WO2012139859A1 - Verfahren zum betrieb eines wechselstrom-elektrolichtbogenofens, vorrichtung zur durchführung des verfahrens sowie ein wechselstrom-elektrolichtbogenofen mit einer solchen vorrichtung - Google Patents
Verfahren zum betrieb eines wechselstrom-elektrolichtbogenofens, vorrichtung zur durchführung des verfahrens sowie ein wechselstrom-elektrolichtbogenofen mit einer solchen vorrichtung Download PDFInfo
- Publication number
- WO2012139859A1 WO2012139859A1 PCT/EP2012/054863 EP2012054863W WO2012139859A1 WO 2012139859 A1 WO2012139859 A1 WO 2012139859A1 EP 2012054863 W EP2012054863 W EP 2012054863W WO 2012139859 A1 WO2012139859 A1 WO 2012139859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slag
- electrode
- furnace
- electric arc
- arc furnace
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/28—Arrangement of controlling, monitoring, alarm or the like devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5211—Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/08—Heating by electric discharge, e.g. arc discharge
- F27D11/10—Disposition of electrodes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
- F27D21/0028—Devices for monitoring the level of the melt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
- F27D21/04—Arrangements of indicators or alarms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
- G06N5/048—Fuzzy inferencing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to a method for operating an alternating current electric arc furnace, comprising at least one electrode for producing a melt in a furnace vessel, where vibrations are measured ⁇ on a wall of the furnace vessel, through which a slag height of the melt is determined.
- the invention further relates to a device for carrying out this method and an AC electric arc furnace with such a device.
- a foamed slag or slag is formed and blown by blowing in a mixture of media, e.g. a mixture of injection coal and oxygen, foamed to improve the energy input by means of an arc generated by the electrodes of the electric arc furnace or to reduce the losses by radiation.
- a mixture of media e.g. a mixture of injection coal and oxygen
- foamed to improve the energy input by means of an arc generated by the electrodes of the electric arc furnace or to reduce the losses by radiation.
- the state of the foam slag of the melt is a measure of the effectiveness of the energy input. The aim is therefore to achieve as far as possible the process requirements adapted level of foamed slag in the furnace interior.
- WO 2010/088972 for controlling a carbon monoxide emission of an electric arc furnace determine the height of the foamed slag, wherein the coal ⁇ entry and / or the oxygen supply are controlled so that the height of the foamed slag is kept below a maximum value ⁇ .
- control of the carbon input has the disadvantage that if no constant and uniform slag height is achieved for all areas of the electric arc furnace in a short time due to delay in the coal conveyance, too much radiant power is delivered to the walls. Hot spots are produced on the furnace walls, causing energy losses and increasing wear.
- the object of the invention is to enable a rapid reaction to the change in slag height in the AC electric arc furnace.
- the object is achieved by a method for operating an AC electric arc furnace, comprising at least one electrode for producing a melt in a furnace vessel, wherein vibrations are measured on a wall of the Ofenge ⁇ vessel, through which a slag height of the melt is determined and wherein given by a set value control and / or control signals in case of deviations of a he ⁇ mediated actual value of the slag height, through which an arc length which is adapted at least one electrode.
- At least one structure-borne sound sensor for detecting vibrations on a wall of a furnace vessel of an AC electric arc furnace, wherein the AC electric arc furnace has at least one electrode for producing a melt in the furnace vessel,
- a computing unit for calculating the actual value of the sleep ⁇ cken Here in the furnace vessel, - And a control or Regelemheit for adjusting the arc length of the at least one electrode at Abwei ⁇ chungen the actual value of the slag height of the target value.
- the target value is not an absolute value, but an allowable range, which is characterized by a permissible maximum value and a permissible minimum value. Upon exceeding or falling below the target range of the allowable maximum value over ⁇ reached or the permissible minimum value is thus maintained.
- the invention is based on the idea that, in response to a change in the height of the slag in the furnace vessel, the length of the arcs z generated in the AC electric arc furnace can be influenced. This is done by a corresponding control of the at least one electrode of the AC electric arc furnace, in particular via regulation of the impedance of the electrode. It is true that an increase in the impedance leads to an extension of the arc length and thus to a He increase the radiation power. A lower impedance in turn leads to the reduction of the arc length and thus the radiation power, but in this case the thermal convection of the arc is increased.
