WO2012137779A1 - Display element, manufacturing method, and electrical apparatus - Google Patents

Display element, manufacturing method, and electrical apparatus Download PDF

Info

Publication number
WO2012137779A1
WO2012137779A1 PCT/JP2012/059087 JP2012059087W WO2012137779A1 WO 2012137779 A1 WO2012137779 A1 WO 2012137779A1 JP 2012059087 W JP2012059087 W JP 2012059087W WO 2012137779 A1 WO2012137779 A1 WO 2012137779A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
electrode
polar liquid
display element
effective
Prior art date
Application number
PCT/JP2012/059087
Other languages
French (fr)
Japanese (ja)
Inventor
植木俊
友利拓馬
松岡俊樹
寺西知子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012137779A1 publication Critical patent/WO2012137779A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light

Definitions

  • the present invention relates to a display element that displays information such as images and characters by moving a polar liquid, a method of manufacturing the display element, and an electrical apparatus using the display element.
  • a plurality of first and second substrates and a plurality of interiors of a space formed between these substrates are provided.
  • a first fluid sealed for each pixel region and a second fluid incompatible with the first fluid are provided.
  • the first fluid is moved to change the display color on the display surface side.
  • the step of disposing the first and second fluids on the first substrate the step of disposing the sealing agent on the first substrate, and above the sealing agent and the first substrate.
  • the first and / or second fluid (polar liquid and / or insulating fluid) is sealed in the pixel region arranged in the outer peripheral portion of the display surface of the display element.
  • a part of the first and / or second fluid thus evaporated may evaporate before the first and second substrates are bonded to each other.
  • the liquid amount of the first and / or second fluid is non-uniform in a plurality of pixel regions on the display surface, and a bright spot is generated in a part of the pixel region.
  • gradation display is not properly performed in a part of the pixel region.
  • the conventional display element has a problem that the display quality is deteriorated.
  • an object of the present invention is to provide a display element that can prevent deterioration in display quality, a method for manufacturing the display element, and an electric device using the display element.
  • the display element according to the present invention is configured such that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate.
  • the second substrate provided on the non-display surface side of the first substrate, the effective display area and the non-effective display area set with respect to the display space, and at least the inside of the display space
  • a display element configured to be capable of changing a display color on the display surface side by moving the polar liquid, the polar liquid encapsulated movably on the effective display area side,
  • a first electrode installed in the display space so as to be in contact with the polar liquid; and the first and second electrodes in a state of being electrically insulated from the polar liquid and the first electrode.
  • a second electrode provided on one side of the second substrate;
  • An effective display unit having a plurality of pixel regions provided so as to divide the display space by ribs and an ineffective display unit provided to surround the effective display unit are set on the display surface.
  • a dummy region is provided between the first and second substrates corresponding to the ineffective display portion, and a predetermined liquid is sealed in the dummy region.
  • the effective display portion and a non-effective display portion provided so as to surround the effective display portion are set on the display surface. Further, a polar liquid and an insulating fluid are sealed inside each of the plurality of pixel regions in the effective display portion. Further, a dummy region is provided between the first and second substrates corresponding to the ineffective display portion, and a predetermined liquid is sealed inside the dummy region. Thereby, it is possible to prevent a part of the polar liquid and the insulating fluid enclosed in each of the plurality of pixel regions in the effective display portion from evaporating. As a result, unlike the conventional example, it is possible to configure a display element that can prevent deterioration in display quality.
  • the polar liquid and the insulating fluid are used as the predetermined liquid.
  • the number of parts of the display element can be reduced, and a low-cost display element can be easily configured.
  • the ineffective display portion is set by a light shielding film provided on at least one side of the first and second substrates.
  • the non-effective display portion can be reliably set by the light shielding film, and the deterioration of the display quality can be surely prevented.
  • the dummy area may be partitioned by a rib in a shape different from that of the pixel area.
  • the size of the ineffective display portion can be easily reduced as compared with the case where the dummy area is divided in the same shape as the pixel area.
  • data wiring and gate wiring are provided in a matrix on one side of the first and second substrates.
  • a planar transparent electrode as the first electrode is provided on the other side of the first and second substrates.
  • Each of the plurality of pixel regions is provided in an intersection unit between the data line and the gate line,
  • a switching element connected to the data wiring and the gate wiring, a pixel electrode as the second electrode connected to the switching element, and a charge supplied to the pixel electrode A capacitor for holding may be provided.
  • a matrix drive type display element having excellent display quality can be formed.
  • a dielectric layer provided on one side of the first and second substrates is used as the capacitor so as to cover the pixel electrode.
  • a signal electrode installed inside the display space is used as the first electrode.
  • a reference electrode provided on one side of the first and second substrates so as to be installed on one side of the effective display area and the non-effective display area, and the effective display area Scanning electrode provided on one side of the first and second substrates in a state of being electrically insulated from the reference electrode so as to be installed on the other side of the side and the ineffective display area side May be used.
  • the display color on the display surface side can be changed without providing a switching element, and a display element with a simple structure can be configured.
  • the plurality of signal electrodes are provided along a predetermined arrangement direction,
  • the plurality of reference electrodes and the plurality of scanning electrodes are provided alternately with each other and intersect with the plurality of signal electrodes,
  • a signal voltage applying unit that is connected to the plurality of signal electrodes and applies a signal voltage within a predetermined voltage range to each of the plurality of signal electrodes in accordance with information displayed on the display surface side;
  • a selection voltage that is connected to the plurality of reference electrodes and that allows the polar liquid to move within the display space in response to the signal voltage for each of the plurality of reference electrodes;
  • a reference voltage applying unit for applying one of a non-selection voltage for preventing the polar liquid from moving inside the display space;
  • a selection voltage that is connected to the plurality of scan electrodes and that allows the polar liquid to move within the display space in response to the signal voltage for each of the plurality of scan electrodes; It is preferable to include a scanning voltage application unit that applies one voltage of a non-selection
  • a matrix drive type display element having excellent display quality can be easily configured.
  • each of the plurality of pixel regions is provided in a unit of intersection of the signal electrode and the scanning electrode.
  • the display color on the display surface side can be changed in units of pixels by moving the polar liquid in each of the plurality of pixels on the display surface side.
  • a dielectric layer is laminated on the surfaces of the reference electrode and the scanning electrode.
  • the electric field applied to the polar liquid by the dielectric layer can be reliably increased, and the moving speed of the polar liquid can be improved more easily.
  • the plurality of pixel regions may be provided in accordance with a plurality of colors capable of full color display on the display surface side.
  • a color image can be displayed by appropriately moving the corresponding polar liquid in each of the plurality of pixels.
  • the ineffective display area is set by a light shielding film provided on one side of the first and second substrates,
  • the effective display area is preferably set by an opening formed in the light shielding film.
  • the non-effective display portion and the non-effective display area are set by the same light shielding film provided on the first substrate side.
  • a display element having a simple structure can be easily configured.
  • the electrical device of the present invention is an electrical device including a display unit that displays information including characters and images, Any one of the display elements described above is used for the display portion.
  • the first substrate is formed so that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate.
  • the second substrate provided on the non-display surface side of the substrate, the effective display region and the non-effective display region set with respect to the display space, and at least the effective display region side in the display space
  • a display element configured to change a display color on the display surface side by moving the polar liquid, the polar liquid encapsulated in a movable manner,
  • a rib on one side of the first and second substrates, a plurality of pixel areas are set in the effective display area, and a dummy area is set in the ineffective display area surrounding the effective display area.
  • Process Encapsulating at least one of the polar liquid and an insulating fluid that does not mix with the polar liquid in each of the plurality of pixel regions and enclosing a predetermined liquid in the dummy region And a process.
  • the polar liquid and the insulating fluid sealed in each of the plurality of pixel regions in the effective display unit are sequentially performed by performing the region setting step and the sealing step. At least one part can be prevented from evaporating. As a result, unlike the conventional example, it is possible to configure a display element that can prevent deterioration in display quality.
  • the sealing step includes a first sealing step of sealing the predetermined liquid into the dummy region; It is preferable that after the first sealing step, a second sealing step of sealing at least one of the polar liquid and the insulating fluid is included in the inside of each of the plurality of pixel regions. .
  • the predetermined liquid is sealed in the dummy area in the non-effective display area before the internal area in the effective display area, the multiple pixel areas in the effective display area. It is possible to more reliably prevent a part of at least one of the polar liquid and the insulating fluid sealed in the inside of the liquid from evaporating. As a result, unlike the conventional example, it is possible to more easily configure a display element that can prevent deterioration in display quality.
  • the polar liquid and the insulating fluid are used as the predetermined liquid.
  • the number of parts of the display element can be reduced, and a low-cost display element can be easily configured.
  • the present invention it is possible to provide a display element that can prevent display quality from deteriorating, a method for manufacturing the display element, and an electric device using the display element.
  • FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a specific configuration of a main part in the pixel region of the display element shown in FIG.
  • FIG. 3 is a plan view showing an effective display portion and an ineffective display portion on the display surface of the display element shown in FIG.
  • FIG. 4 is a diagram for explaining the pixel area in the effective display section and the dummy pixel area in the non-effective display section shown in FIG.
  • FIG. 5 is an enlarged plan view showing a main configuration of the upper substrate side in the effective display section shown in FIG. 3 when viewed from the display surface side.
  • FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a specific configuration of a main part in the pixel region of the display element shown in FIG.
  • FIG. 3 is a plan view showing an effective display
  • FIG. 6 is an enlarged plan view showing a main configuration of the lower substrate side in the effective display section shown in FIG. 3 when viewed from the non-display surface side.
  • FIG. 7 is an enlarged plan view showing a main configuration of the upper substrate side in the ineffective display portion shown in FIG. 3 when viewed from the display surface side.
  • FIG. 8 is an enlarged plan view showing a main configuration of the lower substrate side in the non-effective display portion shown in FIG. 3 when viewed from the non-display surface side.
  • FIG. 9A and FIG. 9B are cross-sectional views showing the main configuration of the display element shown in FIG. 1 during non-CF color display and CF color display, respectively.
  • FIG. 10A to FIG. 10C are diagrams for explaining the formation process on the upper substrate side shown in FIG. FIG.
  • FIG. 11A to FIG. 11E are diagrams for explaining the formation process on the lower substrate side shown in FIG.
  • FIG. 12 is a view for explaining the oil filling process in the dummy pixel region in the ineffective display section shown in FIG.
  • FIG. 13 is a diagram for explaining a process of enclosing oil in the pixel area in the effective display section shown in FIG.
  • FIG. 14A is a diagram illustrating a process of bonding the upper substrate and the lower substrate
  • FIG. 14B is a diagram illustrating a final manufacturing process of the display element.
  • FIG. 17 is a diagram illustrating the pixel area in the effective display section and the dummy pixel area in the non-effective display section shown in FIG.
  • FIG. 18 is an enlarged plan view showing a main configuration of the upper substrate side in the effective display section shown in FIG. 16 when viewed from the display surface side.
  • FIG. 19 is an enlarged plan view showing a main configuration of the lower substrate side in the effective display section shown in FIG. 16 when viewed from the non-display surface side.
  • FIG. 20 is an enlarged plan view showing a main configuration of the upper substrate side in the ineffective display portion shown in FIG. 16 when viewed from the display surface side.
  • FIG. 21 is an enlarged plan view showing a main configuration of the lower substrate side in the non-effective display portion shown in FIG.
  • FIG. 16 when viewed from the non-display surface side.
  • 22 (a) and 22 (b) are cross-sectional views showing the main configuration of the display element shown in FIG. 15 during CF color display and non-CF color display, respectively.
  • FIG. 23A to FIG. 23D are diagrams for explaining the formation process on the upper substrate side shown in FIG. 24 (a) to 24 (e) are diagrams for explaining the formation process on the lower substrate side shown in FIG.
  • FIG. 25 is a diagram illustrating a process of enclosing polar liquid in the dummy pixel region in the ineffective display section shown in FIG.
  • FIG. 26 is a diagram for explaining a process of enclosing the polar liquid into the pixel region in the effective display section shown in FIG. FIG.
  • FIG. 27A is a diagram illustrating a process of bonding the upper substrate and the lower substrate illustrated in FIG. 22, and FIG. 27B illustrates a final manufacturing process of the display element illustrated in FIG. 15. It is a figure to do.
  • FIG. 28 is a diagram for explaining an operation example of the image display apparatus shown in FIG.
  • FIG. 29 is a plan view showing a pixel region in the effective display portion and a dummy region in the ineffective display portion of the display element according to the third embodiment of the present invention.
  • FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention.
  • the image display device 1 of the present embodiment is provided with a display unit using the display element 2 of the present embodiment, and a rectangular display surface is configured in the display unit.
  • an effective display unit that displays information and an ineffective display unit that does not display information are set on the display surface.
  • the display element 2 is provided with a display control unit 3, and a source driver 4 and a gate driver 5 connected to the display control unit 3.
  • a video signal is input to the display control unit 3 from the outside, and the display control unit 3 creates each instruction signal to the source driver 4 and the gate driver 5 based on the input video signal. And output.
  • the display element 2 displays information including characters and images according to the video signal.
  • the display element 2 includes an upper substrate 6 and a lower substrate 7 that are arranged so as to overlap each other in a direction perpendicular to the paper surface of FIG. 1, and the upper substrate 6 and the lower substrate 7 overlap each other.
  • An effective display area on the display surface is formed (details will be described later).
  • a plurality of source lines S as data lines are provided in stripes along the X direction at a predetermined interval from each other.
  • the plurality of gate lines G are provided in stripes along the Y direction at predetermined intervals.
  • the source lines S and the gate lines G are provided in a matrix so as to intersect with each other on the lower substrate 6, for example.
  • the source lines S and the gate lines G are in units of intersections.
  • a plurality of pixel areas are set.
  • the plurality of source lines S and the plurality of gate lines G are connected to the source driver 4 and the gate driver 5, respectively, and each source line S and each gate line G are input to the display control unit 3.
  • a source signal (voltage signal) and a gate signal corresponding to the video signal are supplied from the source driver 4 and the gate driver 5, respectively.
  • each of the plurality of pixel regions is partitioned by a partition wall.
  • a polar liquid described later is deformed (moved) by the electrowetting phenomenon, and the display color on the display surface side is changed. It is like that.
  • FIG. 2 is a diagram for explaining a specific configuration of the main part in the pixel region of the display element shown in FIG.
  • FIG. 3 is a plan view showing an effective display portion and an ineffective display portion on the display surface of the display element shown in FIG.
  • FIG. 4 is a diagram for explaining the pixel area in the effective display section and the dummy pixel area in the non-effective display section shown in FIG.
  • FIG. 5 is an enlarged plan view showing a main configuration of the upper substrate side in the effective display section shown in FIG. 3 when viewed from the display surface side.
  • FIG. 6 is an enlarged plan view showing a main configuration of the lower substrate side in the effective display section shown in FIG. 3 when viewed from the non-display surface side.
  • FIG. 7 is an enlarged plan view showing a main configuration of the upper substrate side in the ineffective display portion shown in FIG. 3 when viewed from the display surface side.
  • FIG. 8 is an enlarged plan view showing a main configuration of the lower substrate side in the non-effective display portion shown in FIG. 3 when viewed from the non-display surface side.
  • FIG. 9A and FIG. 9B are cross-sectional views showing the main configuration of the display element shown in FIG. 1 during non-CF color display and CF color display, respectively.
  • the source wiring S and the gate wiring G are not shown for simplification of the drawing.
  • each of the plurality of pixel regions is set in a unit of intersection of the source line S and the gate line G, and a thin film transistor (switching element) ( TFT) SW, a pixel electrode 8 as a second electrode, and a capacitor C are provided. That is, in the display element 2, in each pixel region, the source electrode and the gate electrode of the thin film transistor SW are connected to the source line S and the gate line G, respectively. Further, the drain electrode of the thin film transistor SW is connected to the pixel electrode 8, and the pixel electrode 8 is constituted by a capacitor C formed by a dielectric layer 14 described later provided on the lower substrate 7 side so as to cover the pixel electrode 8. It is connected to the.
  • TFT switching element
  • the display element 2 constitutes the above-described display portion of the active matrix driving method having a switching element (active element) for each pixel.
  • an effective display portion and an ineffective display portion are set on the display surface.
  • an effective display portion ED that closes a large area of the rectangular display surface including the center of the display surface, and the effective display portion ED are surrounded.
  • the ineffective display portion ND provided as described above is set.
  • the effective display portion ED includes a plurality of the pixel regions P (FIG. 4) provided to divide the display space K (FIG. 9) by the ribs 11 (FIG. 4).
  • the ineffective display portion ND includes a plurality of dummy pixel regions DP (FIG. 4) as dummy regions.
  • the size of the dummy region (the total size of the plurality of dummy pixel regions DP) is the polar liquid 12 enclosed in the plurality of pixel regions P and oil as an insulating fluid. It is determined based on the amount of 13 encapsulated.
  • the display element 2 forms a 3 ⁇ 1 RGB specification display panel with QVGA (Quarter Video Graphics Graphics Array), for example, in the X direction of the effective display unit ED (for example, the horizontal direction of the display panel).
  • the number of pixel regions P (number of pixels) is 320 pixels
  • the number (pixel number) of pixel regions P in the Y direction (for example, the vertical direction of the display panel) of the effective display portion ED is 240 ⁇ 3 (RGB). Pixel.
  • the number (number of pixels) of dummy pixel regions DP in the X direction of the ineffective display portion ND is 5 pixels in each of the left and right portions of the effective display portion ED, and the dummy pixels in the Y direction of the ineffective display portion ND.
  • the number of the regions DP (number of pixels) is 5 pixels in each of the upper part and the lower part of the effective display portion ED.
  • the pixel area P included in the effective display part ED is provided in six pixels in the X direction and the Y direction, respectively.
  • dummy pixel regions DP included in the non-effective display portion ND of 5 pixels are provided in the X direction and the Y direction so as to surround these 36 pixel regions P.
  • the pixel region P and the dummy pixel region DP are divided into the same shape by the ribs 11 as the partition walls.
  • color filter portions (openings) 10r, 10g, and 10b of any color are formed in each pixel region P of the effective display portion ED.
  • the opening is not formed in each dummy pixel region DP of the non-effective display portion ND, and is shielded from light by a black matrix portion 10s described later as a light shielding film.
  • the polar liquid 12 and the oil 13 are sealed in each pixel area P of the effective display portion ED, and the polar liquid 12 and the oil 13 as a predetermined liquid are filled in each dummy pixel area DP of the non-effective display portion ND. It is enclosed.
  • a part of the oil 13 evaporates during the manufacturing process of the display element 2, and the amount of liquid is changed to each pixel. It is less than the appropriate amount of oil 13 in the region P.
  • the display element 2 includes the upper substrate 6 as the first substrate provided on the display surface side, and the first substrate provided on the back side (non-display surface side) of the upper substrate 2. And the lower substrate 7 as a second substrate.
  • the upper substrate 6 and the lower substrate 7 are arranged at a predetermined distance from each other, so that a predetermined display space K is formed between the upper substrate 6 and the lower substrate 7. .
  • the display space K functions in the effective display portion ED, and does not function in the ineffective display portion ND.
  • the polar liquid 12 and the insulating colored oil 13 that does not mix with the polar liquid 12 are placed in the X direction in the display space K.
  • the polar liquid 12 is movably enclosed, and can move from an ineffective display area P2 side described later to an effective display area P1 side.
  • the polar liquid 12 for example, a mixed liquid of ethylene glycol and water is used.
  • the polar liquid 12 is a colorless and transparent liquid.
  • the polar liquid 12 may be mixed with a water-soluble liquid such as a lower alcohol in order to adjust its density, viscosity, melting point and boiling point, and is colored red, green, blue, or the like. Therefore, a self-dispersing pigment or a water-soluble dye may be mixed.
  • oil 13 for example, a mixture of alkane oil and toluene colored in black with, for example, a pigment or a dye is used.
  • a non-polar solvent composed of one or more selected from side chain higher alcohol, side chain higher fatty acid, alkane hydrocarbon, silicone oil, and matching oil, for example, pigment Alternatively, those colored with dyes may be used.
  • the oil 13 moves inside the display space K as the polar liquid 12 slides.
  • the oil 13 is filled into the inside of each pixel region P and the inside of each dummy pixel region DP by being filled on the lower substrate 7 by, for example, a dispenser method or an ink jet method.
  • the oil 13 since the oil 13 is colored in black, the oil 13 functions as a shutter that allows or blocks light transmission in each pixel. That is, in each pixel of the display element 2, as will be described later in detail, the oil 13 modulates the area where the oil 13 is located in the effective display area P1 inside the display space K, whereby the display is in the light absorption state and the light transmission state. And can be switched.
  • the upper substrate 6 a transparent glass material such as a non-alkali glass substrate or a transparent transparent sheet material such as a transparent synthetic resin such as an acrylic resin is used. Further, the color filter layer 10 and the common electrode 9 as the first electrode are sequentially formed on the surface of the upper substrate 6 on the non-display surface side. However, as illustrated in FIG. 5, the common electrode 9 is provided on the non-display surface side of the upper substrate 6 corresponding to the pixel region P included in the effective display portion ED (on the surface of the color filter layer 10). 7, as illustrated in FIG. 7, the non-display surface side surface side (on the surface of the color filter layer 10) of the upper substrate 6 corresponding to the dummy pixel region DP included in the ineffective display portion ND. ) Is not formed.
  • the lower substrate 7 is made of a transparent glass material such as a transparent glass material such as a non-alkali glass substrate or a transparent synthetic resin such as an acrylic resin, like the upper substrate 6.
  • the pixel electrode 8 and the thin film transistor SW are provided on the surface of the lower substrate 7 on the display surface side. Further, the dielectric layer 14 is formed so as to cover the pixel electrode 8 and the thin film transistor SW. Is formed. However, the pixel electrode 8 and the thin film transistor SW are formed only on the display surface side surface of the lower substrate 7 corresponding to the pixel region P included in the effective display portion ED, as illustrated in FIG. As illustrated in FIG. 8, it is not formed on the display surface side surface of the lower substrate 7 corresponding to the dummy pixel region DP included in the ineffective display portion ND.
  • the source line S is provided on the display surface side surface of the lower substrate 7 only in the portion of the effective display portion ED and the portion of the non-effective display portion ND between the source driver 4 and the effective display portion ED. Is provided.
  • the gate wiring G is provided on the surface of the lower substrate 7 on the display surface side only in the portion of the effective display portion ED and the portion of the ineffective display portion ND between the gate driver 5 and the effective display portion ED. Is provided.
  • the dielectric layer 14 is formed on the surface on the display surface side of the lower substrate 7 corresponding to each of the pixel region P included in the effective display portion ED and the dummy pixel region DP included in the ineffective display portion ND. ing. Further, a rib 11 having a first rib member 11a and a second rib member 11b provided so as to be parallel to the X direction and the Y direction is provided on the surface of the dielectric layer 14 on the display surface side. It has been. Further, the lower substrate 7 is provided with a water repellent film 15 so as to cover the dielectric layer 14 and the ribs 11. In addition to the above description, the thin film transistor SW may not be covered by the dielectric layer 14.
  • a backlight 16 that emits white illumination light is integrally assembled, and the transmissive display element 2 is configured.
  • the backlight 16 uses a light source such as a cold cathode fluorescent tube or an LED.
  • the pixel electrode 8 is a transparent electrode made of a transparent electrode material such as ITO.
  • the pixel electrode 8 is provided on the lower substrate 7 so as to be installed below the effective display area P1.
  • the thin film transistor SW is provided on the lower substrate 7 so as to be installed below the ineffective display area P2.
  • a transparent electrode made of a transparent electrode material such as ITO is used in the same manner as the pixel electrode 8.
  • the common electrode 9 is a flat transparent electrode, and the common electrode 9 covers all the pixel regions P provided on the display surface.
  • the color filter layer 10 is provided with red (R), green (G), and blue (B) color filter portions 10r, 10g, and 10b, and a black matrix portion 10s as a light shielding film.
  • the pixels of each color of RGB are configured. That is, in the color filter layer 10, as illustrated in FIG. 5, RGB color filter portions 10 r, 10 g, and 10 b are sequentially provided along the Y direction, and three color filter portions 10 r, 10 g, and 10 b are each provided with X A total of nine pixels are arranged in the X direction and the Y direction, respectively.
  • any one of RGB color filter portions 10 r, 10 g, and 10 b is provided at a location corresponding to the effective display region P 1 of the pixel,
  • a black matrix portion 10s is provided at a location corresponding to the ineffective display area P2. That is, in the display element 2, an ineffective display region P2 (non-opening portion) is set by the black matrix portion (light-shielding film) 10s with respect to the display space K, and the opening portion (non-opening portion) formed in the black matrix portion 10s ( That is, the effective display area P1 is set by any one of the color filter portions 10r, 10g, and 10b).
  • the area of the color filter portions 10r, 10g, and 10b is selected to be the same or slightly smaller than the area of the effective display area P1.
  • the area of the black matrix portion 10s is selected to be the same or slightly larger than the area of the ineffective display area P2.
  • FIG. 5 in order to clarify the boundary portion between adjacent pixels, the boundary line between two black matrix portions 10 s corresponding to the adjacent pixels is indicated by a dotted line. Then, there is no boundary line between the black matrix portions 10s.
  • the display space K is divided into pixel unit P units by the ribs 11 as the partition walls. That is, in the display element 2, the display space K of each pixel has two first rib members 11a having appropriate heights facing each other and appropriate heights facing each other, as illustrated in FIG. It is divided by two second rib members 11b. Furthermore, in the display element 2, the first and second rib members 11a and 11b prevent the polar liquid 12 from easily flowing into the display space K of the adjacent pixel region P. That is, for example, negative-type photocurable resin is used for the first and second rib members 11a and 11b, and the first and second rib members 11a and 11b are light transmissive. Further, in these first and second rib members 11a and 11b, the protruding height from the dielectric layer 14 is determined so that the polar liquid 12 is prevented from flowing in and out between adjacent pixels.
  • first and second rib members 11a and 11b may be separated from each other so that gaps are generated at the four corners of the pixel region P, for example. Further, the end portions of the ribs 11 configured in the frame shape may be brought into close contact with the upper substrate 2 side so that the adjacent pixel regions P are hermetically separated.
  • the ineffective display portion ND is set by a light shielding film provided on the upper substrate (first substrate) 6 side.
  • the boundary line between the two black matrix portions 10s corresponding to the adjacent dummy pixels is indicated by a dotted line. In the portion 10s, there is no boundary line between the black matrix portions 10s.
  • the display space K is divided into dummy pixel regions DP by the ribs 11 as in the effective display portion ED.
  • the pixel electrode 8 and the thin film transistor SW are not provided.
  • the dielectric layer 14 is made of a transparent dielectric film containing, for example, silicon nitride, hafnium oxide, titanium dioxide, or barium titanate.
  • the water repellent film 15 is made of a transparent synthetic resin, preferably, for example, a fluorine-based resin that becomes a hydrophilic layer with respect to the polar liquid 12 when a voltage is applied.
  • FIG. 10A to FIG. 10C are diagrams for explaining the formation process on the upper substrate side shown in FIG.
  • FIG. 11A to FIG. 11E are diagrams for explaining the formation process on the lower substrate side shown in FIG.
  • FIG. 12 is a view for explaining the oil filling process in the dummy pixel region in the ineffective display section shown in FIG.
  • FIG. 13 is a diagram for explaining a process of enclosing oil in the pixel area in the effective display section shown in FIG.
  • FIG. 14A is a diagram illustrating a process of bonding the upper substrate and the lower substrate
  • FIG. 14B is a diagram illustrating a final manufacturing process of the display element.
  • an alkali-free glass substrate having a thickness of 0.7 mm, for example, is used for the upper substrate 6, and the color filter portions 10r, 10g, 10b and the black matrix portion are formed by using, for example, a photolithography method.
  • the CF forming step is performed, and the color filter layer 10 is formed.
  • the color filter layer 10 uses a photosensitive resin (for example, photoreactive acrylic monomer) and a corresponding pigment, and has a thickness of about 2 ⁇ m, for example.
  • the color filter portions 10r, 10g, and 10b are formed only on the effective display portion ED (FIG. 3) and not formed on the non-effective display portion ND (FIG. 3). That is, as shown in FIG. 10B, only the black matrix portion 10s is formed on the surface of the upper substrate 6 in the ineffective display portion ND.
  • an electrode forming step of the common electrode 9 is performed in the effective display portion ED. That is, in this electrode formation step, the common electrode 9 is formed by forming an ITO film having a thickness of 100 nm on the color filter layer 10 by sputtering, for example.
  • a non-alkali glass substrate having a thickness of 0.7 mm, for example, is used for the lower substrate 7, and the formation process of the pixel electrode 8 and the thin film transistor SW is performed in the effective display portion ED. . That is, in this formation step, the pixel electrode 8 is formed by forming an ITO film having a thickness of 100 nm on the surface of the lower substrate 7 by, for example, sputtering. On the surface of the lower substrate 7, a thin film transistor SW made of TFT is formed by a known manufacturing process.
  • a dielectric layer 14 forming step is performed. That is, a silicon nitride film was formed as the dielectric layer 14 on the pixel electrode 8 and the thin film transistor SW by using, for example, a CVD method.
  • the film thickness of the dielectric layer 14 is, for example, 350 nm.
  • the pixel electrode 8 and the thin film transistor SW are not formed, and only the dielectric layer 14 is formed on the surface of the lower substrate 7.
  • an installation step of providing the rib 11 on the dielectric layer 14 is performed. That is, in this installation step, the first and second rib members 11a and 11b using photo-curing resin are formed on the surface of the dielectric layer 14 in the pixel region P unit and the dummy pixel region DP unit. The Further, by performing this installation process, a plurality of pixel areas P are set in the effective display area ED, and a dummy pixel area (dummy area) DP is set in the ineffective display area ND surrounding the effective display area ED. The area setting process is completed.
  • a forming step of forming a water repellent film 15 on the surface of the dielectric layer 14 and the first and second rib members 11a and 11b is performed. That is, in this forming step, for example, a fluorine-based resin material is applied to the surface of the dielectric layer 14 and the first and second rib members 11a and 11b by dipping and baked at 80 ° C. for 30 minutes. Thus, the water repellent film 15 is formed.
  • an oil 13 filling step is performed on the lower substrate 6.
  • the dummy pixel region DP of the ineffective display portion ND is performed, and then the pixel region P of the effective display portion ED is performed.
  • a first sealing step for sealing oil 13 as a predetermined liquid is performed on each dummy pixel region DP of the ineffective display portion ND by, for example, a dispenser method or an inkjet method. Is called.
  • a second enclosing step of enclosing the oil 13 is performed on each pixel region P of the effective display portion ED by, for example, a dispenser method or an inkjet method.
  • the upper substrate 6 is assembled to the lower substrate 7 holding the oil 13 from above, and the upper substrate 6 and the lower substrate 7 are bonded together.
  • FIG. 14B a step of enclosing the polar liquid 12 using the capillary phenomenon from the gap between the pixel areas P and the gap between the dummy pixel areas DP is performed. Then, the display element 10 is completed by installing the backlight 16 on the lower substrate 7 side.
  • the display control unit 3 sequentially outputs gate signals for turning on the thin film transistors SW from the gate driver 5 to the gate wiring G in a predetermined scanning direction from the upper side to the lower side in FIG. .
  • the display control unit 3 causes the source driver 4 to output a source signal (voltage signal) corresponding to the video signal to the corresponding source line S.
  • a source signal voltage signal
  • the display control unit 3 causes the source driver 4 to output a source signal (voltage signal) corresponding to the video signal to the corresponding source line S.
  • the voltage from the source line S is applied to the pixel electrode 8, and charges are accumulated in the capacitor C (dielectric layer 14). The accumulated electric charge is maintained in the capacitor C for a period of one frame until the gate line G is next selected.
  • the source signal is sent from the source driver 4 to the source wiring so that the potential difference between the pixel electrode 8 and the common electrode 9 becomes 0V. It is output to the pixel electrode 8 via S.
  • the polar liquid 12 in the pixel region P is colored by an oil 13 having a relatively high affinity with the water-repellent film as shown in FIG. It will be in the state located below the filter part 10r, and will be in the state which covered the said color filter part 10r completely.
  • the light from the backlight 16 is blocked by the oil 13 and black display is performed.
  • the source difference is set so that the potential difference between the pixel electrode 8 and the common electrode 9 becomes a predetermined voltage value (for example, 16V).
  • a signal is output from the source driver 4 to the pixel electrode 8 via the source line S.
  • the polar liquid 12 in the pixel region P is shown in FIG. As shown, it is held in a state of being located below the color filter portion 10r side.
  • the display element 2 the light from the backlight 16 is not blocked by the oil 13, but is allowed to be emitted to the viewer side such as a user, and a red display is performed. Further, in the image display device 1, when the oil 13 moves to the ineffective display area P ⁇ b> 2 side in all three adjacent RGB pixels and CF colored display is performed, Red light, green light, and blue light are mixed with white light, and white display is performed.
  • the source signal is sent from the source driver 4 through the source line S so that the potential difference between the pixel electrode 8 and the common electrode 9 becomes a voltage value between 0 V and the predetermined voltage value.
  • halftone display according to the voltage value can be performed. That is, according to the voltage applied to the pixel electrode 8, the oil 13 moves to the lower side of the color filter portion 10r, so that the shielding ratio by the oil 13 with respect to the color filter portion 10r changes, and the observer side By changing the amount of light emitted from the emitted backlight 16, halftone display can be performed.
  • the effective display portion ED and the ineffective display portion ND provided so as to surround the effective display portion ED are set on the display surface.
  • a polar liquid 12 and oil (insulating fluid) 13 are sealed inside each of the plurality of pixel regions P in the effective display portion ED.
  • a dummy pixel region (dummy region) DP is provided between the upper substrate 6 and the lower substrate 7 corresponding to the ineffective display portion ND, and the polar liquid 12 and the oil 13 are provided inside the dummy pixel region DP. Is enclosed.
  • the present embodiment it is possible to prevent a part of the polar liquid 12 and the oil 13 enclosed in each of the plurality of pixel regions P in the effective display unit ED from evaporating.
  • the present embodiment unlike the conventional example, it is possible to configure the display element 2 that can prevent the display quality from being deteriorated.
  • the ineffective display portion ND is set by the black matrix portion (light shielding film) 10s provided on the upper substrate (first substrate) 6 side. Therefore, it is possible to reliably prevent the display quality from deteriorating.
  • the size of the dummy pixel region DP is determined based on the amount of the polar liquid 12 and the oil 13 enclosed in each of the plurality of pixel regions P. Accordingly, in the present embodiment, the polar liquid 12 and the oil 13 can be appropriately sealed inside the dummy pixel region DP, and a part of the polar liquid 12 and the oil 13 can be more reliably prevented from being evaporated. Can do.
  • the 2nd enclosure process is performed.
  • oil predetermined liquid
  • the display element 2 that can prevent the display quality from being deteriorated can be configured more easily.
  • the non-effective display area P2 is set by the black matrix portion (light shielding film) 10s provided on the upper substrate 6, and the effective display area P1 is set by the color filter portions (openings) 10r, 10g, and 10b. Since it is set, the effective display area P1 and the ineffective display area P2 can be appropriately and reliably set for the display space K.
  • the source wiring (data wiring) S and the gate wiring G are provided in a matrix on the lower substrate 7, and the planar common electrode (transparent electrode) 9 is provided on the upper substrate 6. It has been. Further, in the display element 2 of the present embodiment, each of the plurality of pixel regions P is provided in units of intersections of the source wiring S and the gate wiring G, and in each pixel region P, the display space K is a rib (partition). Wall) 11. Furthermore, in the display element 2 of the present embodiment, each pixel region P is provided with a thin film transistor (switching element) SW, a pixel electrode (second electrode) 8, and a dielectric layer (capacitor) 14. Thereby, in the present embodiment, it is possible to configure the matrix drive type display element 2 having an excellent display quality.
  • the display element 2 that can prevent the display quality from being deteriorated is used in the display unit. Therefore, the image display device 1 having excellent display performance is provided. It can be easily configured.
  • a reflection electrode may be used as the pixel electrode 8.
  • the installation of the backlight 16 can be omitted, and a display element with low power consumption can be easily configured.
  • FIG. 15 is a plan view for explaining a display element and an image display apparatus according to the second embodiment of the present invention.
  • the main difference between this embodiment and the first embodiment is that a signal electrode as a first electrode and a reference electrode and a scan electrode as a second electrode are used.
  • symbol is attached
  • a display unit using the display element 2 ′ of the present embodiment is provided, and a rectangular display surface is configured on the display unit.
  • an effective display area of the display surface is formed by an overlapping portion of the upper substrate 6 and the lower substrate 7 as in the first embodiment (details are given) (See below.)
  • a plurality of signal electrodes 18 are provided in stripes along the X direction at a predetermined interval from each other.
  • a plurality of reference electrodes 19 and a plurality of scanning electrodes 20 are provided alternately in a stripe pattern along the Y direction.
  • the plurality of signal electrodes 18, the plurality of reference electrodes 19, and the plurality of scanning electrodes 20 are provided so as to intersect with each other.
  • the unit of intersection between the signal electrode 18 and the scanning electrode 20 is provided.
  • a plurality of pixel areas are set.
  • the plurality of signal electrodes 18, the plurality of reference electrodes 19, and the plurality of scanning electrodes 20 are independently of each other a high voltage (hereinafter referred to as “H voltage”) as a first voltage and a second voltage.
  • H voltage high voltage
  • L voltage low voltage
  • each of the plurality of pixel regions is partitioned by a partition wall.
  • a polar liquid 12 ′ described later is moved by an electrowetting phenomenon for each of a plurality of pixels (display cells) provided in a matrix to change the display color on the display surface side. It is like that.
  • each of the plurality of signal electrodes 18, the plurality of reference electrodes 19, and the plurality of scanning electrodes 20 has one end portion drawn out of the effective display area of the display surface to form terminal portions 18 a, 19 a, and 20 a. ing.
  • a signal driver 21 is connected to each terminal portion 18a of the plurality of signal electrodes 18 via a wiring 21a.
  • the signal driver 21 constitutes a signal voltage application unit.
  • the signal driver 21 responds to the information for each of the plurality of signal electrodes 18.
  • the signal voltage Vd is applied.
  • a reference driver 22 is connected to each terminal portion 19a of the plurality of reference electrodes 19 via a wiring 22a.
  • the reference driver 22 constitutes a reference voltage application unit.
  • the reference driver 22 applies a reference voltage Vr to each of the plurality of reference electrodes 19. Is applied.
  • a scanning driver 23 is connected to each terminal portion 20a of the plurality of scanning electrodes 20 via a wiring 23a.
  • the scanning driver 23 constitutes a scanning voltage application unit.
  • the scanning voltage Vs is applied to each of the plurality of scanning electrodes 20. Is applied.
  • a non-selection voltage that prevents the polar liquid from moving with respect to each of the plurality of scan electrodes 20, and a selection voltage that allows the polar liquid to move according to the signal voltage Vd One of the voltages is applied as the scanning voltage Vs.
  • the reference driver 22 is configured to operate with reference to the operation of the scanning driver 23, and the reference driver 22 prevents the polar liquid from moving with respect to each of the plurality of reference electrodes 19.
  • One voltage of the non-selection voltage and the selection voltage that allows the polar liquid to move according to the signal voltage Vd is applied as the reference voltage Vr.
  • the scanning driver 23 sequentially applies a selection voltage to the scanning electrodes 20 from the left side to the right side of FIG. 15, and the reference driver 22 is synchronized with the operation of the scanning driver 23.
  • the scanning operation for each line is performed by sequentially applying a selection voltage to the reference electrodes 19 from the left side to the right side of 15 (details will be described later).
  • the signal driver 21, the reference driver 22, and the scanning driver 23 include a DC power source or an AC power source, and supply corresponding signal voltage Vd, reference voltage Vr, and scanning voltage Vs. .
  • the reference driver 22 is configured to switch the polarity of the reference voltage Vr every predetermined time (for example, one frame). Furthermore, the scanning driver 23 is configured to switch each polarity of the scanning voltage Vs in response to switching of the polarity of the reference voltage Vr.
  • these references are compared to when the same polarity voltage is always applied to the reference electrode 19 and the scanning electrode 20. It is possible to prevent the charge from being localized in the electrode 19 and the scanning electrode 20. Furthermore, it is possible to prevent adverse effects of display defects (afterimage phenomenon) and reliability (lifetime reduction) due to charge localization.
  • FIG. 16 is a plan view showing an effective display portion and an ineffective display portion on the display surface of the display element shown in FIG.
  • FIG. 17 is a diagram illustrating the pixel area in the effective display section and the dummy pixel area in the non-effective display section shown in FIG.
  • FIG. 18 is an enlarged plan view showing a main configuration of the upper substrate side in the effective display section shown in FIG. 16 when viewed from the display surface side.
  • FIG. 19 is an enlarged plan view showing a main configuration of the lower substrate side in the effective display section shown in FIG. 16 when viewed from the non-display surface side.
  • FIG. 20 is an enlarged plan view showing a main configuration of the upper substrate side in the ineffective display portion shown in FIG. 16 when viewed from the display surface side.
  • 21 is an enlarged plan view showing a main configuration of the lower substrate side in the non-effective display portion shown in FIG. 16 when viewed from the non-display surface side.
  • 22 (a) and 22 (b) are cross-sectional views showing the main configuration of the display element shown in FIG. 15 during CF color display and non-CF color display, respectively.
  • an effective display portion ED and a non-effective display portion ND are set on the display surface, as in the first embodiment.
  • an effective display portion ED that tightens a large area of the display surface having a rectangular shape including the center of the display surface, and the effective display portion ED are provided.
  • a non-effective display portion ND provided so as to surround is set.
  • the effective display portion ED includes a plurality of the pixel regions P (FIG. 17) provided to divide the display space K (FIG. 22) by the ribs 11 (FIG. 19).
  • the non-effective display portion ND includes a plurality of dummy pixel regions DP (FIG. 17) as dummy regions.
  • the size of the dummy region (the total size of the plurality of dummy pixel regions DP) is the polar liquid 12 ′ enclosed in each of the plurality of pixel regions P and the insulating fluid. Is determined based on the amount of oil 13 'enclosed.
  • the display element 2 forms a 3 ⁇ 1 RGB specification display panel with QVGA (Quarter Video Graphics Graphics Array), for example, in the X direction of the effective display unit ED (for example, the horizontal direction of the display panel).
  • the number of pixel regions P (number of pixels) is 320 pixels
  • the number (pixel number) of pixel regions P in the Y direction (for example, the vertical direction of the display panel) of the effective display portion ED is 240 ⁇ 3 (RGB). Pixel.
  • the number (number of pixels) of dummy pixel regions DP in the X direction of the ineffective display portion ND is 5 pixels in each of the left and right portions of the effective display portion ED, and the dummy pixels in the Y direction of the ineffective display portion ND.
  • the number of the regions DP (number of pixels) is 5 pixels in each of the upper part and the lower part of the effective display portion ED.
  • the pixel area P included in the effective display part ED is provided with 3 pixels and 6 pixels in the X direction and the Y direction, respectively. Further, dummy pixel regions DP included in the ineffective display portion ND of 5 pixels are provided in the X direction and the Y direction so as to surround the 18 pixel regions P. Further, the pixel region P and the dummy pixel region DP are divided into the same shape by the ribs 11 as the partition walls.
  • color filter portions (openings) 25r, 25g, and 25b of any color are formed in each pixel region P of the effective display portion ED. On the other hand, the opening is not formed in each dummy pixel region DP of the non-effective display portion ND, and is shielded from light by a black matrix portion 10s described later as a light shielding film.
  • each pixel region P of the effective display portion ED is filled with polar liquid 12 ′ and oil 13 ′
  • each dummy pixel region DP of the non-effective display portion ND is filled with polar liquid 12 ′ and predetermined liquid. Oil 13 'is enclosed.
  • part of the polar liquid 12 ′ is evaporated during the manufacturing process of the display element 2, and the amount of the liquid is reduced. It is less than the appropriate amount of polar liquid 12 ′ in each pixel region P.
  • the display element 2 ′ includes the upper substrate 6 as the first substrate provided on the display surface side and the back surface side of the upper substrate 6 (as in the first embodiment). And the lower substrate 7 as the second substrate provided on the non-display surface side.
  • a predetermined display space K is formed between the upper substrate 6 and the lower substrate 7.
  • the display space K functions in the effective display portion ED, and does not function in the ineffective display portion ND.
  • the display space K is filled with polar liquid 12 ′ and oil 13 ′ so as to be movable in the X direction inside the display space K.
  • the polar liquid 12 ′ is in the effective display area P1. It can move to the side or the non-effective display area P2 side.
  • the polar liquid 12 ′ for example, one that is colored black by a self-dispersing pigment is used, and the oil 13 ′ is colorless and transparent. Oil is used. Specifically, for example, a mixed liquid of ethylene glycol and water and the pigment are used for the polar liquid 12 '. For example, colorless and transparent alkane oil is used as the oil 13 '. That is, in the display element 2 ′ of the present embodiment, the polar liquid 12 ′ functions as a shutter that allows or blocks light transmission in each pixel.
  • the polar liquid 12 ′ is disposed inside the display space K on the reference electrode 19 side (effective display region P1 side) or on the scanning electrode 20 side.
  • the display color is changed to one of black or red display, green display, and blue display (CF color display) by sliding to the (ineffective display area P2 side).
  • a color filter layer 25, a signal electrode 18 as a first electrode, and a water repellent film 24 are sequentially formed on the surface of the upper substrate 6 on the non-display surface side.
  • the signal electrode 18 is provided on the non-display surface side of the upper substrate 6 corresponding to the pixel region P included in the effective display portion ED (on the surface of the color filter layer 25).
  • the surface side of the upper substrate 6 corresponding to the dummy pixel region DP included in the ineffective display portion ND (on the surface of the color filter layer 25). ) Is not formed.
  • the signal electrode 18 is on the non-display surface side of the upper substrate 6 only in the portion of the effective display portion ED and the portion of the non-effective display portion ND between the signal driver 21 and the effective display portion ED. It is provided on the surface side.
  • the reference electrode 19 and the scan electrode 20 as second electrodes are provided on the surface of the lower substrate 7 on the display surface side, and further, the reference electrode 19 and the scan electrode 20 are covered.
  • the dielectric layer 14 is formed.
  • the reference electrode 19 and the scanning electrode 20 are formed only on the surface on the display surface side of the lower substrate 7 corresponding to the pixel region P included in the effective display portion ED. As illustrated in FIG. 21, it is not formed on the display surface side surface of the lower substrate 7 corresponding to the dummy pixel region DP included in the ineffective display portion ND.
  • the reference electrode 19 is provided on the display surface side of the lower substrate 7 only in the portion of the effective display portion ED and the portion of the non-effective display portion ND between the reference driver 22 and the effective display portion ED.
  • the scanning electrode 20 is formed on the display surface side surface of the lower substrate 7 only in the portion of the effective display portion ED and the portion of the non-effective display portion ND between the scan driver 23 and the effective display portion ED. Is provided.
  • the dielectric layer 14 is formed on the surface on the display surface side of the lower substrate 7 corresponding to each of the pixel region P included in the effective display portion ED and the dummy pixel region DP included in the ineffective display portion ND. ing. Further, the surface on the display surface side of the dielectric layer 14 is provided with a first rib member 11a and a first rib member 11a provided in parallel to the X direction and the Y direction, respectively, as in the first embodiment. Ribs 11 having two rib members 11b are provided. Further, the lower substrate 7 is provided with a water repellent film 15 so as to cover the dielectric layer 14 and the ribs 11.
  • the color filter layer 25 has red (R), green (G), and blue (B) color filter portions 25r, 25g, and 25b, and a light shielding layer.
  • a black matrix portion 25s as a film is provided, and constitutes pixels of each color of RGB. That is, in the color filter layer 25, as illustrated in FIG. 18, RGB color filter portions 25r, 25g, and 25b are sequentially provided along the X direction, and three color filter portions 25r, 25g, and 25b are respectively provided as Y. A total of nine pixels are arranged in the X direction and the Y direction, respectively.
  • any one of RGB color filter portions 25r, 25g, and 25b is provided at a location corresponding to the effective display region P1 of the pixel.
  • a black matrix portion 25s is provided at a location corresponding to the ineffective display area P2. That is, in the display element 2 ′, an ineffective display region P2 (non-opening portion) is set for the display space K by the black matrix portion (light-shielding film) 25s, and the opening portion formed in the black matrix portion 25s.
  • the effective display area P1 is set by (that is, any one of the color filter portions 25r, 25g, and 25b).
  • the area of the color filter portions 25 r, 25 g, and 25 b is selected to be the same or slightly smaller than the area of the effective display area P 1.
  • the area of the black matrix portion 25s is selected to be the same or slightly larger than the area of the ineffective display area P2.
  • FIG. 18 in order to clarify the boundary between adjacent pixels, the boundary between the two black matrix portions 25s corresponding to the adjacent pixels is indicated by a dotted line, but the actual color filter layer 25 is shown. Then, there is no boundary line between the black matrix portions 25s.
  • the display space K is divided in units of pixel areas P by the ribs 11 as the partition walls, as in the first embodiment. That is, in the display element 2 ′, the display space K of each pixel is, as illustrated in FIG. 19, two first rib members 11 a having appropriate heights facing each other and appropriate heights facing each other. Are divided by the two second rib members 11b. Furthermore, in the display element 2 ′, the polar liquid 12 ′ can be easily placed inside the display space K of the adjacent pixel region P by the first and second rib members 11a and 11b, as in the first embodiment. It is prevented from flowing into.
  • first and second rib members 11a and 11b are used for the first and second rib members 11a and 11b, and the first and second rib members 11a and 11b are light transmissive. Further, in these first and second rib members 11a and 11b, the protruding height from the dielectric layer 14 is determined so that the polar liquid 12 ′ is prevented from flowing in and out between adjacent pixels. .
  • the ineffective display portion ND is set by a light shielding film provided on the upper substrate (first substrate) 6 side.
  • the boundary line between the two black matrix portions 10s corresponding to the adjacent dummy pixels is indicated by a dotted line. In the portion 10s, there is no boundary line between the black matrix portions 10s.
  • the display space K is divided into dummy pixel regions DP by the ribs 11 as in the effective display portion ED.
  • the reference electrode 19 and the scanning electrode 20 are not installed.
  • a transparent electrode material such as indium oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (AZO, GZO, or IZO) is used.
  • ITO indium oxide
  • SnO 2 tin oxide
  • AZO zinc oxide
  • GZO GZO
  • IZO zinc oxide
  • the signal electrode 18 uses a linear wiring arranged so as to be parallel to the X direction.
  • the signal electrode 18 is made of a transparent electrode material such as ITO.
  • the signal electrode 18 is disposed on the color filter layer 25 so as to pass through the substantially central portion in the X direction of each pixel region P, and is electrically connected to the polar liquid 12 ′ via the water repellent film 24. It is comprised so that it may contact. Thereby, in the display element 2 ', the response of the polar liquid 12' during the display operation is improved.
  • the water-repellent film 24 is made of a transparent synthetic resin, preferably, for example, a fluorine-based resin that becomes a hydrophilic layer with respect to the polar liquid 12 'when a voltage is applied.
  • a transparent synthetic resin preferably, for example, a fluorine-based resin that becomes a hydrophilic layer with respect to the polar liquid 12 'when a voltage is applied.
  • each pixel of the display element 2 ′ configured as described above, when the polar liquid 12 ′ is held between the black matrix portion 25 s and the reference electrode 19 as illustrated in FIG. Light from the light 16 passes through the color filter portion 25r without being blocked by the polar liquid 12 ', thereby performing red display (CF color display).
  • CF color display red display
  • FIG. 22B when the polar liquid 12 ′ is held between the color filter portion 25r and the scan electrode 20, the light from the backlight 16 is blocked by the polar liquid 12 ′. Black display (non-CF color display) is performed.
  • FIG. 23 (a) to 23 (d) are diagrams for explaining the formation process on the upper substrate side shown in FIG. 24 (a) to 24 (e) are diagrams for explaining the formation process on the lower substrate side shown in FIG.
  • FIG. 25 is a diagram illustrating a process of enclosing polar liquid in the dummy pixel region in the ineffective display section shown in FIG.
  • FIG. 26 is a diagram for explaining a process of enclosing the polar liquid into the pixel region in the effective display section shown in FIG.
  • FIG. 27A is a diagram illustrating a process of bonding the upper substrate and the lower substrate illustrated in FIG. 22, and FIG. 27B illustrates a final manufacturing process of the display element illustrated in FIG. 15. It is a figure to do.
  • a non-alkali glass substrate having a thickness of 0.7 mm, for example, is used for the upper substrate 6, and the color filter portions 25r, 25g, 25b and the black matrix portion are formed by using, for example, a photolithography method.
  • 25 s is stacked on the surface of the upper substrate 6 to perform a CF forming step, and the color filter layer 25 is formed.
  • the color filter layer 25 uses a photosensitive resin (for example, photoreactive acrylic monomer) and a corresponding pigment, and has a thickness of, for example, about 2 ⁇ m.
  • the color filter portions 25r, 25g, and 25b are formed only on the effective display portion ED (FIG. 16) and are not formed on the non-effective display portion ND (FIG. 16). That is, as shown in FIG. 23B, in the ineffective display portion ND, only the black matrix portion 10s is formed on the surface of the upper substrate 6.
  • an electrode forming step of the signal electrode 18 is performed in the effective display portion ED. That is, in this electrode formation step, the signal electrode 18 is installed by fixing a thin wire made of, for example, ITO on the surface of the color filter layer 25, for example.
  • a film forming process of the water repellent film 24 is performed. That is, a water-repellent film 24 was formed by applying, for example, a fluorine-based resin material to each surface of the color filter layer 25 and the signal electrode 18 by dipping and baking at 80 ° C. for 30 minutes.
  • the film thickness of the water repellent film 24 is, for example, 60 nm.
  • a non-alkali glass substrate having a thickness of, for example, 0.7 mm is used for the lower substrate 7, and the formation process of the reference electrode 19 and the scanning electrode 20 is performed in the effective display portion ED. Is called. That is, in this forming step, the reference electrode 19 and the scanning electrode 20 are formed by forming an ITO film having a thickness of 100 nm on the surface of the lower substrate 7 by, for example, sputtering.
  • a step of forming the dielectric layer 14 is performed. That is, a silicon nitride film was formed as the dielectric layer 14 on the reference electrode 19 and the scanning electrode 20 by using, for example, a CVD method.
  • the film thickness of the dielectric layer 14 is, for example, 350 nm.
  • the reference electrode 19 and the scanning electrode 20 are not formed, and only the dielectric layer 14 is formed on the surface of the lower substrate 7. .
  • an installation step of providing the rib 11 on the dielectric layer 14 is performed. That is, in this installation step, the first and second rib members 11a and 11b using photo-curing resin are formed on the surface of the dielectric layer 14 in the pixel region P unit and the dummy pixel region DP unit. The Further, by performing this installation process, a plurality of pixel areas P are set in the effective display area ED, and a dummy pixel area (dummy area) DP is set in the ineffective display area ND surrounding the effective display area ED. The area setting process is completed.
  • a forming step of forming a water repellent film 15 on the surface of the dielectric layer 14 and the first and second rib members 11a and 11b is performed. That is, in this forming step, for example, a fluorine-based resin material is applied to the surface of the dielectric layer 14 and the first and second rib members 11a and 11b by dipping and baked at 80 ° C. for 30 minutes. Thus, the water repellent film 15 is formed.
  • an encapsulating step of the polar liquid 12 ′ is performed on the lower substrate 6.
  • this encapsulating step first, the dummy pixel region DP of the ineffective display portion ND is performed, and then the pixel region P of the effective display portion ED is performed.
  • a second sealing step of sealing the polar liquid 12 ' is performed by, for example, a dispenser method or an inkjet method.
  • FIG. 27B a step of encapsulating the oil 13 'using the capillary phenomenon from the gap between the pixel areas P and the gap between the dummy pixel areas DP is performed. Then, the display element 10 is completed by installing the backlight 16 on the lower substrate 7 side.
  • FIG. 28 is a diagram for explaining an operation example of the image display device shown in FIG.
  • the reference driver 22 and the scanning driver 23 select the reference voltage Vr and the scanning voltage Vs as the reference voltage Vr and the scanning voltage Vs, respectively, with respect to the reference electrode 19 and the scanning electrode 20 in a predetermined scanning direction from the left to the right in FIG. Apply voltage sequentially.
  • the reference driver 22 and the scan driver 23 sequentially apply an H voltage (first voltage) and an L voltage (second voltage) as selection voltages to the reference electrode 19 and the scan electrode 20, respectively.
  • the scanning operation for selecting the line is performed.
  • the signal driver 21 applies the H voltage or the L voltage as the signal voltage Vd to the corresponding signal electrode 18 according to the image input signal from the outside.
  • the polar liquid 12 ' is moved to the effective display area P1 side or the non-effective display area P2 side, and the display color on the display surface side is changed.
  • the reference driver 22 and the scan driver 23 apply the above-mentioned non-selection voltages as the reference voltage Vr and the scan voltage Vs to the non-selected lines, that is, all the remaining reference electrodes 19 and scan electrodes 20, respectively.
  • the reference driver 22 and the scan driver 23 apply an intermediate voltage (Middle) that is, for example, an intermediate voltage between the H voltage and the L voltage to the remaining reference electrodes 19 and scan electrodes 20 as non-selection voltages. Voltage, hereinafter referred to as “M voltage”).
  • ⁇ Operation on selected line> In the selection line, for example, when an H voltage is applied to the signal electrode 18, an H voltage is applied between the reference electrode 19 and the signal electrode 18. There is no potential difference between the electrode 18 and the electrode 18. On the other hand, since the L voltage is applied to the scanning electrode 20 between the signal electrode 18 and the scanning electrode 20, a potential difference is generated. For this reason, the polar liquid 12 ′ moves in the display space K toward the scanning electrode 20 where a potential difference is generated with respect to the signal electrode 18. As a result, as illustrated in FIG. 22B, the polar liquid 12 ′ moves to the effective display region P1 side, moves the oil 13 to the reference electrode 19 side, and illuminates light from the backlight 16. Is prevented from reaching the color filter portion 25r. Thereby, the display color on the display surface side is in a black display (non-CF color display) state by the polar liquid 12 ′.
  • the polar liquid 12 ′ moves in the display space K toward the reference electrode 19 where a potential difference is generated with respect to the signal electrode 18.
  • the polar liquid 12 ′ moves to the ineffective display region P2 side, and allows the illumination light from the backlight 16 to reach the color filter portion 25r. .
  • the display color on the display surface side is in a red display (CF color display) state by the color filter unit 25r.
  • the RGB pixels are concerned.
  • the red light, green light, and blue light from are mixed with white light, and white display is performed.
  • the polar liquid 12 ′ is maintained in a stationary state at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 19 and the scan electrode 20, the potential difference between the reference electrode 19 and the signal electrode 18 and the potential difference between the scan electrode 20 and the signal electrode 18 are as follows. This is because the same potential difference occurs in both cases.
  • the polar liquid 12 ′ does not move but remains stationary and display on the display surface side. The color does not change.
  • the polar liquid 12 ′ can be moved according to the voltage applied to the signal electrode 18 as described above, and the display color on the display surface side can be changed.
  • the display color at each pixel on the selected line is applied to the signal electrode 18 corresponding to each pixel, for example, as shown in FIG. 28, by the combination of applied voltages shown in Table 1.
  • the color filter portions 25r, 25g, and 25b are colored with CF (red, green, or blue) or nonpolarized with a polar liquid 12 ′ (black).
  • the reference driver 22 and the scanning driver 23 perform the scanning operation of the selection lines of the reference electrode 19 and the scanning electrode 20 from the left to the right in FIG. 28, for example, each pixel in the display unit of the image display device 1 is scanned.
  • the display color also changes sequentially from left to right in FIG.
  • the image display apparatus 1 can perform various information including moving images based on an image input signal from the outside. Can be displayed.
  • combinations of voltages applied to the reference electrode 19, the scan electrode 20, and the signal electrode 18 are not limited to Table 1 but may be those shown in Table 2.
  • the reference driver 22 and the scan driver 23 for example, select L voltage (second voltage) and H as selection voltages with respect to the reference electrode 19 and the scan electrode 20 in a predetermined scanning direction from the left side to the right side in FIG.
  • a scanning operation is performed in which a voltage (first voltage) is sequentially applied to select lines.
  • the signal driver 21 applies the H voltage or the L voltage as the signal voltage Vd to the corresponding signal electrode 18 according to the image input signal from the outside.
  • the reference driver 22 and the scan driver 23 apply the M voltage as the non-selection voltage to the non-selected lines, that is, the remaining reference electrodes 19 and scan electrodes 20.
  • ⁇ Operation on selected line> In the selection line, for example, when an L voltage is applied to the signal electrode 18, an L voltage is applied between the reference electrode 19 and the signal electrode 18. There is no potential difference between the electrode 18 and the electrode 18. On the other hand, between the signal electrode 18 and the scan electrode 20, since the H voltage is applied to the scan electrode 20, a potential difference is generated. Accordingly, the polar liquid 12 ′ moves in the display space K toward the scanning electrode 20 where a potential difference is generated with respect to the signal electrode 18. As a result, as illustrated in FIG. 22B, the polar liquid 12 ′ moves to the effective display region P1 side, moves the oil 13 to the reference electrode 19 side, and illuminates light from the backlight 16. Is prevented from reaching the color filter portion 25r. Thereby, the display color on the display surface side is in a black display (non-CF color display) state by the polar liquid 12 ′.
  • the polar liquid 12 ′ moves in the display space K toward the reference electrode 19 where a potential difference is generated with respect to the signal electrode 18.
  • the polar liquid 12 ′ moves to the ineffective display region P2 side, and allows the illumination light from the backlight 16 to reach the color filter portion 25r. .
  • the display color on the display surface side is in a red display (CF color display) state by the color filter unit 25r.
  • the RGB pixels are concerned.
  • the red light, green light, and blue light from are mixed with white light, and white display is performed.
  • the polar liquid 12 ′ is maintained in a stationary state at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 19 and the scan electrode 20, the potential difference between the reference electrode 19 and the signal electrode 18 and the potential difference between the scan electrode 20 and the signal electrode 18 are as follows. This is because the same potential difference occurs in both cases.
  • the polar liquid 12 ′ can be moved according to the voltage applied to the signal electrode 18 as described above, and the display color on the display surface side can be changed.
  • the applied voltage to the signal electrode 18 is not limited to the binary value of the H voltage or the L voltage.
  • the voltage between the H voltage and the L voltage can be changed according to information displayed on the display surface side.
  • the image display device 1 can perform gradation display by controlling the signal voltage Vd.
  • the display element 2 ′ having excellent display performance can be configured.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the signal electrode 18 installed in the display space K is used as the first electrode, and the effective display area P1 and the ineffective display area are used as the second electrodes.
  • the reference electrode 19 and the scanning electrode 20 provided on the lower substrate 7 are used so as to be installed on one side and the other side of P2, respectively.
  • the display color on the display surface side can be changed without providing a switching element, and a display element 2 ′ having a simple structure can be configured. it can.
  • the three electrodes are provided and the conductive liquid 12 is slid. Therefore, the display on the display surface side is compared with the display element 2 ′ that changes the shape of the conductive liquid 12. It is possible to easily increase the color switching speed and save labor.
  • the signal driver (signal voltage applying unit) 21, the reference driver (reference voltage applying unit) 22, and the scanning driver (scanning voltage applying unit) 23 are the signal electrode 18 and the reference electrode 19.
  • the signal voltage Vd, the reference voltage Vr, and the scanning voltage Vs are applied to the scanning electrode 20.
  • FIG. 29 is a plan view showing a pixel region in the effective display portion and a dummy region in the ineffective display portion of the display element according to the third embodiment of the present invention.
  • the main difference between the present embodiment and the second embodiment is that the dummy region is partitioned by ribs in a shape different from the pixel region.
  • symbol is attached
  • an ineffective display portion ND is provided so as to surround the effective display portion ED.
  • a frame-like ineffective display portion ND is set as in the second embodiment.
  • the non-effective display portion ND sets the dimension H1 in the Y direction and the dimension H2 in the X direction to about 0.2 mm, for example. Has been. However, these dimensions H1 and H2 are appropriately changed according to the size of the dummy area DA described below.
  • the ineffective display portion ND does not include the dummy pixel region DP, and the corresponding upper substrate 6 and lower substrate 7 are separated by ribs 34.
  • the dummy area DA is provided. That is, as illustrated in FIG. 29, the dummy area DA is partitioned by the ribs 34 in a shape different from that of the pixel area P. Further, in the frame-shaped ineffective display portion ND, one or a plurality of dummy areas DA are provided in each of two portions parallel to the X direction and each of two portions parallel to the Y direction.
  • the size of the dummy area DA (the total size of all the dummy areas DA) is enclosed in each of the plurality of pixel areas P, as in the second embodiment. It is determined on the basis of the enclosed amount of the polar liquid 12 ′ and the oil 13 ′.
  • the polar liquid 12 ′ is sealed as a predetermined liquid.
  • the present embodiment can achieve the same operations and effects as those of the second embodiment.
  • the dummy area DA is partitioned by the rib 34 in a shape different from that of the pixel area P, the ineffective display portion is compared with the case where the dummy area is partitioned in the same shape as the pixel area P.
  • the size of ND can be easily reduced.
  • the present invention is an electric device provided with a display unit that displays information including characters and images.
  • the present invention is not limited in any way.
  • a portable information terminal such as a PDA such as an electronic notebook, a display device attached to a personal computer, a television, or the like, or an electronic paper or other electric device including various display units. it can.
  • the display element of the present invention is not limited to this. It is not limited as long as it is an electric field induction type display element that can change the display color on the display surface side by operating a polar liquid inside the display space using an external electric field. Instead, the present invention can be applied to other types of electric field induction display elements such as an electroosmosis method, an electrophoresis method, and a dielectrophoresis method.
  • the electrowetting type display element when configured as in the above embodiments, the polar liquid can be moved at a high speed with a low driving voltage. Further, in the electrowetting type display element, the display color is changed according to the movement of the polar liquid, and unlike a liquid crystal display device using a birefringent material such as a liquid crystal layer, it is used for information display. It is also preferable in that a high-luminance display element that is excellent in light utilization efficiency of light from the backlight and external light can be easily configured.
  • polar liquids include potassium chloride, zinc chloride, potassium hydroxide, sodium hydroxide, alkali metal hydroxide, zinc oxide, sodium chloride, lithium salt, phosphoric acid, alkali metal carbonate, oxygen ion What contains electrolytes, such as ceramics which have conductivity, can be used.
  • organic solvents such as alcohol, acetone, formamide, and ethylene glycol can also be used as the solvent.
  • the polar liquid of the present invention includes an ionic liquid containing a cation such as pyridine, alicyclic amine, or aliphatic amine, and an anion such as fluoride such as fluoride ion or triflate ( Room temperature molten salt) can also be used.
  • a cation such as pyridine, alicyclic amine, or aliphatic amine
  • an anion such as fluoride such as fluoride ion or triflate ( Room temperature molten salt) can also be used.
  • the polar liquid of the present invention includes a conductive liquid having conductivity and a liquid having a high dielectric constant having a specific dielectric constant of a predetermined value or higher, preferably 15 or higher.
  • the use of a mixed liquid containing water as a polar liquid is superior in handleability and can easily constitute a display element that is easy to manufacture. preferable.
  • the insulating fluid of the present invention includes a fluid having a relative dielectric constant of not more than a predetermined value, preferably not more than 5.
  • the use of nonpolar oil that is not compatible with polar liquid is more polar in the nonpolar oil than when air and polar liquid are used. It is preferable in that the liquid droplets can be moved more easily, the polar liquid can be moved at high speed, and the display color can be switched at high speed.
  • the switching element of the present invention is not limited to this, and other switching elements such as an MIM element are used. It can also be used.
  • the capacitor of the present invention is not limited as long as it can hold the charge supplied to the pixel electrode (second electrode).
  • the substrate may be used as a capacitor. it can.
  • a substrate in which a water-repellent film is coated on the pixel electrode of the lower substrate can be regarded as a state in which a capacitor is formed for each pixel.
  • each of the second and third embodiments the case of using a colorless and transparent oil and a polar liquid colored in black has been described.
  • the present invention is not limited to this, for example, RGB, cyan (C), magenta (M), yellow (Y) CMY, RGBYC, etc. so that a plurality of pixel regions are provided in accordance with a plurality of colors capable of full color display on the display surface side. It is also possible to use a plurality of polar liquids that are colored. When the polar liquid colored in this way is used, the installation of the color filter layer can be omitted in the second and third embodiments.
  • the predetermined liquid of the present invention is not limited as long as it can suppress evaporation of the polar liquid and the insulating fluid sealed in the inside of each of the plurality of pixel areas provided inside the dummy area. .
  • the predetermined liquid is preferably a liquid having the same or similar composition as the polar liquid and the insulating fluid sealed in the inside of each pixel region.
  • the number of parts of the display element can be reduced, and an inexpensive display element can be easily configured.
  • oil is sealed into the inside of each pixel region before the upper substrate (first substrate) and the lower substrate (second substrate) are bonded together. It is preferable to use alkane oil containing the composition of the oil, toluene, or a mixture thereof as the predetermined liquid.
  • the polar liquid is sealed into the inside of each pixel region before the upper substrate (first substrate) and the lower substrate (second substrate) are bonded together.
  • water containing the polar liquid composition is preferably used as the predetermined liquid.
  • the ineffective display area and the ineffective display area in each of the plurality of pixel areas in the effective display area are provided on the upper substrate (first substrate) side.
  • the present invention is not limited to this.
  • the non-effective display portion and the non-effective display area may be set using separate light-shielding films.
  • the ineffective display portion may be set by a light shielding film provided on at least one side of the upper substrate (first substrate) and the lower substrate (second substrate).
  • a display element with a simple structure is easier when the ineffective display portion and the ineffective display area are set by the same light-shielding film provided on the first substrate side. It is preferable at the point which can be comprised.
  • the present invention is not limited to this, and the diffuse reflector The present invention can also be applied to a reflection type having a light reflection part such as a transflective display element in which the light reflection part and a backlight are used in combination.
  • the signal electrode is provided on the upper substrate (first substrate) side, and the reference electrode and the scan electrode are provided on the lower substrate (second substrate) side.
  • the present invention is not limited to this, and the signal electrode is installed inside the display space so as to come into contact with the polar liquid, and the reference is made while being electrically insulated from the polar liquid. What is necessary is just to provide an electrode and a scanning electrode in one side of the 1st and 2nd board
  • the signal electrode may be provided on the second substrate side or on the rib, and the reference electrode and the scan electrode may be provided on the first substrate side.
  • the reference electrode and the scanning electrode are provided on the effective display area side and the ineffective display area side.
  • the present invention is limited to this. Instead, the reference electrode and the scanning electrode may be provided on the non-effective display area side and the effective display area side, respectively.
  • the reference electrode and the scanning electrode are provided on the display surface side surface of the lower substrate (second substrate)
  • the reference electrode and the scan electrode embedded in the second substrate made of an insulating material can be used without limitation.
  • the second substrate can be used as a dielectric layer, and the installation of the dielectric layer can be omitted.
  • the present invention relates to the pixel of the reference electrode and the scan electrode. Only one electrode placed so as to face the effective display area may be made of a transparent electrode material, and the other electrode not facing the effective display area may be opaque such as aluminum, silver, chromium, or other metal. Any electrode material can be used.
  • the shapes of the reference electrode and the scan electrode of the present invention are not limited to this.
  • the shape may be such that light loss such as a line shape or a net shape hardly occurs.
  • the signal electrode of the present invention is not limited to this, and a network wiring or the like is used. Wirings formed in other shapes can also be used.
  • the color filter layer is formed on the surface on the non-display surface side of the upper substrate (first substrate) has been described.
  • the present invention is not limited to this.
  • the color filter layer can be provided on the surface of the first substrate on the display surface side or on the lower substrate (second substrate) side.
  • the case where the color filter layer is used is preferable in that a display element which is easy to manufacture can be easily configured as compared with the case where a plurality of colors of polar liquids are prepared.
  • the color filter part (opening part) and the black matrix part (light-shielding film) included in the color filter layer appropriately and reliably provide an effective display area and an ineffective display area with respect to the display space. It is also preferable in that it can be set.
  • the size of the dummy region is determined based on the amount of polar liquid and oil (insulating fluid) sealed in each of the plurality of pixel regions.
  • the present invention is not limited to this, and the size of the dummy region can be appropriately changed according to the type of polar liquid, the type of insulating fluid, and the like.
  • each of the first to third embodiments after the oil or polar liquid is sealed and the upper substrate (first substrate) and the lower substrate (second substrate) are bonded together, capillary action is performed.
  • the present invention is not limited to this, and after the oil or polar liquid is sealed, the first substrate and the second substrate are bonded together.
  • polar liquid or oil may be sealed using a dispenser method, an ink jet method, or the like. Further, the polar liquid and the oil may be sealed at the same time before the first substrate and the second substrate are bonded to each other.
  • the present invention is useful for a display element that can prevent display quality from being deteriorated, a manufacturing method thereof, and an electric device using the display element.
  • Image display device (electric equipment) 2, 2 'display element 6 Upper substrate (first substrate) 7 Lower substrate (second substrate) 8 Pixel electrode (second electrode) 9 Common electrode (first electrode) 10 Color filter layer 10r, 10g, 10b Color filter part (opening part) 10s black matrix (light shielding film) 11, 34 Rib 11a First rib member 11b Second rib member 12, 12 ′ Polar liquid (predetermined liquid) 13, 13 'oil (insulating fluid, predetermined liquid) 14 Dielectric layer (capacitor) 18 Signal electrode (first electrode) 19 Reference electrode (second electrode) 20 Scanning electrode (second electrode) 21 Signal driver (Signal voltage application unit) 22 Reference driver (reference voltage application unit) 23 Scanning driver (scanning voltage application unit) 25 Color filter layer 25r, 25g, 25b Color filter part (opening) 25s black matrix (light shielding film) S source wiring (data wiring) G Gate wiring SW Thin film transistor (switching element) K display space P pixel area P1 effective display area P2 ineffective display area DP dummy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Provided is a display element (2) which is configured to be capable of changing a display color on a display surface by moving a polarized fluid (12). An effective display part (ED), having a plurality of pixel regions (P), and an ineffective display part (ND), which is disposed to surround the effective display part (ED), are set. The polarized fluid (12) and an oil (insulating fluid) (13) are sealed within the pixel regions (P). Furthermore, a dummy pixel region (dummy region) (DP) is disposed between an upper substrate (6) and a lower substrate (7) corresponding to the ineffective display part (ND), and the polarized fluid (12) and the oil (13) are sealed within the dummy pixel region (DP).

