WO2012141268A1 - Fuel battery module - Google Patents

Fuel battery module Download PDF

Info

Publication number
WO2012141268A1
WO2012141268A1 PCT/JP2012/060071 JP2012060071W WO2012141268A1 WO 2012141268 A1 WO2012141268 A1 WO 2012141268A1 JP 2012060071 W JP2012060071 W JP 2012060071W WO 2012141268 A1 WO2012141268 A1 WO 2012141268A1
Authority
WO
WIPO (PCT)
Prior art keywords
lid
fuel cell
thickness direction
lid body
cell module
Prior art date
Application number
PCT/JP2012/060071
Other languages
French (fr)
Japanese (ja)
Inventor
暁 山本
幸弘 川路
翔 横山
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2013509969A priority Critical patent/JP6068333B2/en
Publication of WO2012141268A1 publication Critical patent/WO2012141268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell module.
  • a conventional fuel cell module in which a reformer and a cell stack are housed in a fuel cell casing shown in Patent Document 1.
  • the fuel cell housing includes a storage chamber for storing the reformer and the cell stack, an exhaust gas channel formed outside the storage chamber, an oxidant channel formed outside the exhaust gas channel, An oxidant supply member extending downward from the upper oxidant flow path toward the storage chamber is provided.
  • the exhaust gas flow path has a portion that allows the exhaust gas generated from the combustion portion at the upper end of the cell stack to pass downward on the side of the storage chamber, and a portion that collects the exhaust gas and discharges it outside the system below the storage chamber. ing.
  • the oxidant supply member is disposed so as to enter a gap between the cell stacks arranged in a direction orthogonal to the cell stacking direction in the horizontal direction, and supplies the oxidant to each cell stack from the gap.
  • the tip has a through hole.
  • a plurality of wall portions are assembled by welding or the like to constitute a main body portion, and then an opening formed in the main body portion is covered and fixed.
  • a lid receiving portion that receives the lid is formed around the opening of the main body, and a seal member is disposed between the lid receiving portion and the lid.
  • the lid is fixed to the lid receiving portion by fastening bolts and nuts, and the sealing member is sandwiched to secure the airtightness between the lid and the main body.
  • the lid body is formed by forming a through hole for bolt fastening in a simple flat plate that is flat as a whole.
  • the sealing member has a structure in which a pressing force is applied by surface contact with the peripheral portion of the lid and the lid receiving portion.
  • Such a structure has a problem that it is difficult to ensure the airtightness of the casing because the pressing force generated by fastening the bolts and nuts is a surface seal structure that is distributed over the entire contact surface. there were.
  • this structure in order to secure the contact area of the seal member, it is necessary to use a wide seal member, which increases the cost.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell module capable of reducing the cost and ensuring the airtightness of the casing.
  • a fuel cell module is a fuel cell module including a casing that stores a cell stack that generates power using a hydrogen-containing fuel and an oxidant.
  • the casing stores the cell stack and has an opening.
  • a lid that covers the opening of the body, and the body surrounds the entire circumference of the lid as viewed from the thickness direction of the lid, and faces the periphery of the lid.
  • a seal member is provided between the lid and the lid body receiving portion, and a seal member is disposed between the lid body and the lid body receiving portion so as to surround the entire opening when viewed from the thickness direction, and at least one of the lid body and the lid body receiving portion. Is characterized in that it has a first protrusion that protrudes toward the seal member and extends so as to surround the entire opening as viewed from the thickness direction.
  • a seal member is disposed between the lid and the lid receiving portion so as to surround the opening over the entire circumference when viewed from the thickness direction.
  • the lid body or the lid body receiving portion has a first convex portion that protrudes toward the seal member side and extends so as to surround the entire circumference of the opening as viewed from the thickness direction.
  • the cost can be reduced and the airtightness of the housing can be ensured reliably.
  • FIG. 1 is a schematic configuration diagram of a fuel cell module according to an embodiment of the present invention. It is sectional drawing along the II-II line
  • wire shown in FIG. 1 is a perspective view of a fuel cell module according to an embodiment of the present invention.
  • FIG. 4 is a sectional view taken along line IV-IV shown in FIG. 3. It is a perspective view which shows the structure of the cover body in the surface at the side of a main-body part.
  • FIG. 6 is a sectional view taken along line VI-VI shown in FIG. 5. It is a perspective view of the conventional fuel cell module. It is sectional drawing of the conventional fuel cell module, Comprising: It is a figure corresponding to FIG.
  • the fuel cell module 1 generates power using the reformer 2 that generates the reformed gas RG using the hydrogen-containing fuel, and the reformed gas RG and the oxidizing agent OX.
  • a cell stack 3 a water vaporization unit 4 that generates water vapor supplied to the reformer 2 by vaporizing water, and a housing 6 that houses the reformer 2, the cell stack 3, and the water vaporization unit 4 .
  • a housing for storing auxiliary equipment such as a pump and control equipment is provided below the fuel cell module 1.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the reformer 2 generates the reformed gas RG using the supplied hydrogen-containing fuel.
  • the reformer 2 reforms the hydrogen-containing fuel by the reforming reaction using the reforming catalyst to generate the reformed gas RG.
  • the reforming method in the reformer 2 is not particularly limited, and for example, a steam reformer, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the reformer 2 is disposed on the upper side of the cell stack 3 so as to be heated by combustion heat described later. That is, the off gas (unreacted reformed gas) of the reformed gas RG introduced to the fuel electrode side of the cell stack 3 is unreacted among oxidants such as air introduced to the oxidant electrode side such as the air electrode. Combusted together with oxygen (unreacted oxidant gas), the reformer 2 is heated by this combustion heat.
  • the reformer 2 supplies the reformed gas RG to the fuel electrode of the cell stack 3.
  • the cell stack 3 has a stack of a plurality of cells called SOFC (Solid Oxide Fuel Cells) regularly arranged and connected.
  • Each cell is configured by disposing an electrolyte that is a solid oxide between a fuel electrode and an oxidant electrode.
  • the electrolyte is made of, for example, yttria stabilized zirconia (YSZ) or the like, and conducts oxide ions at a high temperature.
  • the fuel electrode is made of, for example, a mixture of nickel and YSZ, and reacts oxide ions with hydrogen in the reformed gas RG to generate electrons and water.
  • the oxidant electrode is made of, for example, lanthanum strontium manganite and reacts oxygen and electrons in the oxidant OX to generate oxide ions.
  • the cell stacks 3 are arranged in two rows on the upper surface of the pedestal 7 so as to face each other in a direction parallel to the power generation unit installation surface on which the power generation unit including the cell stack 3 is installed and orthogonal to the stacking direction of the cells. However, the cell stacks 3 may be arranged in a line. When the cell stacks 3 are arranged in two rows, the two cell stacks 3 constitute a power generation unit of the fuel cell module 1. When there is one cell stack 3, the one cell stack 3 constitutes a power generation unit of the fuel cell module 1, and when there are three or more cell stacks 3, the three or more cell stacks 3 are fuel cell modules. 1 power generation unit is configured.
  • the first bottom wall portion 18 corresponds to the power generation unit installation surface on which the power generation unit is installed.
  • the cell stack 3 should just be what connected several cells, and the shape of a cell is not specifically limited, The shape which can be laminated
  • stacked may not be sufficient.
  • a cell stack 3 in which a plurality of cells are erected on a pedestal 7 and aligned and connected in a line in the same direction will be described as an example.
  • a direction in which a plurality of cells stand on the pedestal 7 and are aligned and extended in a row facing the same direction will be referred to as a “stacking direction” and will be described below.
  • the base 7 and the reformer 2 are connected by a pipe 8.
  • the reformed gas RG supplied from the reformer 2 is supplied to each cell of the cell stack 3 via the base 7.
  • the reformed gas RG and the oxidant OX that have not reacted in the cell stack 3 are burned in the combustion section 9 at the top of the cell stack 3. Due to the combustion of off-gas in the combustion section 9, the reformer 2 is heated and exhaust gas EG is generated.
  • the water vaporization unit 4 generates water vapor supplied to the reformer 2 by heating and vaporizing the supplied water.
  • the water vapor generated in the water vaporization unit 4 passes through the first bottom wall 18 and uses a pipe (not shown) connecting the water vaporization unit 4 and the reformer 2 to the reformer 2.
  • heat generated in the fuel cell module 1 such as recovering heat of the reformer 2, heat of the combustion unit 9, or heat of the exhaust gas EG may be used.
  • the water vaporization part 4 is arrange
  • the housing 6 is a rectangular parallelepiped metal box having an internal space for housing the reformer 2, the cell stack 3, and the water vaporization unit 4.
  • the housing 6 is formed outside the storage chamber 11 that stores the cell stack 3, the exhaust chamber 12 that passes the exhaust gas EG due to the combustion of off-gas from the cell stack 3, and the oxidant OX.
  • the direction along the stacking direction of the cells of the cell stack 3 is referred to as the “length direction D1” of the casing 6, and the direction orthogonal to the stacking direction of the cells in the horizontal direction is the casing 6.
  • the vertical direction is the “vertical direction D3” of the housing 6.
  • the storage chamber 11, the exhaust gas flow channel 12, the oxidant flow channel 13, and the wall portions forming these have a left-right symmetric structure as viewed from the length direction D ⁇ b> 1.
  • the storage chamber 11 is formed inside the first side wall portions 16 and 17 facing each other in the width direction D2 and the first bottom wall portion 18 connected to the respective lower end portions of the first side wall portions 16 and 17.
  • the pedestal 7 is disposed on the first bottom wall portion 18.
  • a heat insulating material may be disposed between the first bottom wall portion 18 and the pedestal 7. In order to allow the exhaust gas EG generated in the combustion unit 9 to pass through, the upper end of the storage chamber 11 is open.
  • the exhaust gas flow path 12 is above the second side wall parts 21 and 22 disposed on the outside of the first side wall parts 16 and 17 and the upper end parts of the first side wall parts 16 and 17 in the width direction D2.
  • the first upper wall portion 23 is disposed, and the second bottom wall portion 24 is disposed below the first bottom wall portion 18.
  • the first upper wall portion 23 is connected to the upper end portions of the second side wall portions 21 and 22, and the second bottom wall portion 24 is connected to the lower end portions of the second side wall portions 21 and 22.
  • the second side wall parts 21 and 22 are arranged so as to be spaced apart from the first side wall parts 16 and 17.
  • the first upper wall portion 23 is disposed so as to be opposed to and spaced from the upper end portion of the storage chamber 11.
  • the second bottom wall portion 24 is disposed so as to be spaced apart from the first bottom wall portion 18.
  • the exhaust gas passage 12 includes exhaust gas passages 12A and 12B formed between the upper opening of the storage chamber 11 and the first upper wall portion 23, the second side wall portions 21 and 22, and the first side wall. Exhaust gas passages 12C and 12D formed between the portions 16 and 17, and exhaust gas passages 12E and 12F formed between the second bottom wall portion 24 and the first bottom wall portion 18, respectively. Have.
  • the exhaust gas passages 12A and 12B guide the exhaust gas EG from the combustion unit 9 to the exhaust gas passages 12C and 12D.
  • the exhaust gas channels 12C and 12D pass the exhaust gas EG downward, and supply the heat of the exhaust gas EG to the oxidant OX flowing through the outer oxidant channels 13C and 13D.
  • the exhaust gas passages 12 ⁇ / b> E and 12 ⁇ / b> F pass the exhaust gas EG in the horizontal direction toward the exhaust pipe 32 and supply the heat of the exhaust gas EG to the water vaporization unit 4.
  • the oxidant flow path 13 is disposed above the first side wall parts 23 and the third side wall parts 26 and 27 that are respectively arranged outside the second side wall parts 21 and 22 in the width direction D2.
  • the second upper wall portion 28 and the third bottom wall portion 29 arranged below the second bottom wall portion 24 are formed.
  • the second upper wall portion 28 is connected to the upper end portions of the third side wall portions 26 and 27, and the third bottom wall portion 29 is connected to the lower end portions of the third side wall portions 26 and 27.
  • the third side wall portions 26 and 27 are disposed so as to be opposed to and spaced apart from the second side wall portions 21 and 22.
  • the second upper wall portion 28 is arranged so as to be spaced apart from the first upper wall portion 23.
  • the third bottom wall portion 29 is disposed so as to be spaced apart from the second bottom wall portion 24.
  • a slit 39 extending in the length direction D1 is formed at the center of the first upper wall portion 23, and an oxidant supply member 36 is inserted into the slit 39.
  • the oxidant supply member 36 supplies the oxidant OX to the cell stack 3.
  • the oxidant supply member 36 extends so as to enter a gap between the pair of cell stacks 3, and has an oxidant flow path 13 ⁇ / b> K inside and has through holes 37 and 38 at the tip.
  • the oxidant flow path 13 includes the oxidant flow paths 13A and 13B formed between the second upper wall portion 28 and the first upper wall portion 23, the third side wall portions 26 and 27, and the second Oxidant channels 13C, 13D formed between the side walls 21, 22 and oxidant channels 13G, 13H formed between the third bottom wall 29 and the second bottom wall 24. And having.
  • the oxidant flow paths 13G and 13H pass the oxidant OX from the air supply pipe 31 so as to spread in the horizontal direction and guide the oxidant flow paths 13C and 13D.
  • the oxidant channels 13C and 13D allow the oxidant OX to pass upward, and heat the oxidant OX by the heat of the exhaust gas EG flowing through the inner exhaust gas channels 12C and 12D.
  • the oxidant flow paths 13A and 13B allow the oxidant OX to pass from the outside toward the inside in the width direction D2, flow into the oxidant flow path 13K of the oxidant supply member 36, and guide it to the through holes 37 and 38.
  • the third bottom wall 29 is provided with an air supply pipe 31 for allowing an oxidant to flow into the oxidant flow path 13 from an oxidant supply section (not shown). Further, the second bottom wall portion 24 is provided with an exhaust pipe 32 for exhausting the exhaust gas from the exhaust gas passage 12.
  • the side wall portions 16, 17, 21, 22, 26, 27, the upper wall portions 23, 28, and the bottom wall portions 18, 24, 29 extend to the end portions 6a, 6b of the housing 6 in the length direction D1. Yes. End wall portions 33 and 34 are respectively provided at both ends of the casing 6 in the length direction D1.
  • the third side wall portions 26 and 27, the second upper wall portion 28, the third bottom wall portion 29, and the end wall portions 33 and 34 constitute an outer shell of the fuel cell module 1, and are connected to each other at the connection portion. The sealing property is ensured, and the airtightness in the housing 6 is ensured.
  • the reformed gas RG generated in the reformer 2 using the hydrogen-containing fuel supplied from the outside and the water vapor from the water vaporization unit 4 flows into the pedestal 7 through the pipe 8, and from the pedestal 7 to the cell stack 3. Supplied to each cell.
  • the reformed gas RG flows through the cell stack 3 from below to above, and a part of the reformed gas RG is used as an off-gas for combustion in the combustion unit 9.
  • the oxidant OX is supplied from the outside through the air supply pipe 31, spreads in the horizontal direction in the oxidant flow paths 13G and 13H, and moves upward in the oxidant flow paths 13C and 13D while being heated by the exhaust gas EG flowing inside. Pass through.
  • the oxidant OX passes through the oxidant flow paths 13A and 13B, flows through the oxidant flow path 13K of the oxidant supply member 36, passes through the through holes 37 and 38, and is supplied to the cell stack 3, and a part thereof Used for combustion in the combustion section 9.
  • the exhaust gas EG generated in the combustion unit 9 is guided to the exhaust gas channels 12C and 12D by the exhaust gas channels 12A and 12B, and flows downward through the exhaust gas channels 12C and 12D while supplying heat to the oxidant OX flowing outside. pass.
  • the exhaust gas EG reaches the bottom, it flows into the exhaust gas channels 12E and 12F, and passes through the exhaust gas channels 12E and 12F while supplying heat to the water vaporization unit 4.
  • the exhaust gas EG that has passed through the exhaust gas flow paths 12E and 12F is exhausted from the exhaust pipe 32.
  • openings 51A, 51B, and 51C are formed on surfaces corresponding to the end wall portions 33 and 34 and the second upper wall portion 28, respectively.
  • the main body 50 comprises the side wall parts 16, 17, 21, 22, 26, 27, the first upper wall part 23, and the bottom wall parts 18, 24, 29 among the wall parts described above. Yes.
  • the lid 60A constitutes the end wall 33, the lid 60B constitutes the end wall 34, and the lid 60C constitutes the second upper wall 28.
  • the “thickness direction” of the lid 60A and the lid 60B is equal to the length direction D1
  • the “thickness direction” of the lid 60C is equal to the vertical direction D3.
  • the main body 50 has a lid receiving portion 52A for attaching the lid 60A to the surface corresponding to the end wall portion 33, that is, the surface on the end 6a side of the housing 6.
  • the lid body receiving portion 52A is a rectangular frame-shaped flange portion facing the peripheral edge portion 61 (see FIG. 4) of the lid body 60A.
  • the lid receiving portion 52A is formed to extend inward of the housing 6 when viewed from the length direction (thickness direction of the lid 60A) D1.
  • a rectangular opening 51A is formed at the center of the lid receiving portion 52A. Accordingly, the lid receiving portion 52A is configured to surround the opening 51A over the entire circumference when viewed from the length direction (the thickness direction of the lid 60A) D1.
  • the main body 50 has a lid receiving portion 52B for attaching the lid 60B to a surface corresponding to the end wall portion 34, that is, a surface on the end 6b side of the housing 6.
  • the lid body receiving portion 52B is a rectangular frame-shaped flange portion facing the peripheral edge portion of the lid body 60B.
  • the lid receiving part 52B is formed to extend inward of the housing 6 when viewed from the length direction (thickness direction of the lid 60B) D1.
  • a rectangular opening 51B is formed at the center of the lid receiving portion 52B. Accordingly, the lid receiving portion 52B is configured to surround the opening 51B over the entire circumference when viewed from the length direction (thickness direction of the lid 60B) D1.
  • the main body 50 has a lid receiving portion 52C for attaching the lid 60C to a surface corresponding to the second upper wall portion 28, that is, a surface on the upper end side of the housing 6.
  • the lid body receiving portion 52C is a rectangular frame-shaped flange portion facing the peripheral edge portion of the lid body 60C.
  • the lid receiving portion 52C is formed to extend inward of the housing 6 when viewed from the vertical direction (thickness direction of the lid 60C) D3.
  • a rectangular opening 51C is formed at the center of the lid receiving portion 52C.
  • the lid receiving portion 52C is configured to surround the opening 51C over the entire circumference when viewed from the vertical direction (thickness direction of the lid 60C) D3.
  • the lid body receiving portion 52A is connected to the third side wall portions 26 and 27, the third bottom wall portion 29, and the lid body receiving portion 52C without a gap, that is, in a state where airtightness is ensured.
