WO2012138040A1 - Nanodiamond-polymer nanoparticle composite, and a production method therefor - Google Patents

Nanodiamond-polymer nanoparticle composite, and a production method therefor Download PDF

Info

Publication number
WO2012138040A1
WO2012138040A1 PCT/KR2011/009518 KR2011009518W WO2012138040A1 WO 2012138040 A1 WO2012138040 A1 WO 2012138040A1 KR 2011009518 W KR2011009518 W KR 2011009518W WO 2012138040 A1 WO2012138040 A1 WO 2012138040A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylpyrrolidone
nanodiamond
nanoparticles
particles
composite
Prior art date
Application number
PCT/KR2011/009518
Other languages
French (fr)
Korean (ko)
Inventor
게클러커트
아띠아노아
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2012138040A1 publication Critical patent/WO2012138040A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/06Homopolymers or copolymers of N-vinyl-pyrrolidones

Definitions

  • the present invention relates to a composite comprising polymer nanoparticles and nanodiamonds, and more particularly, to a composite including polymer nanoparticles and nanodiamonds, which remarkably improves nanodiamond dispersion while suppressing reaggregation of nanodiamond particles. It is about.
  • nanomaterials have been applied in various fields.
  • the nanoparticles are supplied as agglomerated powders due to their high surface free energy, and particle dispersity has become an important issue for producing desired polymer nanocomposites.
  • DND Explosive Particulate Diamond
  • SWNT single-walled, double-walled, and multi-walled carbon nanotubes
  • MWNT multi-walled carbon nanotubes
  • DNDs received little or no attention until 1988 when two technological papers appeared in published journals.
  • Explosive particulate diamond is 2,4,6-trinitrotoluene (TNT) / 1,3,5- under a gas atmosphere, for example in a closed steel chamber in CO 2 (dry method) or water (wet method).
  • TNT 2,4,6-trinitrotoluene
  • hexogen Trinitrotriazacyclohexane
  • the nanodiamond material is an amorphous carbon of 1-4 nm diamond crystalline nucleus generated by inducing high temperature and high pressure atmosphere when explosives such as trinitrotoluene (TNT) and white crystalline insoluble bomb RDX (Research department explosive) explode.
  • TNT trinitrotoluene
  • RDX Redsearch department explosive
  • the nanodiamond material exhibits nontoxicity and biocompatibility. This feature provides DND with additional features for biorelevant applications in view of their rich surface chemistry that can be relatively easily modified.
  • DND has attracted great attention as a material platform for nanotechnology.
  • the nanodiamond material is generally agglomerated strongly with each other when dried due to the nature of the particles, and thus does not exhibit the original particle size and properties, so that a water-soluble liquid product or powder mixed and dispersed in a ratio of 9: 1 with distilled water using a hydrophilic surface property is obtained. It is supplied. Liquid products can be applied directly to aqueous coating solutions, but most polymer resin coating solutions cannot be applied because they use oily solvents.
  • the nanodiamond particles during the nanodiamond powder manufacturing process inevitably hardly agglomerated during the purification and drying process, the unit particles are very small as 4 ⁇ 10 nm, but the powder nanodiamond particles are each larger than the micron size.
  • the first problem to be solved by the present invention is to provide a composite comprising a polymer nanoparticles and nanodiamonds.
  • the second problem to be solved by the present invention is to provide a method for producing a composite comprising the polymer nanoparticles and nanodiamonds.
  • a third object of the present invention is to provide a thin film including a composite including the polymer nanoparticles and nanodiamonds.
  • the present invention provides a nanodiamond-polyvinylpyrrolidone nanoparticle composite formed by dispersing nanodiamond (ND) particles and polyvinylpyrrolidone (PVP) nanoparticles.
  • ND nanodiamond
  • PVP polyvinylpyrrolidone
  • the present invention provides a thin film comprising a composite prepared according to the manufacturing method in order to solve the third technical problem.
  • the polymer nanoparticles inhibit reaggregation of the nanodiamond particles and at the same time nanodiamonds.
  • the dispersion of particles can be significantly improved, so that the polymeric nanoparticles are effective and economical additives for the dispersion of nanodiamonds.
  • the nanoparticles of the polyvinylpyrrolidone nanoparticles or derivatives thereof do not affect particle formation even when the concentration is increased.
  • the polymer nanoparticles and the nanodiamond particles are sonicated, the increase in cycle and ultrasonic time induces aggregates, so the presence of the polymer nanoparticles is an important factor for dispersion.
  • the high specific surface area of the composites according to the invention has the effect of providing good interaction and, as a result, providing excellent mechanical properties of their thin films.
  • the thin film produced according to the method for producing a composite according to the present invention exhibits uniform dispersion, reducing the transmittance of UV irradiation and at the same time maintaining the transparency in the visible region.
  • 1 is a graph showing the curve of the correlation between the stirring time and the size of the polyvinylpyrrolidone nanoparticles. After stirring for a predetermined time or more, it can be seen that the size of the polyvinylpyrrolidone nanoparticles is increased again.
  • Figure 2 is a graph showing the particle size of ND-PVP-NP (0.5% by weight), the total particle size of the nanodiamond particles is 37.5 mm.
  • FIG. 3 is a schematic diagram illustrating the rules of polymer nanoparticles in the dispersion process and the dispersibility of aggregated ND using ultrasonic waves in PVP-NP.
  • Figure 4 (a) is a graph showing the UV-vis spectra of the thin film containing ND-PVP-NP according to the different content of the nanodiamond, (b) is a graph of the ND-PVP-NP according to the different content of nanodiamond A graph showing the UV spectra.
  • Figure 5 (a) is a graph showing the correlation between the transmittance of the thin film films in the UV region with different degrees of ND loading, (b) is a graph showing the UV-vis spectra of Comparative Example 2.
  • Example 6 is a diagram showing the protection rate of UV rays of Comparative Example 2-3 and Example 3-4 at 400 nm.
  • a nanodiamond-polyvinylpyrrolidone nanoparticle composite prepared by dispersing nanodiamond (ND) particles and nanoparticles of polyvinylpyrrolidone (PVP) or a derivative thereof is prepared to solve the problem of agglomeration of nanodiamonds.
  • the nanodiamond-polyvinylpyrrolidone nanoparticle composite according to the present invention is characterized by dispersing nanodiamond (ND) particles and nanoparticles of polyvinylpyrrolidone (PVP) or derivatives thereof.
  • nanodiamonds have a high atomic ratio of nanodiamonds due to their small particle size, which provides defect positions on grain boundaries than natural single diamond crystals or microcrystalline synthetic diamonds.
  • these functional groups such as carboxyl and the like can be grafted with carbon elements on diamond defect sites. That is, some soft aggregates are generated by van der Waals forces between the diamond particles that appear, while some hard aggregates are bound by chemical bonds such as carbonyl or ether groups. Occurred during storage, and especially hard aggregates are more difficult to disperse them individually.
  • Nanodiamond (ND) powder exhibits the unique properties of diamond on nanoscale and is one of the more widely studied nanomaterials. The excellent hardness and thermal conductivity of the diamond core is combined in the ND powder into a highly accessible surface area covered by surface functionalities that are immediately sewn.
  • NDs are suitable for a wide range of potential applications involving complexes.
  • NDs can be introduced in fibers, coatings, or other forms with their useful properties of hardness.
  • ND can be used in certain applications such as surface coatings.
  • the diamond particles used in the present invention use two types of representative nanodiamonds. That is, there are nanodiamonds (ND5) having an average diameter of about 5 nm and nanodiamonds (ND60) having finely divided microdiamonds.
  • ND5 nanodiamonds
  • ND60 nanodiamonds
  • the surface of these nanodiamonds contains amorphous carbon compounds as residues, surrounded by oxygen or hydrogen compounds, and in many cases forms aggregates.
  • the polyvinylpyrrolidone polymer used in the present invention is composed of a mixture of polyvinylpyrrolidone or polyvinylpyrrolidone derivative, and the nanoparticles of the polyvinylpyrrolidone derivative are poly (1-vinylpyrrolidone- co-vinylacetate), poly (1-vinylpyrrolidone-co-2-dimethylaminoethylmethacrylate).
  • polyvinylpyrrolidone examples include copovidone (eg Kollidon VA 64, manufactured by BASF). It is a 6: 4 copolymer of vinylpyrrolidone and vinyl acetate.
  • the weight average molecular weight of the polyvinylpyrrolidone is preferably 250 g / mol to 360 kg / mol. Outside of the above range, the chain structure of the polymer material becomes difficult to unwind and it is difficult to form nanoparticles. .
  • the polyvinylpyrrolidone (povidone, PVP) is a commercially available hydrophilic polymer suitable for use in delayed release solid pharmaceutical formulations.
  • PVP polyvinylpyrrolidone
  • Various kinds of PVP are commercially available.
  • Relatively low molecular weight PVP is usually used as a tablet binder.
  • PVP expands and disintegrates in aqueous media.
  • PVP-containing tablets have not been shown to form sticky gel layers, such as, for example, cellulose ethers.
  • PVP-containing tablets do not exhibit tack even in an aqueous medium.
  • the risk of aggregation in the gastrointestinal tract is low when administering multiple tablets.
  • the release kinetics can be varied within a defined range.
  • the nanodiamond-polyvinylpyrrolidone nanoparticle complexes according to the present invention were generated during an ultrasonic process in the presence of PVP-NP nanoparticles that cause cavitation cracks, and simultaneously coagulated and core aggregated nanodiamond particles.
  • Loose in the weak part of Polymer nanoparticles inserted between loosely agglomerated nanodiamond particles were divided into very small particles, segregated and partially encapsulated on nanodiamonds, between nanodiamond aggregates to disperse them for very small nanodiamond particles. Means insertion of PVP-NP.
  • the weight ratio of the nanodiamond (ND) particles and the nanoparticles of polyvinylpyrrolidone (PVP) or derivatives thereof used in the present invention is 4:96 ⁇ 45:55, it is out of the range of the nanodiamond It is not preferable because the content is too small and has a disadvantage in that the UV transmittance is very high when manufacturing a thin film, or it is not preferable because the dispersion may not be performed properly because it is excessive.
  • the nanodiamond-polyvinylpyrrolidone nanoparticle composite of the present invention may include a conventional additive in a usual amount of use.
  • nanodiamond powder can hinder the potential application of ND if its aggregates are not broken.
  • methods already used to distribute ND There are many methods already used to distribute ND. However, stronger conditions are used, for example, high peripheral speeds and long milling times, and high contents of zirconia are detected.
  • zirconia can be removed by strong acid treatment which can be carefully applied due to the accompanying chemical reaction. It has also been found that high power ultrasound is an efficient technique for breaking adhesion.
  • BASD beam-assisted sonic decay
  • Spherical polymeric nanoparticles are of great interest in their application as templates for drug delivery systems, photonic crystal applications and other periodic structures with nanometer ranges for micrometer sizes.
  • the present invention uses polymer nanoparticles prepared by magnetic stirring to disperse NDs.
  • polyvinylpyrrolidone polymer nanoparticles were prepared using a dispersion method, which readily prepared polymer nanoparticles of different sizes of polyvinylpyrrolidone, and mixed them into ND powder using ultrasonic waves.
  • the composite of nanodiamonds and polyvinylpyrrolidone nanoparticles according to the present invention may have different particle sizes depending on the dispersion of aggregated nanodiamonds using ultrasonic technology.
  • step 1) is performed by dissolving polyvinylpyrrolidone or a derivative thereof in ionized water and mechanically stirring the mixture at 0-35 ° C. for 30 minutes to 24 hours to determine the polyvinylpyrrolidone or derivative thereof. It is not preferable to obtain an aqueous solution of nanoparticles, but less than 30 minutes, since the size of the PVP-nanoparticles may be such that the effect of the present invention can not be achieved, and the size of the smaller particles may increase again after 24 hours. Not desirable
  • step 2) the nanodiamond particles are added to a solution containing the nanoparticles of the polyvinylpyrrolidone or a derivative thereof, and the dispersion is performed by ultrasonic waves for 15 minutes to 1 hour.
  • the weight ratio of the nanodiamonds (ND) particles used in the present invention and the nanoparticles of polyvinylpyrrolidone (PVP) or derivatives thereof is 4:96 to 45:55.
  • the nanodiamond-polyvinylpyrrolidone nanoparticle composite according to the present invention may be used as a raw material for producing a composite such as glass, plastic, synthetic fiber, ceramic, or the like, or as an additive to toothpaste, shampoo, soap, cosmetics, and the like.
  • the thin film of the nanodiamond-polyvinylpyrrolidone nanoparticle composite according to the present invention is characterized in that it comprises the nanodiamond-polyvinylpyrrolidone nanoparticle composite.
  • the thickness of the thin film was measured using a surface roughness measuring instrument (Surfcorder ET3000i / 3000F, Kosaka Laboratory Ltd.).
  • polyvinylpyrrolidone (made by Merck) was prepared by using the method of stirring at room temperature. 5 mg of polyvinylpyrrolidone was added to 1 ml of deionized water and stirred at room temperature for 5 hours to obtain an aqueous polyvinylpyrrolidone nanoparticle solution (PVP-NP).
  • the dispersion state of the polyvinylpyrrolidone nanoparticles in the aqueous solution was confirmed by microscopic techniques, and the polyvinylpyrrolidone nanoparticles (PVP-NP) were not produced without stirring, so only polyvinylpyrrolidone was present, and 30 minutes When stirred for a while, a very large size dispersion was formed, and the stirring time to increase the nanoparticles reduced the particle size with a very narrow size dispersion.
  • the size of PVP-NP decreased with increasing agitation time to a minimum point, and increased again after a certain time.
  • nanodiamond particles Naodiamond PL-D-G01, average size: 4 nm
  • PVP-NP aqueous solution obtained in the above preparation
  • the nanodiamonds were dispersed by ultrasonic wave for 20 minutes, followed by 2500 rpm. Centrifugation was performed for 30 minutes at, and the supernatant was slowly poured into distilled water, stirred well, and filtered using a membrane filter. The product was dried in an oven at 80 ° C. for 4 hours to prepare a composite.
  • the thin film containing the composite obtained in Example 1 was prepared by a known method, and then dried.
  • Example 2 Except for using the composite obtained in Example 2 was prepared in the same manner as in Example 3.
  • 5 mg of nanodiamond particles without PVP-NP were prepared in the same manner as in Example 1 except that 5 ml of water was dispersed in 5 ml of water for 20 minutes, but agglomeration of diamonds occurred.
  • nanodiamond particles 2 mg were contained in 4 ml of the PVP-NP aqueous solution obtained in the above preparation, and the nanodiamonds were dispersed by ultrasound for 5 hours, followed by centrifugation, and the supernatant was slowly poured into distilled water and stirred well. It was filtered using a filter. The product was dried in an oven at 80 ° C. for 4 hours to prepare a composite. A thin film including the composite was prepared in the same manner as in Example 3, and then dried.
  • nanodiamonds were dispersed into very small particles due to the stronger interaction between polyvinylpyrrolidone nanoparticles and nanodiamond particles, and the specific surface area increased the induction of increased contact therebetween.
  • the interaction between nanodiamonds and PVP-NP is more apparent here.
  • UV-sensitive materials can be effectively protected from UV rays on windows. This is significant because it is the first case using polymer nanoparticles to disperse NDs.
  • These thin films are transparent in the visible region and absorbed in the UV region. Thus, it effectively protects against erosion of UV radiation or UV sensitive materials on windows.
  • these thin films of ND-PVP-NP provided a scratch-resistant coating depending on the mechanical, thermal, insulator properties and the presence of nanodiamonds that could be used on the surface with UV protection.
  • UV irradiation from the sun was divided into three areas: UVC (270-290 nm), UVB (290-320 nm), and UVA (320-400), UVC emitted from the sun was filtered by ozone under the atmosphere, Therefore, it does not reach the earth's surface.
  • UVB 290-320 nm
  • UVA 320-400 nm
  • Example 3-4 The spectroscopy characteristic experiment of Example 3-4 was performed.
  • the thin films of Examples 3-4 had the same thickness of 500 ⁇ 50 nm.
  • the transmittance of UV irradiation decreased with increasing contents of 20% by weight and 40% by weight of diamond particles of Examples 3-4.
  • Examples 3 and 4 have a low transmittance of UV irradiation, whereas in Comparative Examples 2 and 3 it can be seen that the transmittance of UV irradiation is very high.
  • Examples 3 and 4 are very high UV-protection rate of 70-75% compared to Comparative Examples 2 and 3. This shows the relationship between the UV radiation and the transparency of the ND content.
  • the presence of the polyvinylpyrrolidone particles aids in the dispersibility of the nanodiamond particles, particularly in the high content of nanodiamonds in the polyvinylpyrrolidone-diamond composite according to the present invention, and the diamond in a form that is more uniformly dispersed throughout the thin film. Nanoparticles were delivered and covered the entire area.
  • the polyvinylpyrrolidone particles used in the composite according to the present invention play a pivotal role in dispersion and reflect within UV absorption as described above.
  • Examples 3 and 4 in which nanodiamond particles and polyvinylpyrrolidone particles are well dispersed have UV protection at 400 nm or higher, whereas Comparative Examples 2 and 3 are 50. Very low, below%.
  • these thin films have the advantage of being optically transparent in the visible region.
  • the above can have an application potential in many areas, such as glass coatings and protective layers, on UV-sensitive materials.
  • the thin film according to the present invention can deliver nanodiamond particles in a more dispersed form for their use in other applications by heating to completely remove the polymer to obtain a pure nanodiamond coating, and the chemistry of the polycrystalline diamond film Seeds for vapor deposition (CVD) may be provided.
  • CVD vapor deposition
  • the method for dispersing nanodiamonds can be extended to many different types of polymers and improve their mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)