- the coal feed is increased or reduced for a specific time, as can be deduced from WO 2010/088972. Due to the delay in delivery elapses until the reaction to this measure egg ⁇ niger time, in the order of about 20 seconds lies. In comparison, the electrode control takes place to adapt the arc length with a significantly shorter reaction time of about one second. Thanks to the control of the Lichtbo ⁇ gene length lower radiation losses are present, which have a minimized radiation to the furnace walls result.
- the targeted, demand-oriented performance optimization of the electrodes also achieves a uniform and rapid melting of the solids or scrap filling of the alternating current electric arc furnace.
- a further advantage of the optimized control of the arc length is the re ⁇ duzierung of Einblaskohlen fürs, thus less CO 2 ⁇ shock is achieved by lower energy and carbon consumption. The process is thus characterized by higher productivity, lower energy losses, lower operating time and by reducing wall wear.
- the measurement of the height of the slag is based on that in the
- the arithmetic unit which determines the slag height in the furnace vessel on the basis of the measurement signals of the at least one structure-borne sound sensor , is in particular part of the control and / or regulating unit which, for the sake of simplicity, is further referred to as Regelein ⁇ unit. After the actual value of the slag height has been calculated, it is compared with the desired value or desired range. In case of deviations, the control unit generates the control and / or control signals for adjusting the arc length.
- a highly dynamic and targeted control or re gelung arc length of the melting process is divided into at least two, in particular in three periods of the development of slag and regulates the arc length of the at least is one electrode in dependence of the Ent ⁇ development period.
- the response to the slag change is thus taking into account the time elapsed since the start of the smelting process in the AC electric arc furnace, since this time is crucial for the development of slag.
- ⁇ det at an initial period of the at least one Elect ⁇ rode solid which befin with a large Swiftmaschinen is preferably the arc length is at least reduced when it falls below the target value of the one electrode, WO by an increased convective near or below Electrode is achieved.
- the arc length of the at least one electrode he ⁇ heights when falling below the target value. This increases the radiant power and this favors the melting of the scrap in the vicinity of the wall. If an increase in the radiation power and therefore the waste radiation should not be accepted to the furnace wall, is according to an alternative preferred embodiment in value fell below the target value in the initial period of the light ⁇ arc length at least maintaining the unchanged one electrode and the Operating time of the power supply is extended.
- the arc length of the at least one electrode is reduced both in the slag period and in the end period of the slag development when the value falls below the desired value. In order to avoid wear on the furnace walls, in this case the radiation power delivered to the furnace wall is reduced.
- Exceeding the target value is treated equally in all development periods of the slag in particular. If the actual value exceeds the nominal value, preference ⁇ , the arc length of höht at least one ER electrode.
- the adjustment of the arc length is in particular comple ⁇ zend to a regulation of carbon and oxygen injection in response to the change of the slag level.
- the coals ⁇ material supply in the AC electric arc furnace at variations in the slag height from the nominal value is also regu ⁇ lines. If, for example, the slag height is above the desired value or setpoint range, the coal ion is reduced. Since the reaction time to this operation is several Se ⁇ customer, the arc length of the electrode is adjusted in parallel. Conversely, when falling below the target value for the slag height, the carbon supply he ⁇ increases and at the same time the arc length is also adjusted.
- Analog is conveniently the oxygen supply to the AC electric arc furnace at the slag height deviations from the nominal value corresponding to gesteu ⁇ ert or regulated.
- the oscillations of the AC electric arc furnace are preferably measured with the aid of at least one structure-borne sound sensor , in particular an acceleration sensor.
- the structure-borne sound of the arc is passed through the melt and / or through the foam slag to the furnace vessel and can be measured there in the form of vibrations.
- the structure-borne sound sensors are in particular indirectly and / or directly connected to the furnace vessel or to the wall of the furnace vessel.
- the structure-borne sound sensors for example, are arranged at regular intervals around the furnace vessel. In order to increase the accuracy of the structure-borne sound measurements, a structure-borne sound sensor is provided in particular per electrode.
- the alternating current electric arc furnace expediently has three electrodes and one structure-borne sound sensor is provided for each electrode.
- Each electrode is assigned to a zone of the furnace vessel and the height of the slag is determined for each zone.
- the control or regulation of each of the three electrodes takes place in particular independently of the other two electrodes.
- the foam slag height is measured separately in all three zones of the furnace vessel and the arc length of each of the three electrodes is adjusted individually to the spatial slag height distribution in the furnace vessel on the basis of the measurement data of the corresponding zone.
- At least one fuzzy controller is used to control the electrode.
