WO2012142721A2 - Método para aumentar la eficiencia en el rechazo de boro por parte de sistemas de desalinización por ósmosis inversa el cual es modificado para permitir la adición y mezcla de un compuesto polihidroxilado soluble en agua - Google Patents

Método para aumentar la eficiencia en el rechazo de boro por parte de sistemas de desalinización por ósmosis inversa el cual es modificado para permitir la adición y mezcla de un compuesto polihidroxilado soluble en agua Download PDF

Info

Publication number
WO2012142721A2
WO2012142721A2 PCT/CL2012/000029 CL2012000029W WO2012142721A2 WO 2012142721 A2 WO2012142721 A2 WO 2012142721A2 CL 2012000029 W CL2012000029 W CL 2012000029W WO 2012142721 A2 WO2012142721 A2 WO 2012142721A2
Authority
WO
WIPO (PCT)
Prior art keywords
boron
water
polyhydroxy compound
reverse osmosis
boric acid
Prior art date
Application number
PCT/CL2012/000029
Other languages
English (en)
French (fr)
Other versions
WO2012142721A3 (es
Inventor
Leonardo FIGUEROA TAGLE
Yubinza Andrea ZAPATA CORTEZ
Camilo Andrés URBINA ALONSO
Nelson LARA HENRÍQUEZ
Original Assignee
Universidad De Tarapacá
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Tarapacá filed Critical Universidad De Tarapacá
Publication of WO2012142721A2 publication Critical patent/WO2012142721A2/es
Publication of WO2012142721A3 publication Critical patent/WO2012142721A3/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2642Aggregation, sedimentation, flocculation, precipitation or coagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention described herein has its field of application in the water treatment industry, particularly the use of membrane treatment systems called reverse osmosis and especially in increasing the efficiency of the rejection of the chemical species Boron by these membranes .
  • the boron element is present in the hydrosphere of our planet in a wide range of concentrations, ranging between 4.5 mg / L in seawater and 0.3 to 100 mg / L in ground and surface waters (WHO, 2003).
  • Boron is an essential nutrient for the growth of plant species in many ways. However, it becomes toxic to plant organisms when the amount of boron is slightly higher than required, there is no doubt that the range of boron concentration between deficiency and excess is narrow. For example, in the case of the marigold culture (Helianth s annurti) 0.5 parts per million (mg / L) allow a good development, while 1 mg / L is definitely toxic (Eaton, - 1940). With respect to the adverse effects of boron in plant species, R.
  • Krasovskii et al (1976) examined the sexual function of men (by questionnaire) who lived in areas with varying concentrations of boron in drinking water (0.015, 0.05 or 0.3 mg / kg). The existence of a tendency towards the reduction of sexual function in men in the segment who consumed water with the highest concentration of boron (0.3 mg / kg) was reported. However, the validity of the results could not be determined due to the lack of information included in the study publication. In studies conducted by Weir and Fisher (1972) groups of 5 young males and 5 young females of Beagle dogs were fed diets containing borax or boric acid concentrations of the order of 17.5 175 or 1,750 mg L as boron equivalent by one 90 day period.
  • the level at which no adverse effects are observed was considered 350 mg / L of boron (Weir and Fisher, 1972) equivalent to a boron concentration of 8.75 mg / kg body weight per day ( EPA, 1987).
  • the same researchers conducted a study in which 10 male Sprague-Dawley albino rats and 10 females ingested borax or boric acid in their diet at levels of 52.5, 175, 525, 1,750 or 5,250 mg / L of Boron equivalent for 90 days. No obvious adverse effects were observed in rats that consumed 525 mg / L or less, while growth and feed efficiency were significantly reduced by higher doses.
  • testicular atrophy was observed in 4 rats that consumed 525 mg / L of boron as borax and in 1 rat that ingested 525 mg / L as boric acid. Complete atrophy of the testicles was observed in all males exposed to 1,750 mg / L of boron (as borax or boric acid).
  • the NTP National Toxicology Program, 1987
  • the NTP also evaluated the study of chronic feeding in Sprague-Dawley rats conducted by Weir and Fisher (1972) and concluded that this study provides adequate data that support a lack of carcinogenic effect of boric acid in rats.
  • a boric acid suspension in 2% tragacanth gum was used, which was administered intra vaginally twice a week for 50 weeks, there was no conclusive evidence of carcinogenicity in the genital tract of female mice. (Boyland et al, 1966).
  • boric acid was found not to be mutagenic in prokaryotic or eukaryotic cells. Nor did it induce exchange of sister chromatids or chromosomal aberrations in Chinese hamster ovarian cells. Nor was evidence of borax or boric acid mutagenic activity found in pre-incubation tests in Salmonella typhimuri m (Benson et al, 1984).
  • pregnancy rate, bait size and appearance were normal for virgin females not exposed to boron fertilized by males who consumed 500 mg / L of boron.
  • the pregnancy rate was reduced in females fertilized by male rats exposed to the intake of 1000 or 2000 mg / L of boron for 30 or 60 days.
  • Males who consumed 1000 and 2000 mg / L were infertile; Fertility in the group that consumed 1000 mg / L returned to normal 4 weeks after cessation of boron exposure, while males who consumed 2000 mg / L remained infertile for up to 32 weeks after discontinuation of treatment. Infertility was apparently due to the decrease in germ cells.
  • boron is classified from the point of view of its carcinogenicity in category IVC (probably not carcinogenic to man). Also, Acceptable Daily Intake (ADI) is calculated as follows:
  • 17.5 mg / kg body weight per day is the NOAEL for testicular atrophy and decreased spermatogenesis in rats.
  • 500 is the uncertainty factor (10 for intraspecific variation; 10 for interspecific variation and 5 for the inclination of the response curve against boron doses).
  • 70 kg of live weight is the average body weight of an adult human.
  • 0.20 is the proportion of total boron intake allocated to drinking water (available data is insufficient to estimate this proportion)
  • 1.5 1 / d is an average daily consumption of an adult drinking water.
  • MAC maximum acceptable concentration
  • the treatment technology available in practice is incapable or inadequate to reduce boron concentrations in Canadian drinking water to a level less than 5 mg / 1; based on this, a provisional MAC for drinking water boron (BVIAC) of 5 mg / 1 has been established, which is periodically reviewed in the light of new data.
  • BVIAC provisional MAC for drinking water boron
  • Action Level The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which must be followed by a drinking water production system.
  • For lead or copper is the level which, if exceeded by more than 10% of the sampled houses, trigger the need for treatment.
  • Carcinogen Group A qualifying judgment based on the weight of the evidence regarding the likelihood that a chemical can be carcinogenic to humans. Each chemist is located in one of the following five categories (Table 3):
  • Cancer Risk 10 10 -4 Cancer Risk: The concentration of a chemical in drinking water that corresponds to an estimated lifetime risk of getting cancer from 1 in 10,000.
  • DWEL Drinking Water Equivalent Level
  • HA Health Advisory
  • One-day Health Recommendation The concentration of a chemical in drinking water that is not expected to cause any adverse effects (outside of cancer) when exposure is made for a maximum of one day.
  • Sanitary Recommendation for 10 days (Ten day HA): The concentration of a chemical in drinking water that is not expected to cause any adverse effects (outside of cancer) when the exposure is made for a maximum of ten days. Lifetime Health Recommendation (Lifetime HA): The concentration of a chemical in drinking water that is not expected to cause any adverse effects (other than cancer) when exposure is made throughout life.
  • MCLG Maximum Contaminant Level Goal
  • MCL Maximum Contaminant Level
  • Table 5 Maximum level of boron in drinking water in laws of different countries, compared to the WHO recommendation.
  • a new method has been developed to increase boron rejection in reverse osmosis desalination plants.
  • the method developed, in its manifestation or main form of execution, is described below sequentially: • Based on a reverse osmosis desalination plant, either for brackish surface or groundwater, or for seawater, this desalination plant is modified to allow the metered addition of a concentrated solution of a soluble polyhydroxy compound in any point of the hydraulic water supply circuit to be treated by the reverse osmosis plant, preferably incorporating in this water supply circuit a turbulence or mechanical agitation mixing system that allows adequate homogeneity in the mixture between the solution of Polyhydroxy compound and water stream to be desalinated.
  • the point of addition of the solution of the polyhydroxy compound should allow for a time of at least 30 seconds, and preferably more than one minute, for the added solution to be mixed in the water to be desalinated.
  • the soluble polyhydroxy compound that is added to the water to be treated will form a complex with the boric acid or borate molecules present in the water to be desalinated. Given the molecular size of the polyhydroxy compounds, and hence the boron-polyhydroxy complex, this will be rejected by the reverse osmosis membrane, allowing permeate with a reduced concentration of boron in any reverse osmosis desalination plant.
  • the polyhydroxy compound can be any soluble molecule that has paired hydroxyl groups in its molecular structure, and whose oxygen atoms are located at a distance preferably between 2.49 and 2.63 Angstrom.
  • This group includes, but is not limited to, soluble compounds such as sorbitol, glycerol, fructose, N-methyl glucamine, D-rhamnose, chromotopic acid, pull, pentaerythritol and glucose.
  • the polyhydroxy compound is added to the water to be desalinated until it reaches a concentration that must be in a ratio between 1: 1 and 500: 1 with the boron concentration to be removed, ideally in a 5: 1 ratio.
  • concentration of boron in the water to be treated is 10 mg L
  • the polyhydroxylated can be added until reaching a concentration between 10 mg / L and 5000 mg / L, ideally 50 mg L in the water before entering the process of reverse osmosis.
  • the method is applicable to waters that have a pH equal to or greater than 3, preferably above 7.
  • Example 1 A reverse osmosis desalination unit for seawater with a capacity to process 300 liters per hour at a pressure of 720 PSI was used to treat water with a boron content considered high with respect to the recommendations for boron content in irrigation waters (0.75 mg / L) and water for human consumption (0.5 mg / L).
  • the modification made to adapt the modification of the process to which the present invention is subject was that a pond was added from which the water to be desalinated would be fed, and this pond was in turn provided with a mechanical stirrer.
  • a solution with the concentration of the prepared polyhydroxy compound was added directly to the entire volume of water to be desalinated (300 liters).
  • the water to be desalinated to which the solution of polyhydroxy compound was added was maintained with mechanical agitation during the entire desalination process.
  • Table 1 contains the data recorded with different types of water to be desalinated, different polyhydroxy compounds and different concentrations thereof. It is remarkable and surprising that all the compounds or mixtures of polyhydroxy compounds employed were able to increase boron rejection by the modified reverse osmosis process according to the invention, with respect to the situation without modification (control without addition of polyhydroxy compound). The best results were obtained with the compounds N-methylglucamine, chromotopic acid, pull and D-Ramnosa, added in sufficient quantity to achieve a concentration in the desalinated water of 500 mg / L.
  • Table 1 Quantitative result of water desalination treatment with respect to boron removal efficiency when using the method described by the present invention.
  • Example 2 The experiment of Example 1 was repeated, this time only using the n-methylglucamine compound as polyhydroxylated, and using a reverse osmosis unit for brackish water with a desalination capacity of 6 m 3 / hour and a working pressure of 300 PSI.
  • Table 7 contains the data recorded during the modified desalination process according to the present invention, using different concentrations of the polyhydroxy compound. It is remarkable and surprising that the method thus implemented achieved a significant increase in boron rejection by the desalination process with reverse osmosis, with respect to the situation without modification. The best result was obtained with the compound N-methylglucamine added in sufficient quantity to achieve a concentration in the desalinated water of 350 mg / L.
  • Table 7 Quantitative result of water desalination treatment with respect to boron removal efficiency when using the method described by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Un método para aumentar el rechazo de boro por parte de sistemas de desalinización de agua por osmosis inversa, consistente en la modificación del sistema de desalinización de forma tal que permita la adición y mezcla de un compuesto polihidroxilado soluble al agua que será sometida a desalinización, antes de que el agua pase por las membranas de osmosis reversa. Dicho método permite aumentar significativamente el rechazo de boro por parte de membranas de osmosis reversa.