Abstract

The present invention relates to a composite comprising nanodiamond and polymer nanoparticles, and more specifically relates to a composite comprising nanodiamond and polymer nanoparticles whereby re-agglutination of the nanodiamond particles is suppressed while nanodiamond dispersion is markedly improved.

Description

나노다이아몬드-고분자 나노입자 복합체 및 이의 박막 필름Nanodiamond-polymer nanoparticle composite and thin film thereof
본 발명은 고분자 나노입자와 나노다이아몬드를 포함하는 복합체에 관한 것으로, 더욱 상세하게는 나노다이아몬드 입자의 재응집을 억제함과 동시에 나노다이아몬드 분산을 현저하게 향상시키는 고분자 나노입자와 나노다이아몬드를 포함하는 복합체에 관한 것이다.The present invention relates to a composite comprising polymer nanoparticles and nanodiamonds, and more particularly, to a composite including polymer nanoparticles and nanodiamonds, which remarkably improves nanodiamond dispersion while suppressing reaggregation of nanodiamond particles. It is about.
일반적으로 나노물질은 다양한 분야에서 적용되어 왔다. 상기 나노입자는 그들의 높은 표면자유에너지로 인하여 응집 파우더(agglomerated powder)로서 공급되고, 입자 분산도는 원하는 고분자 나노복합체를 제조하기 위한 중요한 이슈로 되어 왔다.In general, nanomaterials have been applied in various fields. The nanoparticles are supplied as agglomerated powders due to their high surface free energy, and particle dispersity has become an important issue for producing desired polymer nanocomposites.
그 중, 다이아몬드 나노입자는 특정한 특성 및 응용으로 탄소 물질의 다른 형태를 갖는다. 폭발 미립자 다이아몬드(DND)는 플러렌(fullerenes), 단일벽, 이중벽, 및 다중벽의 탄소나노튜브(SWNT, DWNT, 및 MWNT)와 같은 다른 탄소나노입자 및 나노섬유와 같은 다른 탄소 나노입자에 비해 옛 소련에서 (1960 년대) 상대적으로 일찍 발견되었다. DNDs는 두개의 획기적인 논문이 공개된 학회지에 나타내는 1988년까지는 거의 또는 전혀 관심을 받지 못했다. Among them, diamond nanoparticles have different forms of carbon materials with specific properties and applications. Explosive Particulate Diamond (DND) has been used in comparison to other carbon nanoparticles such as fullerenes, single-walled, double-walled, and multi-walled carbon nanotubes (SWNT, DWNT, and MWNT) and other carbon nanoparticles such as nanofibers. It was discovered relatively early in the Soviet Union (1960s). DNDs received little or no attention until 1988 when two groundbreaking papers appeared in published journals.
폭발 미립자 다이아몬드는 가스 대기하, 예를 들면, CO2 (건조방법) 또는 물(습식방법)내에서 밀폐된 스틸 챔버내에서 2,4,6-트리니트로톨루엔 (TNT)/1,3,5-트리니트로트리아자시클로헥산(헥소겐) 폭발의 폭발 방법에 의해 생산된 후에 이름지어졌다.Explosive particulate diamond is 2,4,6-trinitrotoluene (TNT) / 1,3,5- under a gas atmosphere, for example in a closed steel chamber in CO 2 (dry method) or water (wet method). Trinitrotriazacyclohexane (hexogen) was named after being produced by the explosion method.
상기 나노다이아몬드 소재는 트리니트로톨루엔(T.N.T), 백색 결정성 비수용성 폭탄인 RDX(Research department explosive) 등의 폭발물의 폭발 시 고온 고압 분위기를 유도하여 생성된 1-4 nm 의 다이아몬드 결정상의 핵을 비정질 탄소로 둘러싼 독특한 구조의 탄소 재료로서 입경이 작으며 비표면적이 넓음은 물론 표면에 다수의 친수성 작용기를 포함하고 있는 등 독특한 전기적, 화학적, 광학적 특징을 나타내며, 상기 나노다이아몬드는 초분산 다이아몬드(UDD) 및 초나노결정체 다이아몬드(UNCD) 미립자의 두개의 다른 공통 명칭으로 잘 알려져 있는데, 이것은 기본구성물들(프라이머리 나노입자들)의 크기가 2-10 nm(평균 4-5 nm) 및 200 m2/g 이하의 매우 넓은 비표면적을 가지기 때문이다.The nanodiamond material is an amorphous carbon of 1-4 nm diamond crystalline nucleus generated by inducing high temperature and high pressure atmosphere when explosives such as trinitrotoluene (TNT) and white crystalline insoluble bomb RDX (Research department explosive) explode. It is a carbon material with a unique structure that is surrounded by a small particle diameter, a large specific surface area, and has a unique electrical, chemical, and optical characteristics such as including a large number of hydrophilic functional groups on its surface, and the nanodiamonds have superdispersed diamond (UDD) and Two other common names for ultra-nanocrystalline diamond (UNCD) particulates are known, which are 2-10 nm in size (primary nanoparticles) and 200 m 2 / g It is because it has a very large specific surface area of the following.
상기 나노다이아몬드 소재는 비독성 및 생체적합성을 나타낸다. 이러한 특징은 상대적으로 용이하게 변형될 수 있는 그들의 풍부한 표면화학의 관점에서 생체관련 응용분야에 추가적 특징을 DND에게 제공한다. 다양한 분광학 기술에 의해 입증된 표면 작용기는 대부분 -CO2H (카르본산), 락톤, C=O (케토 카르보닐), -C-O-C (에테르), 및 -OH (히드록실)과 같이 산소처리된 부분이다.The nanodiamond material exhibits nontoxicity and biocompatibility. This feature provides DND with additional features for biorelevant applications in view of their rich surface chemistry that can be relatively easily modified. Surface functionalities demonstrated by various spectroscopy techniques are mostly oxygenated moieties such as -CO 2 H (carboxylic acid), lactones, C = O (keto carbonyl), -COC (ether), and -OH (hydroxyl) to be.
이러한 특성으로 현재 다양한 응용분야에서 연구가 진행되고 있으며, 첨단 산업용 소재 및 생활용품에 이르기까지 여러 분야에 폭넓게 사용되고 있다. 특히 작은 크기와 뛰어난 기계적 강도, 활성을 조절 가능한 독특한 표면 성질 때문에 고분자 재료의 강화 필러로의 응용 가능성이 높은 소재이다.Due to these characteristics, research is being conducted in various application fields, and it is widely used in various fields ranging from advanced industrial materials and household goods. In particular, due to its small size, excellent mechanical strength, and unique surface properties that can control its activity, it is highly applicable to polymer fillers as a reinforcing filler.
상기와 같은 나노다이아몬드는 대량 생산(러시아, 우크라이나, 중국 및 벨라루스의 산업생산능력) 및 적정 가격의 특징과 같은 중요한 이점에서, DND는 나노테크놀로지에 있어 물질 플랫폼으로서 매우 주목받고 있다.As such nanodiamonds have important advantages such as mass production (industrial production capacity in Russia, Ukraine, China and Belarus) and moderate price characteristics, DND has attracted great attention as a material platform for nanotechnology.
상기 나노다이아몬드 소재는 통상, 그 입자의 특성상 건조 시 서로 강하게 응집하여 본연의 입도와 특성을 나타내지 않으므로 친수성인 표면성질을 이용하여 증류수와 9 : 1 의 비율로 혼합, 분산된 수용성 액상제품 또는 분말이 공급되고 있다. 액상 제품은 수성 코팅 용액에는 바로 적용이 가능하나 대부분의 고분자 수지 코팅액은 유성 용제를 사용하므로 적용이 불가능하여 분말 제품을 사용해야 한다. 그러나 나노다이아몬드 분말 제조과정 중 나노다이아몬드 입자는 정제 및 건조과정에서 필연적으로 단단하게 뭉치게 되어, 단위 입자는 4 ~ 10 nm로 매우 작으나 분말 나노다이아몬드 입자는 각각의 크기가 마이크론 크기 이상이다.The nanodiamond material is generally agglomerated strongly with each other when dried due to the nature of the particles, and thus does not exhibit the original particle size and properties, so that a water-soluble liquid product or powder mixed and dispersed in a ratio of 9: 1 with distilled water using a hydrophilic surface property is obtained. It is supplied. Liquid products can be applied directly to aqueous coating solutions, but most polymer resin coating solutions cannot be applied because they use oily solvents. However, the nanodiamond particles during the nanodiamond powder manufacturing process inevitably hardly agglomerated during the purification and drying process, the unit particles are very small as 4 ~ 10 nm, but the powder nanodiamond particles are each larger than the micron size.
따라서 분말의 경우 바로 사용 시 코팅용액과 상용성이 있는 용제 내에서의 분쇄 및 분산 과정 및 친수성 표면을 개선하는 과정 없이는 이후 응용이 불가능하다.Therefore, in the case of powder, it is impossible to apply afterwards without grinding and dispersing in a solvent compatible with the coating solution and improving the hydrophilic surface.
본 발명이 해결하고자 하는 첫 번째 과제는 고분자 나노입자와 나노다이아몬드를 포함하는 복합체를 제공하는 것이다.The first problem to be solved by the present invention is to provide a composite comprising a polymer nanoparticles and nanodiamonds.
본 발명이 해결하고자 하는 두 번째 과제는 상기 고분자 나노입자와 나노다이아몬드를 포함하는 복합체의 제조방법을 제공하는 것이다.The second problem to be solved by the present invention is to provide a method for producing a composite comprising the polymer nanoparticles and nanodiamonds.
본 발명이 해결하고자 하는 세 번째 과제는 상기 고분자 나노입자와 나노다이아몬드를 포함하는 복합체를 포함하는 박막을 제공하는 것이다.A third object of the present invention is to provide a thin film including a composite including the polymer nanoparticles and nanodiamonds.
본 발명은 첫 번째 기술적 과제를 해결하기 위하여, 나노다이아몬드(ND) 입자와 폴리비닐피롤리돈(PVP) 나노입자를 분산시켜 이루어지는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체를 제공한다.The present invention provides a nanodiamond-polyvinylpyrrolidone nanoparticle composite formed by dispersing nanodiamond (ND) particles and polyvinylpyrrolidone (PVP) nanoparticles.