Description

表示素子、製造方法、及び電気機器Display element, manufacturing method, and electric apparatus
 本発明は、極性液体を移動させることにより、画像や文字などの情報を表示する表示素子、その製造方法、及びその表示素子を用いた電気機器に関する。 The present invention relates to a display element that displays information such as images and characters by moving a polar liquid, a method of manufacturing the display element, and an electrical apparatus using the display element.
 近年、表示素子では、エレクトロウェッティング方式の表示素子に代表されるように、外部電界による導電性液体の移動現象を利用して、情報の表示を行うものが開発され、実用化されている。 Recently, as represented by electrowetting type display elements, display elements that display information using the phenomenon of movement of a conductive liquid by an external electric field have been developed and put into practical use.
 具体的にいえば、上記のような従来の表示素子では、例えば下記特許文献1に記載されているように、第1及び第2の基板と、これら基板間に形成された空間の内部で複数の画素領域毎に封入された第1の流体及びこの第1の流体と非相溶の第2の流体とが設けられている。そして、この従来の表示素子では、第1の流体に対して電界印加を行うことにより、当該第1の流体を移動させて表示面側の表示色を変更するようになっていた。 Specifically, in the conventional display element as described above, for example, as described in Patent Document 1 below, a plurality of first and second substrates and a plurality of interiors of a space formed between these substrates are provided. A first fluid sealed for each pixel region and a second fluid incompatible with the first fluid are provided. In this conventional display element, by applying an electric field to the first fluid, the first fluid is moved to change the display color on the display surface side.
 また、この従来の表示素子では、第1及び第2の流体を第1の基板に配置する工程と、シール剤を第1の基板に配置する工程と、シール剤及び第1の基板の上方に第2の基板を配置して、これら第1及び第2の基板を貼り合わせて第1及び第2の基板に囲まれた空間を形成する工程と、シール剤を硬化する工程を行うことにより、当該表示素子が製造されていた。 Further, in this conventional display element, the step of disposing the first and second fluids on the first substrate, the step of disposing the sealing agent on the first substrate, and above the sealing agent and the first substrate. By placing a second substrate, bonding the first and second substrates together to form a space surrounded by the first and second substrates, and curing the sealant, The display element has been manufactured.
国際公開第2009/065909号パンフレットInternational Publication No. 2009/065909 Pamphlet
 しかしながら、上記のような従来の表示素子では、第1及び/または第2の流体(極性液体及び/または絶縁性流体)、特に当該表示素子の表示面の外周部分に配置された画素領域に封入された、第1及び/または第2の流体の一部が、第1及び第2の基板を貼り合わせる前に、蒸発することがあった。これにより、この従来の表示素子では、表示面の複数の画素領域において、第1及び/または第2の流体の液量が不均一なものとなり、画素領域の一部で輝点が生じたり、画素領域の一部で階調表示が適切に行われなかったりすることがあった。この結果、従来の表示素子では、表示品位が低下するという問題点を生じた。 However, in the conventional display element as described above, the first and / or second fluid (polar liquid and / or insulating fluid) is sealed in the pixel region arranged in the outer peripheral portion of the display surface of the display element. In some cases, a part of the first and / or second fluid thus evaporated may evaporate before the first and second substrates are bonded to each other. Thereby, in this conventional display element, the liquid amount of the first and / or second fluid is non-uniform in a plurality of pixel regions on the display surface, and a bright spot is generated in a part of the pixel region. In some cases, gradation display is not properly performed in a part of the pixel region. As a result, the conventional display element has a problem that the display quality is deteriorated.
 上記の課題を鑑み、本発明は、表示品位の低下を防止することができる表示素子、その製造方法、及びその表示素子を用いた電気機器を提供することを目的とする。 In view of the above-described problems, an object of the present invention is to provide a display element that can prevent deterioration in display quality, a method for manufacturing the display element, and an electric device using the display element.
 上記の目的を達成するために、本発明にかかる表示素子は、表示面側に設けられた第1の基板と、所定の表示用空間が前記第1の基板との間に形成されるように、当該第1の基板の非表示面側に設けられた第2の基板と、前記表示用空間に対し、設定された有効表示領域及び非有効表示領域と、前記表示用空間の内部で少なくとも前記有効表示領域側に移動可能に封入された極性液体とを具備し、前記極性液体を移動させることにより、前記表示面側の表示色を変更可能に構成された表示素子であって、
 前記極性液体と接触するように、前記表示用空間の内部に設置された第1の電極、及び
 前記極性液体及び前記第1の電極に対して電気的に絶縁された状態で、前記第1及び第2の基板の一方側に設けられた第2の電極を備え、
 前記表示面に対して、前記表示用空間をリブにて区切るように設けられた複数の画素領域を有する有効表示部と、前記有効表示部を囲むように設けられた非有効表示部とを設定し、
 前記有効表示部内の前記複数の各画素領域の内部に対して、前記極性液体と当該極性液体と混じり合わない絶縁性流体を封入するとともに、
 前記非有効表示部に対応する第1及び第2の基板の間に、ダミー領域を設け、当該ダミー領域の内部に対して、所定の液体を封入したことを特徴とするものである。
In order to achieve the above object, the display element according to the present invention is configured such that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate. , The second substrate provided on the non-display surface side of the first substrate, the effective display area and the non-effective display area set with respect to the display space, and at least the inside of the display space A display element configured to be capable of changing a display color on the display surface side by moving the polar liquid, the polar liquid encapsulated movably on the effective display area side,
A first electrode installed in the display space so as to be in contact with the polar liquid; and the first and second electrodes in a state of being electrically insulated from the polar liquid and the first electrode. A second electrode provided on one side of the second substrate;
An effective display unit having a plurality of pixel regions provided so as to divide the display space by ribs and an ineffective display unit provided to surround the effective display unit are set on the display surface. And
Encapsulating the polar liquid and an insulating fluid that does not mix with the polar liquid inside each of the plurality of pixel regions in the effective display unit,
A dummy region is provided between the first and second substrates corresponding to the ineffective display portion, and a predetermined liquid is sealed in the dummy region.
 上記のように構成された表示素子では、表示面に対して、上記有効表示部と当該有効表示部を囲むように設けられた非有効表示部とが設定されている。また、有効表示部内の複数の各画素領域の内部に対して、極性液体と絶縁性流体を封入している。さらに、非有効表示部に対応する第1及び第2の基板の間に、ダミー領域を設けるとともに、当該ダミー領域の内部に対して、所定の液体を封入している。これにより、有効表示部内の複数の各画素領域の内部に封入された極性液体及び絶縁性流体の一部が蒸発するのを防ぐことができる。この結果、上記従来例と異なり、表示品位の低下を防止することができる表示素子を構成することができる。 In the display element configured as described above, the effective display portion and a non-effective display portion provided so as to surround the effective display portion are set on the display surface. Further, a polar liquid and an insulating fluid are sealed inside each of the plurality of pixel regions in the effective display portion. Further, a dummy region is provided between the first and second substrates corresponding to the ineffective display portion, and a predetermined liquid is sealed inside the dummy region. Thereby, it is possible to prevent a part of the polar liquid and the insulating fluid enclosed in each of the plurality of pixel regions in the effective display portion from evaporating. As a result, unlike the conventional example, it is possible to configure a display element that can prevent deterioration in display quality.
 また、上記表示素子において、前記所定の液体として、前記極性液体と前記絶縁性流体が用いられていることが好ましい。 In the display element, it is preferable that the polar liquid and the insulating fluid are used as the predetermined liquid.
 この場合、表示素子の部品点数を削減することができ、コスト安価な表示素子を容易に構成することができる。 In this case, the number of parts of the display element can be reduced, and a low-cost display element can be easily configured.
 また、上記表示素子において、前記非有効表示部は、前記第1及び第2の基板の少なくとも一方側に設けられた遮光膜によって設定されていることが好ましい。 Further, in the display element, it is preferable that the ineffective display portion is set by a light shielding film provided on at least one side of the first and second substrates.
 この場合、遮光膜により、非有効表示部を確実に設定することができ、表示品位の低下を確実に防止することができる。 In this case, the non-effective display portion can be reliably set by the light shielding film, and the deterioration of the display quality can be surely prevented.
 また、上記表示素子において、前記ダミー領域は、リブにより、前記画素領域とは異なる形状で区切られてもよい。 In the display element, the dummy area may be partitioned by a rib in a shape different from that of the pixel area.
 この場合、画素領域と同じ形状でダミー領域を区切った場合に比べ、上記非有効表示部の大きさを容易に小さくすることができる。 In this case, the size of the ineffective display portion can be easily reduced as compared with the case where the dummy area is divided in the same shape as the pixel area.
 また、上記表示素子において、前記第1及び第2の基板の一方側には、データ配線及びゲート配線がマトリクス状に設けられ、
 前記第1及び第2の基板の他方側には、前記第1の電極としての平面状の透明電極が設けられ、
 前記複数の各画素領域が、前記データ配線と前記ゲート配線との交差部単位に設けられ、
 前記複数の各画素領域には、前記データ配線及び前記ゲート配線に接続されたスイッチング素子、前記スイッチング素子に接続された前記第2の電極としての画素電極、及び前記画素電極に供給された電荷を保持するキャパシタが設けられてもよい。
In the display element, data wiring and gate wiring are provided in a matrix on one side of the first and second substrates.
On the other side of the first and second substrates, a planar transparent electrode as the first electrode is provided,
Each of the plurality of pixel regions is provided in an intersection unit between the data line and the gate line,
In each of the plurality of pixel regions, a switching element connected to the data wiring and the gate wiring, a pixel electrode as the second electrode connected to the switching element, and a charge supplied to the pixel electrode A capacitor for holding may be provided.
 この場合、優れた表示品位を有するマトリクス駆動方式の表示素子を構成することができる。 In this case, a matrix drive type display element having excellent display quality can be formed.
 また、上記表示素子において、前記キャパシタとして、前記画素電極を覆うように、前記第1及び第2の基板の一方側に設けられた誘電体層が用いられていることが好ましい。 In the display element, it is preferable that a dielectric layer provided on one side of the first and second substrates is used as the capacitor so as to cover the pixel electrode.
 この場合、ディスクリート部品からなるキャパシタの設置を省略することができ、構造簡単な表示素子を容易に構成することができる。 In this case, it is possible to omit the installation of a capacitor composed of discrete components, and a display device having a simple structure can be easily configured.
 また、上記表示素子において、前記第1の電極として、前記表示用空間の内部に設置された信号電極が用いられ、
 前記第2の電極として、前記有効表示領域及び前記非有効表示領域の一方側に設置されるように、前記第1及び第2の基板の一方側に設けられた参照電極、及び
 前記有効表示領域側及び前記非有効表示領域側の他方側に設置されるように、前記参照電極に対して電気的に絶縁された状態で、前記第1及び第2の基板の一方側に設けられた走査電極が用いられてもよい。
Further, in the display element, a signal electrode installed inside the display space is used as the first electrode.
As the second electrode, a reference electrode provided on one side of the first and second substrates so as to be installed on one side of the effective display area and the non-effective display area, and the effective display area Scanning electrode provided on one side of the first and second substrates in a state of being electrically insulated from the reference electrode so as to be installed on the other side of the side and the ineffective display area side May be used.
 この場合、スイッチング素子を設けることなく、表示面側の表示色を変更することができ、構造簡単な表示素子を構成することができる。 In this case, the display color on the display surface side can be changed without providing a switching element, and a display element with a simple structure can be configured.
 また、上記表示素子において、複数の前記信号電極が、所定の配列方向に沿って設けられ、
 複数の前記参照電極及び複数の前記走査電極が、互いに交互に、かつ、前記複数の信号電極と交差するように設けられ、
 前記複数の信号電極に接続されるとともに、前記複数の各信号電極に対して、前記表示面側に表示される情報に応じて、所定の電圧範囲内の信号電圧を印加する信号電圧印加部と、
 前記複数の参照電極に接続されるとともに、前記複数の各参照電極に対して、前記極性液体が前記信号電圧に応じて、前記表示用空間の内部を移動するのを許容する選択電圧と、前記極性液体が前記表示用空間の内部を移動するのを阻止する非選択電圧との一方の電圧を印加する参照電圧印加部と、
 前記複数の走査電極に接続されるとともに、前記複数の各走査電極に対して、前記極性液体が前記信号電圧に応じて、前記表示用空間の内部を移動するのを許容する選択電圧と、前記極性液体が前記表示用空間の内部を移動するのを阻止する非選択電圧との一方の電圧を印加する走査電圧印加部とを備えていることが好ましい。
In the display element, the plurality of signal electrodes are provided along a predetermined arrangement direction,
The plurality of reference electrodes and the plurality of scanning electrodes are provided alternately with each other and intersect with the plurality of signal electrodes,
A signal voltage applying unit that is connected to the plurality of signal electrodes and applies a signal voltage within a predetermined voltage range to each of the plurality of signal electrodes in accordance with information displayed on the display surface side; ,
A selection voltage that is connected to the plurality of reference electrodes and that allows the polar liquid to move within the display space in response to the signal voltage for each of the plurality of reference electrodes; A reference voltage applying unit for applying one of a non-selection voltage for preventing the polar liquid from moving inside the display space;
A selection voltage that is connected to the plurality of scan electrodes and that allows the polar liquid to move within the display space in response to the signal voltage for each of the plurality of scan electrodes; It is preferable to include a scanning voltage application unit that applies one voltage of a non-selection voltage that prevents the polar liquid from moving inside the display space.
 この場合、優れた表示品位を有するマトリクス駆動方式の表示素子を容易に構成することができる。 In this case, a matrix drive type display element having excellent display quality can be easily configured.
 また、上記表示素子において、前記複数の各画素領域は、前記信号電極と前記走査電極との交差部単位に設けられていることが好ましい。 In the display element, it is preferable that each of the plurality of pixel regions is provided in a unit of intersection of the signal electrode and the scanning electrode.
 この場合、表示面側の複数の各画素において極性液体を移動させることにより、表示面側での表示色を画素単位に変更することができる。 In this case, the display color on the display surface side can be changed in units of pixels by moving the polar liquid in each of the plurality of pixels on the display surface side.
 また、上記表示素子において、前記参照電極及び前記走査電極の表面上には、誘電体層が積層されていることが好ましい。 In the display element, it is preferable that a dielectric layer is laminated on the surfaces of the reference electrode and the scanning electrode.
 この場合、誘電体層が極性液体に印加する電界を確実に大きくして、当該極性液体の移動速度をより容易に向上することができる。 In this case, the electric field applied to the polar liquid by the dielectric layer can be reliably increased, and the moving speed of the polar liquid can be improved more easily.
 また、上記表示素子において、前記複数の画素領域が、前記表示面側でフルカラー表示が可能な複数の色に応じてそれぞれ設けられてもよい。 In the display element, the plurality of pixel regions may be provided in accordance with a plurality of colors capable of full color display on the display surface side.
 この場合、複数の各画素において対応する極性液体が適切に移動されることにより、カラー画像表示を行うことができる。 In this case, a color image can be displayed by appropriately moving the corresponding polar liquid in each of the plurality of pixels.
 また、上記表示素子において、前記非有効表示領域は、前記第1及び第2の基板のいずれか一方側に設けられた遮光膜によって設定され、
 前記有効表示領域は、前記遮光膜に形成された開口部によって設定されていることが好ましい。
In the display element, the ineffective display area is set by a light shielding film provided on one side of the first and second substrates,
The effective display area is preferably set by an opening formed in the light shielding film.
 この場合、表示用空間に対し、有効表示領域及び非有効表示領域を適切に、かつ、確実に設定することができる。 In this case, it is possible to appropriately and reliably set the effective display area and the non-effective display area for the display space.
 また、上記表示素子において、前記非有効表示部と前記非有効表示領域とは、前記第1の基板側に設けられた同一の遮光膜によって設定されていることが好ましい。 In the display element, it is preferable that the non-effective display portion and the non-effective display area are set by the same light shielding film provided on the first substrate side.
 この場合、構造簡単な表示素子を容易に構成することができる。 In this case, a display element having a simple structure can be easily configured.
 また、本発明の電気機器は、文字及び画像を含んだ情報を表示する表示部を備えた電気機器であって、
 前記表示部に、上記いずれかの表示素子を用いたことを特徴とするものである。
The electrical device of the present invention is an electrical device including a display unit that displays information including characters and images,
Any one of the display elements described above is used for the display portion.
 上記のように構成された電気機器では、表示品位の低下を防止することができる表示素子が表示部に用いられているので、優れた表示性能を有する電気機器を容易に構成することができる。 In the electric device configured as described above, since a display element capable of preventing a reduction in display quality is used in the display unit, an electric device having excellent display performance can be easily configured.
 また、本発明の表示素子の製造方法は、表示面側に設けられた第1の基板と、所定の表示用空間が前記第1の基板との間に形成されるように、当該第1の基板の非表示面側に設けられた第2の基板と、前記表示用空間に対し、設定された有効表示領域及び非有効表示領域と、前記表示用空間の内部で少なくとも前記有効表示領域側に移動可能に封入された極性液体とを具備し、前記極性液体を移動させることにより、前記表示面側の表示色を変更可能に構成された表示素子の製造方法であって、
 前記第1及び第2の基板の一方側に、リブを設けることにより、有効表示部内に複数の画素領域を設定するとともに、前記有効表示部を囲む非有効表示部内にダミー領域を設定する領域設定工程と、
 前記複数の各画素領域の内部に対して、前記極性液体及び当該極性液体と混じり合わない絶縁性流体の少なくとも一方を封入するとともに、前記ダミー領域の内部に対して、所定の液体を封入する封入工程とを備えていることを特徴とするものである。
In addition, in the method for manufacturing a display element of the present invention, the first substrate is formed so that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate. The second substrate provided on the non-display surface side of the substrate, the effective display region and the non-effective display region set with respect to the display space, and at least the effective display region side in the display space A display element configured to change a display color on the display surface side by moving the polar liquid, the polar liquid encapsulated in a movable manner,
By setting a rib on one side of the first and second substrates, a plurality of pixel areas are set in the effective display area, and a dummy area is set in the ineffective display area surrounding the effective display area. Process,
Encapsulating at least one of the polar liquid and an insulating fluid that does not mix with the polar liquid in each of the plurality of pixel regions and enclosing a predetermined liquid in the dummy region And a process.
 上記のように構成された表示素子の製造方法では、上記領域設定工程と封入工程とを順次行うことにより、有効表示部内の複数の各画素領域の内部に封入された極性液体及び絶縁性流体の少なくとも一方の一部が蒸発するのを防ぐことができる。この結果、上記従来例と異なり、表示品位の低下を防止することができる表示素子を構成することができる。 In the method of manufacturing the display element configured as described above, the polar liquid and the insulating fluid sealed in each of the plurality of pixel regions in the effective display unit are sequentially performed by performing the region setting step and the sealing step. At least one part can be prevented from evaporating. As a result, unlike the conventional example, it is possible to configure a display element that can prevent deterioration in display quality.
 また、上記表示素子の製造方法において、前記封入工程には、前記ダミー領域の内部に対して、前記所定の液体を封入する第1の封入工程と、
 前記第1の封入工程の後で、前記複数の各画素領域の内部に対して、前記極性液体及び前記絶縁性流体の少なくとも一方を封入する第2の封入工程とが含まれていることが好ましい。
In the display element manufacturing method, the sealing step includes a first sealing step of sealing the predetermined liquid into the dummy region;
It is preferable that after the first sealing step, a second sealing step of sealing at least one of the polar liquid and the insulating fluid is included in the inside of each of the plurality of pixel regions. .
 この場合、有効表示部内の複数の各画素領域の内部よりも、非有効表示部内のダミー領域の内部に対して、先に所定の液体が封入されるので、有効表示部内の複数の各画素領域の内部に封入された極性液体及び絶縁性流体の少なくとも一方の一部が蒸発するのをより確実に防ぐことができる。この結果、上記従来例と異なり、表示品位の低下を防止することができる表示素子をより容易に構成することができる。 In this case, since the predetermined liquid is sealed in the dummy area in the non-effective display area before the internal area in the effective display area, the multiple pixel areas in the effective display area. It is possible to more reliably prevent a part of at least one of the polar liquid and the insulating fluid sealed in the inside of the liquid from evaporating. As a result, unlike the conventional example, it is possible to more easily configure a display element that can prevent deterioration in display quality.
 また、上記表示素子の製造方法において、前記所定の液体として、前記極性液体と前記絶縁性流体が用いられていることが好ましい。 In the method for manufacturing the display element, it is preferable that the polar liquid and the insulating fluid are used as the predetermined liquid.
 この場合、表示素子の部品点数を削減することができ、コスト安価な表示素子を容易に構成することができる。 In this case, the number of parts of the display element can be reduced, and a low-cost display element can be easily configured.
 本発明によれば、表示品位の低下を防止することができる表示素子、その製造方法、及びその表示素子を用いた電気機器を提供することが可能となる。 According to the present invention, it is possible to provide a display element that can prevent display quality from deteriorating, a method for manufacturing the display element, and an electric device using the display element.
図1は、本発明の第1の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention. 図2は、図1に示した表示素子の画素領域での主要部の具体的な構成を説明する図である。FIG. 2 is a diagram illustrating a specific configuration of a main part in the pixel region of the display element shown in FIG. 図3は、図1に示した表示素子の表示面での有効表示部及び非有効表示部を示す平面図である。FIG. 3 is a plan view showing an effective display portion and an ineffective display portion on the display surface of the display element shown in FIG. 図4は、図3に示した有効表示部内の画素領域及び非有効表示部内のダミー画素領域を説明する図である。FIG. 4 is a diagram for explaining the pixel area in the effective display section and the dummy pixel area in the non-effective display section shown in FIG. 図5は、表示面側から見た場合での図3に示した有効表示部における上部基板側の要部構成を示す拡大平面図である。FIG. 5 is an enlarged plan view showing a main configuration of the upper substrate side in the effective display section shown in FIG. 3 when viewed from the display surface side. 図6は、非表示面側から見た場合での図3に示した有効表示部における下部基板側の要部構成を示す拡大平面図である。FIG. 6 is an enlarged plan view showing a main configuration of the lower substrate side in the effective display section shown in FIG. 3 when viewed from the non-display surface side. 図7は、表示面側から見た場合での図3に示した非有効表示部における上部基板側の要部構成を示す拡大平面図である。FIG. 7 is an enlarged plan view showing a main configuration of the upper substrate side in the ineffective display portion shown in FIG. 3 when viewed from the display surface side. 図8は、非表示面側から見た場合での図3に示した非有効表示部における下部基板側の要部構成を示す拡大平面図である。FIG. 8 is an enlarged plan view showing a main configuration of the lower substrate side in the non-effective display portion shown in FIG. 3 when viewed from the non-display surface side. 図9(a)及び図9(b)は、それぞれ非CF着色表示時及びCF着色表示時における、図1に示した表示素子の要部構成を示す断面図である。FIG. 9A and FIG. 9B are cross-sectional views showing the main configuration of the display element shown in FIG. 1 during non-CF color display and CF color display, respectively. 図10(a)~図10(c)は、図9に示した上部基板側の形成工程を説明する図である。FIG. 10A to FIG. 10C are diagrams for explaining the formation process on the upper substrate side shown in FIG. 図11(a)~図11(e)は、図9に示した下部基板側の形成工程を説明する図である。FIG. 11A to FIG. 11E are diagrams for explaining the formation process on the lower substrate side shown in FIG. 図12は、図3に示した非有効表示部内のダミー画素領域内へのオイルの封入工程を説明する図である。FIG. 12 is a view for explaining the oil filling process in the dummy pixel region in the ineffective display section shown in FIG. 図13は、図3に示した有効表示部内の画素領域内へのオイルの封入工程を説明する図である。FIG. 13 is a diagram for explaining a process of enclosing oil in the pixel area in the effective display section shown in FIG. 図14(a)は、上記上部基板と下部基板とを貼り合わせる工程を説明する図であり、図14(b)は、上記表示素子の最終の製造工程を説明する図である。FIG. 14A is a diagram illustrating a process of bonding the upper substrate and the lower substrate, and FIG. 14B is a diagram illustrating a final manufacturing process of the display element. 図15は、本発明の第2の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。FIG. 15 is a plan view for explaining a display element and an image display apparatus according to the second embodiment of the present invention. 図16は、図15に示した表示素子の表示面での有効表示部及び非有効表示部を示す平面図である。16 is a plan view showing an effective display portion and an ineffective display portion on the display surface of the display element shown in FIG. 図17は、図16に示した有効表示部内の画素領域及び非有効表示部内のダミー画素領域を説明する図である。FIG. 17 is a diagram illustrating the pixel area in the effective display section and the dummy pixel area in the non-effective display section shown in FIG. 図18は、表示面側から見た場合での図16に示した有効表示部における上部基板側の要部構成を示す拡大平面図である。FIG. 18 is an enlarged plan view showing a main configuration of the upper substrate side in the effective display section shown in FIG. 16 when viewed from the display surface side. 図19は、非表示面側から見た場合での図16に示した有効表示部における下部基板側の要部構成を示す拡大平面図である。FIG. 19 is an enlarged plan view showing a main configuration of the lower substrate side in the effective display section shown in FIG. 16 when viewed from the non-display surface side. 図20は、表示面側から見た場合での図16に示した非有効表示部における上部基板側の要部構成を示す拡大平面図である。FIG. 20 is an enlarged plan view showing a main configuration of the upper substrate side in the ineffective display portion shown in FIG. 16 when viewed from the display surface side. 図21は、非表示面側から見た場合での図16に示した非有効表示部における下部基板側の要部構成を示す拡大平面図である。FIG. 21 is an enlarged plan view showing a main configuration of the lower substrate side in the non-effective display portion shown in FIG. 16 when viewed from the non-display surface side. 図22(a)及び図22(b)は、それぞれCF着色表示時及び非CF着色表示時における、図15に示した表示素子の要部構成を示す断面図である。22 (a) and 22 (b) are cross-sectional views showing the main configuration of the display element shown in FIG. 15 during CF color display and non-CF color display, respectively. 図23(a)~図23(d)は、図22に示した上部基板側の形成工程を説明する図である。FIG. 23A to FIG. 23D are diagrams for explaining the formation process on the upper substrate side shown in FIG. 図24(a)~図24(e)は、図22に示した下部基板側の形成工程を説明する図である。24 (a) to 24 (e) are diagrams for explaining the formation process on the lower substrate side shown in FIG. 図25は、図16に示した非有効表示部内のダミー画素領域内への極性液体の封入工程を説明する図である。FIG. 25 is a diagram illustrating a process of enclosing polar liquid in the dummy pixel region in the ineffective display section shown in FIG. 図26は、図16に示した有効表示部内の画素領域内への極性液体の封入工程を説明する図である。FIG. 26 is a diagram for explaining a process of enclosing the polar liquid into the pixel region in the effective display section shown in FIG. 図27(a)は、図22に示した上部基板と下部基板とを貼り合わせる工程を説明する図であり、図27(b)は、図15に示した表示素子の最終の製造工程を説明する図である。FIG. 27A is a diagram illustrating a process of bonding the upper substrate and the lower substrate illustrated in FIG. 22, and FIG. 27B illustrates a final manufacturing process of the display element illustrated in FIG. 15. It is a figure to do. 図28は、図15に示した画像表示装置の動作例を説明する図である。FIG. 28 is a diagram for explaining an operation example of the image display apparatus shown in FIG. 図29は、本発明の第3の実施形態にかかる表示素子の有効表示部内の画素領域及び非有効表示部内のダミー領域を示す平面図である。FIG. 29 is a plan view showing a pixel region in the effective display portion and a dummy region in the ineffective display portion of the display element according to the third embodiment of the present invention.
 以下、本発明の表示素子、製造方法、及び電気機器を示す好ましい実施形態について、図面を参照しながら説明する。尚、以下の説明では、情報を表示可能な表示部を備えた画像表示装置に本発明を適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Hereinafter, a preferred embodiment showing a display element, a manufacturing method, and an electric device of the present invention will be described with reference to the drawings. In the following description, a case where the present invention is applied to an image display device including a display unit capable of displaying information will be described as an example. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like.
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。図1において、本実施形態の画像表示装置1では、本実施形態の表示素子2を用いた表示部が設けられており、この表示部には矩形状の表示面が構成されている。また、画像表示装置1では、表示面に対して、後に詳述するように、情報表示が行われる有効表示部と、情報表示が行われない非有効表示部とが設定されている。
[First Embodiment]
FIG. 1 is a plan view for explaining a display element and an image display apparatus according to a first embodiment of the present invention. In FIG. 1, the image display device 1 of the present embodiment is provided with a display unit using the display element 2 of the present embodiment, and a rectangular display surface is configured in the display unit. In the image display device 1, as will be described in detail later, an effective display unit that displays information and an ineffective display unit that does not display information are set on the display surface.
 また、表示素子2には、表示制御部3と、この表示制御部3に接続されたソースドライバ4及びゲートドライバ5が設けられている。表示制御部3には、外部から映像信号が入力されるようになっており、表示制御部3は、入力された映像信号に基づいて、ソースドライバ4及びゲートドライバ5への各指示信号を作成して出力するよう構成されている。これにより、表示素子2では、映像信号に応じて、文字及び画像を含んだ情報が表示されるようになっている。 Further, the display element 2 is provided with a display control unit 3, and a source driver 4 and a gate driver 5 connected to the display control unit 3. A video signal is input to the display control unit 3 from the outside, and the display control unit 3 creates each instruction signal to the source driver 4 and the gate driver 5 based on the input video signal. And output. Thereby, the display element 2 displays information including characters and images according to the video signal.
 また、表示素子2は、図1の紙面に垂直な方向で互いに重ね合うように配置された上部基板6及び下部基板7を備えており、これらの上部基板6と下部基板7との重なり部分によって上記表示面の有効表示領域が形成されている(詳細は後述。)。 In addition, the display element 2 includes an upper substrate 6 and a lower substrate 7 that are arranged so as to overlap each other in a direction perpendicular to the paper surface of FIG. 1, and the upper substrate 6 and the lower substrate 7 overlap each other. An effective display area on the display surface is formed (details will be described later).
 また、表示素子2では、データ配線としての複数のソース配線Sが互いに所定の間隔をおいて、かつ、X方向に沿ってストライプ状に設けられている。また、表示素子2では、複数のゲート配線Gが互いに所定の間隔をおいて、かつ、Y方向に沿ってストライプ状に設けられている。これらのソース配線Sと、ゲート配線Gとは、例えば下部基板6上で互いに交差するようにマトリクス状に設けられており、表示素子2では、ソース配線Sとゲート配線Gとの交差部単位に、複数の各画素領域が設定されている。 Further, in the display element 2, a plurality of source lines S as data lines are provided in stripes along the X direction at a predetermined interval from each other. In the display element 2, the plurality of gate lines G are provided in stripes along the Y direction at predetermined intervals. The source lines S and the gate lines G are provided in a matrix so as to intersect with each other on the lower substrate 6, for example. In the display element 2, the source lines S and the gate lines G are in units of intersections. A plurality of pixel areas are set.
 また、これら複数のソース配線S及び複数のゲート配線Gは、それぞれソースドライバ4及びゲートドライバ5に接続されており、各ソース配線S及び各ゲート配線Gには、表示制御部3に入力された映像信号に応じたソース信号(電圧信号)及びゲート信号がソースドライバ4及びゲートドライバ5からそれぞれ供給されるようになっている。 The plurality of source lines S and the plurality of gate lines G are connected to the source driver 4 and the gate driver 5, respectively, and each source line S and each gate line G are input to the display control unit 3. A source signal (voltage signal) and a gate signal corresponding to the video signal are supplied from the source driver 4 and the gate driver 5, respectively.
 さらに、表示素子2では、後に詳述するように、上記複数の各画素領域が仕切壁にて区切られている。そして、表示素子2では、マトリクス状に設けられた複数の画素(表示セル)毎に、エレクトロウェッティング現象にて後述の極性液体を変形(移動)させ、表示面側での表示色を変更するようになっている。 Furthermore, in the display element 2, as will be described in detail later, each of the plurality of pixel regions is partitioned by a partition wall. In the display element 2, for each of a plurality of pixels (display cells) provided in a matrix, a polar liquid described later is deformed (moved) by the electrowetting phenomenon, and the display color on the display surface side is changed. It is like that.
 ここで、図2~図9も参照して、表示素子2の画素構造について具体的に説明する。 Here, the pixel structure of the display element 2 will be described in detail with reference to FIGS.
 図2は、図1に示した表示素子の画素領域での主要部の具体的な構成を説明する図である。図3は、図1に示した表示素子の表示面での有効表示部及び非有効表示部を示す平面図である。図4は、図3に示した有効表示部内の画素領域及び非有効表示部内のダミー画素領域を説明する図である。図5は、表示面側から見た場合での図3に示した有効表示部における上部基板側の要部構成を示す拡大平面図である。図6は、非表示面側から見た場合での図3に示した有効表示部における下部基板側の要部構成を示す拡大平面図である。図7は、表示面側から見た場合での図3に示した非有効表示部における上部基板側の要部構成を示す拡大平面図である。図8は、非表示面側から見た場合での図3に示した非有効表示部における下部基板側の要部構成を示す拡大平面図である。図9(a)及び図9(b)は、それぞれ非CF着色表示時及びCF着色表示時における、図1に示した表示素子の要部構成を示す断面図である。尚、図6では、図面の簡略化のために、上記ソース配線S及びゲート配線Gの図示は省略している。 FIG. 2 is a diagram for explaining a specific configuration of the main part in the pixel region of the display element shown in FIG. FIG. 3 is a plan view showing an effective display portion and an ineffective display portion on the display surface of the display element shown in FIG. FIG. 4 is a diagram for explaining the pixel area in the effective display section and the dummy pixel area in the non-effective display section shown in FIG. FIG. 5 is an enlarged plan view showing a main configuration of the upper substrate side in the effective display section shown in FIG. 3 when viewed from the display surface side. FIG. 6 is an enlarged plan view showing a main configuration of the lower substrate side in the effective display section shown in FIG. 3 when viewed from the non-display surface side. FIG. 7 is an enlarged plan view showing a main configuration of the upper substrate side in the ineffective display portion shown in FIG. 3 when viewed from the display surface side. FIG. 8 is an enlarged plan view showing a main configuration of the lower substrate side in the non-effective display portion shown in FIG. 3 when viewed from the non-display surface side. FIG. 9A and FIG. 9B are cross-sectional views showing the main configuration of the display element shown in FIG. 1 during non-CF color display and CF color display, respectively. In FIG. 6, the source wiring S and the gate wiring G are not shown for simplification of the drawing.