Description

METODO PARA AUMENTAR LA EFICIENCIA EN EL RECHAZO DE BORO POR PARTE DE SISTEMAS DE DESALEVIZACION POR OSMOSIS INVERSA EL CUAL ES MODIFICADO PARA PERMITIR LA ADICION Y MEZCLA DE UN COMPUESTO POLIHIDROXILADO SOLUBLE EN AGUA
Descripción del Estado de la Técnica
La invención aquí descrita tiene su campo de aplicación en la Industria de tratamiento de aguas, particularmente al uso de sistemas de tratamiento con membranas denominado osmosis reversa y en especial en el aumento de la eficiencia del rechazo de la especie química Boro por parte de estas membranas.
El elemento boro está presente en las hidrosfera de nuestro planeta en una amplio rango de concentraciones, que varían entre 4,5 mg/L en el agua de mar y 0,3 a 100 mg/L en las aguas subterráneas y superficiales (OMS, 2003).
Efecto del Boro en especies vegetales
El boro es un nutriente esencial para el crecimiento de las especies vegetales en muchas formas. Sin embargo, llega a ser tóxico para los organismos vegetales cuando la cantidad de boro es ligeramente superior a la requerida, no existiendo ninguna duda respecto a que el rango de concentración de boro entre la deficiencia y el exceso es estrecho. Por ejemplo, en el caso del cultivo de maravilla (Helianth s annurti) 0,5 partes por millón (mg/L) permiten un buen desarrollo, en tanto que 1 mg/L es definitivamente tóxico (Eaton,- 1940 ). Con respecto a los efectos adversos del boro en las especies vegetales, R. Reid (2007) en su amplia revisión indica que los efectos fisiológicos adversos, entre otros, incluyen la reducción de la división de las células radicales, retardamiento del crecimiento de tallo y raíz, inhibición de la fotosíntesis, depositación de lignina y suberina, junto con la disminución del contenido foliar de clorofila. En la mayoría de las especies cultivadas, los síntomas de la toxicidad por boro se evidencian por una necrosis de los márgenes de las hojas más viejas, amarillamiento de las puntas de las hojas, aceleración de la descomposición y finalmente la muerte de la planta. Estos síntomas son directamente dependientes de la cantidad de boro en exceso y la tolerancia de la especie (N. Nadav, 1999).
Dado lo anterior, resulta claro que la presencia de boro en exceso en agua destinada al riego, genera problemas para el uso de esta para la producción de la mayoría de las especies vegetales agrícolas y ornamentales. Es así como este conocimiento se traduce en que exista una calificación general respecto a la calidad del agua de riego conforme a su contenido de boro, tal como se describe en el Cuadro 1, que muestra la tolerancia límite para la presencia de boro en la solución de suelo (asociada directamente al contenido de boro en el agua de riego) en diversas especies (adaptado de E. V. Maas, 1990), y el Cuadro 2 donde se clasifica la calidad del agua para riego según su contenido de boro y la sensibilidad relativa a la toxicidad de cada cultivo (Adaptado de Van der Leeden et al, 1990). Cuadro 1. Limites de tolerancia a boro en cultivos agrícolas. Notas: (a) Máxima concentración de boro permisible en el agua del suelo que no induce reducción en el rendimiento. La tolerancia a boro puede variar dependiendo del clima, condiciones del suelo y variedades vegetales, (b) Tolerancia basada en reducción del crecimiento vegetativo.
Concentración máxima de B tolerada Cultivos
en la solución de suelo (mg/L)
Extremadamente sensible <0.5 Grosella (b), Limón (b)
Muy sensible 0.5-0.75 Palta (b), Uva de mesa (b), Naranja (b), damasco (b), Durazno (b),
Guinda (b), Ciruela (b), Kaki (b), Higuera (b), Vid (b), Nogal (b), pécanos (b), cebolla.
Sensible 0.75-1.0 Ajo, Camote, trigo, maravilla, lupino (b), frutilla (b), porotos (b),
maní.
Moderadamente sensible 1.0-2.0 Brócoli, pimiento, arveja (b), Zanahoria, papa, pepino, lechuga (b)
Moderadamente tolerante 2.0-4.0 Repollo (b), Rabanito, Cebada, avena, maíz, alcachofa (b), tabaco (b),
Zapallo, coliflor.
Tolerante 4.0-6.0 Alfalfa (b), beterraga, tomate.
Muy tolerante 6.0-10.0 Sorgo, algodón
Extremadamente tolerante 10.0-10.5 Espárrago (b)
Figure imgf000003_0001
Este conocimiento técnico se ha traducido en diversos países, incluyendo a Chile, en la generación de normas legislativas y/o técnicas que regulan la utilización del agua para riego respecto a su contenido de boro y la descarga de este elemento en residuos industriales líquidos hacia cursos de agua. En California, la norma legislativa indica que no se puede utilizar agua de riego que contenga más de 0,75 mg/L de boro, que es la misma norma existente en Chile para la descarga de boro en residuos industriales líquidos. Además en Chile, la norma técnica NChl333 que especifica la calidad requerida para el agua de riego, indica que esta debe tener un valor máximo de 0,75mg/L, aunque esta norma no tiene vigencia legislativa.
Efecto del boro en vertebrados y seres humanos El boro es eliminado del cuerpo principalmente por el riñon, con cantidades menores que son excretadas en las heces, sudor y saliva (Jansen et al, 1984). Aproximadamente la mitad del boro absorbido por el ser humano es excretado durante las primeras 24 horas después de una administración intravenosa de 562 a 611 mg de ácido bórico (Jansen et al, 1984). Más del 92% de eliminación ha sido reportada dentro de las 96 horas posteriores a la ingestión de 750 mg de ácido bórico en agua o 50 mg en un ungüento emulsionado colocado sobre la piel de voluntarios (Aas Jansen et al, 1984). Se ha reportado un cierto número de casos de envenenamiento agudo de seres humanos por ácido bórico o bórax a través de la ingestión, inyección parenteral, enemas y por aplicación de ungüentos, talcos, etc. a grandes áreas de piel quemada o dañada (Underwood, 1977). Los síntomas de envenenamiento agudo por boro incluyen nauseas, vómitos, diarrea, dolor de cabeza, erupciones en la piel, descamación, y evidencia de estimulación del sistema nervioso central seguida por depresión. (Anónimo, 1983). En casos severos, la muerte ocurre a los 5 días como resultado de colapso circulatorio y shock (Harvey, 1975). La dosis precisa letal de ácido bórico ha sido estimada en 15 a 20 gramos para adultos, 5 a 6 gramos para niños y 1 a 3 gramos para recién nacidos. (Siegel et al, 1986; Dixon et al, 1976). Los niños, los ancianos e individuos con desórdenes renales son el segmento de la población más susceptible a los efectos tóxicos agudos del boro.
Krasovskii et al (1976) examinaron la función sexual de hombres (mediante cuestionario) que vivían en áreas con concentraciones variables de boro en el agua potable (0.015, 0.05 ó 0.3 mg/kg). Se reportó la existencia de una tendencia hacia la reducción de la función sexual en hombres del segmento que consumían agua con la mayor concentración de boro (0.3 mg/kg). Sin embargo, la validez de los resultados no pudo ser determinada debido a la falta de información incluida en la publicación del estudio. En estudios conducidos por Weir y Fisher (1972) grupos de 5 machos jóvenes y 5 hembras jóvenes de perros raza beagle fueron alimentados con dietas conteniendo concentraciones de bórax ó ácido bórico del orden de 17,5 175 o 1.750 mg L como equivalente boro por un periodo de 90 días. La apariencia, comportamiento, eliminación, peso corporal y consumo de alimento fueron normales en animales de todos los grupos de dosis, produciéndose sin embargo una muerte en el grupo de mayor consumo. No se produjeron efectos adversos en el grupo alimentado con 175 mg/L boro (como bórax ó ácido bórico), mientras que tanto el bórax como el ácido bórico en niveles de 1.750 causaron severa atrofia testicular en los machos.
