WO2012137893A1 - Coal molded body - Google Patents

Coal molded body Download PDF

Info

Publication number
WO2012137893A1
WO2012137893A1 PCT/JP2012/059421 JP2012059421W WO2012137893A1 WO 2012137893 A1 WO2012137893 A1 WO 2012137893A1 JP 2012059421 W JP2012059421 W JP 2012059421W WO 2012137893 A1 WO2012137893 A1 WO 2012137893A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
water
low
molding
organic compound
Prior art date
Application number
PCT/JP2012/059421
Other languages
French (fr)
Japanese (ja)
Inventor
西田 美佳
鈴木 哲雄
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2012137893A1 publication Critical patent/WO2012137893A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders

Definitions

  • the present invention relates to a coal molding using low-grade coal, and particularly to a coal molding in which the initial strength after molding is high and the strength reduction during storage is suppressed.
  • Low-grade coal has abundant reserves, but because it contains a lot of moisture, it generates a small amount of heat during combustion. Such low-grade coal is improved in calorific value by removing moisture by drying such as heating in airflow or dehydration in oil. When drying low-grade coal, it is usually pulverized before drying in order to increase drying efficiency. And low-grade coal after drying is inferior in handling property if it is in powder form and inconvenient for transportation, etc., so it can be converted into briquettes (coal molded products) using a pressure molding machine such as a double roll press. Molded.
  • Patent Document 1 discloses a coal molded product containing molasses, a water-soluble polymer compound and the like as a binder (see Example 1).
  • Patent Document 2 describes a coal molded body (see Example 1) in which coal, polyvinyl alcohol and calcium oxide are mixed and molded in the presence of water and then cured by reaction. In this coal molding, the initial strength after molding was insufficient.
  • Patent Documents 3 and 4 describe a coal molded product in which waste plastic is mixed with coal. In these coal moldings, the content of waste plastic is high because it is used as fuel (see Paragraph [0042] Table 2 of Patent Document 3 and Paragraph [0009] of Patent Document 4). The initial strength of is insufficient.
  • Patent Document 5 describes a coal-molded product (see paragraphs [0020] and [0023], Table 3) obtained by heating and kneading a mixture containing coal and a thermoplastic at 170 ° C. to 210 ° C. Yes. However, since coal has low heat conduction, it becomes harder to cool as it becomes larger. Therefore, when the coal molded product is heated and kneaded at a high temperature of 170 ° C.
  • briquettes molded using a pressure molding machine are very hard immediately after molding, but brittle brittle progresses during handling such as transportation and storage outdoors, and powder generation occurs. was there.
  • the coal molded body in which the powder is generated has a problem that it can no longer be used because dust becomes a problem during use.
  • a molded coal using low-grade coal having high hydrophilicity tends to easily become brittle due to expansion due to moisture absorption or submergence, and tend to cause a reduction in briquette strength.
  • a binder suitable for a coal molded product using such low-grade coal has not been sufficiently studied.
  • the present invention is a coal molded body using low-grade coal, which has a sufficiently high initial strength immediately after molding, and has little deterioration in strength even if it receives a history of heating, moisture absorption, etc. during subsequent transportation and storage.
  • the purpose is to provide a body.
  • the coal molding of the present invention that has been able to solve the above-mentioned problem contains dehydrated low-grade coal, and a water-insoluble organic compound having a viscosity average molecular weight of 10,000 or more to bind the coal,
  • the content of the water-soluble organic compound is 0.1% by mass to 10% by mass.
  • the low-grade coal is preferably dehydrated in oil.
  • the particle size of the low-grade coal is preferably 3 mm or less.
  • the low-grade coal is preferably at least one selected from the group consisting of drought, bituminous coal, and subbituminous coal.
  • the coal molding of the present invention has a high initial strength immediately after molding, even though low-grade coal having high hydrophilicity is used, and suppresses a decrease in strength even when moisture is absorbed during subsequent storage. .
  • the coal molding of the present invention uses low-grade coal as coal, and contains a predetermined amount of a water-insoluble organic compound having a viscosity average molecular weight of 10,000 or more as a binder.
  • a water-insoluble organic compound having a viscosity average molecular weight of 10,000 or more as a binder.
  • the water-insoluble organic compound is an organic compound and is not water-soluble.
  • the solubility of the water-insoluble organic compound in water is 1 g / 100 g or less, preferably 0.5 g / 100 g or less, more preferably 0.1 g / 100 g or less.
  • the solubility is the mass (g) of an organic compound that can be dissolved in 100 g of water.
  • water-insoluble organic compound examples include polyolefins such as polyethylene and polypropylene; polystyrene; thermoplastic epoxy resin; thermoplastic phenol resin; Polyvinyl alcohol is water-soluble, but completely saponified polyvinyl alcohol is soluble in hot water, but its solubility in water at 25 ° C. is 1 g / 100 g or less.
  • polyolefin is preferable, and polyethylene is more preferable.
  • the viscosity average molecular weight of the water-insoluble organic compound is 10,000 or more, preferably 20,000 or more, more preferably 30,000 or more.
  • the viscosity average molecular weight is 10,000 or more, embrittlement can be prevented even when the coal molded body absorbs moisture.
  • the upper limit of a viscosity average molecular weight is not specifically limited, Usually, it is 1 million. A method for measuring the viscosity average molecular weight will be described later. In addition, what is necessary is just to refer to the catalog value, when using a commercial item as a water-insoluble organic compound.
  • Content of the said water-insoluble organic compound in the coal molding of this invention is 0.1 mass% or more, Preferably it is 0.3 mass% or more, More preferably, it is 0.5 mass% or more, More preferably, it is 0.7 It is 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 0.8% by mass or less.
  • the low-grade coal used in the present invention means a naturally occurring coal containing 20% by mass or more of water.
  • the low-grade coal include brown coal such as Victoria coal, North Dakota coal, and Belga coal; sub-bituminous coal such as West Banco coal, Vinungan coal, and Saramangau coal; and bituminous coal.
  • brown coal such as Victoria coal, North Dakota coal, and Belga coal
  • sub-bituminous coal such as West Banco coal, Vinungan coal, and Saramangau coal
  • bituminous coal bituminous coal.