  • the lid body receiving portion 52B is connected to the third side wall portions 26 and 27, the third bottom wall portion 29, and the lid body receiving portion 52C without any gap, that is, in a state where airtightness is ensured.
  • the lid body receiving part 52C is connected to the third side wall parts 26 and 27 and the lid body receiving parts 52A and 52B without a gap, that is, in a state where airtightness is ensured.
  • Each lid receiving part 52A, 52B, 52C may be fixed by welding, or may be formed by bending a metal plate.
  • the lids 60A, 60B, and 60C project to the seal member 70 side (in the present embodiment, the main body 50 side) and surround the openings 51A, 51B, and 51C over the entire circumference when viewed from the thickness direction of the lids.
  • a bead (first convex portion) 62 extending in this manner is provided.
  • the bead 62 continuously extends along each side of the outer edge 63 of the rectangular lids 60A, 60B, and 60C, and is formed so as to draw a rectangle so as to surround the openings 51A, 51B, and 51C without a gap. Yes.
  • the bead 62 can form a convex part by welding a rectangular frame-shaped convex member to the plane of the lids 60A, 60B, 60C, for example. Moreover, a convex part can be easily formed by performing press work. According to this, a welding process can be reduced. Moreover, since the airtightness of the lids 60A, 60B, and 60C can be ensured, the number of airtight inspection locations can be reduced.
  • the metal plates constituting the lids 60A, 60B, and 60C are each extruded into a U-shaped cross section on each of the four sides, whereby a convex shape is formed on the surface on the main body 50 side (see FIGS. 4 and 5). A concave shape is formed on the outer surface (see FIGS. 3 and 4).
  • the protruding amount of the bead 62 that is, the distance L1 (see FIG. 4) between the convex end portion 62a of the bead 62 and the surface 60a on the main body 50 side of the lids 60A, 60B, 60C is the total of the bead 62. It is preferably set constant over the circumference. That is, it is preferable that the protruding amount L1 is constant in all the four sides drawn by the bead 62 and in all the corners between the sides.
  • FIG. 4 shows a structure in which the lid 60A seals the opening 51A, but a structure in which the lid 60B seals the opening 51B, and a structure in which the lid 60C seals the opening 51C. Is the same.
  • a seal member 70 for ensuring airtightness between the main body portion 50 and the lid body 60A is disposed between the bead 62 of the lid body 60A and the lid body receiving portion 52A.
  • the seal member 70 is formed in a rectangular frame shape so as to have substantially the same shape and size as the rectangle drawn by the bead 62. Further, when fixing the lid 60A, the seal member 70 overlaps the bead 62 as viewed from the length direction (thickness direction of the lid 60A) D1, and a pressing force is applied from the convex shape of the bead 62.
  • the seal member 70 is disposed so as to surround the opening 51A over the entire circumference when viewed from the length direction (thickness direction of the lid 60A) D1.
  • the seal member 70 continuously surrounds the opening 51A over the entire circumference of the opening 51A without any gap, thereby ensuring airtightness between the main body 50 and the lid 60A. Since the cross-sectional shape of one side of the rectangle is formed in a U-shaped cross section, the bead 62 is in line contact with the seal member 70 on each side of the rectangle and applies a pressing force.
  • the seal member 70 is a portion that covers the inner peripheral side of the screw receiving portion 80 of the lid receiving portion 52A as viewed from the length direction (thickness direction of the lid 60A) D1. However, it does not have a portion that covers the outer peripheral side of the cap nut 81 (and a portion that covers between the adjacent cap nuts 81).
  • the width per side of the seal member 70 is preferably slightly larger than the width per side of the bead 62.
  • a guide groove for aligning and setting the seal member 70 in the lid receiving portion 52A may be formed.
  • the lid body 60A and the lid body receiving portion 52A are formed with a threaded portion 80 for fixing the lid body 60A to the lid body receiving portion 52A.
  • the threaded portion 80 is formed outside the opening 51A, the bead 62, and the seal member 70 when viewed from the length direction (thickness direction of the lid A) D1. Further, a plurality of screwing portions 80 are formed at predetermined intervals so as to surround the bead 62 (see FIG. 3).
  • the screwing portion 80 includes a cap nut 81 formed in the lid receiving portion 52A, a through hole 82 formed in the cap 60A, a bolt 83 screwed to the cap nut 81 through the through hole 82, It has.
  • the cap nut 81 is configured by forming a female screw portion 86 on a surface 84 a on one end side of the cylindrical member 84.
  • the female screw portion 86 is formed so as not to penetrate the other surface 84 b of the cylindrical member 84.
  • a plurality of cap nuts 81 are fixed to the lid receiving portion 52A so as to be arranged outside the bead 62 when the lid 60A is fixed.
  • the cap nut 81 has a surface 84 a on one end side where the female screw portion 86 is formed exposed to the outside of the main body portion 50, and a surface 84 b on the other end side that is sealed is exposed to the internal space of the main body portion 50. Placed in. A welded portion 87 is formed on the edge of the surface 84a on one end side of the cap nut 81 with the lid receiving portion 52A over the entire circumference. Thereby, the airtightness between the cap nut 81 and the lid receiving portion 52A is ensured.
  • the through hole 82 of the lid body 60A is formed at a position facing the female screw portion 86 of the cap nut 81 when the lid body 60A is fixed to the lid body receiving portion 52A.
  • the diameter of the through hole 82 is set to be larger than the diameter of the screw portion of the bolt 83 and smaller than the diameter of the screw head, and the screw head of the bolt 83 is caught on the edge portion of the through hole 82 when fixed.
  • the bolt 83 is inserted into the through hole 82 and screwed into the female screw portion 86 of the cap nut 81, thereby pressing the lid 60A toward the main body portion 50 side.
  • the bead 62 applies a pressing force by making line contact with the seal member 70, the tightening force of the bolt 83 is larger than when the seal member is pressed by surface contact (for example, the structure shown in FIG. 8). Even if the amount is reduced, sufficient airtightness can be secured.
  • the fuel cell module 1 is filled with high-temperature gas, so that heat is also transmitted to each part of the fuel cell module 1 to cause thermal deformation. If distortion due to thermal deformation occurs in the lid 60 ⁇ / b> A, there is a risk of gas leakage inside the fuel cell module 1.
  • the beads 62 can concentrate the pressing force of the seal member 70 and increase the strength of the lid 60A itself. Even if the bead 62 is formed on the lid bodies 60A, 60B, and 60C or the lid body receiving portions 52A, 52B, and 53C, the effect of improving the sealing performance can be obtained. Can do. Further, when the beads 62 are formed on the lids 60A, 60B, and 60C, the effect of improving the sealing property and the effect of improving the strength of the lid 60A can be obtained simultaneously by one process.
  • the lids 60A, 60B, and 60C may be formed with through holes for penetrating pipes and members that are connected to the reformer inside the housing 6 and the cell stack 3, and further to the through holes.
  • An airtight structure such as a stuffing box may be provided.
  • the through hole is formed after the bead 62 is formed by pressing, the residual stress generated by the pressing is released, and the metal plates constituting the lids 60A, 60B, 60C may be distorted (twisted). There is.
  • the lids 60A, 60B, and 60C according to the present embodiment have a reinforcing structure.
  • the said reinforcement structure is demonstrated with reference to FIG.3, FIG5 and FIG.6. 5 and 6 show the configuration of only the lid 60A, the lids 60B and 60C have the same configuration.
  • the outer edge 63 of the lids 60A, 60B, 60C is formed with a folded portion 64 that extends in the thickness direction of the lid.
  • the folded portion 64 is folded 90 degrees toward the outside (opposite the main body portion 50).
  • the folded portion 64 is formed on all four sides of the outer edge 63 and is continuously formed so as to surround the entire circumference of the lid bodies 60A, 60B, 60C. Thereby, the strength of the lids 60A, 60B, and 60C is improved.
  • the folded portion 64 may be formed by bending the outer edge 63 of the lids 60 ⁇ / b> A, 60 ⁇ / b> B, 60 ⁇ / b> C, or may be configured by welding another member to the outer edge 63.
  • a through hole 91 is formed in the lid 60 ⁇ / b> A, and an airtight mechanism SB such as a stuffing box is fixed to the through hole 91.
  • the through hole 91 is formed so as to be enclosed in a circular bead (second convex portion) 92. That is, by pressing, a convex shape is formed on the surface on the main body 50 side of the metal plate constituting the lid 60A, and a bead 92 is formed by forming a concave shape on the outer surface, and the unevenness is formed.
  • a through hole 91 is formed in the shape. Thereby, the strength of the metal plate around the through hole 91 is increased.
  • the bead 62 and the bead 92 are formed by performing press work on the metal plate constituting the lid 60A.
  • the folded portion 64 is formed on the outer edge 63 by a bending process or the like.
  • through holes 91 are formed in the beads 92 by drilling, and a plurality of through holes 82 are formed outside the beads 62.
  • the processing procedure of the lid 60A is not limited to this example, the order may be changed, the press processing and the formation of the through hole may be performed simultaneously, or welding or the like may be used.
  • Conventional lids 160A, 160B, and 160C have a peripheral edge 161 portion that faces the lid receiving portions 52A, 52B, and 52C of the main body portion 50 and a portion that covers the openings 51A, 51B, and 51C of the main body portion 50. It is formed in a flat plate shape that does not have an uneven shape. That is, the surface of the peripheral portion 161 on the main body portion 50 side is formed in a flat shape.
  • the lid bodies 160A, 160B, and 160C are pressed between the lid body receiving portions 52A, 52B, and 52C by making surface contact with the seal member 170.
  • the seal member 170 is formed in a wide rectangular frame shape that covers substantially the entire surface of the lid receiving portions 52A, 52B, and 52C.
  • the seal member 170 has a plurality of circular through holes 170 a at positions corresponding to the cap nuts 81 and the through holes 82.
  • the seal member 170 has a structure in which a pressing force is applied by surface contact with the peripheral portion 161 of the lids 160A, 160B, and 160C and the lid body receiving portions 52A, 52B, and 52C. It was.
  • the pressing force generated by fastening the bolt 83 and the cap nut 81 is a surface seal structure in which the entire contact surface is dispersed, it is difficult to ensure the airtightness of the housing 106. There was a problem that there was.
  • this structure in order to secure the contact area of the seal member, it is necessary to use a wide seal member, which increases the cost.
  • FIG. 9B shows the pressing force (indicated by hatching) acting on the seal member 170 when viewed from the thickness direction of the lids 160A, 160B, and 160C. Since the pressing force is applied to the seal member 170 by the surface contact, the pressing force is distributed over the entire contact surface, and a part of the entire circumference of the openings 51A, 51B, 51C (for example, a part indicated by PT in the figure). In this case, the pressing force may be insufficient. Further, in the structure in which the pressing force is applied by the surface contact, it is necessary to secure a wide width W2 of the seal member 170, and the amount of the seal material to be mounted increases and the cost increases.
  • the lids 60A, 60B, and 60C protrude toward the main body 50 and surround the openings 51A, 51B, and 51C over the entire circumference as viewed from the thickness direction.
  • a bead 62 extending to the bottom.
  • a seal member 70 is disposed between the bead 62 and the lid receiving portions 52A, 52B, and 52C so as to surround the openings 51A, 51B, and 51C over the entire circumference when viewed from the thickness direction.
  • the bead 62 is formed so as to surround the entire circumference of the openings 51A, 51B, 51C, it can surround the entire circumference of the openings 51A, 51B, 51C and press the seal member 70 linearly. It becomes. With such a line seal structure, the airtightness of the housing 6 can be reliably ensured. Further, according to such a line seal structure, it is only necessary to arrange the seal member 70 only in the portion where the pressing force is concentrated in the vicinity of the bead 62, so that the mounting amount of the seal material can be reduced and the cost can be reduced. As described above, the cost can be reduced and the airtightness of the housing 6 can be reliably ensured.
  • FIG. 9A shows the pressing force (indicated by hatching) acting on the seal member 70 when viewed from the thickness direction of the lids 60A, 60B, 60C.
  • the bead 62 can concentrate the pressing force on the rectangular line LS drawn by the bead 62. Since the line LS is formed so as to surround the openings 51A, 51B, and 51C over the entire circumference, a line seal structure that seals the openings 51A, 51B, and 51C over the entire circumference by the structure according to the present embodiment. Can be configured. By concentrating the pressing force on the line LS surrounding the entire circumference, airtightness can be reliably ensured. In addition, in the structure in which the pressing force is applied linearly, the width W1 of the seal member 70 can be reduced, the amount of the seal material mounted can be reduced, and the cost can be suppressed.
  • the bead 62 is formed by press working. For example, when forming a convex part by welding a rectangular frame-shaped convex member to the plane of a lid, it is necessary to perform a welding inspection and an airtight inspection of a welding location. A convex part can be easily formed by performing press work. Further, the inspection can be facilitated, and the air tightness of the lids 60A, 60B, 60C can be ensured. In addition, it may replace with the bead 62 by press work and may form a convex part by welding.
  • the lids 60 ⁇ / b> A, 60 ⁇ / b> B, 60 ⁇ / b> C have beads 92, and through holes 91 are formed in the beads 92. Even when the through holes 91 are formed in the lids 60A, 60B, and 60C, the strength is ensured by the beads 92.
  • the beads 62 of the lids 60A, 60B, 60C are formed by welding, or when the airtight mechanism SB is attached to the lids 60A, 60B, 60C by welding, the beads 92 are covered with the lid 60A by the thermal stress of welding. , 60B, 60C can be suppressed.
  • the bead 92 suppresses deformation of the lids 60A, 60B, and 60C due to release of residual stress when the beads 62 are pressed. Can do.
  • the outer edge 63 of the lids 60A, 60B, 60C is formed with a folded portion 64 that extends outward in the thickness direction of the lids 60A, 60B, 60C.
  • the strength of the lids 60A, 60B, 60C is ensured by the folded portion 64. That is, even if the temperature in the housing 6 becomes high during power generation, the folded portion 64 suppresses deformation of the lids 60A, 60B, 60C due to the high temperature in the fuel cell module 1. Can do. Such an effect can be obtained regardless of whether the beads 62 are formed on the lids 60A, 60B, and 60C or the lids 52A, 52B, and 53C. it can.
  • the folded portion 64 can also suppress distortion caused by the thermal stress of welding. In this case, it is preferable that the folded portion 64 is formed first, and then the bead 62 is formed. Further, when the bead 62 of the lids 60A, 60B, and 60C is formed by press working, the folded portion 64 can suppress distortion due to residual stress during the press working of the bead 62. 8 is extended to the main body 50 side in the thickness direction. Compared to such a configuration, the folded portion 64 of the present embodiment is more preferable because it extends outward and suppresses deformation of the lids 60A, 60B, and 60C.
  • the present invention is not limited to the embodiment described above.
  • the number of openings in the main body (that is, the number of lids) is not limited thereto.
  • the number of openings and lids may be one, two, or more than three.
  • the through hole 91 may not be formed in the bead 92 but may be formed in the flat portion of the lid.
  • the folded portions 64 do not have to be continuously formed on all four sides of the outer edge 63.
  • the folded portions 64 on each side of the outer edge 63 may be separated from each other (at the four corners of the lid). Moreover, you may form only in either side.
  • the folded portion 64 is folded 90 degrees outward in the thickness direction of the lid, but the folding direction and the folding angle are not particularly limited. For example, it may be folded 90 ° inward in the thickness direction of the lid (for example, an embodiment shown in FIG. 8). Or the folding
  • the configurations of the lid receiving portion and the screwing portion are not limited to the above-described embodiment, and can be appropriately changed as long as the airtightness inside the housing can be secured.
  • the lid receiving portion is formed so as to spread toward the inside of the housing as viewed from the thickness direction of the lid, but may be formed so as to spread outward. That is, the lid receiving portion is configured to spread outward from the four wall portions surrounding the opening. Along with this, the edge of the lid also spreads outward from the opening (outside the four walls), and the screwing part, the seal part and the bead (first convex part) are also arranged outside the opening.
  • the screwing portion may be configured such that a bolt is fixed to the lid receiving portion and the lid is fixed by tightening a nut from the outside.
  • the lid body has a bead (first convex portion) protruding toward the lid body receiving portion side, and the sealing member is a bead (first convex portion) of the lid body and the lid body. It was the structure pressed between receiving parts.
  • the lid receiving portion has a bead (first convex portion) protruding toward the lid body, and the sealing member is formed between the bead (first convex portion) of the lid receiving portion and the lid body. It is good also as a structure pressed between.
  • a bead surrounding the opening is formed in the lid receiving portion by press working or the like, and the lid is flat without forming a convex portion corresponding to the bead 62 in the embodiment.
  • the reformer 2 In a fuel cell system that supplies fuel that does not require reforming treatment, such as pure hydrogen or hydrogen-enriched gas introduced from outside the fuel cell system, to the fuel electrode of the cell stack, the reformer 2
  • the water vaporization unit 4 can be omitted.
  • the lid 60A shown in FIG. 10 has a through hole 82 on the outer peripheral side from the bead 62 when viewed from the thickness direction D1, and toward the lid receiving portion 52A on the outer peripheral side from the through hole 82 when viewed from the thickness direction D1. It has a bead 65 projecting toward it.
  • the bead 65 may be formed over the entire circumference, like the sealing bead 62, or may be interrupted in the middle.
  • the deformation of the lid 60A caused by the temperature rise in the fuel cell module 1 during power generation (in FIG. 11, the position of the inner surface of the lid 60A before deformation is indicated by a dotted line ST.
  • the bead 65 supports the lid body 60A by contacting the lid body 60A with the lid body receiving portion 52A on the outer peripheral side. Thereby, the bead 65 can suppress deformation of the lid 60A. Since the bead 65 supports the lid 60A, the pressing force of the bead 62 against the seal member 70 can be reliably maintained.
  • the bead 65 may be formed by welding or may be formed by pressing. Moreover, the bead 65 is formed in the cover body receiving part 52A, and may protrude to the cover body 60A side.
  • a lid 60A shown in FIG. 12 has a bead 66 protruding toward the opposite side (outside) of the bead 62 on the inner peripheral side of the bead 62 when viewed from the thickness direction D1.
  • the bead 66 is formed so as to extend along the bead 62.
  • the bead 66 may be formed over the entire circumference, like the sealing bead 62, or may be interrupted in the middle.
  • the deformation of the lid 60A caused by the temperature rise in the fuel cell module 1 during power generation (in FIG. 13, the position of the inner surface of the lid 60A before deformation is indicated by a dotted line ST.
  • Bead 66 suppresses deformation of the lid 60A on the inner peripheral side of the bead 62. Thereby, the bead 66 can suppress deformation in the vicinity of the bead 62 related to the seal portion of the lid 60A. Thereby, the pressing force with respect to the sealing member 70 of the bead 62 can be maintained reliably.
  • the bead 66 may be formed by welding or may be formed by pressing.