En un estudio separado 4 perros beagle machos y 4 hembras fueron expuestos a concentraciones de boro, como bórax ó ácido bórico, de 0, 58, 117 y 350 mg/L durante dos años ó a 1170 mg/L por 38 semanas. No se encontraron diferencias en apariencia, comportamiento, apetito, eliminación, peso corporal, consumo de alimento, peso de los órganos o en parámetros hematológicos y bioquímicos entre los animales del grupo control y los del grupo expuesto a 350 mg/L tanto como bórax o ácido bórico. Los únicos efectos adversos observados fueron cambios testiculares (disminución de la espermatogénesis y atrofia del epitelio seminífero del los túbulos) en machos expuestos a la máxima dosis de alguno de los dos compuestos (1170 mg/L). El nivel en el cual no se observan efectos adversos (NOAEL por sus siglas en inglés) fue considerado como 350 mg/L de boro (Weir y Fisher, 1972) equivalente a una concentración de boro de 8.75 mg/kg peso vivo por día (EPA, 1987). Los mismos investigadores (Weir y Fisher, 1972) condujeron un estudio en el cual 10 ratas albino Sprague-Dawley macho y 10 hembras ingirieron bórax ó ácido bórico en su dieta a niveles de 52.5, 175, 525, 1.750 ó 5.250 mg/L de equivalente boro durante 90 días. No se observaron efectos adversos obvios en ratas que consumieron 525 mg/L o menos, mientras que el crecimiento y la eficiencia de utilización del alimento fueron significativamente reducidas por las dosis mayores. Sin embargo, atrofia parcial testicular se observó e 4 ratas que consumieron 525 mg/L de boro como bórax y en 1 rata que ingirió 525 mg/L como ácido bórico. Se observó atrofia completa de los testículos en todos los machos expuestos a 1.750 mg/L de boro (como bórax ó ácido bórico).
En un estudio adicional, 35 machos y 35 hembras ratas Sprague-Dawley cercanas al destete recibieron dosis a través del alimento de 117, 350 ó 1.170 mg/L equivalentes a boro como bórax ó ácido bórico durante dos años. Los animales en los grupos que recibieron las dosis menores se observaron normales en cuanto a apariencia y comportamiento, no observándose tampoco alteraciones histológicas. En cambio, las ratas que ingirieron 1.170 mg/L tuvieron gruesa cobertura de pelaje, colas desviadas, posición encorvada, hinchazón y descamación de las plantas de las patas, uñas anormalmente largas, escroto encogido en los machos, párpados inflamados, y descarga de sangre por los ojos. Atrofia de los testículos y epitelio seminífero fue observada en todos los machos que recibieron 1.170 mg/L a los 6, 12 y 24 meses, así como una talla menor de los testículos. El NOAEL fue considerado como 350 mg/L boro (Weir y Fisher, 1972), equivalente a una concentración de boro de 17,5 mg/kg peso vivo por día (EPA, 1987).
En otro estudio, más limitado, (Seal y Weeth, 1980) ratas macho Long-Evans cercanas al destete (15 por cada grupo de dosis) fueron expuestos a agua potable conteniendo 0, 150 ó 300 mg/1 de boro como bórax y a una dieta basal conteniendo 54 mg/g de boro por 70 días. La ingesta diaria total de boro en este estudio se estima en 23.7 y 47.4 mg/kg de peso vivo por día para los grupos de dosis 150 y 300 mg/1, respectivamente (EPA, 1987). El crecimiento fue reducido en un 7.8 y 19.8% en el grupo sometido a 150 ó 300 mg/1, respectivamente. Las ratas que consumieron agua conteniendo 300 mg/1 de boro tuvieron uñas largas, sacos escrotales atrofiados y pelaje muy grueso. Se reportó una disminución significativa en el peso de los testículos, vesículas seminales, baso y fémur derecho en ambos grupos experimentales respecto al control. El número de ratas con presencia de espermatozoos en el grupo sometido a 300 mg/1 (3 de 15) fue significativamente menor que en los otros dos grupos. EL nivel de triglicéridos y proteínas del plasma sanguíneo, hematocrito % de grasa en el hueso fueron todos menores en el grupo de mayor dosis de boro en el agua. El nivel menor al cual se observan efectos adversos (LOAEL por sus siglas en ingles) en este estudio fue considerado como 150 mg/1 (23.7 mg/kg peso vivo a día).
En un estudio de Lee et al. (1978), grupos de 18 ratas Sprague-Dawley machos recibieron 500, 1000 ó 2000 mg/L de boro como bórax en la dieta por 30 y 60 días. Las ingestas estimadas para los 3 grupos de dosis fueron 12.5, 25 y 50 mg/kg peso vivo al día al día. A los 30 días, hubo una reducción de espermatocitos, espermátides y espermatozoos maduros en los 2 grupos de dosis más alta. A los 60 días, aplasia germinal completa o casi completa se observó en los mismos grupos, y el peso testicular y del epidídimo fueron significativamente menores. La acumulación de boro en testículos aparentemente se incrementó tanto con el aumento de la dosis como con la duración de la exposición.
En un estudio en el cual 54 ratones de la variedad Charles River CD fueron expuestos durante toda su vida al consumo de agua potable con contenido de boro de 5 mg/L como metaborato de sodio, no se encontraron efectos en la ganancia de peso corporal, incidencia de tumores (basado en un examen grueso de tumores al fallecimiento) o en la longevidad (Schroeder y Mitchener, 1975). En un bioensayo de carcinogénesis conducido bajo el auspicio del National Toxicology Program (NTP), (National Toxicology Program, 1987) grupos de 50 machos y 50 hembras de ratón variedad B6C3F1 fueron alimentados con dietas con contenidos de 2500 ó 5000 mg/L de ácidos bórico por dos años. La sobrevivencia fue reducida ambos grupos de machos tratados; debe notarse, sin embargo, que 5 machos en el grupo de mayor dosis se ahogaron accidentalmente. Se observó una disminución relacionada con la dosis de boro en la ganancia de peso corporal tanto en los ratones hembras como en los machos, y la incidencia de atrofia testicular e hiperplasia de las células intersticiales fue mayor en los machos en el grupo de dosis más alta. No se reportó un incremento relacionado al compuesto en estudio en la incidencia de tumores. Se concluyó que, bajo las condiciones del estudio, el ácido bórico no es carcinogénico en ratones. La sensibilidad de este estudio puede haber estado reducida, sin embargo, debido a la sobrevivencia reducida de los machos tratados.
El NTP (National Toxicology Program, 1987) también evaluó el estudio de alimentación crónica en ratas Sprague-Dawley conducido por Weir y Fisher (1972) y concluyó que este estudio provee datos adecuados que apoyan una falta de efecto carcinogénico del ácido bórico en ratas. En un bioensayo limitado en el cual se utilizó una suspensión de ácido bórico en goma tragacanth al 2% que fue administrada intra vaginalmente dos veces por semana durante 50 semanas, no hubo evidencia concluyeme de carcinogenicidad en el tracto genital de ratones hembra. (Boyland et al, 1966).