  • lignite is highly hydrophilic and absorbs water and expands. For this reason, in the charcoal obtained by molding the lignite particles, each particle expands due to moisture absorption, and the grain boundary is easily peeled off, and is very fragile.
  • the particle size of the low-grade coal is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1 mm or less.
  • the proportion of particles having a particle size of 0.5 mm or less is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more.
  • the smaller the particle size of the low-grade coal the higher the strength of the resulting coal molding.
  • the particle size of the low-grade coal can be adjusted by pulverization and classification using a sieve.
  • the proportion of particles having a particle diameter of 0.5 mm or less can be determined from the total mass of low-grade coal subjected to sieving and sieving with a sieve having a mesh size of 0.5 mm and the mass under the sieve.
  • the low-grade coal is used after being dehydrated.
  • the dehydration method include an in-oil dehydration method in which heat treatment is performed in oil, a heat treatment method in an inert atmosphere, and the like, and the dehydration method in oil is more preferable from the viewpoint of high moisture removal rate.
  • low-grade coal is mixed with petroleum light oil having a boiling point of 150 ° C. to 300 ° C., and the mixture is heated to 100 ° C. or more to evaporate and remove water in the low-grade coal. .
  • the low-grade coal after dehydration in oil is taken out of the petroleum-based light oil and then dried with hot air to remove the petroleum-grade light oil remaining in the low-grade coal.
  • the content of petroleum light oil in the low-grade coal is preferably 10% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less.
  • the coal molded body of the present invention can be produced by mixing dehydrated low-grade coal and the water-insoluble organic compound and molding the resulting mixture.
  • Examples of the mixing method of the dehydrated low-grade coal and the water-insoluble organic compound include dry mixing and wet mixing. Among these, dry mixing is preferable because the moisture content of the obtained coal molding can be reduced.
  • a known mixer, ball mill, kneader, V-type mixer or the like may be used.
  • the volume average particle diameter can be measured with a laser diffraction particle size distribution measuring apparatus.
  • an emulsion of a water-insoluble organic compound or an aqueous solution of a water-insoluble organic compound (heated and dissolved) is prepared, and the emulsion or aqueous solution and low-grade coal are mixed.
  • concentration of the water-insoluble organic substance in the emulsion or aqueous solution is preferably 10% by mass to 80% by mass.
  • a method for molding a mixture of low-grade coal and a water-insoluble organic compound is not particularly limited, and a known pressure molding apparatus such as a double roll press may be used.
  • the pressurizing pressure is preferably 98 N / mm 2 (1000 kgf / cm 2 ) or more, more preferably 147 N / mm 2 (1500 kgf / cm 2 ) or more, and further preferably 196 N / mm 2 (2000 kgf / cm 2 ) or more. is preferably not more than 588N / mm 2 (6000kgf / cm 2), more preferably 490N / mm 2 (5000kgf / cm 2) or less, and more preferably not more than 392N / mm 2 (4000kgf / cm 2).
  • Production Example 8 Using the low-grade coal whose particle size was adjusted as described above, compression molding was performed in the same manner as in Production Example 1 to produce a coal molded body.
  • the obtained coal molding had a diameter of 20 mm and a height of 15 to 18 mm.
  • the physical properties of the water-insoluble organic compounds shown in Table 1 are as follows. High density polyethylene (viscosity average molecular weight 10,000 or more, solubility 1g / 100g or less) Carboxyl group-modified polyolefin (viscosity average molecular weight 10,000 or more, solubility 1 g / 100 g or less) Epoxy resin emulsion (manufactured by Japan Epoxy Resin, "Epiletz (registered trademark) YL7162P", high molecular weight phenol-modified epoxy resin (viscosity average molecular weight 10,000 or more, solubility 1 g / 100 g or less), concentration 60 mass%) Completely saponified polyvinyl alcohol aqueous solution (concentration 20% by mass, dissolved in hot water) Viscosity average molecular weight 10,000 or more, solubility 1 g / 100 g or less stearic acid (manufactured by Wako Pure Chemical Industries, molecular weight 284) Oxid
  • the initial strength was determined by a split tensile test. Specifically, as shown in FIG. 1, the coal molded body 1 is tilted and sandwiched between two compression plates 2, and is 1 mm using a universal material testing machine (Instron, “4505 type”). Compressed in the direction of the arrow at a speed of / min, the load at which initial fracture occurred was defined as the maximum load. From the maximum load and the size of the coal molding, the tensile strength (initial strength) was calculated according to Equation 1.
  • the strength retention was determined from the following formula.
  • the initial strength is 0.78 N / mm 2 (8 kgf / cm 2 ) or more, and the strength retention after the weather resistance test is 80% or more, “ ⁇ ”, the initial strength is 0.78 N / mm 2 (8 kgf / cm 2 ) or more and strength retention of 60% or more and less than 80% “ ⁇ ”, initial strength of less than 0.78 N / mm 2 (8 kgf / cm 2 ), or strength retention of less than 60% Were marked " ⁇ ”.
  • Strength retention (%) 100 ⁇ strength after weather resistance test / initial strength
  • Production Examples 1 to 7 are cases where a water-insoluble organic compound having a viscosity average molecular weight of 10,000 or more was added as a binder, and it was found that all of them were excellent in initial strength and strength retention. Among these, when Production Examples 1 to 3 or Production Examples 4 and 5 are compared, it can be seen that the greater the amount added, the better the initial strength.
  • Production Example 8 is a case where no binder was used, but it was found that although the initial strength was excellent, the strength retention was very poor.
  • Production Examples 9 to 11 are cases where the molecular weight of the binder is less than 10,000, but all have poor initial strength.
  • Production Example 12 is a case where the binder is water-soluble, but although the initial strength is excellent, the strength retention is very poor.
  • the coal molding of the present invention is a coal molding using low-grade coal, and the initial strength immediately after molding is sufficiently high, and the strength decreases even if it receives a history of heating, moisture absorption, etc. during subsequent transportation and storage. There are few.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

This coal molded body contains dehydrogenated low-grade coal bonded to a non-water-soluble organic compound having a viscosity-average molecular weight of 10,000 or higher, the amount of non-water-soluble organic compound being 0.1-10 mass%; and has a sufficiently high initial strength immediately after molding and a minimal drop in strength thereafter despite a history of heating and water absorption or the like during transportation and storage.