Abstract

This fuel battery module is provided with a case which houses a cell stack which generates power using a hydrogen-containing gas and an oxidizing agent. The case is provided both with a main unit which houses a reformer and the cell stack and which has an opening, and also with a lid body which covers the opening of said main unit. The main unit has a lid receiving unit which, seen from the thickness direction of the lid body, surrounds the opening around the entire circumference, and which is opposite of the periphery of the lid body. Between the lid body and the lid receiving unit, a seal member is arranged which, seen from the aforementioned thickness direction, surrounds the opening around the entire circumference. At least one of the lid body and the lid receiving unit has a first protrusion which protrudes towards the seal member and which, seen from the thickness direction, extends so as to surround the aforementioned opening around the entire circumference.

Description

燃料電池モジュールFuel cell module
 本発明は、燃料電池モジュールに関する。 The present invention relates to a fuel cell module.
 従来の燃料電池モジュールとして、特許文献1に示す燃料電池用筐体に、改質器とセルスタックとを収納して構成したものが知られている。この燃料電池用筐体は、改質器とセルスタックとを収納する収納室と、収納室の外側に形成された排ガス流路と、排ガス流路の外側に形成された酸化剤流路と、上方の酸化剤流路から収納室へ向かって下方へ延びる酸化剤供給部材を備えている。排ガス流路は、収納室の側方においてセルスタック上端部の燃焼部から発生する排ガスを下方へ通過させる部分と、収納室の下方において排ガスを集めて系外へ排出する部分と、を有している。また、酸化剤供給部材は、水平方向においてセルの積層方向と直交する方向に並べられたセルスタックの間の隙間に入り込むように配置され、当該隙間から各セルスタックに対して酸化剤を供給するように、先端部に貫通孔を有している。 2. Description of the Related Art A conventional fuel cell module is known in which a reformer and a cell stack are housed in a fuel cell casing shown in Patent Document 1. The fuel cell housing includes a storage chamber for storing the reformer and the cell stack, an exhaust gas channel formed outside the storage chamber, an oxidant channel formed outside the exhaust gas channel, An oxidant supply member extending downward from the upper oxidant flow path toward the storage chamber is provided. The exhaust gas flow path has a portion that allows the exhaust gas generated from the combustion portion at the upper end of the cell stack to pass downward on the side of the storage chamber, and a portion that collects the exhaust gas and discharges it outside the system below the storage chamber. ing. The oxidant supply member is disposed so as to enter a gap between the cell stacks arranged in a direction orthogonal to the cell stacking direction in the horizontal direction, and supplies the oxidant to each cell stack from the gap. As shown, the tip has a through hole.
特開2010-044990号公報JP 2010-044990 A
 ここで、従来の燃料電池モジュールの筐体は、溶接等によって複数の壁部を組み立てて本体部を構成した後、本体部に形成されている開口部を蓋体で覆って固定していた。このような筐体では、本体部の開口部周りに蓋体を受ける蓋体受け部を形成し、当該蓋体受け部と蓋体との間にシール部材を配置していた。ボルト及びナットの締結によって蓋体を蓋体受け部に固定し、シール部材を挟み込むことによって蓋体と本体部との間の気密性が確保されていた。蓋体は、全体的に平板状をなしている単純平板に、ボルト締めのための貫通孔を形成することによって構成されている。 Here, in the case of a conventional fuel cell module casing, a plurality of wall portions are assembled by welding or the like to constitute a main body portion, and then an opening formed in the main body portion is covered and fixed. In such a case, a lid receiving portion that receives the lid is formed around the opening of the main body, and a seal member is disposed between the lid receiving portion and the lid. The lid is fixed to the lid receiving portion by fastening bolts and nuts, and the sealing member is sandwiched to secure the airtightness between the lid and the main body. The lid body is formed by forming a through hole for bolt fastening in a simple flat plate that is flat as a whole.
 しかしながら、従来の燃料電池モジュールでは、シール部材が、蓋体の周縁部及び蓋体受け部と面接触によって押圧力を付与される構造となっていた。このような構造では、ボルト及びナットの締結によって発生する押圧力が、接触面全体に分散するような面シール構造となるために、筐体の気密性を確保することが困難であるという問題があった。更に、当該構造では、シール部材の接触面積を確保するために、幅の広いシール部材を用いる必要があり、これによって、コストが増加してしまうという問題があった。 However, in the conventional fuel cell module, the sealing member has a structure in which a pressing force is applied by surface contact with the peripheral portion of the lid and the lid receiving portion. Such a structure has a problem that it is difficult to ensure the airtightness of the casing because the pressing force generated by fastening the bolts and nuts is a surface seal structure that is distributed over the entire contact surface. there were. Furthermore, in this structure, in order to secure the contact area of the seal member, it is necessary to use a wide seal member, which increases the cost.
 本発明は、このような課題を解決するためになされたものであり、コストを抑えると共に筐体の気密性を確実に確保することができる燃料電池モジュールを提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell module capable of reducing the cost and ensuring the airtightness of the casing.
 本発明に係る燃料電池モジュールは、水素含有燃料及び酸化剤を用いて発電を行うセルスタックを収納する筐体を備える燃料電池モジュールであって、筐体は、セルスタックを収納すると共に、開口部を有する本体部と、本体部の開口部を覆う蓋体と、を備え、本体部は、蓋体の厚さ方向から見て開口部を全周にわたって取り囲むと共に、蓋体の周縁部と対向する蓋体受け部を有し、蓋体と蓋体受け部との間には、厚さ方向から見て開口部を全周にわたって取り囲むシール部材が配置され、蓋体及び蓋体受け部の少なくとも一方は、シール部材側へ突出すると共に、厚さ方向から見て前記開口部を全周にわたって取り囲むように延びる第1の凸部を有することを特徴とする。 A fuel cell module according to the present invention is a fuel cell module including a casing that stores a cell stack that generates power using a hydrogen-containing fuel and an oxidant. The casing stores the cell stack and has an opening. And a lid that covers the opening of the body, and the body surrounds the entire circumference of the lid as viewed from the thickness direction of the lid, and faces the periphery of the lid. A seal member is provided between the lid and the lid body receiving portion, and a seal member is disposed between the lid body and the lid body receiving portion so as to surround the entire opening when viewed from the thickness direction, and at least one of the lid body and the lid body receiving portion. Is characterized in that it has a first protrusion that protrudes toward the seal member and extends so as to surround the entire opening as viewed from the thickness direction.
 この燃料電池モジュールによれば、また、蓋体と蓋体受け部との間には、厚さ方向から見て開口部を全周にわたって取り囲むシール部材が配置されている。更に、蓋体または蓋体受け部が、シール部材側へ突出すると共に、厚さ方向から見て開口部を全周にわたって取り囲むように延びる第1の凸部を有している。このような構造によって、蓋体を蓋体受け部に固定する際に発生する押圧力は、第1の凸部に集中する。第1の凸部は、開口部を全周にわたって取り囲むように延びているため、開口部の全周を取り囲んで、シール部材を線状に押圧することが可能となる。このような線シール構造によって、筐体の気密性を確実に確保することができる。また、このような線シール構造によれば、第1の凸部付近において押圧力が集中する部分のみにシール部材を配置すればよく、シール材料の搭載量を減少させ、コストを低減することができる。以上によって、コストを抑えると共に筐体の気密性を確実に確保することができる。 According to this fuel cell module, a seal member is disposed between the lid and the lid receiving portion so as to surround the opening over the entire circumference when viewed from the thickness direction. Further, the lid body or the lid body receiving portion has a first convex portion that protrudes toward the seal member side and extends so as to surround the entire circumference of the opening as viewed from the thickness direction. With such a structure, the pressing force generated when the lid is fixed to the lid receiving portion is concentrated on the first convex portion. Since the 1st convex part is extended so that the opening part may be surrounded over the perimeter, it becomes possible to surround the perimeter of an opening part and to press a seal member linearly. With such a line seal structure, the airtightness of the housing can be reliably ensured. Further, according to such a line seal structure, it is only necessary to dispose the seal member only in the portion where the pressing force is concentrated in the vicinity of the first convex portion, thereby reducing the mounting amount of the seal material and reducing the cost. it can. As described above, the cost can be reduced and the airtightness of the casing can be reliably ensured.
 本発明によれば、コストを抑えると共に筐体の気密性を確実に確保することができる。 According to the present invention, the cost can be reduced and the airtightness of the housing can be ensured reliably.
本発明の実施形態に係る燃料電池モジュールの概略構成図である。1 is a schematic configuration diagram of a fuel cell module according to an embodiment of the present invention. 図1に示すII―II線に沿った断面図である。It is sectional drawing along the II-II line | wire shown in FIG. 本発明の実施形態に係る燃料電池モジュールの斜視図である。1 is a perspective view of a fuel cell module according to an embodiment of the present invention. 図3に示すIV-IV線に沿った断面図である。FIG. 4 is a sectional view taken along line IV-IV shown in FIG. 3. 本体部側の面における蓋体の構造を示す斜視図である。It is a perspective view which shows the structure of the cover body in the surface at the side of a main-body part. 図5に示すVI-VI線に沿った断面図である。FIG. 6 is a sectional view taken along line VI-VI shown in FIG. 5. 従来の燃料電池モジュールの斜視図である。It is a perspective view of the conventional fuel cell module. 従来の燃料電池モジュールの断面図であって、図4に対応する図である。It is sectional drawing of the conventional fuel cell module, Comprising: It is a figure corresponding to FIG. 蓋体の厚さ方向から見た場合の、シール部材に作用する押圧力の様子を示す図である。It is a figure which shows the mode of the pressing force which acts on a sealing member when it sees from the thickness direction of a cover body. 変形例に係る燃料電池モジュールの断面図である。It is sectional drawing of the fuel cell module which concerns on a modification. 図10に示す燃料電池モジュールの作用・効果を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action and effect of the fuel cell module shown in FIG. 変形例に係る燃料電池モジュールの断面図である。It is sectional drawing of the fuel cell module which concerns on a modification. 図12に示す燃料電池モジュールの作用・効果を説明するための模式図である。It is a schematic diagram for demonstrating the effect | action and effect of the fuel cell module shown in FIG.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 図1及び図2に示されるように、燃料電池モジュール1は、水素含有燃料を用いて改質ガスRGを発生させる改質器2と、改質ガスRG及び酸化剤OXを用いて発電を行うセルスタック3と、水を気化させることによって改質器2へ供給される水蒸気を生成する水気化部4と、改質器2、セルスタック3、及び水気化部4を収納する筐体6と、を備える。図1及び図2では図示されていないが、燃料電池モジュール1の下方には、ポンプ等の補機や制御機器等を収納する筐体が設けられる。 As shown in FIGS. 1 and 2, the fuel cell module 1 generates power using the reformer 2 that generates the reformed gas RG using the hydrogen-containing fuel, and the reformed gas RG and the oxidizing agent OX. A cell stack 3, a water vaporization unit 4 that generates water vapor supplied to the reformer 2 by vaporizing water, and a housing 6 that houses the reformer 2, the cell stack 3, and the water vaporization unit 4 . Although not shown in FIGS. 1 and 2, a housing for storing auxiliary equipment such as a pump and control equipment is provided below the fuel cell module 1.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 改質器2は、供給される水素含有燃料を用いて改質ガスRGを発生させる。改質器2は、改質触媒を用いた改質反応により、水素含有燃料を改質して改質ガスRGを発生させる。改質器2での改質方式は、特に限定されず、例えば、水蒸気改質器、部分酸化改質、自己熱改質、その他の改質方式を採用できる。改質器2は、後述する燃焼熱によって加熱され得るようにセルスタック3の上側に配置されている。すなわち、セルスタック3の燃料極側に導入された改質ガスRGのオフガス(未反応改質ガス)は、空気極等の酸化剤極側に導入された空気等の酸化剤のうちの未反応酸素(未反応酸化剤ガス)と共に燃焼させられ、改質器2は、この燃焼熱によって加熱される。改質器2は、改質ガスRGをセルスタック3の燃料極へ供給する。 The reformer 2 generates the reformed gas RG using the supplied hydrogen-containing fuel. The reformer 2 reforms the hydrogen-containing fuel by the reforming reaction using the reforming catalyst to generate the reformed gas RG. The reforming method in the reformer 2 is not particularly limited, and for example, a steam reformer, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The reformer 2 is disposed on the upper side of the cell stack 3 so as to be heated by combustion heat described later. That is, the off gas (unreacted reformed gas) of the reformed gas RG introduced to the fuel electrode side of the cell stack 3 is unreacted among oxidants such as air introduced to the oxidant electrode side such as the air electrode. Combusted together with oxygen (unreacted oxidant gas), the reformer 2 is heated by this combustion heat. The reformer 2 supplies the reformed gas RG to the fuel electrode of the cell stack 3.
 セルスタック3は、規則的に配列し連結されたSOFC(Solid Oxide Fuel Cells)と称される複数のセルの積層体を有している。各セルは、固体酸化物である電解質が燃料極と酸化剤極との間に配置されることで構成されている。電解質は、例えばイットリア安定化ジルコニア(YSZ)等からなり、高温下で酸化物イオンを伝導する。燃料極は、例えばニッケルとYSZとの混合物からなり、酸化物イオンと改質ガスRG中の水素とを反応させて、電子及び水を発生させる。酸化剤極は、例えばランタンストロンチウムマンガナイトからなり、酸化剤OX中の酸素と電子とを反応させて、酸化物イオンを発生させる。セルスタック3は、台座7の上面において、当該セルスタック3を含む発電ユニットを設置する発電ユニット設置面と平行かつ各セルの積層方向と直交する方向に向かい合うように二列に配置される。ただし、セルスタック3は一列に配置されてもよい。セルスタック3が二列に配置されている場合、当該二つのセルスタック3が、燃料電池モジュール1の発電ユニットを構成する。セルスタック3が一つの場合は、当該一つのセルスタック3が燃料電池モジュール1の発電ユニットを構成し、セルスタック3が三つ以上の場合は、当該三つ以上のセルスタック3が燃料電池モジュール1の発電ユニットを構成する。発電ユニットは、台座7を介して第1の底壁部18に設置されているため、本実施形態では、当該第1の底壁部18が発電ユニットの設置される発電ユニット設置面に該当する。なお、セルスタック3は、複数のセルを連結したものであればよく、セルの形状は特に限定されず、積層可能な形状でなくともよい。本実施形態では、複数のセルが台座7に立設し、同一方向を向いて一列に整列して連結しているセルスタック3を例に説明する。なお、ここでは、複数のセルが台座7に立設し、同一方向を向いて一列に整列して伸延する方向を「積層方向」と称して以下の説明を行う。 The cell stack 3 has a stack of a plurality of cells called SOFC (Solid Oxide Fuel Cells) regularly arranged and connected. Each cell is configured by disposing an electrolyte that is a solid oxide between a fuel electrode and an oxidant electrode. The electrolyte is made of, for example, yttria stabilized zirconia (YSZ) or the like, and conducts oxide ions at a high temperature. The fuel electrode is made of, for example, a mixture of nickel and YSZ, and reacts oxide ions with hydrogen in the reformed gas RG to generate electrons and water. The oxidant electrode is made of, for example, lanthanum strontium manganite and reacts oxygen and electrons in the oxidant OX to generate oxide ions. The cell stacks 3 are arranged in two rows on the upper surface of the pedestal 7 so as to face each other in a direction parallel to the power generation unit installation surface on which the power generation unit including the cell stack 3 is installed and orthogonal to the stacking direction of the cells. However, the cell stacks 3 may be arranged in a line. When the cell stacks 3 are arranged in two rows, the two cell stacks 3 constitute a power generation unit of the fuel cell module 1. When there is one cell stack 3, the one cell stack 3 constitutes a power generation unit of the fuel cell module 1, and when there are three or more cell stacks 3, the three or more cell stacks 3 are fuel cell modules. 1 power generation unit is configured. Since the power generation unit is installed on the first bottom wall portion 18 via the pedestal 7, in the present embodiment, the first bottom wall portion 18 corresponds to the power generation unit installation surface on which the power generation unit is installed. . In addition, the cell stack 3 should just be what connected several cells, and the shape of a cell is not specifically limited, The shape which can be laminated | stacked may not be sufficient. In this embodiment, a cell stack 3 in which a plurality of cells are erected on a pedestal 7 and aligned and connected in a line in the same direction will be described as an example. Here, a direction in which a plurality of cells stand on the pedestal 7 and are aligned and extended in a row facing the same direction will be referred to as a “stacking direction” and will be described below.
 台座7と改質器2とは、パイプ8で接続されている。改質器2から供給された改質ガスRGは、台座7を介してセルスタック3の各セルに供給される。セルスタック3で反応しなかった改質ガスRG及び酸化剤OXは、セルスタック3の上部の燃焼部9で燃焼する。燃焼部9でのオフガスの燃焼により、改質器2が加熱されると共に排ガスEGが発生する。 The base 7 and the reformer 2 are connected by a pipe 8. The reformed gas RG supplied from the reformer 2 is supplied to each cell of the cell stack 3 via the base 7. The reformed gas RG and the oxidant OX that have not reacted in the cell stack 3 are burned in the combustion section 9 at the top of the cell stack 3. Due to the combustion of off-gas in the combustion section 9, the reformer 2 is heated and exhaust gas EG is generated.
 水気化部4は、供給される水を加熱し気化させることによって、改質器2に供給される水蒸気を生成する。水気化部4で生成された水蒸気は、例えば、第1の底壁部18を貫通して水気化部4と改質器2とを接続する配管(不図示)を用いて、改質器2へ供給される。水気化部4における水の加熱は、例えば、改質器2の熱、燃焼部9の熱、あるいは排ガスEGの熱を回収する等、燃料電池モジュール1内で発生した熱を用いてもよい。本実施形態では、水気化部4は、底部の排ガス流路に配置され、排ガスEGの熱を回収する構成となっている。また、改質器2内において生じる改質反応が水蒸気改質反応を伴わない場合は、水気化部4を省略することができる。 The water vaporization unit 4 generates water vapor supplied to the reformer 2 by heating and vaporizing the supplied water. For example, the water vapor generated in the water vaporization unit 4 passes through the first bottom wall 18 and uses a pipe (not shown) connecting the water vaporization unit 4 and the reformer 2 to the reformer 2. Supplied to. For the heating of the water in the water vaporization unit 4, for example, heat generated in the fuel cell module 1 such as recovering heat of the reformer 2, heat of the combustion unit 9, or heat of the exhaust gas EG may be used. In this embodiment, the water vaporization part 4 is arrange | positioned at the exhaust gas flow path of a bottom part, and becomes a structure which collect | recovers the heat | fever of exhaust gas EG. Further, when the reforming reaction occurring in the reformer 2 does not involve the steam reforming reaction, the water vaporization unit 4 can be omitted.
