WO2012139364A1 - 一种动态信道分配方法和系统 - Google Patents

一种动态信道分配方法和系统 Download PDF

Info

Publication number
WO2012139364A1
WO2012139364A1 PCT/CN2011/081206 CN2011081206W WO2012139364A1 WO 2012139364 A1 WO2012139364 A1 WO 2012139364A1 CN 2011081206 W CN2011081206 W CN 2011081206W WO 2012139364 A1 WO2012139364 A1 WO 2012139364A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
probability
predetermined duration
idle
candidate
Prior art date
Application number
PCT/CN2011/081206
Other languages
English (en)
French (fr)
Inventor
唐万斌
喻火根
李滔
韩艳峰
刘星
李岩
周栋
任龙涛
苗婷
岳天恒
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012139364A1 publication Critical patent/WO2012139364A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a dynamic channel allocation method and system. Background technique
  • the existing cognitive channel-based access channel access and handover schemes are mostly based on the currently observed channel activity of authorized users, guiding unlicensed users to perform channel access operations, and realizing channels between authorized and unauthorized users. shared.
  • authorized users may appear at any time, and once an authorized user appears, the unauthorized user shall immediately take back measures. If an unauthorised user frequently performs backoff, it will not only cause interference to authorized users in a short period of time, but also affect the QoS of unauthorized users, thereby reducing the communication quality of the entire network.
  • the main object of the present invention is to provide a dynamic channel allocation method and system, which can effectively reduce the probability of collision between an unauthorized user and an authorized user.
  • the present invention provides a dynamic channel allocation method, the method comprising:
  • the unlicensed users are allocated candidate channels in descending order of the idle probability.
  • the allocating candidate channels for the unlicensed users includes:
  • the candidate channel is preferentially allocated to the accessed unlicensed users who need to perform active handover; the remaining candidate channels are then allocated to the unauthorized users waiting to access.
  • the allocating the candidate channel to the accessed unlicensed user that needs to perform the active handover includes: determining whether the idle probability of the channel occupied by the unlicensed user that is accessed in the candidate channel is the highest, and when the determination result is no, determining the location An unauthorized user that has been accessed needs to perform an active handover;
  • the idle channels with the idle probability higher than the idle probability of the channel occupied by the accessed unlicensed users are allocated to the accessed unauthorized users in descending order of the idle probability.
  • the method further includes:
  • the accessed unauthorized user who needs to perform active handover switches from the occupied channel to the allocated candidate channel; the unlicensed user waiting for access accesses the allocated candidate channel.
  • the method further includes: determining an authorization system channel combination state transition probability after the predetermined duration:
  • the ⁇ )( ⁇ ) is an authorized system channel combination state transition probability after a predetermined duration;
  • the !2 is an authorized system channel combination state transition rate, determined according to a service system characteristic and a scheduling policy of the authorization system;
  • the i Q For the initial moment, it is defined as 0;
  • the T is a predetermined duration.
  • the ??3 ⁇ 4+ ⁇ is an authorized system channel combination state probability after a predetermined duration; the /?. ) Authorize the system channel combination state for the initial time.
  • the idle probability of each candidate channel after determining the predetermined duration is:
  • ⁇ . + r is the idle probability of the candidate channel i after a predetermined length of time
  • the channel i after S is a predetermined duration is a set of channel combination states of the authorized system corresponding to the idle state; after the / (.+ ⁇ ) is a predetermined duration, the k-th authorized system channel combination state occurrence probability in the S.
  • the invention also provides a dynamic channel allocation system, comprising:
  • the analyzing module is configured to determine, according to the authorized system channel combination state transition probability after the predetermined duration, and the initial time authorization system channel combination state, determine the channel group of the authorization system after the predetermined duration And a probability of occurrence of a state; determining, according to the probability of occurrence of each channel combination state of the authorization system after the predetermined duration, determining a candidate channel idle probability after a predetermined duration;
  • An allocating module configured to allocate a candidate channel to an unauthorized user in descending order of idle probability.
  • the allocation module is further configured to preferentially allocate candidate channels for the accessed unauthorized users that need to perform active handover; and then allocate the remaining candidate channels to the unauthorized users waiting to access.
  • the allocation module is further configured to determine whether the idle probability of the channel occupied by the unlicensed user that is accessed by the candidate channel is the highest. When the determination result is negative, determining that the accessed unauthorized user needs to perform active switching; The idle channels whose idle probability is higher than the idle probability of the channel occupied by the accessed unlicensed users are allocated to the accessed unauthorized users in descending order.
  • the ⁇ )( ⁇ ) is an authorized system channel combination state transition probability after a predetermined duration
  • the !2 is an authorization system channel combination state transition rate, determined according to the service characteristics of the authorization system and a scheduling policy; For the initial moment, it is defined as 0
  • the ⁇ is the predetermined duration.
  • ( (.+ ⁇ ) is an authorized system channel combination state probability after a predetermined duration
  • the analysis module is further configured to determine a candidate channel idle probability after a predetermined duration: keS
  • the ⁇ . + r) is the idle probability of the candidate channel i after a predetermined length of time;
  • the channel i after the predetermined duration is the set of the channel state of the authorized system corresponding to the idle state; after the / ⁇ (.+ ⁇ ) is the predetermined duration, the probability of the channel combination state of the kth authorized system in the S .
  • the dynamic channel allocation method and system of the present invention predicts the state of the channel after a predetermined duration according to the channel transition state transition probability of the authorized system and the initial channel authorization state channel combination state, and uses the prediction result (ie, after prediction) As the basis for active handover and initial access selection for unlicensed users, the probability of collision between unauthorized users and authorized users can be effectively reduced, which improves channel utilization and improves unauthorized access. The quality of the user's communication.
  • FIG. 1 is a schematic flow chart of a method for dynamic channel allocation according to the present invention
  • FIG. 2 is a flow chart showing the implementation of dynamic channel allocation according to the present invention. detailed description
  • the basic idea of the dynamic channel allocation of the present invention is: predicting the state of the channel after the predetermined duration according to the channel transition state transition probability of the authorized system and the initial channel authorization state channel combination state, and using the prediction result as the unlicensed user.
  • the basis for active switching and initial access selection is such that the probability of collision between the unauthorized user and the authorized user can be effectively reduced, and finally, the channel utilization rate is improved, and the communication quality of the unauthorized user is improved.