 図2に示すように、表示素子2では、複数の各画素領域がソース配線Sとゲート配線Gとの交差部単位に設定されており、この交差部の近傍には、スイッチング素子としての薄膜トランジスタ(TFT)SW、第2の電極としての画素電極8、及びキャパシタCが設けられている。すなわち、表示素子2では、各画素領域において、薄膜トランジスタSWのソース電極及びゲート電極がそれぞれソース配線S及びゲート配線Gに接続されている。また、この薄膜トランジスタSWのドレイン電極は、画素電極8に接続され、画素電極8は、当該画素電極8を覆うように下部基板7側に設けられた後述の誘電体層14によって構成されたキャパシタCに接続されている。そして、各画素領域では、薄膜トランジスタSWがゲート信号によってオン状態とされているときに、映像信号に応じた電圧がソース信号としてソース配線S及び薄膜トランジスタSWを介して画素電極8に供給されて、その電圧に応じた電荷がキャパシタC(誘電体層14)にて保持されるようになっている。このように、表示素子2は、画素毎にスイッチング素子(アクティブ素子)を有するアクティブマトリクス駆動方式の上記表示部を構成している。 As shown in FIG. 2, in the display element 2, each of the plurality of pixel regions is set in a unit of intersection of the source line S and the gate line G, and a thin film transistor (switching element) ( TFT) SW, a pixel electrode 8 as a second electrode, and a capacitor C are provided. That is, in the display element 2, in each pixel region, the source electrode and the gate electrode of the thin film transistor SW are connected to the source line S and the gate line G, respectively. Further, the drain electrode of the thin film transistor SW is connected to the pixel electrode 8, and the pixel electrode 8 is constituted by a capacitor C formed by a dielectric layer 14 described later provided on the lower substrate 7 side so as to cover the pixel electrode 8. It is connected to the. In each pixel region, when the thin film transistor SW is turned on by the gate signal, a voltage corresponding to the video signal is supplied as a source signal to the pixel electrode 8 via the source wiring S and the thin film transistor SW, The electric charge according to the voltage is held by the capacitor C (dielectric layer 14). As described above, the display element 2 constitutes the above-described display portion of the active matrix driving method having a switching element (active element) for each pixel.
 また、表示素子2では、上述したように、表示面に対して、有効表示部と非有効表示部とが設定されている。具体的には、図3に示すように、表示素子2では、表示面の中心を含んだ矩形状の当該表示面の大部分の領域を締める有効表示部EDと、当該有効表示部EDを囲むように設けられた非有効表示部NDとが設定されている。この有効表示部EDには、表示用空間K(図9)をリブ11(図4)にて区切るように設けられた複数の上記画素領域P(図4)が含まれている。一方、非有効表示部NDには、ダミー領域としての複数のダミー画素領域DP(図4)が含まれている。 In the display element 2, as described above, an effective display portion and an ineffective display portion are set on the display surface. Specifically, as shown in FIG. 3, in the display element 2, an effective display portion ED that closes a large area of the rectangular display surface including the center of the display surface, and the effective display portion ED are surrounded. The ineffective display portion ND provided as described above is set. The effective display portion ED includes a plurality of the pixel regions P (FIG. 4) provided to divide the display space K (FIG. 9) by the ribs 11 (FIG. 4). On the other hand, the ineffective display portion ND includes a plurality of dummy pixel regions DP (FIG. 4) as dummy regions.
 また、表示素子2では、ダミー領域の大きさ(複数のダミー画素領域DPの大きさの合計)は、複数の各画素領域Pの内部に封入される上記極性液体12及び絶縁性流体としてのオイル13の封入量を基に定められている。 Further, in the display element 2, the size of the dummy region (the total size of the plurality of dummy pixel regions DP) is the polar liquid 12 enclosed in the plurality of pixel regions P and oil as an insulating fluid. It is determined based on the amount of 13 encapsulated.
 より具体的にいえば、表示素子2が、例えばQVGA(Quarter Video Graphics Array)で3×1RGB仕様の表示パネルを構成する場合、有効表示部EDのX方向(例えば、表示パネルの横方向)での画素領域Pの数(画素数)は320画素であり、有効表示部EDのY方向(例えば、表示パネルの縦方向)での画素領域Pの数(画素数)は240×3(RGB)画素である。また、非有効表示部NDのX方向のダミー画素領域DPの数(画素数)は有効表示部EDの左側部分及び右側部分で各々5画素であり、非有効表示部NDのY方向のダミー画素領域DPの数(画素数)は有効表示部EDの上側部分及び下側部分で各々5画素である。 More specifically, when the display element 2 forms a 3 × 1 RGB specification display panel with QVGA (Quarter Video Graphics Graphics Array), for example, in the X direction of the effective display unit ED (for example, the horizontal direction of the display panel). The number of pixel regions P (number of pixels) is 320 pixels, and the number (pixel number) of pixel regions P in the Y direction (for example, the vertical direction of the display panel) of the effective display portion ED is 240 × 3 (RGB). Pixel. The number (number of pixels) of dummy pixel regions DP in the X direction of the ineffective display portion ND is 5 pixels in each of the left and right portions of the effective display portion ED, and the dummy pixels in the Y direction of the ineffective display portion ND. The number of the regions DP (number of pixels) is 5 pixels in each of the upper part and the lower part of the effective display portion ED.
 詳細にいえば、表示素子2の右上部では、図4に示すように、有効表示部EDに含まれた画素領域PがX方向及びY方向にそれぞれ6画素設けられている。また、これら36個の画素領域Pを囲むように、X方向及びY方向にそれぞれ5画素の非有効表示部NDに含まれたダミー画素領域DPが設けられている。また、これらの画素領域P及びダミー画素領域DPは、上記仕切壁としてのリブ11により、同じ形状に区切られている。また、有効表示部EDの各画素領域Pには、いずれかの色のカラーフィルタ部(開口部)10r、10g、10bが形成されている。一方、非有効表示部NDの各ダミー画素領域DPには、上記開口部が形成されておらず、遮光膜としての後述のブラックマトリクス部10sによって遮光されている。 More specifically, in the upper right part of the display element 2, as shown in FIG. 4, the pixel area P included in the effective display part ED is provided in six pixels in the X direction and the Y direction, respectively. Further, dummy pixel regions DP included in the non-effective display portion ND of 5 pixels are provided in the X direction and the Y direction so as to surround these 36 pixel regions P. Further, the pixel region P and the dummy pixel region DP are divided into the same shape by the ribs 11 as the partition walls. In addition, color filter portions (openings) 10r, 10g, and 10b of any color are formed in each pixel region P of the effective display portion ED. On the other hand, the opening is not formed in each dummy pixel region DP of the non-effective display portion ND, and is shielded from light by a black matrix portion 10s described later as a light shielding film.
 また、有効表示部EDの各画素領域Pには、極性液体12及びオイル13が封入され、非有効表示部NDの各ダミー画素領域DPには、所定の液体としての極性液体12及びオイル13が封入されている。但し、図4に例示するように、ダミー画素領域DP、特に最外周部分に近いダミー画素領域DPでは、オイル13の一部が表示素子2の製造工程中に蒸発し、その液量が各画素領域P内の適量のオイル13に比べて少なくなっている。 Further, the polar liquid 12 and the oil 13 are sealed in each pixel area P of the effective display portion ED, and the polar liquid 12 and the oil 13 as a predetermined liquid are filled in each dummy pixel area DP of the non-effective display portion ND. It is enclosed. However, as illustrated in FIG. 4, in the dummy pixel region DP, particularly in the dummy pixel region DP close to the outermost peripheral portion, a part of the oil 13 evaporates during the manufacturing process of the display element 2, and the amount of liquid is changed to each pixel. It is less than the appropriate amount of oil 13 in the region P.
 また、図2~図9において、表示素子2は、表示面側に設けられた第1の基板としての上記上部基板6と、上部基板2の背面側(非表示面側)に設けられた第2の基板としての上記下部基板7とを備えている。また、表示素子2では、上部基板6と下部基板7が互いに所定の間隔をおいて配置されることにより、これら上部基板6及び下部基板7の間に所定の表示用空間Kが形成されている。但し、この表示用空間Kは、有効表示部EDにおいて機能するようになっており、非有効表示部NDにおいては機能しないようになっている。また、この表示用空間Kの内部には、上述したように、極性液体12及びこの極性液体12と混じり合わない絶縁性の着色されたオイル13が当該表示用空間Kの内部で上記X方向に移動可能に封入されており、極性液体12は後述の非有効表示領域P2側から有効表示領域P1側に移動できるようになっている。 2 to 9, the display element 2 includes the upper substrate 6 as the first substrate provided on the display surface side, and the first substrate provided on the back side (non-display surface side) of the upper substrate 2. And the lower substrate 7 as a second substrate. In the display element 2, the upper substrate 6 and the lower substrate 7 are arranged at a predetermined distance from each other, so that a predetermined display space K is formed between the upper substrate 6 and the lower substrate 7. . However, the display space K functions in the effective display portion ED, and does not function in the ineffective display portion ND. Further, as described above, in the display space K, the polar liquid 12 and the insulating colored oil 13 that does not mix with the polar liquid 12 are placed in the X direction in the display space K. The polar liquid 12 is movably enclosed, and can move from an ineffective display area P2 side described later to an effective display area P1 side.
 極性液体12には、例えばエチレングリコールと水の混合液が用いられている。また、極性液体12には、無色透明な液体が用いられている。しかし、この極性液体12には、その密度や粘度、融点・沸点を調節するために低級アルコールなどの水溶性の液体が混入されていてもよいし、また、赤や緑、青などに着色するために自己分散型顔料や水溶性染料などが混入されていてもよい。 As the polar liquid 12, for example, a mixed liquid of ethylene glycol and water is used. The polar liquid 12 is a colorless and transparent liquid. However, the polar liquid 12 may be mixed with a water-soluble liquid such as a lower alcohol in order to adjust its density, viscosity, melting point and boiling point, and is colored red, green, blue, or the like. Therefore, a self-dispersing pigment or a water-soluble dye may be mixed.
 また、オイル13には、例えばアルカンオイルとトルエンの混合液に、例えば顔料や染料によって黒色に着色されたものが用いられている。なお、この説明以外に、オイル13として、例えば側鎖高級アルコール、側鎖高級脂肪酸、アルカン炭化水素、シリコーンオイル、マッチングオイルから選択された1種または複数種からなる無極性な溶媒に、例えば顔料や染料によって着色されたものを用いてもよい。また、このオイル13は、極性液体12のスライド移動に伴って、表示用空間Kの内部を移動するようになっている。 Further, as the oil 13, for example, a mixture of alkane oil and toluene colored in black with, for example, a pigment or a dye is used. In addition to this description, as the oil 13, for example, a non-polar solvent composed of one or more selected from side chain higher alcohol, side chain higher fatty acid, alkane hydrocarbon, silicone oil, and matching oil, for example, pigment Alternatively, those colored with dyes may be used. The oil 13 moves inside the display space K as the polar liquid 12 slides.
 また、オイル13は、例えばディスペンサー法、またはインクジェット法によって下部基板7上に充填されることにより、各画素領域Pの内部及び各ダミー画素領域DPの内部に封入される。 Further, the oil 13 is filled into the inside of each pixel region P and the inside of each dummy pixel region DP by being filled on the lower substrate 7 by, for example, a dispenser method or an ink jet method.
 さらに、オイル13は黒色に着色されているので、当該オイル13は、各画素において、光の透過を許容または阻止するシャッターとして機能するようになっている。つまり、表示素子2の各画素では、後に詳述するように、オイル13が表示用空間Kの内部で有効表示領域P1に位置する面積を変調することによって、表示が光吸収状態と光透過状態とを切り替え得るように構成されている。 Furthermore, since the oil 13 is colored in black, the oil 13 functions as a shutter that allows or blocks light transmission in each pixel. That is, in each pixel of the display element 2, as will be described later in detail, the oil 13 modulates the area where the oil 13 is located in the effective display area P1 inside the display space K, whereby the display is in the light absorption state and the light transmission state. And can be switched.
 上部基板6には、無アルカリガラス基板などの透明なガラス材またはアクリル系樹脂などの透明な合成樹脂等の透明な透明シート材が用いられている。また、上部基板6の非表示面側の表面には、カラーフィルタ層10及び第1の電極としての共通電極9が順次形成されている。但し、この共通電極9は、図5に例示するように、有効表示部EDに含まれた画素領域Pに対応する上部基板6の非表示面側の表面側(カラーフィルタ層10の表面上)だけに形成されており、図7に例示するように、非有効表示部NDに含まれたダミー画素領域DPに対応する上部基板6の非表示面側の表面側(カラーフィルタ層10の表面上)には形成されていない。 For the upper substrate 6, a transparent glass material such as a non-alkali glass substrate or a transparent transparent sheet material such as a transparent synthetic resin such as an acrylic resin is used. Further, the color filter layer 10 and the common electrode 9 as the first electrode are sequentially formed on the surface of the upper substrate 6 on the non-display surface side. However, as illustrated in FIG. 5, the common electrode 9 is provided on the non-display surface side of the upper substrate 6 corresponding to the pixel region P included in the effective display portion ED (on the surface of the color filter layer 10). 7, as illustrated in FIG. 7, the non-display surface side surface side (on the surface of the color filter layer 10) of the upper substrate 6 corresponding to the dummy pixel region DP included in the ineffective display portion ND. ) Is not formed.
 また、下部基板7には、上部基板6と同様に、無アルカリガラス基板などの透明なガラス材またはアクリル系樹脂などの透明な合成樹脂等の透明な透明シート材が用いられている。また、下部基板7の表示面側の表面には、上記画素電極8及び上記薄膜トランジスタSWが設けられており、さらには、これらの画素電極8及び薄膜トランジスタSWを覆うように、上記誘電体層14が形成されている。但し、これらの画素電極8及び薄膜トランジスタSWは、図6に例示するように、有効表示部EDに含まれた画素領域Pに対応する下部基板7の表示面側の表面上だけに形成されており、図8に例示するように、非有効表示部NDに含まれたダミー画素領域DPに対応する下部基板7の表示面側の表面上には形成されていない。 The lower substrate 7 is made of a transparent glass material such as a transparent glass material such as a non-alkali glass substrate or a transparent synthetic resin such as an acrylic resin, like the upper substrate 6. The pixel electrode 8 and the thin film transistor SW are provided on the surface of the lower substrate 7 on the display surface side. Further, the dielectric layer 14 is formed so as to cover the pixel electrode 8 and the thin film transistor SW. Is formed. However, the pixel electrode 8 and the thin film transistor SW are formed only on the display surface side surface of the lower substrate 7 corresponding to the pixel region P included in the effective display portion ED, as illustrated in FIG. As illustrated in FIG. 8, it is not formed on the display surface side surface of the lower substrate 7 corresponding to the dummy pixel region DP included in the ineffective display portion ND.
 また、上記ソース配線Sは、有効表示部EDの部分と、非有効表示部NDにおいて、ソースドライバ4と有効表示部EDとの間の部分だけに、下部基板7の表示面側の表面上に設けられている。同様に、上記ゲート配線Gは、有効表示部EDの部分と、非有効表示部NDにおいて、ゲートドライバ5と有効表示部EDとの間の部分だけに、下部基板7の表示面側の表面上に設けられている。 Further, the source line S is provided on the display surface side surface of the lower substrate 7 only in the portion of the effective display portion ED and the portion of the non-effective display portion ND between the source driver 4 and the effective display portion ED. Is provided. Similarly, the gate wiring G is provided on the surface of the lower substrate 7 on the display surface side only in the portion of the effective display portion ED and the portion of the ineffective display portion ND between the gate driver 5 and the effective display portion ED. Is provided.
 また、誘電体層14は、有効表示部EDに含まれた画素領域P及び非有効表示部NDに含まれたダミー画素領域DPに各々対応する下部基板7の表示面側の表面上に形成されている。また、この誘電体層14の表示面側の表面には、X方向及びY方向にそれぞれ平行となるように設けられた第1のリブ部材11a及び第2のリブ部材11bを有するリブ11が設けられている。さらに、下部基板7では、誘電体層14及びリブ11を覆うように、撥水膜15が設けられている。なお、上記の説明以外に、薄膜トランジスタSWが誘電体層14によって覆われていない構成でもよい。 The dielectric layer 14 is formed on the surface on the display surface side of the lower substrate 7 corresponding to each of the pixel region P included in the effective display portion ED and the dummy pixel region DP included in the ineffective display portion ND. ing. Further, a rib 11 having a first rib member 11a and a second rib member 11b provided so as to be parallel to the X direction and the Y direction is provided on the surface of the dielectric layer 14 on the display surface side. It has been. Further, the lower substrate 7 is provided with a water repellent film 15 so as to cover the dielectric layer 14 and the ribs 11. In addition to the above description, the thin film transistor SW may not be covered by the dielectric layer 14.
 また、下部基板7の背面側(非表示面側)には、例えば白色の照明光を発光するバックライト16が一体的に組み付けられており、透過型の表示素子2が構成されている。尚、バックライト16には、冷陰極蛍光管やLEDなどの光源が用いられている。 Further, on the back side (non-display surface side) of the lower substrate 7, for example, a backlight 16 that emits white illumination light is integrally assembled, and the transmissive display element 2 is configured. The backlight 16 uses a light source such as a cold cathode fluorescent tube or an LED.
 画素電極8には、ITO等の透明電極材料からなる透明電極が用いられている。また、この画素電極8は、有効表示領域P1の下方に設置されるように、下部基板7上に設けられている。また、薄膜トランジスタSWは、非有効表示領域P2の下方に設置されるように、下部基板7上に設けられている。 The pixel electrode 8 is a transparent electrode made of a transparent electrode material such as ITO. The pixel electrode 8 is provided on the lower substrate 7 so as to be installed below the effective display area P1. The thin film transistor SW is provided on the lower substrate 7 so as to be installed below the ineffective display area P2.
 共通電極9には、画素電極8と同様に、ITO等の透明電極材料からなる透明電極が用いられている。また、この共通電極9には、平面状の透明電極が用いられており、共通電極9は、表示面に設けられた全ての画素領域Pを覆うようになっている。 As the common electrode 9, a transparent electrode made of a transparent electrode material such as ITO is used in the same manner as the pixel electrode 8. The common electrode 9 is a flat transparent electrode, and the common electrode 9 covers all the pixel regions P provided on the display surface.
 カラーフィルタ(Color Filter)層10には、赤色(R)、緑色(G)、及び青色(B)のカラーフィルタ部10r、10g、及び10bと、遮光膜としてのブラックマトリクス部10sとが設けられており、RGBの各色の画素を構成するようになっている。つまり、カラーフィルタ層10では、図5に例示するように、RGBのカラーフィルタ部10r、10g、10bがY方向に沿って順次設けられるとともに、各々3つのカラーフィルタ部10r、10g、10bがX方向に沿って設けられており、X方向及びY方向にそれぞれ3個及び3個、合計9個の画素が配設されている。 The color filter layer 10 is provided with red (R), green (G), and blue (B) color filter portions 10r, 10g, and 10b, and a black matrix portion 10s as a light shielding film. The pixels of each color of RGB are configured. That is, in the color filter layer 10, as illustrated in FIG. 5, RGB color filter portions 10 r, 10 g, and 10 b are sequentially provided along the Y direction, and three color filter portions 10 r, 10 g, and 10 b are each provided with X A total of nine pixels are arranged in the X direction and the Y direction, respectively.
 また、表示素子2では、図5に例示するように、各画素領域Pにおいて、画素の有効表示領域P1に対応する箇所にRGBのいずれかのカラーフィルタ部10r、10g、及び10bが設けられ、非有効表示領域P2に対応する箇所にブラックマトリクス部10sが設けられている。つまり、表示素子2では、上記表示用空間Kに対し、ブラックマトリクス部(遮光膜)10sによって非有効表示領域P2(非開口部)が設定され、そのブラックマトリクス部10sに形成された開口部(つまり、いずれかのカラーフィルタ部10r、10g、及び10b)によって有効表示領域P1が設定されている。 In the display element 2, as illustrated in FIG. 5, in each pixel region P, any one of RGB color filter portions 10 r, 10 g, and 10 b is provided at a location corresponding to the effective display region P 1 of the pixel, A black matrix portion 10s is provided at a location corresponding to the ineffective display area P2. That is, in the display element 2, an ineffective display region P2 (non-opening portion) is set by the black matrix portion (light-shielding film) 10s with respect to the display space K, and the opening portion (non-opening portion) formed in the black matrix portion 10s ( That is, the effective display area P1 is set by any one of the color filter portions 10r, 10g, and 10b).
 また、表示素子2では、カラーフィルタ部10r、10g、10bの各面積は、有効表示領域P1の面積に対し、同一または若干小さい値が選択されている。一方、ブラックマトリクス部10sの面積は、非有効表示領域P2の面積に対し、同一または若干大きい値が選択されている。尚、図5では、隣接する画素の境界部を明確にするために、隣接する画素に応じた2つのブラックマトリクス部10s間の境界線を点線にて示しているが、実際のカラーフィルタ層10では、ブラックマトリクス部10s間の境界線は存在しない。 In the display element 2, the area of the color filter portions 10r, 10g, and 10b is selected to be the same or slightly smaller than the area of the effective display area P1. On the other hand, the area of the black matrix portion 10s is selected to be the same or slightly larger than the area of the ineffective display area P2. In FIG. 5, in order to clarify the boundary portion between adjacent pixels, the boundary line between two black matrix portions 10 s corresponding to the adjacent pixels is indicated by a dotted line. Then, there is no boundary line between the black matrix portions 10s.
 また、表示素子2では、上記仕切壁としてのリブ11により表示用空間Kが画素領域P単位に区切られている。すなわち、表示素子2では、各画素の表示用空間Kは、図6に例示するように、互いに対向する適当な高さの2つの第1のリブ部材11aと、互いに対向する適当な高さの2つの第2のリブ部材11bとによって区画されている。さらに、表示素子2では、第1及び第2のリブ部材11a、11bによって極性液体12が隣接する画素領域Pの表示用空間Kの内部に容易に流入するのが防がれている。すなわち、第1及び第2のリブ部材11a、11bには、例えばネガタイプの光硬化性樹脂が用いられており、第1及び第2のリブ部材11a、11bは光透過性を有している。また、これらの第1及び第2のリブ部材11a、11bでは、隣接する画素間で極性液体12の流入出が防止されるように、誘電体層14からの突出高さが決定されている。 Further, in the display element 2, the display space K is divided into pixel unit P units by the ribs 11 as the partition walls. That is, in the display element 2, the display space K of each pixel has two first rib members 11a having appropriate heights facing each other and appropriate heights facing each other, as illustrated in FIG. It is divided by two second rib members 11b. Furthermore, in the display element 2, the first and second rib members 11a and 11b prevent the polar liquid 12 from easily flowing into the display space K of the adjacent pixel region P. That is, for example, negative-type photocurable resin is used for the first and second rib members 11a and 11b, and the first and second rib members 11a and 11b are light transmissive. Further, in these first and second rib members 11a and 11b, the protruding height from the dielectric layer 14 is determined so that the polar liquid 12 is prevented from flowing in and out between adjacent pixels.
 尚、上記の説明以外に、例えば画素領域Pの四隅部に隙間が生じるように、第1及び第2のリブ部材11a、11bを互いに分離させた構成でもよい。また、隣接する画素領域Pどうしが気密に区切られるように、上記枠状に構成されたリブ11の先端部を上部基板2側に密接させてもよい。 In addition to the above description, for example, the first and second rib members 11a and 11b may be separated from each other so that gaps are generated at the four corners of the pixel region P, for example. Further, the end portions of the ribs 11 configured in the frame shape may be brought into close contact with the upper substrate 2 side so that the adjacent pixel regions P are hermetically separated.
 また、表示素子2では、図7に例示するように、非有効表示部NDの各ダミー画素領域DPにおいて、上部基板6の非表示面側の表面に設けられたブラックマトリクス部10sだけが設けられている。すなわち、非有効表示部NDは、上部基板(第1の基板)6側に設けられた遮光膜によって設定されている。尚、図7では、隣接するダミー画素の境界部を明確にするために、隣接するダミー画素に応じた2つのブラックマトリクス部10s間の境界線を点線にて示しているが、実際のブラックマトリクス部10sでは、ブラックマトリクス部10s間の境界線は存在しない。 In the display element 2, as illustrated in FIG. 7, only the black matrix portion 10s provided on the non-display surface side surface of the upper substrate 6 is provided in each dummy pixel region DP of the ineffective display portion ND. ing. That is, the ineffective display portion ND is set by a light shielding film provided on the upper substrate (first substrate) 6 side. In FIG. 7, in order to clarify the boundary portion between adjacent dummy pixels, the boundary line between the two black matrix portions 10s corresponding to the adjacent dummy pixels is indicated by a dotted line. In the portion 10s, there is no boundary line between the black matrix portions 10s.
 また、図8に例示するように、非有効表示部NDでは、有効表示部EDと同様に、リブ11により表示用空間Kがダミー画素領域DP単位に区切られている。一方、この非有効表示部NDでは、有効表示部EDと異なり、画素電極8及び薄膜トランジスタSWは設置されていない。 Further, as illustrated in FIG. 8, in the non-effective display portion ND, the display space K is divided into dummy pixel regions DP by the ribs 11 as in the effective display portion ED. On the other hand, in the ineffective display portion ND, unlike the effective display portion ED, the pixel electrode 8 and the thin film transistor SW are not provided.
 誘電体層14は、例えば窒化シリコン、酸化ハフニウム、二酸化チタン、あるいはチタン酸バリウムを含有した透明な誘電体膜によって構成されている。また、撥水膜15には、透明な合成樹脂、好ましくは電圧印加時に極性液体12に対し親水層となる、例えばフッ素系樹脂が使用されている。これにより、表示素子2では、下部基板7の表示用空間K側の表面側での極性液体12との間の濡れ性(接触角)を大きく変化させることができ、極性液体12の移動(変形)速度の高速化を図ることができる。 The dielectric layer 14 is made of a transparent dielectric film containing, for example, silicon nitride, hafnium oxide, titanium dioxide, or barium titanate. The water repellent film 15 is made of a transparent synthetic resin, preferably, for example, a fluorine-based resin that becomes a hydrophilic layer with respect to the polar liquid 12 when a voltage is applied. Thereby, in the display element 2, the wettability (contact angle) with the polar liquid 12 on the surface side of the lower substrate 7 on the display space K side can be greatly changed, and the polar liquid 12 moves (deforms). ) The speed can be increased.
 上記のように構成された表示素子2の各画素領域Pでは、図9(a)に例示するように、オイル13がカラーフィルタ部11rの下方で保持されると、バックライト16からの光がオイル13により遮光されて、黒色表示(非CF着色表示)が行われる。一方、図9(b)に例示するように、オイル13がブラックマトリクス部10sの下方で保持されると、バックライト16からの光はオイル13に遮光されることなく、カラーフィルタ部10rを通過することにより、当該バックライト16の光による赤色表示(CF着色表示)が行われる。 In each pixel region P of the display element 2 configured as described above, as illustrated in FIG. 9A, when the oil 13 is held below the color filter portion 11r, light from the backlight 16 is emitted. The oil 13 is shielded from light and a black display (non-CF color display) is performed. On the other hand, as illustrated in FIG. 9B, when the oil 13 is held below the black matrix portion 10s, the light from the backlight 16 passes through the color filter portion 10r without being blocked by the oil 13. Thus, red display (CF color display) is performed by the light of the backlight 16.
 ここで、図10~図14を参照して、本実施形態の表示素子2の製造工程を具体的に説明する。 Here, with reference to FIGS. 10 to 14, the manufacturing process of the display element 2 of the present embodiment will be specifically described.
 図10(a)~図10(c)は、図9に示した上部基板側の形成工程を説明する図である。図11(a)~図11(e)は、図9に示した下部基板側の形成工程を説明する図である。図12は、図3に示した非有効表示部内のダミー画素領域内へのオイルの封入工程を説明する図である。図13は、図3に示した有効表示部内の画素領域内へのオイルの封入工程を説明する図である。図14(a)は、上記上部基板と下部基板とを貼り合わせる工程を説明する図であり、図14(b)は、上記表示素子の最終の製造工程を説明する図である。 FIG. 10A to FIG. 10C are diagrams for explaining the formation process on the upper substrate side shown in FIG. FIG. 11A to FIG. 11E are diagrams for explaining the formation process on the lower substrate side shown in FIG. FIG. 12 is a view for explaining the oil filling process in the dummy pixel region in the ineffective display section shown in FIG. FIG. 13 is a diagram for explaining a process of enclosing oil in the pixel area in the effective display section shown in FIG. FIG. 14A is a diagram illustrating a process of bonding the upper substrate and the lower substrate, and FIG. 14B is a diagram illustrating a final manufacturing process of the display element.
 図10(a)において、上部基板6には、例えば厚さ0.7mmの無アルカリガラス基板が用いられており、例えばフォトリソグラフィ法を用いて、カラーフィルタ部10r、10g、10bとブラックマトリクス部10sとを上部基板6の表面上に積層することによってCF形成工程が行われて、カラーフィルタ層10が形成される。このカラーフィルタ層10には、感光性樹脂(例えば、光反応性アクリルモノマー)と対応する顔料とが用いられており、例えば2μm程度の膜厚とされている。また、このカラーフィルタ部10r、10g、10bは、有効表示部ED(図3)のみ形成され、非有効表示部ND(図3)には、形成されない。すなわち、図10(b)に示すように、非有効表示部NDでは、ブラックマトリクス部10sだけが上部基板6の表面上に形成されている。 In FIG. 10A, an alkali-free glass substrate having a thickness of 0.7 mm, for example, is used for the upper substrate 6, and the color filter portions 10r, 10g, 10b and the black matrix portion are formed by using, for example, a photolithography method. By laminating 10 s on the surface of the upper substrate 6, the CF forming step is performed, and the color filter layer 10 is formed. The color filter layer 10 uses a photosensitive resin (for example, photoreactive acrylic monomer) and a corresponding pigment, and has a thickness of about 2 μm, for example. Further, the color filter portions 10r, 10g, and 10b are formed only on the effective display portion ED (FIG. 3) and not formed on the non-effective display portion ND (FIG. 3). That is, as shown in FIG. 10B, only the black matrix portion 10s is formed on the surface of the upper substrate 6 in the ineffective display portion ND.
 その後、図10(c)に示すように、有効表示部EDにおいて、共通電極9の電極形成工程が行われる。すなわち、この電極形成工程では、例えばスパッタ法にて膜厚100nmのITO膜をカラーフィルタ層10上に成膜することにより、共通電極9が形成される。 Thereafter, as shown in FIG. 10C, an electrode forming step of the common electrode 9 is performed in the effective display portion ED. That is, in this electrode formation step, the common electrode 9 is formed by forming an ITO film having a thickness of 100 nm on the color filter layer 10 by sputtering, for example.
 また、図11(a)において、下部基板7には、例えば厚さ0.7mmの無アルカリガラス基板が用いられており、有効表示部EDにおいて、画素電極8と薄膜トランジスタSWの形成工程が行われる。すなわち、この形成工程では、例えばスパッタ法にて膜厚100nmのITO膜を下部基板7の表面上に成膜することにより、画素電極8が形成される。また、下部基板7の表面上において、公知の製造工程により、TFTからなる薄膜トランジスタSWが形成される。 Further, in FIG. 11A, a non-alkali glass substrate having a thickness of 0.7 mm, for example, is used for the lower substrate 7, and the formation process of the pixel electrode 8 and the thin film transistor SW is performed in the effective display portion ED. . That is, in this formation step, the pixel electrode 8 is formed by forming an ITO film having a thickness of 100 nm on the surface of the lower substrate 7 by, for example, sputtering. On the surface of the lower substrate 7, a thin film transistor SW made of TFT is formed by a known manufacturing process.
 次に、図11(b)に示すように、誘電体層14の形成工程が行われる。つまり、画素電極8及び薄膜トランジスタSWの上方に、誘電体層14として例えばCVD法を用いて、窒化シリコン膜を成膜した。この誘電体層14の膜厚は、例えば350nmである。また、非有効表示部NDでは、図11(c)に示すように、画素電極8及び薄膜トランジスタSWが形成されておらず、誘電体層14だけが下部基板7の表面上に形成されている。 Next, as shown in FIG. 11B, a dielectric layer 14 forming step is performed. That is, a silicon nitride film was formed as the dielectric layer 14 on the pixel electrode 8 and the thin film transistor SW by using, for example, a CVD method. The film thickness of the dielectric layer 14 is, for example, 350 nm. In the non-effective display portion ND, as shown in FIG. 11C, the pixel electrode 8 and the thin film transistor SW are not formed, and only the dielectric layer 14 is formed on the surface of the lower substrate 7.
 続いて、図11(d)に示すように、誘電体層14上にリブ11を設ける設置工程が行われる。すなわち、この設置工程では、誘電体層14の表面上に対して、光硬化性樹脂を用いた第1及び第2のリブ部材11a、11bが画素領域P単位及びダミー画素領域DP単位に形成される。また、この設置工程を行うことにより、有効表示部ED内に複数の画素領域Pを設定するとともに、有効表示部EDを囲む非有効表示部ND内にダミー画素領域(ダミー領域)DPを設定する領域設定工程が完了される。 Subsequently, as shown in FIG. 11D, an installation step of providing the rib 11 on the dielectric layer 14 is performed. That is, in this installation step, the first and second rib members 11a and 11b using photo-curing resin are formed on the surface of the dielectric layer 14 in the pixel region P unit and the dummy pixel region DP unit. The Further, by performing this installation process, a plurality of pixel areas P are set in the effective display area ED, and a dummy pixel area (dummy area) DP is set in the ineffective display area ND surrounding the effective display area ED. The area setting process is completed.
 次に、図11(e)に示すように、誘電体層14と第1及び第2のリブ部材11a、11bの表面上に撥水膜15を形成する形成工程が行われる。つまり、この形成工程では、誘電体層14と第1及び第2のリブ部材11a、11bの表面に対して、例えばフッ素系樹脂材をディッピング法によって塗布して、80℃で30分間焼成することにより、撥水膜15が形成される。 Next, as shown in FIG. 11 (e), a forming step of forming a water repellent film 15 on the surface of the dielectric layer 14 and the first and second rib members 11a and 11b is performed. That is, in this forming step, for example, a fluorine-based resin material is applied to the surface of the dielectric layer 14 and the first and second rib members 11a and 11b by dipping and baked at 80 ° C. for 30 minutes. Thus, the water repellent film 15 is formed.
 続いて、下部基板6に対して、オイル13の封入工程が行われる。この封入工程では、まず非有効表示部NDのダミー画素領域DPに対して行われ、次に有効表示部EDの画素領域Pに対して行われるようになっている。 Subsequently, an oil 13 filling step is performed on the lower substrate 6. In this encapsulating step, first, the dummy pixel region DP of the ineffective display portion ND is performed, and then the pixel region P of the effective display portion ED is performed.
 すなわち、図12に示すように、非有効表示部NDの各ダミー画素領域DPに対して、例えばディスペンサー法、またはインクジェット法により、所定の液体としてのオイル13を封入する第1の封入工程が行われる。 That is, as shown in FIG. 12, a first sealing step for sealing oil 13 as a predetermined liquid is performed on each dummy pixel region DP of the ineffective display portion ND by, for example, a dispenser method or an inkjet method. Is called.
 続いて、図13に示すように、有効表示部EDの各画素領域Pに対して、例えばディスペンサー法、またはインクジェット法により、オイル13を封入する第2の封入工程が行われる。 Subsequently, as shown in FIG. 13, a second enclosing step of enclosing the oil 13 is performed on each pixel region P of the effective display portion ED by, for example, a dispenser method or an inkjet method.
 次に、図14(a)に示すように、オイル13を保持した下部基板7に対し、上部基板6を上方から組み付けて、これら上部基板6及び下部基板7を貼り合わせる工程が行われる。 Next, as shown in FIG. 14A, the upper substrate 6 is assembled to the lower substrate 7 holding the oil 13 from above, and the upper substrate 6 and the lower substrate 7 are bonded together.
 その後、図14(b)において、画素領域P間の隙間及びダミー画素領域DP間の隙間から毛管現象を利用して極性液体12を封入する工程が行われる。そして、下部基板7側にバックライト16を設置することにより、表示素子10が完成される。 Thereafter, in FIG. 14B, a step of enclosing the polar liquid 12 using the capillary phenomenon from the gap between the pixel areas P and the gap between the dummy pixel areas DP is performed. Then, the display element 10 is completed by installing the backlight 16 on the lower substrate 7 side.
 ここで、上記のように構成された本実施形態の画像表示装置1の表示動作について、具体的に説明する。 Here, the display operation of the image display device 1 of the present embodiment configured as described above will be specifically described.