또한 본 발명은 두 번째 기술적 과제를 해결하기 위하여, In addition, the present invention to solve the second technical problem,
1) 폴리비닐피롤리돈 입자를 교반하여 폴리비닐피롤리돈 수용액을 제조하는 단계; 및1) preparing polyvinylpyrrolidone aqueous solution by stirring the polyvinylpyrrolidone particles; And
2) 상기 폴리비닐피롤리돈 수용액에 나노다이아몬드 입자를 넣고 초음파로 분산시키는 단계를 포함하는 본 발명에 따른 복합체의 제조방법을 제공한다.2) It provides a method for producing a composite according to the present invention comprising the step of dispersing the nanodiamond particles in the polyvinylpyrrolidone aqueous solution and ultrasonically.
또한 본 발명은 세 번째 기술적 과제를 해결하기 위하여, 상기 제조방법에 따라 제조된 복합체를 포함하는 박막을 제공한다.In another aspect, the present invention provides a thin film comprising a composite prepared according to the manufacturing method in order to solve the third technical problem.
본 발명에 따른 고분자 나노입자인 폴리비닐피롤리돈 나노입자 또는 그 유도체의 나노입자와 나노다이아몬드 입자를 포함하는 복합체에 의하면, 상기 고분자 나노입자가 나노다이아몬드 입자의 재응집을 억제함과 동시에 나노다이아몬드 입자의 분산을 현저하게 향상시킬 수 있어, 상기 고분자 나노입자는 나노다이아몬드의 분산을 위하여 효과적이고 경제적인 첨가물이다. 또한, 상기 폴리비닐피롤리돈 나노입자 또는 그 유도체의 나노입자는 농도를 증가시켜도 입자 형성에 영향이 없다. 그러나, 상기 고분자 나노입자와 나노다이아몬드 입자를 초음파 처리할 때 주기 및 초음파 시간의 증가는 응집체를 유도하므로, 고분자 나노입자의 존재는 분산을 위한 중요 요소이다. 또한, 본 발명에 따른 복합체의 고비표면적은 우수한 상호작용을 제공하고, 그 결과로서 그들의 박막의 우수한 기계적 특성을 제공하는 효과가 있다. According to the composite including the nanoparticles of the polyvinylpyrrolidone nanoparticles or derivatives thereof, which are the polymer nanoparticles according to the present invention, and the nanodiamond particles, the polymer nanoparticles inhibit reaggregation of the nanodiamond particles and at the same time nanodiamonds. The dispersion of particles can be significantly improved, so that the polymeric nanoparticles are effective and economical additives for the dispersion of nanodiamonds. In addition, the nanoparticles of the polyvinylpyrrolidone nanoparticles or derivatives thereof do not affect particle formation even when the concentration is increased. However, when the polymer nanoparticles and the nanodiamond particles are sonicated, the increase in cycle and ultrasonic time induces aggregates, so the presence of the polymer nanoparticles is an important factor for dispersion. In addition, the high specific surface area of the composites according to the invention has the effect of providing good interaction and, as a result, providing excellent mechanical properties of their thin films.
또한, 본 발명에 따른 복합체의 제조방법에 따라 제조되는 박막은 균일한 분산을 나타내어 UV 조사의 투과율을 감소시킴과 동시에 가시 영역내에서 투명도를 유지하는 효과를 갖는다.In addition, the thin film produced according to the method for producing a composite according to the present invention exhibits uniform dispersion, reducing the transmittance of UV irradiation and at the same time maintaining the transparency in the visible region.
도 1은 교반시간 및 폴리비닐피롤리돈 나노입자의 크기 사이의 상관관계의 커브를 나타낸 그래프이다. 일정 시간 이상을 교반하면 폴리비닐피롤리돈 나노입자의 크기가 다시 커짐을 알 수 있다.1 is a graph showing the curve of the correlation between the stirring time and the size of the polyvinylpyrrolidone nanoparticles. After stirring for a predetermined time or more, it can be seen that the size of the polyvinylpyrrolidone nanoparticles is increased again.
도 2는 ND-PVP-NP(0.5 중량%)의 입자 크기를 나타낸 그래프이고, 나노다이아몬드 입자의 총입자크기는 37.5 mm 이다. Figure 2 is a graph showing the particle size of ND-PVP-NP (0.5% by weight), the total particle size of the nanodiamond particles is 37.5 mm.
도 3은 분산 과정 내의 고분자 나노입자의 규칙과 PVP-NP 내에 초음파를 사용하여 응집된 ND의 분산성을 설명하는 개요도이다.3 is a schematic diagram illustrating the rules of polymer nanoparticles in the dispersion process and the dispersibility of aggregated ND using ultrasonic waves in PVP-NP.
도 4의 (a)는 나노다이아몬드의 다른 함량에 따른 ND-PVP-NP를 포함하는 박막의 UV-vis 스펙트라를 나타낸 그래프이고, (b)는 나노다이아몬드의 다른 함량에 따른 ND-PVP-NP의 UV 스펙트라를 나타낸 그래프이다.Figure 4 (a) is a graph showing the UV-vis spectra of the thin film containing ND-PVP-NP according to the different content of the nanodiamond, (b) is a graph of the ND-PVP-NP according to the different content of nanodiamond A graph showing the UV spectra.
도 5의 (a)는 ND loading의 다른 정도(degree)로 UV 영역에서 박막 필름들의 투과율간의 상관관계를 나타낸 그래프이고, (b)는 비교예 2의 UV-vis 스펙트라를 나타낸 그래프이다. Figure 5 (a) is a graph showing the correlation between the transmittance of the thin film films in the UV region with different degrees of ND loading, (b) is a graph showing the UV-vis spectra of Comparative Example 2.
도 6은 400 nm에서 비교예 2-3 및 실시예 3-4의 UV선의 보호율을 나타낸 다이아그램이다.6 is a diagram showing the protection rate of UV rays of Comparative Example 2-3 and Example 3-4 at 400 nm.
본 발명에서는 나노다이아몬드(ND) 입자와 폴리비닐피롤리돈(PVP) 또는 그 유도체의 나노입자를 분산시켜 이루어지는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체를 제조하여 나노다이아몬드의 뭉침현상의 문제점을 극복하였다.In the present invention, a nanodiamond-polyvinylpyrrolidone nanoparticle composite prepared by dispersing nanodiamond (ND) particles and nanoparticles of polyvinylpyrrolidone (PVP) or a derivative thereof is prepared to solve the problem of agglomeration of nanodiamonds. Overcome
본 발명에 따른 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체는 나노다이아몬드(ND) 입자와 폴리비닐피롤리돈(PVP) 또는 그 유도체의 나노입자를 분산시켜 이루어지는 것을 특징으로 한다.The nanodiamond-polyvinylpyrrolidone nanoparticle composite according to the present invention is characterized by dispersing nanodiamond (ND) particles and nanoparticles of polyvinylpyrrolidone (PVP) or derivatives thereof.
일반적으로 나노다이아몬드는 작은 입자크기로 인하여 나노다이아몬드의 높은 원자율이 천연 싱글 다이아몬드 결정체 또는 마이크로결정체 합성 다이아몬드 보다 알갱이 경계 상의 결함 위치에 제공된다. 따라서, 카르복실 등과 같은 이러한 몇몇 작용기들은 다이아몬드 결함 위치 상에 탄소 원소로 그래프트될 수 있다. 즉, 몇몇 소프트(soft)한 응집체가, 출현되는 다이아몬드 입자 사이의 반데르발스힘에 의해 발생되는 반면에, 카르보닐 또는 에테르기와 같은 화학 결합에 의해 결합되는 몇몇 하드(hard)한 응집체는 제조 및 저장하는 동안에 발생하였고, 특히 하드한 응집체는 그것들을 각각 분산시키기에는 더욱 어렵다.In general, nanodiamonds have a high atomic ratio of nanodiamonds due to their small particle size, which provides defect positions on grain boundaries than natural single diamond crystals or microcrystalline synthetic diamonds. Thus, some of these functional groups such as carboxyl and the like can be grafted with carbon elements on diamond defect sites. That is, some soft aggregates are generated by van der Waals forces between the diamond particles that appear, while some hard aggregates are bound by chemical bonds such as carbonyl or ether groups. Occurred during storage, and especially hard aggregates are more difficult to disperse them individually.
자기조직 응집체들(cluster) 또는 제1 응집체들은 수백 나노미터에서 수백 마이크로미터의 크기의 범위에서 더욱 약하게 결합된 제2 응집체를 또한 형성한다. 또한, 나노다이아몬드 응집체들은 차원 분열 도형의 상태를 갖는다. 나노다이아몬드(ND) 파우더는 나노스케일 상에서 다이아몬드의 독특한 특성을 나타내고, 더욱 널리 연구되는 나노물질의 하나이다. 다이아몬드 코어의 뛰어난 경도 및 열전도도는 즉시 재봉되는 표면 작용기에 의해 커버되는 매우 접근하기 쉬연 표면 영역으로 ND 파우더 내에서 결합된다.Autologous clusters or first aggregates also form more weakly bound second aggregates in the range of hundreds of nanometers to hundreds of micrometers. In addition, nanodiamond aggregates have a state of dimensional fission figure. Nanodiamond (ND) powder exhibits the unique properties of diamond on nanoscale and is one of the more widely studied nanomaterials. The excellent hardness and thermal conductivity of the diamond core is combined in the ND powder into a highly accessible surface area covered by surface functionalities that are immediately sewn.
일반적으로 다이아몬드(~5 eV)의 넓은 밴드갭은 그들이 UV 광으로 높게 흡착되게 하지만, 가시(visible) 및 IR 범위에서 투명하다. 따라서, NDs는 복합체를 포함하는 잠재적 응용성의 넓은 범위에 대하여 적합하다. 파우더로서, ND는 그들의 유용한 특성인 경도(hardness)로 섬유, 코팅, 또는 다른 형태로 소개될 수 있다.In general, the wide bandgap of diamonds (˜5 eV) allows them to be highly adsorbed by UV light, but transparent in the visible and IR range. Thus, NDs are suitable for a wide range of potential applications involving complexes. As a powder, NDs can be introduced in fibers, coatings, or other forms with their useful properties of hardness.