  • the method for dynamic channel allocation of the present invention includes:
  • Step 101 Determine, according to the authorized system channel combination state transition probability and the initial time authorization system channel combination state after the predetermined duration, the channel combination state occurrence probability of the authorization system after the predetermined duration.
  • Step 102 Determine a candidate channel idle probability after a predetermined duration according to each channel combination state occurrence probability of the authorization system after the predetermined duration.
  • Step 103 Assign a candidate channel to an unauthorized user in descending order of idle probability.
  • assigning a candidate channel to an unlicensed user preferentially assigning a candidate channel to an accessed unlicensed user who needs to perform an active handover; and then allocating the remaining candidate channel to an unauthorized user waiting to access.
  • the candidate channel is allocated for the accessed unlicensed user that needs to perform the active handover: determining whether the idle probability of the channel occupied by the unlicensed user that is accessed in the candidate channel is the highest, and when the determination result is no, determining that the access is enabled
  • the unlicensed user needs to perform the active handover; the idle channel with the idle probability higher than the idle probability of the channel occupied by the accessed unauthorized user is allocated to the accessed unauthorized user in descending order of the idle probability.
  • Step 201 Determine a channel transition state transition probability of the authorized system after a predetermined duration.
  • the so-called authorization system channel combination state transition probability refers to: the probability of mutual transfer of each channel combination state in the authorization system.
  • the channel combination state for example, assumes that the authorization system has three channels, and the channel state is divided into 1 and 0. When the state of channel 1 is 1, the state of channel 2 is 0, and the state of channel 3 is 0, the channel combination state is 100. Then there are 8 combinations of the three channels: [000, 001, 010, 011, 100, 101, 110, 111], this step is to determine the probability of the eight channel combination states shifting from each other.
  • the authorization system channel combination state transition probability after the predetermined duration is determined according to the scheduling policy, service characteristics, and predetermined duration of the authorization system.
  • the entire system adopts a dynamic channel sharing central overlay model, and information sharing between unlicensed users in the unauthorized system, that is, a channel occupied by an unlicensed user that has been accessed (system) is not considered, and can be regarded as
  • the idle channel that is, the channel state is regarded as being idle by the accessed unauthorized user
  • the channel occupied by the idle channel and the accessed unauthorized user can be uniformly allocated as the candidate channel at the initial time.
  • the system channel combination state transition probability can be simplified to the authorized system channel combination state transition probability, and the system channel state space is correspondingly simplified to the authorized system channel state space.
  • the predetermined duration ⁇ is a fixed value, and the smaller the ⁇ , that is, the shorter the predetermined duration, the more correctly the predicted channel state is, and the QoS of the unauthorized user is more easily guaranteed.
  • ⁇ )( ⁇ ) is the state transition probability of the channel combination of the authorization system, and the element ⁇ 3 ⁇ 4 in the matrix, ⁇ )( ⁇ ) indicates that the channel combination of the authorization system is in the state, and after a predetermined period of time, the state is transferred to the state _ Probability;
  • is the authorization system channel combination state transfer rate, which is a matrix, determined by the service characteristics of the authorization system and the scheduling policy, and is used to measure the rate of mutual transfer between the channel combination states in the authorization system; For the initial moment, it can be defined as 0;
  • is the predetermined duration.
  • Step 202 Determine a probability of occurrence of each channel combination state of the authorization system after the predetermined duration.
  • the probability of occurrence of each channel combination state of the authorization system after the predetermined duration is: the probability that each channel combination state in the authorization system occurs after a predetermined length of time.
  • Spectrum sensing can accurately give the occupancy on the system channel at the initial moment (including whether the channel is occupied by the cognitive user, where the cognitive user refers to the unauthorized user that has been accessed;), but the spectrum-aware system channel combination
  • the state does not serve as the authorized system channel combination state, and the spectrum-aware channel combination state needs to be transformed.
  • the system has three channels, and the combined state of the three channels obtained by the spectrum sensing is: 102 (0 indicates that the channel is idle, 1 indicates that the channel is occupied by authorized users, and 2 indicates that the channel is accessed by unauthorized users.
  • the channel state when the channel state is occupied by an unauthorized user that is already accessed, it is regarded as an idle state, and then state 2 is converted to 0, and the initial time of the transformed system channel state is: [100] ] (1 means The channel is occupied by an authorized user, 0 means the channel is idle.
  • the channel combination state of the authorization system after the predetermined duration T can be determined.
  • ⁇ 3 ⁇ 4 + ⁇ is the channel probability state vector of the authorized system channel after the predetermined duration T, indicating the probability of occurrence of each channel combination state of the authorization system; that is, the channel transition state transition probability of the authorized system after a predetermined duration; For the initial moment, it can be defined as 0; ⁇ is the predetermined duration.
  • Step 203 Determine a candidate channel idle probability after a predetermined duration.
  • the candidate channel refers to a channel occupied by an unauthorized user (including an idle channel occupied by an unauthorized user and an unauthorized user, and a channel occupied by an accessed unauthorized user, because the idle channel and the received channel
  • the channels occupied by the incoming unauthorized users can be uniformly allocated as candidate channels, which can be obtained by spectrum sensing.
  • Wfe ( 3 ⁇ 4 + O is the idle probability of the candidate channel i after a predetermined duration
  • S is a set of authorized system channel combination states corresponding to the idle state after the predetermined duration
  • the A (. + ⁇ ) is After the predetermined duration, the kth authorized system channel combination state occurrence probability in the S.
  • Step 204 Determine whether there is an accessed unauthorized user that needs to perform active switching. If yes, go to step 205; otherwise, go to step 206.
  • the candidate channels are sorted in descending order of idle probability according to the candidate channel idle probability after the predetermined duration T. Determining the letter occupied by the unlicensed user that has been accessed in the candidate channel Whether the idle probability of the channel is the highest. If no, it is determined that the accessed unauthorized user needs to perform the active handover, and step 205 is performed; otherwise, step 206 is performed.
  • Step 205 Assign a candidate channel to the accessed unauthorized user that needs to perform the active handover. After the allocation is complete, perform step 206.
  • the idle probability of the channel occupied by the accessed unauthorized user is not the highest, indicating that there is an idle channel with a higher probability of idleness
  • the idle channel with the idle probability higher than the idle probability of the channel occupied by the accessed unauthorized user is Assigned in order from highest to lowest to the accessed unauthorized users who need to perform active switching.