 図1において、表示制御部3は、例えば同図の上側から下側に向かう所定の走査方向で、ゲートドライバ5からゲート配線Gに対して、薄膜トランジスタSWをオン状態とするゲート信号を順次出力させる。そして、薄膜トランジスタSWがオン状態となると、表示制御部3は、映像信号に応じたソース信号(電圧信号)を、ソースドライバ4から対応するソース配線Sに出力させる。これにより、対応する画素では、ソース配線Sからの電圧が画素電極8にかかり、キャパシタC(誘電体層14)には電荷が蓄積される。また、この蓄積された電荷は、次にゲート配線Gが選択されるまでの1フレーム分の時間、キャパシタCにて維持される。 In FIG. 1, the display control unit 3 sequentially outputs gate signals for turning on the thin film transistors SW from the gate driver 5 to the gate wiring G in a predetermined scanning direction from the upper side to the lower side in FIG. . When the thin film transistor SW is turned on, the display control unit 3 causes the source driver 4 to output a source signal (voltage signal) corresponding to the video signal to the corresponding source line S. As a result, in the corresponding pixel, the voltage from the source line S is applied to the pixel electrode 8, and charges are accumulated in the capacitor C (dielectric layer 14). The accumulated electric charge is maintained in the capacitor C for a period of one frame until the gate line G is next selected.
 また、表示素子2では、図9(a)に示した黒色表示が行われるときには、画素電極8と共通電極9との間の電位差が0Vとなるように、ソース信号がソースドライバ4からソース配線Sを介して画素電極8に出力される。このような電圧印加が画素電極8に行われると、その画素領域P内の極性液体12は、図9(a)に示したように、比較的撥水膜と親和性の高いオイル13がカラーフィルタ部10rの下方に位置するような状態となり、当該カラーフィルタ部10rを完全に覆った状態となる。この結果、表示素子2では、バックライト16からの光は、オイル13によって遮光されて黒色表示が行われる。 Further, in the display element 2, when the black display shown in FIG. 9A is performed, the source signal is sent from the source driver 4 to the source wiring so that the potential difference between the pixel electrode 8 and the common electrode 9 becomes 0V. It is output to the pixel electrode 8 via S. When such a voltage application is applied to the pixel electrode 8, the polar liquid 12 in the pixel region P is colored by an oil 13 having a relatively high affinity with the water-repellent film as shown in FIG. It will be in the state located below the filter part 10r, and will be in the state which covered the said color filter part 10r completely. As a result, in the display element 2, the light from the backlight 16 is blocked by the oil 13 and black display is performed.
 また、表示素子2では、図9(b)に示した赤色表示が行われるときには、画素電極8と共通電極9との間の電位差が所定の電圧値(例えば、16V)となるように、ソース信号がソースドライバ4からソース配線Sを介して画素電極8に出力される。このような電圧印加が画素電極8に行われると、撥水膜15の表面に電荷が蓄積され、親水性が高くなるため、その画素領域P内の極性液体12は、図9(b)に示したように、カラーフィルタ部10r側の下方に位置する状態で保持される。この結果、表示素子2では、バックライト16からの光は、オイル13によって遮光されずに、ユーザなどの観察者側に出射されるのが許容されて、赤色表示が行われる。また、画像表示装置1では、隣接するRGBの3つの全画素において、それらのオイル13が非有効表示領域P2側に移動して、CF着色表示が行われたときに、当該RGBの画素からの赤色光、緑色光、及び青色光が白色光に混色して、白色表示が行われる。 Further, in the display element 2, when the red display shown in FIG. 9B is performed, the source difference is set so that the potential difference between the pixel electrode 8 and the common electrode 9 becomes a predetermined voltage value (for example, 16V). A signal is output from the source driver 4 to the pixel electrode 8 via the source line S. When such voltage application is applied to the pixel electrode 8, charges are accumulated on the surface of the water repellent film 15 and the hydrophilicity is increased. Therefore, the polar liquid 12 in the pixel region P is shown in FIG. As shown, it is held in a state of being located below the color filter portion 10r side. As a result, in the display element 2, the light from the backlight 16 is not blocked by the oil 13, but is allowed to be emitted to the viewer side such as a user, and a red display is performed. Further, in the image display device 1, when the oil 13 moves to the ineffective display area P <b> 2 side in all three adjacent RGB pixels and CF colored display is performed, Red light, green light, and blue light are mixed with white light, and white display is performed.
 また、表示素子2では、画素電極8と共通電極9との間の電位差が0Vと上記所定の電圧値との間の電圧値となるように、ソース信号がソースドライバ4からソース配線Sを介して画素電極8に出力されると、その電圧値に応じた中間調の表示を行うことができる。すなわち、画素電極8に印加された電圧に応じて、オイル13は、カラーフィルタ部10rの下方側に移動することにより、カラーフィルタ部10rに対する、オイル13による遮蔽率が変化し、観察者側に出射されるバックライト16からの光の出射量も変化することで中間調の表示を行うことができる。 In the display element 2, the source signal is sent from the source driver 4 through the source line S so that the potential difference between the pixel electrode 8 and the common electrode 9 becomes a voltage value between 0 V and the predetermined voltage value. When the output is made to the pixel electrode 8, halftone display according to the voltage value can be performed. That is, according to the voltage applied to the pixel electrode 8, the oil 13 moves to the lower side of the color filter portion 10r, so that the shielding ratio by the oil 13 with respect to the color filter portion 10r changes, and the observer side By changing the amount of light emitted from the emitted backlight 16, halftone display can be performed.
 以上のように構成された本実施形態の表示素子2では、表示面に対して、有効表示部EDと当該有効表示部EDを囲むように設けられた非有効表示部NDとが設定されている。また、有効表示部ED内の複数の各画素領域Pの内部に対して、極性液体12とオイル(絶縁性流体)13を封入している。さらに、非有効表示部NDに対応する上部基板6及び下部基板7の間に、ダミー画素領域(ダミー領域)DPを設けるとともに、当該ダミー画素領域DPの内部に対して、極性液体12及びオイル13を封入している。これにより、本実施形態では、有効表示部ED内の複数の各画素領域Pの内部に封入された極性液体12及びオイル13の一部が蒸発するのを防ぐことができる。この結果、本実施形態では、上記従来例と異なり、表示品位の低下を防止することができる表示素子2を構成することができる。 In the display element 2 of the present embodiment configured as described above, the effective display portion ED and the ineffective display portion ND provided so as to surround the effective display portion ED are set on the display surface. . In addition, a polar liquid 12 and oil (insulating fluid) 13 are sealed inside each of the plurality of pixel regions P in the effective display portion ED. Further, a dummy pixel region (dummy region) DP is provided between the upper substrate 6 and the lower substrate 7 corresponding to the ineffective display portion ND, and the polar liquid 12 and the oil 13 are provided inside the dummy pixel region DP. Is enclosed. As a result, in the present embodiment, it is possible to prevent a part of the polar liquid 12 and the oil 13 enclosed in each of the plurality of pixel regions P in the effective display unit ED from evaporating. As a result, in the present embodiment, unlike the conventional example, it is possible to configure the display element 2 that can prevent the display quality from being deteriorated.
 また、本実施形態では、非有効表示部NDは、上部基板(第1の基板)6側に設けられたブラックマトリクス部(遮光膜)10sによって設定されているので、非有効表示部NDを確実に設定することができ、表示品位の低下を確実に防止することができる。 In the present embodiment, the ineffective display portion ND is set by the black matrix portion (light shielding film) 10s provided on the upper substrate (first substrate) 6 side. Therefore, it is possible to reliably prevent the display quality from deteriorating.
 また、本実施形態では、ダミー画素領域DPの大きさは複数の各画素領域Pの内部に封入される極性液体12及びオイル13の封入量を基に定められている。これにより、本実施形態では、ダミー画素領域DPの内部に対して、極性液体12及びオイル13を適切に封入することができ、極性液体12及びオイル13の一部の蒸発をより確実に防ぐことができる。 In this embodiment, the size of the dummy pixel region DP is determined based on the amount of the polar liquid 12 and the oil 13 enclosed in each of the plurality of pixel regions P. Accordingly, in the present embodiment, the polar liquid 12 and the oil 13 can be appropriately sealed inside the dummy pixel region DP, and a part of the polar liquid 12 and the oil 13 can be more reliably prevented from being evaporated. Can do.
 また、本実施形態では、図12及び図13に示したように、第1の封入工程を行った後、第2の封入工程を行っている。これにより、本実施形態では、有効表示部ED内の複数の各画素領域Pの内部よりも、非有効表示部ND内のダミー画素領域DPの内部に対して、先にオイル(所定の液体)13が封入されるので、有効表示部ED内の複数の各画素領域Pの内部に封入されたオイル13の一部が蒸発するのをより確実に防ぐことができる。この結果、本実施形態では、上記従来例と異なり、表示品位の低下を防止することができる表示素子2をより容易に構成することができる。 Moreover, in this embodiment, as shown in FIG.12 and FIG.13, after performing the 1st enclosure process, the 2nd enclosure process is performed. As a result, in the present embodiment, oil (predetermined liquid) is first applied to the inside of the dummy pixel region DP in the non-effective display portion ND rather than the inside of each of the plurality of pixel regions P in the effective display portion ED. Since 13 is enclosed, it is possible to more reliably prevent a part of the oil 13 enclosed in each of the plurality of pixel regions P in the effective display portion ED from evaporating. As a result, in the present embodiment, unlike the conventional example, the display element 2 that can prevent the display quality from being deteriorated can be configured more easily.
 また、本実施形態では、非有効表示領域P2は上部基板6に設けられたブラックマトリクス部(遮光膜)10sによって設定され、有効表示領域P1はカラーフィルタ部(開口部)10r、10g、10bによって設定されているので、表示用空間Kに対し、有効表示領域P1及び非有効表示領域P2を適切に、かつ、確実に設定することができる。 In the present embodiment, the non-effective display area P2 is set by the black matrix portion (light shielding film) 10s provided on the upper substrate 6, and the effective display area P1 is set by the color filter portions (openings) 10r, 10g, and 10b. Since it is set, the effective display area P1 and the ineffective display area P2 can be appropriately and reliably set for the display space K.
 また、本実施形態の表示素子2では、ソース配線(データ配線)S及びゲート配線Gが下部基板7上でマトリクス状に設けられ、平面状の共通電極(透明電極)9が上部基板6に設けられている。また、本実施形態の表示素子2では、複数の各画素領域Pが、ソース配線Sとゲート配線Gとの交差部単位に設けられるとともに、各画素領域Pでは、表示用空間Kがリブ(仕切壁)11にて区切られている。さらに、本実施形態の表示素子2では、各画素領域Pには、薄膜トランジスタ(スイッチング素子)SW、画素電極(第2の電極)8、及び誘電体層(キャパシタ)14が設けられている。これにより、本実施形態では、優れた表示品位を有するマトリクス駆動方式の表示素子2を構成することができる。 Further, in the display element 2 of the present embodiment, the source wiring (data wiring) S and the gate wiring G are provided in a matrix on the lower substrate 7, and the planar common electrode (transparent electrode) 9 is provided on the upper substrate 6. It has been. Further, in the display element 2 of the present embodiment, each of the plurality of pixel regions P is provided in units of intersections of the source wiring S and the gate wiring G, and in each pixel region P, the display space K is a rib (partition). Wall) 11. Furthermore, in the display element 2 of the present embodiment, each pixel region P is provided with a thin film transistor (switching element) SW, a pixel electrode (second electrode) 8, and a dielectric layer (capacitor) 14. Thereby, in the present embodiment, it is possible to configure the matrix drive type display element 2 having an excellent display quality.
 また、本実施形態の画像表示装置(電気機器)1では、表示品位の低下を防止することができる表示素子2が表示部に用いられているので、優れた表示性能を有する画像表示装置1を容易に構成することができる。 Further, in the image display device (electric device) 1 of the present embodiment, the display element 2 that can prevent the display quality from being deteriorated is used in the display unit. Therefore, the image display device 1 having excellent display performance is provided. It can be easily configured.
 尚、上記の説明以外に、画素電極8として、反射電極を用いる構成でもよい。このように構成した場合には、バックライト16の設置を省略することができ、消費電力の少ない表示素子を容易に構成することができる。 In addition to the above description, a reflection electrode may be used as the pixel electrode 8. In such a configuration, the installation of the backlight 16 can be omitted, and a display element with low power consumption can be easily configured.
 [第2の実施形態]
 図15は、本発明の第2の実施形態にかかる表示素子、及び画像表示装置を説明する平面図である。図において、本実施形態と上記第1の実施形態との主な相違点は、第1の電極としての信号電極と、第2の電極としての参照電極及び走査電極とを用いた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Second Embodiment]
FIG. 15 is a plan view for explaining a display element and an image display apparatus according to the second embodiment of the present invention. In the figure, the main difference between this embodiment and the first embodiment is that a signal electrode as a first electrode and a reference electrode and a scan electrode as a second electrode are used. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図15に示すように、本実施形態の画像表示装置1では、本実施形態の表示素子2’を用いた表示部が設けられており、この表示部には矩形状の表示面が構成されている。また、本実施形態の表示素子2’は、第1の実施形態のものと同様に、上部基板6と下部基板7との重なり部分によって上記表示面の有効表示領域が形成されている(詳細は後述。)。 That is, as shown in FIG. 15, in the image display apparatus 1 of the present embodiment, a display unit using the display element 2 ′ of the present embodiment is provided, and a rectangular display surface is configured on the display unit. Has been. Further, in the display element 2 ′ of the present embodiment, an effective display area of the display surface is formed by an overlapping portion of the upper substrate 6 and the lower substrate 7 as in the first embodiment (details are given) (See below.)
 また、表示素子2’では、複数の信号電極18が互いに所定の間隔をおいて、かつ、X方向に沿ってストライプ状に設けられている。また、表示素子2’では、複数の参照電極19及び複数の走査電極20が、互いに交互に、かつ、Y方向に沿ってストライプ状に設けられている。これら複数の信号電極18と、複数の参照電極19及び複数の走査電極20とは、互いに交差するように設けられており、表示素子2’では、信号電極18と走査電極20との交差部単位に、複数の各画素領域が設定されている。 In the display element 2 ′, a plurality of signal electrodes 18 are provided in stripes along the X direction at a predetermined interval from each other. In the display element 2 ′, a plurality of reference electrodes 19 and a plurality of scanning electrodes 20 are provided alternately in a stripe pattern along the Y direction. The plurality of signal electrodes 18, the plurality of reference electrodes 19, and the plurality of scanning electrodes 20 are provided so as to intersect with each other. In the display element 2 ′, the unit of intersection between the signal electrode 18 and the scanning electrode 20 is provided. In addition, a plurality of pixel areas are set.
 また、これら複数の信号電極18、複数の参照電極19、及び複数の走査電極20は、互いに独立して、第1の電圧としてのHigh電圧(以下、“H電圧”という。)と、第2の電圧としてのLow電圧(以下、“L電圧”という。)との間の所定の電圧範囲内の電圧が印加可能に構成されている(詳細は後述。)。 The plurality of signal electrodes 18, the plurality of reference electrodes 19, and the plurality of scanning electrodes 20 are independently of each other a high voltage (hereinafter referred to as “H voltage”) as a first voltage and a second voltage. A voltage within a predetermined voltage range between the low voltage and the low voltage (hereinafter referred to as “L voltage”) can be applied (details will be described later).
 さらに、表示素子2’では、後に詳述するように、上記複数の各画素領域が仕切壁にて区切られている。そして、表示素子2’では、マトリクス状に設けられた複数の画素(表示セル)毎に、エレクトロウェッティング現象にて後述の極性液体12’を移動させ、表示面側での表示色を変更するようになっている。 Further, in the display element 2 ′, as described in detail later, each of the plurality of pixel regions is partitioned by a partition wall. In the display element 2 ′, a polar liquid 12 ′ described later is moved by an electrowetting phenomenon for each of a plurality of pixels (display cells) provided in a matrix to change the display color on the display surface side. It is like that.
 また、複数の信号電極18、複数の参照電極19、及び複数の走査電極20では、各々一端部側が表示面の有効表示領域の外側に引き出されて、端子部18a、19a、及び20aが形成されている。 Further, each of the plurality of signal electrodes 18, the plurality of reference electrodes 19, and the plurality of scanning electrodes 20 has one end portion drawn out of the effective display area of the display surface to form terminal portions 18 a, 19 a, and 20 a. ing.
 複数の信号電極18の各端子部18aには、配線21aを介して信号ドライバ21が接続されている。信号ドライバ21は、信号電圧印加部を構成するものであり、画像表示装置1が文字及び画像を含んだ情報を表示面に表示する場合に、複数の各信号電極18に対して、情報に応じた信号電圧Vdを印加するように構成されている。 A signal driver 21 is connected to each terminal portion 18a of the plurality of signal electrodes 18 via a wiring 21a. The signal driver 21 constitutes a signal voltage application unit. When the image display device 1 displays information including characters and images on the display surface, the signal driver 21 responds to the information for each of the plurality of signal electrodes 18. The signal voltage Vd is applied.
 また、複数の参照電極19の各端子部19aには、配線22aを介して参照ドライバ22が接続されている。参照ドライバ22は、参照電圧印加部を構成するものであり、画像表示装置1が文字及び画像を含んだ情報を表示面に表示する場合に、複数の各参照電極19に対して、参照電圧Vrを印加するように構成されている。 Further, a reference driver 22 is connected to each terminal portion 19a of the plurality of reference electrodes 19 via a wiring 22a. The reference driver 22 constitutes a reference voltage application unit. When the image display device 1 displays information including characters and images on the display surface, the reference driver 22 applies a reference voltage Vr to each of the plurality of reference electrodes 19. Is applied.
 また、複数の走査電極20の各端子部20aには、配線23aを介して走査ドライバ23が接続されている。走査ドライバ23は、走査電圧印加部を構成するものであり、画像表示装置1が文字及び画像を含んだ情報を表示面に表示する場合に、複数の各走査電極20に対して、走査電圧Vsを印加するように構成されている。 Further, a scanning driver 23 is connected to each terminal portion 20a of the plurality of scanning electrodes 20 via a wiring 23a. The scanning driver 23 constitutes a scanning voltage application unit. When the image display device 1 displays information including characters and images on the display surface, the scanning voltage Vs is applied to each of the plurality of scanning electrodes 20. Is applied.
 また、走査ドライバ23では、複数の各走査電極20に対して、上記極性液体が移動するのを阻止する非選択電圧と、極性液体が信号電圧Vdに応じて移動するのを許容する選択電圧との一方の電圧を走査電圧Vsとして印加するようになっている。また、参照ドライバ22は、走査ドライバ23の動作を参照して動作するように構成されており、参照ドライバ22は、複数の各参照電極19に対して、上記極性液体が移動するのを阻止する非選択電圧と、極性液体が信号電圧Vdに応じて移動するのを許容する選択電圧との一方の電圧を参照電圧Vrとして印加するようになっている。 In the scan driver 23, a non-selection voltage that prevents the polar liquid from moving with respect to each of the plurality of scan electrodes 20, and a selection voltage that allows the polar liquid to move according to the signal voltage Vd. One of the voltages is applied as the scanning voltage Vs. The reference driver 22 is configured to operate with reference to the operation of the scanning driver 23, and the reference driver 22 prevents the polar liquid from moving with respect to each of the plurality of reference electrodes 19. One voltage of the non-selection voltage and the selection voltage that allows the polar liquid to move according to the signal voltage Vd is applied as the reference voltage Vr.
 そして、画像表示装置1では、走査ドライバ23が例えば図15の左側から右側の各走査電極20に対し、選択電圧を順次印加し、かつ、参照ドライバ22が走査ドライバ23の動作に同期して図15の左側から右側の各参照電極19に対し、選択電圧を順次印加することにより、ライン毎の走査動作が行われるように構成されている(詳細は後述。)。 In the image display device 1, for example, the scanning driver 23 sequentially applies a selection voltage to the scanning electrodes 20 from the left side to the right side of FIG. 15, and the reference driver 22 is synchronized with the operation of the scanning driver 23. The scanning operation for each line is performed by sequentially applying a selection voltage to the reference electrodes 19 from the left side to the right side of 15 (details will be described later).
 また、信号ドライバ21、参照ドライバ22、及び走査ドライバ23には、直流電源または交流電源が含まれており、対応する信号電圧Vd、参照電圧Vr、及び走査電圧Vsを供給するようになっている。 Further, the signal driver 21, the reference driver 22, and the scanning driver 23 include a DC power source or an AC power source, and supply corresponding signal voltage Vd, reference voltage Vr, and scanning voltage Vs. .
 また、参照ドライバ22は、参照電圧Vrの極性を所定の時間(例えば、1フレーム)毎に切り替えるように構成されている。さらに、走査ドライバ23は、参照電圧Vrの極性の切り替えに対応して、走査電圧Vsの各極性を切り替えるように構成されている。このように、参照電圧Vr及び走査電圧Vsの各極性が所定の時間毎に切り替えられるので、参照電極19及び走査電極20に対して常時同じ極性の電圧を印加するときに比べて、これらの参照電極19及び走査電極20での電荷の局在化を防ぐことができる。さらに、電荷の局在化に起因する表示不良(残像現象)や信頼性(寿命低下)の悪影響を防止することができる。 The reference driver 22 is configured to switch the polarity of the reference voltage Vr every predetermined time (for example, one frame). Furthermore, the scanning driver 23 is configured to switch each polarity of the scanning voltage Vs in response to switching of the polarity of the reference voltage Vr. Thus, since the polarities of the reference voltage Vr and the scanning voltage Vs are switched every predetermined time, these references are compared to when the same polarity voltage is always applied to the reference electrode 19 and the scanning electrode 20. It is possible to prevent the charge from being localized in the electrode 19 and the scanning electrode 20. Furthermore, it is possible to prevent adverse effects of display defects (afterimage phenomenon) and reliability (lifetime reduction) due to charge localization.
 ここで、図16~図22も参照して、表示素子2’の画素構造について具体的に説明する。 Here, the pixel structure of the display element 2 ′ will be specifically described with reference to FIGS. 16 to 22.
 図16は、図15に示した表示素子の表示面での有効表示部及び非有効表示部を示す平面図である。図17は、図16に示した有効表示部内の画素領域及び非有効表示部内のダミー画素領域を説明する図である。図18は、表示面側から見た場合での図16に示した有効表示部における上部基板側の要部構成を示す拡大平面図である。図19は、非表示面側から見た場合での図16に示した有効表示部における下部基板側の要部構成を示す拡大平面図である。図20は、表示面側から見た場合での図16に示した非有効表示部における上部基板側の要部構成を示す拡大平面図である。図21は、非表示面側から見た場合での図16に示した非有効表示部における下部基板側の要部構成を示す拡大平面図である。図22(a)及び図22(b)は、それぞれCF着色表示時及び非CF着色表示時における、図15に示した表示素子の要部構成を示す断面図である。 FIG. 16 is a plan view showing an effective display portion and an ineffective display portion on the display surface of the display element shown in FIG. FIG. 17 is a diagram illustrating the pixel area in the effective display section and the dummy pixel area in the non-effective display section shown in FIG. FIG. 18 is an enlarged plan view showing a main configuration of the upper substrate side in the effective display section shown in FIG. 16 when viewed from the display surface side. FIG. 19 is an enlarged plan view showing a main configuration of the lower substrate side in the effective display section shown in FIG. 16 when viewed from the non-display surface side. FIG. 20 is an enlarged plan view showing a main configuration of the upper substrate side in the ineffective display portion shown in FIG. 16 when viewed from the display surface side. FIG. 21 is an enlarged plan view showing a main configuration of the lower substrate side in the non-effective display portion shown in FIG. 16 when viewed from the non-display surface side. 22 (a) and 22 (b) are cross-sectional views showing the main configuration of the display element shown in FIG. 15 during CF color display and non-CF color display, respectively.
 図16に示すように、表示素子2’では、第1の実施形態のものと同様に、表示面に対して、有効表示部EDと非有効表示部NDとが設定されている。具体的には、図16に示すように、表示素子2’では、表示面の中心を含んだ矩形状の当該表示面の大部分の領域を締める有効表示部EDと、当該有効表示部EDを囲むように設けられた非有効表示部NDとが設定されている。この有効表示部EDには、表示用空間K(図22)をリブ11(図19)にて区切るように設けられた複数の上記画素領域P(図17)が含まれている。一方、非有効表示部NDには、ダミー領域としての複数のダミー画素領域DP(図17)が含まれている。 As shown in FIG. 16, in the display element 2 ', an effective display portion ED and a non-effective display portion ND are set on the display surface, as in the first embodiment. Specifically, as shown in FIG. 16, in the display element 2 ′, an effective display portion ED that tightens a large area of the display surface having a rectangular shape including the center of the display surface, and the effective display portion ED are provided. A non-effective display portion ND provided so as to surround is set. The effective display portion ED includes a plurality of the pixel regions P (FIG. 17) provided to divide the display space K (FIG. 22) by the ribs 11 (FIG. 19). On the other hand, the non-effective display portion ND includes a plurality of dummy pixel regions DP (FIG. 17) as dummy regions.
 また、表示素子2’では、ダミー領域の大きさ(複数のダミー画素領域DPの大きさの合計)は、複数の各画素領域Pの内部に封入される上記極性液体12’及び絶縁性流体としてのオイル13’の封入量を基に定められている。 In the display element 2 ′, the size of the dummy region (the total size of the plurality of dummy pixel regions DP) is the polar liquid 12 ′ enclosed in each of the plurality of pixel regions P and the insulating fluid. Is determined based on the amount of oil 13 'enclosed.
 より具体的にいえば、表示素子2が、例えばQVGA(Quarter Video Graphics Array)で3×1RGB仕様の表示パネルを構成する場合、有効表示部EDのX方向(例えば、表示パネルの横方向)での画素領域Pの数(画素数)は320画素であり、有効表示部EDのY方向(例えば、表示パネルの縦方向)での画素領域Pの数(画素数)は240×3(RGB)画素である。また、非有効表示部NDのX方向のダミー画素領域DPの数(画素数)は有効表示部EDの左側部分及び右側部分で各々5画素であり、非有効表示部NDのY方向のダミー画素領域DPの数(画素数)は有効表示部EDの上側部分及び下側部分で各々5画素である。 More specifically, when the display element 2 forms a 3 × 1 RGB specification display panel with QVGA (Quarter Video Graphics Graphics Array), for example, in the X direction of the effective display unit ED (for example, the horizontal direction of the display panel). The number of pixel regions P (number of pixels) is 320 pixels, and the number (pixel number) of pixel regions P in the Y direction (for example, the vertical direction of the display panel) of the effective display portion ED is 240 × 3 (RGB). Pixel. The number (number of pixels) of dummy pixel regions DP in the X direction of the ineffective display portion ND is 5 pixels in each of the left and right portions of the effective display portion ED, and the dummy pixels in the Y direction of the ineffective display portion ND. The number of the regions DP (number of pixels) is 5 pixels in each of the upper part and the lower part of the effective display portion ED.
 詳細にいえば、表示素子2’の右上部では、図17に示すように、有効表示部EDに含まれた画素領域PがX方向及びY方向にそれぞれ3画素及び6画素設けられている。また、これら18個の画素領域Pを囲むように、X方向及びY方向にそれぞれ5画素の非有効表示部NDに含まれたダミー画素領域DPが設けられている。また、これらの画素領域P及びダミー画素領域DPは、上記仕切壁としてのリブ11により、同じ形状に区切られている。また、有効表示部EDの各画素領域Pには、いずれかの色のカラーフィルタ部(開口部)25r、25g、25bが形成されている。一方、非有効表示部NDの各ダミー画素領域DPには、上記開口部が形成されておらず、遮光膜としての後述のブラックマトリクス部10sによって遮光されている。 More specifically, in the upper right part of the display element 2 ′, as shown in FIG. 17, the pixel area P included in the effective display part ED is provided with 3 pixels and 6 pixels in the X direction and the Y direction, respectively. Further, dummy pixel regions DP included in the ineffective display portion ND of 5 pixels are provided in the X direction and the Y direction so as to surround the 18 pixel regions P. Further, the pixel region P and the dummy pixel region DP are divided into the same shape by the ribs 11 as the partition walls. In addition, in each pixel region P of the effective display portion ED, color filter portions (openings) 25r, 25g, and 25b of any color are formed. On the other hand, the opening is not formed in each dummy pixel region DP of the non-effective display portion ND, and is shielded from light by a black matrix portion 10s described later as a light shielding film.
 また、有効表示部EDの各画素領域Pには、極性液体12’及びオイル13’が封入され、非有効表示部NDの各ダミー画素領域DPには、所定の液体としての極性液体12’及びオイル13’が封入されている。但し、図17に例示するように、ダミー画素領域DP、特に最外周部分に近いダミー画素領域DPでは、極性液体12’の一部が表示素子2の製造工程中に蒸発し、その液量が各画素領域P内の適量の極性液体12’に比べて少なくなっている。 In addition, each pixel region P of the effective display portion ED is filled with polar liquid 12 ′ and oil 13 ′, and each dummy pixel region DP of the non-effective display portion ND is filled with polar liquid 12 ′ and predetermined liquid. Oil 13 'is enclosed. However, as illustrated in FIG. 17, in the dummy pixel region DP, particularly in the dummy pixel region DP close to the outermost peripheral portion, part of the polar liquid 12 ′ is evaporated during the manufacturing process of the display element 2, and the amount of the liquid is reduced. It is less than the appropriate amount of polar liquid 12 ′ in each pixel region P.
 図16~図22において、表示素子2’は、第1の実施形態のものと同様に、表示面側に設けられた第1の基板としての上記上部基板6と、上部基板6の背面側(非表示面側)に設けられた第2の基板としての上記下部基板7とを備えている。また、表示素子2’では、上部基板6及び下部基板7の間に所定の表示用空間Kが形成されている。但し、この表示用空間Kは、有効表示部EDにおいて機能するようになっており、非有効表示部NDにおいては機能しないようになっている。また、この表示用空間Kの内部には、極性液体12’及びオイル13’が当該表示用空間Kの内部で上記X方向に移動可能に封入されており、極性液体12’は有効表示領域P1側または非有効表示領域P2側に移動できるようになっている。 16 to 22, the display element 2 ′ includes the upper substrate 6 as the first substrate provided on the display surface side and the back surface side of the upper substrate 6 (as in the first embodiment). And the lower substrate 7 as the second substrate provided on the non-display surface side. In the display element 2 ′, a predetermined display space K is formed between the upper substrate 6 and the lower substrate 7. However, the display space K functions in the effective display portion ED, and does not function in the ineffective display portion ND. The display space K is filled with polar liquid 12 ′ and oil 13 ′ so as to be movable in the X direction inside the display space K. The polar liquid 12 ′ is in the effective display area P1. It can move to the side or the non-effective display area P2 side.
 また、本実施形態の表示素子2’では、第1の実施形態と異なり、極性液体12’として、例えば自己分散型顔料によって黒色に着色されたものが使用され、オイル13’として、無色透明なオイルが用いられている。具体的にいえば、極性液体12’には、例えばエチレングリコールと水の混合液と、上記顔料とが用いられている。また、オイル13’には、例えば無色透明なアルカンオイルが用いられている。つまり、本実施形態の表示素子2’では、極性液体12’が、各画素において、光の透過を許容または阻止するシャッターとして機能するようになっている。 Further, in the display element 2 ′ of the present embodiment, unlike the first embodiment, as the polar liquid 12 ′, for example, one that is colored black by a self-dispersing pigment is used, and the oil 13 ′ is colorless and transparent. Oil is used. Specifically, for example, a mixed liquid of ethylene glycol and water and the pigment are used for the polar liquid 12 '. For example, colorless and transparent alkane oil is used as the oil 13 '. That is, in the display element 2 ′ of the present embodiment, the polar liquid 12 ′ functions as a shutter that allows or blocks light transmission in each pixel.
 また、本実施形態の表示素子2’の各画素では、後に詳述するように、極性液体12’が表示用空間Kの内部を参照電極19側(有効表示領域P1側)または走査電極20側(非有効表示領域P2側)にスライド移動することによって表示色が黒色または赤色表示、緑色表示、及び青色表示のいずれかの色表示(CF着色表示)に変更されるよう構成されている。 Further, in each pixel of the display element 2 ′ of the present embodiment, as will be described in detail later, the polar liquid 12 ′ is disposed inside the display space K on the reference electrode 19 side (effective display region P1 side) or on the scanning electrode 20 side. The display color is changed to one of black or red display, green display, and blue display (CF color display) by sliding to the (ineffective display area P2 side).
 また、上部基板6の非表示面側の表面には、カラーフィルタ層25、第1の電極としての信号電極18、及び撥水膜24が順次形成されている。但し、この信号電極18は、図18に例示するように、有効表示部EDに含まれた画素領域Pに対応する上部基板6の非表示面側の表面側(カラーフィルタ層25の表面上)だけに形成されており、図19に例示するように、非有効表示部NDに含まれたダミー画素領域DPに対応する上部基板6の非表示面側の表面側(カラーフィルタ層25の表面上)には形成されていない。より具体的には、信号電極18は、有効表示部EDの部分と、非有効表示部NDにおいて、信号ドライバ21と有効表示部EDとの間の部分だけに、上部基板6の非表示面側の表面側に設けられている。 Further, a color filter layer 25, a signal electrode 18 as a first electrode, and a water repellent film 24 are sequentially formed on the surface of the upper substrate 6 on the non-display surface side. However, as illustrated in FIG. 18, the signal electrode 18 is provided on the non-display surface side of the upper substrate 6 corresponding to the pixel region P included in the effective display portion ED (on the surface of the color filter layer 25). 19, as illustrated in FIG. 19, the surface side of the upper substrate 6 corresponding to the dummy pixel region DP included in the ineffective display portion ND (on the surface of the color filter layer 25). ) Is not formed. More specifically, the signal electrode 18 is on the non-display surface side of the upper substrate 6 only in the portion of the effective display portion ED and the portion of the non-effective display portion ND between the signal driver 21 and the effective display portion ED. It is provided on the surface side.
 また、下部基板7の表示面側の表面には、第2の電極としての上記参照電極19及び上記走査電極20が設けられており、さらに、これらの参照電極19及び走査電極20を覆うように、上記誘電体層14が形成されている。但し、これらの参照電極19及び走査電極20は、図19に例示するように、有効表示部EDに含まれた画素領域Pに対応する下部基板7の表示面側の表面上だけに形成されており、図21に例示するように、非有効表示部NDに含まれたダミー画素領域DPに対応する下部基板7の表示面側の表面上には形成されていない。 Further, the reference electrode 19 and the scan electrode 20 as second electrodes are provided on the surface of the lower substrate 7 on the display surface side, and further, the reference electrode 19 and the scan electrode 20 are covered. The dielectric layer 14 is formed. However, as illustrated in FIG. 19, the reference electrode 19 and the scanning electrode 20 are formed only on the surface on the display surface side of the lower substrate 7 corresponding to the pixel region P included in the effective display portion ED. As illustrated in FIG. 21, it is not formed on the display surface side surface of the lower substrate 7 corresponding to the dummy pixel region DP included in the ineffective display portion ND.
 より具体的には、参照電極19は、有効表示部EDの部分と、非有効表示部NDにおいて、参照ドライバ22と有効表示部EDとの間の部分だけに、下部基板7の表示面側の表面上に設けられている。同様に、走査電極20は、有効表示部EDの部分と、非有効表示部NDにおいて、走査ドライバ23と有効表示部EDとの間の部分だけに、下部基板7の表示面側の表面上に設けられている。 More specifically, the reference electrode 19 is provided on the display surface side of the lower substrate 7 only in the portion of the effective display portion ED and the portion of the non-effective display portion ND between the reference driver 22 and the effective display portion ED. On the surface. Similarly, the scanning electrode 20 is formed on the display surface side surface of the lower substrate 7 only in the portion of the effective display portion ED and the portion of the non-effective display portion ND between the scan driver 23 and the effective display portion ED. Is provided.