 筐体6は、改質器2、セルスタック3、及び水気化部4を収納するための内部空間を有する、直方体状の金属製の箱体である。筐体6は、セルスタック3を収納する収納室11と、収納室11よりも外側に形成され、セルスタック3からのオフガスの燃焼による排ガスEGを通過させる排ガス流路12、酸化剤OXを通過させる酸化剤流路13と、収納室11や排ガス流路12や酸化剤流路13を形成する各壁部と、を備える。なお、以下の説明においては、セルスタック3の各セルの積層方向に沿った方向を筐体6の「長さ方向D1」とし、水平方向において各セルの積層方向と直交する方向を筐体6の「幅方向D2」とし、鉛直方向を筐体6の「上下方向D3」として以下の説明を行う。本実施形態では、収納室11、排ガス流路12、酸化剤流路13、及びこれらを形成する各壁部は、長さ方向D1から見て左右対称な構造となっている。 The housing 6 is a rectangular parallelepiped metal box having an internal space for housing the reformer 2, the cell stack 3, and the water vaporization unit 4. The housing 6 is formed outside the storage chamber 11 that stores the cell stack 3, the exhaust chamber 12 that passes the exhaust gas EG due to the combustion of off-gas from the cell stack 3, and the oxidant OX. And an oxidant channel 13 to be formed, and respective wall portions forming the storage chamber 11, the exhaust gas channel 12, and the oxidant channel 13. In the following description, the direction along the stacking direction of the cells of the cell stack 3 is referred to as the “length direction D1” of the casing 6, and the direction orthogonal to the stacking direction of the cells in the horizontal direction is the casing 6. In the following description, the vertical direction is the “vertical direction D3” of the housing 6. In the present embodiment, the storage chamber 11, the exhaust gas flow channel 12, the oxidant flow channel 13, and the wall portions forming these have a left-right symmetric structure as viewed from the length direction D <b> 1.
 収納室11は、幅方向D2に互いに対向する第1の側壁部16,17、及び第1の側壁部16,17の各下端部に連結される第1の底壁部18の内側に形成される。収納室11では、台座7が第1の底壁部18に配置される。なお、第1の底壁部18と台座7との間に断熱材が配置されていてもよい。燃焼部9で発生した排ガスEGを通過させるため、収納室11の上端部は開口している。 The storage chamber 11 is formed inside the first side wall portions 16 and 17 facing each other in the width direction D2 and the first bottom wall portion 18 connected to the respective lower end portions of the first side wall portions 16 and 17. The In the storage chamber 11, the pedestal 7 is disposed on the first bottom wall portion 18. A heat insulating material may be disposed between the first bottom wall portion 18 and the pedestal 7. In order to allow the exhaust gas EG generated in the combustion unit 9 to pass through, the upper end of the storage chamber 11 is open.
 排ガス流路12は、幅方向D2において第1の側壁部16,17の外側にそれぞれ配置される第2の側壁部21,22と、第1の側壁部16,17の上端部よりも上側に配置される第1の上壁部23と、第1の底壁部18よりも下側に配置される第2の底壁部24と、によって形成される。 The exhaust gas flow path 12 is above the second side wall parts 21 and 22 disposed on the outside of the first side wall parts 16 and 17 and the upper end parts of the first side wall parts 16 and 17 in the width direction D2. The first upper wall portion 23 is disposed, and the second bottom wall portion 24 is disposed below the first bottom wall portion 18.
 第1の上壁部23は第2の側壁部21,22の上端部に連結され、第2の底壁部24は第2の側壁部21,22の下端部に連結される。第2の側壁部21,22は、第1の側壁部16,17から離間して対向するように配置される。第1の上壁部23は、収納室11の上端部から離間して対向するように配置される。第2の底壁部24は、第1の底壁部18から離間して対向するように配置される。 The first upper wall portion 23 is connected to the upper end portions of the second side wall portions 21 and 22, and the second bottom wall portion 24 is connected to the lower end portions of the second side wall portions 21 and 22. The second side wall parts 21 and 22 are arranged so as to be spaced apart from the first side wall parts 16 and 17. The first upper wall portion 23 is disposed so as to be opposed to and spaced from the upper end portion of the storage chamber 11. The second bottom wall portion 24 is disposed so as to be spaced apart from the first bottom wall portion 18.
 排ガス流路12は、収納室11の上側の開口部と第1の上壁部23との間に形成される排ガス流路12A,12Bと、第2の側壁部21,22と第1の側壁部16,17との間に形成される排ガス流路12C,12Dと、第2の底壁部24と第1の底壁部18との間に形成される排ガス流路12E,12Fと、を有する。排ガス流路12A,12Bは、燃焼部9からの排ガスEGを排ガス流路12C,12Dへ導く。排ガス流路12C,12Dは、排ガスEGを下方へ通過させ、当該排ガスEGの熱を外側の酸化剤流路13C,13Dを流れる酸化剤OXに供給する。排ガス流路12E,12Fは、排ガスEGを排気管32へ向かって水平方向に通過させ、当該排ガスEGの熱を水気化部4に供給する。 The exhaust gas passage 12 includes exhaust gas passages 12A and 12B formed between the upper opening of the storage chamber 11 and the first upper wall portion 23, the second side wall portions 21 and 22, and the first side wall. Exhaust gas passages 12C and 12D formed between the portions 16 and 17, and exhaust gas passages 12E and 12F formed between the second bottom wall portion 24 and the first bottom wall portion 18, respectively. Have. The exhaust gas passages 12A and 12B guide the exhaust gas EG from the combustion unit 9 to the exhaust gas passages 12C and 12D. The exhaust gas channels 12C and 12D pass the exhaust gas EG downward, and supply the heat of the exhaust gas EG to the oxidant OX flowing through the outer oxidant channels 13C and 13D. The exhaust gas passages 12 </ b> E and 12 </ b> F pass the exhaust gas EG in the horizontal direction toward the exhaust pipe 32 and supply the heat of the exhaust gas EG to the water vaporization unit 4.
 酸化剤流路13は、幅方向D2において第2の側壁部21,22の外側にそれぞれ配置される第3の側壁部26,27と、第1の上壁部23よりも上側に配置される第2の上壁部28と、第2の底壁部24よりも下側に配置される第3の底壁部29と、によって形成される。 The oxidant flow path 13 is disposed above the first side wall parts 23 and the third side wall parts 26 and 27 that are respectively arranged outside the second side wall parts 21 and 22 in the width direction D2. The second upper wall portion 28 and the third bottom wall portion 29 arranged below the second bottom wall portion 24 are formed.
 第2の上壁部28は第3の側壁部26,27の上端部に連結され、第3の底壁部29は第3の側壁部26,27の下端部に連結される。第3の側壁部26,27は、第2の側壁部21,22から離間して対向するように配置される。第2の上壁部28は、第1の上壁部23から離間して対向するように配置される。第3の底壁部29は、第2の底壁部24から離間して対向するように配置される。 The second upper wall portion 28 is connected to the upper end portions of the third side wall portions 26 and 27, and the third bottom wall portion 29 is connected to the lower end portions of the third side wall portions 26 and 27. The third side wall portions 26 and 27 are disposed so as to be opposed to and spaced apart from the second side wall portions 21 and 22. The second upper wall portion 28 is arranged so as to be spaced apart from the first upper wall portion 23. The third bottom wall portion 29 is disposed so as to be spaced apart from the second bottom wall portion 24.
 第1の上壁部23には中央部に長さ方向D1へ延びるスリット39が形成されており、当該スリット39には、酸化剤供給部材36が挿入される。酸化剤供給部材36は、セルスタック3に酸化剤OXを供給する。酸化剤供給部材36は、一対のセルスタック3の間の隙間に入り込むように延びており、内部に酸化剤流路13Kを有すると共に、先端部に貫通孔37,38を有している。 A slit 39 extending in the length direction D1 is formed at the center of the first upper wall portion 23, and an oxidant supply member 36 is inserted into the slit 39. The oxidant supply member 36 supplies the oxidant OX to the cell stack 3. The oxidant supply member 36 extends so as to enter a gap between the pair of cell stacks 3, and has an oxidant flow path 13 </ b> K inside and has through holes 37 and 38 at the tip.
 酸化剤流路13は、第2の上壁部28と第1の上壁部23との間に形成される酸化剤流路13A,13Bと、第3の側壁部26,27と第2の側壁部21,22との間に形成される酸化剤流路13C,13Dと、第3の底壁部29と第2の底壁部24との間に形成される酸化剤流路13G,13Hと、を有する。酸化剤流路13G,13Hは、給気管31からの酸化剤OXを水平方向に広がるように通過させ、酸化剤流路13C,13Dへ導く。酸化剤流路13C,13Dは、酸化剤OXを上方へ通過させ、当該酸化剤OXを内側の排ガス流路12C,12Dを流れる排ガスEGの熱によって加熱する。酸化剤流路13A,13Bは、酸化剤OXを幅方向D2における外側から内側へ向かって通過させ、酸化剤供給部材36の酸化剤流路13Kへ流して貫通孔37,38へ導く。 The oxidant flow path 13 includes the oxidant flow paths 13A and 13B formed between the second upper wall portion 28 and the first upper wall portion 23, the third side wall portions 26 and 27, and the second Oxidant channels 13C, 13D formed between the side walls 21, 22 and oxidant channels 13G, 13H formed between the third bottom wall 29 and the second bottom wall 24. And having. The oxidant flow paths 13G and 13H pass the oxidant OX from the air supply pipe 31 so as to spread in the horizontal direction and guide the oxidant flow paths 13C and 13D. The oxidant channels 13C and 13D allow the oxidant OX to pass upward, and heat the oxidant OX by the heat of the exhaust gas EG flowing through the inner exhaust gas channels 12C and 12D. The oxidant flow paths 13A and 13B allow the oxidant OX to pass from the outside toward the inside in the width direction D2, flow into the oxidant flow path 13K of the oxidant supply member 36, and guide it to the through holes 37 and 38.
 第3の底壁部29には、図示されない酸化剤供給部から酸化剤流路13に酸化剤を流入させるための給気管31が設けられている。また、第2の底壁部24には、排ガス流路12からの排ガスを排気する排気管32が設けられている。 The third bottom wall 29 is provided with an air supply pipe 31 for allowing an oxidant to flow into the oxidant flow path 13 from an oxidant supply section (not shown). Further, the second bottom wall portion 24 is provided with an exhaust pipe 32 for exhausting the exhaust gas from the exhaust gas passage 12.
 側壁部16,17,21,22,26,27、上壁部23,28、及び底壁部18,24,29は、長さ方向D1における筐体6の端部6a,6bにまで延びている。筐体6の長さ方向D1の両端部には、それぞれ端壁部33,34が設けられている。第3の側壁部26,27、第2の上壁部28、第3の底壁部29、及び端壁部33,34は、燃料電池モジュール1の外殻を構成し、互いの接続部におけるシール性が確保されており、筐体6内の気密性が確保されている。 The side wall portions 16, 17, 21, 22, 26, 27, the upper wall portions 23, 28, and the bottom wall portions 18, 24, 29 extend to the end portions 6a, 6b of the housing 6 in the length direction D1. Yes. End wall portions 33 and 34 are respectively provided at both ends of the casing 6 in the length direction D1. The third side wall portions 26 and 27, the second upper wall portion 28, the third bottom wall portion 29, and the end wall portions 33 and 34 constitute an outer shell of the fuel cell module 1, and are connected to each other at the connection portion. The sealing property is ensured, and the airtightness in the housing 6 is ensured.
 次に、改質ガスRG、酸化剤OX、及び排ガスEGの流れについて説明する。 Next, the flow of the reformed gas RG, the oxidizer OX, and the exhaust gas EG will be described.
 外部から供給される水素含有燃料及び水気化部4からの水蒸気を用いて改質器2で発生した改質ガスRGは、パイプ8を通過して台座7に流れ込み、台座7からセルスタック3の各セルに供給される。改質ガスRGは、セルスタック3を下方から上方へ向かって流れ、一部はオフガスとして燃焼部9での燃焼に用いられる。酸化剤OXは、外部から給気管31を介して供給され、酸化剤流路13G,13Hにて水平方向に広がり、内側を流れる排ガスEGで加熱されながら酸化剤流路13C,13Dを上方へ向かって通過する。酸化剤OXは、酸化剤流路13A,13Bを通過し、酸化剤供給部材36の酸化剤流路13Kを流れて、貫通孔37,38を通過してセルスタック3へ供給され、一部は燃焼部9での燃焼に用いられる。燃焼部9で発生した排ガスEGは、排ガス流路12A,12Bで排ガス流路12C,12Dに導かれ、外側を流れる酸化剤OXに熱を供給しながら排ガス流路12C,12Dを下方へ向かって通過する。排ガスEGは、底部まで達すると排ガス流路12E,12Fへ流れ込み、水気化部4に熱を供給しながら排ガス流路12E,12Fを通過する。排ガス流路12E,12Fを通過した排ガスEGは、排気管32から排気される。 The reformed gas RG generated in the reformer 2 using the hydrogen-containing fuel supplied from the outside and the water vapor from the water vaporization unit 4 flows into the pedestal 7 through the pipe 8, and from the pedestal 7 to the cell stack 3. Supplied to each cell. The reformed gas RG flows through the cell stack 3 from below to above, and a part of the reformed gas RG is used as an off-gas for combustion in the combustion unit 9. The oxidant OX is supplied from the outside through the air supply pipe 31, spreads in the horizontal direction in the oxidant flow paths 13G and 13H, and moves upward in the oxidant flow paths 13C and 13D while being heated by the exhaust gas EG flowing inside. Pass through. The oxidant OX passes through the oxidant flow paths 13A and 13B, flows through the oxidant flow path 13K of the oxidant supply member 36, passes through the through holes 37 and 38, and is supplied to the cell stack 3, and a part thereof Used for combustion in the combustion section 9. The exhaust gas EG generated in the combustion unit 9 is guided to the exhaust gas channels 12C and 12D by the exhaust gas channels 12A and 12B, and flows downward through the exhaust gas channels 12C and 12D while supplying heat to the oxidant OX flowing outside. pass. When the exhaust gas EG reaches the bottom, it flows into the exhaust gas channels 12E and 12F, and passes through the exhaust gas channels 12E and 12F while supplying heat to the water vaporization unit 4. The exhaust gas EG that has passed through the exhaust gas flow paths 12E and 12F is exhausted from the exhaust pipe 32.
 図1~図4に示すように、本実施形態に係る燃料電池モジュール1は、端壁部33,34及び第2の上壁部28に対応する面に開口部51A,51B,51Cがそれぞれ形成された本体部50と、本体部50の開口部51Aを覆う蓋体60Aと、本体部50の開口部51Bを覆う蓋体60Bと、本体部50の開口部51Cを覆う蓋体60Cと、を備えている。本体部50は、上述で説明した各壁部のうち、側壁部16,17,21,22,26,27、第1の上壁部23、及び底壁部18,24,29を構成している。また、蓋体60Aは端壁部33を構成し、蓋体60Bは端壁部34を構成し、蓋体60Cは第2の上壁部28を構成している。なお、蓋体60A及び蓋体60Bの「厚さ方向」は、長さ方向D1に等しく、蓋体60Cの「厚さ方向」は、上下方向D3に等しい。 As shown in FIGS. 1 to 4, in the fuel cell module 1 according to the present embodiment, openings 51A, 51B, and 51C are formed on surfaces corresponding to the end wall portions 33 and 34 and the second upper wall portion 28, respectively. The main body 50, the lid 60A covering the opening 51A of the main body 50, the lid 60B covering the opening 51B of the main body 50, and the lid 60C covering the opening 51C of the main body 50. I have. The main body 50 comprises the side wall parts 16, 17, 21, 22, 26, 27, the first upper wall part 23, and the bottom wall parts 18, 24, 29 among the wall parts described above. Yes. The lid 60A constitutes the end wall 33, the lid 60B constitutes the end wall 34, and the lid 60C constitutes the second upper wall 28. The “thickness direction” of the lid 60A and the lid 60B is equal to the length direction D1, and the “thickness direction” of the lid 60C is equal to the vertical direction D3.
 本体部50は、端壁部33に対応する面、すなわち筐体6の端部6a側の面に、蓋体60Aを取り付けるための蓋体受け部52Aを有する。蓋体受け部52Aは、蓋体60Aの周縁部61(図4参照)と対向する矩形枠状のフランジ部である。蓋体受け部52Aは、長さ方向(蓋体60Aの厚さ方向)D1からみて、筐体6の内側へ向かって延びるように形成される。蓋体受け部52Aの中央位置に矩形状の開口部51Aが形成されている。これによって、蓋体受け部52Aは、長さ方向(蓋体60Aの厚さ方向)D1から見て、開口部51Aを全周にわたって取り囲む構成となる。本体部50は、端壁部34に対応する面、すなわち筐体6の端部6b側の面に、蓋体60Bを取り付けるための蓋体受け部52Bを有する。蓋体受け部52Bは、蓋体60Bの周縁部と対向する矩形枠状のフランジ部である。蓋体受け部52Bは、長さ方向(蓋体60Bの厚さ方向)D1からみて、筐体6の内側へ向かって延びるように形成される。蓋体受け部52Bの中央位置に矩形状の開口部51Bが形成されている。これによって、蓋体受け部52Bは、長さ方向(蓋体60Bの厚さ方向)D1から見て、開口部51Bを全周にわたって取り囲む構成となる。本体部50は、第2の上壁部28に対応する面、すなわち筐体6の上端部側の面に、蓋体60Cを取り付けるための蓋体受け部52Cを有する。蓋体受け部52Cは、蓋体60Cの周縁部と対向する矩形枠状のフランジ部である。蓋体受け部52Cは、上下方向(蓋体60Cの厚さ方向)D3からみて、筐体6の内側へ向かって延びるように形成される。蓋体受け部52Cの中央位置に矩形状の開口部51Cが形成されている。これによって、蓋体受け部52Cは、上下方向(蓋体60Cの厚さ方向)D3から見て、開口部51Cを全周にわたって取り囲む構成となる。 The main body 50 has a lid receiving portion 52A for attaching the lid 60A to the surface corresponding to the end wall portion 33, that is, the surface on the end 6a side of the housing 6. The lid body receiving portion 52A is a rectangular frame-shaped flange portion facing the peripheral edge portion 61 (see FIG. 4) of the lid body 60A. The lid receiving portion 52A is formed to extend inward of the housing 6 when viewed from the length direction (thickness direction of the lid 60A) D1. A rectangular opening 51A is formed at the center of the lid receiving portion 52A. Accordingly, the lid receiving portion 52A is configured to surround the opening 51A over the entire circumference when viewed from the length direction (the thickness direction of the lid 60A) D1. The main body 50 has a lid receiving portion 52B for attaching the lid 60B to a surface corresponding to the end wall portion 34, that is, a surface on the end 6b side of the housing 6. The lid body receiving portion 52B is a rectangular frame-shaped flange portion facing the peripheral edge portion of the lid body 60B. The lid receiving part 52B is formed to extend inward of the housing 6 when viewed from the length direction (thickness direction of the lid 60B) D1. A rectangular opening 51B is formed at the center of the lid receiving portion 52B. Accordingly, the lid receiving portion 52B is configured to surround the opening 51B over the entire circumference when viewed from the length direction (thickness direction of the lid 60B) D1. The main body 50 has a lid receiving portion 52C for attaching the lid 60C to a surface corresponding to the second upper wall portion 28, that is, a surface on the upper end side of the housing 6. The lid body receiving portion 52C is a rectangular frame-shaped flange portion facing the peripheral edge portion of the lid body 60C. The lid receiving portion 52C is formed to extend inward of the housing 6 when viewed from the vertical direction (thickness direction of the lid 60C) D3. A rectangular opening 51C is formed at the center of the lid receiving portion 52C. As a result, the lid receiving portion 52C is configured to surround the opening 51C over the entire circumference when viewed from the vertical direction (thickness direction of the lid 60C) D3.
 蓋体受け部52Aは、第3の側壁部26,27、第3の底壁部29、及び蓋体受け部52Cと隙間無く、すなわち気密性が確保された状態で接続されている。蓋体受け部52Bは、第3の側壁部26,27、第3の底壁部29、及び蓋体受け部52Cと隙間無く、すなわち気密性が確保された状態で接続されている。蓋体受け部52Cは、第3の側壁部26,27、及び蓋体受け部52A,52Bと隙間無く、すなわち気密性が確保された状態で接続されている。各蓋体受け部52A,52B,52Cは、溶接によって固定されていてもよく、あるいは金属板の折り曲げによって形成されていてもよい。 The lid body receiving portion 52A is connected to the third side wall portions 26 and 27, the third bottom wall portion 29, and the lid body receiving portion 52C without a gap, that is, in a state where airtightness is ensured. The lid body receiving portion 52B is connected to the third side wall portions 26 and 27, the third bottom wall portion 29, and the lid body receiving portion 52C without any gap, that is, in a state where airtightness is ensured. The lid body receiving part 52C is connected to the third side wall parts 26 and 27 and the lid body receiving parts 52A and 52B without a gap, that is, in a state where airtightness is ensured. Each lid receiving part 52A, 52B, 52C may be fixed by welding, or may be formed by bending a metal plate.
