold even if the modulation multi-value number and coding rate judged appropriate from the CQI are used, the base station The station transmits the signal with a lower modulation multi-level number and a lower coding rate.
  • CQI channel quality indicator
  • the base station performs transmission, and similarly collects negative acknowledgment information from the terminal (185). If the negative response is larger than the threshold even after lowering the modulation multi-level number and the coding rate (186), the base station changes to a pilot signal arrangement with the rank number increased by 1 (187), and a new pilot is sent to the terminal. The signal arrangement number is notified (188). If the negative response is less than or equal to the threshold, the base station does not change the pilot signal arrangement (189).
  • the negative response rate of the terminal can be reduced and the throughput can be improved.
  • a method of avoiding a collision by rearranging pilot signals when it is determined that a pilot signal collision has occurred is shown.
  • the arrangement of the pilot signal is changed. Without changing, it is also possible to stop transmission of a signal from a radio unit in which a pilot signal collision occurs.
  • the base station can perform signal transmission. The method may be controlled as described above.
  • the initial value of the pilot signal arrangement is a value considered to be an average rank number in the area where a plurality of radio units are installed and can communicate with those radio units, or the same number as the radio units. May be the initial value.
  • the maximum number of layers defined by the standard may be used.
  • the pilot signal arrangement number When increasing the pilot signal arrangement number, it is difficult to quantitatively grasp the collision of the pilot signals, so it is preferable to increase by one.
  • changing the pilot signal arrangement in response to a decrease in the rank number Does not have to be lowered one by one. For example, when communication is started with an initial value of the pilot signal arrangement number set to 4, and information indicating that the rank number is 2 is fed back from all terminals due to changes in the spatial propagation path, it is suitable for the rank number 4
  • the pilot signal arrangement may be changed to a pilot signal arrangement suitable for rank number 2.
  • a base station configured with a plurality of radio units and a baseband unit (250) of radio units 1 (221) to m (229), and a plurality of terminals 1 to Terminal n (241-243) is communicating.
  • the base station monitors the number of ranks fed back from each terminal as in the second embodiment.
  • Example 4 since a plurality of terminals communicate with the base station, not only a change in a spatial propagation path between one terminal and the radio unit, but also a spatial propagation path between the plurality of terminals and the radio unit.
  • the pilot signal arrangement is determined.
  • the structure of the base station of Example 4 is shown in FIG.
  • the configuration of the fourth embodiment is the same as that of the second embodiment, but the memory (813), the pilot signal arrangement change determining unit (427), and the pilot signal arrangement determining unit (428) in the pilot signal control unit (425). The operation is different.
  • the memory (813) stores information on the proportion of terminals with reduced ranks among terminals communicating with the base station
  • the pilot signal arrangement change determination unit (814) stores the memory 813. , It is determined whether the pilot signal arrangement should be changed when the ratio exceeds a predetermined threshold.
  • the pilot signal arrangement change determination unit 427 determines whether to change the pilot signal arrangement on the basis of a change in total throughput will be described.
  • the base station can use the resources used for transmitting the pilot signal of the radio unit that cannot communicate with the terminal for transmitting the data signal, thereby improving the throughput.
  • pilot signal collision occurs when the pilot signal arrangement corresponding to rank 2 is used, so throughput decreases for such terminals.
  • the pilot signal arrangement determining unit (428) changes the arrangement of the pilot signal. And change the pilot signal arrangement.
  • FIG. 12 is a table (271) showing the relationship between the change in the total throughput held in the base station memory (813) and the pilot signal arrangement number. This table (271) also holds the determination result of the pilot signal arrangement change determination unit (427).
  • the table 271 in FIG. 12 includes an entry 273 in which a change in the number of ranks according to time is recorded for each rank number of terminals, an entry of a relationship 274 between the ratio of terminals in which the number of ranks has decreased per time and a threshold, and pilots A change in total throughput 275 due to a change in signal arrangement and an arrangement number for each time of pilot signal arrangement number 276 are held.
  • the base station records the time change (272) of the number of ranks (273) for each terminal, and determines whether the ratio of the number of terminals whose rank number decreases is larger than the threshold with respect to the number of terminals accommodated by the base station. Judgment is made (274). At time t (k), it is determined that the ratio of rank-decreasing terminals is greater than the threshold value, so the change in total throughput due to the pilot signal allocation change is calculated. As a result, the total throughput decreases due to the pilot signal allocation change. Since it is determined, the pilot signal arrangement number (276) is assumed to be conventional. Further, at time t (m), it is determined that the total throughput increases due to the change of the pilot signal arrangement, so the pilot signal arrangement number (276) is changed.
  • FIG. 11 shows an operation flowchart of the base station in the fourth embodiment.
  • the number of ranks fed back from each terminal is monitored, and the operation is as follows.
  • the base station starts communication with a pilot signal arrangement corresponding to the initial value (261), and collects information on the number of ranks of each terminal fed back from the terminal (262).
  • the base station determines whether the ratio of the number of terminals having a reduced number of ranks among a plurality of communicating terminals is larger than a preset threshold using the collected feedback information (263). If it is not greater than the threshold, the base station does not change the pilot signal arrangement (268). If it is larger than the threshold, the base station calculates the total throughput of the entire terminal before changing the pilot signal arrangement and after changing the pilot signal arrangement in accordance with the decrease in the number of ranks (264). As a result, it is determined whether or not the total throughput increases due to the change of the pilot signal arrangement (265). If the total throughput increases as a result of the determination, the base station changes the pilot signal arrangement (266) and notifies the terminal of the new pilot signal arrangement number (267). When the total throughput does not increase, the base station does not change the pilot signal arrangement (268).
  • whether or not to change the pilot signal arrangement is determined based on a change in total throughput, but the trigger for determining the change in the pilot signal arrangement is determined based on whether or not the ratio of terminals having a reduced number of ranks is greater than a threshold value.
  • a threshold value An arbitrary value may be used as the threshold value. However, if the threshold value is set to a small value, the determination of the change of the pilot signal arrangement is frequently made. It is desirable to make a decision based on the ratio at the time of performing and the processing capability of the base station.
  • the pilot signal arrangement may be changed when the number of ranks of all terminals decreases. Further, the pilot signal arrangement may be changed when the maximum number of ranks fed back from the terminal decreases.
  • Example 5 will be described with reference to FIG. 13, FIG. 14, FIG. 15, and FIG.
  • FIG. 13 shows a block diagram of a wireless communication system according to the fifth embodiment of the present invention.
  • the terminal 2 (332) and the terminal 3 (333) each have two antennas (322, 323). If the terminal 2 and the terminal 3 can receive signals from the wireless unit 2 (312), the wireless unit 3 (313), the wireless unit 4 (314), and the wireless unit 5 (315), these 4 It is also possible for a certain radio unit to simultaneously transmit signals to two terminals, that is, to perform multi-user MIMO communication.
  • Example 5 is the same as the other examples described so far, but the criterion for changing the pilot signal arrangement is the change in the minimum value in the throughput of each terminal.
  • FIG. 15 is a table (361) showing the relationship between the change in the minimum value of the throughput of each terminal with the passage of time and the pilot signal arrangement number in this embodiment.
  • the base station holds the table (361) shown in FIG. 15 in a memory in the pilot signal control unit.
  • the table (361) includes the number of ranks for each terminal (363), the comparison result of the ratio of the number of rank-decreasing terminals and the threshold (364), and the minimum of the throughput of each terminal when the pilot signal arrangement is changed. It includes a change in value (365) and a pilot signal constellation number (366) at a certain time 362.
  • the comparison result 364 of the ratio of rank-decreased terminals and the threshold indicates that the ratio of the number of terminals with the reduced number of ranks to the total number of terminals collected by the base station is , It indicates whether it is larger than the threshold stored in advance by the base station.
  • the ratio of terminals with a reduced number of ranks is greater than the threshold value. Even if the pilot signal arrangement is changed in accordance with the decrease in the number of ranks, Since the minimum value of the throughput does not change or decreases, the pilot signal arrangement is the same as at time t (0). However, at time t (m), the minimum value of the throughput of each terminal increases, so the pilot signal arrangement is changed.
  • FIG. 14 shows a flowchart of base station operation in the fifth embodiment.
  • the difference between the fourth embodiment and the fifth embodiment is a difference in the reference for changing the pilot signal arrangement.
  • the change was made in the total throughput of a plurality of terminals.
  • a change in the minimum value among the throughputs of the respective terminals is used as a determination criterion. That is, in this embodiment, the base station determines whether or not the ratio of the number of terminals whose number of ranks has decreased is greater than a threshold (353). If the result of determination is not greater than the threshold value, the pilot signal arrangement is not changed (358).
  • the throughput of each terminal before and after changing the pilot signal arrangement is calculated (354), and if the minimum value of the throughput of each terminal is increased (355), the pilot signal arrangement is changed. (356), and notifies the terminal of the new pilot signal arrangement number (357). If the minimum value of the throughput of each terminal does not increase, the pilot signal arrangement is not changed (358).
  • the fifth embodiment is a preferable method when building a wireless system that prioritizes guaranteeing the minimum value of the throughput of the terminal rather than improving the total throughput of each terminal.
  • the pilot signal arrangement when the minimum value of the throughput of each terminal does not increase, the pilot signal arrangement is not changed (358). However, as shown in FIG. Even if the value does not increase, if the total throughput increases (361), the pilot signal arrangement may be changed (362).
  • the radio base station includes a plurality of radio units (381, 382) and a baseband unit 385 as shown in FIG.
  • the plurality of radio units are grouped into a plurality of groups.
  • the radio unit 381 belongs to the group A and the radio unit 382 belongs to the group B.
  • the baseband unit includes a group A baseband unit 386 and a group B baseband unit 387 corresponding to the groups A and B, respectively.
  • the group A baseband unit 386 controls the pilot signal arrangement for the group A.
  • the group B baseband unit 387 controls the pilot signal arrangement for the group B.
  • radio units are divided into two or more groups, and the pilot signal arrangement is controlled individually in each group, so that control more suitable for each group than when pilot signal arrangement is controlled as one group Therefore, the configuration shown in this embodiment is suitable when better wireless communication can be realized as a result.
  • the probability that the pilot signal arrangement corresponding to the rank number 4 is changed to the initial value is higher than the case where communication is started using the pilot signal arrangement corresponding to the rank number 2 as the initial value.
  • the radio unit having a low value is set as group A, while the pilot signal arrangement corresponding to rank number 2 is set as an initial value compared to the case where communication is started using the pilot signal arrangement corresponding to rank number 4 as an initial value.
  • a radio unit having a low probability of changing the pilot signal arrangement thereafter is defined as group B.
  • the radio unit 2 may be divided into two groups.
  • a downtown area if the density of radio units is higher than that in residential areas, if the cell design is such that any radio unit transmits signals with the same power, the number of radio units that the terminal can receive pilot signals The average is different in the downtown area and the residential area, so the time average of the number of ranks fed back from the terminal is also different in the downtown area and the residential area.
  • grouping the radio units according to the communication environment it is possible to control the pilot signal arrangement more finely.
  • the radio units may be grouped according to the number of maximum ranks of terminals. Even when the maximum number of ranks is the same, the groups may be further divided by the frequency with which the pilot signal arrangement changes. For example, if the propagation environment of the communication area is almost stable and the change frequency of the pilot signal arrangement is low, and if the change of the propagation environment of the communication area is large and the pilot signal arrangement is changed frequently, wireless communication It is desirable to control as a separate group in the area where the system performance is improved. As a result, the pilot signal arrangement can be changed at a frequency suitable for each area, and there is an effect that the load on the system required to determine the change can be made to an appropriate amount.
  • the pilot signal arrangement method is controlled.
  • the pilot signal arrangement of each group may be controlled in the same manner as in the first to fifth embodiments described so far. Further, the determination criteria for changing the pilot signal arrangement may be the same for group A and group B, or may be different criteria. Further, in the sixth embodiment, although divided into two groups, it may be divided into more groups. The grouping may be performed so that the number of both wireless units is equal, or may be divided so that the number of wireless units is different.
  • Example 7 will be described with reference to FIG. FIG. 18 shows a sequence when the terminal (391) starts communication with the base station (392) operating based on the above-described embodiment.
  • the base station broadcasts control information (393) such as synchronization information required for communication with the terminal and pilot signal arrangement information at regular intervals.
  • control information such as synchronization information required for communication with the terminal and pilot signal arrangement information at regular intervals.
  • the terminal After the power is turned on (394), the terminal searches for a synchronization signal (395), and then obtains control information necessary for starting communication with the base station from the control information (396).
  • the terminal (391) broadcasts a communication start inquiry signal (397), receives a communication start permission from the base station, and receives a control signal related to the wireless unit that first received the communication start inquiry signal (398).
  • the base station 392 uses this control signal to notify the pilot signal arrangement number used by the radio unit with which the terminal (391) starts communication. Based on the notified pilot signal arrangement number, the terminal prepares to detect the pilot signal and starts communication with the base station (399). Thereafter, as in the embodiment described so far, communication is continued while timely feedback of information such as the number of ranks and negative response to the base station.
  • the configuration of the terminal 503 includes a signal processing unit 507, a control unit 505, an application 501, and an interface 502 between the application 501, the signal processing unit 507, and the control unit 505, which are connected by a bus. Further, the terminal includes a wireless modulation / demodulation unit and a wireless unit 504 having an antenna.
  • the signal processing unit 507 includes a transmission buffer 508, an error control unit 509, a modulation unit 510, a mapping unit 511, a transmission processing unit 512, an IFFT unit 513, a CP addition unit 514, a reception buffer 524, an error control unit 523, and a demodulation / decoding unit. 522, a demapping unit 521, a reception processing unit 520, an FFT unit 519, and a CP removal unit.
  • the base station shown in FIG. 25 dynamically changes the pilot signal arrangement and notifies the terminal of the arrangement as a pilot signal arrangement number.
  • the output from the reception processing unit 520 in the signal processing unit 507 is transmitted to the pilot signal arrangement number reading unit 526, and the pilot signal arrangement number reading unit 526 reads the pilot signal arrangement number from the output from the reception processing unit 520. .
  • the pilot signal is read out using a table indicating the relationship between the pilot signal arrangement number and the pilot signal arrangement stored in the memory (530).
  • the pilot signal transmitted by the wireless unit communicating with the terminal is read out by the unit (528).
  • the rank number determination unit (529) determines the rank number of the signal received by the terminal, and transmits the information to the control information generation unit (531).
  • the generated control information (515) is mapped to a time-frequency element (a radio resource element around time and frequency) together with a pilot signal (517) of a terminal and a modulated data signal, and after transmission signal processing, Output from the antenna.
  • the configuration shown in FIG. 19 shows the configuration of a terminal used in a wireless communication system that determines a change in pilot signal arrangement based on information on the number of ranks, but the change in pilot signal arrangement is determined based on negative acknowledgment information.
  • the same configuration may be applied to the terminal used in the system.
  • the series of operations related to the change of the pilot signal arrangement in the embodiments described so far may be automatically executed by a program stored in the baseband unit of the base station. Also, as shown in FIG. 20, manual control and automatic control may be switched as appropriate for operation. In FIG. 20, manual control and automatic control are mainly described. Therefore, in the embodiments described so far, for example, the IFFT unit, the FFT unit, the CP adding unit, the CP removing unit, and the radio unit described with reference to FIG. Although omitted from the drawing, the processing not described in the ninth embodiment is the same as in the other embodiments.
  • the management device (601) includes a user interface (602), a memory (603), a processor (604), and a backhaul network interface (606) as components.
  • a pilot signal arrangement control unit (605) is provided in the processor, and an administrator can manually control the arrangement of pilot signals.
  • the mapping control information (612) is used when the mapping unit (411) maps the pilot signal in order to arrange the desired pilot signal.
  • information (609) by automatic control created by the pilot signal arrangement automatic control unit (613) is used, or the pilot signal arrangement control unit (605) of the management apparatus (601) Which of manual control information (607) created manually can be switched by a switch (610) and a switch control signal (608).
  • This switch control signal is also controlled by the management device (601).
  • the switch 610 selects information 609 by automatic control or manual control information 607 according to the switch control signal 608 and transmits the selected information to the signal processing unit 407.
  • the setting of the criterion for determining the pilot change for each group in the sixth embodiment may be notified from the management apparatus 601 to the base station. Further, the management apparatus 601 may determine whether to change the pilot arrangement of each group and notify the group baseband unit. Any one of the control units 405 in the baseband group for the base station may determine the pilot arrangement change for each of the plurality of groups.