Description

石炭成型体Coal molding
 本発明は、低品位炭を使用した石炭成型体に関するものであり、特に成型後の初期強度が高く、且つ、保管時の強度低下が抑制された石炭成型体に関するものである。 The present invention relates to a coal molding using low-grade coal, and particularly to a coal molding in which the initial strength after molding is high and the strength reduction during storage is suppressed.
 低品位炭は、埋蔵量が豊富であるが、含有水分が多いために燃焼時の発熱量が小さい。このような低品位炭は、気流中加熱や油中脱水等の乾燥によって水分を除去することにより、発熱量の向上が図られている。低品位炭を乾燥させる場合、乾燥効率を上げるために、通常、乾燥前に粉砕される。そして、乾燥後の低品位炭は、粉体状のままではハンドリング性が悪く、輸送等にも不便であるので、ダブルロールプレス等の加圧成型機を用いて、ブリケット(石炭成型品)に成型される。 低 Low-grade coal has abundant reserves, but because it contains a lot of moisture, it generates a small amount of heat during combustion. Such low-grade coal is improved in calorific value by removing moisture by drying such as heating in airflow or dehydration in oil. When drying low-grade coal, it is usually pulverized before drying in order to increase drying efficiency. And low-grade coal after drying is inferior in handling property if it is in powder form and inconvenient for transportation, etc., so it can be converted into briquettes (coal molded products) using a pressure molding machine such as a double roll press. Molded.
 このような石炭成型品が種々提案されており、例えば、特許文献1には、結合剤として糖蜜、水溶性高分子化合物等を含む石炭成型品(実施例1参照)が記載されている。しかし、結合剤として糖蜜や水溶性高分子を用いたものは、吸湿や水没による膨張で容易に脆化し、ブリケットの強度低下を起こしやすい。特許文献2には、石炭、ポリビニルアルコール及び酸化カルシウムを水存在下で混合し成型した後、反応により硬化させた石炭成型体(実施例1参照)が記載されている。この石炭成型体では、成型後の初期強度が不十分であった。 Various types of such coal molded products have been proposed. For example, Patent Document 1 discloses a coal molded product containing molasses, a water-soluble polymer compound and the like as a binder (see Example 1). However, those using molasses or a water-soluble polymer as a binder are easily embrittled by expansion due to moisture absorption or submergence, and tend to cause a reduction in briquette strength. Patent Document 2 describes a coal molded body (see Example 1) in which coal, polyvinyl alcohol and calcium oxide are mixed and molded in the presence of water and then cured by reaction. In this coal molding, the initial strength after molding was insufficient.
 特許文献3、4には、石炭に、廃プラスチックを混ぜた石炭成型品が記載されている。これら石炭成型体では、廃プラスチックを燃料として使用するために、その含有量が高くなっており(特許文献3の段落[0042]表2、特許文献4の段落[0009]参照)、そのため成型後の初期強度が不十分である。特許文献5には、石炭と熱可塑性プラスチックを含む混合物を、170℃~210℃で加熱混練した後、成型した石炭成型品(段落[0020]、[0023]表3、参照)が記載されている。しかし、石炭は熱伝導が低いため、大きな塊になるほど冷えにくくなる。よって、石炭成型品を170℃以上の高温で加熱混練した場合、成型後の石炭成型品を高温のまま空気中に出すと、自然発火するおそれがある。なお、酸素のない不活性雰囲気(窒素、アルゴン等)中で混練、冷却すれば自然発火を防止できるが、製造コストが高くなる。 Patent Documents 3 and 4 describe a coal molded product in which waste plastic is mixed with coal. In these coal moldings, the content of waste plastic is high because it is used as fuel (see Paragraph [0042] Table 2 of Patent Document 3 and Paragraph [0009] of Patent Document 4). The initial strength of is insufficient. Patent Document 5 describes a coal-molded product (see paragraphs [0020] and [0023], Table 3) obtained by heating and kneading a mixture containing coal and a thermoplastic at 170 ° C. to 210 ° C. Yes. However, since coal has low heat conduction, it becomes harder to cool as it becomes larger. Therefore, when the coal molded product is heated and kneaded at a high temperature of 170 ° C. or higher, if the coal molded product after molding is put into the air at a high temperature, there is a risk of spontaneous ignition. Note that spontaneous ignition can be prevented by kneading and cooling in an inert atmosphere (nitrogen, argon, etc.) without oxygen, but the production cost is increased.
日本国特開昭61-271022号公報Japanese Laid-Open Patent Publication No. 61-271022 日本国特開昭59-206493号公報Japanese Unexamined Patent Publication No. 59-206493 日本国特開2000-319674号公報Japanese Unexamined Patent Publication No. 2000-319674 日本国特開2001-342475号公報Japanese Unexamined Patent Publication No. 2001-342475 日本国特開平10-306288号公報Japanese Unexamined Patent Publication No. 10-306288
 しかしながら、加圧成型機を用いて成型したブリケットは、成型直後は非常に硬いものの、その後の輸送等のハンドリング、屋外での保管中に、ブリケットの脆化が進行し、粉の発生が起こることがあった。粉が発生した石炭成型体は、使用時に粉塵が問題となってしまうため、もはや使用できなくなるという問題があった。特に親水性が高い低品位炭を用いた石炭成型体では、吸湿や水没による膨張で容易に脆化し、ブリケットの強度低下を起こしやすい傾向がある。しかしながら、このような低品位炭を用いた石炭成型品に好適な結合剤について、十分に検討されていなかった。 However, briquettes molded using a pressure molding machine are very hard immediately after molding, but brittle brittle progresses during handling such as transportation and storage outdoors, and powder generation occurs. was there. The coal molded body in which the powder is generated has a problem that it can no longer be used because dust becomes a problem during use. In particular, a molded coal using low-grade coal having high hydrophilicity tends to easily become brittle due to expansion due to moisture absorption or submergence, and tend to cause a reduction in briquette strength. However, a binder suitable for a coal molded product using such low-grade coal has not been sufficiently studied.
 本発明は、低品位炭を使用した石炭成型体であって、成型直後の初期強度が十分高く、その後の輸送や保管中に加温、吸湿等の履歴を受けても強度低下の少ない石炭成型体を提供することを目的とする。 The present invention is a coal molded body using low-grade coal, which has a sufficiently high initial strength immediately after molding, and has little deterioration in strength even if it receives a history of heating, moisture absorption, etc. during subsequent transportation and storage. The purpose is to provide a body.