 蓋体60A,60B,60Cは、シール部材70側(本実施形態では本体部50側)へ突出すると共に、各蓋体の厚さ方向から見て開口部51A,51B,51Cを全周にわたって取り囲むように延びるビード(第1の凸部)62を有している。ビード62は、矩形状の蓋体60A,60B,60Cの外縁63の各辺に沿って連続的に延び、開口部51A,51B,51Cを隙間無く取り囲むように、矩形を描くように形成されている。ビード62は、例えば、蓋体60A,60B,60Cの平面に矩形枠状の凸部材を溶接することによって、凸部を形成することができる。また、プレス加工を行うことによって容易に凸部を形成することができる。これによると、溶接工程を削減することができる。また、蓋体60A,60B,60Cの気密性が確保できることから、気密検査箇所を低減することができる。 The lids 60A, 60B, and 60C project to the seal member 70 side (in the present embodiment, the main body 50 side) and surround the openings 51A, 51B, and 51C over the entire circumference when viewed from the thickness direction of the lids. A bead (first convex portion) 62 extending in this manner is provided. The bead 62 continuously extends along each side of the outer edge 63 of the rectangular lids 60A, 60B, and 60C, and is formed so as to draw a rectangle so as to surround the openings 51A, 51B, and 51C without a gap. Yes. The bead 62 can form a convex part by welding a rectangular frame-shaped convex member to the plane of the lids 60A, 60B, 60C, for example. Moreover, a convex part can be easily formed by performing press work. According to this, a welding process can be reduced. Moreover, since the airtightness of the lids 60A, 60B, and 60C can be ensured, the number of airtight inspection locations can be reduced.
 本実施形態では、プレス加工によってビード62を形成する例を説明する。蓋体60A,60B,60Cを構成する金属板が四辺においてそれぞれ断面U字状に押し出されることによって、本体部50側の面には凸形状が形成される(図4及び図5参照)と共に、外側の面には凹形状が形成される(図3及び図4参照)。ビード62の突出量、すなわちビード62の凸形状の先端部62aと、蓋体60A,60B,60Cの本体部50側の面60aとの間の距離L1(図4参照)は、ビード62の全周にわたって一定に設定されることが好ましい。すなわち、ビード62が描く四辺の全てにおいて、及び各辺同士の角部の全てにおいて、突出量L1が一定であることが好ましい。 In the present embodiment, an example in which the beads 62 are formed by press working will be described. The metal plates constituting the lids 60A, 60B, and 60C are each extruded into a U-shaped cross section on each of the four sides, whereby a convex shape is formed on the surface on the main body 50 side (see FIGS. 4 and 5). A concave shape is formed on the outer surface (see FIGS. 3 and 4). The protruding amount of the bead 62, that is, the distance L1 (see FIG. 4) between the convex end portion 62a of the bead 62 and the surface 60a on the main body 50 side of the lids 60A, 60B, 60C is the total of the bead 62. It is preferably set constant over the circumference. That is, it is preferable that the protruding amount L1 is constant in all the four sides drawn by the bead 62 and in all the corners between the sides.
 ここで、図4を参照して、本体部50の開口部を蓋体で封止する構造について、より詳細に説明する。なお、図4では、蓋体60Aが開口部51Aを封止する構造が示されているが、蓋体60Bが開口部51Bを封止する構造、蓋体60Cが開口部51Cを封止する構造も同様である。 Here, with reference to FIG. 4, the structure which seals the opening part of the main-body part 50 with a cover body is demonstrated in detail. 4 shows a structure in which the lid 60A seals the opening 51A, but a structure in which the lid 60B seals the opening 51B, and a structure in which the lid 60C seals the opening 51C. Is the same.
 蓋体60Aのビード62と蓋体受け部52Aとの間には、本体部50と蓋体60Aとの間の気密性を確保するためのシール部材70が配置されている。シール部材70は、ビード62が描く矩形とほぼ同じ形状及び同じ大きさとなるように、矩形枠状に形成されている。また、蓋体60Aを固定する際、シール部材70は、長さ方向(蓋体60Aの厚さ方向)D1から見て、ビード62と重なり、当該ビード62の凸形状から押圧力が付与されるように配置される。これによって、シール部材70は、長さ方向(蓋体60Aの厚さ方向)D1から見て開口部51Aを全周にわたって取り囲むように配置される。シール部材70は、開口部51Aの全周にわたって、隙間無く連続的に開口部51Aを取り囲んでおり、これによって、本体部50と蓋体60Aとの間の気密性が確保される。ビード62は、矩形の一辺あたりの断面形状が断面U字状に形成されているため、矩形の各辺において、シール部材70と線接触して押圧力を付与する。 Between the bead 62 of the lid body 60A and the lid body receiving portion 52A, a seal member 70 for ensuring airtightness between the main body portion 50 and the lid body 60A is disposed. The seal member 70 is formed in a rectangular frame shape so as to have substantially the same shape and size as the rectangle drawn by the bead 62. Further, when fixing the lid 60A, the seal member 70 overlaps the bead 62 as viewed from the length direction (thickness direction of the lid 60A) D1, and a pressing force is applied from the convex shape of the bead 62. Are arranged as follows. Thus, the seal member 70 is disposed so as to surround the opening 51A over the entire circumference when viewed from the length direction (thickness direction of the lid 60A) D1. The seal member 70 continuously surrounds the opening 51A over the entire circumference of the opening 51A without any gap, thereby ensuring airtightness between the main body 50 and the lid 60A. Since the cross-sectional shape of one side of the rectangle is formed in a U-shaped cross section, the bead 62 is in line contact with the seal member 70 on each side of the rectangle and applies a pressing force.
 シール部材70の一辺あたりの幅は、図4に示されるものより更に大きな幅を有するもの(例えば、図8に示すように蓋体受け部52Aの略全体を覆うようなもの)であってもよいが、材料コストを低減するために、少なくとも気密性を確保するのに必要な程度の幅とすることが好ましい。本実施形態では、シール部材70は、長さ方向(蓋体60Aの厚さ方向)D1から見て、蓋体受け部52Aのうち螺合部80の袋ナット81よりも内周側を覆う部分のみ有しており、袋ナット81よりも外周側を覆う部分(及び、隣り合う袋ナット81同士の間を覆う部分)を有していない。ビード62の凸形状で付勢し易くするため、シール部材70の一辺あたりの幅をビード62の一辺あたりの幅より僅かに大きくしておくことが好ましい。なお、蓋体受け部52Aにシール部材70を位置合わせしてセットするためのガイド溝が形成されていてもよい。 Even if the width per side of the seal member 70 has a larger width than that shown in FIG. 4 (for example, it covers substantially the entire lid receiving portion 52A as shown in FIG. 8). However, in order to reduce the material cost, it is preferable to set the width to a level necessary to ensure at least airtightness. In this embodiment, the seal member 70 is a portion that covers the inner peripheral side of the screw receiving portion 80 of the lid receiving portion 52A as viewed from the length direction (thickness direction of the lid 60A) D1. However, it does not have a portion that covers the outer peripheral side of the cap nut 81 (and a portion that covers between the adjacent cap nuts 81). In order to facilitate energization with the convex shape of the bead 62, the width per side of the seal member 70 is preferably slightly larger than the width per side of the bead 62. In addition, a guide groove for aligning and setting the seal member 70 in the lid receiving portion 52A may be formed.
 蓋体60A及び蓋体受け部52Aには、蓋体60Aを蓋体受け部52Aに固定するための螺合部80が形成されている。螺合部80は、長さ方向(蓋体Aの厚さ方向)D1から見て、開口部51A、ビード62及びシール部材70よりも外側に形成されている。また、螺合部80は、ビード62を取り囲むように、所定の間隔を開けて複数形成されている(図3参照)。 The lid body 60A and the lid body receiving portion 52A are formed with a threaded portion 80 for fixing the lid body 60A to the lid body receiving portion 52A. The threaded portion 80 is formed outside the opening 51A, the bead 62, and the seal member 70 when viewed from the length direction (thickness direction of the lid A) D1. Further, a plurality of screwing portions 80 are formed at predetermined intervals so as to surround the bead 62 (see FIG. 3).
 螺合部80は、蓋体受け部52Aに形成された袋ナット81と、蓋体60Aに形成された貫通孔82と、貫通孔82を介して袋ナット81に螺合されるボルト83と、を備えている。袋ナット81は、円柱部材84の一端側の面84aに雌螺子部86を形成することによって構成されている。雌螺子部86は、円柱部材84の他方の面84bには貫通しないように形成される。袋ナット81は、蓋体60Aの固定時においてビード62よりも外側に配置されるように、蓋体受け部52Aに複数固定される。袋ナット81は、雌螺子部86が形成される一端側の面84aが本体部50の外側へ露出し、封止されている他端側の面84bが本体部50の内部空間へ露出するように配置される。袋ナット81の一端側の面84aの縁部には、全周にわたって蓋体受け部52Aとの間で溶接部87が形成される。これによって、袋ナット81と蓋体受け部52Aとの間の気密性が確保される。 The screwing portion 80 includes a cap nut 81 formed in the lid receiving portion 52A, a through hole 82 formed in the cap 60A, a bolt 83 screwed to the cap nut 81 through the through hole 82, It has. The cap nut 81 is configured by forming a female screw portion 86 on a surface 84 a on one end side of the cylindrical member 84. The female screw portion 86 is formed so as not to penetrate the other surface 84 b of the cylindrical member 84. A plurality of cap nuts 81 are fixed to the lid receiving portion 52A so as to be arranged outside the bead 62 when the lid 60A is fixed. The cap nut 81 has a surface 84 a on one end side where the female screw portion 86 is formed exposed to the outside of the main body portion 50, and a surface 84 b on the other end side that is sealed is exposed to the internal space of the main body portion 50. Placed in. A welded portion 87 is formed on the edge of the surface 84a on one end side of the cap nut 81 with the lid receiving portion 52A over the entire circumference. Thereby, the airtightness between the cap nut 81 and the lid receiving portion 52A is ensured.
 蓋体60Aの貫通孔82は、蓋体60Aを蓋体受け部52Aに固定する際において、袋ナット81の雌螺子部86と対向する位置に形成される。貫通孔82の径は、ボルト83のネジ部の径より大きくネジ頭の径よりも小さく設定されており、固定時において貫通孔82の縁部にはボルト83のネジ頭が引っ掛かる。ボルト83は、貫通孔82に挿入されると共に袋ナット81の雌螺子部86にねじ込まれることにより、蓋体60Aを本体部50側へ押圧する。ビード62はシール部材70に対して線接触することにより押圧力を付与するため、面接触によってシール部材を押圧する場合(例えば図8に示される構造)に比して、ボルト83の締付力を少なくしても十分に気密性を確保することができる。 The through hole 82 of the lid body 60A is formed at a position facing the female screw portion 86 of the cap nut 81 when the lid body 60A is fixed to the lid body receiving portion 52A. The diameter of the through hole 82 is set to be larger than the diameter of the screw portion of the bolt 83 and smaller than the diameter of the screw head, and the screw head of the bolt 83 is caught on the edge portion of the through hole 82 when fixed. The bolt 83 is inserted into the through hole 82 and screwed into the female screw portion 86 of the cap nut 81, thereby pressing the lid 60A toward the main body portion 50 side. Since the bead 62 applies a pressing force by making line contact with the seal member 70, the tightening force of the bolt 83 is larger than when the seal member is pressed by surface contact (for example, the structure shown in FIG. 8). Even if the amount is reduced, sufficient airtightness can be secured.
 燃料電池システムの運転中は、燃料電池モジュール1の内部は高温のガスが充満するため、燃料電池モジュール1の各部にも熱が伝わり、熱変形を生じさせる場合がある。蓋体60Aに熱変形による歪みが生じると、燃料電池モジュール1内部のガス漏れに繋がる恐れがある。しかし、本実施形態によると、ビード62は、シール部材70の押圧力を集中させるとともに、蓋体60A自体の強度を高めることができる。シール性向上という効果は、ビード62が蓋体60A,60B,60Cに形成されている場合であっても、蓋体受け部52A,52B,53Cに形成されている場合であっても、得ることができる。更に、蓋体60A,60B,60Cにビード62を形成する場合、1つの加工によって、シール性の向上という効果と蓋体60Aの強度向上という効果を同時に得ることができる。 During operation of the fuel cell system, the fuel cell module 1 is filled with high-temperature gas, so that heat is also transmitted to each part of the fuel cell module 1 to cause thermal deformation. If distortion due to thermal deformation occurs in the lid 60 </ b> A, there is a risk of gas leakage inside the fuel cell module 1. However, according to the present embodiment, the beads 62 can concentrate the pressing force of the seal member 70 and increase the strength of the lid 60A itself. Even if the bead 62 is formed on the lid bodies 60A, 60B, and 60C or the lid body receiving portions 52A, 52B, and 53C, the effect of improving the sealing performance can be obtained. Can do. Further, when the beads 62 are formed on the lids 60A, 60B, and 60C, the effect of improving the sealing property and the effect of improving the strength of the lid 60A can be obtained simultaneously by one process.
 ここで、蓋体60A,60B,60Cには、筐体6内部の改質器やセルスタック3との取り合い配管や部材を貫通させるための貫通孔を形成する場合があり、更に当該貫通孔にスタッフィングボックス等の気密構造を設ける場合がある。その際、ビード62をプレス加工により形成した後に、貫通孔を形成すると、プレス加工により発生した残留応力が開放され、蓋体60A,60B,60Cを構成する金属板が歪む(捩れる)可能性がある。このような現象を確実に防止するため、本実施形態に係る蓋体60A,60B,60Cは、補強構造を有している。当該補強構造について、図3、図5及び図6を参照して説明する。なお、図5及び図6は、蓋体60Aのみの構成が示されているが、蓋体60B,60Cも同様の構成を有する。 Here, the lids 60A, 60B, and 60C may be formed with through holes for penetrating pipes and members that are connected to the reformer inside the housing 6 and the cell stack 3, and further to the through holes. An airtight structure such as a stuffing box may be provided. At that time, if the through hole is formed after the bead 62 is formed by pressing, the residual stress generated by the pressing is released, and the metal plates constituting the lids 60A, 60B, 60C may be distorted (twisted). There is. In order to prevent such a phenomenon reliably, the lids 60A, 60B, and 60C according to the present embodiment have a reinforcing structure. The said reinforcement structure is demonstrated with reference to FIG.3, FIG5 and FIG.6. 5 and 6 show the configuration of only the lid 60A, the lids 60B and 60C have the same configuration.
 図3に示すように、蓋体60A,60B,60Cの外縁63には、当該蓋体の厚さ方向へ延びる折り返し部64が形成される。本実施形態においては、折り返し部64は、外側(本体部50の反対側)へ向かって90°折り返されている。折り返し部64は、外縁63の四辺全てに形成されていると共に、蓋体60A,60B,60Cの全周を取り囲むように連続的に形成されている。これによって、蓋体60A,60B,60Cの強度が向上する。折り返し部64は、蓋体60A,60B,60Cの外縁63を折り曲げ加工することによって形成されてもよく、別部材を外縁63に溶接することによって構成してもよい。 As shown in FIG. 3, the outer edge 63 of the lids 60A, 60B, 60C is formed with a folded portion 64 that extends in the thickness direction of the lid. In the present embodiment, the folded portion 64 is folded 90 degrees toward the outside (opposite the main body portion 50). The folded portion 64 is formed on all four sides of the outer edge 63 and is continuously formed so as to surround the entire circumference of the lid bodies 60A, 60B, 60C. Thereby, the strength of the lids 60A, 60B, and 60C is improved. The folded portion 64 may be formed by bending the outer edge 63 of the lids 60 </ b> A, 60 </ b> B, 60 </ b> C, or may be configured by welding another member to the outer edge 63.
 図5及び図6に示すように、蓋体60Aには、貫通孔91が形成されており、当該貫通孔91にスタッフィングボックス等の気密機構SBが固定されている。貫通孔91は、円形状のビード(第2の凸部)92に内包されるように形成されている。すなわち、プレス加工によって、蓋体60Aを構成する金属板に本体部50側の面に凸形状が形成されると共に、外側の面に凹形状が形成されることでビード92が形成され、当該凸凹形状の中に貫通孔91が形成される。これによって、貫通孔91の周辺の金属板の強度が高くなる。 As shown in FIGS. 5 and 6, a through hole 91 is formed in the lid 60 </ b> A, and an airtight mechanism SB such as a stuffing box is fixed to the through hole 91. The through hole 91 is formed so as to be enclosed in a circular bead (second convex portion) 92. That is, by pressing, a convex shape is formed on the surface on the main body 50 side of the metal plate constituting the lid 60A, and a bead 92 is formed by forming a concave shape on the outer surface, and the unevenness is formed. A through hole 91 is formed in the shape. Thereby, the strength of the metal plate around the through hole 91 is increased.
 蓋体60Aを加工する手順の一例として、次のような手順が挙げられる。まず、蓋体60Aを構成する金属板に対してプレス加工を行うことによって、ビード62及びビード92を形成する。当該プレス加工の後(あるいはプレス加工の前でもよい)、折り曲げ加工などによって外縁63に折り返し部64が形成される。次に、穴あけ加工によって、ビード92の中に貫通孔91が形成されると共に、ビード62よりも外側に複数の貫通孔82が形成される。なお、蓋体60Aの加工手順は、当該例に限定されず、順序を変更してもよく、プレス加工と貫通孔の形成を同時に行ってもよく、溶接等を用いてもよい。 As an example of a procedure for processing the lid body 60A, the following procedure is given. First, the bead 62 and the bead 92 are formed by performing press work on the metal plate constituting the lid 60A. After the pressing process (or before the pressing process), the folded portion 64 is formed on the outer edge 63 by a bending process or the like. Next, through holes 91 are formed in the beads 92 by drilling, and a plurality of through holes 82 are formed outside the beads 62. Note that the processing procedure of the lid 60A is not limited to this example, the order may be changed, the press processing and the formation of the through hole may be performed simultaneously, or welding or the like may be used.
 次に、本実施形態に係る燃料電池モジュール1の作用・効果について説明する。 Next, operations and effects of the fuel cell module 1 according to this embodiment will be described.
 まず、比較のために従来の燃料電池モジュール100の構造を図7及び図8を参照して説明する。従来の蓋体160A,160B,160Cは、本体部50の蓋体受け部52A,52B,52Cと対向する周縁部161の部分と、本体部50の開口部51A,51B,51Cを覆う部分とは、凹凸形状を有さない平板状に形成されている。すなわち、周縁部161の本体部50側の面は、平面状に形成されている。蓋体160A,160B,160Cは、シール部材170と面接触することによって、蓋体受け部52A,52B,52Cとの間で押圧する。シール部材170は、蓋体受け部52A,52B,52Cの略全面を覆うような幅広の矩形枠状に形成されている。シール部材170は、袋ナット81及び貫通孔82に対応する位置に円形状の複数の貫通孔170aを有している。 First, the structure of a conventional fuel cell module 100 will be described with reference to FIGS. 7 and 8 for comparison. Conventional lids 160A, 160B, and 160C have a peripheral edge 161 portion that faces the lid receiving portions 52A, 52B, and 52C of the main body portion 50 and a portion that covers the openings 51A, 51B, and 51C of the main body portion 50. It is formed in a flat plate shape that does not have an uneven shape. That is, the surface of the peripheral portion 161 on the main body portion 50 side is formed in a flat shape. The lid bodies 160A, 160B, and 160C are pressed between the lid body receiving portions 52A, 52B, and 52C by making surface contact with the seal member 170. The seal member 170 is formed in a wide rectangular frame shape that covers substantially the entire surface of the lid receiving portions 52A, 52B, and 52C. The seal member 170 has a plurality of circular through holes 170 a at positions corresponding to the cap nuts 81 and the through holes 82.
 従来の燃料電池モジュール100のような構造では、シール部材170が、蓋体160A,160B,160Cの周縁部161及び蓋体受け部52A,52B,52Cと面接触によって押圧力を付与される構造となっていた。このような構造では、ボルト83及び袋ナット81の締結によって発生する押圧力が、接触面全体に分散するような面シール構造となるために、筐体106の気密性を確保することが困難であるという問題があった。更に、当該構造では、シール部材の接触面積を確保するために、幅の広いシール部材を用いる必要があり、これによって、コストが増加してしまうという問題があった。 In the structure such as the conventional fuel cell module 100, the seal member 170 has a structure in which a pressing force is applied by surface contact with the peripheral portion 161 of the lids 160A, 160B, and 160C and the lid body receiving portions 52A, 52B, and 52C. It was. In such a structure, since the pressing force generated by fastening the bolt 83 and the cap nut 81 is a surface seal structure in which the entire contact surface is dispersed, it is difficult to ensure the airtightness of the housing 106. There was a problem that there was. Furthermore, in this structure, in order to secure the contact area of the seal member, it is necessary to use a wide seal member, which increases the cost.