 また、誘電体層14は、有効表示部EDに含まれた画素領域P及び非有効表示部NDに含まれたダミー画素領域DPに各々対応する下部基板7の表示面側の表面上に形成されている。また、この誘電体層14の表示面側の表面には、第1の実施形態のものと同様に、X方向及びY方向にそれぞれ平行となるように設けられた第1のリブ部材11a及び第2のリブ部材11bを有するリブ11が設けられている。さらに、下部基板7では、誘電体層14及びリブ11を覆うように、撥水膜15が設けられている。 The dielectric layer 14 is formed on the surface on the display surface side of the lower substrate 7 corresponding to each of the pixel region P included in the effective display portion ED and the dummy pixel region DP included in the ineffective display portion ND. ing. Further, the surface on the display surface side of the dielectric layer 14 is provided with a first rib member 11a and a first rib member 11a provided in parallel to the X direction and the Y direction, respectively, as in the first embodiment. Ribs 11 having two rib members 11b are provided. Further, the lower substrate 7 is provided with a water repellent film 15 so as to cover the dielectric layer 14 and the ribs 11.
 カラーフィルタ(Color Filter)層25には、第1の実施形態のものと同様に、赤色(R)、緑色(G)、及び青色(B)のカラーフィルタ部25r、25g、及び25bと、遮光膜としてのブラックマトリクス部25sとが設けられており、RGBの各色の画素を構成するようになっている。つまり、カラーフィルタ層25では、図18に例示するように、RGBのカラーフィルタ部25r、25g、25bがX方向に沿って順次設けられるとともに、各々3つのカラーフィルタ部25r、25g、25bがY方向に沿って設けられており、X方向及びY方向にそれぞれ3個及び3個、合計9個の画素が配設されている。 Similar to the first embodiment, the color filter layer 25 has red (R), green (G), and blue (B) color filter portions 25r, 25g, and 25b, and a light shielding layer. A black matrix portion 25s as a film is provided, and constitutes pixels of each color of RGB. That is, in the color filter layer 25, as illustrated in FIG. 18, RGB color filter portions 25r, 25g, and 25b are sequentially provided along the X direction, and three color filter portions 25r, 25g, and 25b are respectively provided as Y. A total of nine pixels are arranged in the X direction and the Y direction, respectively.
 また、表示素子2’では、図18に例示するように、各画素領域Pにおいて、画素の有効表示領域P1に対応する箇所にRGBのいずれかのカラーフィルタ部25r、25g、及び25bが設けられ、非有効表示領域P2に対応する箇所にブラックマトリクス部25sが設けられている。つまり、表示素子2’では、上記表示用空間Kに対し、ブラックマトリクス部(遮光膜)25sによって非有効表示領域P2(非開口部)が設定され、そのブラックマトリクス部25sに形成された開口部(つまり、いずれかのカラーフィルタ部25r、25g、及び25b)によって有効表示領域P1が設定されている。 Further, in the display element 2 ′, as illustrated in FIG. 18, in each pixel region P, any one of RGB color filter portions 25r, 25g, and 25b is provided at a location corresponding to the effective display region P1 of the pixel. A black matrix portion 25s is provided at a location corresponding to the ineffective display area P2. That is, in the display element 2 ′, an ineffective display region P2 (non-opening portion) is set for the display space K by the black matrix portion (light-shielding film) 25s, and the opening portion formed in the black matrix portion 25s. The effective display area P1 is set by (that is, any one of the color filter portions 25r, 25g, and 25b).
 また、表示素子2’では、カラーフィルタ部25r、25g、25bの各面積は、有効表示領域P1の面積に対し、同一または若干小さい値が選択されている。一方、ブラックマトリクス部25sの面積は、非有効表示領域P2の面積に対し、同一または若干大きい値が選択されている。尚、図18では、隣接する画素の境界部を明確にするために、隣接する画素に応じた2つのブラックマトリクス部25s間の境界線を点線にて示しているが、実際のカラーフィルタ層25では、ブラックマトリクス部25s間の境界線は存在しない。 In the display element 2 ′, the area of the color filter portions 25 r, 25 g, and 25 b is selected to be the same or slightly smaller than the area of the effective display area P 1. On the other hand, the area of the black matrix portion 25s is selected to be the same or slightly larger than the area of the ineffective display area P2. In FIG. 18, in order to clarify the boundary between adjacent pixels, the boundary between the two black matrix portions 25s corresponding to the adjacent pixels is indicated by a dotted line, but the actual color filter layer 25 is shown. Then, there is no boundary line between the black matrix portions 25s.
 また、表示素子2’では、第1の実施形態のものと同様に、上記仕切壁としてのリブ11により表示用空間Kが画素領域P単位に区切られている。すなわち、表示素子2’では、各画素の表示用空間Kは、図19に例示するように、互いに対向する適当な高さの2つの第1のリブ部材11aと、互いに対向する適当な高さの2つの第2のリブ部材11bとによって区画されている。さらに、表示素子2’では、第1の実施形態のものと同様に、第1及び第2のリブ部材11a、11bによって極性液体12’が隣接する画素領域Pの表示用空間Kの内部に容易に流入するのが防がれている。すなわち、第1及び第2のリブ部材11a、11bには、例えばネガタイプの光硬化性樹脂が用いられており、第1及び第2のリブ部材11a、11bは光透過性を有している。また、これらの第1及び第2のリブ部材11a、11bでは、隣接する画素間で極性液体12’の流入出が防止されるように、誘電体層14からの突出高さが決定されている。 Further, in the display element 2 ′, the display space K is divided in units of pixel areas P by the ribs 11 as the partition walls, as in the first embodiment. That is, in the display element 2 ′, the display space K of each pixel is, as illustrated in FIG. 19, two first rib members 11 a having appropriate heights facing each other and appropriate heights facing each other. Are divided by the two second rib members 11b. Furthermore, in the display element 2 ′, the polar liquid 12 ′ can be easily placed inside the display space K of the adjacent pixel region P by the first and second rib members 11a and 11b, as in the first embodiment. It is prevented from flowing into. That is, for example, negative-type photocurable resin is used for the first and second rib members 11a and 11b, and the first and second rib members 11a and 11b are light transmissive. Further, in these first and second rib members 11a and 11b, the protruding height from the dielectric layer 14 is determined so that the polar liquid 12 ′ is prevented from flowing in and out between adjacent pixels. .
 また、表示素子2’では、図20に例示するように、非有効表示部NDの各ダミー画素領域DPにおいて、上部基板6の非表示面側の表面に設けられたブラックマトリクス部10sだけが設けられている。すなわち、非有効表示部NDは、上部基板(第1の基板)6側に設けられた遮光膜によって設定されている。尚、図20では、隣接するダミー画素の境界部を明確にするために、隣接するダミー画素に応じた2つのブラックマトリクス部10s間の境界線を点線にて示しているが、実際のブラックマトリクス部10sでは、ブラックマトリクス部10s間の境界線は存在しない。 Further, in the display element 2 ′, as illustrated in FIG. 20, only the black matrix portion 10s provided on the non-display surface side surface of the upper substrate 6 is provided in each dummy pixel region DP of the ineffective display portion ND. It has been. That is, the ineffective display portion ND is set by a light shielding film provided on the upper substrate (first substrate) 6 side. In FIG. 20, in order to clarify the boundary portion between adjacent dummy pixels, the boundary line between the two black matrix portions 10s corresponding to the adjacent dummy pixels is indicated by a dotted line. In the portion 10s, there is no boundary line between the black matrix portions 10s.
 また、図21に例示するように、非有効表示部NDでは、有効表示部EDと同様に、リブ11により表示用空間Kがダミー画素領域DP単位に区切られている。一方、この非有効表示部NDでは、有効表示部EDと異なり、参照電極19及び走査電極20は設置されていない。 Further, as illustrated in FIG. 21, in the non-effective display portion ND, the display space K is divided into dummy pixel regions DP by the ribs 11 as in the effective display portion ED. On the other hand, in this ineffective display part ND, unlike the effective display part ED, the reference electrode 19 and the scanning electrode 20 are not installed.
 参照電極19及び走査電極20には、酸化インジウム系(ITO)、酸化スズ系(SnO2)、または酸化亜鉛系(AZO、GZO、あるいはIZO)などの透明な電極材料が用いられている。これらの各参照電極19及び各走査電極20は、スパッタ法等の公知の成膜方法により、下部基板7上に帯状に形成されている。 For the reference electrode 19 and the scanning electrode 20, a transparent electrode material such as indium oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (AZO, GZO, or IZO) is used. Each of these reference electrodes 19 and each scanning electrode 20 is formed in a strip shape on the lower substrate 7 by a known film forming method such as sputtering.
 信号電極18には、X方向に平行となるように配置された線状配線が用いられている。また、この信号電極18には、ITO等の透明電極材料が用いられている。さらに、信号電極18は、カラーフィルタ層25上で、各画素領域PのX方向でのほぼ中心部を通るように設置されており、撥水膜24を介して極性液体12’に電気的に接触するように構成されている。これにより、表示素子2’では、表示動作時での極性液体12’の応答性の向上が図られている。 The signal electrode 18 uses a linear wiring arranged so as to be parallel to the X direction. The signal electrode 18 is made of a transparent electrode material such as ITO. Further, the signal electrode 18 is disposed on the color filter layer 25 so as to pass through the substantially central portion in the X direction of each pixel region P, and is electrically connected to the polar liquid 12 ′ via the water repellent film 24. It is comprised so that it may contact. Thereby, in the display element 2 ', the response of the polar liquid 12' during the display operation is improved.
 また、撥水膜24には、透明な合成樹脂、好ましくは電圧印加時に極性液体12’に対し親水層となる、例えばフッ素系樹脂が使用されている。これにより、表示素子2’では、上部基板6の表示用空間K側の表面側での極性液体12’との間の濡れ性(接触角)を大きく変化させることができ、極性液体12’の移動(変形)速度の高速化を図ることができる。 The water-repellent film 24 is made of a transparent synthetic resin, preferably, for example, a fluorine-based resin that becomes a hydrophilic layer with respect to the polar liquid 12 'when a voltage is applied. Thereby, in the display element 2 ′, wettability (contact angle) with the polar liquid 12 ′ on the surface side of the upper substrate 6 on the display space K side can be greatly changed. The movement (deformation) speed can be increased.
 上記のように構成された表示素子2’の各画素では、図22(a)に例示するように、極性液体12’がブラックマトリクス部25sと参照電極19との間で保持されると、バックライト16からの光は極性液体12’に遮光されることなく、カラーフィルタ部25rを通過することにより、赤色表示(CF着色表示)が行われる。一方、図22(b)に例示するように、極性液体12’がカラーフィルタ部25rと走査電極20との間で保持されると、バックライト16からの光は極性液体12’により遮光されて、黒色表示(非CF着色表示)が行われる。 In each pixel of the display element 2 ′ configured as described above, when the polar liquid 12 ′ is held between the black matrix portion 25 s and the reference electrode 19 as illustrated in FIG. Light from the light 16 passes through the color filter portion 25r without being blocked by the polar liquid 12 ', thereby performing red display (CF color display). On the other hand, as illustrated in FIG. 22B, when the polar liquid 12 ′ is held between the color filter portion 25r and the scan electrode 20, the light from the backlight 16 is blocked by the polar liquid 12 ′. Black display (non-CF color display) is performed.
 ここで、図23~図27を参照して、本実施形態の表示素子2’の製造工程を具体的に説明する。 Here, with reference to FIGS. 23 to 27, the manufacturing process of the display element 2 'of the present embodiment will be specifically described.
 図23(a)~図23(d)は、図22に示した上部基板側の形成工程を説明する図である。図24(a)~図24(e)は、図22に示した下部基板側の形成工程を説明する図である。図25は、図16に示した非有効表示部内のダミー画素領域内への極性液体の封入工程を説明する図である。図26は、図16に示した有効表示部内の画素領域内への極性液体の封入工程を説明する図である。図27(a)は、図22に示した上部基板と下部基板とを貼り合わせる工程を説明する図であり、図27(b)は、図15に示した表示素子の最終の製造工程を説明する図である。 23 (a) to 23 (d) are diagrams for explaining the formation process on the upper substrate side shown in FIG. 24 (a) to 24 (e) are diagrams for explaining the formation process on the lower substrate side shown in FIG. FIG. 25 is a diagram illustrating a process of enclosing polar liquid in the dummy pixel region in the ineffective display section shown in FIG. FIG. 26 is a diagram for explaining a process of enclosing the polar liquid into the pixel region in the effective display section shown in FIG. FIG. 27A is a diagram illustrating a process of bonding the upper substrate and the lower substrate illustrated in FIG. 22, and FIG. 27B illustrates a final manufacturing process of the display element illustrated in FIG. 15. It is a figure to do.
 図23(a)において、上部基板6には、例えば厚さ0.7mmの無アルカリガラス基板が用いられており、例えばフォトリソグラフィ法を用いて、カラーフィルタ部25r、25g、25bとブラックマトリクス部25sとを上部基板6の表面上に積層することによってCF形成工程が行われて、カラーフィルタ層25が形成される。このカラーフィルタ層25には、感光性樹脂(例えば、光反応性アクリルモノマー)と対応する顔料とが用いられており、例えば2μm程度の膜厚とされている。また、このカラーフィルタ部25r、25g、25bは、有効表示部ED(図16)のみ形成され、非有効表示部ND(図16)には、形成されない。すなわち、図23(b)に示すように、非有効表示部NDでは、ブラックマトリクス部10sだけが上部基板6の表面上に形成されている。 In FIG. 23A, a non-alkali glass substrate having a thickness of 0.7 mm, for example, is used for the upper substrate 6, and the color filter portions 25r, 25g, 25b and the black matrix portion are formed by using, for example, a photolithography method. 25 s is stacked on the surface of the upper substrate 6 to perform a CF forming step, and the color filter layer 25 is formed. The color filter layer 25 uses a photosensitive resin (for example, photoreactive acrylic monomer) and a corresponding pigment, and has a thickness of, for example, about 2 μm. Further, the color filter portions 25r, 25g, and 25b are formed only on the effective display portion ED (FIG. 16) and are not formed on the non-effective display portion ND (FIG. 16). That is, as shown in FIG. 23B, in the ineffective display portion ND, only the black matrix portion 10s is formed on the surface of the upper substrate 6.
 続いて、図23(c)に示すように、有効表示部EDにおいて、信号電極18の電極形成工程が行われる。すなわち、この電極形成工程では、例えばカラーフィルタ層25の表面上に対して、例えばITOからなる細線を固定することにより、信号電極18が設置される。 Subsequently, as shown in FIG. 23C, an electrode forming step of the signal electrode 18 is performed in the effective display portion ED. That is, in this electrode formation step, the signal electrode 18 is installed by fixing a thin wire made of, for example, ITO on the surface of the color filter layer 25, for example.
 次に、図23(d)に示すように、撥水膜24の成膜工程が行われる。すなわち、カラーフィルタ層25及び信号電極18の各表面に対し、例えばフッ素系樹脂材をディッピング法によって塗布して、80℃で30分間焼成することにより、撥水膜24を成膜した。撥水膜24の膜厚は、例えば60nmである。 Next, as shown in FIG. 23D, a film forming process of the water repellent film 24 is performed. That is, a water-repellent film 24 was formed by applying, for example, a fluorine-based resin material to each surface of the color filter layer 25 and the signal electrode 18 by dipping and baking at 80 ° C. for 30 minutes. The film thickness of the water repellent film 24 is, for example, 60 nm.
 また、図24(a)において、下部基板7には、例えば厚さ0.7mmの無アルカリガラス基板が用いられており、有効表示部EDにおいて、参照電極19及び走査電極20の形成工程が行われる。すなわち、この形成工程では、例えばスパッタ法にて膜厚100nmのITO膜を下部基板7の表面上に成膜することにより、参照電極19及び走査電極20が形成される。 In FIG. 24A, a non-alkali glass substrate having a thickness of, for example, 0.7 mm is used for the lower substrate 7, and the formation process of the reference electrode 19 and the scanning electrode 20 is performed in the effective display portion ED. Is called. That is, in this forming step, the reference electrode 19 and the scanning electrode 20 are formed by forming an ITO film having a thickness of 100 nm on the surface of the lower substrate 7 by, for example, sputtering.
 次に、図24(b)に示すように、誘電体層14の形成工程が行われる。つまり、参照電極19及び走査電極20の上方に、誘電体層14として例えばCVD法を用いて、窒化シリコン膜を成膜した。この誘電体層14の膜厚は、例えば350nmである。また、非有効表示部NDでは、図24(c)に示すように、参照電極19及び走査電極20が形成されておらず、誘電体層14だけが下部基板7の表面上に形成されている。 Next, as shown in FIG. 24 (b), a step of forming the dielectric layer 14 is performed. That is, a silicon nitride film was formed as the dielectric layer 14 on the reference electrode 19 and the scanning electrode 20 by using, for example, a CVD method. The film thickness of the dielectric layer 14 is, for example, 350 nm. In the non-effective display portion ND, as shown in FIG. 24C, the reference electrode 19 and the scanning electrode 20 are not formed, and only the dielectric layer 14 is formed on the surface of the lower substrate 7. .
 続いて、図24(d)に示すように、誘電体層14上にリブ11を設ける設置工程が行われる。すなわち、この設置工程では、誘電体層14の表面上に対して、光硬化性樹脂を用いた第1及び第2のリブ部材11a、11bが画素領域P単位及びダミー画素領域DP単位に形成される。また、この設置工程を行うことにより、有効表示部ED内に複数の画素領域Pを設定するとともに、有効表示部EDを囲む非有効表示部ND内にダミー画素領域(ダミー領域)DPを設定する領域設定工程が完了される。 Subsequently, as shown in FIG. 24D, an installation step of providing the rib 11 on the dielectric layer 14 is performed. That is, in this installation step, the first and second rib members 11a and 11b using photo-curing resin are formed on the surface of the dielectric layer 14 in the pixel region P unit and the dummy pixel region DP unit. The Further, by performing this installation process, a plurality of pixel areas P are set in the effective display area ED, and a dummy pixel area (dummy area) DP is set in the ineffective display area ND surrounding the effective display area ED. The area setting process is completed.
 次に、図24(e)に示すように、誘電体層14と第1及び第2のリブ部材11a、11bの表面上に撥水膜15を形成する形成工程が行われる。つまり、この形成工程では、誘電体層14と第1及び第2のリブ部材11a、11bの表面に対して、例えばフッ素系樹脂材をディッピング法によって塗布して、80℃で30分間焼成することにより、撥水膜15が形成される。 Next, as shown in FIG. 24 (e), a forming step of forming a water repellent film 15 on the surface of the dielectric layer 14 and the first and second rib members 11a and 11b is performed. That is, in this forming step, for example, a fluorine-based resin material is applied to the surface of the dielectric layer 14 and the first and second rib members 11a and 11b by dipping and baked at 80 ° C. for 30 minutes. Thus, the water repellent film 15 is formed.
 続いて、下部基板6に対して、極性液体12’の封入工程が行われる。この封入工程では、まず非有効表示部NDのダミー画素領域DPに対して行われ、次に有効表示部EDの画素領域Pに対して行われるようになっている。 Subsequently, an encapsulating step of the polar liquid 12 ′ is performed on the lower substrate 6. In this encapsulating step, first, the dummy pixel region DP of the ineffective display portion ND is performed, and then the pixel region P of the effective display portion ED is performed.
 すなわち、図25に示すように、非有効表示部NDの各ダミー画素領域DPに対して、例えばディスペンサー法、またはインクジェット法により、所定の液体としての極性液体12’を封入する第1の封入工程が行われる。 That is, as shown in FIG. 25, a first enclosing step of enclosing a polar liquid 12 ′ as a predetermined liquid into each dummy pixel region DP of the ineffective display portion ND by, for example, a dispenser method or an ink jet method. Is done.
 続いて、図26に示すように、有効表示部EDの各画素領域Pに対して、例えばディスペンサー法、またはインクジェット法により、極性液体12’を封入する第2の封入工程が行われる。 Subsequently, as shown in FIG. 26, for each pixel region P of the effective display portion ED, a second sealing step of sealing the polar liquid 12 'is performed by, for example, a dispenser method or an inkjet method.
 次に、図27(a)に示すように、極性液体12’を保持した下部基板7に対し、上部基板6を上方から組み付けて、これら上部基板6及び下部基板7を貼り合わせる工程が行われる。 Next, as shown in FIG. 27A, a process of assembling the upper substrate 6 from above and bonding the upper substrate 6 and the lower substrate 7 to the lower substrate 7 holding the polar liquid 12 ′ is performed. .
 その後、図27(b)において、画素領域P間の隙間及びダミー画素領域DP間の隙間から毛管現象を利用してオイル13’を封入する工程が行われる。そして、下部基板7側にバックライト16を設置することにより、表示素子10が完成される。 Thereafter, in FIG. 27B, a step of encapsulating the oil 13 'using the capillary phenomenon from the gap between the pixel areas P and the gap between the dummy pixel areas DP is performed. Then, the display element 10 is completed by installing the backlight 16 on the lower substrate 7 side.
 ここで、上記のように構成された本実施形態の画像表示装置1の表示動作について、図28も参照して具体的に説明する。 Here, the display operation of the image display apparatus 1 of the present embodiment configured as described above will be specifically described with reference to FIG.
 図28は、図15に示した画像表示装置の動作例を説明する図である。 FIG. 28 is a diagram for explaining an operation example of the image display device shown in FIG.
 図28において、参照ドライバ22及び走査ドライバ23は、例えば同図の左側から右側に向かう所定の走査方向で、参照電極19及び走査電極20に対して、それぞれ参照電圧Vr及び走査電圧Vsとして上記選択電圧を順次印加する。具体的には、参照ドライバ22及び走査ドライバ23は、参照電極19及び走査電極20に対して、選択電圧としてH電圧(第1の電圧)及びL電圧(第2の電圧)をそれぞれ順次印加して選択ラインとする走査動作を行う。また、この選択ラインでは、信号ドライバ21は外部からの画像入力信号に応じて、対応する信号電極18に対して、H電圧またはL電圧を信号電圧Vdとして印加する。これにより、選択ラインの各画素では、極性液体12’が有効表示領域P1側または非有効表示領域P2側に移動されて、表示面側の表示色が変更される。 In FIG. 28, the reference driver 22 and the scanning driver 23 select the reference voltage Vr and the scanning voltage Vs as the reference voltage Vr and the scanning voltage Vs, respectively, with respect to the reference electrode 19 and the scanning electrode 20 in a predetermined scanning direction from the left to the right in FIG. Apply voltage sequentially. Specifically, the reference driver 22 and the scan driver 23 sequentially apply an H voltage (first voltage) and an L voltage (second voltage) as selection voltages to the reference electrode 19 and the scan electrode 20, respectively. The scanning operation for selecting the line is performed. In this selection line, the signal driver 21 applies the H voltage or the L voltage as the signal voltage Vd to the corresponding signal electrode 18 according to the image input signal from the outside. Thereby, in each pixel of the selection line, the polar liquid 12 'is moved to the effective display area P1 side or the non-effective display area P2 side, and the display color on the display surface side is changed.
 一方、非選択ライン、つまり残り全ての参照電極19及び走査電極20に対しては、参照ドライバ22及び走査ドライバ23は、それぞれ参照電圧Vr及び走査電圧Vsとして上記非選択電圧を印加する。具体的には、参照ドライバ22及び走査ドライバ23は、残り全ての参照電極19及び走査電極20に対して、非選択電圧として、例えば上記H電圧とL電圧の中間の電圧である中間電圧(Middle電圧、以下、“M電圧”という。)を印加する。これにより、非選択ラインの各画素では、極性液体12’が有効表示領域P1側または非有効表示領域P2側で不必要な変動を生じることなく静止され、表示面側の表示色が変更されない。 On the other hand, the reference driver 22 and the scan driver 23 apply the above-mentioned non-selection voltages as the reference voltage Vr and the scan voltage Vs to the non-selected lines, that is, all the remaining reference electrodes 19 and scan electrodes 20, respectively. Specifically, the reference driver 22 and the scan driver 23 apply an intermediate voltage (Middle) that is, for example, an intermediate voltage between the H voltage and the L voltage to the remaining reference electrodes 19 and scan electrodes 20 as non-selection voltages. Voltage, hereinafter referred to as “M voltage”). Thereby, in each pixel of the non-selected line, the polar liquid 12 ′ is stopped without causing unnecessary fluctuation on the effective display region P 1 side or the non-effective display region P 2 side, and the display color on the display surface side is not changed.
 上記のような表示動作を行う場合、参照電極19、走査電極20、及び信号電極18への印加電圧の組み合わせは、表1に示されるものとなる。さらに、極性液体12’の挙動及び表示面側の表示色は、表1に示すように、印加電圧に応じたものとなる。 When performing the display operation as described above, combinations of voltages applied to the reference electrode 19, the scanning electrode 20, and the signal electrode 18 are as shown in Table 1. Further, as shown in Table 1, the behavior of the polar liquid 12 ′ and the display color on the display surface side depend on the applied voltage.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <選択ラインでの動作>
 選択ラインでは、信号電極18に対して例えばH電圧が印加されているときでは、参照電極19と信号電極18との間では、共にH電圧が印加されているので、これらの参照電極19と信号電極18との間には、電位差が生じていない。一方、信号電極18と走査電極20との間では、走査電極20に対して、L電圧が印加されているので、電位差が生じている状態となる。このため、極性液体12’は、信号電極18に対して、電位差が生じている走査電極20側に表示用空間Kの内部を移動する。この結果、極性液体12’は、図22(b)に例示したように、有効表示領域P1側に移動した状態となり、オイル13を参照電極19側に移動させて、バックライト16からの照明光がカラーフィルタ部25rに達するのを阻止する。これにより、表示面側での表示色は、極性液体12’による黒色表示(非CF着色表示)の状態となる。
<Operation on selected line>
In the selection line, for example, when an H voltage is applied to the signal electrode 18, an H voltage is applied between the reference electrode 19 and the signal electrode 18. There is no potential difference between the electrode 18 and the electrode 18. On the other hand, since the L voltage is applied to the scanning electrode 20 between the signal electrode 18 and the scanning electrode 20, a potential difference is generated. For this reason, the polar liquid 12 ′ moves in the display space K toward the scanning electrode 20 where a potential difference is generated with respect to the signal electrode 18. As a result, as illustrated in FIG. 22B, the polar liquid 12 ′ moves to the effective display region P1 side, moves the oil 13 to the reference electrode 19 side, and illuminates light from the backlight 16. Is prevented from reaching the color filter portion 25r. Thereby, the display color on the display surface side is in a black display (non-CF color display) state by the polar liquid 12 ′.
 一方、選択ラインにおいて、信号電極18に対してL電圧が印加されているときでは、参照電極19と信号電極18との間では、電位差が生じ、信号電極18と走査電極20との間には、電位差が生じていない。従って、極性液体12’は、信号電極18に対して、電位差が生じている参照電極19側に表示用空間Kの内部を移動する。この結果、極性液体12’は、図22(a)に例示したように、非有効表示領域P2側に移動した状態となり、バックライト16からの照明光がカラーフィルタ部25rに達するのを許容する。これにより、表示面側での表示色は、カラーフィルタ部25rによる赤色表示(CF着色表示)の状態となる。また、画像表示装置1では、隣接するRGBの3つの全画素において、それらの極性液体12’が非有効表示領域P2側に移動して、CF着色表示が行われたときに、当該RGBの画素からの赤色光、緑色光、及び青色光が白色光に混色して、白色表示が行われる。 On the other hand, when the L voltage is applied to the signal electrode 18 in the selected line, a potential difference is generated between the reference electrode 19 and the signal electrode 18, and between the signal electrode 18 and the scanning electrode 20. No potential difference has occurred. Accordingly, the polar liquid 12 ′ moves in the display space K toward the reference electrode 19 where a potential difference is generated with respect to the signal electrode 18. As a result, as illustrated in FIG. 22A, the polar liquid 12 ′ moves to the ineffective display region P2 side, and allows the illumination light from the backlight 16 to reach the color filter portion 25r. . As a result, the display color on the display surface side is in a red display (CF color display) state by the color filter unit 25r. Further, in the image display device 1, when the polar liquid 12 ′ moves to the non-effective display area P 2 side in all three adjacent RGB pixels and the CF color display is performed, the RGB pixels are concerned. The red light, green light, and blue light from are mixed with white light, and white display is performed.
 <非選択ラインでの動作>
 非選択ラインでは、信号電極18に対して例えばH電圧が印加されているときでは、極性液体12’は現状の位置に静止した状態で維持されて、現状の表示色で維持される。すなわち、参照電極19及び走査電極20の双方に対して、M電圧が印加されているので、参照電極19と信号電極18との間の電位差及び走査電極20と信号電極18との間の電位差は、共に同じ電位差が生じるからである。この結果、表示色は、現状の黒色表示またはCF着色表示から変更されずに維持される。
<Operation on unselected lines>
In the non-selected line, for example, when the H voltage is applied to the signal electrode 18, the polar liquid 12 ′ is kept stationary at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 19 and the scan electrode 20, the potential difference between the reference electrode 19 and the signal electrode 18 and the potential difference between the scan electrode 20 and the signal electrode 18 are as follows. This is because the same potential difference occurs in both cases. As a result, the display color is maintained unchanged from the current black display or CF color display.
 同様に、非選択ラインにおいて、信号電極18に対してL電圧が印加されているときでも、極性液体12’は現状の位置に静止した状態で維持されて、現状の表示色で維持される。すなわち、参照電極19及び走査電極20の双方に対して、M電圧が印加されているので、参照電極19と信号電極18との間の電位差及び走査電極20と信号電極18との間の電位差は、共に同じ電位差が生じるからである。 Similarly, even when the L voltage is applied to the signal electrode 18 in the non-selected line, the polar liquid 12 ′ is maintained in a stationary state at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 19 and the scan electrode 20, the potential difference between the reference electrode 19 and the signal electrode 18 and the potential difference between the scan electrode 20 and the signal electrode 18 are as follows. This is because the same potential difference occurs in both cases.
 以上のように、非選択ラインにおいては、信号電極18がH電圧及びL電圧のいずれかの電圧であっても、極性液体12’は移動せずに、静止して、表示面側での表示色は変化しない。 As described above, in the non-selected line, even if the signal electrode 18 is either the H voltage or the L voltage, the polar liquid 12 ′ does not move but remains stationary and display on the display surface side. The color does not change.
 一方、選択ラインにおいては、信号電極18への印加電圧に応じて、上述のように、極性液体12’を移動させることができ、表示面側での表示色を変更させることができる。 On the other hand, in the selection line, the polar liquid 12 ′ can be moved according to the voltage applied to the signal electrode 18 as described above, and the display color on the display surface side can be changed.
 また、画像表示装置1では、表1に示した印加電圧の組み合わせによって、選択ライン上の各画素での表示色は、例えば図28に示すように、各画素に対応する信号電極18への印加電圧に応じて、カラーフィルタ部25r、25g、25bによるCF着色(赤色、緑色、あるいは青色)または極性液体12’による非CF着色(黒色)となる。また、参照ドライバ22及び走査ドライバ23が、それぞれ参照電極19及び走査電極20の選択ラインを、例えば図28の左から右へ走査動作を行う場合、画像表示装置1の表示部での各画素の表示色もまた同図28の左から右に向かって順次変化することとなる。したがって、参照ドライバ22及び走査ドライバ23による選択ラインの走査動作を高速で行うことにより、画像表示装置1において、表示部での各画素の表示色も高速に変化させることが可能となる。さらに、選択ラインの走査動作に同期させて信号電極18への信号電圧Vdの印加を行うことにより、画像表示装置1では、外部からの画像入力信号に基づいて、動画像を含んだ種々の情報を表示することが可能となる。 Further, in the image display device 1, the display color at each pixel on the selected line is applied to the signal electrode 18 corresponding to each pixel, for example, as shown in FIG. 28, by the combination of applied voltages shown in Table 1. Depending on the voltage, the color filter portions 25r, 25g, and 25b are colored with CF (red, green, or blue) or nonpolarized with a polar liquid 12 ′ (black). Further, when the reference driver 22 and the scanning driver 23 perform the scanning operation of the selection lines of the reference electrode 19 and the scanning electrode 20 from the left to the right in FIG. 28, for example, each pixel in the display unit of the image display device 1 is scanned. The display color also changes sequentially from left to right in FIG. Therefore, by performing the scanning operation of the selection line by the reference driver 22 and the scanning driver 23 at high speed, the display color of each pixel on the display unit can be changed at high speed in the image display device 1. Furthermore, by applying the signal voltage Vd to the signal electrode 18 in synchronization with the scanning operation of the selected line, the image display apparatus 1 can perform various information including moving images based on an image input signal from the outside. Can be displayed.
 また、参照電極19、走査電極20、及び信号電極18への印加電圧の組み合わせは、表1に限定されるものではなく、表2に示すものでもよい。 Further, the combinations of voltages applied to the reference electrode 19, the scan electrode 20, and the signal electrode 18 are not limited to Table 1 but may be those shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 すなわち、参照ドライバ22及び走査ドライバ23は、例えば同図の左側から右側に向かう所定の走査方向で、参照電極19及び走査電極20に対して、選択電圧としてL電圧(第2の電圧)及びH電圧(第1の電圧)をそれぞれ順次印加して選択ラインとする走査動作を行う。また、この選択ラインでは、信号ドライバ21は外部からの画像入力信号に応じて、対応する信号電極18に対して、H電圧またはL電圧を信号電圧Vdとして印加する。 In other words, the reference driver 22 and the scan driver 23, for example, select L voltage (second voltage) and H as selection voltages with respect to the reference electrode 19 and the scan electrode 20 in a predetermined scanning direction from the left side to the right side in FIG. A scanning operation is performed in which a voltage (first voltage) is sequentially applied to select lines. In this selection line, the signal driver 21 applies the H voltage or the L voltage as the signal voltage Vd to the corresponding signal electrode 18 according to the image input signal from the outside.
 一方、非選択ライン、つまり残り全ての参照電極19及び走査電極20に対しては、参照ドライバ22及び走査ドライバ23は、非選択電圧としてM電圧を印加する。 On the other hand, the reference driver 22 and the scan driver 23 apply the M voltage as the non-selection voltage to the non-selected lines, that is, the remaining reference electrodes 19 and scan electrodes 20.
 <選択ラインでの動作>
 選択ラインでは、信号電極18に対して例えばL電圧が印加されているときでは、参照電極19と信号電極18との間では、共にL電圧が印加されているので、これらの参照電極19と信号電極18との間には、電位差が生じていない。一方、信号電極18と走査電極20との間では、走査電極20に対して、H電圧が印加されているので、電位差が生じている状態となる。従って、極性液体12’は、信号電極18に対して、電位差が生じている走査電極20側に表示用空間Kの内部を移動する。この結果、極性液体12’は、図22(b)に例示したように、有効表示領域P1側に移動した状態となり、オイル13を参照電極19側に移動させて、バックライト16からの照明光がカラーフィルタ部25rに達するのを阻止する。これにより、表示面側での表示色は、極性液体12’による黒色表示(非CF着色表示)の状態となる。
<Operation on selected line>
In the selection line, for example, when an L voltage is applied to the signal electrode 18, an L voltage is applied between the reference electrode 19 and the signal electrode 18. There is no potential difference between the electrode 18 and the electrode 18. On the other hand, between the signal electrode 18 and the scan electrode 20, since the H voltage is applied to the scan electrode 20, a potential difference is generated. Accordingly, the polar liquid 12 ′ moves in the display space K toward the scanning electrode 20 where a potential difference is generated with respect to the signal electrode 18. As a result, as illustrated in FIG. 22B, the polar liquid 12 ′ moves to the effective display region P1 side, moves the oil 13 to the reference electrode 19 side, and illuminates light from the backlight 16. Is prevented from reaching the color filter portion 25r. Thereby, the display color on the display surface side is in a black display (non-CF color display) state by the polar liquid 12 ′.
 一方、選択ラインにおいて、信号電極18に対してH電圧が印加されているときでは、参照電極19と信号電極18との間では、電位差が生じ、信号電極18と走査電極20との間には、電位差が生じていない。従って、極性液体12’は、信号電極18に対して、電位差が生じている参照電極19側に表示用空間Kの内部を移動する。この結果、極性液体12’は、図22(a)に例示したように、非有効表示領域P2側に移動した状態となり、バックライト16からの照明光がカラーフィルタ部25rに達するのを許容する。これにより、表示面側での表示色は、カラーフィルタ部25rによる赤色表示(CF着色表示)の状態となる。また、画像表示装置1では、隣接するRGBの3つの全画素において、それらの極性液体12’が非有効表示領域P2側に移動して、CF着色表示が行われたときに、当該RGBの画素からの赤色光、緑色光、及び青色光が白色光に混色して、白色表示が行われる。 On the other hand, when the H voltage is applied to the signal electrode 18 in the selection line, a potential difference is generated between the reference electrode 19 and the signal electrode 18, and between the signal electrode 18 and the scanning electrode 20. No potential difference has occurred. Accordingly, the polar liquid 12 ′ moves in the display space K toward the reference electrode 19 where a potential difference is generated with respect to the signal electrode 18. As a result, as illustrated in FIG. 22A, the polar liquid 12 ′ moves to the ineffective display region P2 side, and allows the illumination light from the backlight 16 to reach the color filter portion 25r. . As a result, the display color on the display surface side is in a red display (CF color display) state by the color filter unit 25r. Further, in the image display device 1, when the polar liquid 12 ′ moves to the non-effective display area P 2 side in all three adjacent RGB pixels and the CF color display is performed, the RGB pixels are concerned. The red light, green light, and blue light from are mixed with white light, and white display is performed.