다이아몬드 복합체의 제조에 대한 하나의 주요한 방해물은 고분자 매트릭스 내에서 잘 분산되는 입자의 형태내에서 그것들을 전달하는 능력이다. 캐스팅 및 압출과 같은 종래의 고분자 제조기술은 특성의 절충을 이끌어내는 고분자 매트릭스 내의 NDs의 응집체 및 재응집체로 인하여 분산이 잘 이루어지지 않는다.One major obstacle to the production of diamond composites is their ability to deliver them in the form of particles that are well dispersed in the polymer matrix. Conventional polymer manufacturing techniques, such as casting and extrusion, are poorly dispersed due to the aggregation and reaggregation of NDs in the polymer matrix leading to tradeoffs in properties.
또한, 고분자 성분에 대한 ND의 몇 퍼센트 이상의 첨가는 실질적으로 비용 및 중량을 증가시킬 수 있다. 따라서, 바람직하게 ND는 표면 코팅과 같은 특정한 응용에 사용될 수 있다.In addition, the addition of several percent or more of ND to the polymeric component can substantially increase cost and weight. Thus, preferably ND can be used in certain applications such as surface coatings.
본 발명에 사용되는 다이아몬드 입자는 두 종류의 대표적 나노다이아몬드를 사용한다. 즉 폭발법으로 제조된 평균 직경이 5 nm 내외의 나노다이아몬드(ND5)와 마이크로다이아몬드를 미분한 60 nm 내외의 나노다이아몬드(ND60)가 있다. 이들 나노다이아몬드의 표면은 비결정성 탄소화합물이 잔존물로 남아있거나 산소나 수소 화합물들이 둘러싸여 있고 또한 많은 경우 응집체를 형성하고 있다.The diamond particles used in the present invention use two types of representative nanodiamonds. That is, there are nanodiamonds (ND5) having an average diameter of about 5 nm and nanodiamonds (ND60) having finely divided microdiamonds. The surface of these nanodiamonds contains amorphous carbon compounds as residues, surrounded by oxygen or hydrogen compounds, and in many cases forms aggregates.
본 발명에 사용되는 폴리비닐피롤리돈 고분자는 폴리비닐피롤리돈 또는 폴리비닐피롤리돈 유도체의 혼합물로 구성되며, 상기 폴리비닐피롤리돈 유도체의 나노입자는 폴리(1-비닐피롤리돈-co-비닐아세테이트), 폴리(1-비닐피롤리돈-co-2-디메틸아미노에틸메타크릴레이트)로부터 선택되는 1종 이상의 혼합물 중에서 선택될 수 있다.The polyvinylpyrrolidone polymer used in the present invention is composed of a mixture of polyvinylpyrrolidone or polyvinylpyrrolidone derivative, and the nanoparticles of the polyvinylpyrrolidone derivative are poly (1-vinylpyrrolidone- co-vinylacetate), poly (1-vinylpyrrolidone-co-2-dimethylaminoethylmethacrylate).
그러나, 폴리비닐피롤리돈을 사용하는 것이 특히 바람직하며, 적합한 폴리비닐피롤리돈 유도체의 예로는 코포비돈(예를 들면, Kollidon VA 64, 바스프 제품)을 들 수 있다. 이는 비닐피롤리돈 및 비닐 아세테이트의 6:4 코폴리머이다.However, particular preference is given to using polyvinylpyrrolidone, examples of suitable polyvinylpyrrolidone derivatives include copovidone (eg Kollidon VA 64, manufactured by BASF). It is a 6: 4 copolymer of vinylpyrrolidone and vinyl acetate.
상기 폴리비닐피롤리돈의 중량평균분자량은 250 g/mol 내지 360 kg/mol 인 것이 바람직한데, 상기 범위를 벗어나면 고분자 물질의 체인 구조가 풀리기 어려워지며 나노입자를 형성하는 것이 어려워져 바람직하지 않다.The weight average molecular weight of the polyvinylpyrrolidone is preferably 250 g / mol to 360 kg / mol. Outside of the above range, the chain structure of the polymer material becomes difficult to unwind and it is difficult to form nanoparticles. .
상기 폴리비닐피롤리돈(포비돈, PVP)은 지연 방출성 고체 약제학적 제제에 사용하기에 적합한 상업적으로 입수가능한 친수성 폴리머이다. 여러가지 종류의 PVP가 상업적으로 입수가능하다. 비교적 저분자량의 PVP는 보통 정제용 결합제로 사용된다. PVP는 수성 매질에서 팽창하며, 붕괴된다. 그러나, PVP-함유 정제는 예를 들면, 셀룰로스에테르 등의 점착성 겔층을 형성하지 않는 것으로 나타났다. 본 발명의 시험관내 실험에 따르면, PVP-함유 정제는 수성 매질에서 조차도 점착성을 나타내지 않는다. 다수의 정제 투여시 위장관에서 응집할 위험성이 낮다. 분자량이 상이한 PVP를 사용함으로써 방출 키네틱을 정해진 범위내에서 변화시킬 수 있다.The polyvinylpyrrolidone (povidone, PVP) is a commercially available hydrophilic polymer suitable for use in delayed release solid pharmaceutical formulations. Various kinds of PVP are commercially available. Relatively low molecular weight PVP is usually used as a tablet binder. PVP expands and disintegrates in aqueous media. However, PVP-containing tablets have not been shown to form sticky gel layers, such as, for example, cellulose ethers. According to the in vitro experiments of the present invention, PVP-containing tablets do not exhibit tack even in an aqueous medium. The risk of aggregation in the gastrointestinal tract is low when administering multiple tablets. By using PVPs having different molecular weights, the release kinetics can be varied within a defined range.
본 발명에 따른 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체는 공동현상(cavitations)은 크랙을 생성하는 PVP-NP 나노입자의 존재하에서 초음파 공정 중에 발생하였고, 동시에 응집되고, 코어 응집된 나노다이아몬드 입자의 약한 부분에서 느슨하게 되었다. 느슨하게 응집된 나노다이아몬드 입자 사이에 삽입된 고분자 나노입자들은 매우 작은 입자들로 그것들이 나누어지고 격리되며 부분적으로 나노다이아몬드 상에서 감싸졌는데, 이는 매우 작은 나노다이아몬드 입자들에 대해서 그들을 분산시키기 위한 나도다이아몬드 응집체 사이의 PVP-NP의 삽입을 의미한다.The nanodiamond-polyvinylpyrrolidone nanoparticle complexes according to the present invention were generated during an ultrasonic process in the presence of PVP-NP nanoparticles that cause cavitation cracks, and simultaneously coagulated and core aggregated nanodiamond particles. Loose in the weak part of Polymer nanoparticles inserted between loosely agglomerated nanodiamond particles were divided into very small particles, segregated and partially encapsulated on nanodiamonds, between nanodiamond aggregates to disperse them for very small nanodiamond particles. Means insertion of PVP-NP.
본 발명에 사용되는 상기 나노다이아몬드(ND) 입자와 폴리비닐피롤리돈(PVP) 또는 그 유도체의 나노입자의 중량비는 4:96 ~ 45:55인 것이 바람직한데, 상기 범위를 벗어나면 나노다이아몬드의 함량이 너무 적어 박막으로 제조시 UV 투과율이 매우 높은 등의 단점이 있어 바람직하지 않거나, 또는 과량이어서 분산이 제대로 이루어지지 않을 수 있어 바람직하지 않다.The weight ratio of the nanodiamond (ND) particles and the nanoparticles of polyvinylpyrrolidone (PVP) or derivatives thereof used in the present invention is 4:96 ~ 45:55, it is out of the range of the nanodiamond It is not preferable because the content is too small and has a disadvantage in that the UV transmittance is very high when manufacturing a thin film, or it is not preferable because the dispersion may not be performed properly because it is excessive.
본 발명의 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체에는 통상의 첨가제를 통상의 사용량 범위로 포함할 수 있다.The nanodiamond-polyvinylpyrrolidone nanoparticle composite of the present invention may include a conventional additive in a usual amount of use.
일반적으로 나노다이아몬드 파우더는 그 응집체가 깨지지 않는다면 ND의 잠재적 응용성이 방해될 수 있다. 이미 ND를 분산하기 위해 사용되는 많은 방법이 있다. 그러나, 더욱 강한 조건, 예를 들면, 높은 주속(peripheral speed) 및 긴 밀링타임이 사용되고 있고, 고함량의 지르코니아가 검출된다.In general, nanodiamond powder can hinder the potential application of ND if its aggregates are not broken. There are many methods already used to distribute ND. However, stronger conditions are used, for example, high peripheral speeds and long milling times, and high contents of zirconia are detected.
그러나, 지르코니아는 수반되는 화학반응으로 인하여 주의깊게 적용될 수 있는 강산처리에 의해 제거될 수 있다. 또한, 고파워 초음파는 접착성을 깨지게 하기 위한 효율적인 기술임이 발견되었다. However, zirconia can be removed by strong acid treatment which can be carefully applied due to the accompanying chemical reaction. It has also been found that high power ultrasound is an efficient technique for breaking adhesion.
반면에 초음파 단독은 NDs의 제1 입자를 달성할 수 없고, 비드의 존재는 현저하게 결과를 변화시켰다.Ultrasound alone, on the other hand, was unable to achieve the first particles of NDs, and the presence of beads significantly changed the results.
그러나, 지르코니아 비드의 존재하에서 고파워 소니케이션으로 밀링을 대신하려고 할 때에, 후초음파는 상기 과정에서 필요하지 않아, 비드-보조 소닉 붕괴(BASD)"라 붙여졌다. 다른 방법은 유기 용매 내의 NDs의 분산을 위한 기능화된 방법이고, 대부분 화학 기능화, 에스테르화 또는 실릴화 반응을 통한 알킬 체인의 화학 그래프팅에 근거한다.However, when attempting to replace milling with high power sonication in the presence of zirconia beads, post-ultrasound is not necessary in the process and is labeled as "bead-assisted sonic decay (BASD)". It is a functionalized method for dispersion and is mostly based on chemical grafting of alkyl chains through chemical functionalization, esterification or silylation reactions.
일반적으로 이러한 화학 반응은 전적으로 수 시간 및 그들의 화학 조건을 필요로 하고, 과정이 복잡하다. 또한, 물리적 기술은 파우더 현탁 내에 적합한 분산제를 혼합함으로써 사용하고, 그런 다음 초음파 처리를 적용하여 분리시킨다.In general, these chemical reactions require entirely hours and their chemical conditions, and the process is complex. In addition, physical techniques are used by mixing suitable dispersants in powder suspensions, which are then separated by application of sonication.
그러나, 적합한 분산제 및 비드-밀링의 기계적 기술이 NDs의 깨끗한 콜로이드를 얻기 위하여 사용되어야 한다.However, suitable dispersants and mechanical techniques of bead-milling should be used to obtain clean colloids of NDs.