En una serie de tests de genotoxicidad conducidos por el NTP (1987) el ácido bórico resultó no ser mutagénico en células procariotas ni en eucariotas. Tampoco indujo intercambio de cromátidas hermanas ni aberraciones cromosomales en células oválicas de hámster chino. Tampoco se encontró evidencia de actividad mutagénica del bórax ó del ácido bórico en tests de pre incubación en Salmonella typhimuri m (Benson et al, 1984).
En un estudio de cruzamiento en serie que involucró 5 ratas de cada grupo experimental con dosis de boro del experimento de Lee et al (1978), la tasa de preñez, tamaño de carnada y apariencia fueron normales para hembras vírgenes no expuestas a boro fecundadas por machos que consumieron 500 mg/L de boro. La tasa de preñez fue reducida en las hembras fecundadas por ratas macho expuestas a la ingesta de 1000 ó 2000 mg/L de boro durante 30 ó 60 días. Los machos que consumieron 1000 y 2000 mg/L fueron infértiles; la fertilidad en el grupo que consumió 1000 mg/L regresó a la normalidad 4 semanas después de la cesación de la exposición al boro, mientras que los machos que consumieron 2000 mg/L permanecieron infértiles hasta 32 semanas después de descontinuado el tratamiento. La infertilidad se debió aparentemente a la disminución de células germinales.
Weir y Fisher (1972) condujeron un estudio reproductivo sobre 3 generaciones de ratas Sprague- Dawley alimentadas con dietas conteniendo bórax ó ácido bórico a niveles de 117, 350 ó 1.170 mg/L de boro. No se produjeron efectos adversos en la reproducción con los niveles de 117 ó 350 mg/L, mientras que todas las ratas que fueron alimentadas con 1.170 mg/L de boro fueron estériles. Heindel et al (1994) investigaron la toxicidad del ácido bórico en el desarrollo de las madres y durante la gestación de ratones, ratas y conejos. En las ratonas madres, se observaron daños renales menores (dosis de ácido bórico superior o igual a 248 mg/kg/día), incremento en el consumo de agua y en el peso relativo de los ríñones (dosis de ácido bórico superior o igual a 1003 mg/kg/día), así como ganancia de peso disminuida durante el tratamiento. Las ratas madres exhibieron un peso incrementado del hígado y del riñon (dosis de ácido bórico superior o igual a 163 mg/kg/día), ingesta alterada de agua y/o comida (dosis de ácido bórico superior o igual a 163 mg/kg/día), y ganancia de peso disminuida (dosis de ácido bórico superior o igual a 330 mg/kg/día). En las conejas madres, los signos de toxicidad incluyeron descenso de la ingesta de alimento durante el tratamiento y sangramiento vaginal asociado a las pérdidas durante la preñez (dosis de ácido bórico superior o igual a 250 mg/kg/día).
Clasificación del boro en cuanto a su riesgo para los seres humanos
Según el organismo de salud de Canadá (Health Canadá, 1991), el boro es clasificado desde el punto de vista de su carcinogenicidad en la categoría IVC (probablemente no carcinogénico para el hombre). Asimismo, La ingesta diaria aceptable (ADI por sus siglas en inglés) se calcula de la siguiente manera:
ADI = (17.5 mg/kg de peso vivo al día 500) = 0.035 mg/kg de peso vivo al día
Donde:
17.5 mg/kg de peso vivo al día es el NOAEL para atrofia testicular y disminución de la espermatogénesis en ratas.
500 es el factor de incertidumbre (10 para la variación intraespecífica; 10 para la variación interespecífica y 5 por la inclinación de la curva de respuesta frente a las dosis de boro).
Basada en esta ADI, el valor recomendado de boro en el agua potable, basado exclusivamente en consideraciones de salud, se calcula como sigue:
(0.035 mg/kg peso vivo por día * 70 kg peso vivo *0.20)/1.5 1/día = 0.3 mg/1
Donde:
0.035 mg/kg peso vivo por día es la ADI, calculada previamente
70 kg de peso vivo es el peso promedio corporal de un humano adulto.
0.20 es la proporción de la ingesta total de boro asignada al agua potable (los datos disponibles son insuficientes para estimar esta proporción)
1.5 1/d es consumo diario promedio de agua potable de un adulto. Sin embargo, la publicación de Health Canadá (1991), recalca que en el establecimiento de una concentración máxima aceptable (MAC por sus siglas en inglés) para el agua potable, deben tomarse en cuenta los métodos disponibles y prácticos para el tratamiento y análisis de agua. En el caso del boro, se señala que la tecnología de tratamiento disponible en la práctica es incapaz o inadecuada para reducir las concentraciones de boro en el agua potable canadiense a un nivel menor que 5 mg/1; en base a esto, se ha establecido un MAC provisorio para el boro en agua potable de (BVIAC) de 5 mg/1, el cual se revisa periódicamente a la luz de nuevos datos. La Environmental Protection Agency de Estados Unidos de Norteamérica (2000) establece las siguientes definiciones para describir los estándares de agua potable y recomendaciones de salud:
Nivel de Acción (Action Level): La concentración de un contaminante la cual, si es excedida, gatilla el tratamiento u otros requerimientos los cuales deben ser seguidos por un sistema de producción de agua potable. Para el plomo o el cobre es el nivel el cual, si se excede en más de un 10% de las casa muestreadas, gatillan la necesidad de tratamiento.
Grupo de Carcinogenecidad (Cáncer Group): Un juicio calificativo basado en el peso de la evidencia respecto a la probabilidad de que un químico pueda ser carcinógeno para humanos. Cada químico se ubica en una de las siguientes cinco categorías (Cuadro 3):
Figure imgf000008_0001
Riesgo de Cáncer 10"4 (10-4 Cáncer Risk): La concentración de un químico en el agua potable que corresponde a un riesgo estimado durante la vida de contraer cáncer de 1 en 10.000.
Nivel equivalente en el agua Potable (DWEL: Drinking Water Equivalent Level): Una concentración de un químico a la cual una exposición durante toda la vida no produce efectos adversos (a parte del cáncer); se asume que toda la exposición al contaminante proviene del agua potable.
Recomendación Sanitaria (HA: Health Advisory): Una estimación de los niveles aceptables en el agua potable para una sustancia química, basada en la información sobre los efectos en la salud disponible; una recomendación sanitaria no es un estándar Federal legalmente exigible, pero sirve como una guía técnica para la ayuda de las autoridades Federales, estatales o locales.
Recomendación Sanitaria para un día (One day HA): La concentración de un químico en el agua potable que no se espera que cause ningún efecto adverso (fuera del cáncer) cuando la exposición se efectúa por un máximo de un día.
Recomendación Sanitaria para 10 días (Ten day HA): La concentración de un químico en el agua potable que no se espera que cause ningún efecto adverso (fuera del cáncer) cuando la exposición se efectúa por un máximo de diez días. Recomendación Sanitaria para toda la vida (Lifetime HA): La concentración de un químico en el agua potable que no se espera que cause ningún efecto adverso (fuera del cáncer) cuando la exposición se efectúa durante toda la vida.
Meta Máxima de nivel de un Contaminante (MCLG: Máximum Contaminant Level Goal): Un nivel no exigible establecido como meta sanitaria el cual se fija en un nivel al cual no se conocen o no se anticipan efectos adversos en la salud de las personas y que permite un adecuado margen de seguridad.