 <非選択ラインでの動作>
 非選択ラインでは、信号電極18に対して例えばL電圧が印加されているときでは、極性液体12’は現状の位置に静止した状態で維持されて、現状の表示色で維持される。すなわち、参照電極19及び走査電極20の双方に対して、M電圧が印加されているので、参照電極19と信号電極18との間の電位差及び走査電極20と信号電極18との間の電位差は、共に同じ電位差が生じるからである。この結果、表示色は、現状の黒色表示またはCF着色表示から変更されずに維持される。
<Operation on unselected lines>
In the non-selected line, for example, when the L voltage is applied to the signal electrode 18, the polar liquid 12 ′ is maintained stationary at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 19 and the scan electrode 20, the potential difference between the reference electrode 19 and the signal electrode 18 and the potential difference between the scan electrode 20 and the signal electrode 18 are as follows. This is because the same potential difference occurs in both cases. As a result, the display color is maintained unchanged from the current black display or CF color display.
 同様に、非選択ラインにおいて、信号電極18に対してH電圧が印加されているときでも、極性液体12’は現状の位置に静止した状態で維持されて、現状の表示色で維持される。すなわち、参照電極19及び走査電極20の双方に対して、M電圧が印加されているので、参照電極19と信号電極18との間の電位差及び走査電極20と信号電極18との間の電位差は、共に同じ電位差が生じるからである。 Similarly, even when the H voltage is applied to the signal electrode 18 in the non-selected line, the polar liquid 12 ′ is maintained in a stationary state at the current position and is maintained at the current display color. That is, since the M voltage is applied to both the reference electrode 19 and the scan electrode 20, the potential difference between the reference electrode 19 and the signal electrode 18 and the potential difference between the scan electrode 20 and the signal electrode 18 are as follows. This is because the same potential difference occurs in both cases.
 以上のように、表2に示した場合でも、表1に示した場合と同様に、非選択ラインにおいては、信号電極18がH電圧及びL電圧のいずれかの電圧であっても、極性液体12’は移動せずに、静止して、表示面側での表示色は変化しない。 As described above, even in the case shown in Table 2, as in the case shown in Table 1, in the non-selected line, even if the signal electrode 18 is either the H voltage or the L voltage, the polar liquid 12 'does not move, stops, and the display color on the display surface side does not change.
 一方、選択ラインにおいては、信号電極18への印加電圧に応じて、上述のように、極性液体12’を移動させることができ、表示面側での表示色を変更させることができる。 On the other hand, in the selection line, the polar liquid 12 ′ can be moved according to the voltage applied to the signal electrode 18 as described above, and the display color on the display surface side can be changed.
 また、本実施形態の画像表示装置1では、表1及び表2に示した印加電圧の組み合わせ以外に、信号電極18への印加電圧を、H電圧またはL電圧の2値だけではなく、これらのH電圧とL電圧との間の電圧を、表示面側に表示される情報に応じて変化させることもできる。すなわち、画像表示装置1では、信号電圧Vdを制御することにより、階調表示が可能となる。これにより、表示性能に優れた表示素子2’を構成することができる。 Further, in the image display device 1 of the present embodiment, in addition to the combinations of applied voltages shown in Tables 1 and 2, the applied voltage to the signal electrode 18 is not limited to the binary value of the H voltage or the L voltage. The voltage between the H voltage and the L voltage can be changed according to information displayed on the display surface side. In other words, the image display device 1 can perform gradation display by controlling the signal voltage Vd. Thereby, the display element 2 ′ having excellent display performance can be configured.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態の表示素子2’では、第1の電極として、表示用空間Kの内部に設置された信号電極18が用いられ、第2の電極として、有効表示領域P1及び非有効表示領域P2の一方側及び他方側にそれぞれ設置されるように、下部基板7に設けられた参照電極19及び走査電極20が用いられている。これにより、本実施形態では、第1の実施形態のものと異なり、スイッチング素子を設けることなく、表示面側の表示色を変更することができ、構造簡単な表示素子2’を構成することができる。しかも、本実施形態の表示素子2’では、3つの電極を設けて、導電性液体12をスライド移動させているので、導電性液体12の形状を変化させるものに比べて、表示面側の表示色の切換速度の高速化及び省力化を容易に図ることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. In the display element 2 ′ of the present embodiment, the signal electrode 18 installed in the display space K is used as the first electrode, and the effective display area P1 and the ineffective display area are used as the second electrodes. The reference electrode 19 and the scanning electrode 20 provided on the lower substrate 7 are used so as to be installed on one side and the other side of P2, respectively. Thus, in the present embodiment, unlike the first embodiment, the display color on the display surface side can be changed without providing a switching element, and a display element 2 ′ having a simple structure can be configured. it can. In addition, in the display element 2 ′ according to the present embodiment, the three electrodes are provided and the conductive liquid 12 is slid. Therefore, the display on the display surface side is compared with the display element 2 ′ that changes the shape of the conductive liquid 12. It is possible to easily increase the color switching speed and save labor.
 また、本実施形態の表示素子2’では、信号ドライバ(信号電圧印加部)21、参照ドライバ(参照電圧印加部)22、及び走査ドライバ(走査電圧印加部)23が信号電極18、参照電極19、及び走査電極20に対して、信号電圧Vd、参照電圧Vr、及び走査電圧Vsを印加するようになっている。これにより、本実施形態では、優れた表示品位を有するマトリクス駆動方式の表示素子2’を容易に構成することができるとともに、各画素領域の表示色を適切に変更することができる。 In the display element 2 ′ of the present embodiment, the signal driver (signal voltage applying unit) 21, the reference driver (reference voltage applying unit) 22, and the scanning driver (scanning voltage applying unit) 23 are the signal electrode 18 and the reference electrode 19. The signal voltage Vd, the reference voltage Vr, and the scanning voltage Vs are applied to the scanning electrode 20. Thereby, in the present embodiment, the matrix drive type display element 2 ′ having excellent display quality can be easily configured, and the display color of each pixel region can be appropriately changed.
 [第3の実施形態]
 図29は、本発明の第3の実施形態にかかる表示素子の有効表示部内の画素領域及び非有効表示部内のダミー領域を示す平面図である。図において、本実施形態と上記第2の実施形態との主な相違点は、リブにより、画素領域とは異なる形状で、ダミー領域を区切った点である。なお、上記第2の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
[Third Embodiment]
FIG. 29 is a plan view showing a pixel region in the effective display portion and a dummy region in the ineffective display portion of the display element according to the third embodiment of the present invention. In the figure, the main difference between the present embodiment and the second embodiment is that the dummy region is partitioned by ribs in a shape different from the pixel region. In addition, about the element which is common in the said 2nd Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図29に示すように、本実施形態の表示素子2’では、有効表示部EDを囲むように、非有効表示部NDが設けられている。言い換えれば、本実施形態の表示素子2’では、第2の実施形態のものと同様に、枠状の非有効表示部NDが設定されている。また、上記QVGA(Quarter Video Graphics Array)で3×1RGB仕様の表示パネルを構成する場合、非有効表示部NDでは、Y方向の寸法H1及びX方向の寸法H2が、例えば0.2mm程度に設定されている。但し、これらの寸法H1及びH2は、下記ダミー領域DAの大きさに応じて、適宜変更されるようになっている。 That is, as shown in FIG. 29, in the display element 2 ′ of the present embodiment, an ineffective display portion ND is provided so as to surround the effective display portion ED. In other words, in the display element 2 ′ of the present embodiment, a frame-like ineffective display portion ND is set as in the second embodiment. Further, when a 3 × 1 RGB specification display panel is configured by the above QVGA (Quarter Video Graphics Array), the non-effective display portion ND sets the dimension H1 in the Y direction and the dimension H2 in the X direction to about 0.2 mm, for example. Has been. However, these dimensions H1 and H2 are appropriately changed according to the size of the dummy area DA described below.
 また、この非有効表示部NDには、第2の実施形態のものと異なり、ダミー画素領域DPが含まれておらず、対応する上部基板6及び下部基板7の間には、リブ34によって区切られたダミー領域DAが設けられている。つまり、図29に例示するように、ダミー領域DAは、リブ34により、画素領域Pとは異なる形状で区切られている。また、枠状の非有効表示部NDにおいて、X方向に平行な2つの各部分及びY方向に平行な2つの各部分に、1または複数のダミー領域DAが設けられている。 Further, unlike the second embodiment, the ineffective display portion ND does not include the dummy pixel region DP, and the corresponding upper substrate 6 and lower substrate 7 are separated by ribs 34. The dummy area DA is provided. That is, as illustrated in FIG. 29, the dummy area DA is partitioned by the ribs 34 in a shape different from that of the pixel area P. Further, in the frame-shaped ineffective display portion ND, one or a plurality of dummy areas DA are provided in each of two portions parallel to the X direction and each of two portions parallel to the Y direction.
 また、非有効表示部NDでは、第2の実施形態のものと同様に、ダミー領域DAの大きさ(全てのダミー領域DAの合計の大きさ)は、複数の各画素領域Pの内部に封入される極性液体12’及びオイル13’の封入量を基に定められている。そして、このダミー領域DAには、所定の液体として、極性液体12’及びオイル13’の少なくとも一方、例えば極性液体12’が封入されている。 In the ineffective display area ND, the size of the dummy area DA (the total size of all the dummy areas DA) is enclosed in each of the plurality of pixel areas P, as in the second embodiment. It is determined on the basis of the enclosed amount of the polar liquid 12 ′ and the oil 13 ′. In the dummy area DA, at least one of the polar liquid 12 ′ and the oil 13 ′, for example, the polar liquid 12 ′ is sealed as a predetermined liquid.
 以上の構成により、本実施形態では、上記第2の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、ダミー領域DAはリブ34により、画素領域Pとは異なる形状で区切られているので、画素領域Pと同じ形状でダミー領域を区切った場合に比べ、上記非有効表示部NDの大きさを容易に小さくすることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as those of the second embodiment. In this embodiment, since the dummy area DA is partitioned by the rib 34 in a shape different from that of the pixel area P, the ineffective display portion is compared with the case where the dummy area is partitioned in the same shape as the pixel area P. The size of ND can be easily reduced.
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。 It should be noted that all of the above embodiments are illustrative and not restrictive. The technical scope of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are also included in the technical scope of the present invention.
 例えば、上記の説明では、表示部を備えた画像表示装置に本発明を適用した場合について説明したが、本発明は文字及び画像を含んだ情報を表示する表示部が設けられた電気機器であれば何等限定されるものではなく、例えば電子手帳等のPDAなどの携帯情報端末、パソコンやテレビなどに付随する表示装置、あるいは電子ペーパーその他、各種表示部を備えた電気機器に好適に用いることができる。 For example, in the above description, the case where the present invention is applied to an image display apparatus provided with a display unit has been described. However, the present invention is an electric device provided with a display unit that displays information including characters and images. The present invention is not limited in any way. For example, it can be suitably used for a portable information terminal such as a PDA such as an electronic notebook, a display device attached to a personal computer, a television, or the like, or an electronic paper or other electric device including various display units. it can.
 また、上記の説明では、極性液体への電界印加に応じて、当該極性液体を移動させるエレクトロウェッティング方式の表示素子を構成した場合について説明したが、本発明の表示素子は、これに限定されるものではなく、外部電界を利用して、表示用空間の内部で極性液体を動作させることにより、表示面側の表示色を変更可能な電界誘導型の表示素子であれば何等限定されるものではなく、電気浸透方式、電気泳動方式、誘電泳動方式などの他の方式の電界誘導型表示素子に適用することができる。 In the above description, the case where an electrowetting type display element that moves the polar liquid in accordance with the application of an electric field to the polar liquid has been described. However, the display element of the present invention is not limited to this. It is not limited as long as it is an electric field induction type display element that can change the display color on the display surface side by operating a polar liquid inside the display space using an external electric field. Instead, the present invention can be applied to other types of electric field induction display elements such as an electroosmosis method, an electrophoresis method, and a dielectrophoresis method.
 但し、上記各実施形態のように、エレクトロウェッティング方式の表示素子を構成する場合の方が、極性液体を低い駆動電圧で高速に移動させることが可能となる。また、エレクトロウェッティング方式の表示素子では、極性液体の移動に応じて表示色が変更されており、液晶層などの複屈折材料を用いた液晶表示装置等と異なり、情報表示に使用される、バックライトからの光や外光の光利用効率に優れた高輝度な表示素子を容易に構成できる点でも好ましい。 However, when the electrowetting type display element is configured as in the above embodiments, the polar liquid can be moved at a high speed with a low driving voltage. Further, in the electrowetting type display element, the display color is changed according to the movement of the polar liquid, and unlike a liquid crystal display device using a birefringent material such as a liquid crystal layer, it is used for information display. It is also preferable in that a high-luminance display element that is excellent in light utilization efficiency of light from the backlight and external light can be easily configured.
 また、上記の説明では、エチレングリコールと水との混合液を極性液体に用いた場合について説明したが、本発明の極性液体はこれに限定されるものではない。具体的にいえば、極性液体には、塩化カリウム、塩化亜鉛、水酸化カリウム、水酸化ナトリウム、アルカリ金属水酸化物、酸化亜鉛、塩化ナトリウム、リチウム塩、リン酸、アルカリ金属炭酸塩、酸素イオン伝導性を有するセラミックスなどの電解質を含んだものを使用することができる。また、溶媒には、水以外に、アルコール、アセトン、ホルムアミド、エチレングリコールなどの有機溶媒を使用することもできる。さらに、本発明の極性液体には、ピリジン系、脂環族アミン系、または脂肪族アミン系などの陽イオンと、フッ化物イオンやトリフラート等のフッ素系などの陰イオンとを含んだイオン液体(常温溶融塩)を使用することもできる。 In the above description, the case where a mixed liquid of ethylene glycol and water is used as a polar liquid has been described. However, the polar liquid of the present invention is not limited to this. Specifically, polar liquids include potassium chloride, zinc chloride, potassium hydroxide, sodium hydroxide, alkali metal hydroxide, zinc oxide, sodium chloride, lithium salt, phosphoric acid, alkali metal carbonate, oxygen ion What contains electrolytes, such as ceramics which have conductivity, can be used. In addition to water, organic solvents such as alcohol, acetone, formamide, and ethylene glycol can also be used as the solvent. Furthermore, the polar liquid of the present invention includes an ionic liquid containing a cation such as pyridine, alicyclic amine, or aliphatic amine, and an anion such as fluoride such as fluoride ion or triflate ( Room temperature molten salt) can also be used.
 また、本発明の極性液体には、導電性を有する導電性液体と、所定以上の比誘電率、好ましくは15以上の比誘電率を有する高誘電性を有する液体が含まれている。 The polar liquid of the present invention includes a conductive liquid having conductivity and a liquid having a high dielectric constant having a specific dielectric constant of a predetermined value or higher, preferably 15 or higher.
 但し、上記の各実施形態のように、水を含んだ混合液を極性液体に使用する場合の方が、取扱性に優れるとともに、製造が簡単な表示素子を容易に構成することができる点で好ましい。 However, as in each of the above-described embodiments, the use of a mixed liquid containing water as a polar liquid is superior in handleability and can easily constitute a display element that is easy to manufacture. preferable.
 また、上記の説明では、無極性のオイルを用いた場合について説明したが、本発明はこれに限定されるものではなく、極性液体と混じり合わない絶縁性流体であればよく、例えばオイルに代えて、空気を使用してもよい。また、オイルとして、シリコーンオイル、脂肪系炭化水素などを使用することができる。また、本発明の絶縁性流体には、所定以下の比誘電率、好ましくは5以下の比誘電率を有する流体が含まれている。 In the above description, the case where nonpolar oil is used has been described. However, the present invention is not limited to this, and any insulating fluid that does not mix with polar liquid may be used. Air may be used. Moreover, silicone oil, aliphatic hydrocarbons, etc. can be used as oil. The insulating fluid of the present invention includes a fluid having a relative dielectric constant of not more than a predetermined value, preferably not more than 5.
 但し、上記の各実施形態のように、極性液体と相溶性がない無極性のオイルを用いた場合の方が、空気と極性液体とを用いる場合よりは、無極性のオイル中で極性液体の液滴がより移動し易くなって、当該極性液体を高速移動させることが可能となり、表示色を高速に切り換えられる点で好ましい。 However, as in each of the above-described embodiments, the use of nonpolar oil that is not compatible with polar liquid is more polar in the nonpolar oil than when air and polar liquid are used. It is preferable in that the liquid droplets can be moved more easily, the polar liquid can be moved at high speed, and the display color can be switched at high speed.
 また、上記第1の実施形態の説明では、スイッチング素子として薄膜トランジスタを用いた場合について説明したが、本発明のスイッチング素子はこれに限定されるものではなく、例えばMIM素子等の他のスイッチング素子を使用することもできる。 In the description of the first embodiment, the case where a thin film transistor is used as the switching element has been described. However, the switching element of the present invention is not limited to this, and other switching elements such as an MIM element are used. It can also be used.
 また、上記第1の実施形態の説明では、キャパシタとして、画素電極を覆うように、下部基板(第1及び第2の基板の一方側)に設けられた誘電体層を用いた場合について説明したが、本発明のキャパシタは画素電極(第2の電極)に供給された電荷を保持することができるものであれば何等限定されない。具体的には、コンデンサ(ディスクリート部品)をキャパシタとして設置したり、第1及び第2の基板の一方側の内部に画素電極を埋設した場合には、当該基板をキャパシタとして使用したりすることもできる。また、下部基板の画素電極上に撥水膜をコートした基板を画素ごとにキャパシタが形成された状態とみなして使用することもできる。 In the description of the first embodiment, a case has been described in which the dielectric layer provided on the lower substrate (one side of the first and second substrates) is used as the capacitor so as to cover the pixel electrode. However, the capacitor of the present invention is not limited as long as it can hold the charge supplied to the pixel electrode (second electrode). Specifically, when a capacitor (discrete component) is installed as a capacitor, or when a pixel electrode is embedded inside one side of the first and second substrates, the substrate may be used as a capacitor. it can. Further, a substrate in which a water-repellent film is coated on the pixel electrode of the lower substrate can be regarded as a state in which a capacitor is formed for each pixel.
 但し、上記の各実施形態のように、誘電体層を用いる場合の方が、ディスクリート部品からなるキャパシタの設置を省略することができ、構造簡単な表示素子を容易に構成することができる。 However, in the case of using the dielectric layer as in the above embodiments, it is possible to omit the installation of a capacitor composed of discrete components, and a display device with a simple structure can be easily configured.
 また、上記第2及び第3の各実施形態の説明では、無色透明なオイルと黒色に着色された極性液体を用いた場合について説明したが、本発明はこれに限定されるものではなく、例えば複数の画素領域が、表示面側でフルカラー表示が可能な複数の色に応じてそれぞれ設けられるように、RGB、シアン(C)、マゼンタ(M)、及びイエロー(Y)のCMY、またはRGBYCなどに着色された複数色の極性液体を用いることもできる。このように着色された極性液体を用いた場合では、第2及び第3の各実施形態において、そのカラーフィルタ層の設置を省略することができる。 In the description of each of the second and third embodiments, the case of using a colorless and transparent oil and a polar liquid colored in black has been described. However, the present invention is not limited to this, for example, RGB, cyan (C), magenta (M), yellow (Y) CMY, RGBYC, etc. so that a plurality of pixel regions are provided in accordance with a plurality of colors capable of full color display on the display surface side. It is also possible to use a plurality of polar liquids that are colored. When the polar liquid colored in this way is used, the installation of the color filter layer can be omitted in the second and third embodiments.
 また、上記第1~第3の各実施形態の説明では、ダミー領域(ダミー画素領域を含む。)の内部に対して、所定の液体として極性液体及びオイル(絶縁性流体)を封入した場合について説明したが、本発明の所定の液体はダミー領域の内側に設けられた複数の各画素領域の内部に対して封入される極性液体及び絶縁性流体の蒸発を抑制できるものであれば何等限定されない。 In the description of each of the first to third embodiments, the case where a polar liquid and oil (insulating fluid) are sealed as predetermined liquids in the dummy area (including the dummy pixel area) is used. As described above, the predetermined liquid of the present invention is not limited as long as it can suppress evaporation of the polar liquid and the insulating fluid sealed in the inside of each of the plurality of pixel areas provided inside the dummy area. .
 但し、上記の各実施形態のように、所定の液体には、各画素領域の内部に対して封入される極性液体及び絶縁性流体と組成が同一または近い液体が好ましく、さらに、同一の液体を用いた場合には、表示素子の部品点数を削減することができ、コスト安価な表示素子を容易に構成することができる点でより好ましい。具体的には、上部基板(第1の基板)及び下部基板(第2の基板)が貼り合わせられる前にオイルが各画素領域の内部に対して封入される、第1の実施形態の場合では、当該オイルの組成が含まれたアルカンオイル、あるいはトルエン、またはこれらの混合液を所定の液体として用いることが好ましい。また、上部基板(第1の基板)及び下部基板(第2の基板)が貼り合わせられる前に極性液体が各画素領域の内部に対して封入される、第2及び第3の各実施形態の場合では、当該極性液体の組成が含まれた水を所定の液体として用いることが好ましい。 However, as in each of the above embodiments, the predetermined liquid is preferably a liquid having the same or similar composition as the polar liquid and the insulating fluid sealed in the inside of each pixel region. When used, it is more preferable in that the number of parts of the display element can be reduced, and an inexpensive display element can be easily configured. Specifically, in the case of the first embodiment, oil is sealed into the inside of each pixel region before the upper substrate (first substrate) and the lower substrate (second substrate) are bonded together. It is preferable to use alkane oil containing the composition of the oil, toluene, or a mixture thereof as the predetermined liquid. Further, in each of the second and third embodiments, the polar liquid is sealed into the inside of each pixel region before the upper substrate (first substrate) and the lower substrate (second substrate) are bonded together. In some cases, water containing the polar liquid composition is preferably used as the predetermined liquid.
 また、上記第1~第3の各実施形態の説明では、非有効表示部及び有効表示部内の複数の各画素領域での非有効表示領域について、上部基板(第1の基板)側に設けられた遮光膜によって設定した場合について説明したが、本発明はこれに限定されるものではなく、例えば非有効表示部及び非有効表示領域について、各々別個の遮光膜を用いて設定してもよい。また、例えば非有効表示部について、上部基板(第1の基板)及び下部基板(第2の基板)の少なくとも一方側に設けられた遮光膜によって設定してもよい。 In the description of the first to third embodiments, the ineffective display area and the ineffective display area in each of the plurality of pixel areas in the effective display area are provided on the upper substrate (first substrate) side. However, the present invention is not limited to this. For example, the non-effective display portion and the non-effective display area may be set using separate light-shielding films. Further, for example, the ineffective display portion may be set by a light shielding film provided on at least one side of the upper substrate (first substrate) and the lower substrate (second substrate).
 但し、上記の各実施形態のように、非有効表示部と非有効表示領域について、第1の基板側に設けられた同一の遮光膜によって設定する場合の方が、構造簡単な表示素子を容易に構成することができる点で好ましい。 However, as in each of the above-described embodiments, a display element with a simple structure is easier when the ineffective display portion and the ineffective display area are set by the same light-shielding film provided on the first substrate side. It is preferable at the point which can be comprised.
 また、上記第1~第3の各実施形態の説明では、バックライトを備えた透過型の表示素子を構成した場合について説明したが、本発明はこれに限定されるものではなく、拡散反射板などの光反射部を有する反射型や、前記光反射部とバックライトとを併用した半透過型の表示素子にも適用することができる。 In the description of each of the first to third embodiments, the case where a transmissive display element including a backlight is configured has been described. However, the present invention is not limited to this, and the diffuse reflector The present invention can also be applied to a reflection type having a light reflection part such as a transflective display element in which the light reflection part and a backlight are used in combination.
 また、上記第2及び第3の各実施形態の説明では、信号電極を上部基板(第1の基板)側に設けるとともに、参照電極及び走査電極を下部基板(第2の基板)側に設けた場合について説明した。しかしながら、本発明はこれに限定されるものではなく、極性液体と接触するように、表示用空間の内部に信号電極を設置し、かつ、極性液体及び互いに電気的に絶縁された状態で、参照電極及び走査電極を第1及び第2の基板の一方側に設けるものであればよい。具体的にいえば、例えば信号電極を第2の基板側やリブ上に設けるとともに、参照電極及び走査電極を第1の基板側に設けてもよい。 In the description of the second and third embodiments, the signal electrode is provided on the upper substrate (first substrate) side, and the reference electrode and the scan electrode are provided on the lower substrate (second substrate) side. Explained the case. However, the present invention is not limited to this, and the signal electrode is installed inside the display space so as to come into contact with the polar liquid, and the reference is made while being electrically insulated from the polar liquid. What is necessary is just to provide an electrode and a scanning electrode in one side of the 1st and 2nd board | substrate. Specifically, for example, the signal electrode may be provided on the second substrate side or on the rib, and the reference electrode and the scan electrode may be provided on the first substrate side.
 また、上記第2及び第3の各実施形態の説明では、参照電極及び走査電極を有効表示領域側及び非有効表示領域側にそれぞれ設置した場合について説明したが、本発明はこれに限定されるものではなく、参照電極及び走査電極を非有効表示領域側及び有効表示領域側にそれぞれ設置してもよい。 In the description of each of the second and third embodiments, the case where the reference electrode and the scanning electrode are provided on the effective display area side and the ineffective display area side has been described. However, the present invention is limited to this. Instead, the reference electrode and the scanning electrode may be provided on the non-effective display area side and the effective display area side, respectively.
 また、上記第2及び第3の各実施形態の説明では、参照電極及び走査電極を下部基板(第2の基板)の表示面側の表面に設けた場合について説明したが、本発明はこれに限定されるものではなく、絶縁材料からなる上記第2の基板の内部に埋設した参照電極及び走査電極を用いることもできる。このように構成した場合には、第2の基板を誘電体層として兼用させることができ、当該誘電体層の設置を省略することができる。 In the description of each of the second and third embodiments, the case where the reference electrode and the scanning electrode are provided on the display surface side surface of the lower substrate (second substrate) has been described. The reference electrode and the scan electrode embedded in the second substrate made of an insulating material can be used without limitation. In such a configuration, the second substrate can be used as a dielectric layer, and the installation of the dielectric layer can be omitted.
 また、上記第2及び第3の各実施形態の説明では、透明な電極材料を用いて参照電極及び走査電極を構成した場合について説明したが、本発明は参照電極及び走査電極のうち、画素の有効表示領域に対向するように設置される一方の電極だけを透明な電極材料によって構成すればよく、有効表示領域に対向されない他方の電極には、アルミニウム、銀、クロム、その他の金属などの不透明な電極材料を使用することができる。 In the description of each of the second and third embodiments, the case where the reference electrode and the scan electrode are configured using a transparent electrode material has been described. However, the present invention relates to the pixel of the reference electrode and the scan electrode. Only one electrode placed so as to face the effective display area may be made of a transparent electrode material, and the other electrode not facing the effective display area may be opaque such as aluminum, silver, chromium, or other metal. Any electrode material can be used.
 また、上記第2及び第3の各実施形態の説明では、帯状の参照電極及び走査電極を用いた場合について説明したが、本発明の参照電極及び走査電極の各形状はこれに何等限定されない。例えば透過型に比べて、情報表示に用いられる光の利用効率が低下する反射型の表示素子では、線状や網状などの光ロスが生じ難い形状としてもよい。 In the description of each of the second and third embodiments, the case where the belt-like reference electrode and the scan electrode are used has been described. However, the shapes of the reference electrode and the scan electrode of the present invention are not limited to this. For example, in a reflective display element in which the use efficiency of light used for information display is lower than that of a transmissive type, the shape may be such that light loss such as a line shape or a net shape hardly occurs.
 また、上記第2及び第3の各実施形態の説明では、信号電極に線状配線を用いた場合について説明したが、本発明の信号電極はこれに限定されるものではなく、網状配線などの他の形状に形成された配線も使用することができる。 In the description of each of the second and third embodiments, the case where a linear wiring is used for the signal electrode has been described. However, the signal electrode of the present invention is not limited to this, and a network wiring or the like is used. Wirings formed in other shapes can also be used.
 また、上記第2及び第3の各実施形態の説明では、カラーフィルタ層を上部基板(第1の基板)の非表示面側の表面に形成した場合について説明したが、本発明はこれに限定されるものではなく、第1の基板の表示面側の表面や下部基板(第2の基板)側にカラーフィルタ層を設置することもできる。このように、カラーフィルタ層を用いる場合の方が、複数色の極性液体を用意する場合に比べて、製造簡単な表示素子を容易に構成できる点で好ましい。また、このカラーフィルタ層に含まれたカラーフィルタ部(開口部)及びブラックマトリクス部(遮光膜)により、表示用空間に対し、有効表示領域及び非有効表示領域をそれぞれ適切に、かつ、確実に設定することができる点でも好ましい。 In the description of each of the second and third embodiments, the case where the color filter layer is formed on the surface on the non-display surface side of the upper substrate (first substrate) has been described. However, the present invention is not limited to this. Instead, the color filter layer can be provided on the surface of the first substrate on the display surface side or on the lower substrate (second substrate) side. Thus, the case where the color filter layer is used is preferable in that a display element which is easy to manufacture can be easily configured as compared with the case where a plurality of colors of polar liquids are prepared. In addition, the color filter part (opening part) and the black matrix part (light-shielding film) included in the color filter layer appropriately and reliably provide an effective display area and an ineffective display area with respect to the display space. It is also preferable in that it can be set.
 また、上記第1~第3の各実施形態の説明では、ダミー領域の大きさが、複数の各画素領域の内部に封入される極性液体及びオイル(絶縁性流体)の封入量を基に定められている場合について説明したが、本発明はこれに限定されるものではなく、極性液体の種類や絶縁性流体の種類などに応じて、ダミー領域の大きさ適宜変更することもできる。 In the description of each of the first to third embodiments, the size of the dummy region is determined based on the amount of polar liquid and oil (insulating fluid) sealed in each of the plurality of pixel regions. However, the present invention is not limited to this, and the size of the dummy region can be appropriately changed according to the type of polar liquid, the type of insulating fluid, and the like.
 また、上記第1~第3の各実施形態の説明では、オイルまたは極性液体を封入して、上部基板(第1の基板)及び下部基板(第2の基板)を貼り合わせた後、毛管現象を利用して極性液体またはオイルを封入する場合について説明したが、本発明はこれに限定されるものではなく、オイルまたは極性液体を封入した後、第1の基板及び第2の基板を貼り合わせる前に、ディスペンサー法やインクジェット法などを用いて、極性液体またはオイルを封入してもよい。また、第1の基板及び第2の基板を貼り合わせる前に、極性液体及びオイルを同時に封入してもよい。 In the description of each of the first to third embodiments, after the oil or polar liquid is sealed and the upper substrate (first substrate) and the lower substrate (second substrate) are bonded together, capillary action is performed. However, the present invention is not limited to this, and after the oil or polar liquid is sealed, the first substrate and the second substrate are bonded together. Prior to this, polar liquid or oil may be sealed using a dispenser method, an ink jet method, or the like. Further, the polar liquid and the oil may be sealed at the same time before the first substrate and the second substrate are bonded to each other.
 本発明は、表示品位の低下を防止することができる表示素子、その製造方法、及びその表示素子を用いた電気機器に対して有用である。 The present invention is useful for a display element that can prevent display quality from being deteriorated, a manufacturing method thereof, and an electric device using the display element.
 1 画像表示装置(電気機器)
 2、2’ 表示素子
 6 上部基板(第1の基板)
 7 下部基板(第2の基板)
 8 画素電極(第2の電極)
 9 共通電極(第1の電極)
 10 カラーフィルタ層
 10r、10g、10b カラーフィルタ部(開口部)
 10s ブラックマトリクス部(遮光膜)
 11、34 リブ
 11a 第1のリブ部材
 11b 第2のリブ部材
 12、12’ 極性液体(所定の液体)
 13、13’ オイル(絶縁性流体、所定の液体)
 14 誘電体層(キャパシタ)
 18 信号電極(第1の電極)
 19 参照電極(第2の電極)
 20 走査電極(第2の電極)
 21 信号ドライバ(信号電圧印加部)
 22 参照ドライバ(参照電圧印加部)
 23 走査ドライバ(走査電圧印加部)
 25 カラーフィルタ層
 25r、25g、25b カラーフィルタ部(開口部)
 25s ブラックマトリクス部(遮光膜)
 S ソース配線(データ配線)
 G ゲート配線
 SW 薄膜トランジスタ(スイッチング素子)
 K 表示用空間
 P 画素領域
 P1 有効表示領域
 P2 非有効表示領域
 DP ダミー画素領域(ダミー領域)
 DA ダミー領域
 ED 有効表示部
 ND 非有効表示部
1 Image display device (electric equipment)
2, 2 'display element 6 Upper substrate (first substrate)
7 Lower substrate (second substrate)
8 Pixel electrode (second electrode)
9 Common electrode (first electrode)
10 Color filter layer 10r, 10g, 10b Color filter part (opening part)
10s black matrix (light shielding film)
11, 34 Rib 11a First rib member 11b Second rib member 12, 12 ′ Polar liquid (predetermined liquid)
13, 13 'oil (insulating fluid, predetermined liquid)
14 Dielectric layer (capacitor)
18 Signal electrode (first electrode)
19 Reference electrode (second electrode)
20 Scanning electrode (second electrode)
21 Signal driver (Signal voltage application unit)
22 Reference driver (reference voltage application unit)
23 Scanning driver (scanning voltage application unit)
25 Color filter layer 25r, 25g, 25b Color filter part (opening)
25s black matrix (light shielding film)
S source wiring (data wiring)
G Gate wiring SW Thin film transistor (switching element)
K display space P pixel area P1 effective display area P2 ineffective display area DP dummy pixel area (dummy area)
DA dummy area ED Effective display area ND Non-effective display area