구형 고분자 나노입자들은 약물전달 시스템, 광결정의 응용분야 및 마이크로미터 크기에 대한 나노미터의 범위를 갖는 다른 주기적인 구조에 대한 주형으로서 그것들의 응용에 있어서 대단한 관심을 받고 있다.Spherical polymeric nanoparticles are of great interest in their application as templates for drug delivery systems, photonic crystal applications and other periodic structures with nanometer ranges for micrometer sizes.
본 발명은 NDs를 분산시키기 위하여 마그네틱 교반에 따라 제조된 고분자 나노입자를 이용한 것이다. 우선, 분산방법을 사용하여 폴리비닐피롤리돈 고분자 나노입자를 준비하였는데, 이는 다른 크기의 폴리비닐피롤리돈의 고분자 나노입자를 용이하게 준비하였고, 초음파를 사용하여 ND 파우더로 그것들을 혼합하였다.The present invention uses polymer nanoparticles prepared by magnetic stirring to disperse NDs. First, polyvinylpyrrolidone polymer nanoparticles were prepared using a dispersion method, which readily prepared polymer nanoparticles of different sizes of polyvinylpyrrolidone, and mixed them into ND powder using ultrasonic waves.
즉, 본 발명에 따른 나노다이아몬드 및 폴리비닐피롤리돈 나노입자의 복합체는 초음파 기술을 사용하여 응집된 나노다이아몬드의 분산에 따라 다른 입자 크기를 가질 수 있다.That is, the composite of nanodiamonds and polyvinylpyrrolidone nanoparticles according to the present invention may have different particle sizes depending on the dispersion of aggregated nanodiamonds using ultrasonic technology.
본 발명에 따른 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체의 제조방법은Method for producing a nanodiamond-polyvinylpyrrolidone nanoparticle composite according to the present invention
1) 폴리비닐피롤리돈 또는 그 유도체를 용매에 넣고 교반하여 폴리비닐피롤리돈 또는 그 유도체의 나노입자가 포함된 용액을 제조하는 단계; 및1) preparing polyvinylpyrrolidone or a derivative thereof in a solvent and stirring to prepare a solution containing nanoparticles of polyvinylpyrrolidone or a derivative thereof; And
2) 상기 폴리비닐피롤리돈 또는 그 유도체의 나노입자가 포함된 용액에 나노다이아몬드 입자를 넣고 초음파로 분산시키는 단계를 포함하는 것을 특징으로 한다.2) characterized in that it comprises the step of dispersing ultrasonically by putting the nanodiamond particles in a solution containing nanoparticles of the polyvinylpyrrolidone or derivatives thereof.
본 발명에 있어서, 제1) 단계는 폴리비닐피롤리돈 또는 그 유도체를 이온화된 물에 용해하고, 0-35 ℃에서 30 분 내지 24 시간 동안 기계적으로 교반하여 폴리비닐피롤리돈 또는 그 유도체의 나노입자 수용액을 얻는 것인데, 30 분 미만이면 PVP-나노입자의 크기가 본 발명의 효과를 발휘할 수 없는 크기가 될 수 있으므로 바람직하지 않고, 24 시간을 초과하면 작아진 입자의 크기가 다시 커질 수 있어 바람직하지 않다.In the present invention, step 1) is performed by dissolving polyvinylpyrrolidone or a derivative thereof in ionized water and mechanically stirring the mixture at 0-35 ° C. for 30 minutes to 24 hours to determine the polyvinylpyrrolidone or derivative thereof. It is not preferable to obtain an aqueous solution of nanoparticles, but less than 30 minutes, since the size of the PVP-nanoparticles may be such that the effect of the present invention can not be achieved, and the size of the smaller particles may increase again after 24 hours. Not desirable
본 발명에 있어서, 제2) 단계는 상기 폴리비닐피롤리돈 또는 그 유도체의 나노입자가 포함된 용액에 나노다이아몬드 입자를 넣고 초음파로 분산을 15 분 내지 1 시간 수행하는 것이 바람직하다.In the present invention, in step 2), the nanodiamond particles are added to a solution containing the nanoparticles of the polyvinylpyrrolidone or a derivative thereof, and the dispersion is performed by ultrasonic waves for 15 minutes to 1 hour.
본 발명에 사용되는 상기 나노다이아몬드(ND) 입자와 폴리비닐피롤리돈(PVP) 또는 그 유도체의 나노입자의 중량비는 4:96 ~ 45:55인 것이 바람직하다.The weight ratio of the nanodiamonds (ND) particles used in the present invention and the nanoparticles of polyvinylpyrrolidone (PVP) or derivatives thereof is 4:96 to 45:55.
본 발명에 따른 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체는 유리, 플라스틱, 합성 섬유, 세라믹 등의 복합체 제조 원료로 사용하거나 치약, 샴푸, 비누, 화장품 등에 첨가제로 사용될 수 있다.The nanodiamond-polyvinylpyrrolidone nanoparticle composite according to the present invention may be used as a raw material for producing a composite such as glass, plastic, synthetic fiber, ceramic, or the like, or as an additive to toothpaste, shampoo, soap, cosmetics, and the like.
본 발명에 따른 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체의 박막은 상기 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체를 포함하는 것을 특징으로 한다.The thin film of the nanodiamond-polyvinylpyrrolidone nanoparticle composite according to the present invention is characterized in that it comprises the nanodiamond-polyvinylpyrrolidone nanoparticle composite.
이하, 하기의 실시예를 통하여 본 발명을 더욱 상세하게 설명하지만, 본 발명의 범위가 이들 실시예에 한정되는 것으로 해석되어서는 안된다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention should not be construed as being limited to these examples.
실시예 및 비교예Examples and Comparative Examples
<물성측정방법><Measurement of Properties>
1. 박막의 두께는 표면 거칠기 측정기(Surfcorder ET3000i/3000F, Kosaka Laboratory Ltd.)를 사용하여 측정하였다.1. The thickness of the thin film was measured using a surface roughness measuring instrument (Surfcorder ET3000i / 3000F, Kosaka Laboratory Ltd.).
제조예Production Example
우선, 실온에서 교반하는 방법을 사용함으로써 폴리비닐피롤리돈(PVP)(Merck사 제)를 준비하였다. 1 ml의 탈이온수에 5 mg의 폴리비닐피롤리돈을 넣고 실온에서 5 시간 동안 교반하여 폴리비닐피롤리돈 나노입자 수용액(PVP-NP)을 얻었다.First, polyvinylpyrrolidone (PVP) (made by Merck) was prepared by using the method of stirring at room temperature. 5 mg of polyvinylpyrrolidone was added to 1 ml of deionized water and stirred at room temperature for 5 hours to obtain an aqueous polyvinylpyrrolidone nanoparticle solution (PVP-NP).
상기 수용액 내의 폴리비닐피롤리돈 나노입자의 분산상태는 현미경 기술에 의해 확인하였고, 폴리비닐피롤리돈 나노입자(PVP-NP)는 교반없이는 생성되지 않아 폴리비닐피롤리돈만이 존재하였고, 30 분 동안 교반한 경우에는, 매우 큰 크기의 분산도로 형성되었으며, 나노입자를 증가시키는 교반 시간은 매우 좁은 크기의 분산도로 입자 크기를 감소시킨다.The dispersion state of the polyvinylpyrrolidone nanoparticles in the aqueous solution was confirmed by microscopic techniques, and the polyvinylpyrrolidone nanoparticles (PVP-NP) were not produced without stirring, so only polyvinylpyrrolidone was present, and 30 minutes When stirred for a while, a very large size dispersion was formed, and the stirring time to increase the nanoparticles reduced the particle size with a very narrow size dispersion.
도 1을 참고로 하면, PVP-NP의 크기는 최소점까지 교반시간을 증가시킴에 따라 감소하였고, 일정시간을 경과함에 따라 다시 증가하였다.Referring to FIG. 1, the size of PVP-NP decreased with increasing agitation time to a minimum point, and increased again after a certain time.
실시예 1Example 1
상기 제조예에서 얻은 4 ml의 PVP-NP 수용액에 5 mg의 나노다이아몬드 입자(Nanodiamond PL-D-G01, average size: 4 nm)를 포함시켜 초음파로 20 분 동안 나노다이아몬드를 분산시킨 후, 2500 rpm에서 30 분간 원심분리를 실시하고 상층액을 증류수에 천천히 붓고 잘 저은 후 막 필터를 사용하여 여과시켰다. 이 생성물을 오븐 속에서 80 ℃ 조건하에 4 시간 건조시켜 복합체를 제조하였다.5 mg of nanodiamond particles (Nanodiamond PL-D-G01, average size: 4 nm) were included in 4 ml of PVP-NP aqueous solution obtained in the above preparation, and the nanodiamonds were dispersed by ultrasonic wave for 20 minutes, followed by 2500 rpm. Centrifugation was performed for 30 minutes at, and the supernatant was slowly poured into distilled water, stirred well, and filtered using a membrane filter. The product was dried in an oven at 80 ° C. for 4 hours to prepare a composite.
실시예 2Example 2
13.3 mg의 나노다이아몬드 입자를 사용하는 것을 제외하고는 실시예 1과 동일하게 제조하였다.It was prepared in the same manner as in Example 1 except that 13.3 mg of nanodiamond particles were used.
실시예 3Example 3
복합체가 포함된 박막을 제조하기 위해, 상기 실시예 1에서 얻은 복합체가 포함된 박막을 공지의 방법으로 제조하였고, 그런 다음 건조하였다.In order to prepare a thin film containing the composite, the thin film containing the composite obtained in Example 1 was prepared by a known method, and then dried.
실시예 4Example 4
상기 실시예 2에서 얻은 복합체를 사용하는 것을 제외하고는 실시예 3과 동일하게 제조하였다.Except for using the composite obtained in Example 2 was prepared in the same manner as in Example 3.
비교예 1Comparative Example 1
PVP-NP 없이 5 mg의 나노 다이아몬드 입자를 5 ml의 물에 넣어 초음파로 20 분 동안 분산한 것을 제외하고는 실시예 1과 동일하게 제조하였으나, 다이아몬드의 응집이 일어나는 결과를 나타냈다.5 mg of nanodiamond particles without PVP-NP were prepared in the same manner as in Example 1 except that 5 ml of water was dispersed in 5 ml of water for 20 minutes, but agglomeration of diamonds occurred.
비교예 2Comparative Example 2