- Fuzzy controllers are systems that belong to the class of characteristic controllers that correspond to the theory of fuzzy logic. In each control step, three sub-steps are performed: a fuzzyfication, an inference and finally a defuzzification. The individual inputs and outputs are called linguistic variables, which each include fuzzy sets.
- Such a fuzzy controller can, for example, fall back on a reaction model stored in the arithmetic unit.
- FIG. 1 shows schematically an AC electric arc furnace
- FIG. 1 shows an AC electric arc furnace 1 with a furnace vessel 2, into which a plurality of electrodes 3a, 3b, 3c, which are coupled via power supply lines to a power supply device 12, are guided.
- the power supply device 12 preferably has a furnace transformer.
- feed materials such as scrap are melted in the alternating current electric arc furnace 1.
- a slag or foam slag not shown here is formed.
- structure-borne noise sensors 4a, 4b, 4c for measuring vibrations are arranged on a wall 2a of the furnace vessel 2, ie at the outer boundary of the furnace vessel 2, structure-borne noise sensors 4a, 4b, 4c for measuring vibrations are arranged.
- the structure-borne sound ⁇ sensors 4a, 4b, 4c may be connected to the furnace vessel 2 indirectly and / or directly.
- the acoustic emission sensors 4a, 4b, 4c are in particular to the electrodes 3a, 3b, 3c arranged gegenü ⁇ bercharacter sides of the wall 2a.
- the structure-borne sound sensors 4a, 4b, 4c are in this case preferably designed as Accelerati ⁇ supply sensors and positioned above the foaming slag in the furnace vessel.
- Each structure-borne sound sensor 4a, 4b, 4c is an electrode 3a, 3b, associated 3c can thus cavities ⁇ Lich resolved information about the slag height in three zones of the furnace vessel 2 which are formed around each of the electrodes 3a, 3b, 3c, can be obtained.
- the measured values or signals of the structure-borne sound sensors 4a, 4b, 4c are performed via protected lines 5a, 5b, 5c in a ⁇ opti cal device 6 and passed from there via an optical fiber 7 in the direction of a computing unit. 8
- the signal lines 5a, 5b, 5c are preferably protected from heat, electromagnetic fields, mechanical stress and / or other loads.
- sensor and control devices 13a, 13b, 13c are provided on the power supply lines of the electrodes 3a, 3b, 3c, with the aid of which current and / or voltage or the energy supplied to the electrodes 3a, 3b, 3c is measured and can be regulated.
- the sensor and control devices 13a, 13b, 13c are formed with a control unit 8, for example via a cable
- Signal lines 14a, 14b, 14c coupled. More Signallei ⁇ obligations 14d, 14e, 14f serve to connect the sensor and control devices 13a, 13b, 13c with a control or regulating device 9, which receives the control requirements of the computing unit. 8
- the control and / or regulating device 9 is further referred to simply as a control device 9.
- the integrated crizein ⁇ 8 may be an integral part of the control and / or regulating device. 9
- the structure-borne noise sensors 4a, 4b, 4c, the sensor and control devices 13a, 13b, 13c, the arithmetic unit 8 and the control device 9 are part of a device 10, which is indicated in FIG 1 by dashed lines.
- the AC electric arc furnace 1 further includes carbon blowing devices 15a, 15b, 15c and oxygen blowing devices 16a, 16b, 16c.
- the measured values or signals of the structure-borne sound sensors 4a, 4b, 4c and of the sensor and control devices 13a, 13b, 13c are detected and evaluated in order to determine the height of the foamed slag in the furnace vessel 2.
- the of the Structure-borne noise sensors 4a, 4b, 4c detected measured values or signals are correlated with the height of the slag, with a temporal resolution in the range of about one to two seconds is possible.
- the arithmetic unit 8 transmits at least one control signal or a regulation input based on the currently calculated height of the foamed slag per zone in the furnace vessel 2 or averaged over the zones to the control device 9.
- the control device 9 regulates the specification of the computing unit 8 both the supply of carbon and oxygen and the arc lengths of the electrodes 3a, 3b, 3c on the impedance of the electrodes 3a, 3b, 3c. Decisive for this scheme is a temporal differentiation between the different development periods of the foamed slag, so that the arc is regulated differently depending on the different stages of slag formation.
- the control device 9 preferably comprises a fuzzy controller 11.
- Electrodes 3a, 3b and 3c will be explained with reference to the diagram in FIG. 2, in which the relative slag height H re i is shown in FIG. 2, in which the relative slag height H re i is shown in FIG. 2,
- Time t is applied.