Claims (17)

  1. 表示面側に設けられた第1の基板と、所定の表示用空間が前記第1の基板との間に形成されるように、当該第1の基板の非表示面側に設けられた第2の基板と、前記表示用空間に対し、設定された有効表示領域及び非有効表示領域と、前記表示用空間の内部で少なくとも前記有効表示領域側に移動可能に封入された極性液体とを具備し、前記極性液体を移動させることにより、前記表示面側の表示色を変更可能に構成された表示素子であって、
     前記極性液体と接触するように、前記表示用空間の内部に設置された第1の電極、及び
     前記極性液体及び前記第1の電極に対して電気的に絶縁された状態で、前記第1及び第2の基板の一方側に設けられた第2の電極を備え、
     前記表示面に対して、前記表示用空間をリブにて区切るように設けられた複数の画素領域を有する有効表示部と、前記有効表示部を囲むように設けられた非有効表示部とを設定し、
     前記有効表示部内の前記複数の各画素領域の内部に対して、前記極性液体と当該極性液体と混じり合わない絶縁性流体を封入するとともに、
     前記非有効表示部に対応する第1及び第2の基板の間に、ダミー領域を設け、当該ダミー領域の内部に対して、所定の液体を封入した、
     ことを特徴とする表示素子。
    A second substrate provided on the non-display surface side of the first substrate so that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate. An effective display area and an ineffective display area set with respect to the display space, and a polar liquid sealed so as to be movable at least toward the effective display area inside the display space. A display element configured to change the display color on the display surface side by moving the polar liquid,
    A first electrode installed in the display space so as to be in contact with the polar liquid; and the first and second electrodes in a state of being electrically insulated from the polar liquid and the first electrode. A second electrode provided on one side of the second substrate;
    An effective display unit having a plurality of pixel regions provided so as to divide the display space by ribs and an ineffective display unit provided to surround the effective display unit are set on the display surface. And
    Encapsulating the polar liquid and an insulating fluid that does not mix with the polar liquid inside each of the plurality of pixel regions in the effective display unit,
    A dummy area is provided between the first and second substrates corresponding to the ineffective display portion, and a predetermined liquid is sealed inside the dummy area.
    A display element characterized by the above.
  2. 前記所定の液体として、前記極性液体と前記絶縁性流体が用いられている請求項1に記載の表示素子。 The display element according to claim 1, wherein the polar liquid and the insulating fluid are used as the predetermined liquid.
  3. 前記非有効表示部は、前記第1及び第2の基板の少なくとも一方側に設けられた遮光膜によって設定されている請求項1または2に記載の表示素子。 The display element according to claim 1, wherein the non-effective display unit is set by a light shielding film provided on at least one side of the first and second substrates.
  4. 前記ダミー領域は、リブにより、前記画素領域とは異なる形状で区切られている請求項1~3のいずれか1項に記載の表示素子。 The display element according to any one of claims 1 to 3, wherein the dummy region is partitioned by a rib in a shape different from that of the pixel region.
  5. 前記第1及び第2の基板の一方側には、データ配線及びゲート配線がマトリクス状に設けられ、
     前記第1及び第2の基板の他方側には、前記第1の電極としての平面状の透明電極が設けられ、
     前記複数の各画素領域が、前記データ配線と前記ゲート配線との交差部単位に設けられ、
     前記複数の各画素領域には、前記データ配線及び前記ゲート配線に接続されたスイッチング素子、前記スイッチング素子に接続された前記第2の電極としての画素電極、及び前記画素電極に供給された電荷を保持するキャパシタが設けられている請求項1~4のいずれか1項に記載の表示素子。
    Data wiring and gate wiring are provided in a matrix on one side of the first and second substrates,
    On the other side of the first and second substrates, a planar transparent electrode as the first electrode is provided,
    Each of the plurality of pixel regions is provided in an intersection unit between the data line and the gate line,
    In each of the plurality of pixel regions, a switching element connected to the data wiring and the gate wiring, a pixel electrode as the second electrode connected to the switching element, and a charge supplied to the pixel electrode The display element according to any one of claims 1 to 4, further comprising a capacitor for holding.
  6. 前記キャパシタとして、前記画素電極を覆うように、前記第1及び第2の基板の一方側に設けられた誘電体層が用いられている請求項5に記載の表示素子。 The display element according to claim 5, wherein a dielectric layer provided on one side of the first and second substrates is used as the capacitor so as to cover the pixel electrode.
  7. 前記第1の電極として、前記表示用空間の内部に設置された信号電極が用いられ、
     前記第2の電極として、前記有効表示領域及び前記非有効表示領域の一方側に設置されるように、前記第1及び第2の基板の一方側に設けられた参照電極、及び
     前記有効表示領域側及び前記非有効表示領域側の他方側に設置されるように、前記参照電極に対して電気的に絶縁された状態で、前記第1及び第2の基板の一方側に設けられた走査電極が用いられている請求項1~4のいずれか1項に記載の表示素子。
    As the first electrode, a signal electrode installed inside the display space is used,
    As the second electrode, a reference electrode provided on one side of the first and second substrates so as to be installed on one side of the effective display area and the non-effective display area, and the effective display area Scanning electrode provided on one side of the first and second substrates in a state of being electrically insulated from the reference electrode so as to be installed on the other side of the side and the ineffective display area side The display element according to any one of claims 1 to 4, wherein is used.
  8. 複数の前記信号電極が、所定の配列方向に沿って設けられ、
     複数の前記参照電極及び複数の前記走査電極が、互いに交互に、かつ、前記複数の信号電極と交差するように設けられ、
     前記複数の信号電極に接続されるとともに、前記複数の各信号電極に対して、前記表示面側に表示される情報に応じて、所定の電圧範囲内の信号電圧を印加する信号電圧印加部と、
     前記複数の参照電極に接続されるとともに、前記複数の各参照電極に対して、前記極性液体が前記信号電圧に応じて、前記表示用空間の内部を移動するのを許容する選択電圧と、前記極性液体が前記表示用空間の内部を移動するのを阻止する非選択電圧との一方の電圧を印加する参照電圧印加部と、
     前記複数の走査電極に接続されるとともに、前記複数の各走査電極に対して、前記極性液体が前記信号電圧に応じて、前記表示用空間の内部を移動するのを許容する選択電圧と、前記極性液体が前記表示用空間の内部を移動するのを阻止する非選択電圧との一方の電圧を印加する走査電圧印加部とを備えている請求項7に記載の表示素子。
    A plurality of the signal electrodes are provided along a predetermined arrangement direction,
    The plurality of reference electrodes and the plurality of scanning electrodes are provided alternately with each other and intersect with the plurality of signal electrodes,
    A signal voltage applying unit that is connected to the plurality of signal electrodes and applies a signal voltage within a predetermined voltage range to each of the plurality of signal electrodes in accordance with information displayed on the display surface side; ,
    A selection voltage that is connected to the plurality of reference electrodes and that allows the polar liquid to move within the display space in response to the signal voltage for each of the plurality of reference electrodes; A reference voltage applying unit for applying one of a non-selection voltage for preventing the polar liquid from moving inside the display space;
    A selection voltage that is connected to the plurality of scan electrodes and that allows the polar liquid to move within the display space in response to the signal voltage for each of the plurality of scan electrodes; The display element according to claim 7, further comprising: a scanning voltage applying unit that applies one voltage of a non-selection voltage that prevents the polar liquid from moving inside the display space.
  9. 前記複数の各画素領域は、前記信号電極と前記走査電極との交差部単位に設けられている請求項8に記載の表示素子。 The display element according to claim 8, wherein each of the plurality of pixel regions is provided in a unit of intersection of the signal electrode and the scan electrode.
  10. 前記参照電極及び前記走査電極の表面上には、誘電体層が積層されている請求項6~9のいずれか1項に記載の表示素子。 10. The display element according to claim 6, wherein a dielectric layer is laminated on the surfaces of the reference electrode and the scanning electrode.
  11. 前記複数の画素領域が、前記表示面側でフルカラー表示が可能な複数の色に応じてそれぞれ設けられている請求項1~10のいずれか1項に記載の表示素子。 The display element according to any one of claims 1 to 10, wherein the plurality of pixel regions are provided in accordance with a plurality of colors capable of full color display on the display surface side.
  12. 前記非有効表示領域は、前記第1及び第2の基板のいずれか一方側に設けられた遮光膜によって設定され、
     前記有効表示領域は、前記遮光膜に形成された開口部によって設定されている請求項1~11のいずれか1項に記載の表示素子。
    The ineffective display area is set by a light shielding film provided on either one of the first and second substrates,
    12. The display element according to claim 1, wherein the effective display area is set by an opening formed in the light shielding film.
  13. 前記非有効表示部と前記非有効表示領域とは、前記第1の基板側に設けられた同一の遮光膜によって設定されている請求項12に記載の表示素子。 The display element according to claim 12, wherein the non-effective display portion and the non-effective display area are set by the same light shielding film provided on the first substrate side.
  14. 文字及び画像を含んだ情報を表示する表示部を備えた電気機器であって、
     前記表示部に、請求項1~13のいずれか1項に記載の表示素子を用いたことを特徴とする電気機器。
    An electrical device having a display unit for displaying information including characters and images,
    14. An electric device using the display element according to claim 1 for the display portion.
  15. 表示面側に設けられた第1の基板と、所定の表示用空間が前記第1の基板との間に形成されるように、当該第1の基板の非表示面側に設けられた第2の基板と、前記表示用空間に対し、設定された有効表示領域及び非有効表示領域と、前記表示用空間の内部で少なくとも前記有効表示領域側に移動可能に封入された極性液体とを具備し、前記極性液体を移動させることにより、前記表示面側の表示色を変更可能に構成された表示素子の製造方法であって、
     前記第1及び第2の基板の一方側に、リブを設けることにより、有効表示部内に複数の画素領域を設定するとともに、前記有効表示部を囲む非有効表示部内にダミー領域を設定する領域設定工程と、
     前記複数の各画素領域の内部に対して、前記極性液体及び当該極性液体と混じり合わない絶縁性流体の少なくとも一方を封入するとともに、前記ダミー領域の内部に対して、所定の液体を封入する封入工程と、
     を備えていることを特徴とする表示素子の製造方法。
    A second substrate provided on the non-display surface side of the first substrate so that a predetermined display space is formed between the first substrate provided on the display surface side and the first substrate. An effective display area and an ineffective display area set with respect to the display space, and a polar liquid sealed so as to be movable at least toward the effective display area inside the display space. A method of manufacturing a display element configured to change the display color on the display surface side by moving the polar liquid,
    By setting a rib on one side of the first and second substrates, a plurality of pixel areas are set in the effective display area, and a dummy area is set in the ineffective display area surrounding the effective display area. Process,
    Encapsulating at least one of the polar liquid and an insulating fluid that does not mix with the polar liquid in each of the plurality of pixel regions and enclosing a predetermined liquid in the dummy region Process,
    A method for manufacturing a display element, comprising:
  16. 前記封入工程には、前記ダミー領域の内部に対して、前記所定の液体を封入する第1の封入工程と、
     前記第1の封入工程の後で、前記複数の各画素領域の内部に対して、前記極性液体及び前記絶縁性流体の少なくとも一方を封入する第2の封入工程とが含まれている請求項15に記載の表示素子の製造方法。
    In the sealing step, a first sealing step of sealing the predetermined liquid with respect to the inside of the dummy region,
    16. The second enclosing step of enclosing at least one of the polar liquid and the insulating fluid into the inside of each of the plurality of pixel regions after the first enclosing step is included. The manufacturing method of the display element of description.
  17. 前記所定の液体として、前記極性液体と前記絶縁性流体が用いられている請求項15または16に記載の表示素子の製造方法。 The method for manufacturing a display element according to claim 15, wherein the polar liquid and the insulating fluid are used as the predetermined liquid.
PCT/JP2012/059087 2011-04-08 2012-04-03 Display element, manufacturing method, and electrical apparatus WO2012137779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011086410 2011-04-08
JP2011-086410 2011-04-08