  • Step 206 Determine whether there is an unauthorized user waiting to access. If yes, go to step 207; otherwise, go to step 208.
  • Step 207 Allocate a candidate channel for an unauthorized user waiting for access.
  • the authorized user is allowed to enter the system use channel at any time according to a predetermined access policy; and for the unlicensed user: the candidate channel is preferentially allocated for the accessed unlicensed user who needs to perform the active handover; and the remaining candidate channel is allocated. For unauthorized users waiting for access; if there are no remaining candidate channels, blocking unauthorized users waiting for access.
  • candidate channels with high idle probability are allocated first, and candidate channels with low idle probability are allocated according to the order of idle probability from high to low.
  • Step 208 After the candidate channel is allocated, the unauthorized user performs an active switching operation and/or an access operation according to the allocation result.
  • the accessed unauthorized user who needs to perform the active handover is switched from the originally occupied channel to the allocated candidate channel; the unlicensed user waiting for access accesses the allocated candidate channel.
  • the candidate channel is reserved without any processing.
  • channel A there are three channels in the system: channel A, channel B and channel C.
  • channel A Passing the state transition probability of the authorized system channel after the predetermined duration is obtained;
  • the spectrum sensing obtains the initial channel time channel combination state as 002, where 0 indicates that the channel and the channel ⁇ are idle (ie, the channel and the channel ⁇ are idle channels); 2 indicates that the channel C is occupied by the accessed unauthorized user. Therefore, the channel state of channel C is regarded as an idle state, and both channel ⁇ , channel ⁇ , and channel C can be regarded as candidate channels. Transforming the initial channel system channel state to obtain an initial time authorization system channel combination state of 000;
  • the probability of occurrence of the channel combination state after a predetermined duration T that is, the probability that the system is in the eight states after a predetermined duration T is respectively recorded as: ⁇ ⁇ , ⁇ , ⁇ , ⁇
  • PB PI + P2 + P 5 + P6 ⁇ Channel C has an idle probability after a predetermined duration T:
  • the accessed unlicensed user actively switches from channel C to channel A, and the non-authorized users waiting for access respectively access channel B and channel C.
  • channel A there are three channels in the system: channel A, channel B and channel C.
  • Passing the state transition probability of the authorized system channel after the predetermined duration is obtained;
  • the spectrum sensing obtains the initial system channel combining state as 202, where 0 indicates that the channel is idle (ie, the channel is idle); 2 indicates that the channel and channel C are occupied by the accessed unauthorized users, so the channel 8.
  • the channel state of channel C is regarded as an idle state, and then channel ⁇ , channel ⁇ , and channel C can be regarded as candidate channels. Transforming the initial channel system channel state to obtain an initial time authorization system channel combination state of 000;
  • PB PI + P2 + P 5 + P6 ⁇ Channel C has an idle probability after a predetermined duration T:
  • the idle channel B has the highest idle probability. Therefore, the channels A and C correspond to the access.
  • the unlicensed user needs to perform active handover, and allocates channel B (the maximum probability of being idle and greater than the idle probability of channel A and channel C) to the accessed unauthorized user corresponding to channel A or channel C (specifically according to predetermined rules) Select one of them), here it is assumed that channel B is allocated to the accessed unauthorized user corresponding to channel C.
  • the present invention further provides a dynamic channel allocation system, comprising: an analysis module, configured to determine a predetermined duration after determining a system transition state probability of an authorized system channel according to a predetermined duration and an initial time authorization system channel combination state; The probability of occurrence of each channel combination state of the authorization system is further used to determine the idle probability of each candidate channel after a predetermined duration according to the probability of occurrence of each channel combination state of the authorization system after the predetermined duration;
  • An allocating module configured to allocate a candidate channel to an unauthorized user in descending order of idle probability.
  • the allocation module is further configured to preferentially allocate candidate channels for the accessed unlicensed users that need to perform active handover; and then allocate the remaining candidate channels to the unauthorized users waiting to access.
  • the allocation module is further configured to determine whether the idle probability of the channel occupied by the unlicensed user that is accessed in the candidate channel is the highest. When the determination result is yes, it is determined that the accessed unauthorized user needs to perform the active handover; The idle channels having a higher probability of being idle than the channels occupied by the accessed unauthorized users are allocated to the accessed unauthorized users in descending order.
  • is the channel transition state transition probability of the authorized system after the predetermined duration
  • is the authorized system channel combination state transition rate, determined according to the service characteristics of the authorized system and the scheduling policy; For the initial moment, it is defined as 0
  • is the predetermined duration.
  • ??3 ⁇ 4 + ⁇ ) is the authorized system channel combination state probability after a predetermined duration
  • ⁇ ( ⁇ .) is the initial time authorized system channel combination state.