Abstract

Provided is a method for efficiently transmitting pilot signals in a distributed antenna system. The present invention has: a base station, which is configured of a plurality of wireless units, which at least transmit and receive radio frequency signals, and a baseband unit; and a terminal that communicates with the base station. The base station transmits pilot signals from the wireless units, and changes the kinds of the wireless units on the basis of information fed back from the terminal, said wireless units transmitting the pilot signals using different wireless resources.

Description

無線通信システムならびに無線通信装置Wireless communication system and wireless communication apparatus
 本発明は、無線通信システム、基地局システム、および端末に関する。 The present invention relates to a wireless communication system, a base station system, and a terminal.
 基地局と端末の間に形成される空間伝搬路の特性は、基地局と端末の間で互いに既知の信号を用いて推定する。以下、本明細書では、上記の既知の信号をパイロット信号と称する。周波数分割デュプレックス(FDD)を用いるシステムでは、基地局から端末へ信号を送信する場合の空間伝搬路の特性は、基地局が送信したパイロット信号により端末側で推定される。端末が空間伝搬路特性に関する情報を基地局へフィードバックすることによって、基地局は端末へ信号を送る場合の空間伝搬路の特性に関する情報を得ることができる。 The characteristics of the spatial propagation path formed between the base station and the terminal are estimated using known signals between the base station and the terminal. Hereinafter, in this specification, the known signal is referred to as a pilot signal. In a system using frequency division duplex (FDD), characteristics of a spatial propagation path when a signal is transmitted from a base station to a terminal are estimated on the terminal side by a pilot signal transmitted from the base station. When the terminal feeds back information on the spatial propagation path characteristics to the base station, the base station can obtain information on the characteristics of the spatial propagation path when a signal is transmitted to the terminal.
 また、端末から基地局へ信号を送信する場合の空間伝搬路の特性は、端末が送信したパイロット信号を基地局が受信することによって推定する。 Also, the characteristics of the spatial propagation path when a signal is transmitted from the terminal to the base station are estimated by the base station receiving a pilot signal transmitted from the terminal.
 特許文献1では、分散アンテナシステムにおけるパイロット信号とデータ信号の送信方法が開示されている。特許文献1では、複数の遠隔アンテナ装置の中で、アンテナインデックスが割り当てられていない遠隔アンテナ装置のパイロット信号の送信に用いるリソースに、他の遠隔アンテナの通信データを割り当てることが開示されている。 Patent Document 1 discloses a transmission method of pilot signals and data signals in a distributed antenna system. Patent Document 1 discloses that communication data of another remote antenna is allocated to a resource used for transmitting a pilot signal of a remote antenna apparatus to which an antenna index is not allocated among a plurality of remote antenna apparatuses.
 また、特許文献2には、無線通信の高速化及び/又は高品質化を図るため、複数のアンテナを用いた多入力多出力(Multiple Input Multiple Output:MIMO)技術や、送信局と複数の受信局が同時に接続できるマルチユーザMIMO(MU-MIMO)技術が開示されている。 Further, Patent Document 2 discloses a multiple input multiple output (MIMO) technique using a plurality of antennas and a transmission station and a plurality of receptions in order to increase the speed and / or quality of wireless communication. A multi-user MIMO (MU-MIMO) technology that allows stations to connect simultaneously is disclosed.
特開2010-68496公報JP 2010-68496 A 特開2007-214993公報JP 2007-214993 A
 MIMOまたはMU-MIMOの性能を高めるには、基地局が端末との間に形成される空間チャネルの情報が必要と考えられている。 In order to improve the performance of MIMO or MU-MIMO, it is considered that information on the spatial channel formed between the base station and the terminal is necessary.
 基地局と端末の間の通信速度の、通信エリア内におけるばらつきを小さくするためには、基地局のアンテナを分散配置すること、さらに端末との間に良好な空間伝搬路を形成しているアンテナと通信を行うことが有効である。 In order to reduce the variation in communication speed between the base station and the terminal in the communication area, the antennas of the base station are distributed and the antenna that forms a good spatial propagation path with the terminal It is effective to communicate with.
 各アンテナと端末との間の空間伝搬路の推定には、上述のパイロット信号を用いるが、基地局は1つのアンテナからのパイロット信号と、他のアンテナからのパイロット信号を識別できるようにパイロット信号を送らなければならない。そのため、分散配置されたアンテナの数が増えると、パイロット信号の送信に多くの無線リソースを用いることになり、オーバーヘッドが大きくなる。このため特許文献1では、1つの端末が通信しないアンテナが送信するパイロット信号に用いる無線リソースを使って、データ信号を送信することが開示されている。しかし、特許文献1に開示されている技術を用いる場合は、複数のユーザが存在する場合は、周波数または時間の分割による通信となる。 The above-described pilot signal is used for estimation of the spatial propagation path between each antenna and the terminal, but the base station can identify the pilot signal from one antenna and the pilot signal from the other antenna. Must be sent. For this reason, when the number of distributed antennas increases, more radio resources are used for transmission of pilot signals, and overhead increases. For this reason, Patent Document 1 discloses that a data signal is transmitted using a radio resource used for a pilot signal transmitted by an antenna with which one terminal does not communicate. However, when the technique disclosed in Patent Document 1 is used, when there are a plurality of users, communication is performed by dividing the frequency or time.
 しかし、分散アンテナシステムは、1つの端末と通信するよりも、同時に複数の端末と通信する構成とした方が、無線リソースを有効活用できる確率が高い。 However, in the distributed antenna system, it is more probable that radio resources can be effectively used if the system is configured to communicate with a plurality of terminals simultaneously than with a single terminal.
 そのため、分散アンテナシステムにおいて、分散アンテナから送信されるパイロット信号の無線リソースを、パイロット信号の送信に用いたうえで、パイロット信号送信のオーバーヘッドを低減すること、かつ、複数端末との通信も考慮した分散アンテナシステムにおけるパイロット信号の送信方法の提供が課題となる。 Therefore, in the distributed antenna system, pilot signal radio resources transmitted from the distributed antenna are used for pilot signal transmission, and pilot signal transmission overhead is reduced, and communication with multiple terminals is also considered. Providing a pilot signal transmission method in a distributed antenna system is an issue.
 上述した課題の少なくとも一の課題を解決するための本発明の一態様として、
無線通信システムであって、少なくとも無線周波数信号の送受信を行う複数の無線部と、送信信号作成と受信信号処理、並びに基地局動作のための制御を行うベースバンド部とから構成された基地局と、前記基地局と通信する端末とを有し、前記基地局は、前記複数の無線部からパイロット信号を送信し、前記無線部から送信される前記パイロット信号の配置される無線リソースの配置、もしくはパイロット信号のパタンの少なくともいずれかを、前記端末からフィードバックされる情報に基づいて変更すること、とする。
As one aspect of the present invention for solving at least one of the above-described problems,
A radio communication system, comprising: a base station comprising a plurality of radio units that transmit and receive at least radio frequency signals; and a baseband unit that performs control for transmission signal creation and reception signal processing and base station operation; A base station that communicates with the base station, wherein the base station transmits pilot signals from the plurality of radio units, and arrangement of radio resources in which the pilot signals transmitted from the radio units are arranged, or It is assumed that at least one of the patterns of the pilot signal is changed based on information fed back from the terminal.
 別の態様では、分散配置された基地局の無線送受信部と、端末との間の空間伝搬路に応じて、基地局から送信されるパイロット信号配置を決定する、という態様である。 Another aspect is an aspect in which the arrangement of pilot signals transmitted from the base station is determined in accordance with the spatial propagation path between the radio transmission / reception units of the base stations arranged in a distributed manner and the terminals.
 別の態様によれば、分散配置した無線部を、いくつかのグループに分割し、そのグループ内でそれぞれパイロット信号の配置、もしくはパタンを変更する態様である。 According to another aspect, the distributed radio units are divided into several groups, and the arrangement or pattern of pilot signals is changed in each group.
 本発明の一態様によれば、パイロット信号の送信で使用する無線リソースを有効活用することが可能となる。 According to one aspect of the present invention, it is possible to effectively use radio resources used for transmission of pilot signals.
無線通信システムの構成図Configuration diagram of wireless communication system 実施例1における基地局動作のフローチャートFlow chart of base station operation in embodiment 1 実施例2における基地局動作のフローチャートFlowchart of base station operation in embodiment 2 端末のランク数とパイロット信号配置番号の関係を示すテーブルTable showing the relationship between terminal rank and pilot signal allocation number 4つの無線部のパイロット信号が識別可能なパイロット信号の配置図Pilot signal layout that can identify pilot signals of four radio units 2つの無線部のパイロット信号が識別可能なパイロット信号の配置図Arrangement diagram of pilot signals that can distinguish pilot signals of two radio units 実施例3における基地局動作のフローチャートFlow chart of base station operation in Embodiment 3 否定応答の頻度とパイロット信号配置番号の関係を示すテーブルTable showing the relationship between negative response frequency and pilot signal allocation number 実施例3における基地局と端末間の動作シーケンスOperation sequence between base station and terminal in embodiment 3 実施例4における複数端末がある場合の無線通信システムの構成図Configuration diagram of a wireless communication system when there are a plurality of terminals in the fourth embodiment 実施例4における基地局動作のフローチャートFlow chart of base station operation in embodiment 4 トータルスループットの変化とパイロット信号配置番号の関係を示すテーブルTable showing the relationship between changes in total throughput and pilot signal allocation numbers 実施例5における複数端末がある場合の無線通信システムの構成図Configuration diagram of wireless communication system when there are a plurality of terminals in the fifth embodiment 実施例5における基地局動作のフローチャート1Flowchart 1 of base station operation in the fifth embodiment 各端末のスループットのなかの最小値の変化とパイロット信号配置番号の関係を示すテーブルTable showing the relationship between the change in the minimum value of the throughput of each terminal and the pilot signal arrangement number 実施例5における基地局動作のフローチャート2Flowchart 2 of base station operation in the fifth embodiment 無線部を2グループに分割した無線通信システムの構成図Configuration diagram of radio communication system in which radio unit is divided into two groups 本発明に基づき動作している基地局と端末が通信を開始する場合のシーケンスSequence when base station and terminal operating according to the present invention start communication 端末構成図Terminal configuration diagram 管理装置によるマニュアル制御も可能な基地局構成図Base station configuration diagram that can also be manually controlled by a management device パイロット信号配置とパイロット信号配置番号の関係を示すテーブルTable showing the relationship between pilot signal allocation and pilot signal allocation number 実施例1の基地局構成図Base station configuration diagram of Embodiment 1 実施例2の基地局構成図Base station configuration diagram of Embodiment 2 実施例3の基地局構成図Base station configuration diagram of Embodiment 3 実施例4の基地局構成図Base station configuration diagram of Embodiment 4
以下、図面を用いて、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明の実施例1における無線通信システムの構成図の一例、図22は本発明の実施例1における基地局の構成図の一例、図2は本発明の実施例1における基地局動作のフローチャートの一例である。
図1に示すように、基地局は、アンテナ(111)と無線変復調部1~7(1121~1127)から構成される無線部1~7(121~127)と、前記7つの無線部が送信する信号の作成と受信する信号の処理、並びに基地局の動作を制御するベースバンド部(110)を有する。各無線部1~7は、少なくとも1つのアンテナ(111)を有し、端末128と無線信号の送受信を行う。
1 is an example of a configuration diagram of a wireless communication system according to Embodiment 1 of the present invention, FIG. 22 is an example of a configuration diagram of a base station according to Embodiment 1 of the present invention, and FIG. 2 is an operation of a base station according to Embodiment 1 of the present invention. It is an example of the flowchart of.
As shown in FIG. 1, in the base station, radio units 1 to 7 (121 to 127) including an antenna (111) and radio modulation / demodulation units 1 to 7 (1121 to 1127), and the seven radio units transmit A baseband unit (110) for controlling generation of a signal to be processed, processing of a received signal, and operation of a base station. Each of the radio units 1 to 7 has at least one antenna (111), and transmits and receives radio signals to and from the terminal 128.
 実施例1では4つのアンテナ(118)を有する端末(128)が、基地局と通信をする。実施例1では、基地局から端末へ信号を送信する場合について説明する。 In the first embodiment, a terminal (128) having four antennas (118) communicates with a base station. In the first embodiment, a case where a signal is transmitted from a base station to a terminal will be described.
 図5は、信号を割り当てる、リソースの概念図を示す。図5は、横軸を時間方向、縦軸を周波数方向として示している。実施例1では、端末は最大4レイヤの信号の受信が可能であるため、基地局は、端末が識別すべき無線部の初期値を4として設定する。そのため、4つのパイロット信号を分離して受信できるように、図5の(a)~(d)に示すパイロット信号を用いる。例えば、図5の(a)では、ハッチングを示したリソース(155)を使ってパイロット信号を送信する。また、他の無線部がパイロット信号を出すリソース(159)では、信号を出さないようにする。それ以外のリソース(160)を使って、データ信号や制御信号などを送信する。同様に、図5(b)では156、(c)では157、(d)では158として示したリソースを使って、パイロット信号を送信する。 FIG. 5 shows a conceptual diagram of resources to which signals are allocated. FIG. 5 shows the horizontal axis as the time direction and the vertical axis as the frequency direction. In the first embodiment, since the terminal can receive signals of up to four layers, the base station sets the initial value of the radio unit to be identified by the terminal as 4. Therefore, the pilot signals shown in FIGS. 5A to 5D are used so that the four pilot signals can be received separately. For example, in FIG. 5A, a pilot signal is transmitted using a resource (155) indicating hatching. In addition, the resource (159) from which the other radio unit outputs the pilot signal is configured not to output the signal. Data signals and control signals are transmitted using other resources (160). Similarly, a pilot signal is transmitted using the resources indicated as 156 in FIG. 5B, 157 in (c), and 158 in (d).
 実施例1では、7個の無線部があり、各無線部により送信されるパイロット信号は、上記の(a)~(d)のいずれかとなるため、同じリソースでパイロット信号を出す無線部が3組存在する。そのためこれらの無線部から送信されるパイロット信号は、互いへの干渉が小さくなる配置とすることが望ましい。実施例1では、無線部1(121)は図5(a)の配置、無線部2(122)は図5(b)の配置、無線部3(123)は図5(c)の配置、無線部4(124)は図5(d)の配置、無線部5(125)は図5(a)の配置、無線部6(126)は図5(b)の配置、無線部7(127)は図5(c)の配置のパイロット信号を送信するようにした。 In the first embodiment, there are seven radio units, and the pilot signal transmitted by each radio unit is any one of the above (a) to (d). Therefore, there are three radio units that output pilot signals with the same resource. There are pairs. Therefore, it is desirable that the pilot signals transmitted from these radio units be arranged so that interference with each other is reduced. In the first embodiment, the wireless unit 1 (121) is arranged as shown in FIG. 5A, the wireless unit 2 (122) is arranged as shown in FIG. 5B, and the wireless unit 3 (123) is arranged as shown in FIG. The radio unit 4 (124) is arranged as shown in FIG. 5D, the radio unit 5 (125) is arranged as shown in FIG. 5A, the radio unit 6 (126) is arranged as shown in FIG. 5B, and the radio unit 7 (127). ) Is configured to transmit a pilot signal having the arrangement shown in FIG.
 本実施例における基地局の構成を、図22を用いて説明する。基地局(400)は、アンテナと無線変復調部(1404)からなる無線部(404)と、ベースバンド部(403)とを有する。またバックホールネットワークインタフェース(402)を介して、バックホールネットワーク(401)に接続されており、各端末宛または端末からのデータをバックホールネットワークとの間でやり取りする。無線部とベースバンド部を接続する配線(120)は、光ファイバでも、銅を用いた配線などでもよい。 The configuration of the base station in the present embodiment will be described with reference to FIG. The base station (400) includes a radio unit (404) including an antenna and a radio modulation / demodulation unit (1404), and a baseband unit (403). Further, it is connected to the backhaul network (401) via the backhaul network interface (402), and exchanges data addressed to or from each terminal with the backhaul network. The wiring (120) for connecting the wireless unit and the baseband unit may be an optical fiber or a wiring using copper.
 無線部が有するアンテナは、アンテナを特定するための個別の番号であるアンテナ識別子が対応づけられている。アンテナ識別子により端末がどのアンテナと接続しているかを把握できる仕組みとなっている。 The antenna of the radio unit is associated with an antenna identifier that is an individual number for identifying the antenna. The antenna identifier is used to determine which antenna the terminal is connected to.
 ベースバンド部(403)は送信信号の作成と受信信号の処理を行う信号処理部(407)と基地局動作のための制御を行う制御部(405)とから構成されている。 The baseband unit (403) includes a signal processing unit (407) that performs transmission signal generation and reception signal processing, and a control unit (405) that performs control for base station operation.
 信号処理部407はデマッピング部421を備える。端末から受信した信号は、各無線部、CP除去部418,FFT部419、受信処理部420を介して、デマッピング部421に入力される。デマッピング部に入力される信号は、図5に示す周波数・時間リソースにマッピングされた信号である。デマッピング部は、入力された信号を、端末からフィードバックされたフィードバック情報を含む制御信号とデータ信号とに分離して、それぞれを出力する。 The signal processing unit 407 includes a demapping unit 421. A signal received from the terminal is input to the demapping unit 421 via each radio unit, CP removing unit 418, FFT unit 419, and reception processing unit 420. The signal input to the demapping unit is a signal mapped to the frequency / time resource shown in FIG. The demapping unit separates the input signal into a control signal including feedback information fed back from the terminal and a data signal, and outputs each of them.
 制御部(405)は、基地局の各無線部から送信されるパイロット信号を制御するパイロット信号制御部(425)を含んで構成されている。 The control unit (405) includes a pilot signal control unit (425) that controls a pilot signal transmitted from each radio unit of the base station.
 パイロット信号の変更に要するフィードバック情報、例えば、各端末のランクに関する情報や、否定応答に関する情報はパイロット信号制御部(425)に入力される。 Feedback information required for changing the pilot signal, for example, information regarding the rank of each terminal and information regarding negative acknowledgment are input to the pilot signal control unit (425).