 図9(b)は、蓋体160A,160B,160Cの厚さ方向から見た場合の、シール部材170に作用する押圧力(ハッチングで示されている)を示している。シール部材170は面接触によって押圧力を付与されるため、押圧力が接触面全体に分散し、開口部51A,51B,51Cの全周のうち一部(例えば、図中PTで示される部分)において押圧力が不十分となる可能性がある。また、面接触によって押圧力を付与する構造では、シール部材170の幅W2を広く確保する必要があり、シール材料の搭載量が増加し、コストが増加する。 FIG. 9B shows the pressing force (indicated by hatching) acting on the seal member 170 when viewed from the thickness direction of the lids 160A, 160B, and 160C. Since the pressing force is applied to the seal member 170 by the surface contact, the pressing force is distributed over the entire contact surface, and a part of the entire circumference of the openings 51A, 51B, 51C (for example, a part indicated by PT in the figure). In this case, the pressing force may be insufficient. Further, in the structure in which the pressing force is applied by the surface contact, it is necessary to secure a wide width W2 of the seal member 170, and the amount of the seal material to be mounted increases and the cost increases.
 本実施形態に係る燃料電池モジュール1によれば、蓋体60A,60B,60Cが、本体部50側へ突出すると共に、厚さ方向から見て開口部51A,51B,51Cを全周にわたって取り囲むように延びるビード62を有している。また、このビード62と蓋体受け部52A,52B,52Cとの間には、厚さ方向から見て開口部51A,51B,51Cを全周にわたって取り囲むシール部材70が配置されている。このような構造によって、蓋体60A,60B,60Cを蓋体受け部52A,52B,52Cに固定する際に発生する押圧力は、ビード62に集中する。ビード62は、開口部51A,51B,51Cを全周にわたって取り囲むように形成されているため、開口部51A,51B,51Cの全周を取り囲んで、シール部材70を線状に押圧することが可能となる。このような線シール構造によって、筐体6の気密性を確実に確保することができる。また、このような線シール構造によれば、ビード62付近において押圧力が集中する部分のみにシール部材70を配置すればよく、シール材料の搭載量を減少させ、コストを低減することができる。以上によって、コストを抑えると共に筐体6の気密性を確実に確保することができる。 According to the fuel cell module 1 according to the present embodiment, the lids 60A, 60B, and 60C protrude toward the main body 50 and surround the openings 51A, 51B, and 51C over the entire circumference as viewed from the thickness direction. A bead 62 extending to the bottom. In addition, a seal member 70 is disposed between the bead 62 and the lid receiving portions 52A, 52B, and 52C so as to surround the openings 51A, 51B, and 51C over the entire circumference when viewed from the thickness direction. With such a structure, the pressing force generated when the lid bodies 60A, 60B, and 60C are fixed to the lid body receiving portions 52A, 52B, and 52C is concentrated on the bead 62. Since the bead 62 is formed so as to surround the entire circumference of the openings 51A, 51B, 51C, it can surround the entire circumference of the openings 51A, 51B, 51C and press the seal member 70 linearly. It becomes. With such a line seal structure, the airtightness of the housing 6 can be reliably ensured. Further, according to such a line seal structure, it is only necessary to arrange the seal member 70 only in the portion where the pressing force is concentrated in the vicinity of the bead 62, so that the mounting amount of the seal material can be reduced and the cost can be reduced. As described above, the cost can be reduced and the airtightness of the housing 6 can be reliably ensured.
 図9(a)は、蓋体60A,60B,60Cの厚さ方向から見た場合の、シール部材70に作用する押圧力(ハッチングで示されている)を示している。ビード62は、当該ビード62が描く矩形状の線LS上に押圧力を集中させることができる。この線LSは、開口部51A,51B,51Cを全周にわたって取り囲むように形成されているため、本実施形態に係る構造によって、開口部51A,51B,51Cを全周にわたって封止する線シール構造を構成することができる。全周を取り囲む線LSに押圧力を集中させることによって、確実に気密性を確保することができる。また、線状に押圧力を付与する構造では、シール部材70の幅W1を狭くすることが可能となり、シール材料の搭載量が減少し、コストを抑えることができる。 FIG. 9A shows the pressing force (indicated by hatching) acting on the seal member 70 when viewed from the thickness direction of the lids 60A, 60B, 60C. The bead 62 can concentrate the pressing force on the rectangular line LS drawn by the bead 62. Since the line LS is formed so as to surround the openings 51A, 51B, and 51C over the entire circumference, a line seal structure that seals the openings 51A, 51B, and 51C over the entire circumference by the structure according to the present embodiment. Can be configured. By concentrating the pressing force on the line LS surrounding the entire circumference, airtightness can be reliably ensured. In addition, in the structure in which the pressing force is applied linearly, the width W1 of the seal member 70 can be reduced, the amount of the seal material mounted can be reduced, and the cost can be suppressed.
 また、ビード62は、プレス加工によって形成されている。例えば、蓋体の平面に矩形枠状の凸部材を溶接することによって、凸部を形成する場合、溶接検査や溶接箇所の気密検査を行う必要がある。プレス加工を行うことによって容易に凸部を形成することができる。また、検査を容易にすることができ、蓋体60A,60B,60Cの気密性も確保できる。なお、プレス加工によるビード62に代えて、溶接によって凸部を形成してもよい。 The bead 62 is formed by press working. For example, when forming a convex part by welding a rectangular frame-shaped convex member to the plane of a lid, it is necessary to perform a welding inspection and an airtight inspection of a welding location. A convex part can be easily formed by performing press work. Further, the inspection can be facilitated, and the air tightness of the lids 60A, 60B, 60C can be ensured. In addition, it may replace with the bead 62 by press work and may form a convex part by welding.
 また、蓋体60A,60B,60Cは、ビード92を有し、当該ビード92に貫通孔91が形成される。蓋体60A,60B,60Cに貫通孔91が形成される場合であっても、ビード92によって強度が確保される。蓋体60A,60B,60Cのビード62が溶接によって形成される場合、或いは、蓋体60A,60B,60Cに気密機構SBが溶接によって取り付けられる場合、ビード92は、溶接の熱応力による蓋体60A,60B,60Cの変形を抑制することができる。また、蓋体60A,60B,60Cのビード62がプレス加工によって形成される場合、ビード92は、ビード62のプレス加工時の残留応力の開放による蓋体60A,60B,60Cの変形を抑制することができる。 The lids 60 </ b> A, 60 </ b> B, 60 </ b> C have beads 92, and through holes 91 are formed in the beads 92. Even when the through holes 91 are formed in the lids 60A, 60B, and 60C, the strength is ensured by the beads 92. When the beads 62 of the lids 60A, 60B, 60C are formed by welding, or when the airtight mechanism SB is attached to the lids 60A, 60B, 60C by welding, the beads 92 are covered with the lid 60A by the thermal stress of welding. , 60B, 60C can be suppressed. Further, when the beads 62 of the lids 60A, 60B, and 60C are formed by press working, the bead 92 suppresses deformation of the lids 60A, 60B, and 60C due to release of residual stress when the beads 62 are pressed. Can do.
 また、蓋体60A,60B,60Cの外縁63には、当該蓋体60A,60B,60Cの厚さ方向における外側へ延びる折り返し部64が形成されている。折り返し部64によって、蓋体60A,60B,60Cの強度が確保される。すなわち、発電中に筐体6内の温度が高温となったとしても、折り返し部64は、燃料電池モジュール1内の温度の高温化に起因する蓋体60A,60B,60Cの変形を抑制することができる。このような効果は、ビード62が蓋体60A,60B,60Cに形成されている場合であっても、蓋体受け部52A,52B,53Cに形成されている場合であっても、得ることができる。 Further, the outer edge 63 of the lids 60A, 60B, 60C is formed with a folded portion 64 that extends outward in the thickness direction of the lids 60A, 60B, 60C. The strength of the lids 60A, 60B, 60C is ensured by the folded portion 64. That is, even if the temperature in the housing 6 becomes high during power generation, the folded portion 64 suppresses deformation of the lids 60A, 60B, 60C due to the high temperature in the fuel cell module 1. Can do. Such an effect can be obtained regardless of whether the beads 62 are formed on the lids 60A, 60B, and 60C or the lids 52A, 52B, and 53C. it can.
 また、蓋体60A,60B,60Cのビード62が溶接によって形成される場合、折り返し部64は、溶接の熱応力に起因する歪も抑制することができる。この場合、先に折り返し部64が形成され、その後にビード62が形成されることが好ましい。また、蓋体60A,60B,60Cのビード62がプレス加工によって形成される場合、折り返し部64は、ビード62のプレス加工時の残留応力に起因する歪を抑制することができる。また、図8に示す折り返し部164は、厚さ方向における本体部50側へ延びている。このような構成に比して、本実施形態の折り返し部64は、外側へ延びており、蓋体60A,60B,60Cの変形抑制であるためより好ましい。 Further, when the beads 62 of the lids 60A, 60B, and 60C are formed by welding, the folded portion 64 can also suppress distortion caused by the thermal stress of welding. In this case, it is preferable that the folded portion 64 is formed first, and then the bead 62 is formed. Further, when the bead 62 of the lids 60A, 60B, and 60C is formed by press working, the folded portion 64 can suppress distortion due to residual stress during the press working of the bead 62. 8 is extended to the main body 50 side in the thickness direction. Compared to such a configuration, the folded portion 64 of the present embodiment is more preferable because it extends outward and suppresses deformation of the lids 60A, 60B, and 60C.
 本発明は上述の実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 上述の実施形態では、本体部が開口部を3つ有し3つの蓋体で封止する例について説明したが、本体部の開口部の数(すなわち蓋体の数)は、これに限定されない。例えば、開口部及び蓋体の数が、1つでもよく、2つでもよく、あるいは3つより多くてもよい。 In the above-described embodiment, an example in which the main body has three openings and is sealed with three lids has been described, but the number of openings in the main body (that is, the number of lids) is not limited thereto. . For example, the number of openings and lids may be one, two, or more than three.
 また、貫通孔91がビード92の中に形成されておらず、蓋体の平面部分に形成されていてもよい。 Further, the through hole 91 may not be formed in the bead 92 but may be formed in the flat portion of the lid.
 折り返し部64は、外縁63の四辺全てに連続形成されていなくともよく、例えば、外縁63の各辺における折り返し部64同士が(蓋体の四隅の部分などで)離れていてもよい。また、いずれかの辺のみに形成されていてもよい。また、折り返し部64は、蓋体の厚さ方向に外側へ90°折り返されているが、折り返し方向や折り返し角度は特に限定されない。例えば、蓋体の厚さ方向に内側へ90°折り返されていてもよい(例えば図8に示される態様)。あるいは、折り返し部が設けられていなくともよい。 The folded portions 64 do not have to be continuously formed on all four sides of the outer edge 63. For example, the folded portions 64 on each side of the outer edge 63 may be separated from each other (at the four corners of the lid). Moreover, you may form only in either side. Further, the folded portion 64 is folded 90 degrees outward in the thickness direction of the lid, but the folding direction and the folding angle are not particularly limited. For example, it may be folded 90 ° inward in the thickness direction of the lid (for example, an embodiment shown in FIG. 8). Or the folding | returning part does not need to be provided.
 また、蓋体受け部や螺合部の構成は、上述の実施形態に限定されるものではなく、筐体内部の気密性を確保できるものであれば、適宜変更することができる。例えば、上述の実施形態では、蓋体受け部は、蓋体の厚さ方向から見て筐体の内側へ広がるように形成されているが、外側に広がるように形成されていてもよい。すなわち、蓋体受け部が、開口部を取り囲む四方の壁部よりも外側に広がる構成となる。これに伴って、蓋体の縁部も開口部より外側(四方の壁部よりも外側)へ広がり、螺合部、シール部及びビード(第1の凸部)も開口部より外側へ配置される。また、螺合部は、蓋体受け部にボルトが固定され、ナットを外から締めることによって蓋体を固定する構成となっていてもよい。 Further, the configurations of the lid receiving portion and the screwing portion are not limited to the above-described embodiment, and can be appropriately changed as long as the airtightness inside the housing can be secured. For example, in the above-described embodiment, the lid receiving portion is formed so as to spread toward the inside of the housing as viewed from the thickness direction of the lid, but may be formed so as to spread outward. That is, the lid receiving portion is configured to spread outward from the four wall portions surrounding the opening. Along with this, the edge of the lid also spreads outward from the opening (outside the four walls), and the screwing part, the seal part and the bead (first convex part) are also arranged outside the opening. The The screwing portion may be configured such that a bolt is fixed to the lid receiving portion and the lid is fixed by tightening a nut from the outside.
 また、上述の実施形態では、蓋体が、蓋体受け部側へ突出するビード(第1の凸部)を有し、シール部材が、蓋体のビード(第1の凸部)と蓋体受け部との間で押圧される構成となっていた。これに代えて、蓋体受け部が、蓋体側へ突出するビード(第1の凸部)を有し、シール部材が、蓋体受け部のビード(第1の凸部)と蓋体との間で押圧される構成としてもよい。すなわち、開口部を取り囲むようなビードをプレス加工などによって蓋体受け部に形成し、蓋体には実施形態においてビード62に対応するような凸部を形成することなく平板状とする。なお、蓋体と蓋体受け部の両方にビードを形成し、シール部材を両側からビードで押圧する構成としてもよい。 Moreover, in the above-mentioned embodiment, the lid body has a bead (first convex portion) protruding toward the lid body receiving portion side, and the sealing member is a bead (first convex portion) of the lid body and the lid body. It was the structure pressed between receiving parts. Instead, the lid receiving portion has a bead (first convex portion) protruding toward the lid body, and the sealing member is formed between the bead (first convex portion) of the lid receiving portion and the lid body. It is good also as a structure pressed between. That is, a bead surrounding the opening is formed in the lid receiving portion by press working or the like, and the lid is flat without forming a convex portion corresponding to the bead 62 in the embodiment. In addition, it is good also as a structure which forms a bead in both a cover body and a cover body receiving part, and presses a sealing member with a bead from both sides.
 また、セルスタックの燃料極に、改質ガスではなく燃料電池システム外部から導入する純水素、水素富化ガスなど改質処理を必要としない燃料を供給する燃料電池システムにおいては、改質器2、水気化部4を省略することができる。 In a fuel cell system that supplies fuel that does not require reforming treatment, such as pure hydrogen or hydrogen-enriched gas introduced from outside the fuel cell system, to the fuel electrode of the cell stack, the reformer 2 The water vaporization unit 4 can be omitted.
 また、図10に示すような構成を採用してもよい。図10に示す蓋体60Aは、厚さ方向D1から見てビード62より外周側に貫通孔82を有し、厚さ方向D1から見て貫通孔82より外周側に蓋体受け部52A側へ向かって突出するビード65を有する。ビード65は、シール用のビード62と同じく、全周に亘って形成されていてもよく、途中で途切れていてもよい。 Further, a configuration as shown in FIG. 10 may be adopted. The lid 60A shown in FIG. 10 has a through hole 82 on the outer peripheral side from the bead 62 when viewed from the thickness direction D1, and toward the lid receiving portion 52A on the outer peripheral side from the through hole 82 when viewed from the thickness direction D1. It has a bead 65 projecting toward it. The bead 65 may be formed over the entire circumference, like the sealing bead 62, or may be interrupted in the middle.
 図11に示すように、発電中の燃料電池モジュール1内の温度の高温化に起因する蓋体60Aの変形(図11では、変形前の蓋体60Aの内側の面の位置を点線STにて示している)が生じるとしても、ビード65が当該蓋体60Aを外周側で蓋体受け部52Aと接触することにより蓋体60Aを支持する。これによって、ビード65は、蓋体60Aの変形を抑制することができる。ビード65が蓋体60Aを支持することにより、ビード62のシール部材70に対する押圧力を確実に維持することができる。なお、ビード65は、溶接によって形成されてもよく、プレス加工によって形成されてもよい。また、ビード65は、蓋体受け部52Aに形成されており、蓋体60A側へ突出していてもよい。 As shown in FIG. 11, the deformation of the lid 60A caused by the temperature rise in the fuel cell module 1 during power generation (in FIG. 11, the position of the inner surface of the lid 60A before deformation is indicated by a dotted line ST. The bead 65 supports the lid body 60A by contacting the lid body 60A with the lid body receiving portion 52A on the outer peripheral side. Thereby, the bead 65 can suppress deformation of the lid 60A. Since the bead 65 supports the lid 60A, the pressing force of the bead 62 against the seal member 70 can be reliably maintained. The bead 65 may be formed by welding or may be formed by pressing. Moreover, the bead 65 is formed in the cover body receiving part 52A, and may protrude to the cover body 60A side.
 また、図12に示すような構成を採用してもよい。図12に示す蓋体60Aは、厚さ方向D1から見てビード62より内周側に、ビード62と反対側(外側)へ向かって突出するビード66を有する。ビード66は、ビード62に沿って延びるように形成されている。ビード66は、シール用のビード62と同じく、全周に亘って形成されていてもよく、途中で途切れていてもよい。 Further, a configuration as shown in FIG. 12 may be adopted. A lid 60A shown in FIG. 12 has a bead 66 protruding toward the opposite side (outside) of the bead 62 on the inner peripheral side of the bead 62 when viewed from the thickness direction D1. The bead 66 is formed so as to extend along the bead 62. The bead 66 may be formed over the entire circumference, like the sealing bead 62, or may be interrupted in the middle.
 図13に示すように、発電中の燃料電池モジュール1内の温度の高温化に起因する蓋体60Aの変形(図13では、変形前の蓋体60Aの内側の面の位置を点線STにて示している)が生じるとしても、ビード66が当該蓋体60Aの変形をビード62の内周側で抑制する。これによって、ビード66は、蓋体60Aのシール部分に係るビード62付近の変形を抑制することができる。これにより、ビード62のシール部材70に対する押圧力を確実に維持することができる。なお、ビード66は、溶接によって形成されてもよく、プレス加工によって形成されてもよい。 As shown in FIG. 13, the deformation of the lid 60A caused by the temperature rise in the fuel cell module 1 during power generation (in FIG. 13, the position of the inner surface of the lid 60A before deformation is indicated by a dotted line ST. Bead 66 suppresses deformation of the lid 60A on the inner peripheral side of the bead 62. Thereby, the bead 66 can suppress deformation in the vicinity of the bead 62 related to the seal portion of the lid 60A. Thereby, the pressing force with respect to the sealing member 70 of the bead 62 can be maintained reliably. The bead 66 may be formed by welding or may be formed by pressing.
 1…燃料電池モジュール、2…改質器、3…セルスタック、4…水気化部、6…筐体、11…収納室、12…排ガス流路、13…酸化剤流路、50…本体部、51A,51B,51C…開口部、52A,52B,52C…蓋体受け部、60A,60B,60C…蓋体、61…周縁部、62…ビード(第1の凸部)、64…折り返し部、65…ビード(第3の凸部)、66…ビード(第4の凸部)、70…シール部材、80…螺合部、91…貫通孔、92…ビード(第2の凸部)。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell module, 2 ... Reformer, 3 ... Cell stack, 4 ... Water vaporization part, 6 ... Housing | casing, 11 ... Storage chamber, 12 ... Exhaust gas flow path, 13 ... Oxidant flow path, 50 ... Main-body part , 51A, 51B, 51C ... opening, 52A, 52B, 52C ... lid receiving part, 60A, 60B, 60C ... lid, 61 ... peripheral edge, 62 ... bead (first convex part), 64 ... folding part , 65 ... beads (third convex part), 66 ... beads (fourth convex part), 70 ... sealing member, 80 ... screwing part, 91 ... through hole, 92 ... bead (second convex part).