Nivel Máximo de un Contaminante (MCL: Máximum Contaminant Level): El mayor nivel de un contaminante que se permite en el agua potable. Se fijan tan cerca como sea posible de los MCLG usando la mejor tecnología de tratamiento y tomando el costo en consideración. Los MCL son estándares legalmente exigibles.
En la misma publicación de la EP A (2000), al boro se le clasifica de la siguiente manera (Cuadro 4) (se especifica que todos los valores para boro están en revisión, por lo tanto son provisorios):
Figure imgf000009_0001
Cabe destacar que efectivamente la legislación chilena no contempla para aguas de consumo humano o potables en su NCh409, el requisito del parámetro boro, pero no es menos cierto que las Normas de otras naciones así como de organizaciones internacionales relativas a los requisitos de boro en aguas de carácter potable efectivamente sí lo contemplan y explicitan con un valor de Límite máximo permitido, entre las cuales la mencionada Norma de Canadá es la que acepta el mayor valor de boro (Cuadro 5).
Cuadro 5: Máximo nivel de boro en agua potable en legislaciones de diversos países, comparadas a la recomendación de la OMS.
País u Organización - Año Boro mg/L
OMS - 1995 0.3
COLOMBIA - 1998 0.3
GUATEMALA - 1998 1.0
CANADA - 1995 5.0
REINO UNIDO - 1991 2.0
ALEMANIA - 1990 1.0
ESPAÑA - 2005 0.5
ITALIA - 1985 1.0 Remoción de Boro en sistemas de desalinización por osmosis inversa
La creciente presión por el uso de recursos hídricos asociada al crecimiento y expansión de la población humana a nivel mundial, y particularmente en zonas de relativamente baja disponibilidad de agua de lluvias, el uso de métodos de desalinización de aguas salobres y/o marinas para consumo humano o para riego ha crecido constantemente. (El Dessouky et al, 2002). La principal técnica comercial de desalinización utilizada actualmente, la Osmosis Reversa, permite obtener agua de mar o aguas salobres desalinizadas que a menudo contienen concentraciones de boro que, por ser relativamente altas, causan problemas cuando es usada para el riego (R. Reid, 2010). De este modo, el uso de agua de riego que contenga niveles de boro relativamente altos, puede ser un factor que acelere el depósito de boro en los suelos y las plantas. En consecuencia es importante lograr producir agua con bajo contenido de boro en las plantas de desalinización, para prevenir los efectos de la toxicidad de boro sobre las especies vegetales.
El boro presente en el agua de mar es eficazmente removido hasta una concentración de prácticamente cero por medio de la tecnología de desalinización por destilación térmica. Esta tecnología, sin embargo, por su alto requerimiento energético, resulta económicamente prohibitiva para ser utilizada para producir agua destinada al riego agrícola. En contraste, la tecnología de desalinización de mayor difusión y utilización a escala comercial, la osmosis reversa (IDA, 2008), presenta una eficacia insuficiente para la eliminación de boro. Esto es debido a que una gran proporción del boro presente en el agua de mar existe como ácido bórico libre de carga, el cual puede difundir a través de las membranas de osmosis reversa de un modo similar al agua, lo cual reduce el porcentaje de rechazo de boro en el agua de mar (Prats et al, 2000; Sagiv et al, 2004).
La remoción del boro a partir del agua de mar es un problema complejo en las plantas de desalinización por osmosis reversa, particularmente para las plantas construidas en las décadas de 1980 y 1990 (Hilal et al, 2010).
Dado que en condiciones normales el boro en solución acuosa está en forma de ácido bórico, y que el equilibrio en solución entre la forma de ácido bórico y borato (especie cargada que es eficientemente rechazada por las membranas de osmosis reversa) se desplaza hacia el borato al aumentar el pH de la solución, es posible aumentar el rechazo de boro en sistemas de desalinización por osmosis inversa aumentando el pH del agua a ser tratada por medio de la adición de un hidróxido soluble. Este método ofrece una utilidad práctica parcial cuando la solución en la cual está presente el boro tiene pH de al menos 9, y es particularmente eficaz cuando el pH alcanzado con la adición de hidróxido al agua previa al tratamiento es sobre 11. Sin embargo, este método presenta el severo inconveniente práctico de que a esos pH elevados, las aguas salinas, normalmente ricas en carbonatos, genera una gran cantidad de precipitados que arruinan rápidamente la integridad y permeabilidad de las membranas del sistema de osmosis reversa. La inconveniencia práctica se ve agudizada debido a que las cantidades de hidróxido soluble que se requieren para producir el cambio de pH a los niveles que se requieren por este método, hacen que el costo de este método normalmente no sea atractivo para ser implementado en la práctica (Hilal et al, 2010). En forma similar se ha propuesto el aumento de la eficiencia del rechazo de boro en osmosis inversa por medio del complejamiento de boro con manitol (Geffen et al, 2006) o con óxido de hierro (Qin et al, 2005) para formar complejos de mayor tamaño. En el caso del Manitol, sin embargo, la eficiencia de remoción está directamente ligada al pH del agua, y solo aumenta fuertemente el rechazo de boro con pH sobre 9. Para el caso del óxido de fierro, por otra parte, se requiere una concentración de óxido de hierro 10 veces superior a la de boro para que el rechazo sea eficaz, y esto implica una menor vida útil de las membranas de osmosis inversa.
Lista de Referencias:
Aas Jansen, J., Schou, J.S. and Aggerbeck, B. Gastrointestinal absorption and in vitro reléase of boric acid from water-emulsifying ointments. Food Chem. Toxicol., 22: 49 (1984).
Anónimo. Final report on the safety assessment of sodium borate and boric acid. J. Am. Coll. Toxicol., 2: 87 (1983).
Ayers, R.S. y Westcot, O.W. 1987. La calidad del agua en la agricultura. Estudio FAO, Riego y Drenaje 29
Benson, W.H., Berge, W J. and Durough, H.W. Absence of mutagenic activity of sodium borate (bórax) and boric acid in the Salmonella preincubation test. Environ. Toxicol. Chem., 3: 209 (1984).
Blevins, D.G. and Lukaszewski, K M. Proposed Physiologic fiinctions of Boron in Plants pertinent to animal and human metabolism. Environmental Heath Perspectives 102, Supplement 7, November 1994. 31-33.
Boyland, E., Roe, F.J.C. and Mitchley, B.C.V. Test for certain constituents of spermicides for carcinogenicity in genital tract of female mice. Br. J. Cáncer, 20: 184 (1966).
Bradford, G. R.. "Boron" IN: Chapman, H.D (ed), Diagnostic Criteria for Plants and Soils, Quality Printing Company, Inc., Texas, 1965, p-33-61
Clarke, W.B., Webber, CE., Koekebakker, M. and Barr, R.D. Lithium and boron in human blood. J. Lab. Clin. Med., 109(2): 155 (1987).
Dixon, R.L., Lee, I.P. and Sherins, R.J. Methods to assess reproductive effects of environmental chemicals. Studies of cadmium and boron administered orally. Environ. Health Perspect., 13. 59 (1976).
H.T. El-Dessouky, H.M. Ettouney, Fundamentáis of Salt Water Desalination, Elsevier Science, Amsterdam, 2002.