 パイロット信号制御部(425)は、フィードバック情報収集部801と、パイロット信号変更判断部802と、パイロット信号決定部803と、を有する。フィードバック情報収集部801は、基地局からの信号を受信した端末からフィードバックされる情報を、少なくとも一の無線部を介して収集する。パイロット信号変更判断部802は、収集した情報の経時変化をモニタし、従来からの変化の有無をチェックし、従来から変化があった場合、パイロット信号の変更を判断する。パイロット信号決定部803は、パイロット信号変更判断部(802)の結果を受けて、パイロット信号の変更の有無を決定する。 The pilot signal control unit (425) includes a feedback information collection unit 801, a pilot signal change determination unit 802, and a pilot signal determination unit 803. The feedback information collection unit 801 collects information fed back from the terminal that has received the signal from the base station via at least one radio unit. The pilot signal change determination unit 802 monitors changes over time in collected information, checks whether there is a change from the conventional one, and determines a change in the pilot signal if there is a change from the conventional one. The pilot signal determination unit 803 receives the result of the pilot signal change determination unit (802) and determines whether or not the pilot signal is changed.
 マッピング制御部(431)は、送信信号のマッピング(411)を制御し、変調部(410)から出力されたデータ信号、同期信号(415)、制御信号(416)、パイロット信号(417)を、図5のような周波数・時間リソースエレメントにマッピングする。マッピング制御部431は、マッピング制御情報490をマッピング411に、デマッピング制御情報495をデマッピング部421に通知する。 The mapping control unit (431) controls the mapping (411) of the transmission signal, and the data signal, the synchronization signal (415), the control signal (416), and the pilot signal (417) output from the modulation unit (410) Mapping to frequency / time resource elements as shown in FIG. The mapping control unit 431 notifies the mapping control information 490 to the mapping 411 and the demapping control information 495 to the demapping unit 421.
 それ以外の基地局動作は、一般に用いられる基地局動作と同等であるため、各部の動作については、簡単に説明する。 Other base station operations are the same as commonly used base station operations, so the operation of each part will be briefly described.
 バックホールネットワーク(401)からバックホールネットワークインタフェース(402)を介して、基地局(400)がデータを受信すると、基地局400は、受信したデータを送信バッファ(408)に格納する。次に、誤り制御部(409)は、そのデータを誤り検出符号と、誤り訂正符号とで符号化し、変調部(410)が、符号化されたデータを変調する。マッピング部411は、変調部(410)から出力されたデータ信号と、同期信号(415)、制御信号(416)、パイロット信号(417)を、マッピング制御部(431)からのマッピング制御情報490に従い、時間周波数エレメント(時間と周波数を軸とした無線リソースエレメント)にマッピングする。 When the base station (400) receives data from the backhaul network (401) via the backhaul network interface (402), the base station 400 stores the received data in the transmission buffer (408). Next, the error control unit (409) encodes the data with an error detection code and an error correction code, and the modulation unit (410) modulates the encoded data. The mapping unit 411 outputs the data signal output from the modulation unit (410), the synchronization signal (415), the control signal (416), and the pilot signal (417) according to the mapping control information 490 from the mapping control unit (431). , Mapping to time frequency elements (radio resource elements with time and frequency as axes).
 その後、送信処理部(412)は、干渉制御や送信ウエイトの乗算を行い、IFFT部(413)は、時間領域の信号に変換し、CP付加部(414)でCP(cyclic prefix)を付加して、無線変復調部(1404)に、送信信号を入力する。無線変復調部1404では、入力されたデジタル信号をアナログ信号に変換してから、無線周波数信号に変換し、アンテナから信号を出力する。 Thereafter, the transmission processing unit (412) performs interference control and transmission weight multiplication, the IFFT unit (413) converts the signal into a time domain signal, and the CP adding unit (414) adds a CP (cyclic prefix). Then, the transmission signal is input to the wireless modulation / demodulation unit (1404). The wireless modulation / demodulation unit 1404 converts the input digital signal into an analog signal, converts it into a radio frequency signal, and outputs the signal from the antenna.
 また、端末から送信された信号は、同様にアンテナで受信され、無線変復調部(1404)でベースバンド周波数に変換され、アナログ信号からデジタル信号に変換されたあと、ベースバンド部(403)に入力される。CP除去部(418)でCPを除去され、FFT部(419)で周波数領域の信号に変換される。そして、受信処理部(420)では、変換された周波数領域の信号に対して、受信ウエイトの乗算などの処理が行われる。デマッピング部(421)は、入力された信号を、データ信号と制御信号とに分離して出力する。制御信号は、制御部(405)に入力され、データ信号は、復調・復号部(422)に入力され、復調・復号部422で復調・復号される。復調・復号された信号に対して、誤り制御部(423)で誤り訂正と誤り検出が行われ、受信バッファ(424)に入力される。信号処理部(407)と制御部(405)間のやり取りなどは、バス(406)を介して行われる。 Similarly, a signal transmitted from the terminal is received by the antenna, converted to a baseband frequency by the radio modem unit (1404), converted from an analog signal to a digital signal, and then input to the baseband unit (403). Is done. CP is removed by the CP removing unit (418), and converted into a frequency domain signal by the FFT unit (419). The reception processing unit (420) performs processing such as multiplication of reception weights on the converted frequency domain signal. The demapping unit (421) separates the input signal into a data signal and a control signal and outputs the data signal and the control signal. The control signal is input to the control unit (405), the data signal is input to the demodulation / decoding unit (422), and demodulated / decoded by the demodulation / decoding unit 422. The demodulated / decoded signal is subjected to error correction and error detection by an error control unit (423) and input to a reception buffer (424). The exchange between the signal processing unit (407) and the control unit (405) is performed via the bus (406).
 図22では送信バッファから送信処理までを1系例としてあらわしているが、分散されたアンテナの一部を使って端末にMIMO通信することや、複数端末への同時MIMO通信を行うために、複数系統の信号処理を並列に行うような構成としても良い。また、図22は、基地局の構成の一例を示すものであり、本発明の要旨を変更しないで実現できる構成であれば、その他の構成であっても良い。 In FIG. 22, the processing from the transmission buffer to the transmission processing is shown as a system example. However, in order to perform MIMO communication with a terminal using a part of distributed antennas, or to perform simultaneous MIMO communication with a plurality of terminals, It is good also as a structure which performs the signal processing of a system | strain in parallel. FIG. 22 shows an example of the configuration of the base station, and other configurations may be used as long as they can be realized without changing the gist of the present invention.
 次に図2を用いて、基地局のパイロット信号の設定処理を示す動作フローチャートを説明する。基地局はまず初期値として決定したパイロット信号に基づいて、各無線部404から信号を送信し、端末と通信を開始する(101)。基地局からの信号を受信した端末からフィードバックされる情報を、基地局は、図22のフィードバック情報収集部(801)において適時収集する(102)。収集した情報の経時変化をモニタし、図22のパイロット信号変更判断部(802)において、過去に収集されたフィードバック情報と比較し、従来からの変化の有無をチェックする(103)。 Next, with reference to FIG. 2, an operation flowchart showing the setting process of the pilot signal of the base station will be described. First, the base station transmits a signal from each radio section 404 based on the pilot signal determined as the initial value, and starts communication with the terminal (101). The base station collects the information fed back from the terminal that receives the signal from the base station in a timely manner (102) in the feedback information collection unit (801) of FIG. The change with time of the collected information is monitored, and the pilot signal change determination unit (802) of FIG. 22 compares it with feedback information collected in the past to check whether there is a change from the past (103).
 従来から変化があった場合、図22のパイロット信号変更判断部(802)においてパイロット信号の変更を判断し、パイロット信号の変更によりシステム性能が改善すると判断されれば(104)、図22のパイロット信号決定部(803)からの信号によりパイロット信号の変更を実施し(105)、新しいパイロット信号を端末に通知する(107)。 If there has been a change from the prior art, the pilot signal change determination unit (802) of FIG. 22 determines the change of the pilot signal, and if it is determined that the system performance is improved by the change of the pilot signal (104), the pilot of FIG. The pilot signal is changed by the signal from the signal determination unit (803) (105), and the new pilot signal is notified to the terminal (107).
 また、パイロット信号を変更してもシステム性能が改善されない場合は、パイロット信号の変更は行わない(106)。 If the system performance is not improved even if the pilot signal is changed, the pilot signal is not changed (106).
 本実施例に示すように、端末からフィードバックされた情報に基づき、パイロット信号を動的に変化させる制御を行うことで、無線リソースを有効活用し、システム性能を向上させることができる。 As shown in the present embodiment, by performing control to dynamically change the pilot signal based on information fed back from the terminal, it is possible to effectively use radio resources and improve system performance.
 パイロット信号は、図5で用いたパイロット信号の配置だけではなく、パイロット信号のパタンを変えること、またそれらを組み合わせて変えることによっても、どの無線部からのパイロット信号かを識別できるようにすることができる。例えば、パイロット信号のパタンに、ウォルシュ符号をもちいることによって、パイロット信号を識別できるようにすることができる。 The pilot signal can be identified not only from the arrangement of the pilot signal used in FIG. 5, but also from which radio section the pilot signal can be identified by changing the pattern of the pilot signal or by changing them in combination. Can do. For example, the pilot signal can be identified by using a Walsh code in the pattern of the pilot signal.
 従って、本発明の実施例では、図5に示すように、パイロット信号の配置を変化させることを例として説明したが、パタンの変更によっても同様の効果が得られることは明白である。 Therefore, in the embodiment of the present invention, as shown in FIG. 5, an example of changing the arrangement of pilot signals has been described. However, it is obvious that the same effect can be obtained by changing the pattern.
 そのため図22に示す実施例においては、パイロット信号決定部(803)からパイロットの配置とパタンの2種類の情報が出力できる構成となっている。パイロットの配置に関する情報はマッピング制御部431に伝えられる。パタンに関する情報は、バス406経由でパイロット信号(417)に伝える構成となっている。 Therefore, in the embodiment shown in FIG. 22, the pilot signal determination unit (803) can output two types of information of pilot arrangement and pattern. Information on the pilot arrangement is transmitted to the mapping control unit 431. Information about the pattern is transmitted to the pilot signal (417) via the bus 406.
 図5に示すようにパイロット信号の配置を変更し、パタンに関してはあらかじめ決められた値を用いる場合は、パイロット信号決定部(803)から出力される信号がパイロットの配置に関する情報となるように構成しても良い。 When the pilot signal arrangement is changed as shown in FIG. 5 and a predetermined value is used for the pattern, the signal output from the pilot signal determining unit (803) is configured to be information on the pilot arrangement. You may do it.
 以下、他の実施例を用いて、本実施形態の詳細説明を行う。 Hereinafter, this embodiment will be described in detail using other examples.
 図23、図3、図4、図21を用いて本発明の実施例2を説明する。実施例2では、基地局は、端末からフィードバックされるフィードバック情報として、端末のランク数の情報を収集する(132)。基地局は、ランク数の減少の有無をチェックし(133)、ランク数が減少した場合は、パイロット信号配置を変更し(134)、端末に新しいパイロット信号配置番号を通知(135)する。ランク数の減少がなければ、パイロット信号配置の変更は行わない(136)。実施例2の構成において、実施例1と異なる箇所について説明する。実施例2で説明を省略している点については、他の実施例と同様である。 Embodiment 2 of the present invention will be described with reference to FIG. 23, FIG. 3, FIG. 4, and FIG. In the second embodiment, the base station collects information on the rank of the terminal as feedback information fed back from the terminal (132). The base station checks whether the number of ranks has decreased (133). If the number of ranks decreases, the base station changes the pilot signal arrangement (134) and notifies the terminal of the new pilot signal arrangement number (135). If there is no decrease in the number of ranks, the pilot signal arrangement is not changed (136). In the configuration of the second embodiment, differences from the first embodiment will be described. About the point which description is abbreviate | omitted in Example 2, it is the same as that of another Example.
 図4は、時間(142)、端末のランク数(143)とパイロット信号配置番号(144)の関係を示すテーブル(141)である。テーブル141は、ランク数の情報を収集するメモリ(811)に保持される。パイロット信号配置番号144とは、パイロット信号の配置に対して、配置パタンを特定するための識別子である番号と対応づけたものである。つまり、テーブル141は、端末からフィードバックされるランク数とパイロット信号の配置とが対応付けられて格納されている。 FIG. 4 is a table (141) showing the relationship between the time (142), the rank number of terminals (143), and the pilot signal arrangement number (144). The table 141 is held in a memory (811) that collects rank number information. The pilot signal arrangement number 144 is associated with the number that is an identifier for specifying the arrangement pattern with respect to the arrangement of the pilot signal. That is, the table 141 stores the number of ranks fed back from the terminal and the arrangement of pilot signals in association with each other.
 図21はパイロット信号配置とパイロット信号配置番号の関係を示すテーブル(701)である。テーブル701では、パイロット信号配置番号702と配置番号に対応するパイロット信号配置のパターンが一以上対応づけられている。パイロット信号配置番号1に対応付けられるパイロット信号配置(703)は、パタン(A)が対応付けられる。図21に示すように、パタン(A)では、ハッチングを施したリソース(1701)にパイロット信号が配置され、その他のリソース(1702)には、パイロット信号以外の信号、例えばデータ信号などが配置される。 FIG. 21 is a table (701) showing the relationship between pilot signal arrangement and pilot signal arrangement number. In the table 701, at least one pilot signal arrangement number 702 is associated with one or more pilot signal arrangement patterns corresponding to the arrangement number. The pilot signal arrangement (703) associated with the pilot signal arrangement number 1 is associated with the pattern (A). As shown in FIG. 21, in the pattern (A), a pilot signal is arranged in the hatched resource (1701), and a signal other than the pilot signal, such as a data signal, is arranged in the other resource (1702). The
 パイロット信号配置番号2に対応付けられるパイロット信号配置は、パタン(B)とパタン(C)である。パタン(B)とパタン(C)では、パイロット信号が異なるリソースに配置されている。また、パタン(B)では、パタン(C)においてパイロット信号が配置されるリソース(1703)には信号が配置されない。同様にパタン(C)では、パタン(B)においてパイロット信号が配置されるリソースには信号が配置されない。このような信号配置とすることで、端末がパイロット信号を識別できるようにしている。 Pilot signal arrangements associated with pilot signal arrangement number 2 are pattern (B) and pattern (C). In pattern (B) and pattern (C), pilot signals are arranged in different resources. In the pattern (B), no signal is arranged in the resource (1703) in which the pilot signal is arranged in the pattern (C). Similarly, in pattern (C), no signal is allocated to the resource in which the pilot signal is allocated in pattern (B). With this signal arrangement, the terminal can identify the pilot signal.
 パイロット信号配置番号3に対応づけられるパイロット信号配置は、パタン(D)、(E)、(F)となる。パイロット信号配置番号4に対応づけられるパイロット信号配置は、パタン(G)、(H)、(I)、(J)となる。これらのパタンにおけるパイロット信号の配置方法は、パイロット信号配置番号2に対応付けられるパタンと同様である。また、パタン(A)と同様に、パタン(B)から(J)においても、ハッチングされていないリソースには、パイロット信号以外の信号、例えばデータ信号などが配置される。 Pilot signal arrangements associated with pilot signal arrangement number 3 are patterns (D), (E), and (F). Pilot signal arrangements associated with pilot signal arrangement number 4 are patterns (G), (H), (I), and (J). The arrangement method of pilot signals in these patterns is the same as the pattern associated with pilot signal arrangement number 2. Similarly to patterns (A), in patterns (B) to (J), signals other than pilot signals, such as data signals, are arranged in unhatched resources.
 図21のような配置パタンの情報を基地局と端末であらかじめ共有しておけば、パイロット信号の配置そのものを通知せずに、パイロット信号配置番号を通知することにより、パイロット信号の配置を、端末側が把握することができる。基地局は、ブロードキャスト信号を用いて、各無線部が用いるパイロット信号配置のパタンに対応するパイロット信号配置番号を通知してもよい。 If information on the arrangement pattern as shown in FIG. 21 is shared in advance between the base station and the terminal, the pilot signal arrangement is notified by notifying the pilot signal arrangement itself, but the pilot signal arrangement number. The side can grasp. The base station may notify the pilot signal arrangement number corresponding to the pattern of the pilot signal arrangement used by each radio unit using the broadcast signal.
 実施例2の基地局の構成を図23に示す。
実施例2では、パイロット信号制御部(425)が有するメモリ(811)に端末からフィードバックされた端末のランク数の情報を保持する。本実施例で用いるランク数とは、MIMO通信において同時に送信できるレイヤの数とする。
FIG. 23 shows the configuration of the base station according to the second embodiment.
In the second embodiment, information on the rank number of the terminal fed back from the terminal is held in the memory (811) included in the pilot signal control unit (425). The number of ranks used in this embodiment is the number of layers that can be transmitted simultaneously in MIMO communication.
 パイロット信号配置変更判断部(427)は、端末からフィードバックされた情報に含まれるランク数と、すでにメモリ811に保持されている過去にフィードバックされたランク数とを比較し、ランク数の減少の有無をチェックし、その情報をパイロット信号配置決定部(428)に伝達する。つまり、パイロット信号配置変更判断部427は、テーブル141を参照することによりランク数の時間変化をモニタする。 The pilot signal arrangement change determining unit (427) compares the number of ranks included in the information fed back from the terminal with the number of ranks fed back in the past and already held in the memory 811, and whether or not the number of ranks has decreased. And the information is transmitted to the pilot signal arrangement determining unit (428). That is, the pilot signal arrangement change determination unit 427 monitors the time change of the rank number by referring to the table 141.
 パイロット信号配置決定部(428)は、パイロット信号配置変更判断部(427)からの情報が、「ランク数の減少あり」であればパイロット信号配置を変更すると決定し、「ランク数の減少なし」であれば、パイロット信号配置を変更しないことを決定する。つまり、ランク数に応じて、パイロット信号配置決定部428は、パイロット信号配置の変更の要否を決定する。実施例2でのパイロット信号制御部425は、あらかじめ、メモリ(430)にパイロット信号配置番号テーブルを保持しておき、パイロット信号配置番号決定部(428)は、決定したパイロット信号配置番号をマッピング制御部(431)に伝達する。 The pilot signal arrangement determining unit (428) decides to change the pilot signal arrangement if the information from the pilot signal arrangement change determining unit (427) is “there is a decrease in the number of ranks”, and “no decrease in the number of ranks”. If so, it is determined not to change the pilot signal arrangement. That is, according to the number of ranks, pilot signal arrangement determining section 428 determines whether or not the pilot signal arrangement needs to be changed. The pilot signal control unit 425 in the second embodiment holds a pilot signal arrangement number table in the memory (430) in advance, and the pilot signal arrangement number determination unit (428) performs mapping control on the determined pilot signal arrangement number. Part (431).