5ml의 탈이온수에 25 mg의 폴리비닐피롤리돈을 첨가하여 교반없이 제조한 5 ml의 폴리비닐피롤리돈 수용액(PVP-NP)에 5 mg의 나노다이아몬드 입자를 포함시켜 초음파로 20 분 동안 나노다이아몬드를 분산시킨 후, 원심분리를 실시하고 상층액을 증류수에 천천히 붓고 잘 저은 후 막 필터를 사용하여 여과시켰다. 이 생성물을 오븐 속에서 80 ℃ 조건하에 4 시간 건조시켜 복합체를 제조하였다. 그런 다음, 실시예 3과 동일한 방법으로 상기 복합체를 포함하는 박막을 제조하였고, 그런 다음 건조하였다.5 mg of nanodiamond particles were contained in 5 ml of aqueous polyvinylpyrrolidone solution (PVP-NP) prepared without stirring by adding 25 mg of polyvinylpyrrolidone to 5 ml of deionized water for 20 minutes by ultrasound. After the diamond was dispersed, centrifugation was performed and the supernatant was slowly poured into distilled water, stirred well, and filtered using a membrane filter. The product was dried in an oven at 80 ° C. for 4 hours to prepare a composite. Then, a thin film including the composite was prepared in the same manner as in Example 3, and then dried.
비교예 3Comparative Example 3
상기 제조예에서 얻은 4 ml의 PVP-NP 수용액에 2 mg의 나노다이아몬드 입자를 포함시켜 초음파로 5 시간 동안 나노다이아몬드를 분산시킨 후, 원심분리를 실시하고 상층액을 증류수에 천천히 붓고 잘 저은 후 막 필터를 사용하여 여과시켰다. 이 생성물을 오븐 속에서 80 ℃ 조건하에 4 시간 건조시켜 복합체를 제조하였고, 실시예 3과 동일한 방법으로 상기 복합체를 포함하는 박막을 제조하였고, 그런 다음 건조하였다.2 mg of nanodiamond particles were contained in 4 ml of the PVP-NP aqueous solution obtained in the above preparation, and the nanodiamonds were dispersed by ultrasound for 5 hours, followed by centrifugation, and the supernatant was slowly poured into distilled water and stirred well. It was filtered using a filter. The product was dried in an oven at 80 ° C. for 4 hours to prepare a composite. A thin film including the composite was prepared in the same manner as in Example 3, and then dried.
나노다이아몬드가 폴리비닐피롤리돈 나노입자와 나노다이아몬드 입자 사이의 더욱 강한 상호작용으로 인하여 매우 작은 입자로 분산되었음을 알 수 있고, 비표면적은 그들 사이의 증가되는 접촉의 유도를 증가시켰다. 나노다이아몬드와 PVP-NP 사이의 상호작용은 여기에서 더욱 명백하게 나타났다.It can be seen that nanodiamonds were dispersed into very small particles due to the stronger interaction between polyvinylpyrrolidone nanoparticles and nanodiamond particles, and the specific surface area increased the induction of increased contact therebetween. The interaction between nanodiamonds and PVP-NP is more apparent here.
일반적으로 UV-민감 물질은 창문 상에서 UV 선으로부터 효과적으로 보호될 수 있다. 이것은 NDs의 분산을 위하여 고분자 나노입자를 사용한 첫번째 경우인 것에 의의가 있다.In general, UV-sensitive materials can be effectively protected from UV rays on windows. This is significant because it is the first case using polymer nanoparticles to disperse NDs.
자외선은 인간 및 나무, 플라스틱 페인트를 포함하는 자연 및 합성물질에 심한 손상을 입힌다.Ultraviolet rays severely damage human and natural and synthetic materials, including wood and plastic paints.
나노다이아몬드 입자의 다른 함량에 따른 얇은 막에 대하여, 상기 복합체 내의 나노다이아몬드 입자의 분산에 대하여 고분자 나노입자 방법의 사용에 대하여 연구하였다.For thin films with different amounts of nanodiamond particles, the use of polymeric nanoparticle methods for the dispersion of nanodiamond particles in the composite was studied.
이들 박막은 가시영역 내에서 투명하고 UV 영역 내에서 흡수된다. 따라서, 창문 상에서 UV 조사 또는 UV 민감 물질의 침식 방지로부터 효과적으로 보호한다.These thin films are transparent in the visible region and absorbed in the UV region. Thus, it effectively protects against erosion of UV radiation or UV sensitive materials on windows.
또한, ND-PVP-NP의 이들 박막은 기계적, 열적, 절연체 성질 및 UV 보호와 함께 표면 상에 사용될 수 있는 나노다이아몬드의 존재에 따라 스크래치-저항 코팅을 제공하였다.In addition, these thin films of ND-PVP-NP provided a scratch-resistant coating depending on the mechanical, thermal, insulator properties and the presence of nanodiamonds that could be used on the surface with UV protection.
태양으로부터 자외선 조사(UVR)는 UVC(270-290nm), UVB(290-320nm), 및 UVA(320-400)의 세가지 영역으로 나뉘었고, 태양으로부터 방출된 UVC는 대기하에서 오존에 의해 필터되었고, 따라서, 지구 표면에 도달하지 않는다.UV irradiation from the sun (UVR) was divided into three areas: UVC (270-290 nm), UVB (290-320 nm), and UVA (320-400), UVC emitted from the sun was filtered by ozone under the atmosphere, Therefore, it does not reach the earth's surface.
그리곤 다음의 자외선 조사는 그래서 인간 건강에 대한 염려가 있다: UVB (290-320nm) and UVA (320-400nm)The following UV irradiation is therefore concerned with human health: UVB (290-320 nm) and UVA (320-400 nm)
상기 실시예 3-4의 분광학 특성 실험을 수행하였다. 실시예 3-4의 박막은 500 ± 50 nm의 동일한 두께를 가졌다.The spectroscopy characteristic experiment of Example 3-4 was performed. The thin films of Examples 3-4 had the same thickness of 500 ± 50 nm.
실시예 3-4의 20 중량% 및 40 중량%의 다이아몬드 입자의 함량이 증가함에 따라 UV 조사의 투과율이 감소하였다.The transmittance of UV irradiation decreased with increasing contents of 20% by weight and 40% by weight of diamond particles of Examples 3-4.
가시 영역 내에서 약간의 흡수는 나노다이아몬드의 표면 상에 sp2 탄소의 존재에 기인하는 것이다.Some absorption in the visible region is due to the presence of sp 2 carbon on the surface of the nanodiamonds.
도 4 및 5에 나타낸 바와 같이, 실시예 3 및 4는 UV 조사의 투과율이 낮은데 반하여 비교예 2 및 3의 경우에는 UV 조사의 투과율이 매우 높음을 알 수 있다.As shown in Figures 4 and 5, Examples 3 and 4 have a low transmittance of UV irradiation, whereas in Comparative Examples 2 and 3 it can be seen that the transmittance of UV irradiation is very high.
도 6을 참고로 하면 실시예 3 및 4는 비교예 2 및 3에 비하여 UV 선의 보호율이 70-75 %로 매우 높음을 알 수 있다. 이는 UV 조사와 ND 함량의 투명도 사이의 관계를 알 수 있다.Referring to Figure 6 it can be seen that Examples 3 and 4 are very high UV-protection rate of 70-75% compared to Comparative Examples 2 and 3. This shows the relationship between the UV radiation and the transparency of the ND content.
폴리비닐피롤리돈 입자의 존재는 특히 본 발명에 따른 폴리비닐피롤리돈-다이아몬드 복합체 내의 나노다이아몬드의 고함량에 있어서 나노다이아몬드 입자의 분산성을 도와, 박막 전체에 더욱 균일하게 분산되는 형태로 다이아몬드 나노입자를 전달하고 전체 지역을 커버하였다.The presence of the polyvinylpyrrolidone particles aids in the dispersibility of the nanodiamond particles, particularly in the high content of nanodiamonds in the polyvinylpyrrolidone-diamond composite according to the present invention, and the diamond in a form that is more uniformly dispersed throughout the thin film. Nanoparticles were delivered and covered the entire area.
본 발명에 따른 복합체에 사용되는 폴리비닐피롤리돈 입자는 분산 내의 중추적인 역할을 하고, 상기에서 설명한 바와 같이 UV 흡수 내에서 반사시킨다.The polyvinylpyrrolidone particles used in the composite according to the present invention play a pivotal role in dispersion and reflect within UV absorption as described above.
따라서, 도 6에 나타낸 바와 같이, 나노다이아몬드 입자와 폴리비닐피롤리돈 입자가 잘 분산된 실시예 3 및 4는 400 nm 에서 UV선의 보호율이 70% 이상인데 반하여, 비교예 2 및 3은 50% 이하로 매우 낮게 나타났다.Therefore, as shown in FIG. 6, Examples 3 and 4 in which nanodiamond particles and polyvinylpyrrolidone particles are well dispersed have UV protection at 400 nm or higher, whereas Comparative Examples 2 and 3 are 50. Very low, below%.
이로서, 비교예 2 및 3의 경우에는, 다이아몬드가 박막 내에서 더욱 응집되고 균일하게 분산되지 않아 도 5 및 6에 나타낸 바와 같이, 투과율이 실시예 3 및 4에 비해 매우 높게 나타났고, UV선의 보호율은 46.5% 및 49.5%로 매우 낮게 나타남을 알 수 있다.Thus, in the case of Comparative Examples 2 and 3, the diamond was more aggregated and not uniformly dispersed in the thin film, so as shown in Figs. 5 and 6, the transmittance was very high compared to Examples 3 and 4, and the protection of UV rays The rates are very low at 46.5% and 49.5%.
주목할 만한 것은, 이들 박막은 가시 영역 내에서 광학적으로 투명한 이점을 갖는다. 상기의 내용은 UV-민감 물질 상에서 유리 코팅 및 보호층과 같은 많은 영역 내에서 응용 전위를 가질 수 있다.Notably, these thin films have the advantage of being optically transparent in the visible region. The above can have an application potential in many areas, such as glass coatings and protective layers, on UV-sensitive materials.
나노다이아몬드 입자의 분산을 위하여 고분자 나노입자를 사용한 접근법은 매우 쉽고, 효과적이며 경제적이다.The approach using polymeric nanoparticles for the dispersion of nanodiamond particles is very easy, effective and economical.
따라서, 본 발명에 따른 박막은 고분자를 완전히 제거하기 위하여 가열하여 순수한 나노다이아몬드 코팅을 얻음으로써 다른 응용내에 그들의 사용을 위해 더욱 분산되는 형태로 나노다이아몬드 입자를 전달할 수 있고, 폴리크리스탈린 다이아몬드 필름의 화학기상증착(CVD)을 위한 시드를 제공할 수 있다.Thus, the thin film according to the present invention can deliver nanodiamond particles in a more dispersed form for their use in other applications by heating to completely remove the polymer to obtain a pure nanodiamond coating, and the chemistry of the polycrystalline diamond film Seeds for vapor deposition (CVD) may be provided.
나노다이아몬드의 분산을 위한 방법은 많은 다른 타입의 고분자로 확대할 수 있고, 기계적 특성을 향상시킬 수 있다.The method for dispersing nanodiamonds can be extended to many different types of polymers and improve their mechanical properties.