  • Wfe ( 3 ⁇ 4 +O is the idle probability of the candidate channel i after a predetermined duration
  • S is a set of authorized system channel combination states corresponding to the idle state after the predetermined duration
  • ⁇ (.+ ⁇ ) is the predetermined duration

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种动态信道分配方法和系统,包括:根据预定时长后的授权系统信道组合状态转移概率、和初始时刻授权系统信道组合状态,确定预定时长后的授权系统各信道组合状态发生概率;根据所述预定时长后的授权系统各信道组合状态发生概率确定预定时长后的各候选信道空闲概率;按照空闲概率由高到低的顺序为非授权用户分配候选信道。通过本发明,可以有效减少非授权用户和授权用户之间发生碰撞的概率,既提高了信道利用率,又改善了非授权用户的通信质量。

Description

一种动态信道分配方法和系统 技术领域
本发明涉及无线通讯领域, 特别是指一种动态信道分配方法和系统。 背景技术
随着无线通信业务的迅猛发展, 无线信道资源变得越来越紧张。 然而 从现有的测量数据来看, 基于固定信道分配的现有信道分配制度有着很低 的资源利用率。 为了提高现有信道的利用率, 动态信道共享的概念应运而 生。 将拥有信道使用权的机构所建立的通信系统称为授权系统, 未获得信 道使用权, 只能以 "机会信道接入" 的方式利用空闲信道进行通信的通信 系统称为非授权系统。 对于机会信道接入技术而言, 其最主要的任务是设 计一个能够高效利用信道的自适应策略, 使非授权用户在与授权用户共享 信道的同时, 一方面对授权用户不产生干扰, 另一方面能够满足自身的服 务质量(QoS, Quality of Service )要求。
现有的基于认知无线电的机会信道接入及切换方案大部分是根据当前 观察到的授权用户的信道活动情况, 引导非授权用户进行信道接入操作, 实现授权和非授权用户之间的信道共享。 但由于信道的动态变化性, 授权 用户可能随时都会出现, 而一旦授权用户出现, 非授权用户就要立即采取 退避措施。 如果非授权用户频繁地进行退避, 不仅会在短时间内对授权用 户造成干扰, 而且还会影响非授权用户的 QoS, 从而降低整个网络的通信 质量。
针对上述问题, 目前已有的常用策略有三种: 一、 使用完全随机的接 入方式, 这种方法显然不能达到很好的效果; 二、 采用分布式系统, 各个 非授权用户之间进行合作, 不断交换各自所感知到的信道可用性信息, 这 样会造成比较大的开销, 但可以使用博弈论使整个系统达到最优状态; 三、 采用中心式系统, 即用基站来收集各个非授权用户感知到的信息, 并协调 它们的信道接入, 这种方法也能高效地利用空闲信道, 但需要引入控制信 道。
这些策略中对授权系统的信道使用行为没有任何的先验知识, 更不会 对每个信道在未来一段时间可能被授权系统占用的概率进行预测, 仅仅在 当前感知的空闲信道上进行非授权用户的接入及切换, 接入、 切换策略只 能是一种盲目的、 随机的方式, 无法减少非授权用户与授权用户发生碰撞 的概率, 其性能完全取决于授权系统的信道使用行为和业务负载。 发明内容
有鉴于此, 本发明的主要目的在于提供一种动态信道分配方法和系统, 能够有效减少非授权用户和授权用户之间发生碰撞的概率。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种动态信道分配方法, 该方法包括:
根据预定时长后的授权系统信道组合状态转移概率、 和初始时刻授权 系统信道组合状态, 确定预定时长后的授权系统各信道组合状态发生概率; 根据所述预定时长后的授权系统各信道组合状态发生概率确定预定时 长后的各候选信道空闲概率;
按照所述空闲概率由高到低的顺序为非授权用户分配候选信道。
其中, 所述为非授权用户分配候选信道, 包括:
优先为需要执行主动切换的已接入的非授权用户分配候选信道; 再将 剩余的候选信道分配给等待接入的非授权用户。
所述为需要执行主动切换的已接入的非授权用户分配候选信道, 包括: 判断候选信道中已接入的非授权用户占用的信道的空闲概率是否最 高, 当判断结果为否时, 判定所述已接入的非授权用户需要执行主动切换; 将空闲概率比所述已接入的非授权用户占用的信道的空闲概率高的空 闲信道, 按照空闲概率从高到低的顺序的分配给所述已接入的非授权用户。
候选信道分配完毕后, 该方法还包括:
需要执行主动切换的已接入的非授权用户从占用的信道切换到分配的 候选信道; 等待接入的非授权用户接入分配的候选信道。
该方法还包括: 确定所述预定时长后的授权系统信道组合状态转移概 率为:
D(T) = eQ*(t0+T)
其中, 所述 Ζ)(Γ)为预定时长后的授权系统信道组合状态转移概率; 所 述! 2为授权系统信道组合状态转移速率, 根据授权系统的业务特性及调度 策略确定; 所述 iQ为初始时刻, 定义为 0; 所述 T为预定时长。
所述确定预定时长后的授权系统各信道组合状态发生概率为: p(t0 + T) = eQ^+T)p(t0) ;
其中, 所述;? ¾ +Γ)为预定时长后的授权系统信道组合状态概率; 所述 /? 。)为初始时刻授权系统信道组合状态。
所述确 定预 定 时 长后 的 各候选信道 空 闲 概率 为 :
P die (to + T) = ^ pk (t0 + T) - keS
其中, 所述 ^^ 。 + r)为候选信道 i在预定时长后的空闲概率; 所述
S为预定时长后的信道 i为空闲状态对应的授权系统信道组合状态的集合; 所述/ (。+ Γ)为预定时长后的,所述 S中第 k个授权系统信道组合状态发 生概率。
本发明还提供了一种动态信道分配系统, 包括:
分析模块, 用于根据预定时长后的授权系统信道组合状态转移概率、 和初始时刻授权系统信道组合状态, 确定预定时长后的授权系统各信道组 合状态发生概率; 还用于根据所述预定时长后的授权系统各信道组合状态 发生概率确定预定时长后的各候选信道空闲概率;
分配模块, 用于按照空闲概率由高到低的顺序为非授权用户分配候选 信道。
其中, 所述分配模块, 还用于优先为需要执行主动切换的已接入的非 授权用户分配候选信道; 再将剩余的候选信道分配给等待接入的非授权用 户。
所述分配模块, 还用于判断候选信道中已接入的非授权用户占用的信 道的空闲概率是否最高, 当判断结果为否时, 判定所述已接入的非授权用 户需要执行主动切换; 并将空闲概率比所述已接入的非授权用户占用的信 道的空闲概率高的空闲信道, 按照从高到低的顺序的分配给所述已接入的 非授权用户。
所述分析模块, 还用于确定所述预定时长后的授权系统信道组合状态 转移概率为: D(T) = eQ*(t+T) ·,
其中, 所述 Ζ)(Γ)为预定时长后的授权系统信道组合状态转移概率; 所 述! 2为授权系统信道组合状态转移速率, 根据授权系统的业务特性及调度 策略确定; 所述 ί。为初始时刻, 定义为 0; 所述 Τ为预定时长。