 実施例2における基地局の動作を図3に示す。上述のとおり、実施例2では基地局は、端末からフィードバックされる端末のランク数を、図23のランク数の情報を収集するメモリ(811)に収集する(132)。図23のパイロット信号配置変更判断部(427)は、メモリ811に保持されるランク数の情報を参照し、ランク数の変化をチェック(133)する。基地局は、133でのチェック結果、ランク数が減少した場合は、図23のパイロット信号配置決定部(428)においてパイロット信号配置を変更し(134)、端末に変更後のパイロット信号配置番号を通知(135)する。ランク数の減少がなければ、パイロット信号配置決定部は、パイロット信号配置の変更は行わなず(136)、基地局は、ランク数の変化のチェックの処理に戻る。 FIG. 3 shows the operation of the base station in the second embodiment. As described above, in the second embodiment, the base station collects the rank number of the terminal fed back from the terminal in the memory (811) for collecting the rank number information of FIG. 23 (132). The pilot signal arrangement change determination unit (427) of FIG. 23 refers to the information on the number of ranks held in the memory 811 and checks the change in the number of ranks (133). When the number of ranks decreases as a result of the check at 133, the base station changes the pilot signal arrangement in the pilot signal arrangement determining unit (428) of FIG. 23 (134), and assigns the changed pilot signal arrangement number to the terminal. Notification (135) is made. If there is no decrease in the number of ranks, the pilot signal arrangement determining unit does not change the pilot signal arrangement (136), and the base station returns to the process of checking the change in rank number.
 図1に示す無線通信システムの場合、端末(128)は、4つのアンテナを有するため、最大で4レイヤの信号を送受信するように構成することが可能であるが、標準化された仕様に基づき通信する場合は、基地局から端末へ、または、端末から基地局に送信できるレイヤ数は、仕様によって決定される。 In the case of the wireless communication system shown in FIG. 1, since the terminal (128) has four antennas, the terminal (128) can be configured to transmit and receive signals of up to four layers. However, communication is performed based on standardized specifications. In this case, the number of layers that can be transmitted from the base station to the terminal or from the terminal to the base station is determined by the specification.
 実施例2においては、図4に示すように、時間t(0)におけるパイロット信号配置番号(144)を4とし、時間t(0)からt(m-1)までの間は、端末からフィードバックされるランク数(143)が4であるためパイロット信号配置番号(144)を4として通信し、時間がt(m)のときにフィードバックされた情報によりランク数が2になったことを知り、それに基づいて、パイロット信号配置番号が2のパイロット信号配置に変更して、それ以降の通信を継続する。 このように動作させることで、パイロット信号に使う無線リソースを1/2に低減でき、パイロット信号の送信に使わなくなった無線リソースをデータ信号のリソースとして用いることができるため、無線リソースの有効活用をはかることができる。 In the second embodiment, as shown in FIG. 4, the pilot signal arrangement number (144) at time t (0) is set to 4, and feedback from the terminal is performed between time t (0) and t (m−1). Since the number of ranks (143) to be performed is 4, the pilot signal arrangement number (144) is communicated as 4, and it is known that the number of ranks is 2 by the information fed back when the time is t (m). Based on this, the pilot signal arrangement number is changed to the pilot signal arrangement of 2, and the subsequent communication is continued. By operating in this way, radio resources used for pilot signals can be reduced to ½, and radio resources that are no longer used for pilot signal transmission can be used as data signal resources. Can measure.
 なお、基地局と通信している端末が1台の場合は、その端末の示すランク数が、端末と基地局の間に形成できるパスの数(すなわち基地局が送信ダイバシティを行わない場合は、端末とパスを形成できるアンテナ数)になるため、ランク数を越えた分の無線部のアンテナとは通信できていないことになる。ランクが減少する主な原因は、伝搬路の変動などにより、これまで通信できていた基地局の無線部と端末が通信できなくなったことを意味している。基地局はどの無線部と通信できているかをフィードバックされた情報より知ることができるため、その無線部からのパイロット信号が識別できるように、パイロット信号の配置を変更すれば良い。 When there is one terminal communicating with the base station, the number of ranks indicated by the terminal is the number of paths that can be formed between the terminal and the base station (that is, when the base station does not perform transmission diversity, The number of antennas that can form a path with the terminal), so that communication with the antennas of the radio unit exceeding the rank number is not possible. The main reason for the decrease in rank means that the radio unit of the base station and the terminal, which have been able to communicate so far, can no longer communicate due to propagation path fluctuations. Since the base station can know which radio unit can communicate with the information fed back, the arrangement of the pilot signal may be changed so that the pilot signal from the radio unit can be identified.
 次に図24、図6、図7、図8、図9を用いて実施例3を説明する。実施例3では、基地局は、端末からフィードバックされた情報に含まれる否定応答に基づきパイロット信号配置の変更を判断する。 Next, Example 3 will be described with reference to FIGS. 24, 6, 7, 8, and 9. In the third embodiment, the base station determines the change of the pilot signal arrangement based on the negative response included in the information fed back from the terminal.
 図24は、実施例3の基地局の構成を示す。他の実施例と異なる点は、パイロット信号制御部(425)のなかのメモリ(812)は否定応答に関する情報を記憶する。その他の構成は図22に示した実施例2の構成と同様である。 FIG. 24 shows the configuration of the base station of the third embodiment. The difference from the other embodiments is that the memory (812) in the pilot signal control unit (425) stores information on negative acknowledgment. Other configurations are the same as those of the second embodiment shown in FIG.
 図8は、実施例3において基地局のメモリ(812)に格納される端末からフィードバックされた否定応答に関する情報と、パイロット信号配置番号の関係を示すテーブル(191)を示す。テーブル(191)には、否定応答の頻度は閾値より大きいか(193)、また変調方式/符号化率変更後の否定応答の頻度は閾値より大きいか(194)、の判定と、その時のパイロット信号配置番号(195)が時間(192)とともに記録される。 FIG. 8 shows a table (191) showing the relationship between the information regarding the negative response fed back from the terminal stored in the memory (812) of the base station and the pilot signal arrangement number in the third embodiment. In the table (191), it is determined whether the frequency of negative responses is larger than a threshold value (193), and whether the frequency of negative responses after changing the modulation scheme / coding rate is larger than a threshold value (194), and the pilot at that time The signal arrangement number (195) is recorded with time (192).
 実施例3で、端末からの否定応答が増える原因は主として2通りある。1つ目は無線部と端末の間の伝搬環境の悪化である。例えば、図1に示す端末(128)が、無線部1(121)、無線部4(124)からの信号が受信できる伝搬環境にあり、基地局は、無線部1(121)からは図6(a)に示すパイロット信号配置(161)を用いて、また無線部4(124)からは図6(b)に示すパイロット信号配置(162)を用いて、端末と通信をしていた場合に、無線部1(121)と端末(128)の間の伝搬環境が悪化し、従来用いていた変調方式と符号化率ではエラーが生じる場合である。この場合は、変調多値数もしくは符号化率、もしくはその両方を、従来よりも下げて通信することにより、正しく復調できるようになる。 In Example 3, there are mainly two reasons why the negative response from the terminal increases. The first is deterioration of the propagation environment between the radio unit and the terminal. For example, the terminal (128) shown in FIG. 1 is in a propagation environment where signals from the radio unit 1 (121) and the radio unit 4 (124) can be received, and the base station is connected to the radio unit 1 (121) from FIG. When communicating with the terminal using the pilot signal arrangement (161) shown in (a) and from the radio unit 4 (124) using the pilot signal arrangement (162) shown in FIG. 6 (b) This is a case where the propagation environment between the wireless unit 1 (121) and the terminal (128) deteriorates and an error occurs in the modulation scheme and coding rate used conventionally. In this case, the demodulation can be correctly demodulated by performing communication with the modulation multi-level number and / or the coding rate lower than in the prior art.
 2つ目は、従来は、端末に対してパイロット信号が届かなかった、同じ無線リソースを用いてパイロット信号を送っている別の無線部からの信号が、伝搬環境の変化により、端末に届くようになる場合である。例えば、前述のように図1において当初は無線部1(121)、並びに無線部4(124)の信号しか受信できずにいた端末(128)が、伝搬環境の変化により、例えば、無線部1(121)と同じ無線リソースを用いてパイロット信号を送っている無線部5(125)からの信号も、伝搬環境の変化により受信できるようになった場合である。このとき、端末(128)は、無線部5(125)のパイロット信号が重畳しているパイロット信号を、無線部1(121)からのみ届いたパイロット信号として伝搬路推定を行い、その結果を基地局にフィードバックする。そのため、端末からフィードバックされた情報が、実際の伝搬路と異なるため、端末は基地局から送信された信号を正しく復調することができない。この場合は、パイロット信号配置を変更して、端末が無線部1、無線部4、無線部5からのパイロット信号を正しく受信できるようにする必要がある。 Second, in the past, a pilot signal did not reach the terminal, but a signal from another radio unit that transmits a pilot signal using the same radio resource may reach the terminal due to a change in the propagation environment. This is the case. For example, as described above, in FIG. 1, the terminal (128) that was initially able to receive only the signals of the wireless unit 1 (121) and the wireless unit 4 (124) may change, for example, due to a change in the propagation environment. This is a case where a signal from the wireless unit 5 (125) that transmits a pilot signal using the same wireless resource as (121) can be received due to a change in the propagation environment. At this time, the terminal (128) performs propagation path estimation using the pilot signal on which the pilot signal of the wireless unit 5 (125) is superimposed as a pilot signal received only from the wireless unit 1 (121), and the result is Give feedback to the station. Therefore, since the information fed back from the terminal is different from the actual propagation path, the terminal cannot correctly demodulate the signal transmitted from the base station. In this case, it is necessary to change the pilot signal arrangement so that the terminal can correctly receive the pilot signals from the radio unit 1, the radio unit 4, and the radio unit 5.
 図9は、実施例3における端末と基地局のシーケンス図である。図9は、否定応答の割合が閾値よりも大きいと判定され、かつ、変調多値数と符号化率を下げた場合でも、否定応答の割合が閾値よりも大きかった場合のシーケンスである。図9を用いて、本実施例による基地局と端末の動作シーケンスを説明する。基地局(712)は、端末(711)に対してデータ信号(713)を送信する。端末は受信信号に対して、誤り訂正・誤り検出(714)を実施し、基地局に確認応答/否定応答情報をフィードバック(715)する。 FIG. 9 is a sequence diagram of the terminal and the base station in the third embodiment. FIG. 9 is a sequence in the case where it is determined that the negative response rate is greater than the threshold value, and the negative response rate is higher than the threshold value even when the modulation multi-level number and the coding rate are lowered. The operation sequence of the base station and the terminal according to this embodiment will be described with reference to FIG. The base station (712) transmits a data signal (713) to the terminal (711). The terminal performs error correction / error detection (714) on the received signal, and feeds back (715) acknowledgment / negative acknowledgment information to the base station.
 基地局は、否定応答割合>閾値と判定(716)し、これまでの通信で用いていた変調多値数・符号化率よりも、変調多値数・符号化率を下げて(717)データ信号を送信する(718)。端末は受信信号に対して、誤り訂正・誤り検出(719)を実施し、確認応答/否定応答情報を基地局にフィードバックする(720)。基地局は、否定応答割合>閾値と判定(721)し、パイロット信号の衝突が発生していると判断し(722)、パイロット信号配置変更を決定する(723)。基地局は、変更後のパイロット信号配置番号を端末に通知し(724)、端末は通知されたパイロット信号配置番号での通信準備を行い(725)、確認応答をフィードバックする(726)。基地局は、その信号を受けて、データ信号を送信する(727)。 The base station determines that the negative response rate> threshold (716), and lowers the modulation multi-value number / coding rate from the modulation multi-value number / coding rate used in the communication so far (717). A signal is transmitted (718). The terminal performs error correction / error detection (719) on the received signal, and feeds back acknowledgment / negative acknowledgment information to the base station (720). The base station determines that the negative response ratio> threshold (721), determines that a pilot signal collision has occurred (722), and determines the pilot signal arrangement change (723). The base station notifies the terminal of the changed pilot signal allocation number (724), the terminal prepares for communication using the notified pilot signal allocation number (725), and feeds back an acknowledgment (726). The base station receives the signal and transmits a data signal (727).
 次に、図7は、図9で説明したシーケンスに関係する基地局動作の詳細を説明するフローチャートである。基地局は、初期値に対応したパイロット信号配置で通信を開始(181)し、端末からの否定応答情報を収集する(182)。その結果をメモリ内のテーブルに格納する。基地局は、否定応答が閾値より大きいかを、あらかじめ保持している閾値を用いて判断し(183)、閾値以下であれば、パイロット信号配置の変更なし(189)で通信を継続する。一方、閾値より大きければ、基地局は、変調多値数と符号化率を従来よりも下げて送信する(184)。 Next, FIG. 7 is a flowchart for explaining the details of the base station operation related to the sequence described in FIG. The base station starts communication with a pilot signal arrangement corresponding to the initial value (181), and collects negative acknowledgment information from the terminal (182). The result is stored in a table in memory. The base station determines whether the negative response is larger than the threshold value using the threshold value held in advance (183), and if it is equal to or less than the threshold value, continues the communication without changing the pilot signal arrangement (189). On the other hand, if it is larger than the threshold value, the base station transmits the modulation multi-level number and the coding rate lower than the conventional one (184).
 端末がCQI(channel quality indicator)をフィードバックする無線システムの場合は、そのCQIから適当と判断される変調多値数と符号化率を使っても否定応答の割合が閾値よりも大きい場合は、基地局は、それよりも変調多値数と符号化率を下げて信号を送信する。 In the case of a wireless system that feeds back a CQI (channel quality indicator), if the rate of negative response is larger than the threshold even if the modulation multi-value number and coding rate judged appropriate from the CQI are used, the base station The station transmits the signal with a lower modulation multi-level number and a lower coding rate.
 基地局は、その状態で、送信を行い、同様に端末からの否定応答情報を収集する(185)。変調多値数と符号化率を下げたあとでも否定応答が閾値より大きければ(186)、基地局は、ランク数を1つ増加させたパイロット信号配置に変更し(187)、端末に新しいパイロット信号配置番号を通知する(188)。否定応答が閾値以下であれば、基地局は、パイロット信号配置は変更しない(189)。 In this state, the base station performs transmission, and similarly collects negative acknowledgment information from the terminal (185). If the negative response is larger than the threshold even after lowering the modulation multi-level number and the coding rate (186), the base station changes to a pilot signal arrangement with the rank number increased by 1 (187), and a new pilot is sent to the terminal. The signal arrangement number is notified (188). If the negative response is less than or equal to the threshold, the base station does not change the pilot signal arrangement (189).
 上述の実施例3に示すように、端末からの否定応答の割合が閾値を越えた場合に、その原因を明らかにし、変調方式や符号化率を変更する、もしくは、パイロット信号配置を変更することで、端末の否定応答の割合を減少し、スループットを向上させることができる。なお、本実施例では、パイロット信号の衝突が起きていると判断した場合に、パイロット信号の再配置を行い、衝突を回避する方法を示した。一方、例えば、システムが端末に対してスループットを保証しており、パイロットが衝突している無線部からの送信を中止しても、保証しているスループットを満足できる場合は、パイロット信号の配置を変更せずに、パイロット信号の衝突が起きている無線部からの信号の送信を中止することも可能である。その結果として、パイロット信号の衝突が起きていた端末に向けて無線部が使用していたリソースを他の端末向けに活用することができ、トータルスループットを向上させることができれば、基地局は信号送信方法を上記のよう制御しても良い。 As shown in the third embodiment, when the ratio of negative response from the terminal exceeds the threshold, the cause is clarified, and the modulation scheme and coding rate are changed, or the pilot signal arrangement is changed. Thus, the negative response rate of the terminal can be reduced and the throughput can be improved. In the present embodiment, a method of avoiding a collision by rearranging pilot signals when it is determined that a pilot signal collision has occurred is shown. On the other hand, for example, if the system guarantees the throughput for the terminal and the guaranteed throughput can be satisfied even if the transmission from the radio unit with which the pilot collides is stopped, the arrangement of the pilot signal is changed. Without changing, it is also possible to stop transmission of a signal from a radio unit in which a pilot signal collision occurs. As a result, if the resources used by the radio unit for the terminal where the pilot signal has collided can be utilized for other terminals and the total throughput can be improved, the base station can perform signal transmission. The method may be controlled as described above.
 前述の実施例において、パイロット信号配置の初期値は、複数無線部を設置した段階で、それらの無線部と通信可能なエリアにおける、平均的なランク数と考えられる値、もしくは、無線部と同数を初期値としても良い。また、標準化されているシステムを用いる場合は、その標準で規定されている最大のレイヤ数としても良い。 In the above-described embodiment, the initial value of the pilot signal arrangement is a value considered to be an average rank number in the area where a plurality of radio units are installed and can communicate with those radio units, or the same number as the radio units. May be the initial value. When a standardized system is used, the maximum number of layers defined by the standard may be used.
 パイロット信号配置番号を増加させる場合は、パイロット信号の衝突を定量的に把握することが困難であるため、1ずつ上げることが好ましいが、ランク数が下がったことに対するパイロット信号配置の変更を行う場合は、1ずつ下げなくても良い。例えば、パイロット信号配置番号の初期値を4として通信を開始し、空間伝搬路の変化によりすべての端末から、ランク数が2である、という情報がフィードバックされた場合は、ランク数4に適したパイロット信号配置から、ランク数2に適したパイロット信号配置に変更しても良い。 When increasing the pilot signal arrangement number, it is difficult to quantitatively grasp the collision of the pilot signals, so it is preferable to increase by one. However, when changing the pilot signal arrangement in response to a decrease in the rank number Does not have to be lowered one by one. For example, when communication is started with an initial value of the pilot signal arrangement number set to 4, and information indicating that the rank number is 2 is fed back from all terminals due to changes in the spatial propagation path, it is suitable for the rank number 4 The pilot signal arrangement may be changed to a pilot signal arrangement suitable for rank number 2.