Ferreyra, RE., Aljaro, A.U., Ruiz, R.S., Rojas, L.P. y Oster, J.D. 1997. Behavior of 42 crop species grown in saline soils with high Boron concentrations. Agricultural water management 34 (1997) 111-124 Figueroa, L. y Cornejo, L. 2000. Impacto ambiental en la ciudad de Arica a causa de la introducción de borato en el agua potable. V Encuentro Química Analítica y Ambiental. Chile Figueroa et al, "Niveles de boro en aguas de riego y suelos que sustentan olivos en el Norte de Chile". IDESIA (CHILE), Vol.13, 1994.
Figueroa T., L.; L. Tapia I ; E. Bastías M; H. Escobar A. y A. Torres H. 1998. Taller Internacional sobre Gestión de la Calidad del Agua y Control de la Contaminación en América Latina. Food and Agricultural Organization. FAO. "Niveles de Boro en el agua de riego utilizada en olivicultura del norte de Chile". Universidad de Tarapacá.
Fundación Chile. 1999. Estudio prospectivo de nuevas opciones agrícolas y agroindustriales para Arica. Publicado por CORFO.
N. Geffen, R. Semiat, M.S. Eisen, Y. Balazs, I. Katz, C.G. Dosoretz, Boron removal from water by complexation to polyol compounds, J. Membr. Sci. 286 (2006) 45-51.
Hamilton, E.I., Minski, M.J. and Cleary, J.J. The concentration and distribution of some stable elements in healthy human tissues from the United Kingdom. Sci. Total Environ., 1 : 341 (1972/1973).
Harvey, S.C. Antiseptics and disinfectants; fiingicides, ectoparasiticides. In: Pharmacological basis of therapeutics. L.S. Goodman, A. Gilman, A.G. Gilman and G.B. Koelle (eds.). Macmillan, Toronto. p. 994 (1975).
Health Canadá. 1991. Guidelines forCanadian Drinking water Quality. documento PDF titulado "Boron" obtenido en http://www.hc- sc. ge. ca/ehp/ ehd/catalogue/bch_pubs/dwgsup_doc/ dwgsup doc . htm. 48 refs.
Heindel, J.J., Price, C.J., and B. Schwetz. The developmental toxicity of boric acid in mice, rats and rabbits. Environmental Heath Perspectives 102, Supplement 7, November 1994.
N. Hilal, et al., Boron removal from saline water. A comprehensive review, Desalination (2010), doi:10.1016/j.desal.2010.05.012
Hunt, C.D. and Nielsen, F.H. Interaction between boron and cholecalciferol in the chick. In: Proceedings of the 4th International Symposium on Trace Element Metabolism in Man and Animáis. Vol. 4. J.M. Gawthorne, J.M. Howell and C.L. White (eds.). Springer-Verlag, Berlin. p. 597 (1982).
IDA, DesalData, Desalination in 2008 global market snapshot, in, 2008.
Jansen, J.A., Andersen, J. and Schou, J.S. Boric acid single dose pharmacokinetics after intravenous administration to man. Arch. Toxicol., 55: 64 (1984). Japan International Cooperation Agency (JICA). 1995. El estudio sobre el desarrollo de los recurso de agua en la parte North de Chile. Informe Principal. Pacific Consultants International. Tokio.
Kotton y Wilkinson, Química Inorgánica Avanzada, 4aEd.1988
Krasovskii, G.N., Varshavskaya, S.P. and Borisov, AI. Toxic and gonadotropic effects of cadmium and boron relative to standards for these substances in drinking water. Environ. Health Perspect, 13: 69 (1976).
Ku, W.W., and R. Chapín. Mechanism of testicular toxicity of boric acid in rats: In vivo and In vitro studies. Environmental Heath Perspectives 102, Supplement 7, November 1994.
Lee, I.P., Sherins, R.J. and Dixon, R.L. Evidence of germinal aplasia in male rats by environmental exposure to boron. Toxicol. Appl. Pharmacol., 45: 577 (1978).
Magour, S., Schramel, P., Ovcar, J. and Maser, H. Uptake and distribution of boron in rats: interactíon with ethanol and hexo-barbitol in the brain. Arch. Environ. Contam. Toxicol., 11: 521 (1982).
National Toxicology Program. Toxicology and carcinogenesis studies of boric acid (CAS No. 10043-35-3) in B6C3F 1 mice (feed studies). NTP Technical Report Series No. 324, Research Triangle Park, NC (1987).
Nielsen, F.H. Effects in rats of boron deprivation and of interactions between boron and fluoride, aluminum, magnesium, or calcium. In: Proceedings of the 5th International Symposium on Trace Elements in Man and Animáis. Vol. 5. C.F. Mills, I. Bremner and J.K. Chesters (eds.). Commonwealth Agricultural Bureaux, Farnham Royal, Slough, U.K. p. 271.
Nielsen, F.H., Hunt, C.D., Mullen, L.M. and Hunt, J.R. Effect of dietary boron on minerals, estrogen, and testosterone metabolism in postmenopausal women. FASEB J., 1: 394 (1987).
C. Nuttal. Boron Tolerance & Uptake in Higher Plants. Ph. D. Doctoral Thesis. University of Cambridge. (2000). Oertli, J. J. E KOHL, H. C. "Some Considerations about the Tolerance of Various Plant Species to Excessive Supplies of Boron". Soil Sci. 1961, 92: 243-247
Plaza De Los Reyes, Orellana, F. y Urizar, S. 1997. Carbones activos obtenidos de subproductos agrícolas nativos chilenos y de residuos forestales. Bol. Soc. Chil. Quím., 42, 493 - 499 Reprod. Toxicol. 1998 May-Jun; 12(3): 297-304
D. Prats, M.F. Chillón-Arias, M. Rodríguez-Pastor, Analysis of the influence of pH and pressure on the elimination of boron in reverse osmosis, Desalination 128 (2000) 269-273. J. J. Qin, M.H. Oo, M.N.Wai, Y.M. Cao, Enhancement of boron removal in treatment of spent rinse from a plating operation using RO, Desalination 172 (2005) 151-156. A. Sagiv, R. Semiat, Analysis of parameters affecting boron permeation through reverse osmosis membranes, J. Membr. Sci. 243 (2004) 79-87. Seal, B.S. and Weeth, H.J. Effect of boron in drinking water in the male laboratory rat. Bull. Environ. Contam. Toxicol., 25: 782 (1980).
Siegel, E. and Wason, S. Boric acid toxicity. Pediatr. Clin. North Am., 33: 363 (1986).
Schroeder, H. A. and Mitchener, M. Life-term effects of mercury, methyl mercury and nine other trace metáis on mice. J. Nutr., 105:452 (1975).
Uhrich, K.E., Hunt, C.D. and Nielsen, F.H. Boron deprivation in rats. Proc. N.D. Acad. Sci., 38: 108 (1984).
Tapia, L. et al, 1995. Selección y evaluación de portainjertos de olivos (Olea europaea L ), resistentes a la salinidad y toxicidad específica para el norte de Chile. Informe Final FO DECYT 92-132, Universidad de Tarapacá, Arica, Chile
Underwood, E.J. Trace elements in human and animal nutrition. Academic Press, New York, NY. p. 436 (1977).
U.S. Environmental Protection Agency. Health effects assessment for boron and compounds. Environmental Criteria and Assessment Office (1987)
U.S. Environmental Protection Agency. Office of Water(2000). Drinking Water Standards and Health Advisories. Washington D.C., E.U. A.
Van der Leeden, F., Troise, F. L. y D. K. Todd. 1990. The water Enciclopedia. Lewis Publishers. 808 p.
Walsh L.M. and J.D.Beaton, Soil and Plant Analysis, Soil Science Society of America, 1973.
Weir, R.J., Jr. And Fisher, R.S. Toxicologic studies on bórax and boric acid. Toxicol. Appl. Pharmacol., 23: 251 (1972).
Woods, W.G. 1996. Journal of trace elements in experimental medicine, 9: (4) 153 - 163 Descripción de la Invención