所述分析模块, 还用于确定预定时长后的授权系统各信道组合状态发 生概率为: /?(i。+ r) = ee¾+O/?(i。);
其中, 所述;? (ί。+Γ)为预定时长后的授权系统信道组合状态概率; 所述
/? 。)为初始时刻授权系统信道组合状态。
所述分析模块, 还用于确定预定时长后的各候选信道空闲概率为: keS
其中, 所述 ^^ 。 + r)为候选信道 i在预定时长后的空闲概率; 所述 S为预定时长后的信道 i为空闲状态对应的授权系统信道组合状态的集合; 所述/ ^(。+ Γ)为预定时长后的,所述 S中第 k个授权系统信道组合状态发 生概率。
本法发明的动态信道分配方法和系统, 根据预定时长后的授权系统信 道组合状态转移概率和初始时刻授权系统信道组合状态, 对预定时长后信 道的状态进行预测, 并利用预测结果(即预测后的候选信道空闲概率)作 为对非授权用户进行主动切换和初始接入选择的依据, 可以有效减少非授 权用户和授权用户之间发生碰撞的概率, 既提高了信道利用率, 又改善了 非授权用户的通信质量。 附图说明
图 1为本发明动态信道分配的方法流程示意图;
图 2为本发明动态信道分配的实现流程图。 具体实施方式
本发明动态信道分配的基本思想是: 根据预定时长后的授权系统信道 组合状态转移概率和初始时刻授权系统信道组合状态, 对预定时长后信道 的状态进行预测, 并利用预测结果作为对非授权用户进行主动切换和初始 接入选择的依据, 如此, 可以有效减少非授权用户和授权用户之间发生碰 撞的概率, 最终, 既提高了信道利用率, 又改善了非授权用户的通信质量。
如图 1所示, 本发明动态信道分配的方法包括:
步驟 101,根据预定时长后的授权系统信道组合状态转移概率和初始时 刻授权系统信道组合状态, 确定预定时长后的授权系统各信道组合状态发 生概率。
步驟 102,根据预定时长后的授权系统各信道组合状态发生概率确定预 定时长后的各候选信道空闲概率。 步驟 103 , 按照空闲概率由大到小的顺序为非授权用户分配候选信道。 在为非授权用户分配候选信道时: 优先为需要执行主动切换的已接入 的非授权用户分配候选信道; 再将剩余的候选信道分配给等待接入的非授 权用户。
为需要执行主动切换的已接入的非授权用户分配候选信道时: 判断候选信道中已接入的非授权用户占用的信道的空闲概率是否最 高, 当判断结果为否时, 判定已接入的非授权用户需要执行主动切换; 将空闲概率比已接入的非授权用户占用的信道的空闲概率高的空闲信 道, 按照空闲概率从大到小的顺序的分配给已接入的非授权用户。
下面详细说明一下本发明动态信道分配的流程, 如图 2所示, 包括: 步驟 201, 确定预定时长后的授权系统信道组合状态转移概率。
所谓授权系统信道组合状态转移概率是指: 授权系统中各信道组合状 态之间相互转移的概率。
信道组合状态,例如:假设授权系统有三条信道,信道状态分为 1和 0, 当信道 1的状态为 1、 信道 2的状态为 0、 信道 3的状态为 0时, 信道组合 状态即为 100; 则这三条信道的组合状态一共有 8种: [000, 001 , 010, 011 , 100, 101 , 110, 111] , 该步驟即是确定 8种信道组合状态相互之间转移的 概率。
根据授权系统的调度策略、 业务特性以及预定时长 Τ, 确定预定时长 Τ 后的授权系统信道组合状态转移概率。
本发明中, 整个系统采用动态信道共享中心式 overlay模型, 则非授权 系统中各个非授权用户之间信息共享, 即已接入(系统) 的非授权用户占 用的信道不被考虑, 可以当作空闲信道(即信道状态为被已接入的非授权 用户占用时, 视为空闲状态), 则空闲信道和已接入的非授权用户所占用的 信道在初始时刻都可作为候选信道进行统一分配, 以简化整个系统的信道 状态, 所以等待接入的非授权用户接入信道的过程只受到授权用户的影响。 可以将系统信道组合状态转移概率简化为授权系统信道组合状态转移概 率, 系统信道状态空间也相应的简化为授权系统信道状态空间。预定时长 Τ 是一个固定值, Τ越小、 即预定时长 Τ越短, 预测得到的信道状态越正确, 非授权用户的 QoS越容易得到保证。
则授权系统信道组合状态转移概率的确定方法为: Ζ)(Γ) = eQHt0+T)。 其中, Ζ)(Γ)为授权系统信道组合状态转移概率, 为矩阵, Ζ)(Γ)中的元 素 Ζ¾表示授权系统的信道组合在处于状态 的情况下, 经过预定时长 Τ转 移到状态_ 的概率; β为授权系统信道组合状态转移速率, 为矩阵, 由授权 系统的业务特性及调度策略所确定, 用来衡量授权系统中各信道组合状态 之间相互转移的速率; ί。为初始时刻, 可以定义为 0; Τ为预定时长。
步驟 202 , 确定预定时长后的授权系统各信道组合状态发生概率。
所谓预定时长后的授权系统各信道组合状态发生概率是指: 授权系统 中各个信道组合状态在预定时长后出现的概率。
该步驟中, 需要根据预定时长后的授权系统信道组合状态转移概率、 以及频谱感知的初始时刻( ί。时刻)授权系统信道组合状态, 确定授权系统 各信道组合状态发生概率。
频谱感知可准确给出在初始时刻系统信道上的占用情况(包括给出信 道是否被认知用户占用, 这里认知用户指已接入的非授权用户;), 但是频谱 感知到的系统信道组合状态并不能作为授权系统信道组合状态, 需将频谱 感知的信道组合状态进行变换。 例如, 系统存在三个信道, 频谱感知得到 的初始时刻三个信道的组合状态为: 102 ( 0表示信道为空闲状态, 1表示 信道被授权用户占用, 2表示信道被已接入的非授权用户占用); 本发明中, 当信道状态为被已接入的非授权用户占用时, 视为空闲状态, 则将状态 2 变换为 0, 变换后得到的初始时刻授权系统信道组合状态为: [100] ( 1表示 信道被授权用户占用, 0表示信道为空闲状态)。
设初始时刻授权系统信道组合状态为 ρ(ί。) = [Pl (t0 ), p2 (ί。 ),..., ρΝ (t0 其中, Pi (t0 )表示第 条信道在初始时刻的状态。
根据从步驟 201得到的预定时长后的授权系统信道组合状态转移概率 Ζ)(Γ)和初始时刻授权系统信道组合状态 p(t0 ) , 可以确定得到预定时长 T后 的授权系统各信道组合状态发生概率为: p 0 + T) = eQ*{to+T)p(t0)。
其中, ρ¾ +Γ)为预定时长 T后的授权系统信道组合状态概率向量, 表 示授权系统各信道组合状态发生概率; 即为预定时长后的授权系统 信道组合状态转移概率; ί。为初始时刻, 可以定义为 0; Τ为预定时长。
步驟 203 , 确定预定时长后的各候选信道空闲概率。
在本发明中, 候选信道是指未被授权用户占用的信道(包括未被授权 用户和非授权用户占用的空闲信道, 以及已接入的非授权用户占用的信道, 因为, 空闲信道和已接入的非授权用户所占用的信道都可作为候选信道进 行统一分配), 可以由频谱感知获得。
根据预定时长后的授权系统各信道组合状态发生概率确定预定时长后 的各候选信道空闲概率: Pl eit0 +τ) +Τ)。
Figure imgf000010_0001
其中, ,Wfe(¾ +O为候选信道 i在预定时长后的空闲概率; S为预定 时长后的信道 i 为空闲状态对应的授权系统信道组合状态的集合; 所述 A (。 + Γ)为预定时长后的,所述 S中第 k个授权系统信道组合状态发生概 率。