 上記課題を解決することができた本発明の石炭成型体は、脱水処理された低品位炭と、これを結合する粘度平均分子量が1万以上の非水溶性有機化合物とを含有し、前記非水溶性有機化合物の含有量が、0.1質量%~10質量%であることを特徴とする。前記低品位炭は、油中脱水処理されたものが好ましい。前記低品位炭の粒子径は、3mm以下が好ましい。前記低品位炭は、渇炭、瀝青炭及び亜瀝青炭よりなる群から選択される1種以上が好適である。 The coal molding of the present invention that has been able to solve the above-mentioned problem contains dehydrated low-grade coal, and a water-insoluble organic compound having a viscosity average molecular weight of 10,000 or more to bind the coal, The content of the water-soluble organic compound is 0.1% by mass to 10% by mass. The low-grade coal is preferably dehydrated in oil. The particle size of the low-grade coal is preferably 3 mm or less. The low-grade coal is preferably at least one selected from the group consisting of drought, bituminous coal, and subbituminous coal.
 本発明の石炭成型体は、親水性の高い低品位炭を使用しているにもかかわらず、成型直後の初期強度が高く、且つ、その後の保管時に、吸湿した場合でも強度低下が抑制される。 The coal molding of the present invention has a high initial strength immediately after molding, even though low-grade coal having high hydrophilicity is used, and suppresses a decrease in strength even when moisture is absorbed during subsequent storage. .
圧壊試験における石炭成型体の設置状態を示す模式図である。It is a schematic diagram which shows the installation state of the coal molding in a crushing test.
 本発明の石炭成型体は、石炭として低品位炭を使用したものであり、結合剤として粘度平均分子量1万以上の非水溶性有機化合物を所定量含有する。前記特定の非水溶性有機化合物を添加することにより、成型直後の初期強度を高めるだけでなく、その後の保管時に低品質炭が吸湿した場合でも結合力が低下せず、吸湿等の履歴を受けても強度低下が抑制される。 The coal molding of the present invention uses low-grade coal as coal, and contains a predetermined amount of a water-insoluble organic compound having a viscosity average molecular weight of 10,000 or more as a binder. By adding the specific water-insoluble organic compound, not only the initial strength immediately after molding is increased, but even when low-quality charcoal absorbs moisture during subsequent storage, the binding strength does not decrease, and a history of moisture absorption and the like is received. However, the strength reduction is suppressed.
 前記非水溶性有機化合物は、有機化合物であって、水溶性でないものである。該非水溶性有機化合物の水(液温25℃、大気圧下)に対する溶解度は1g/100g以下であり、0.5g/100g以下が好ましく、より好ましくは0.1g/100g以下である。溶解度が低いほど、保管時の吸湿による強度低下を抑制することができる。ここで、溶解度とは、水100gに対して溶解し得る有機化合物の質量(g)である。 The water-insoluble organic compound is an organic compound and is not water-soluble. The solubility of the water-insoluble organic compound in water (liquid temperature: 25 ° C., under atmospheric pressure) is 1 g / 100 g or less, preferably 0.5 g / 100 g or less, more preferably 0.1 g / 100 g or less. The lower the solubility, the more the strength reduction due to moisture absorption during storage can be suppressed. Here, the solubility is the mass (g) of an organic compound that can be dissolved in 100 g of water.
 前記非水溶性有機化合物としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリスチレン;熱可塑性エポキシ樹脂;熱可塑性フェノール樹脂;等が挙げられる。また、ポリビニルアルコールは水溶性であるが、完全鹸化型ポリビニルアルコールは、熱水には溶解するが、前記25℃の水に対する溶解度は1g/100g以下であるため、本発明において非水溶性有機化合物に含まれる。これらの中でも非水溶性有機化合物としては、ポリオレフィンが好ましく、より好ましくはポリエチレンである。 Examples of the water-insoluble organic compound include polyolefins such as polyethylene and polypropylene; polystyrene; thermoplastic epoxy resin; thermoplastic phenol resin; Polyvinyl alcohol is water-soluble, but completely saponified polyvinyl alcohol is soluble in hot water, but its solubility in water at 25 ° C. is 1 g / 100 g or less. include. Among these, as the water-insoluble organic compound, polyolefin is preferable, and polyethylene is more preferable.
 前記非水溶性有機化合物の粘度平均分子量は1万以上、好ましくは2万以上、より好ましくは3万以上である。粘度平均分子量が1万以上であれば、石炭成型体が吸湿した場合でも、脆化を防止できる。なお、粘度平均分子量の上限は特に限定されないが、通常100万である。前記粘度平均分子量の測定方法は後述する。なお、非水溶性有機化合物として、市販品を用いる場合には、そのカタログ値を参照すればよい。 The viscosity average molecular weight of the water-insoluble organic compound is 10,000 or more, preferably 20,000 or more, more preferably 30,000 or more. When the viscosity average molecular weight is 10,000 or more, embrittlement can be prevented even when the coal molded body absorbs moisture. In addition, although the upper limit of a viscosity average molecular weight is not specifically limited, Usually, it is 1 million. A method for measuring the viscosity average molecular weight will be described later. In addition, what is necessary is just to refer to the catalog value, when using a commercial item as a water-insoluble organic compound.
 本発明の石炭成型体中の前記非水溶性有機化合物の含有量は0.1質量%以上、好ましくは0.3質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.7質量%以上であり、10質量%以下、好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは0.8質量%以下である。非水溶性有機化合物の含有量を上記範囲内とすることにより、初期強度が高く、保管時の強度低下が抑制された石炭成型体が得られる。 Content of the said water-insoluble organic compound in the coal molding of this invention is 0.1 mass% or more, Preferably it is 0.3 mass% or more, More preferably, it is 0.5 mass% or more, More preferably, it is 0.7 It is 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 0.8% by mass or less. By setting the content of the water-insoluble organic compound within the above range, it is possible to obtain a coal molded body having high initial strength and suppressed strength reduction during storage.