Ha sido desarrollado un nuevo método para aumentar el rechazo de boro en plantas de desalinización por osmosis reversa. El método desarrollado, en su manifestación o forma de ejecución principal, se describe a continuación de modo secuencial: • Tomando como base una planta de desalinización por osmosis reversa, ya sea para aguas superficiales o subterráneas salobres, o para agua de mar, esta planta de desalinización es modificada de modo que permita la adición dosificada de una solución concentrada de un compuesto polihidroxilado soluble en cualquier punto del circuito hidráulico de alimentación del agua a ser tratada por la planta de osmosis reversa, preferentemente incorporando en este circuito de alimentación de agua un sistema de mezcla por turbulencia o por agitación mecánica que permita una adecuada homogeneidad en la mezcla entre la solución de compuesto polihidroxilado y la corriente de agua a ser desalinizada. Idealmente el punto de adición de la solución del compuesto polihidroxilado debe permitir que exista un tiempo de al menos 30 segundos, y preferentemente más de un minuto, para que la solución adicionada se mezcle en el agua a ser desalinizada.
• El compuesto polihidroxilado soluble que se adiciona al agua a ser tratada, formará un complejo con las moléculas de ácido bórico o borato presentes en el agua a ser desalinizada. Dado el tamaño molecular de los compuestos polihidroxilados, y por ende del complejo boro-polihidroxilado, éste será rechazado por la membrana de osmosis reversa, permitiendo un permeado con una concentración reducida de boro en cualquier planta de desalinización por osmosis reversa.
• El compuesto polihidroxilado puede ser cualquier molécula soluble que presente grupos hidroxilo pareados en su estructura molecular, y cuyos átomos de oxígeno estén ubicados a una distancia preferentemente entre 2,49 y 2,63 Angstrom. Este grupo incluye, pero no está limitado, a compuestos solubles como sorbitol, glicerol, fructosa, N-metil glucamina, D- ramnosa, ácido cromotópico, tirón, pentaeritritol y glucosa.
• El compuesto polihidroxilado es agregado al agua a ser desalinizada hasta alcanzar una concentración que debe estar en una relación entre 1 : 1 y 500: 1 con la concentración de boro a remover, idealmente en una proporción de 5:1. Por ejemplo, si la concentración de boro en el agua a tratar es 10 mg L, el polihidroxilado puede ser agregado hasta alcanzar una concentración entre 10 mg/L y 5000 mg/L, idealmente 50 mg L en el agua antes de entrar al proceso de osmosis reversa.
• El método no afecta otros parámetros de calidad del agua obtenida tales como pH y conductividad eléctrica.
• El método es aplicable a aguas que tengan un pH igual o superior a 3, preferentemente sobre 7.
Ejemplos de aplicación
La invención aquí descrita ha sido aplicada experimentalmente a la obtención de agua desalinizada. Las concentraciones de boro fueron determinadas por el método de la Azometina- H. Ejemplo 1. Una unidad de desalinización por osmosis reversa para agua de mar con una capacidad para procesar 300 litros por hora a una presión de 720 PSI fue utilizada para tratar aguas con un contenido de boro considerado elevado con respecto a las recomendaciones para contenido de boro en aguas de riego (0,75 mg/L) y agua para consumo humano (0,5 mg/L). La modificación realizada para adaptar la modificación del proceso del cual es objeto la presente invención consistió en que se añadió un estanque desde el cual sería alimentada el agua a ser desalinizada, y este estanque fue provisto a su vez de un agitador mecánico. Se agregó directamente a la totalidad del volumen de agua a desalinizar (300 litros) una solución con la concentración del compuesto polihidroxilado preparada. El agua a desalinizar a la cual se le añadió la solución de compuesto polihidroxilado, se mantuvo con agitación mecánica durante todo el proceso de desalinización. El Cuadro 1 contiene los datos registrados con distintos tipos de agua a desalinizar, distintos compuestos polihidroxilados y distintas concentraciones de los mismos. Es notable y sorprendente que todos los compuestos o mezclas de compuestos polihidroxilados empleados lograron aumentar el rechazo de boro por el proceso de osmosis inversa modificados según la invención, con respecto a la situación sin modificación (control sin adición de compuesto polihidroxilado). Los mejores resultados se obtuvieron con los compuestos N-metilglucamina, ácido cromotópico, tirón y D-Ramnosa, añadidos en cantidad suficiente para lograr una concentración en el agua a desalinizar de 500 mg/L.
Cuadro 1: Resultado cuantitativo del tratamiento de desalinización de agua con respecto a la eficiencia de remoción de boro al emplear el método descrito por la presente invención.
Tipo de Agua a
Desalinizar Compuesto polihidroxilado agregado Concentración agreg, ada[mg L] Concentración de Boro [mg/L]
Alimentación Permeado % de Rechazo
Agua potable - 0 1,52 0,24 84,4%
Agua Lluta - 0 18,30 3,21 82,5%
Agua Lluta N-metilglucamina 500 18,30 0,23 98,7%
Agua Lluta Melazán 1000 17,64 2,50 85,8%
Agua Lluta Glicerol 500 18,10 2,55 85,9%
Agua Lluta Pentaeritritol 500 18,10 2,45 86,4%
Agua Lluta Glicerol 500 18,10 2,55 85,9%
Agua Lluta Ácido Cromotópico 500 18,10 0,33 98,2%
Agua Lluta Tirón 500 18,10 0,25 98,6%
Agua Lluta D-ramnosa 500 18,10 0,29 98,4%
Ejemplo 2: El experimento del Ejemplo 1 fue repetido, esta vez solamente utilizando el compuesto n-metilglucamina como polihidroxilado, y empleando una unidad de osmosis inversa para aguas salobres con una capacidad de desalinización de 6 m3/hora y una presión de trabajo de 300 PSI. El Cuadro 7 contiene los datos registrados durante el proceso de desalinización modificado según la presente invención, utilizándose distintas concentraciones del compuesto polihidroxilado. Es notable y sorprendente que el método así implementado logró un aumento significativo del rechazo de boro por parte del proceso de desalinización con osmosis reversa, con respecto a la situación sin modificación. El mejor resultado se obtuvo con el compuesto N- metilglucamina añadido en cantidad suficiente para lograr una concentración en el agua a desalinizar de 350 mg/L. Cuadro 7: Resultado cuantitativo del tratamiento de desalinización de agua con respecto a la eficiencia de remoción de boro al emplear el método descrito por la presente invención.
Tipo de Agua
a desalinizar Compuesto polihidroxilado agregado Concentración agregada [mg L] „Concentración de boro-[mg¿L]
Alimentación Permeado % de Rechazo
Agua Lluta N-metilglucamina 0 25,12 16,29 32,1%
Agua Lluta N-metilglucamina 100 25,12 16,18 32,5%
Agua Lluta N-metilglucamina 200 25,12 14,05 41,4%
Agua Lluta N-metilglucamina 350 25,12 10,19 57,5%
Es preciso indicar que las aguas utilizadas en estos experimentos, que presentan un nivel natural de contaminación por boro, tienen concentraciones de boro extremadamente altas con respecto a los niveles encontrados en la vasta mayoría de los cuerpos de agua existentes a nivel global, incluyendo al agua de mar, que no suele tener más de 4,5 mg/L de boro. Esta agua se utilizó para mostrar el efecto en las peores condiciones posibles de encontrar en la práctica.
Los ejemplos aquí descritos son solo una parte de las posibilidades de aplicación de la presente invención y no constituyen en modo alguno una descripción exhaustiva de las mismas, siendo posible para cualquier persona versada en el arte encontrar múltiples otras aplicaciones del invento en el ámbito de aplicación enunciado, considerándose todas ellas tácitamente descritas como parte de la presente invención.