步驟 204, 判断是否存在需要执行主动切换的已接入的非授权用户,如 果是, 执行步驟 205 ; 否则, 执行步驟 206。
根据预定时长 T后的各候选信道空闲概率, 按照空闲概率从低到高的 顺序对候选信道进行排序。 判断候选信道中已接入的非授权用户占用的信 道的空闲概率是否最高, 如果否, 判定已接入的非授权用户需要执行主动 切换, 执行步驟 205; 否则, 执行步驟 206。
步驟 205 , 对需要执行主动切换的已接入的非授权用户分配候选信道, 分配完毕后, 执行步驟 206。
如果已接入的非授权用户占用的信道的空闲概率不是最高, 说明存在 空闲概率更高的空闲信道, 则将空闲概率比已接入的非授权用户占用的信 道的空闲概率高的空闲信道, 按照从高到低的顺序的分配给需要执行主动 切换的已接入的非授权用户。
步驟 206, 判断是否存在等待接入的非授权用户, 如果存在, 执行步驟 207; 否则, 执行步驟 208。
步驟 207 , 为等待接入的非授权用户分配候选信道。
本发明中, 允许授权用户按预定的接入策略随时进入系统使用信道; 而对于非授权用户: 优先为需要执行主动切换的已接入的非授权用户分配 候选信道; 再将剩余的候选信道分配给等待接入的非授权用户; 如果没有 剩余的候选信道时, 阻塞等待接入的非授权用户。
在分配候选信道时, 按照空闲概率从高到底的顺序, 先分配空闲概率 高的候选信道, 再分配空闲概率低的候选信道。
步驟 208 ,在候选信道分配完毕后, 非授权用户按照分配结果进行主动 切换操作和 /或接入操作。
需要执行主动切换的已接入的非授权用户从原先占用的信道切换到分 配的候选信道上; 等待接入的非授权用户接入分配的候选信道。
如果即不存在需要执行主动切换的已接入的非授权用户, 也不存在等 待接入的非授权用户, 则保留候选信道, 不作任何处理。
下面通过两个具体的实例来说明上述流程。
实施例一、 4叚设系统中存在三个信道: 信道 A、 信道 B和信道 C。 1、通过 可得出预定时长 Τ后的授权系统信道组合状态转移概率;
2、 频谱感知得到初始时刻系统信道组合状态为 002, 其中, 0表示信 道 、 信道 Β为空闲状态 (即信道 、 信道 Β为空闲信道); 2表示信道 C 被已接入的非授权用户占用, 因此信道 C的信道状态被视为空闲状态, 则 信道 Α、 信道 Β和信道 C都可作为候选信道。 将初始时刻系统信道组合状 态进行变换得到初始时刻授权系统信道组合状态为 000;
根据 和初始时刻授权系统信道组合状态 p(t0) = [0,0,0]确定得到 预定时长 T后的授权系统各信道组合状态发生概率 p 0 +T) = eQ*ih+T) p(t0)。
因为系统有三条信道, 将系统信道状态空间简化为授权系统信道状态 空间后, 信道组合状态有以下 8种: [000, 001, 010, 011, 100, 101, 110, 111],将这 8种信道组合状态在预定时长 T后的发生概率、即系统在预定时 长 T后处于这 8种状态的概率分别记为: ρ ρ^,ρ^,ρ^,ρ^
3、 确定预定时长 T后的各候选信道空闲概率, 由于信道 、 信道 B和 信道 C 都为候选信道, 则信道 A 在预定时长 T 后空闲概率为: pA = Pl + p2 + p3 + p4 ; 信道 B 在预定时长 T 后空闲概率为:
PB = PI + P2 + P5 + P6 ^ 信道 C 在预定时长 T 后空闲概率为:
4、 如果 /?A>/?e>/?B,由于信道 C被已接入的非授权用户占用, 因此, 该已接入的非授权用户需要执行主动切换, 将信道 A (空闲概率最大且大 于信道 C的空闲概率)分配给该已接入的非授权用户。
5、 如果当前有三个等待接入的非授权用户, 那么, 将剩余的信道 B和 信道 C分配给其中两个等待接入的非授权用户, 剩余一个被阻塞。
6、 已接入的非授权用户主动从信道 C切换到信道 A, 等待接入的非授 权用户分别接入信道 B和信道 C。
实施例二、 4叚设系统中存在三个信道: 信道 A、 信道 B和信道 C。 1、通过 可得出预定时长 Τ后的授权系统信道组合状态转移概率;
2、 频谱感知得到初始时刻系统信道组合状态为 202, 其中, 0表示信 道 Β为空闲状态(即信道 Β为空闲信道); 2表示信道 、 信道 C被已接入 的非授权用户占用, 因此信道八、 信道 C的信道状态被视为空闲状态, 则 信道 Α、 信道 Β和信道 C都可作为候选信道。 将初始时刻系统信道组合状 态进行变换得到初始时刻授权系统信道组合状态为 000;
根据 和初始时刻授权系统信道组合状态 p(t0) = [0,0, 0]确定得到 预定时长 T后的授权系统各信道组合状态发生概率 p 0 + T) = eQ*ih+T) p(t0)。
因为系统有三条信道, 将系统信道状态空间简化为授权系统信道状态 空间后, 信道组合状态有以下 8种: [000, 001 , 010, 011 , 100, 101 , 110, 111] ,将这 8种信道组合状态在预定时长 T后的发生概率、即系统在预定时 长 T后处于这 8种状态的概率分别记为:
Figure imgf000013_0001
3、 确定预定时长 T后的各候选信道空闲概率, 由于信道 、 信道 B和 信道 C 都为候选信道, 则信道 A 在预定时长 T 后空闲概率为: pA = Pl + p2 + p3 + p4 ; 信道 B 在预定时长 T 后空闲概率为:
PB = PI + P2 + P5 + P6 ^ 信道 C 在预定时长 T 后空闲概率为:
4、如果 /?B > /?A > /?C ,由于信道 、信道 C被已接入的非授权用户占用, 空闲信道 B的空闲概率最高, 因此, 信道 A、 信道 C对应的已接入的非授 权用户需要执行主动切换, 将信道 B (空闲概率最大且大于信道 A、信道 C 的空闲概率)分配给信道 A或信道 C对应的已接入的非授权用户 (具体可 以根据预定的规则从中选择一个),此处假设信道 B分配给信道 C对应的已 接入的非授权用户。
5、 如果当前有一个等待接入的非授权用户, 那么, 将此时剩余的信道 C分配给该等待接入的非授权用户。 6、 已接入的非授权用户主动从信道 C切换到信道 B, 等待接入的非授 权用户接入信道(。
为了实现上述方法, 本发明还提供了一种动态信道分配系统, 包括: 分析模块, 用于根据预定时长后的授权系统信道组合状态转移概率、 和初始时刻授权系统信道组合状态, 确定预定时长后的授权系统各信道组 合状态发生概率; 还用于根据预定时长后的授权系统各信道组合状态发生 概率确定预定时长后的各候选信道空闲概率;
分配模块, 用于按照空闲概率由高到低的顺序为非授权用户分配候选 信道。
其中, 分配模块, 还用于优先为需要执行主动切换的已接入的非授权 用户分配候选信道; 再将剩余的候选信道分配给等待接入的非授权用户。
分配模块, 还用于判断候选信道中已接入的非授权用户占用的信道的 空闲概率是否最高, 当判断结果为是时, 判定已接入的非授权用户需要执 行主动切换; 并将空闲概率比已接入的非授权用户占用的信道的空闲概率 高的空闲信道, 按照从高到低的顺序的分配给已接入的非授权用户。