 本発明で使用する低品位炭とは、天然に存在し20質量%以上の水分を含有するものをいう。前記低品位炭としては、例えば、ビクトリア炭、ノースダコタ炭、ベルガ炭等の褐炭;西バンコ炭、ビヌンガン炭、サラマンガウ炭等の亜瀝青炭;瀝青炭等が挙げられる。これらの中でも、褐炭は、親水性が高く、水を吸収して膨張する。そのため、褐炭の粒子を成型した成型炭では、吸湿により各粒子が膨張して粒界がはがれ易くなり、非常に脆化しやすい。このような渇炭の粒子を含有する石炭成型体に対して、非水溶性有機化合物を添加すると、粒子を結合するバインダーとしての役割だけでなく、粒子間の隙間を埋めて水分の浸入を防ぐという効果も奏する。よって、低品位炭として渇炭を用いた場合、本発明の脆化抑制効果がより顕著となる。 The low-grade coal used in the present invention means a naturally occurring coal containing 20% by mass or more of water. Examples of the low-grade coal include brown coal such as Victoria coal, North Dakota coal, and Belga coal; sub-bituminous coal such as West Banco coal, Vinungan coal, and Saramangau coal; and bituminous coal. Among these, lignite is highly hydrophilic and absorbs water and expands. For this reason, in the charcoal obtained by molding the lignite particles, each particle expands due to moisture absorption, and the grain boundary is easily peeled off, and is very fragile. When a water-insoluble organic compound is added to a coal molding containing such depleted particles, it not only serves as a binder that binds the particles, but also fills the gaps between the particles to prevent moisture from entering. There is also an effect. Therefore, when drought is used as low-grade coal, the embrittlement suppressing effect of the present invention becomes more prominent.
 前記低品位炭の粒子径は、3mm以下が好ましく、より好ましくは2mm以下、さらに好ましくは1mm以下である。特に、低品位炭は、粒子径0.5mm以下の粒子の割合が50質量%以上であることが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。低品位炭の粒子径が小さい程、得られる石炭成型体の強度が向上する。なお、低品位炭の粒子径は、粉砕、ふるいを用いた分級により調整できる。粒子径0.5mm以下の粒子の割合は、目開き0.5mmのふるいによる分級を行い、ふるいにかけた低品位炭の全質量とふるい下の質量から求めることができる。 The particle size of the low-grade coal is preferably 3 mm or less, more preferably 2 mm or less, and even more preferably 1 mm or less. In particular, in the low-grade coal, the proportion of particles having a particle size of 0.5 mm or less is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. The smaller the particle size of the low-grade coal, the higher the strength of the resulting coal molding. The particle size of the low-grade coal can be adjusted by pulverization and classification using a sieve. The proportion of particles having a particle diameter of 0.5 mm or less can be determined from the total mass of low-grade coal subjected to sieving and sieving with a sieve having a mesh size of 0.5 mm and the mass under the sieve.
 前記低品位炭は脱水処理してから使用する。脱水処理された低品位炭を用いることにより、得られる石炭成型体の水分含有量が小さくなり、燃焼時の発熱量がより向上する。前記脱水処理方法としては、油中で加熱処理する油中脱水法、不活性雰囲気中で加熱処理する方法等が挙げられ、水分除去率が高いという観点から油中脱水法がより好ましい。 The low-grade coal is used after being dehydrated. By using low-grade coal that has been dehydrated, the water content of the resulting coal molding is reduced, and the amount of heat generated during combustion is further improved. Examples of the dehydration method include an in-oil dehydration method in which heat treatment is performed in oil, a heat treatment method in an inert atmosphere, and the like, and the dehydration method in oil is more preferable from the viewpoint of high moisture removal rate.
 油中脱水法は、例えば、低品位炭を沸点150℃~300℃の石油系軽質油と混合し、該混合物を100℃以上に加熱することにより低品位炭中の水を蒸発させて除去する。油中脱水後の低品位炭は、石油系軽質油中から取り出した後、熱風乾燥にかけて、低品位炭中に残存する石油系軽質油を除去する。この時、低品位炭中の石油系軽質油の含有量は10質量%以下とすることが好ましく、より好ましくは3質量%以下、さらに好ましくは2質量%以下である。 In the dewatering method in oil, for example, low-grade coal is mixed with petroleum light oil having a boiling point of 150 ° C. to 300 ° C., and the mixture is heated to 100 ° C. or more to evaporate and remove water in the low-grade coal. . The low-grade coal after dehydration in oil is taken out of the petroleum-based light oil and then dried with hot air to remove the petroleum-grade light oil remaining in the low-grade coal. At this time, the content of petroleum light oil in the low-grade coal is preferably 10% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less.
 本発明の石炭成型体は、脱水処理された低品位炭と前記非水溶性有機化合物とを混合し、得られた混合物を成型することで作製できる。脱水処理された低品位炭と非水溶性有機化合物との混合方法としては、乾式混合、湿式混合が挙げられる。これらの中でも、得られる石炭成型体の水分含有量を低減できることから乾式混合が好ましい。 The coal molded body of the present invention can be produced by mixing dehydrated low-grade coal and the water-insoluble organic compound and molding the resulting mixture. Examples of the mixing method of the dehydrated low-grade coal and the water-insoluble organic compound include dry mixing and wet mixing. Among these, dry mixing is preferable because the moisture content of the obtained coal molding can be reduced.
 前記乾式混合は、公知のミキサー、ボールミル、ニーダー、V型混合機等の混合機を用いればよい。乾式混合の場合には、あらかじめ前記非水溶性有機化合物を粉砕し、体積平均粒子径を500μm以下に調整することが好ましく、より好ましくは100μm以下、さらに好ましくは50μm以下である。なお、体積平均粒子径は、レーザ回折式粒度分布測定装置により測定できる。 For the dry mixing, a known mixer, ball mill, kneader, V-type mixer or the like may be used. In the case of dry mixing, it is preferable to pulverize the water-insoluble organic compound in advance and adjust the volume average particle diameter to 500 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less. The volume average particle diameter can be measured with a laser diffraction particle size distribution measuring apparatus.
 湿式混合は、非水溶性有機化合物のエマルジョン、又は、非水溶性有機化合物の水溶液(加温して溶解させたもの)を調整し、このエマルジョンや水溶液と低品位炭とを混合する。前記エマルジョン、水溶液における非水溶性有機物の濃度は10質量%~80質量%とすることが好ましい。湿式混合を採用した場合、後述する成型を行う前に、湿式混合に用いた溶媒を除去することが好ましい。 In wet mixing, an emulsion of a water-insoluble organic compound or an aqueous solution of a water-insoluble organic compound (heated and dissolved) is prepared, and the emulsion or aqueous solution and low-grade coal are mixed. The concentration of the water-insoluble organic substance in the emulsion or aqueous solution is preferably 10% by mass to 80% by mass. When the wet mixing is employed, it is preferable to remove the solvent used for the wet mixing before performing the molding described later.