- the X-axis represents time in seconding ⁇ the beginning of the melting operation in the AC electric-arc furnace 1.
- the measurement signal of the three-borne sensors 4a, 4b, 4c, ie the course of the sleep ⁇ cken Too for the three zones determined in the Oven vessel 2 is indicated by three os ⁇ zillierende lines A, B, C.
- An initial or slag build-up period I in which the slag height increases, lasts, according to FIG. 2, to approximately 2450 seconds after the start of the melting process. It is followed by a slag period in which the
- Slag height averaged over time remains essentially con ⁇ stant. From about 3150 seconds after the start of the melting process in the AC electric arc furnace 1 begins a final period of slag formation, in which the fluctuations of the slag height H re i. are particularly strong and the average te relative slag height is slightly lower than in the slag period.
- the reference symbol S in FIG. 2 denotes a desired value for the relative slag height H re i.
- the target value S is different in the three development periods of the slag.
- the setpoint value S may alternatively represent a setpoint range between a permissible minimum value and a permissible maximum value.
- the initial period I can be a strong foaming occurring defects ⁇ th, but the foaming may in some areas that are not heated enough, be greatly delayed.
- four cases can be distinguished:
- the control of the arc length depends on whether the larger scrap chunks in the vicinity of the electrodes or the wall of the AC electric arc furnace befin ⁇ the. When you are below the electrode, the arc is shortened; if you are closer to the wall, the arc lengthens.
- the target value setting S un ⁇ is undershot, then the arc lengths of the respective electrode 3a, 3b, 3c, which is ordered to-this zone is reduced.
- the radiation power is correspondingly corrected ⁇ down to conserve the wall 2a in operation.
- the fuzzy-based control system outputs the correction factors for the individual arc lengths, which are processed and adjusted in an electrode control.
- the wesentli ⁇ che advantage of controlling the arc length is the short reaction time of about one second. Thus it can be alternates to the ruling in the furnace vessel 2 conditions rea ⁇ particularly fast.
- the adaptation of the arc length is in particular ⁇ special in combination with a regulation of Kohlenstoff,. Operated oxygen supply and serves to optimize the power input and thus to lower radiation losses to the wall of the AC electric arc furnace.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Details (AREA)
- Discharge Heating (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2013011878A MX338597B (es) | 2011-04-13 | 2012-03-20 | Procedimiento para la operacion de un horno de arco electrico de corriente alterna, dispositivo para realizar el procedimiento asi como un horno de arco electrico de corriente alterna con un dispositivo de este tipo. |
EP12713904.6A EP2683999A1 (de) | 2011-04-13 | 2012-03-20 | Verfahren zum betrieb eines wechselstrom-elektrolichtbogenofens, vorrichtung zur durchführung des verfahrens sowie ein wechselstrom-elektrolichtbogenofen mit einer solchen vorrichtung |
RU2013150350/02A RU2605739C2 (ru) | 2011-04-13 | 2012-03-20 | Способ регулирования длины электрической дуги в электродуговой печи, устройство для осуществления способа, а также электродуговая печь с таким устройством |
US14/111,419 US20140112365A1 (en) | 2011-04-13 | 2012-03-20 | Method for operating alternating-current electric arc furnace, device for performing method, and alternating-current electric arc furnace having such device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11162238A EP2511638A1 (de) | 2011-04-13 | 2011-04-13 | Verfahren zum Betrieb eines Elektrolichtbogenofens, Vorrichtung zur Durchführung des Verfahrens sowie ein Elektrolichtbogenofen mit einer solchen Vorrichtung |
EP11162238.7 | 2011-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012139859A1 true WO2012139859A1 (de) | 2012-10-18 |