Claims (9)

  1.  水素含有ガス及び酸化剤を用いて発電を行うセルスタックを収納する筐体を備える燃料電池モジュールであって、
     前記筐体は、
      前記セルスタックを収納すると共に、開口部を有する本体部と、
      前記本体部の前記開口部を覆う蓋体と、を備え、
     前記本体部は、前記蓋体の厚さ方向から見て前記開口部を全周にわたって取り囲むと共に、前記蓋体の周縁部と対向する蓋体受け部を有し、
     前記蓋体と前記蓋体受け部との間には、前記厚さ方向から見て前記開口部を全周にわたって取り囲むシール部材が配置され、
     前記蓋体及び前記蓋体受け部の少なくとも一方は、前記シール部材側へ突出すると共に、前記厚さ方向から見て前記開口部を全周にわたって取り囲むように延びる第1の凸部を有する燃料電池モジュール。
    A fuel cell module comprising a housing that houses a cell stack that generates electricity using a hydrogen-containing gas and an oxidant,
    The housing is
    While storing the cell stack, a main body having an opening,
    A cover that covers the opening of the main body,
    The main body portion surrounds the opening over the entire circumference when viewed from the thickness direction of the lid body, and has a lid body receiving portion facing the peripheral edge portion of the lid body,
    Between the lid body and the lid body receiving portion is disposed a seal member that surrounds the opening over the entire circumference as seen from the thickness direction,
    At least one of the lid body and the lid body receiving portion protrudes toward the seal member, and has a first convex portion that extends so as to surround the opening as viewed from the thickness direction. module.
  2.  前記蓋体は、前記蓋体受け部側へ突出する前記第1の凸部を有し、
     前記シール部材は、前記第1の凸部と前記蓋体受け部との間で押圧される請求項1記載の燃料電池モジュール。
    The lid has the first convex portion protruding toward the lid receiving portion side,
    The fuel cell module according to claim 1, wherein the seal member is pressed between the first convex portion and the lid receiving portion.
  3.  前記蓋体受け部は、前記蓋体側へ突出する前記第1の凸部を有し、
     前記シール部材は、前記第1の凸部と前記蓋体との間で押圧される請求項1記載の燃料電池モジュール。
    The lid receiving portion has the first convex portion protruding toward the lid side,
    The fuel cell module according to claim 1, wherein the seal member is pressed between the first convex portion and the lid.
  4.  前記第1の凸部は、プレス加工によって形成される請求項1~3の何れか一項記載の燃料電池モジュール。 The fuel cell module according to any one of claims 1 to 3, wherein the first convex portion is formed by pressing.
  5.  前記蓋体は、第2の凸部を有し、当該第2の凸部に貫通孔が形成される請求項1~4の何れか一項記載の燃料電池モジュール。 The fuel cell module according to any one of claims 1 to 4, wherein the lid has a second convex portion, and a through hole is formed in the second convex portion.
  6.  前記蓋体の外縁には、前記厚さ方向へ折り返される折り返し部が形成される請求項1~5の何れか一項記載の燃料電池モジュール。 The fuel cell module according to any one of claims 1 to 5, wherein a folded portion that is folded back in the thickness direction is formed on an outer edge of the lid.
  7.  前記蓋体は、前記厚さ方向から見て前記第1の凸部より外周側に貫通孔を有し、
     前記蓋体及び前記蓋体受け部の少なくとも一方は、他方へ突出すると共に、前記厚さ方向から見て前記貫通孔より外周側に第3の凸部を有する請求項1~6のいずれか一項記載の燃料電池モジュール。
    The lid body has a through hole on the outer peripheral side from the first convex portion when viewed from the thickness direction,
    7. At least one of the lid body and the lid body receiving portion protrudes to the other and has a third convex portion on the outer peripheral side from the through hole when viewed from the thickness direction. The fuel cell module according to item.
  8.  前記蓋体は、前記厚さ方向から見て前記第1の凸部より内周側に、前記第1の凸部に沿って延びる第4の凸部を有する請求項1~7のいずれか一項記載の燃料電池モジュール。 8. The lid according to claim 1, further comprising a fourth convex portion extending along the first convex portion on an inner peripheral side of the first convex portion when viewed from the thickness direction. The fuel cell module according to item.
  9.  前記筐体は、水素含有燃料を用いて改質ガスを発生させる改質器を収納し、
     前記セルスタックは、前記水素含有燃料として前記改質器が発生する改質ガスを用いて発電を行う請求項1~8のいずれか一項記載の燃料電池モジュール。
    The housing houses a reformer that generates reformed gas using a hydrogen-containing fuel,
    The fuel cell module according to any one of claims 1 to 8, wherein the cell stack performs power generation using a reformed gas generated by the reformer as the hydrogen-containing fuel.
PCT/JP2012/060071 2011-04-15 2012-04-12 Fuel battery module WO2012141268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013509969A JP6068333B2 (en) 2011-04-15 2012-04-12 Fuel cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011091158 2011-04-15
JP2011-091158 2011-04-15