 低品位炭と非水溶性有機化合物との混合物を成型する方法は特に限定されず、公知のダブルロールプレス等の加圧成型装置を用いればよい。加圧圧力は、98N/mm(1000kgf/cm)以上が好ましく、より好ましくは147N/mm(1500kgf/cm)以上、さらに好ましくは196N/mm(2000kgf/cm)以上であり、588N/mm(6000kgf/cm)以下が好ましく、より好ましくは490N/mm(5000kgf/cm)以下、さらに好ましくは392N/mm(4000kgf/cm)以下である。 A method for molding a mixture of low-grade coal and a water-insoluble organic compound is not particularly limited, and a known pressure molding apparatus such as a double roll press may be used. The pressurizing pressure is preferably 98 N / mm 2 (1000 kgf / cm 2 ) or more, more preferably 147 N / mm 2 (1500 kgf / cm 2 ) or more, and further preferably 196 N / mm 2 (2000 kgf / cm 2 ) or more. is preferably not more than 588N / mm 2 (6000kgf / cm 2), more preferably 490N / mm 2 (5000kgf / cm 2) or less, and more preferably not more than 392N / mm 2 (4000kgf / cm 2).
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.
低品位炭の調製
 油中脱水された褐炭(水含有量35質量%、油中脱水に使用した油の残存量2質量%)であり、粒子径を1mm以下、且つ、粒子径0.5mm以下の粒子の含有量を80質量%以上のものを用意した。
Preparation of low-grade coal Brown coal dehydrated in oil (water content 35% by mass, residual amount of oil used for dehydration in oil 2% by mass), particle size of 1 mm or less and particle size of 0.5 mm or less A particle having a content of 80% by mass or more was prepared.
製造例1~5、9~12
 上記のように粒度を調整した低品位炭に対して、表1に示す含有量となるように、非水溶性有機化合物を添加し、ポットミルを用いて混合し、混合物を得た。
 得られた混合物を6.0g計量し、窒素気流乾燥機(窒素流入量5L/min)にて150℃、60分間保持して加熱した。加熱された混合物を乾燥機から取り出し、直ちに圧縮成形を行って、石炭成型体を作製した。圧縮成形は、内径20mmのシリンダー状金型と、該シリンダー状金型と略同一径の内筒金型を使用し、加圧圧力は196N/mm(2000kgf/cm)とした。また、圧縮成型後の石炭成型体はすみやかに脱型した。得られた石炭成型体の直径は20mm、高さは15~18mmであった。
Production Examples 1-5, 9-12
A water-insoluble organic compound was added to the low-grade coal whose particle size was adjusted as described above so as to have the content shown in Table 1, and mixed using a pot mill to obtain a mixture.
6.0 g of the obtained mixture was weighed and heated by holding it at 150 ° C. for 60 minutes in a nitrogen stream dryer (nitrogen inflow rate 5 L / min). The heated mixture was taken out of the dryer and immediately subjected to compression molding to produce a coal molded body. For compression molding, a cylindrical mold having an inner diameter of 20 mm and an inner cylinder mold having substantially the same diameter as the cylindrical mold were used, and the pressurizing pressure was 196 N / mm 2 (2000 kgf / cm 2 ). Moreover, the coal molding after compression molding was demolded immediately. The obtained coal molding had a diameter of 20 mm and a height of 15 to 18 mm.
製造例6、7
 上記のように粒度を調整した低品位炭に対して、溶媒除去後の非水溶性有機化合物の含有量が表1に示す値となるように、エマルジョン又は水溶液を添加し、モーターに接続した攪拌翼を用いて混合し、混合物を得た。
 得られた混合物を6.0g計量し、窒素気流乾燥機(窒素流入量5L/min)にて150℃、60分間保持して、溶媒を除去するとともに加熱した。加熱後の混合物を用いて製造例1と同様に圧縮成形を行い、石炭成型体を作製した。得られた石炭成型体の直径は20mm、高さは15~18mmであった。
Production Examples 6 and 7
To the low-grade coal whose particle size is adjusted as described above, an emulsion or an aqueous solution is added so that the content of the water-insoluble organic compound after removal of the solvent becomes the value shown in Table 1, and the stirring connected to the motor Mixing was performed using a wing to obtain a mixture.
6.0 g of the resulting mixture was weighed and held at 150 ° C. for 60 minutes in a nitrogen stream dryer (nitrogen inflow rate 5 L / min) to remove the solvent and heat. Using the mixture after heating, compression molding was performed in the same manner as in Production Example 1 to produce a coal molded body. The obtained coal molding had a diameter of 20 mm and a height of 15 to 18 mm.
製造例8
 上記のように粒度を調整した低品位炭を用いて、製造例1と同様に圧縮成形を行い、石炭成型体を作製した。得られた石炭成型体の直径は20mm、高さは15~18mmであった。
Production Example 8
Using the low-grade coal whose particle size was adjusted as described above, compression molding was performed in the same manner as in Production Example 1 to produce a coal molded body. The obtained coal molding had a diameter of 20 mm and a height of 15 to 18 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した非水溶性有機化合物の物性は以下のとおりである。
高密度ポリエチレン(粘度平均分子量1万以上、溶解度1g/100g以下)
カルボキシル基変性ポリオレフィン(粘度平均分子量1万以上、溶解度1g/100g以下)
エポキシ樹脂エマルジョン(ジャパンエポキシレジン社製、「エピレッツ(登録商標)YL7162P」、高分子量フェノール変性エポキシ樹脂(粘度平均分子量1万以上、溶解度1g/100g以下)、濃度60質量%)
完全鹸化型ポリビニルアルコール水溶液(濃度20質量%、熱水で溶解させたもの)粘度平均分子量1万以上、溶解度1g/100g以下
ステアリン酸(和光純薬社製、分子量284)
酸化ワックス(三井ケミカル社製、「ハイワックス」、分子量2000)
ワックス(日本精蝋社製、「Luvax(登録商標)2191」、分子量700)
リグニンスルホン酸カルシウム(日本製紙ケミカル社製、「サンエキス(登録商標)P201」、水溶性)
The physical properties of the water-insoluble organic compounds shown in Table 1 are as follows.
High density polyethylene (viscosity average molecular weight 10,000 or more, solubility 1g / 100g or less)
Carboxyl group-modified polyolefin (viscosity average molecular weight 10,000 or more, solubility 1 g / 100 g or less)
Epoxy resin emulsion (manufactured by Japan Epoxy Resin, "Epiletz (registered trademark) YL7162P", high molecular weight phenol-modified epoxy resin (viscosity average molecular weight 10,000 or more, solubility 1 g / 100 g or less), concentration 60 mass%)
Completely saponified polyvinyl alcohol aqueous solution (concentration 20% by mass, dissolved in hot water) Viscosity average molecular weight 10,000 or more, solubility 1 g / 100 g or less stearic acid (manufactured by Wako Pure Chemical Industries, molecular weight 284)