 次に図10、図11、図12を用いて、本発明の実施例4を説明する。実施例4では、図10に示すように無線部1(221)~無線部m(229)の複数の無線部とベースバンド部(250)とから構成された基地局と、複数の端末1~端末n(241-243)が通信を行っている。 Next, a fourth embodiment of the present invention will be described with reference to FIGS. In the fourth embodiment, as shown in FIG. 10, a base station configured with a plurality of radio units and a baseband unit (250) of radio units 1 (221) to m (229), and a plurality of terminals 1 to Terminal n (241-243) is communicating.
 実施例4では、基地局は、実施例2と同様に、それぞれの端末からフィードバックされたランク数をモニタする。しかし、実施例4では、複数の端末が基地局と通信するため、1つの端末と無線部との間の空間伝搬路の変化だけではなく、複数の端末と無線部との間の空間伝搬路を考慮して、パイロット信号配置を決定する。実施例4の基地局の構成を図25に示す。実施例4の構成は実施例2の構成と同じであるが、パイロット信号制御部(425)のなかのメモリ(813)、パイロット信号配置変更判断部(427)、パイロット信号配置決定部(428)の動作が異なる。 In the fourth embodiment, the base station monitors the number of ranks fed back from each terminal as in the second embodiment. However, in Example 4, since a plurality of terminals communicate with the base station, not only a change in a spatial propagation path between one terminal and the radio unit, but also a spatial propagation path between the plurality of terminals and the radio unit. Considering the above, the pilot signal arrangement is determined. The structure of the base station of Example 4 is shown in FIG. The configuration of the fourth embodiment is the same as that of the second embodiment, but the memory (813), the pilot signal arrangement change determining unit (427), and the pilot signal arrangement determining unit (428) in the pilot signal control unit (425). The operation is different.
 実施例4では、メモリ(813)は、基地局と通信している端末の中で、ランク数が減少した端末の割合の情報を記憶し、パイロット信号配置変更判断部(814)は、メモリ813を参照し、その割合が、あらかじめ決められた閾値を越えた場合に、パイロット信号配置を変更すべきかを判断する。以下ではパイロット信号配置変更判断部427が、トータルのスループットの変化を基準に、パイロット信号配置を変更すべきかを判断する例について説明する。 In the fourth embodiment, the memory (813) stores information on the proportion of terminals with reduced ranks among terminals communicating with the base station, and the pilot signal arrangement change determination unit (814) stores the memory 813. , It is determined whether the pilot signal arrangement should be changed when the ratio exceeds a predetermined threshold. Hereinafter, an example in which the pilot signal arrangement change determination unit 427 determines whether to change the pilot signal arrangement on the basis of a change in total throughput will be described.
 例えば、初期値のパイロット信号配置番号を3として通信を開始し、空間伝搬路の変動によりランク数が2に減少した端末が発生した場合、ランク数2の端末にとっては、ランク数2に対応するパイロット信号配置にすることで、基地局は、端末と通信できない無線部のパイロット信号の送信に用いるリソースをデータ信号の送信に使用できるためスループットが向上する。一方、ランク数3で通信できる端末に対しては、ランク数2に対応するパイロット信号配置とすることでパイロット信号の衝突が発生するため、そのような端末に対しては、スループットが低下する。このように複数の端末が基地局と通信している場合は、個々の端末の変動だけではなく、複数端末の変動を考慮したパイロット信号配置の変更が必要となる。そのため実施例4では、パイロット信号配置変更の基準として、複数端末のトータルのスループットが、パイロット信号配置を変更することによって増加する場合、パイロット信号配置決定部(428)でパイロット信号の配置の変更を決定し、パイロット信号配置を変更する。 For example, when communication is started with the pilot signal arrangement number of the initial value being 3, and a terminal having a rank number reduced to 2 due to a variation in the spatial propagation path, for a terminal with a rank number of 2, it corresponds to the rank number 2. By adopting the pilot signal arrangement, the base station can use the resources used for transmitting the pilot signal of the radio unit that cannot communicate with the terminal for transmitting the data signal, thereby improving the throughput. On the other hand, for terminals that can communicate with rank 3, pilot signal collision occurs when the pilot signal arrangement corresponding to rank 2 is used, so throughput decreases for such terminals. In this way, when a plurality of terminals are communicating with the base station, it is necessary to change the pilot signal arrangement in consideration of the fluctuations of the plurality of terminals as well as the fluctuations of the individual terminals. Therefore, in the fourth embodiment, when the total throughput of a plurality of terminals is increased by changing the pilot signal arrangement as a reference for changing the pilot signal arrangement, the pilot signal arrangement determining unit (428) changes the arrangement of the pilot signal. And change the pilot signal arrangement.
 図12は、基地局のメモリ(813)が保持するトータルスループットの変化とパイロット信号配置番号の関係を示すテーブル(271)である。このテーブル(271)は、パイロット信号配置変更判断部(427)での判断結果もあわせて保持している。図12のテーブル271は、端末のランク数ごとに時間に応じたランク数の変化が記録されるエントリ273と、時間ごとのランク数が減少した端末の割合と閾値との関係274のエントリ、パイロット信号配置変更によるトータルスループットの変化275、パイロット信号配置番号276の時間ごとの配置番号が保持される。 FIG. 12 is a table (271) showing the relationship between the change in the total throughput held in the base station memory (813) and the pilot signal arrangement number. This table (271) also holds the determination result of the pilot signal arrangement change determination unit (427). The table 271 in FIG. 12 includes an entry 273 in which a change in the number of ranks according to time is recorded for each rank number of terminals, an entry of a relationship 274 between the ratio of terminals in which the number of ranks has decreased per time and a threshold, and pilots A change in total throughput 275 due to a change in signal arrangement and an arrangement number for each time of pilot signal arrangement number 276 are held.
 基地局は、端末毎のランク数(273)の時間変化(272)を記録し、当該基地局が収容する端末数に対して、ランク数が減少する端末数の割合が閾値よりも大きいかを判断する(274)。時間t(k)においては、ランク数減少端末の割合が閾値よりも大きいと判断されたため、パイロット信号配置変更によるトータルスループットの変化を計算し、その結果、パイロット信号配置変更によりトータルスループットが減少すると判断されたため、パイロット信号配置番号(276)は従来通りとする。また、時間t(m)においては、パイロット信号配置変更によるトータルスループットが増加すると判断されたため、パイロット信号配置番号(276)を変更する。 The base station records the time change (272) of the number of ranks (273) for each terminal, and determines whether the ratio of the number of terminals whose rank number decreases is larger than the threshold with respect to the number of terminals accommodated by the base station. Judgment is made (274). At time t (k), it is determined that the ratio of rank-decreasing terminals is greater than the threshold value, so the change in total throughput due to the pilot signal allocation change is calculated. As a result, the total throughput decreases due to the pilot signal allocation change. Since it is determined, the pilot signal arrangement number (276) is assumed to be conventional. Further, at time t (m), it is determined that the total throughput increases due to the change of the pilot signal arrangement, so the pilot signal arrangement number (276) is changed.
 図11は、実施例4における基地局の動作フローチャートを示す。実施例4では、実施例2と同様に、それぞれの端末からフィードバックされたランク数をモニタし、以下のように動作する。 FIG. 11 shows an operation flowchart of the base station in the fourth embodiment. In the fourth embodiment, as in the second embodiment, the number of ranks fed back from each terminal is monitored, and the operation is as follows.
 基地局は、初期値に対応したパイロット信号配置で通信を開始し(261)、端末からフィードバックされる各端末のランク数の情報の収集(262)を行う。基地局は、収集されたフィードバック情報を用いて、通信している複数端末の中で、ランク数が減少した端末数の割合があらかじめ設定された閾値よりも大きいか判断する(263)。閾値よりも大きくなければ、基地局は、パイロット信号配置の変更は行わない(268)。また、閾値より大きい場合、基地局は、パイロット信号配置を変更する前、並びに、ランク数の減少に合わせてパイロット信号配置を変更した後の、端末全体のトータルスループットを算出する(264)。その結果として、パイロット信号配置の変更によりトータルスループットが増加するか否かを判定する(265)。判定した結果、トータルスループットが増加する場合は、基地局はパイロット信号配置を変更し(266)、端末に新しいパイロット信号配置番号を通知する(267)。また、トータルスループットが増加しない場合は、基地局は、パイロット信号配置は変更しない(268)。 The base station starts communication with a pilot signal arrangement corresponding to the initial value (261), and collects information on the number of ranks of each terminal fed back from the terminal (262). The base station determines whether the ratio of the number of terminals having a reduced number of ranks among a plurality of communicating terminals is larger than a preset threshold using the collected feedback information (263). If it is not greater than the threshold, the base station does not change the pilot signal arrangement (268). If it is larger than the threshold, the base station calculates the total throughput of the entire terminal before changing the pilot signal arrangement and after changing the pilot signal arrangement in accordance with the decrease in the number of ranks (264). As a result, it is determined whether or not the total throughput increases due to the change of the pilot signal arrangement (265). If the total throughput increases as a result of the determination, the base station changes the pilot signal arrangement (266) and notifies the terminal of the new pilot signal arrangement number (267). When the total throughput does not increase, the base station does not change the pilot signal arrangement (268).
 パイロット信号配置を変更するかどうかは、実施例4では、トータルスループットの変化によって判断するが、パイロット信号配置の変更判断のトリガーは、ランク数の減少した端末の割合が閾値より大きいかによって決定する。閾値は任意の値を用いてよいが、閾値を小さく設定すると、パイロット信号配置の変更の判断を頻繁に行うようになるため、閾値の値は、過去において、実際にパイロット信号配置を変更することを行った時の割合や、基地局の処理能力などに基づき決定することが望ましい。 In the fourth embodiment, whether or not to change the pilot signal arrangement is determined based on a change in total throughput, but the trigger for determining the change in the pilot signal arrangement is determined based on whether or not the ratio of terminals having a reduced number of ranks is greater than a threshold value. . An arbitrary value may be used as the threshold value. However, if the threshold value is set to a small value, the determination of the change of the pilot signal arrangement is frequently made. It is desirable to make a decision based on the ratio at the time of performing and the processing capability of the base station.
 本実施例の変形として、すべての端末のランク数が下がったときにパイロット信号配置を変更する、としても良い。また、端末からフィードバックされるランク数の中で最大のランク数が下がったときに、パイロット信号配置を変更する、としても良い。 As a modification of the present embodiment, the pilot signal arrangement may be changed when the number of ranks of all terminals decreases. Further, the pilot signal arrangement may be changed when the maximum number of ranks fed back from the terminal decreases.
 次に図13、図14、図15、図16を用いて、実施例5を説明する。 Next, Example 5 will be described with reference to FIG. 13, FIG. 14, FIG. 15, and FIG.
 図13は、本発明の実施例5の無線通信システムの構成図を示している。実施例5では、端末2(332)、端末3(333)はそれぞれ2本のアンテナ(322,323)を有している。端末2、端末3が、無線部2(312)、無線部3(313)、無線部4(314)、無線部5(315)からの信号を受信することができる場合は、これらの4か所の無線部が2つの端末に向けて、信号の同時送信を行う、すなわちマルチユーザMIMO通信を行うこともできる。 FIG. 13 shows a block diagram of a wireless communication system according to the fifth embodiment of the present invention. In the fifth embodiment, the terminal 2 (332) and the terminal 3 (333) each have two antennas (322, 323). If the terminal 2 and the terminal 3 can receive signals from the wireless unit 2 (312), the wireless unit 3 (313), the wireless unit 4 (314), and the wireless unit 5 (315), these 4 It is also possible for a certain radio unit to simultaneously transmit signals to two terminals, that is, to perform multi-user MIMO communication.
 実施例5では、これまで述べた他の実施例と同様であるが、パイロット信号配置の変更の判断基準を各端末のスループットのなかの最小値の変化とする。 Example 5 is the same as the other examples described so far, but the criterion for changing the pilot signal arrangement is the change in the minimum value in the throughput of each terminal.
 図15は、本実施例における、時間経過に伴う各端末のスループットの最小値の変化とパイロット信号配置番号の関係を示すテーブル(361)である。基地局は図15に示すテーブル(361)をパイロット信号制御部内のメモリに保持している。テーブル(361)には、端末毎のランク数(363)、ランク数減少端末の割合と閾値との比較結果(364)、またパイロット信号配置を変更した場合の、各端末のスループットのなかの最小値の変化(365)と、ある時間362におけるパイロット信号配置番号(366)を含む。 FIG. 15 is a table (361) showing the relationship between the change in the minimum value of the throughput of each terminal with the passage of time and the pilot signal arrangement number in this embodiment. The base station holds the table (361) shown in FIG. 15 in a memory in the pilot signal control unit. The table (361) includes the number of ranks for each terminal (363), the comparison result of the ratio of the number of rank-decreasing terminals and the threshold (364), and the minimum of the throughput of each terminal when the pilot signal arrangement is changed. It includes a change in value (365) and a pilot signal constellation number (366) at a certain time 362.
 ランク数減少端末の割合と閾値との比較結果364は、収集された複数の端末のランク数をもとに、ランク数の減少した端末数の、基地局が収集した端末の合計数に対する割合が、あらかじめ基地局が保持している閾値より大きいかを示す。 Based on the number of ranks of a plurality of collected terminals, the comparison result 364 of the ratio of rank-decreased terminals and the threshold indicates that the ratio of the number of terminals with the reduced number of ranks to the total number of terminals collected by the base station is , It indicates whether it is larger than the threshold stored in advance by the base station.
 例えば、時間t(k)または、t(m-1)では、ランク数減少端末の割合が閾値よりも大きくなるが、ランク数の減少に合わせてパイロット信号配置を変更しても、各端末のスループットのなかの最小値は変化しない、もしくは減少するため、パイロット信号配置は時間t(0)の時と同じである。しかし、時間t(m)では、各端末のスループットのなかの最小値が増加するため、パイロット信号配置を変更する。 For example, at time t (k) or t (m−1), the ratio of terminals with a reduced number of ranks is greater than the threshold value. Even if the pilot signal arrangement is changed in accordance with the decrease in the number of ranks, Since the minimum value of the throughput does not change or decreases, the pilot signal arrangement is the same as at time t (0). However, at time t (m), the minimum value of the throughput of each terminal increases, so the pilot signal arrangement is changed.
 図14に実施例5における基地局動作のフローチャートを示す。実施例4と実施例5の違いは、パイロット信号配置の変更の基準の違いである。実施例4では複数端末のトータルスループットの変化であったが、実施例5では、各端末のスループットのなかの最小値の変化を判断基準とする。すなわち、本実施例では、基地局は、ランク数が減少した端末数の割合が閾値より大きいか否かを判別する(353)。判別結果、閾値より大きくなければパイロット信号配置を変更しない(358)。閾値より大きければ、パイロット信号配置変更前、並びに変更後の各端末のスループットを計算し(354)、各端末のスループットのなかの最小値が増加される場合に(355)、パイロット信号配置を変更し(356)、端末に新しいパイロット信号配置番号を通知する(357)。各端末のスループットのなかの最小値が増加しなければ、パイロット信号配置は変更しない(358)。 FIG. 14 shows a flowchart of base station operation in the fifth embodiment. The difference between the fourth embodiment and the fifth embodiment is a difference in the reference for changing the pilot signal arrangement. In the fourth embodiment, the change was made in the total throughput of a plurality of terminals. In the fifth embodiment, a change in the minimum value among the throughputs of the respective terminals is used as a determination criterion. That is, in this embodiment, the base station determines whether or not the ratio of the number of terminals whose number of ranks has decreased is greater than a threshold (353). If the result of determination is not greater than the threshold value, the pilot signal arrangement is not changed (358). If it is larger than the threshold, the throughput of each terminal before and after changing the pilot signal arrangement is calculated (354), and if the minimum value of the throughput of each terminal is increased (355), the pilot signal arrangement is changed. (356), and notifies the terminal of the new pilot signal arrangement number (357). If the minimum value of the throughput of each terminal does not increase, the pilot signal arrangement is not changed (358).
 実施例5は、各端末のトータルスループットの向上ではなく、端末のスループットの最小値を保証することを優先する無線システムを構築する場合に、好適な方法である。 The fifth embodiment is a preferable method when building a wireless system that prioritizes guaranteeing the minimum value of the throughput of the terminal rather than improving the total throughput of each terminal.
 これまでに述べた実施例5では、各端末のスループットのなかの最小値が増加しない場合は、パイロット信号配置の変更を行わない(358)としているが、図16に示すように、スループットの最小値が増加しない場合でも、トータルスループットが増加する場合は(361)、パイロット信号配置を変更する(362)ようにしても良い。 In the fifth embodiment described so far, when the minimum value of the throughput of each terminal does not increase, the pilot signal arrangement is not changed (358). However, as shown in FIG. Even if the value does not increase, if the total throughput increases (361), the pilot signal arrangement may be changed (362).
 また、本実施例の他の変形例として、パイロット信号配置の変更の判断基準として、各ユーザに対して保証しているスループットが得られる端末の数の多少で決めるなど、他の判断基準を用いても良い。 In addition, as another modification of the present embodiment, other determination criteria are used, such as determining the number of terminals that can obtain the guaranteed throughput for each user as a determination criterion for changing the pilot signal arrangement. May be.
 次に図17を用いて実施例6を説明する。実施例6の無線基地局では、図17に示すように、複数の無線部(381、382)とベースバンド部385とを備える。複数の無線部は、複数のグループにグループ分けされ、図17では、グループAに無線部381が属し、グループBに無線部382が属している。そしてベースバンド部には、グループA、Bそれぞれに対応する、グループA用ベースバンド部386、グループB用ベースバンド部387がある。グループA用ベースバンド部386は、グループAに対してパイロット信号配置を制御する。グループB用ベースバンド部387は、グループBに対してパイロット信号配置を制御する。 Next, Example 6 will be described with reference to FIG. The radio base station according to the sixth embodiment includes a plurality of radio units (381, 382) and a baseband unit 385 as shown in FIG. The plurality of radio units are grouped into a plurality of groups. In FIG. 17, the radio unit 381 belongs to the group A and the radio unit 382 belongs to the group B. The baseband unit includes a group A baseband unit 386 and a group B baseband unit 387 corresponding to the groups A and B, respectively. The group A baseband unit 386 controls the pilot signal arrangement for the group A. The group B baseband unit 387 controls the pilot signal arrangement for the group B.
 複数の無線部を2つ以上のグループに分けて、それぞれのグループ内で、個別にパイロット信号配置を制御することで、1つのグループとしてパイロット信号配置を制御した場合より、グループ毎に適した制御ができ、その結果としてより良い無線通信を実現できる場合に、本実施例に示す構成とすることが適している。 Multiple radio units are divided into two or more groups, and the pilot signal arrangement is controlled individually in each group, so that control more suitable for each group than when pilot signal arrangement is controlled as one group Therefore, the configuration shown in this embodiment is suitable when better wireless communication can be realized as a result.
 例えば、ランク数4に対応するパイロット信号配置を初期値とした方が、ランク数2に対応するパイロット信号配置を初期値として通信を開始した場合に比べて、その後のパイロット信号配置を変更する確率が低くなる無線部をグループAとし、一方、ランク数2に対応するパイロット信号配置を初期値とした方が、ランク数4に対応するパイロット信号配置を初期値として通信を開始した場合に比べて、その後のパイロット信号配置を変更する確率が低くなる無線部をグループBとする。このようにグループ分けすることで、グループAはランク数4に対応するパイロット信号配置を初期値として、一方、グループBはランク数2に対応するパイロット信号配置を初期値として通信を開始することができる。その結果、どちらのグループもそれぞれのグループに適したパイロット信号配置を用いて、通信を開始することができる。 For example, the probability that the pilot signal arrangement corresponding to the rank number 4 is changed to the initial value is higher than the case where communication is started using the pilot signal arrangement corresponding to the rank number 2 as the initial value. The radio unit having a low value is set as group A, while the pilot signal arrangement corresponding to rank number 2 is set as an initial value compared to the case where communication is started using the pilot signal arrangement corresponding to rank number 4 as an initial value. Then, a radio unit having a low probability of changing the pilot signal arrangement thereafter is defined as group B. By grouping in this way, group A can start communication with the pilot signal arrangement corresponding to rank number 4 as an initial value, while group B can start communication with the pilot signal arrangement corresponding to rank number 2 as an initial value. it can. As a result, both groups can start communication using a pilot signal arrangement suitable for each group.
 また、例えば、繁華街のように多くのユーザが集まる地域と一般的な住宅街のように繁華街ほどにはユーザが存在しない地域を1つの基地局がカバーする場合にも、無線部を2つのグループに分けても良い。繁華街では、住宅街よりも無線部を配置する密度を高くした場合、どの無線部も等しい電力で信号を送信するようなセル設計を行えば、端末がパイロット信号を受信できる無線部の数の平均は繁華街と住宅街では異なり、従って端末からフィードバックされるランク数の時間平均も繁華街と住宅街では異なる。このように、無線部をその通信環境に応じてグループ分けすることにより、パイロット信号配置に対して、より細かく制御することができる。 In addition, for example, when one base station covers an area where many users gather like a downtown area and an area where a user does not exist as much as a downtown area such as a general residential area, the radio unit 2 It may be divided into two groups. In a downtown area, if the density of radio units is higher than that in residential areas, if the cell design is such that any radio unit transmits signals with the same power, the number of radio units that the terminal can receive pilot signals The average is different in the downtown area and the residential area, so the time average of the number of ranks fed back from the terminal is also different in the downtown area and the residential area. Thus, by grouping the radio units according to the communication environment, it is possible to control the pilot signal arrangement more finely.
 その他の実施例として、端末の最大ランク数の数によって、無線部をグループ分けしても良い。またランク数の最大値が等しい場合でも、パイロット信号配置の変更が起こる頻度で、さらにグループを分けても良い。例えば、通信エリアの伝搬環境がほぼ安定しており、パイロット信号配置の変更頻度が少ない場合と、通信エリアの伝搬環境の変化が大きく、パイロット信号配置の変更を頻繁に行った方が、無線通信システムの性能が良くなるエリアでは、別のグループとして制御することが望ましい。その結果、それぞれのエリアに適した頻度でパイロット信号配置を変更でき、変更の判断に要するシステムへの負荷を適正量にできる効果がある。 As another embodiment, the radio units may be grouped according to the number of maximum ranks of terminals. Even when the maximum number of ranks is the same, the groups may be further divided by the frequency with which the pilot signal arrangement changes. For example, if the propagation environment of the communication area is almost stable and the change frequency of the pilot signal arrangement is low, and if the change of the propagation environment of the communication area is large and the pilot signal arrangement is changed frequently, wireless communication It is desirable to control as a separate group in the area where the system performance is improved. As a result, the pilot signal arrangement can be changed at a frequency suitable for each area, and there is an effect that the load on the system required to determine the change can be made to an appropriate amount.
 また、図17に示すように、実施例6では基地局のベースバンド部(385)において、グループA用ベースバンド部(386)、グループB用ベースバンド部(387)を個別に設け、グループ毎にパイロット信号の配置方法を制御している。各グループのパイロット信号配置の制御は、これまでに述べた実施例1~5と同様に行えば良い。また、パイロット信号配置の変更の判断基準をグループA、グループBで同じにしても良く、また異なる判断基準としても良い。また、実施例6では2つのグループに分けているが、さらに多くのグループに分けても良い。グループ分けは、双方の無線部の数が等しくなるように分けても良く、また無線部の数が異なるように分けても良い。 As shown in FIG. 17, in the sixth embodiment, in the baseband unit (385) of the base station, a group A baseband unit (386) and a group B baseband unit (387) are individually provided, The pilot signal arrangement method is controlled. The pilot signal arrangement of each group may be controlled in the same manner as in the first to fifth embodiments described so far. Further, the determination criteria for changing the pilot signal arrangement may be the same for group A and group B, or may be different criteria. Further, in the sixth embodiment, although divided into two groups, it may be divided into more groups. The grouping may be performed so that the number of both wireless units is equal, or may be divided so that the number of wireless units is different.
 図18を用いて実施例7を説明する。図18は、端末(391)が、上述の実施例に基づき動作している基地局(392)と通信を開始する場合のシーケンスを示している。 Example 7 will be described with reference to FIG. FIG. 18 shows a sequence when the terminal (391) starts communication with the base station (392) operating based on the above-described embodiment.
 実施例7による基地局は、端末との通信に要する同期情報やパイロット信号配置の情報などの制御情報(393)を、一定間隔でブロードキャストする。端末は電源が投入(394)された後、同期信号を検索し(395)、次に制御情報から基地局との通信を開始するために必要な制御情報を得る(396)。 The base station according to the seventh embodiment broadcasts control information (393) such as synchronization information required for communication with the terminal and pilot signal arrangement information at regular intervals. After the power is turned on (394), the terminal searches for a synchronization signal (395), and then obtains control information necessary for starting communication with the base station from the control information (396).
 端末(391)は、通信開始の問合せ信号をブロードキャストし(397)、基地局から通信開始の許可と、最初に通信開始の問合せ信号を受信した無線部に関する制御信号を受信する(398)。基地局392は、この制御信号を用いて、端末(391)が通信を開始する無線部が用いているパイロット信号配置番号を通知する。端末は、通知されたパイロット信号配置番号をもとに、パイロット信号を検知する準備をし、基地局との通信を開始する(399)。それ以降は、これまで説明した実施例のように、基地局にランク数や否定応答などの情報を適時フィードバックしながら、通信を継続する。 The terminal (391) broadcasts a communication start inquiry signal (397), receives a communication start permission from the base station, and receives a control signal related to the wireless unit that first received the communication start inquiry signal (398). The base station 392 uses this control signal to notify the pilot signal arrangement number used by the radio unit with which the terminal (391) starts communication. Based on the notified pilot signal arrangement number, the terminal prepares to detect the pilot signal and starts communication with the base station (399). Thereafter, as in the embodiment described so far, communication is continued while timely feedback of information such as the number of ranks and negative response to the base station.
 次に、図19を用いて本実施形態の端末の構成を説明する。 Next, the configuration of the terminal according to this embodiment will be described with reference to FIG.
 端末503の構成は、信号処理部507と制御部505とアプリケーション501と、アプリケーション501と信号処理部507及び制御部505とのインターフェース502とを有し、それぞれバスにて接続されている。さらに、端末は、無線変復調部とアンテナを有する無線部504を含む。信号処理部507は、送信バッファ508、誤り制御部509、変調部510、マッピング部511、送信処理部512、IFFT部513、CP付加部514、受信バッファ524、誤り制御部523、復調・復号部522、デマッピング部521、受信処理部520、FFT部519、CP除去部とを有する。 The configuration of the terminal 503 includes a signal processing unit 507, a control unit 505, an application 501, and an interface 502 between the application 501, the signal processing unit 507, and the control unit 505, which are connected by a bus. Further, the terminal includes a wireless modulation / demodulation unit and a wireless unit 504 having an antenna. The signal processing unit 507 includes a transmission buffer 508, an error control unit 509, a modulation unit 510, a mapping unit 511, a transmission processing unit 512, an IFFT unit 513, a CP addition unit 514, a reception buffer 524, an error control unit 523, and a demodulation / decoding unit. 522, a demapping unit 521, a reception processing unit 520, an FFT unit 519, and a CP removal unit.
 データ信号の送受信は、図22並びに図23を用いて説明した基地局の信号処理部407の動作とほぼ同じであるため、基地局と異なるところについて説明する。 Since the transmission / reception of the data signal is almost the same as the operation of the signal processing unit 407 of the base station described with reference to FIGS. 22 and 23, the difference from the base station will be described.
 図25に示す基地局は、パイロット信号の配置を動的に変化させ、その配置をパイロット信号配置番号として端末に通知する。 The base station shown in FIG. 25 dynamically changes the pilot signal arrangement and notifies the terminal of the arrangement as a pilot signal arrangement number.
 信号処理部507の中の受信処理部520からの出力をパイロット信号配置番号読み出し部526に伝達し、パイロット信号配置番号読み出し部526は、受信処理部520からの出力から、パイロット信号配置番号を読み出す。パイロット信号配置番号読み出し部(526)で読みだした番号をもとに、メモリ(530)内に格納しているパイロット信号配置番号とパイロット信号の配置の関係を示すテーブルを用いて、パイロット信号読み出し部(528)によって、端末と通信している無線部が送信しているパイロット信号を読み出す。 The output from the reception processing unit 520 in the signal processing unit 507 is transmitted to the pilot signal arrangement number reading unit 526, and the pilot signal arrangement number reading unit 526 reads the pilot signal arrangement number from the output from the reception processing unit 520. . Based on the number read out by the pilot signal arrangement number reading unit (526), the pilot signal is read out using a table indicating the relationship between the pilot signal arrangement number and the pilot signal arrangement stored in the memory (530). The pilot signal transmitted by the wireless unit communicating with the terminal is read out by the unit (528).
 読みだしたパイロット信号の情報をもとに、ランク数判定部(529)により、端末が受信した信号のランク数を判定し、その情報を制御情報生成部(531)に伝える。生成された制御情報(515)は、端末のパイロット信号(517)や変調されたデータ信号とともに時間周波数エレメント(時間と周波数を軸とした無線リソースエレメント)にマッピングされ、送信信号処理されたあと、アンテナから出力される。 Based on the read pilot signal information, the rank number determination unit (529) determines the rank number of the signal received by the terminal, and transmits the information to the control information generation unit (531). The generated control information (515) is mapped to a time-frequency element (a radio resource element around time and frequency) together with a pilot signal (517) of a terminal and a modulated data signal, and after transmission signal processing, Output from the antenna.
 図19に示す構成は、ランク数の情報に基づき、パイロット信号配置の変更を決定する無線通信システムに用いる端末の構成を示しているが、否定応答の情報に基づき、パイロット信号配置の変更を決定するシステムい用いる端末の場合も、同様の構成とすれば良い。 The configuration shown in FIG. 19 shows the configuration of a terminal used in a wireless communication system that determines a change in pilot signal arrangement based on information on the number of ranks, but the change in pilot signal arrangement is determined based on negative acknowledgment information. The same configuration may be applied to the terminal used in the system.
 これまで述べた実施例におけるパイロット信号配置の変更に関する一連の動作を、基地局のベースバンド部に格納されたプログラムにより自動的に実行するようにしても良い。また、図20に示すように、マニュアル制御と自動制御を適宜切り替えて操作するようにしても良い。図20においては、マニュアル制御と自動制御の説明を主としているため、これまでの実施例において、例えば図22を用いて説明した、IFFT部、FFT部、CP付加部、CP除去部、無線部は図から省略しているが、実施例9で説明しない処理については、他の実施例と同様である。 The series of operations related to the change of the pilot signal arrangement in the embodiments described so far may be automatically executed by a program stored in the baseband unit of the base station. Also, as shown in FIG. 20, manual control and automatic control may be switched as appropriate for operation. In FIG. 20, manual control and automatic control are mainly described. Therefore, in the embodiments described so far, for example, the IFFT unit, the FFT unit, the CP adding unit, the CP removing unit, and the radio unit described with reference to FIG. Although omitted from the drawing, the processing not described in the ninth embodiment is the same as in the other embodiments.
 図20を用いて、上記制御の詳細を説明する。管理装置(601)はユーザインタフェース(602)、メモリ(603)、プロセッサ(604)、バックホールネットワークインタフェース(606)を構成要素としている。プロセッサの中には、パイロット信号配置制御部(605)が設けられており、管理者はマニュアルで、パイロット信号の配置を制御することができる。 Details of the above control will be described with reference to FIG. The management device (601) includes a user interface (602), a memory (603), a processor (604), and a backhaul network interface (606) as components. A pilot signal arrangement control unit (605) is provided in the processor, and an administrator can manually control the arrangement of pilot signals.
 本実施例においては、所望のパイロット信号の配置にするためにマッピング部(411)でパイロット信号をマッピングするときに、マッピング制御情報(612)を用いる。マッピング制御情報として、パイロット信号配置自動制御部(613)により作成された自動制御による情報(609)を用いるか、もしくは、管理装置(601)のパイロット信号配置制御部(605)により、管理者が手動により作成したマニュアル制御情報(607)のどちらを用いるかは、スイッチ(610)とスイッチコントロール信号(608)により切り替えることができる。このスイッチコントロール信号も管理装置(601)によって制御されている。スイッチ610は、スイッチコントロール信号608に従って、自動制御による情報609とマニュアル制御情報607どちらの情報を用いるか選択し、選択した情報を、信号処理部407に伝達する。 In this embodiment, the mapping control information (612) is used when the mapping unit (411) maps the pilot signal in order to arrange the desired pilot signal. As the mapping control information, information (609) by automatic control created by the pilot signal arrangement automatic control unit (613) is used, or the pilot signal arrangement control unit (605) of the management apparatus (601) Which of manual control information (607) created manually can be switched by a switch (610) and a switch control signal (608). This switch control signal is also controlled by the management device (601). The switch 610 selects information 609 by automatic control or manual control information 607 according to the switch control signal 608 and transmits the selected information to the signal processing unit 407.
 このような構成とすることで、パイロット信号配置の自動制御、またはマニュアル制御のどちらも行うことができる。 With such a configuration, either automatic control of pilot signal arrangement or manual control can be performed.
 また、実施例6のグループ毎のパイロット変更の判断基準の設定を、管理装置601から基地局に通知してもよい。また、各グループのパイロットの配置変更の判断を、管理装置601が行い、各グループ用ベースバンド部に通知してもよい。基地局のグループ用ベースバンド部のいずれかの制御部405が、複数のグループごとのパイロットの配置変更を決定してもよい。 Further, the setting of the criterion for determining the pilot change for each group in the sixth embodiment may be notified from the management apparatus 601 to the base station. Further, the management apparatus 601 may determine whether to change the pilot arrangement of each group and notify the group baseband unit. Any one of the control units 405 in the baseband group for the base station may determine the pilot arrangement change for each of the plurality of groups.
 以上図面を用いて本発明の実施例を説明したが、これらの図に示された構成やフローチャートなどは、あくまで一例であり、これ以外にも、本発明の趣旨を逸脱しない範囲において、本発明を適宜変更しても本発明の効果を得られることは明らかである。例えば、パイロット信号の配置を変更したり、各実施例で述べたパイロット信号の配置変更に対する判断基準を適宜組み合わせたものを判断基準としても良いことは明白である。 Although the embodiments of the present invention have been described with reference to the drawings, the configurations and flowcharts shown in these drawings are merely examples, and the present invention is not limited to the scope of the present invention. It is clear that the effects of the present invention can be obtained even if the above is appropriately changed. For example, it is obvious that the determination reference may be changed by appropriately changing the arrangement of pilot signals or by appropriately combining the determination criteria for changing the arrangement of pilot signals described in each embodiment.
111:アンテナ
121-127:無線部
128:端末
110:ベースバンド部
211-219:アンテナ
221-229:無線部、
231-233:アンテナ
241-243:端末
250: ベースバンド部
383:グループA
384:グループB 
385:ベースバンド部
386:グループA用ベースバンド部
387:グループB用ベースバンド部
400:基地局
403:ベースバンド部
404:無線部
405:制御部
425:パイロット信号制御部
802:パイロット信号判断部
803:パイロット信号決定部
427:パイロット信号配置判断部
428:パイロット信号配置決定部
526:パイロット信号配置番号読み出し部
528:パイロット信号読み出し部
529:ランク数判定部
531:制御情報生成部
601:管理装置
605:パイロット信号配置制御部
607:マニュアル制御情報
608:スイッチコントロール信号
610:スイッチ
612:マッピング制御情報
613:パイロット信号配置自動制御部
801:フィードバック情報収集部
111: Antenna 121-127: Radio unit 128: Terminal 110: Baseband unit 211-219: Antenna 221-229: Radio unit
231-233: Antenna 241-243: Terminal 250: Baseband unit 383: Group A
384: Group B
385: Baseband unit 386: Group A baseband unit 387: Group B baseband unit 400: Base station 403: Baseband unit 404: Radio unit 405: Control unit 425: Pilot signal control unit 802: Pilot signal determination unit 803: Pilot signal determining unit 427: Pilot signal arrangement determining unit 428: Pilot signal arrangement determining unit 526: Pilot signal arrangement number reading unit 528: Pilot signal reading unit 529: Rank number determining unit 531: Control information generating unit 601: Management device 605: Pilot signal arrangement control unit 607: Manual control information 608: Switch control signal 610: Switch 612: Mapping control information 613: Pilot signal arrangement automatic control unit 801: Feedback information collection unit

Claims (21)

  1. 無線通信システムであって、
    端末と、
    前記端末と無線信号の送受信を行う複数の無線部と、
    前記端末からフィードバックされる情報に基づいて、前記無線部を介して前記端末に送信されるパイロット信号を決定するベースバンド部と、を有する基地局とを、備える、ことを特徴とする無線通信システム。
    A wireless communication system,
    A terminal,
    A plurality of radio units that transmit and receive radio signals to and from the terminal;
    A base station having a baseband unit that determines a pilot signal to be transmitted to the terminal via the radio unit based on information fed back from the terminal. .
  2.  請求項1記載の無線通信システムであって、
    前記ベースバンド部は、前記送信されるパイロット信号に割り当てる無線リソースの配置を決定する、ことを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The baseband unit determines an arrangement of radio resources to be allocated to the transmitted pilot signal.
  3. 請求項1記載の無線通信システムであって、前記ベースバンド部は、前記送信されるパイロット信号のパタンを決定する、ことを特徴とする無線通信システム。 The radio communication system according to claim 1, wherein the baseband unit determines a pattern of the transmitted pilot signal.
  4.  請求項3記載の無線通信システムであって、
    前記ベースバンド部は、前記パイロット信号のパタンに、ウォルシュ符号をもちいることを特徴とする無線通信システム。
    A wireless communication system according to claim 3,
    The baseband unit uses a Walsh code in the pattern of the pilot signal.
  5. 請求項1記載の無線通信システムであって、
    前記ベースバンド部は、所定のタイミングでフィードバック情報を収集し、異なるタイミングで収集したフィードバック情報に基づいて送信されるパイロット信号を決定する、ことを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The baseband unit collects feedback information at a predetermined timing, and determines a pilot signal to be transmitted based on the feedback information collected at different timings.
  6.  請求項5記載の無線通信システムであって、
    前記端末からフィードバックされる情報は、前記端末が受信可能なランク数を示す情報であること、を特徴とする無線通信システム。
    The wireless communication system according to claim 5, wherein
    The wireless communication system, wherein the information fed back from the terminal is information indicating the number of ranks that can be received by the terminal.
  7.  請求項5に記載の無線通信システムであって、
    前記端末からフィードバックされる情報は、否定応答であること、を特徴とする無線通信システム。
    The wireless communication system according to claim 5,
    The wireless communication system, wherein the information fed back from the terminal is a negative response.
  8. 請求項6記載の無線通信システムであって、
    前記ランク数が減少した場合は、少なくとも一の前記パイロット信号を異なる無線リソースを用いて送信する前記無線部を減少させること、
    を特徴とする無線通信システム。
    The wireless communication system according to claim 6,
    If the rank number is reduced, reducing the radio unit transmitting at least one pilot signal using different radio resources;
    A wireless communication system.
  9. 請求項6記載の無線通信システムであって、
    異なる無線リソースを用いて前記パイロット信号を送信する前記無線部を増加させることにより否定応答が減少する場合は、前記パイロット信号を異なる無線リソースを用いて送信する前記無線部を増加させること、
    を特徴とする無線通信システム。
    The wireless communication system according to claim 6,
    If the negative response is reduced by increasing the radio unit transmitting the pilot signal using different radio resources, increasing the radio unit transmitting the pilot signal using different radio resources;
    A wireless communication system.
  10.  請求項1記載の無線通信システムであって、
    前記ベースバンド部は、複数の前記無線部ごとに、送信すべきパイロット信号を決定する、ことを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The wireless communication system, wherein the baseband unit determines a pilot signal to be transmitted for each of the plurality of wireless units.
  11. 請求項5記載の無線通信システムであって、
    前記ベースバンド部は、複数の前記端末から収集されるフィードバック情報に基づいて送信すべきパイロット信号を、前記無線部ごとに決定すること、
    を特徴とする無線通信システム。
    The wireless communication system according to claim 5, wherein
    The baseband unit determines, for each radio unit, a pilot signal to be transmitted based on feedback information collected from a plurality of the terminals;
    A wireless communication system.
  12. 請求項11記載の無線通信システムであって、
    前記複数端末からフィードバックされる情報は、ランク数を示す情報であり、
    前記ベースバンド部は、前記ランク数の減少を示す端末の割合が閾値を超えた場合、前記パイロット信号を異なる無線リソースを用いて送信させる前記無線部を変更すること、
    を特徴とする無線通信システム。
    A wireless communication system according to claim 11, wherein
    The information fed back from the plurality of terminals is information indicating the number of ranks,
    The baseband unit is configured to change the radio unit that causes the pilot signal to be transmitted using different radio resources when a ratio of terminals indicating a decrease in the number of ranks exceeds a threshold;
    A wireless communication system.
  13. 請求項11記載の無線通信システムであって、
    前記複数端末からフィードバックされる情報は否定応答であり、
    前記ベースバンド部は、否定応答をフィードバックする端末の割合が閾値を超えた場合、前記パイロット信号を異なる無線リソースを用いて送信させる前記無線部を変更すること、
    を特徴とする無線通信システム。
    A wireless communication system according to claim 11, wherein
    Information fed back from the plurality of terminals is a negative response,
    The baseband unit is configured to change the radio unit that causes the pilot signal to be transmitted using different radio resources when a ratio of terminals that feed back a negative response exceeds a threshold;
    A wireless communication system.
  14. 請求項5に記載の無線通信システムであって、
    前記ベースバンド部は、複数の前記端末に対するトータルスループットが向上する場合に、前記パイロット信号を異なる無線リソースを用いて送信させる前記無線部を変更すること、
    を特徴とする無線通信システム。
    The wireless communication system according to claim 5,
    The baseband unit is configured to change the radio unit that transmits the pilot signal using different radio resources when total throughput for the plurality of terminals is improved.
    A wireless communication system.
  15. 請求項5に記載の無線通信システムであって、
    前記ベースバンド部は、複数の前記端末への最低スループットが上がる場合、前記パイロット信号を異なる無線リソースを用いて送信させる前記無線部を変更すること、
    を特徴とする無線通信システム。
    The wireless communication system according to claim 5,
    The baseband unit is configured to change the radio unit for transmitting the pilot signal using different radio resources when the minimum throughput to the plurality of terminals increases.
    A wireless communication system.
  16. 請求項1に記載の無線通信システムであって
    前記ベースバンド部は、決定されるパイロット信号に関する情報を少なくとも一の端末に通知し、通知後に前記パイロット信号を送信すること、
    を特徴とする無線通信システム。
    The wireless communication system according to claim 1, wherein the baseband unit notifies information regarding a pilot signal to be determined to at least one terminal, and transmits the pilot signal after the notification.
    A wireless communication system.
  17. 請求項1に記載の無線通信システムであって、
    前記基地局は、同じ前記複数の無線部から、前記複数端末へ同時にデータ信号の送信を行うマルチユーザMIMO通信をすること、
    を特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The base station performs multi-user MIMO communication for simultaneously transmitting data signals from the same plurality of radio units to the plurality of terminals;
    A wireless communication system.
  18. 請求項1に記載の無線通信システムであって、
    前記複数の無線部それぞれは、2つ以上のグループのいずれかに対応づけられ、
    前記グループに対応づけられる前記無線部と通信する端末からフィードバックされる情報に基づいて、前記グループごとに前記パイロット信号を異なる無線リソースを用いて送信させる前記無線部を変更すること、
    を特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    Each of the plurality of radio units is associated with one of two or more groups,
    Changing the radio unit for transmitting the pilot signal using a different radio resource for each group based on information fed back from a terminal communicating with the radio unit associated with the group;
    A wireless communication system.
  19. 請求項18に記載の無線通信システムであって、
    前記無線部と通信する前記端末のランク数に基づいて前記無線部のグループ分けを行うこと、を特徴とする無線通信システム。
    The wireless communication system according to claim 18, wherein
    A radio communication system, wherein the radio units are grouped based on a rank number of the terminals communicating with the radio unit.
  20.  基地局が備える複数の無線送受信部から端末に送信されるパイロット信号の配置方法であって、
    所定のタイミングで複数の前記端末から前記基地局へのフィードバック情報を収集し、
    前記収集されたフィードバック情報を蓄積し
    異なる前記タイミングで収集されるフィードバック情報を比較し、
    比較結果に基づいて複数の無線部で送信されるパイロット信号を決定する、ことを特徴とするパイロット信号の配置方法。
    A method for arranging pilot signals transmitted to a terminal from a plurality of radio transmission / reception units provided in a base station,
    Collecting feedback information from a plurality of the terminals to the base station at a predetermined timing;
    Storing the collected feedback information and comparing the feedback information collected at different timings;
    A pilot signal arrangement method, wherein pilot signals transmitted by a plurality of radio units are determined based on a comparison result.
  21.  無線基地局と無線通信を行う無線端末であって、
    パイロット信号配置と番号とを対応付けたテーブルと、
    前記基地局から情報が通知された場合、前記テーブルを参照し、前記パイロット信号配置を特定し、前記特定されたパイロット信号配置に基づいて、前記基地局からのパイロット信号を受信する制御部と、
    を有する、ことを特徴とする無線端末。
    A wireless terminal that performs wireless communication with a wireless base station,
    A table in which pilot signal arrangements are associated with numbers;
    When information is reported from the base station, the controller refers to the table, identifies the pilot signal arrangement, and receives a pilot signal from the base station based on the identified pilot signal arrangement;
    A wireless terminal characterized by comprising:
PCT/JP2011/002306 2011-04-20 2011-04-20 Wireless communication system and wireless communication device WO2012143973A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013510738A JP5736449B2 (en) 2011-04-20 2011-04-20 Wireless communication system and wireless communication device
PCT/JP2011/002306 WO2012143973A1 (en) 2011-04-20 2011-04-20 Wireless communication system and wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002306 WO2012143973A1 (en) 2011-04-20 2011-04-20 Wireless communication system and wireless communication device

Publications (1)

Publication Number Publication Date
WO2012143973A1 true WO2012143973A1 (en) 2012-10-26

Family

ID=47041130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002306 WO2012143973A1 (en) 2011-04-20 2011-04-20 Wireless communication system and wireless communication device

Country Status (2)

Country Link
JP (1) JP5736449B2 (en)
WO (1) WO2012143973A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082319A1 (en) * 2009-01-14 2010-07-22 富士通株式会社 Device, method for estimating channel quality, and transmission method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363712A (en) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd Transmitter-receiver and method
JP4402127B2 (en) * 2007-03-16 2010-01-20 日本電信電話株式会社 Transmission method and apparatus for spatial multiplexing transmission
JP4973400B2 (en) * 2007-09-06 2012-07-11 日本電気株式会社 Quality judgment value calculation circuit, switching judgment method and circuit, and wireless communication apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082319A1 (en) * 2009-01-14 2010-07-22 富士通株式会社 Device, method for estimating channel quality, and transmission method

Also Published As

Publication number Publication date
JP5736449B2 (en) 2015-06-17
JPWO2012143973A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
CN108093481B (en) Method and device for transmitting beam recovery information, and beam detection method and device
CN108111267B (en) Signal transmission method and system and control information sending method and device
CN108633061B (en) Transmission parameter determining method and device
JP5121392B2 (en) Data transmission method
JP4425880B2 (en) Communication apparatus, mobile station and method
JP5469250B2 (en) Distributed antenna system and wireless communication method in the same system
JP6400001B2 (en) Method and apparatus for channel state information feedback reporting
CA2472574C (en) Resource allocation for mimo-ofdm communication systems
WO2017167293A1 (en) SYSTEMS AND METHODS FOR DISTRIBUTED OPEN-LOOP MULTI-USER CO-OPERATIVE MULTI-POINT (CoMP) SCHEDULING AND TRANSMISSION
KR102130816B1 (en) Method and apparatus for transmitting and receiving feedback information in a mobile communication system
EP2393317A1 (en) Wireless communication system and communication control method
CN106716865A (en) System and method for downlink open-loop multi-user coordinated multipoint transmission using sparse code multiple access
EP2469949B1 (en) Dynamic multiple input and multiple output cell cluster
CN105743824A (en) Method and device for interference processing and signal notification among nonorthogonal user equipment
JP2009219117A (en) Method for selecting subchannel mode, and mimo communication system using the same
WO2012027562A2 (en) Methods and apparatus for power control and interference management in wireless microphone transmission systems
KR101910309B1 (en) Base station, wireless communication terminal, wireless communication system, and wireless communication method
US8422443B2 (en) Base station apparatus, terminal apparatus and communication system
EP2497194A1 (en) Method and device for determining a cooperation area
JP5808680B2 (en) Wireless communication system, base station and wireless terminal
WO2012139251A1 (en) Method and base station for power allocation in wireless system
CN105101423A (en) Interference processing method, base station, terminal and system
KR20160003290A (en) Methods of transmitting coordinate multiple point data based on orthogonal covering codes
JP5736449B2 (en) Wireless communication system and wireless communication device
JP5162513B2 (en) Base station control apparatus and base station control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863752

Country of ref document: EP

Kind code of ref document: A1