分析模块, 还用于确定预定时长后的授权系统信道组合状态转移概率 为: D(T) = eQ*(t+T)
其中, Ζ)(Γ)为预定时长后的授权系统信道组合状态转移概率; β为授 权系统信道组合状态转移速率, 根据授权系统的业务特性及调度策略确定; ί。为初始时刻, 定义为 0; Τ为预定时长。
分析模块, 还用于确定预定时长后的授权系统各信道组合状态发生概 率为: /^。+ ) = *(+^^。);
其中, ;?¾ +Γ)为预定时长后的授权系统信道组合状态概率; ρ(ί。)为初 始时刻授权系统信道组合状态。
分析模块, 还用于确定预定时长后的各候选信道空闲概率为: P die(to+T) = ^pk(t0+T)- keS
其中, ,Wfe(¾+O为候选信道 i在预定时长后的空闲概率; S为预定 时长后的信道 i 为空闲状态对应的授权系统信道组合状态的集合; Α(。+Γ)为预定时长后的, S中第 k个授权系统信道组合状态发生概率。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种动态信道分配方法, 其特征在于, 该方法包括:
根据预定时长后的授权系统信道组合状态转移概率和初始时刻授权系 统信道组合状态, 确定预定时长后的授权系统各信道组合状态发生概率; 根据所述预定时长后的授权系统各信道组合状态发生概率确定预定时 长后的各候选信道空闲概率;
按照所述空闲概率由高到低的顺序为非授权用户分配候选信道。
2、 根据权利要求 1所述动态信道分配方法, 其特征在于, 所述为非授 权用户分配候选信道, 包括:
优先为需要执行主动切换的已接入的非授权用户分配候选信道; 再将 剩余的候选信道分配给等待接入的非授权用户。
3、 根据权利要求 2所述动态信道分配方法, 其特征在于, 所述为需要 执行主动切换的已接入的非授权用户分配候选信道, 包括:
判断候选信道中已接入的非授权用户占用的信道的空闲概率是否最 高, 当判断结果为否时, 判定所述已接入的非授权用户需要执行主动切换; 将空闲概率比所述已接入的非授权用户占用的信道的空闲概率高的空 闲信道, 按照空闲概率从高到低的顺序的分配给所述已接入的非授权用户。
4、 根据权利要求 2所述动态信道分配方法, 其特征在于, 候选信道分 配完毕后, 该方法还包括:
需要执行主动切换的已接入的非授权用户从占用的信道切换到分配的 候选信道; 等待接入的非授权用户接入分配的候选信道。
5、 根据权利要求 1、 2、 3或 4所述动态信道分配方法, 其特征在于, 该方法还包括: 确定所述预定时长后的授权系统信道组合状态转移概率为:
D(T) = eQ*(t0+T); 其中, 所述 Ζ)(Γ)为预定时长后的授权系统信道组合状态转移概率; 所 述! 2为授权系统信道组合状态转移速率, 根据授权系统的业务特性及调度 策略确定; 所述 ί。为初始时刻, 定义为 0; 所述 Τ为预定时长。
6、 根据权利要求 5所述动态信道分配方法, 其特征在于, 所述确定预 定时长后的授权系统各信道组合状态发生概率为: p 0 + T) = eQ*ih+T) p(t0); 其中, 所述;? (ί。+Γ)为预定时长后的授权系统信道组合状态概率; 所述 /? 。)为初始时刻授权系统信道组合状态。
7、 根据权利要求 6所述动态信道分配方法, 其特征在于, 所述确定预 定时长后的各候选信道空闲概率为: 通 + T) = J pk (t0
keS
其中, 所述 ^^ 。 + r)为候选信道 i在预定时长后的空闲概率; 所述 s为预定时长后的信道 i为空闲状态对应的授权系统信道组合状态的集合; 所述/ ^(。+Γ)为预定时长后的,所述 S中第 k个授权系统信道组合状态发 生概率。
8、 一种动态信道分配系统, 其特征在于, 包括:
分析模块, 用于根据预定时长后的授权系统信道组合状态转移概率、 和初始时刻授权系统信道组合状态, 确定预定时长后的授权系统各信道组 合状态发生概率; 还用于根据所述预定时长后的授权系统各信道组合状态 发生概率确定预定时长后的各候选信道空闲概率;
分配模块, 用于按照空闲概率由高到低的顺序为非授权用户分配候选 信道。
9、 根据权利要求 8所述动态信道分配系统, 其特征在于, 所述分配模 块, 还用于优先为需要执行主动切换的已接入的非授权用户分配候选信道; 再将剩余的候选信道分配给等待接入的非授权用户。
10、 根据权利要求 8所述动态信道分配系统, 其特征在于, 所述分配 模块, 还用于判断候选信道中已接入的非授权用户占用的信道的空闲概率 是否最高, 当判断结果为否时, 判定所述已接入的非授权用户需要执行主 动切换; 并将空闲概率比所述已接入的非授权用户占用的信道的空闲概率 高的空闲信道, 按照从高到低的顺序的分配给所述已接入的非授权用户。
11、 根据权利要求 8、 9或 10所述动态信道分配系统, 其特征在于, 所述分析模块, 还用于确定所述预定时长后的授权系统信道组合状态 转移概率为: 0(Τ) = 。+Τ) ;
其中, 所述 Ζ)(Γ)为预定时长后的授权系统信道组合状态转移概率; 所 述! 2为授权系统信道组合状态转移速率, 根据授权系统的业务特性及调度 策略确定; 所述 ί。为初始时刻, 定义为 0; 所述 Τ为预定时长。
12、 根据权利要求 11所述动态信道分配系统, 其特征在于, 所述分析模块, 还用于确定预定时长后的授权系统各信道组合状态发 生概率为: ρ(ί。+ Γ) = *( +r)/?(i。);
其中, 所述;? ¾ +Γ)为预定时长后的授权系统信道组合状态概率; 所述
/? 。)为初始时刻授权系统信道组合状态。
13、 根据权利要求 12所述动态信道分配系统, 其特征在于, 所述分析模块, 还用于确定预定时长后的各候选信道空闲概率为: keS
其中, 所述 ^^ 。 + r)为候选信道 i在预定时长后的空闲概率; 所述
S为预定时长后的信道 i为空闲状态对应的授权系统信道组合状态的集合; 所述/ 为预定时长后的,所述 s中第 k个授权系统信道组合状态发 生概率。
PCT/CN2011/081206 2011-04-14 2011-10-24 一种动态信道分配方法和系统 WO2012139364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110093920.9A CN102740475B (zh) 2011-04-14 2011-04-14 一种动态信道分配方法和系统
CN201110093920.9 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012139364A1 true WO2012139364A1 (zh) 2012-10-18

Family

ID=46995017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081206 WO2012139364A1 (zh) 2011-04-14 2011-10-24 一种动态信道分配方法和系统

Country Status (2)

Country Link
CN (1) CN102740475B (zh)