Oxidized wax (Mitsui Chemicals, "High Wax", molecular weight 2000)
Wax (manufactured by Nippon Seiwa Co., Ltd., “Luvax (registered trademark) 2191”, molecular weight 700)
Calcium lignin sulfonate (manufactured by Nippon Paper Chemicals Co., Ltd., “Sun Extract (registered trademark) P201”, water-soluble)
 有機化合物の粘度平均分子量は、各材料をそれぞれが可溶な溶媒に溶解してポリマー希釈溶液を調製し、毛細管粘度計にてポリマー希釈溶液の固有粘度([η])を測定して、下記式から粘度平均分子量を求めた。式中、Mは粘度平均分子量、K、aは定数を表す。
   [η]=KMa
The viscosity average molecular weight of the organic compound is as follows. Each material is dissolved in a soluble solvent to prepare a polymer diluted solution, and the intrinsic viscosity ([η]) of the polymer diluted solution is measured with a capillary viscometer. The viscosity average molecular weight was determined from the formula. In the formula, M represents a viscosity average molecular weight, and K and a represent constants.
[Η] = KM a
 得られた石炭成型体について、初期強度、耐候性試験後の強度を以下の方法で測定し、結果を表2に示した。
 <初期強度>
 割裂引張試験により初期強度を求めた。具体的には、図1に示すように、石炭成型体1を倒して2枚の圧縮板2の間に挟み、万能材料試験機(インストロン社製、「4505型」)を用いて、1mm/minの速度で矢印の方向に圧縮していき、初期破壊の起こった荷重をもって最大荷重とした。最大荷重と石炭成型体のサイズから、式1によって引張強度(初期強度)を算出した。 
About the obtained coal molding, the intensity | strength after an initial strength and a weather resistance test was measured with the following method, and the result was shown in Table 2.
<Initial strength>
The initial strength was determined by a split tensile test. Specifically, as shown in FIG. 1, the coal molded body 1 is tilted and sandwiched between two compression plates 2, and is 1 mm using a universal material testing machine (Instron, “4505 type”). Compressed in the direction of the arrow at a speed of / min, the load at which initial fracture occurred was defined as the maximum load. From the maximum load and the size of the coal molding, the tensile strength (initial strength) was calculated according to Equation 1.
Figure JPOXMLDOC01-appb-M000002
[σt:引張強度(N/mm)、P:最大荷重(N)、d:石炭成型体の直径(mm)、l:石炭成型体の長さ(mm)] 
Figure JPOXMLDOC01-appb-M000002
[Σt: Tensile strength (N / mm 2 ), P: Maximum load (N), d: Diameter of the coal molding (mm), l: Length of the coal molding (mm)]
<耐候性試験後の強度> 
 石炭成型体を、30℃100%RH環境に24hr放置し吸湿させた後、上記初期強度の測定と同様にして引張強度を測定した。 
<Strength after weather resistance test>
The coal molded body was allowed to stand for 24 hours in a 30 ° C. 100% RH environment to absorb moisture, and then the tensile strength was measured in the same manner as the above initial strength measurement.
 初期強度と耐候性試験後の強度から、下記式より強度保持率を求めた。初期強度が0.78N/mm(8kgf/cm)以上、且つ、耐候性試験後の強度保持率が80%以上のものを「◎」、初期強度が0.78N/mm(8kgf/cm)以上、且つ、強度保持率が60%以上80%未満のものを「○」、初期強度が0.78N/mm(8kgf/cm)未満、又は、強度保持率が60%未満のものを「△」とした。
  強度保持率(%)=100×耐候性試験後の強度/初期強度 
From the initial strength and the strength after the weather resistance test, the strength retention was determined from the following formula. The initial strength is 0.78 N / mm 2 (8 kgf / cm 2 ) or more, and the strength retention after the weather resistance test is 80% or more, “」 ”, the initial strength is 0.78 N / mm 2 (8 kgf / cm 2 ) or more and strength retention of 60% or more and less than 80% “◯”, initial strength of less than 0.78 N / mm 2 (8 kgf / cm 2 ), or strength retention of less than 60% Were marked "△".
Strength retention (%) = 100 × strength after weather resistance test / initial strength
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 製造例1~7は、結合剤として粘度平均分子量が1万以上の非水溶性有機化合物を添加した場合であるが、いずれも初期強度及び強度保持率に優れることがわかる。これらの中で製造例1~3、或いは、製造例4、5を比較すると、添加量が多いほど初期強度に優れることがわかる。
 製造例8は、結合剤を使用しない場合であるが、初期強度は優れるものの、強度保持率が非常に劣ることがわかる。製造例9~11は、結合剤の分子量が1万未満の場合であるが、いずれも初期強度に劣る。製造例12は、結合剤が水溶性の場合であるが、初期強度は優れるものの、強度保持率が非常に劣る。
Production Examples 1 to 7 are cases where a water-insoluble organic compound having a viscosity average molecular weight of 10,000 or more was added as a binder, and it was found that all of them were excellent in initial strength and strength retention. Among these, when Production Examples 1 to 3 or Production Examples 4 and 5 are compared, it can be seen that the greater the amount added, the better the initial strength.
Production Example 8 is a case where no binder was used, but it was found that although the initial strength was excellent, the strength retention was very poor. Production Examples 9 to 11 are cases where the molecular weight of the binder is less than 10,000, but all have poor initial strength. Production Example 12 is a case where the binder is water-soluble, but although the initial strength is excellent, the strength retention is very poor.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年4月6日出願の日本特許出願(特願2011-084630)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Apr. 6, 2011 (Japanese Patent Application No. 2011-084630), the contents of which are incorporated herein by reference.
 本発明の石炭成型体は、低品位炭を使用した石炭成型体であって、成型直後の初期強度が十分高く、その後の輸送や保管中に加温、吸湿等の履歴を受けても強度低下も少ない。 The coal molding of the present invention is a coal molding using low-grade coal, and the initial strength immediately after molding is sufficiently high, and the strength decreases even if it receives a history of heating, moisture absorption, etc. during subsequent transportation and storage. There are few.
1:石炭成型体、2:圧縮板 1: Coal molded body, 2: Compression plate