Claims (9)

  1. 나노다이아몬드(ND) 입자와 폴리비닐피롤리돈(PVP) 또는 그 유도체의 나노입자를 분산시켜 이루어지는 것을 특징으로 하는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체.A nanodiamond-polyvinylpyrrolidone nanoparticle composite, comprising: dispersing nanodiamond (ND) particles and nanoparticles of polyvinylpyrrolidone (PVP) or a derivative thereof.
  2. 제1항에 있어서, 상기 폴리비닐피롤리돈 유도체는 폴리(1-비닐피롤리돈-co-비닐아세테이트), 폴리(1-비닐피롤리돈-co-2-디메틸아미노에틸메타크릴레이트)로부터 선택되는 1종 이상의 혼합물 중에서 선택되는 것을 특징으로 하는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체.The method of claim 1, wherein the polyvinylpyrrolidone derivative is selected from poly (1-vinylpyrrolidone-co-vinylacetate), poly (1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate). Nanodiamond-polyvinylpyrrolidone nanoparticle composite, characterized in that it is selected from one or more mixtures selected.
  3. 제1항에 있어서, 상기 나노다이아몬드(ND) 입자와 폴리비닐피롤리돈(PVP) 또는 그 유도체의 나노입자의 중량비는 4:96 ~ 45:55인 것을 특징으로 하는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체.According to claim 1, wherein the weight ratio of the nanodiamond (ND) particles and the nanoparticles of polyvinylpyrrolidone (PVP) or derivatives thereof is 4:96 ~ 45:55 nanodiamond-polyvinylpyrroly Don nanoparticle complex.
  4. 입자화된 폴리비닐피롤리돈 또는 그 유도체의 나노입자가 응집되는 나노다이아몬드 입자를 분산시켜 균일하게 분포되는 것을 특징으로 하는 나노다이아몬드 및 폴리비닐피롤리돈 나노입자의 복합체.A composite of nanodiamonds and polyvinylpyrrolidone nanoparticles, wherein the nanoparticles of the granulated polyvinylpyrrolidone or a derivative thereof are dispersed and uniformly distributed.
  5. 1) 폴리비닐피롤리돈 또는 그 유도체를 용매에 넣고 교반하여 폴리비닐피롤리돈 또는 그 유도체의 나노입자가 포함된 용액을 제조하는 단계; 및1) preparing polyvinylpyrrolidone or a derivative thereof in a solvent and stirring to prepare a solution containing nanoparticles of polyvinylpyrrolidone or a derivative thereof; And
    2) 상기 폴리비닐피롤리돈 또는 그 유도체의 나노입자가 포함된 용액에 나노다이아몬드 입자를 넣고 초음파로 분산시키는 단계를 포함하는 것을 특징으로 하는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체의 제조방법.2) Method of producing a nanodiamond-polyvinylpyrrolidone nanoparticles composite, comprising the step of dispersing the nanodiamond particles in a solution containing the nanoparticles of the polyvinylpyrrolidone or derivatives thereof by ultrasonic wave .
  6. 제5항에 있어서, 상기 제1) 단계에서, 상기 폴리비닐피롤리돈 또는 그 유도체의 나노입자의 크기가 최소가 되는 교반시간을 결정하는 단계를 추가로 포함하고,The method of claim 5, further comprising: in the step 1), determining a stirring time for minimizing the size of the nanoparticles of the polyvinylpyrrolidone or derivatives thereof.
    상기 2) 단계에서, 폴리비닐피롤리돈 또는 그 유도체의 나노입자가 포함된 용액에 나노다이아몬드 입자가 최대한 분산되는 초음파의 분산시간을 결정하는 단계를 추가로 포함하는 것을 특징으로 하는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체의 제조방법.In step 2), the nanodiamond-poly, characterized in that further comprising the step of determining the dispersion time of the ultrasonic wave in which the nanodiamond particles are dispersed as much as possible in the solution containing the nanoparticles of polyvinylpyrrolidone or derivatives thereof Method for producing vinylpyrrolidone nanoparticle composite.
  7. 제5항에 있어서, 상기 제1) 단계는 폴리비닐피롤리돈 또는 그 유도체를 물에 용해하고, 0-35 ℃에서 30 분 내지 24 시간 동안 교반하는 것을 특징으로 하는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체의 제조방법.The method of claim 5, wherein the step 1) is nanodiamond-polyvinylpyrroly characterized in that the polyvinylpyrrolidone or a derivative thereof is dissolved in water and stirred at 0-35 ° C. for 30 minutes to 24 hours. Method for producing a don nanoparticle composite.
  8. 제5항에 있어서, 상기 제2) 단계는 상기 폴리비닐피롤리돈 또는 그 유도체의 나노입자가 포함된 용액에 나노다이아몬드 입자를 넣고 초음파로 분산을 15 분 내지 1 시간 수행하는 것을 특징으로 하는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체의 제조방법.The method of claim 5, wherein the step 2) comprises nanodiamond particles in a solution containing nanoparticles of the polyvinylpyrrolidone or derivatives thereof, and dispersing with ultrasonic waves for 15 minutes to 1 hour. Method for preparing diamond-polyvinylpyrrolidone nanoparticle composite.
  9. 제1항 내지 제4항 중 어느 한 항에 기재되어 있는 나노다이아몬드-폴리비닐피롤리돈 나노입자 복합체를 포함하는 것을 특징으로 하는 박막.A thin film comprising the nanodiamond-polyvinylpyrrolidone nanoparticle composite according to any one of claims 1 to 4.
PCT/KR2011/009518 2011-04-07 2011-12-09 Nanodiamond-polymer nanoparticle composite, and a production method therefor WO2012138040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0032274 2011-04-07
KR20110032274A KR101194387B1 (en) 2011-04-07 2011-04-07 Nanodiamond-polymer nanoparticle composites and their thin films