Claims

REIVINDICACIONES
1. Un método para aumentar la eficiencia en el rechazo de boro por parte de sistemas de desalinización por osmosis inversa, CARACTERIZADO porque el sistema de osmosis inversa es modificado de modo en que permita la adición y mezcla de un compuesto polihidroxilado soluble en el agua antes de que pase por las membranas de osmosis reversa.
2. El método de la reivindicación 1, CARACTERIZADO porque el compuesto polihidroxilado es cualquier compuesto soluble con grupos dioles o polioles, preferentemente con una distancia entre los átomos de oxígeno de los grupos hidroxilos adyacentes entre 2,49 y 2,63 Angstrom.
3. El método de la reivindicación 1, CARACTERIZADO porque la concentración en la cual se requiere que el compuesto polihidroxilado sea añadido al agua que debe ser desalinizada, está en un rango de proporción respecto al contenido de boro que va entre 1 : 1 y 500:1, preferentemente 5:1 (polihidroxilado : boro).
4. El método de la reivindicación 2, CARACTERIZADO porque el compuesto polihidroxilado puede ser sorbitol, glicerol, fructosa, N-metü glucamina, D-ramnosa, ácido cromotópico, tirón, pentaeritritol o glucosa, o una mezcla de estos compuestos.
5. El método de la reivindicación 1, CARACTERIZADO porque el tiempo de mezcla del agua a ser desalinizada con el compuesto polihidroxilado es de al menos 30 segundos, preferentemente más de 1 minuto.
6. El método de la reivindicación 1, CARACTERIZADO porque el método para la disolución y mezcla del compuesto polihidroxilado en el agua a tratar es cualquier dispositivo agitador mecánico o hidráulico.
7. El método de la reivindicación 1, CARACTERIZADO porque el pH del agua a ser desalinizada puede ser sobre 3, preferentemente sobre 7.
PCT/CL2012/000029 2011-04-15 2012-06-15 Método para aumentar la eficiencia en el rechazo de boro por parte de sistemas de desalinización por ósmosis inversa el cual es modificado para permitir la adición y mezcla de un compuesto polihidroxilado soluble en agua WO2012142721A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2011000862A CL2011000862A1 (es) 2011-04-15 2011-04-15 Metodo para aumentar la eficiencia en el rechazo de b en sistemas de desalinizacion por osmosis inversa, el cual es modificado de modo que permita la adiccion y mezcla de un compuesto polihidroxilado soluble en agua, antes que pase por las membranas.
CL862-2011 2011-04-15

Publications (2)

Publication Number Publication Date
WO2012142721A2 true WO2012142721A2 (es) 2012-10-26
WO2012142721A3 WO2012142721A3 (es) 2012-12-13

Family

ID=47041970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2012/000029 WO2012142721A2 (es) 2011-04-15 2012-06-15 Método para aumentar la eficiencia en el rechazo de boro por parte de sistemas de desalinización por ósmosis inversa el cual es modificado para permitir la adición y mezcla de un compuesto polihidroxilado soluble en agua

Country Status (2)

Country Link
CL (1) CL2011000862A1 (es)
WO (1) WO2012142721A2 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031034A1 (en) * 2001-10-05 2003-04-17 Ionics, Incorporated Control of water treatment system with low level boron detection
WO2006051888A1 (en) * 2004-11-15 2006-05-18 Toray Industries, Inc. Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and treatment method for boron-containing water using the same
US20080035565A1 (en) * 2006-08-10 2008-02-14 Palacios Donaque Enric Procedure for elimination of boron from sea-water by reverse osmosis membranes
US20090223897A1 (en) * 2008-03-04 2009-09-10 Peter Villeneuve Method for the Rejection of Boron from Seawater in a Reverse Osmosis System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031034A1 (en) * 2001-10-05 2003-04-17 Ionics, Incorporated Control of water treatment system with low level boron detection
WO2006051888A1 (en) * 2004-11-15 2006-05-18 Toray Industries, Inc. Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and treatment method for boron-containing water using the same
US20080035565A1 (en) * 2006-08-10 2008-02-14 Palacios Donaque Enric Procedure for elimination of boron from sea-water by reverse osmosis membranes
US20090223897A1 (en) * 2008-03-04 2009-09-10 Peter Villeneuve Method for the Rejection of Boron from Seawater in a Reverse Osmosis System

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GEFFEN N. ET AL.: 'Boron removal from water by complexation to polyol compounds' JOURNAL OF MEMBRANE SCIENCE vol. 286, no. 1-2, 15 December 2006, pages 45 - 51 *
HILAL N. ET AL.: 'Boron removal from saline water: A comprehensive review' DESALINATION vol. 273, no. 1, 06 May 2010, pages 23 - 35 *
TU K.L. ET AL.: 'Boron removal by reverse osmosis membranes in seawater desalination applications' SEPARATION AND PURIFICATION TECHNOLOGY vol. 75, no. 2, 13 October 2010, pages 87 - 101 *

Also Published As

Publication number Publication date
CL2011000862A1 (es) 2012-01-27
WO2012142721A3 (es) 2012-12-13

Similar Documents

Publication Publication Date Title
Sun et al. Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae
García et al. Absorption of carbamazepine and diclofenac in hydroponically cultivated lettuces and human health risk assessment
Peres et al. Acute nephrotoxicity of cisplatin: molecular mechanisms
Fail et al. General, reproductive, developmental, and endocrine toxicity of boronated compounds
Lv et al. Advances in research on the toxicological effects of selenium
Dhar et al. Physiology and toxicity of fluoride
Barbier et al. Molecular mechanisms of fluoride toxicity
Wilber Toxicology of selenium: a review
Ranjan et al. Fluoride toxicity in animals
Van Leeuwen et al. The toxicology of bromide ion
Abdel‐Tawwab et al. Response of Nile tilapia, Oreochromis niloticus (L.) to environmental cadmium toxicity during organic selenium supplementation
Nieder et al. Reactive water-soluble forms of nitrogen and phosphorus and their impacts on environment and human health
Nadella et al. Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine
Valenzuela Soto et al. Cnidoscolus chayamansa organic hydroponic and its hypoglycemic capacity, nutraceutical quality and toxicity
Sharma et al. Impact of chronic sodium fluoride toxicity on antioxidant capacity, biochemical parameters, and histomorphology in cardiac, hepatic, and renal tissues of wistar rats
Harri et al. Toxicity and retention of DDT in adult frogs, Rana temporaria L.
ES2913376B2 (es) Compuestos de curcumina y aminoacidos basicos
WO2012142721A2 (es) Método para aumentar la eficiencia en el rechazo de boro por parte de sistemas de desalinización por ósmosis inversa el cual es modificado para permitir la adición y mezcla de un compuesto polihidroxilado soluble en agua
Ramadan et al. Melatonin improves blood biochemical parameters and DNA integrity in the liver and kidney of hyperthyroid male rats.
O'brien et al. Urinary pyrophosphate in normal subjects and in stone formers
Nandi et al. Lead and cadmium accumulation in fresh water fishes Labeo rohita and Catla catla
Wang et al. Fate of 15 N-enriched cyanobacteria feed for planktivorous fish in an enclosure experiment: a stable isotope tracer study
Gupta et al. Anti-inflammatory activity of sodium pyruvate-a physiological antioxidant
World Health Organization Ammonia
Albrecht Central nervous system toxicity of some common environmental residues in the mouse

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774610

Country of ref document: EP

Kind code of ref document: A2