Claims (4)

  1.  脱水処理された低品位炭と、これを結合する粘度平均分子量が1万以上の非水溶性有機化合物とを含有し、
     前記非水溶性有機化合物の含有量が、0.1質量%~10質量%であることを特徴とする石炭成型体。
    Containing dehydrated low-grade coal and a water-insoluble organic compound having a viscosity average molecular weight of 10,000 or more for binding the same,
    A coal molded body characterized in that the content of the water-insoluble organic compound is 0.1 mass% to 10 mass%.
  2.  前記低品位炭が、油中脱水処理されたものである請求項1に記載の石炭成型体。 The coal molded product according to claim 1, wherein the low-grade coal is dehydrated in oil.
  3.  前記低品位炭の粒子径が、3mm以下である請求項1又は2に記載の石炭成型体。 The coal molding according to claim 1 or 2, wherein a particle diameter of the low-grade coal is 3 mm or less.
  4.  前記低品位炭が、渇炭、瀝青炭及び亜瀝青炭よりなる群から選択される1種以上である請求項1~3のいずれか1項に記載の石炭成型体。
     
    The coal molding according to any one of claims 1 to 3, wherein the low-grade coal is at least one selected from the group consisting of dry coal, bituminous coal, and subbituminous coal.
PCT/JP2012/059421 2011-04-06 2012-04-05 Coal molded body WO2012137893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-084630 2011-04-06
JP2011084630A JP2012219139A (en) 2011-04-06 2011-04-06 Coal molded body

Publications (1)

Publication Number Publication Date
WO2012137893A1 true WO2012137893A1 (en) 2012-10-11

Family

ID=46969281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059421 WO2012137893A1 (en) 2011-04-06 2012-04-05 Coal molded body

Country Status (2)

Country Link
JP (1) JP2012219139A (en)
WO (1) WO2012137893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198477A1 (en) * 2018-04-12 2019-10-17 栗田工業株式会社 Coal-containing binder for use in molded product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408073B1 (en) * 2017-06-12 2018-10-17 新日鉄住金エンジニアリング株式会社 Manufacturing method of coal
CN112805356B (en) * 2018-10-03 2023-05-09 日铁工程技术株式会社 Method for producing molded coal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503461A (en) * 1986-04-04 1988-12-15 シモンス,ジヨン ジエー. Use of low-grade coal and peat
JPH10306288A (en) * 1997-05-07 1998-11-17 Keihan:Kk Production of molded coal
JP2000319674A (en) * 1999-05-14 2000-11-21 Sumitomo Metal Ind Ltd Production of coal briquette containing waste plastic
JP2001089767A (en) * 1999-09-20 2001-04-03 Nippon Steel Corp Production of molded coke
JP2003238967A (en) * 2002-02-15 2003-08-27 Nippon Steel Corp Waste plastic-containing granulated coal
JP2005240009A (en) * 2004-01-30 2005-09-08 Jfe Steel Kk Manufacturing method for molded coal and manufacturing method for coke
JP2005336312A (en) * 2004-05-26 2005-12-08 Jfe Steel Kk Method for producing coke by using waste plastic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503461A (en) * 1986-04-04 1988-12-15 シモンス,ジヨン ジエー. Use of low-grade coal and peat
JPH10306288A (en) * 1997-05-07 1998-11-17 Keihan:Kk Production of molded coal
JP2000319674A (en) * 1999-05-14 2000-11-21 Sumitomo Metal Ind Ltd Production of coal briquette containing waste plastic
JP2001089767A (en) * 1999-09-20 2001-04-03 Nippon Steel Corp Production of molded coke
JP2003238967A (en) * 2002-02-15 2003-08-27 Nippon Steel Corp Waste plastic-containing granulated coal
JP2005240009A (en) * 2004-01-30 2005-09-08 Jfe Steel Kk Manufacturing method for molded coal and manufacturing method for coke
JP2005336312A (en) * 2004-05-26 2005-12-08 Jfe Steel Kk Method for producing coke by using waste plastic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198477A1 (en) * 2018-04-12 2019-10-17 栗田工業株式会社 Coal-containing binder for use in molded product
JP2019183038A (en) * 2018-04-12 2019-10-24 栗田工業株式会社 Binder for molded product containing coal
US11613716B2 (en) 2018-04-12 2023-03-28 Kurita Water Industries Ltd. Binder for coal-containing formed product

Also Published As

Publication number Publication date
JP2012219139A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP7267382B2 (en) biomass solid fuel
AU2018346029B2 (en) Biomass solid fuel
JP3901984B2 (en) Biomass water slurry and manufacturing method thereof
AU2009304764B2 (en) Manufacturing method for molded solid fuel using porous coal as starting material
AU2012390659B2 (en) Method for reforming coal using palm residue
Han et al. An Experimental Study on Binderless Briquetting of Low‐Rank Coals
WO2012137893A1 (en) Coal molded body
JPS59206493A (en) Manufacture of fuel briquette
Azargohar et al. Densification of agricultural wastes and forest residues: A review on influential parameters and treatments
JP6161242B2 (en) Manufacturing method of mixed fuel
JP5985433B2 (en) Method for producing molded solid fuel
KR101796815B1 (en) Solid fuel
US20220162512A1 (en) Melt-flowable extracts from biomass as a selective additive for agglomerated biomass with binding and moisture resistance properties
KR100908680B1 (en) Solid fuel using waste paper sludge and waste oil, method for manufacturing the same
JP2014098098A (en) Solid fuel, method for producing the same and method for producing mixed fuel
US9428705B2 (en) Enhancement of binding characteristics for production of an agglomerated product
JP6283727B2 (en) Manufacturing method of mixed fuel
JP6262074B2 (en) Method for producing modified coal
AU2015262356B2 (en) Modified coal storage method
JP5635962B2 (en) Method for producing residual charcoal molding
CN112805356B (en) Method for producing molded coal
JP2019001843A (en) Method of producing molded charcoal
JP6026367B2 (en) Method for producing modified coal
JP6283726B2 (en) Manufacturing method of mixed fuel
JP2016204674A (en) Manufacturing method of mixed fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768075

Country of ref document: EP

Kind code of ref document: A1