Publications (1)

Publication Number Publication Date
WO2012141268A1 true WO2012141268A1 (en) 2012-10-18

Family

ID=47009432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060071 WO2012141268A1 (en) 2011-04-15 2012-04-12 Fuel battery module

Country Status (3)

Country Link
JP (1) JP6068333B2 (en)
TW (1) TW201251190A (en)
WO (1) WO2012141268A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128003B2 (en) * 2017-12-27 2021-09-21 Kabushiki Kaisha Toshiba Secondary battery and method of recycling secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143730A (en) * 1999-11-16 2001-05-25 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell
JP2002235801A (en) * 2001-02-09 2002-08-23 Tokai Rubber Ind Ltd Assembling device for fuel battery for automobile
JP2006216333A (en) * 2005-02-02 2006-08-17 Honda Motor Co Ltd Fuel cell stack
JP2008021486A (en) * 2006-07-12 2008-01-31 Toyota Motor Corp Fuel cell storage case
JP2009004270A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Fuel cell outer case

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143730A (en) * 1999-11-16 2001-05-25 Mitsubishi Heavy Ind Ltd Solid polymer fuel cell
JP2002235801A (en) * 2001-02-09 2002-08-23 Tokai Rubber Ind Ltd Assembling device for fuel battery for automobile
JP2006216333A (en) * 2005-02-02 2006-08-17 Honda Motor Co Ltd Fuel cell stack
JP2008021486A (en) * 2006-07-12 2008-01-31 Toyota Motor Corp Fuel cell storage case
JP2009004270A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Fuel cell outer case

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128003B2 (en) * 2017-12-27 2021-09-21 Kabushiki Kaisha Toshiba Secondary battery and method of recycling secondary battery

Also Published As

Publication number Publication date
JPWO2012141268A1 (en) 2014-07-28
JP6068333B2 (en) 2017-01-25
TW201251190A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
WO2012141309A1 (en) Fuel cell module
JP6030547B2 (en) Fuel cell module
JP5947226B2 (en) Fuel cell module
US20150093666A1 (en) Reformer support structure and fuel cell module
WO2012137934A1 (en) Fuel cell module
US7850748B2 (en) Burner for fuel reformer of fuel cell system
JP5756327B2 (en) Fuel cell module
JP5968876B2 (en) Fuel cell module
WO2015005441A1 (en) Fuel cell device
EP3291344B1 (en) Fuel-cell power generation unit and fuel-cell stack
JP6068333B2 (en) Fuel cell module
WO2012141305A1 (en) Fuel cell module
JP5763396B2 (en) Fuel cell module
JP5946730B2 (en) Fuel cell module
JP2014032801A (en) Fuel cell module
WO2012111824A1 (en) Fuel cell module
JP7244470B2 (en) fuel cell power module
AU2011376555B2 (en) Fuel cell stack with thin endplate with integrated gas distribution tubes
JP2008235092A (en) Fuel cell system
JP2015028864A (en) Fuel battery device
JP2015050024A (en) Fuel cell power generation system and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771350

Country of ref document: EP

Kind code of ref document: A1