Family
ID=44318206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/054863 WO2012139859A1 (de) | 2011-04-13 | 2012-03-20 | Verfahren zum betrieb eines wechselstrom-elektrolichtbogenofens, vorrichtung zur durchführung des verfahrens sowie ein wechselstrom-elektrolichtbogenofen mit einer solchen vorrichtung |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140112365A1 (de) |
EP (2) | EP2511638A1 (de) |
MX (1) | MX338597B (de) |
RU (1) | RU2605739C2 (de) |
WO (1) | WO2012139859A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013222158A1 (de) * | 2013-10-31 | 2015-05-13 | Siemens Aktiengesellschaft | Verfahren zum Betreiben eines Lichtbogenofens sowie Lichtbogenofen |
DE102014204239A1 (de) * | 2014-03-07 | 2015-09-10 | Siemens Aktiengesellschaft | Verfahren zur Bestimmung der Variation einer Schlackenhöhe |
CN103900375B (zh) * | 2014-04-18 | 2016-01-20 | 大连理工大学 | 电弧炉冶炼电熔镁预防喷炉系统及方法 |
CN104596315B (zh) * | 2015-01-27 | 2016-10-26 | 中国恩菲工程技术有限公司 | 适于泡沫渣炉况的电炉功率控制装置 |
BR112021021108A2 (pt) * | 2019-04-22 | 2023-02-23 | Nippon Steel Corp | Método para produzir ferro fundido contendo cromo |
IT201900025441A1 (it) * | 2019-12-23 | 2021-06-23 | Danieli Off Mecc | Metodo di fusione in un forno elettrico ad arco e apparato di fusione |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0661910A1 (de) * | 1993-12-29 | 1995-07-05 | ABB Management AG | Verfahren zur Elektrodenregelung eines Gleichstrom-Lichtbogenofens und Elektrodenregeleinrichtung |
WO2007009924A1 (de) | 2005-07-22 | 2007-01-25 | Siemens Aktiengesellschaft | Verfahren zur bestimmung mindestens einer zustandsgrösse eines elektrolichtbogenofens und elektrolichtbogenofen |
WO2009095293A2 (de) | 2008-01-31 | 2009-08-06 | Siemens Aktiengesellschaft | Verfahren zur ermittlung eines stückigkeitsmasses für feststoff in einem lichtbogenofen, einen lichtbogenofen, eine signalverarbeitungseinrichtung sowie programmcode und ein speichermedium |
WO2010088972A1 (de) | 2009-02-03 | 2010-08-12 | Siemens Aktiengesellschaft | Verfahren und vorrichtung zur regelung eines kohlenmonoxid-ausstosses eines elektrolichtbogenofens |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2014762C1 (ru) * | 1991-07-05 | 1994-06-15 | Акционерное общество открытого типа "Санкт-Петербургское акционерное общество научно-исследовательского и проектного института основной химической промышленности" | Система автоматического управления электрическим режимом рудно-термической печи |
DE19711453C2 (de) * | 1997-03-19 | 1999-02-25 | Siemens Ag | Verfahren zur Regelung bzw. Steuerung eines Schmelzprozesses in einem Drehstrom-Lichtbogenofen |
RU2268556C1 (ru) * | 2004-04-01 | 2006-01-20 | Государственное Учреждение Институт металлургии Уральского отделения Российской Академии Наук (ГУ ИМЕТ УрО РАН) | Способ управления технологией электродуговой восстановительной плавки |
-
2011
- 2011-04-13 EP EP11162238A patent/EP2511638A1/de not_active Withdrawn
-
2012
- 2012-03-20 EP EP12713904.6A patent/EP2683999A1/de not_active Withdrawn
- 2012-03-20 MX MX2013011878A patent/MX338597B/es active IP Right Grant
- 2012-03-20 RU RU2013150350/02A patent/RU2605739C2/ru active
- 2012-03-20 US US14/111,419 patent/US20140112365A1/en not_active Abandoned
- 2012-03-20 WO PCT/EP2012/054863 patent/WO2012139859A1/de active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0661910A1 (de) * | 1993-12-29 | 1995-07-05 | ABB Management AG | Verfahren zur Elektrodenregelung eines Gleichstrom-Lichtbogenofens und Elektrodenregeleinrichtung |
WO2007009924A1 (de) | 2005-07-22 | 2007-01-25 | Siemens Aktiengesellschaft | Verfahren zur bestimmung mindestens einer zustandsgrösse eines elektrolichtbogenofens und elektrolichtbogenofen |
WO2009095293A2 (de) | 2008-01-31 | 2009-08-06 | Siemens Aktiengesellschaft | Verfahren zur ermittlung eines stückigkeitsmasses für feststoff in einem lichtbogenofen, einen lichtbogenofen, eine signalverarbeitungseinrichtung sowie programmcode und ein speichermedium |
WO2010088972A1 (de) | 2009-02-03 | 2010-08-12 | Siemens Aktiengesellschaft | Verfahren und vorrichtung zur regelung eines kohlenmonoxid-ausstosses eines elektrolichtbogenofens |
Also Published As
Publication number | Publication date |
---|---|
MX338597B (es) | 2016-04-22 |
RU2605739C2 (ru) | 2016-12-27 |
MX2013011878A (es) | 2013-11-01 |
EP2511638A1 (de) | 2012-10-17 |
RU2013150350A (ru) | 2015-05-20 |
US20140112365A1 (en) | 2014-04-24 |
EP2683999A1 (de) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012139859A1 (de) | Verfahren zum betrieb eines wechselstrom-elektrolichtbogenofens, vorrichtung zur durchführung des verfahrens sowie ein wechselstrom-elektrolichtbogenofen mit einer solchen vorrichtung | |
EP2484178B1 (de) | Verfahren zur kontrolle eines schmelzvorganges in einem lichtbogenofen sowie signalverarbeitungseinrichtung, programmcode und speichermedium zur durchführung dieses verfahrens | |
EP2394124A1 (de) | Verfahren und vorrichtung zur regelung eines kohlenmonoxid-ausstosses eines elektrolichtbogenofens | |
EP2719253B1 (de) | Verfahren zum betreiben eines lichtbogenofens und schmelzanlage mit einem nach diesem verfahren betriebenen lichtbogenofen | |
WO2009095292A1 (de) | Verfahren zum betreiben eines lichtbogenofens mit wenigstens einer elektrode, regel- und/oder steuerungseinrichtung, maschinenlesbarer programmcode, datenträger und lichtbogenofen zur durchführung des verfahrens | |
KR20120064684A (ko) | 아크 용해 설비 및 그 아크 용해 설비를 이용한 용탕의 제조 방법 | |
WO2007009924A1 (de) | Verfahren zur bestimmung mindestens einer zustandsgrösse eines elektrolichtbogenofens und elektrolichtbogenofen | |
EP3383568A1 (de) | Verfahren zum generativen herstellen von bauteilen mit heizbarer bauplattform und anlage für dieses verfahren | |
EP2287581A1 (de) | Verfahren und Vorrichtung zur kontaktlosen Ermittlung einer Temperatur T einer Metallschmelze | |
DE3115840C2 (de) | ||
WO2014095447A1 (de) | Verfahren und vorrichtung zur vorhersage, steuerung und/oder regelung von stahlwerksprozessen | |
EP3317963B1 (de) | Leistungsversorgungssystem und verfahren zur einstellung einer ausgangsgrösse der verstärkerstufe eines leistungsversorgungssystems | |
WO2002003160A1 (de) | Verfahren und vorrichtung zum thermischen behandeln von objekten | |
DE69610670T2 (de) | Verfahren zur Regelung der Verbrennung in einem Heizkessel mit schwingendem Rost | |
DE3925047A1 (de) | Verfahren zur werkstoffabhaengigen steuerung von waermebehandlungsprozessen von metallen und vorrichtung zur durchfuehrung des verfahrens | |
DE102019200761A1 (de) | Verfahren zur Kompensation von Prozessschwankungen eines Plasmaprozesses und Regler für einen Leistungsgenerator zur Versorgung eines Plasmaprozesses | |
WO2010072471A1 (de) | Schmelzofen | |
DE3882121T2 (de) | Verfahren zur Kontrolle einer Schmelzzone. | |
EP2489970A1 (de) | Verfahren zum Betrieb eines Elektrolichtbogenofens für eine kontinuierliche DRI-Zufuhr, Elektrolichtbogenofen für eine kontinuierliche DRI-Zufuhr sowie Steuer- und/oder Regeleinrichtung für einen solchen Elektrolichtbogenofen | |
EP2824408A1 (de) | Verfahren zur Steuerung- oder Regelung eines Elektrolichtbogenofens | |
EP3108017A1 (de) | Verfahren zum umwälzen eines metallbades und ofenanlage | |
DE69727717T2 (de) | Verfahren zur Verbrennungsregelung eines Abfallverbrennungsofens | |
DE102018131849A1 (de) | Verfahren zur Erfassung einer einen Schmelzprozess von Metall in einer wenigstens eine Elektrode aufweisenden Lichtbogenschmelzanlage beschreibenden Prozessgröße und Lichtbogenschmelzanlage | |
WO2016071145A1 (de) | Verfahren und vorrichtung zum regeln des druckes im abgaskanal eines konverters | |
EP1082467B1 (de) | Verfahren zum betrieb eines lichtbogenofens zum aufbau und halten einer schaumschlacke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12713904 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012713904 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/011878 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013150350 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14111419 Country of ref document: US |