WO (1) WO2012139364A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746753A (zh) * 2013-12-19 2014-04-23 镇江锐捷信息科技有限公司 一种基于认知无线网络的数据预测方法
WO2016033724A1 (zh) * 2014-09-01 2016-03-10 华为技术有限公司 选取信道的方法及发送端
US10104691B2 (en) * 2015-04-15 2018-10-16 Mediatek Inc. Methods of listen-before-talk mechanism for opportunistic spectrum access
CN104994509B (zh) * 2015-05-07 2018-10-02 昆明理工大学 一种认知无线电中应用的信道随机征用方法
CN107613478B (zh) * 2017-08-07 2020-04-07 中兴克拉科技(苏州)有限公司 一种lpwan物联网的终端自动注册方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866628A2 (en) * 1997-03-19 1998-09-23 AT&T Corp. System and method for dynamic channel assignment
CN101257714A (zh) * 2008-04-08 2008-09-03 浙江大学 认知无线电系统的跨层自适应并行信道分配方法
CN101534508A (zh) * 2009-04-15 2009-09-16 南京邮电大学 一种引入异构用户业务执行系数的动态资源调度方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8326227B2 (en) * 2008-06-30 2012-12-04 Futurewei Technologies, Inc. System and method for secondary communications with directional transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866628A2 (en) * 1997-03-19 1998-09-23 AT&T Corp. System and method for dynamic channel assignment
CN101257714A (zh) * 2008-04-08 2008-09-03 浙江大学 认知无线电系统的跨层自适应并行信道分配方法
CN101534508A (zh) * 2009-04-15 2009-09-16 南京邮电大学 一种引入异构用户业务执行系数的动态资源调度方法

Also Published As

Publication number Publication date
CN102740475B (zh) 2017-02-01
CN102740475A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
CN105122876B (zh) 通信系统
Wang et al. Modeling and analysis for reactive-decision spectrum handoff in cognitive radio networks
JP7130764B2 (ja) キャリア選択方法、ユーザ機器およびコンピュータ記憶媒体
Wang et al. Analysis of reactive spectrum handoff in cognitive radio networks
JP6433089B2 (ja) 認可スペクトルおよび無認可スペクトル上の動的リソース割り当てのためのシステムおよび方法
CN101778435B (zh) 一种异构无线网络中频谱资源的分配方法及装置
US9107202B2 (en) Methods, apparatuses and computer program products for providing coordination of device to device communication
JP6475338B2 (ja) 時間領域フレーム構造の動的最適化のための方法及びシステム
US8774160B2 (en) Method and system for scheduling frequency physical resources based on frequency hopping
CN112996116B (zh) 一种保障电力时延敏感业务质量的资源分配方法及系统
CN102076091A (zh) 信道分配方法、装置和基站控制设备
WO2012139364A1 (zh) 一种动态信道分配方法和系统
TW201246991A (en) Network system, femtocell, femtocell management apparatus, resource allocation method and computer program product thereof
US10716108B2 (en) Cellular network access method and apparatus
CN104219190B (zh) 一种认知ofdm系统的子信道和功率分配方法
CN111066337A (zh) 网络和/或设备之间层级切换的频谱共享
WO2017118053A1 (zh) 一种信道占用的判决方法及判决装置
CN103109564B (zh) 网络切换的方法及装置、基站、基站控制器
Li et al. Queuing method in combined channel aggregation and fragmentation strategy for dynamic spectrum access
Yao et al. Markov-based optimal access probability for dynamic spectrum access in cognitive radio networks
Pham Thi Hong et al. Spectrum sharing with buffering in cognitive radio networks
Li et al. Combined channel aggregation and fragmentation strategy in cognitive radio networks
CN106658737B (zh) 一种资源分配的方法及装置
WO2012068862A1 (zh) 一种时频资源处理方法和装置
CN108235829A (zh) 通过分组授权辅助接入(laa)网络中的小小区同步接入非授权介质的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863499

Country of ref document: EP

Kind code of ref document: A1