Publications (1)

Publication Number Publication Date
WO2012138040A1 true WO2012138040A1 (en) 2012-10-11

Family

ID=46969402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009518 WO2012138040A1 (en) 2011-04-07 2011-12-09 Nanodiamond-polymer nanoparticle composite, and a production method therefor

Country Status (2)

Country Link
KR (1) KR101194387B1 (en)
WO (1) WO2012138040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661941A (en) * 2020-12-07 2021-04-16 南京浩瀚高分子新型材料有限公司 Method for preparing water-based polymer with assistance of diamond micropowder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102198371B1 (en) * 2019-10-18 2021-01-05 연세대학교 산학협력단 Dental compostion and mehod for orthodontic device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051937A (en) * 2002-05-31 2004-02-19 Univ Nihon Polymer composite material and method for producing the same
WO2005085359A1 (en) * 2004-03-08 2005-09-15 Nihon University Polymer nanodiamond composite
KR100956505B1 (en) * 2009-02-05 2010-05-07 주식회사 엘지화학 Method of fabricating carbon particle/copper composites
JP2010176127A (en) * 2009-01-27 2010-08-12 Xerox Corp Nano diamond containing intermediate transfer member
KR20100093727A (en) * 2009-02-17 2010-08-26 한밭대학교 산학협력단 Composite having polyanilaniline nanofiber and nanoparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051937A (en) * 2002-05-31 2004-02-19 Univ Nihon Polymer composite material and method for producing the same
WO2005085359A1 (en) * 2004-03-08 2005-09-15 Nihon University Polymer nanodiamond composite
JP2010176127A (en) * 2009-01-27 2010-08-12 Xerox Corp Nano diamond containing intermediate transfer member
KR100956505B1 (en) * 2009-02-05 2010-05-07 주식회사 엘지화학 Method of fabricating carbon particle/copper composites
KR20100093727A (en) * 2009-02-17 2010-08-26 한밭대학교 산학협력단 Composite having polyanilaniline nanofiber and nanoparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112661941A (en) * 2020-12-07 2021-04-16 南京浩瀚高分子新型材料有限公司 Method for preparing water-based polymer with assistance of diamond micropowder
CN112661941B (en) * 2020-12-07 2023-10-27 南京浩瀚高分子新型材料有限公司 Method for preparing water-based polymer with assistance of diamond micropowder

Also Published As

Publication number Publication date
KR20120114631A (en) 2012-10-17
KR101194387B1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
Paluszkiewicz et al. FT-IR study of montmorillonite–chitosan nanocomposite materials
Saif et al. Properties and modification methods of halloysite nanotubes: a state-of-the-art review
Attia et al. Nanodiamond–polymer nanoparticle composites and their thin films
Gopi et al. Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell
Ren et al. A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction
Al Naim et al. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite
Gogoi et al. Novel carbon dot coated alginate beads with superior stability, swelling and pH responsive drug delivery
Sun et al. Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay
Dutta et al. Differential susceptibility of Escherichia coli cells toward transition metal-doped and matrix-embedded ZnO nanoparticles
Ruiz-Hitzky et al. Advanced materials and new applications of sepiolite and palygorskite
Shenderova et al. Seeding slurries based on detonation nanodiamond in DMSO
Kharisov et al. The dispersion, solubilization and stabilization in “solution” of single-walled carbon nanotubes
Yadav et al. Mechanically Robust, Electrically Conductive Biocomposite Films Using Antimicrobial Chitosan‐Functionalized Graphenes
WO2012142829A1 (en) Method for preparing one-dimensional core-shell composite structure of photocatalyst/graphene by photocatalytic process
Zhu et al. Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications
US20090064425A1 (en) Polymer/Clay Nanocomposite Films with Improved Light Fastness Properties and Process for Producing Same
Georgopanos et al. Improvement of mechanical properties by a polydopamine interface in highly filled hierarchical composites of titanium dioxide particles and poly (vinyl butyral)
de Oliveira et al. Transparent organic–inorganic nanocomposites membranes based on carboxymethylcellulose and synthetic clay
Saikia et al. Carboxymethyl starch-coated iron oxide magnetic nanoparticles: a potential drug delivery system for isoniazid
WO2012138040A1 (en) Nanodiamond-polymer nanoparticle composite, and a production method therefor
Chen et al. Synthesis and drug delivery properties of Ibuprofen-Cellulose nanofibril system
Purnamasari et al. Naproxen release behaviour from graphene oxide/cellulose acetate composite nanofibers
Wang et al. Preparation, characterization and drug-release behaviors of crosslinked chitosan/attapulgite hybrid microspheres by a facile spray-drying technique
Nie et al. Preparation and characterization of sodium alginate/phosphate-stabilized amorphous calcium carbonate nanocarriers and their application in the release of curcumin
Ninciuleanu et al. Adjusting some properties of poly (methacrylic acid)(nano) composite hydrogels by means of silicon-containing inorganic fillers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863147

Country of ref document: EP

Kind code of ref document: A1