Publications (1)

Publication Number Publication Date
WO2012137779A1 true WO2012137779A1 (en) 2012-10-11

Family

ID=46969175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059087 WO2012137779A1 (en) 2011-04-08 2012-04-03 Display element, manufacturing method, and electrical apparatus

Country Status (1)

Country Link
WO (1) WO2012137779A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162927A (en) * 2007-12-28 2009-07-23 Sharp Corp Display element and electric equipment using the same
JP2010072483A (en) * 2008-09-19 2010-04-02 Sharp Corp Display element and electronic equipment using the same
JP2011007927A (en) * 2009-06-24 2011-01-13 Ricoh Co Ltd Display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162927A (en) * 2007-12-28 2009-07-23 Sharp Corp Display element and electric equipment using the same
JP2010072483A (en) * 2008-09-19 2010-04-02 Sharp Corp Display element and electronic equipment using the same
JP2011007927A (en) * 2009-06-24 2011-01-13 Ricoh Co Ltd Display element

Similar Documents

Publication Publication Date Title
US8698715B2 (en) Display device and method for manufacturing the same
RU2454690C2 (en) Display and electric device using said display
CN107193170B (en) Display device and color display method
WO2011111263A1 (en) Display element, and electrical device using same
WO2012026161A1 (en) Display element and electrical apparatus using same
JP2009003017A (en) Display element, manufacturing method, and electric device
JP5113938B2 (en) Display element and electric device using the same
WO2010095301A1 (en) Display element and electric device using same
WO2011074304A1 (en) Display element and electrical device using the same
WO2012066970A1 (en) Display element and electrical appliance using same
WO2010016309A1 (en) Display element and electric device using the same
WO2011092892A1 (en) Display element and electric device equipped with same
JP2010072482A (en) Display element and electronic equipment using the same
WO2010095302A1 (en) Display element and electric device using same
WO2012137779A1 (en) Display element, manufacturing method, and electrical apparatus
WO2012002013A1 (en) Display element and electric apparatus using same
JP2010072483A (en) Display element and electronic equipment using the same
WO2012098987A1 (en) Display element and electrical device using same
WO2011033802A1 (en) Display element and electric apparatus using same
WO2010016304A1 (en) Display element and electric instrument using the same
JP2014006412A (en) Display element and electronic equipment using the same
WO2013108851A1 (en) Display element and electrical device using the same
WO2013027626A1 (en) Display element and electric apparatus employing same
JP2013125131A (en) Display element, manufacturing method, and electrical apparatus
WO2012086451A1 (en) Display element and electrical device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP