WO2012137686A1 - Particle size evaluation method and particle size evaluation device - Google Patents

Particle size evaluation method and particle size evaluation device Download PDF

Info

Publication number
WO2012137686A1
WO2012137686A1 PCT/JP2012/058630 JP2012058630W WO2012137686A1 WO 2012137686 A1 WO2012137686 A1 WO 2012137686A1 JP 2012058630 W JP2012058630 W JP 2012058630W WO 2012137686 A1 WO2012137686 A1 WO 2012137686A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid
control
particle diameter
fine particles
Prior art date
Application number
PCT/JP2012/058630
Other languages
French (fr)
Japanese (ja)
Inventor
準治 赤羽
和宏 竹山
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2013508844A priority Critical patent/JP6100161B2/en
Publication of WO2012137686A1 publication Critical patent/WO2012137686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means

Definitions

  • the present invention relates to a particle diameter evaluation method and a particle diameter evaluation apparatus. More specifically, the present invention relates to a method for evaluating the particle diameter of fine particles contained in a liquid forming a high-concentration dispersion in a short time without diluting the liquid, and an evaluation apparatus for realizing the method.
  • This application claims priority based on Japanese Patent Application No. 2011-082029 for which it applied on April 1, 2011, and uses the content here.
  • Measuring and managing the particle size of fine particles contained in a liquid forming a dispersion such as an emulsion is an effective means for quality control of products in which the liquid is used.
  • the particle diameter of the fine particles constituting the emulsion or the like is usually on the order of several tens of nanometers to several tens of micrometers, and is controlled so as to fall within a certain range according to the purpose.
  • Patent Document 1 When measuring the particle diameter, for example, a laser particle diameter measuring apparatus using Mie scattering theory or Fraunhofer diffraction theory is used (Patent Document 1). When measuring the particle diameter of fine particles contained in a liquid forming a high-concentration dispersion using these apparatuses, dilution at a high magnification and a long measurement time are generally required.
  • the solvent constituting the liquid has the property of swelling or dissolving the fine particles
  • the destruction of the fine particles is promoted by dilution (swelling and dissolution may occur).
  • fine particles may be aggregated by a solvent, or when an aqueous solvent is used, the concentration of the emulsifier may be changed to increase the particle size. This makes it impossible to measure and evaluate the exact particle size of the fine particles, making it difficult to control the quality of products using liquids.
  • the present invention has been made in consideration of the above points, and is capable of determining the particle diameter of fine particles contained in a liquid forming a high-concentration dispersion without diluting the liquid.
  • the first object is to provide a method for evaluating the diameter.
  • the second aspect of the present invention provides a particle diameter evaluation apparatus that can determine the particle diameter of fine particles contained in a liquid forming a high-concentration dispersion without diluting the liquid. Objective.
  • the particle diameter evaluation method is a particle diameter evaluation method for fine particles contained in a liquid to be measured.
  • the transmitted light that has passed through the measurement cell in the irradiated light is received by the light receiving unit, and the transmitted light is converted into an electrical signal.
  • the control unit outputs the electrical signal output from the light receiving unit.
  • the light transmittance of the liquid to be measured is calculated based on the above, and the calculated light transmittance is compared with a database to obtain the particle diameter of the fine particles corresponding to the light transmittance.
  • the database is preliminarily attached to the control unit, and the database includes the transmittance of light in the control liquid with respect to irradiation light having a wavelength correlated with the particle diameter, and the control liquid.
  • control liquid includes the control liquid containing the population of the control fine particles. It is obtained by measuring the particle size of the control fine particles.
  • the light emitting section is composed of a light source that emits light of a specific wavelength.
  • a filter that passes only light of a specific wavelength is provided between the light emitting unit and the measurement cell or between the measurement cell and the light receiving unit. Preferably it is.
  • a spectroscope is provided between the light emitting unit and the measurement cell or between the measurement cell and the light receiving unit.
  • the measurement cell is preferably a flow cell for flowing the liquid to be measured.
  • the measured liquid is preferably composed of fine particles and water.
  • the measured liquid is preferably composed of fine particles and a solvent other than water.
  • the particle diameter evaluation apparatus includes a control unit, a light emitting unit that irradiates the measured liquid in the measurement cell with irradiation light, and transmitted light that has passed through the measurement cell among the irradiation light. And a light receiving unit that converts light energy based on the transmitted light into an electrical signal.
  • the control unit calculates the light transmittance of the liquid to be measured based on the electrical signal output from the light receiving unit, and compares the calculated light transmittance with a database to check the light transmittance. The particle diameter of the fine particles corresponding to the light transmittance is determined.
  • the database is attached to the control unit in advance, and the database includes the transmittance of light in the control liquid with respect to irradiation light having a wavelength correlated with the particle diameter, and the control liquid.
  • 3 or more sets of data indicated by the particle size of the included control fine particles, the control fine particles having a specific particle size and the same quality as the fine particles contained in the measured liquid The three or more points of data are obtained by using three or more types of the control liquid including a group composed of the control microparticles, and using the control particle contained in the control liquid by a desired particle size measuring device. It is obtained by measuring the particle diameter of the fine particles for use.
  • the light emitting unit may convert the electric signal transmitted from the control unit into irradiation light, and irradiate the liquid to be measured in the measurement cell with the irradiation light.
  • the control unit may transmit a signal (an electric signal for driving the light emitting unit) for controlling the light emitting state (ON) and the light-off state (OFF) of the light emitting unit to the light emitting unit.
  • the particle diameter evaluation method is an evaluation method for the particle diameter of fine particles contained in a liquid to be measured.
  • the transmitted light that has passed through the measurement cell in the irradiated light is received by the light receiving unit, and the transmitted light is converted into an electrical signal.
  • the control unit outputs the electrical signal output from the light receiving unit.
  • the light transmittance of the liquid to be measured is calculated based on the above, and the calculated light transmittance is compared with a database to obtain the particle diameter of the fine particles corresponding to the light transmittance.
  • the database is preliminarily attached to the control unit, and the database is used for reference to irradiation light having a wavelength correlated with the particle diameter.
  • a particle diameter evaluation apparatus is an apparatus for evaluating the particle diameter of fine particles contained in a liquid to be measured, and includes a control unit and irradiation light to the liquid to be measured in a measurement cell.
  • a light-emitting unit that irradiates; and a light-receiving unit that receives transmitted light transmitted through the measurement cell in the irradiated light and converts light energy based on the transmitted light into an electrical signal.
  • the control unit calculates the light transmittance of the liquid to be measured based on the electrical signal output from the light receiving unit, and compares the calculated light transmittance with a database to check the light transmittance. The particle diameter of the fine particles corresponding to the light transmittance is determined.
  • the light emitting unit may convert the electric signal transmitted from the control unit into irradiation light, and irradiate the liquid to be measured in the measurement cell with the irradiation light.
  • the control unit may transmit a signal (an electric signal for driving the light emitting unit) for controlling the light emitting state (ON) and the light-off state (OFF) of the light emitting unit to the light emitting unit.
  • the database is preliminarily attached to the control unit, and the database is for comparison with irradiation light having a wavelength correlated with the particle diameter.
  • the particle diameter evaluation method is an evaluation method of the particle diameter of fine particles contained in a liquid to be measured.
  • the reflected light reflected from the measurement cell in the irradiated light is received by the light receiving unit, and the reflected light is converted into an electrical signal.
  • the control unit outputs the electric light output from the light receiving unit.
  • the light reflectance of the liquid to be measured is calculated based on the signal, and the calculated light reflectance and the database are collated to obtain the particle diameter of the fine particles corresponding to the light reflectance. .
  • the database is preliminarily attached to the control unit, and the database is used for comparison with irradiation light having a wavelength correlated with the particle diameter.
  • a particle diameter evaluation apparatus is an evaluation apparatus for the particle diameter of fine particles contained in a liquid to be measured, and includes a control unit and irradiation light to the liquid to be measured in a measurement cell.
  • the control unit calculates a reflectance of light of the liquid to be measured based on an electrical signal output from the light receiving unit, and compares the calculated reflectance of the light with a database to calculate the reflectance.
  • the particle diameter of the fine particles corresponding to the light reflectance is obtained.
  • the light emitting unit may convert the electric signal transmitted from the control unit into irradiation light, and irradiate the liquid to be measured in the measurement cell with the irradiation light.
  • the control unit may transmit a signal (an electric signal for driving the light emitting unit) for controlling the light emitting state (ON) and the light-off state (OFF) of the light emitting unit to the light emitting unit.
  • the database is preliminarily attached to the control unit, and the database is for comparison with irradiation light having a wavelength correlated with the particle diameter.
  • a database including a plurality of sets of data of the light transmittance and particle diameter of the control fine particles contained in the control liquid is created in advance. Then, the light transmittance of the fine particles contained in the liquid to be measured is measured and collated with the above database to obtain the particle diameter of the fine particles corresponding to the measured light transmittance. Even if the liquid to be measured contains fine particles at a high concentration, the transmittance can be measured, so that it is not necessary to dilute the liquid to be measured. Therefore, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that contains a solvent that dissolves fine particles and that facilitates the destruction of the fine particles by dilution.
  • a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
  • a particle diameter evaluation method that can be applied to a liquid in which fine particles whose particle size becomes unstable by dilution, such as fine particles being formed in the course of a reaction, for example, during the production process is dispersed. Can be provided.
  • a database including a plurality of sets of data including the light transmittance and the particle diameter of the control fine particles contained in the control liquid is created in advance. . Then, the light transmittance of the fine particles contained in the liquid to be measured is measured and collated with the above database, whereby the particle diameter of the fine particles corresponding to the measured light transmittance is detected. Even if the fine particles are contained in the liquid at a high concentration, since the transmittance can be measured, the liquid may not be a diluted liquid. Therefore, it is possible to provide a particle diameter evaluation apparatus that can be applied to a liquid that contains a solvent that dissolves fine particles and that facilitates the destruction of the fine particles by dilution.
  • the present invention provides a particle size evaluation apparatus that can be applied to a liquid containing fine particles whose particle size becomes unstable by dilution, such as fine particles being formed in the course of a reaction, for example, during the reaction process. be able to.
  • a database including a plurality of sets of data including the light reflectance and particle diameter of the control fine particles contained in the control liquid is created in advance.
  • fine-particles corresponding to the measured light reflectance is calculated
  • a particle diameter evaluation method that can be applied to a liquid that contains a solvent that dissolves fine particles and that facilitates the destruction of the fine particles by dilution. Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted. Also, a particle diameter evaluation method that can be applied to a liquid in which fine particles whose particle size becomes unstable by dilution, such as fine particles being formed in the course of a reaction, for example, during the production process is dispersed. Can be provided.
  • a database including a plurality of sets of data that includes the light reflectance and particle diameter of the control fine particles contained in the control liquid is created in advance. . Then, the light reflectance of the fine particles contained in the liquid to be measured is measured and collated with the above database, whereby the particle diameter of the fine particles corresponding to the measured light reflectance is detected. Even if the fine particles are contained in the liquid at a high concentration, the reflectivity can be measured, so that the liquid may not be a diluted liquid. Therefore, it is possible to provide a particle diameter evaluation apparatus that can be applied to a liquid that contains a solvent that dissolves fine particles and that facilitates the destruction of the fine particles by dilution.
  • the present invention provides a particle size evaluation apparatus that can be applied to a liquid containing fine particles whose particle size becomes unstable by dilution, such as fine particles being formed in the course of a reaction, for example, during the reaction process. be able to.
  • FIG. 1 is a diagram illustrating the configuration of a particle diameter evaluation apparatus 100 according to a first embodiment of the present invention and a display unit 111 attached thereto.
  • the evaluation apparatus 100 includes a measurement unit 110, a control unit 104, and a database 105a attached to the control unit 104.
  • the measurement unit 110 converts the measurement cell 103 containing the liquid 101a (liquid to be measured) in which the acrylic resin fine particles 102a are dispersed, the electrical signal transmitted from the control unit 104 into the irradiation light 107, and the irradiation light.
  • the database 105a is, for example, a conversion table in which the transmittance and the particle diameter are associated with each other. This conversion table is used according to the type of product (product in which fine particles are contained in a liquid).
  • the database 105a may be stored in the control unit. In this case, the database is stored in a storage device that is electrically connected to the control unit.
  • the light emitting unit 106 may be a light source with a limited wavelength, such as a laser or LED, or a light source that emits light with a wide wavelength width, such as white light.
  • a light source having a limited wavelength is used as the light emitting unit 106, one type or two or more types of single light having a wavelength in the range of 350 to 3600 [nm] are used.
  • a light source that emits light having a wide wavelength range is used as the light emitting unit 106, it is necessary to extract light having a wavelength correlated with the fine particles 102a in the measurement cell 103 from the emitted light.
  • the light emitting unit 106 can be used as a light source of a tungsten lamp or a xenon lamp.
  • a plurality of light emitting units 106 may be provided, and the light receiving units 109 are provided in a number equal to the number of the light emitting units 106.
  • the number of light receiving units 109 can be changed according to the number of light beams having a wavelength to be measured. Note that in the case where a plurality of light emitting units 106 are provided, the measurement time can be shortened because all the light emitting units 106 emit light simultaneously.
  • the measurement cell 103 is made of glass, synthetic quartz glass, plastic, semi-precious stone, or the like. When measuring the light transmittance, the optical path in the measurement cell 103 can be changed from 1 [mm] to 20 [cm] according to the concentration of the liquid 101a.
  • the measurement cell 103 may be a flow cell for flowing the liquid 101a to be measured.
  • water or a high-boiling solvent can be circulated through a jacket provided around the cell.
  • the present invention can be applied to the fine particles 102a during process processing, and the particle diameter of the fine particles 102a can be obtained.
  • a liquid 101a composed of the above fine particles and a solvent of an acrylic resin composed of deionized water (40 parts) and an emulsifier (8 parts) is used.
  • an emulsifier for example, an anionic surfactant “Newcol 707SF” (active ingredient 30%) having a polyoxyethylene chain manufactured by Nippon Emulsifier Co., Ltd. is used.
  • FIG. 2 is a table summarizing an example of the components of the acrylic resin and the solvent described above. The left column of the table shows the names of the components, and the right column shows the number of parts by mass of each component.
  • FIG. 3 shows a table summarizing the relationship between the amount of emulsifier constituting the liquid 101a and the particle diameter of the acrylic resin fine particles 102a.
  • the particle diameters 150 [nm], 193 [nm], and 255 [nm] are average values in Samples 1 to 4, Samples 5 to 8, and Samples 9 to 12, respectively.
  • the liquid 101a in which the acrylic resin fine particles 102a are dispersed is generated by the following steps A1, A2, and A3. That is, in step A1, the monomer emulsion and its solvent are charged into the first reaction vessel, stirred and mixed in a nitrogen stream, and heated to about 80 ° C.
  • step A2 the monomer emulsion obtained in step A1 and a part of the solvent thereof and a 10% ammonium persulfate aqueous solution are introduced into the second reaction vessel, and held at about 80 ° C. for 20 minutes.
  • the mass part of 10% ammonium persulfate aqueous solution is 0.15 parts.
  • step A3 a mixture of the monomer emulsion obtained in step A1 and the remainder of the solvent and a 10% aqueous solution of ammonium persulfate is dropped into the reaction vessel over about 4 hours. After completion of dropping, the mixture is aged for about 1 hour. By doing so, a liquid 101a containing fine particles 102a of acrylic resin is obtained.
  • the light emitting unit 106 is preferably composed of a light source that emits light of a specific wavelength suitable for the fine particles 102a.
  • the light emitting unit 106 or the light receiving unit 109 includes a filter that passes only light having a specific wavelength suitable for the fine particles 102a
  • the light emitting unit 106 is configured with a light source that emits light having a specific wavelength suitable for the fine particles 102a. It is desirable that According to these configurations, the step of separating light of a wide range of wavelengths with a monochromator or the like as in the conventional method is not required, so that measurement can be performed in a shorter time. Therefore, it is possible to more accurately measure the change in particle diameter with the passage of time for fine particles that are deformed in a short time.
  • the control unit 104 has a database 105a.
  • This database 105a is a set of data indicated by the transmittance of light in the control liquid for irradiation light having a wavelength correlated with the particle diameter, and the particle diameter of the control microparticles contained in the control liquid. Has 3 or more data.
  • the control fine particles are fine particles having the same quality as the fine particles 102a described above, and have a specific particle diameter.
  • Such a set of data is obtained for each wavelength of the irradiation light 107.
  • the light transmittance and particle size data are obtained by using three or more types of liquids (control liquids) containing a group of control fine particles having a specific particle diameter and the same quality as the fine particles 102a.
  • the particle diameter is, for example, a laser-type particle diameter measuring apparatus or dynamic light scattering using Mie scattering theory or Fraunhofer diffraction theory. It is measured using a particle size measuring device utilizing laser diffraction, centrifugal sedimentation, ultrasonic attenuation, image identification, and the like.
  • control unit 104 has a function of transmitting an electrical signal that prompts the light emitting unit 106 to emit the irradiation light 107.
  • control unit 104 has a function of receiving an electrical signal based on the transmitted light 108 received by the light receiving unit 109 and calculating the light transmittance of the liquid 101a.
  • control unit 104 has a function of collating the database 105a with the calculated transmittance to obtain the particle diameter of the fine particles 102a corresponding to the calculated light transmittance.
  • FIG. 4A is a four-line graph showing the correlation between light transmittance and particle diameter.
  • the database 105a is configured by the data shown in FIG. 4A.
  • the vertical axis represents the light transmittance
  • the horizontal axis represents the particle diameter.
  • the light transmittance of the fine particles is measured with light of a specific wavelength (here, 1300 [nm]) using the evaluation apparatus 100 of the present invention.
  • the particle diameter of the fine particles is measured using a dynamic light scattering particle size distribution analyzer (for example, “COULTER N5 type” manufactured by Beckman Coulter, Inc.).
  • the numerical data composing each graph is summarized in the table shown in FIG. 4B.
  • the numerical data constituting each graph of FIG. 4A is summarized in the table shown in FIG. 4B.
  • three types of liquid samples Samples 1 to 12 having different amounts of emulsifier are used.
  • the amount of emulsifier is 16.2 [parts] for Samples 1 to 4, 8.1 [parts] for Samples 5 to 8, and 4 [parts] for Samples 9 to 12.
  • the particle diameters 150 [nm], 193 [nm], and 255 [nm] of the fine particles shown in the table shown in FIG. 4B are average values of Samples 1 to 4, Samples 5 to 8, and Samples 9 to 12, respectively.
  • FIG. 4B The particle diameters 150 [nm], 193 [nm], and 255 [nm] of the fine particles shown in the table shown in FIG. 4B are average values of Samples 1 to 4, Samples 5 to 8, and Samples 9 to 12, respectively.
  • the concentration of solid content (acrylic resin) is 48 [%], 44 [%], 35 [%], 30 for Samples 1 to 4, Samples 5 to 8, and Samples 9 to 12, respectively.
  • the light transmittance of fine particles measured in four types of liquids [%] is shown.
  • the four-line graph in FIG. 4A corresponds to a liquid in which the concentration of acrylic resin is adjusted to 48%, 44%, 35%, and 30% by adding deionized water, respectively. From these graphs, it can be confirmed that the light transmittance and the particle diameter of the fine particles have a proportional relationship in each concentration of liquid. Therefore, by using the database 105a in which three or more sets of data of the light transmittance and particle diameter of fine particles (control fine particles) in each concentration of liquid (control liquid) are used, light transmission is achieved. It can be seen from the graph of FIG. 4A that a relational expression between the rate and the particle diameter can be derived.
  • the gradient of the concentration tends to decrease as the concentration of the fine particles of the acrylic resin increases, but the particle diameter of the fine particles and the light transmittance even at a high concentration of about 48%.
  • the particle diameter of the fine particles 102a can be uniquely determined from the light transmittance of the fine particles measured in a liquid having a concentration of at least 48%.
  • the concentration dependency of the acrylic resin tends to decrease.
  • the particle size is as small as 150 [nm]
  • the particle size and the transmittance are measured for the control liquid and the control microparticles in this way, and the database 105a is created in advance. Then, the particle size dispersed in an arbitrary liquid is obtained using the database 105a.
  • the particle diameter of the fine particles 102a can be uniquely determined by comparing the measured light transmittance with the database 105a. I understand that.
  • a particle diameter evaluation method using the particle diameter evaluation apparatus 100 having the configuration of the first embodiment will be described.
  • the electrical signal transmitted from the control unit 104 is converted into irradiation light 107 by the light emitting unit 106, and the irradiation light 107 is irradiated to the liquid 101 a to be measured in the measurement cell 103.
  • the transmitted light 108 that has passed through the measurement cell 103 in the irradiation light 107 is received by the light receiving unit 109, and the energy or wavelength of the light based on the transmitted light 108 is converted into an electrical signal.
  • the light transmittance of the liquid 101a to be measured is calculated and guided.
  • the particle diameter of the fine particles 102a corresponding to the light transmittance derived here is obtained. Can be sought.
  • FIG. 4A shows the case where the light transmittance and the particle diameter of the fine particles 102a in the liquid 101a of each concentration are in a first-order proportional relationship, but in the case of monotonously decreasing or increasing within the measurement range.
  • FIG. 4A the example in which the particle diameter is evaluated by aligning three or more sets of data with light transmittance and particle diameter as a set has been described. However, when only one point or only two points are used. Moreover, it is possible to evaluate similarly to the method mentioned above.
  • the fine particles 102a are contained in the liquid 101a at a high concentration, it is not necessary to dilute the liquid 101a because the transmittance can be measured. Therefore, according to the first embodiment, it is possible to provide a particle diameter evaluation method applicable to a liquid that becomes unstable by dilution. Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
  • achieves the evaluation mentioned above with respect to the liquid which becomes unstable by dilution or the liquid which is in process processing and does not want to dilute is provided. it can.
  • ⁇ Second embodiment> The configuration of the particle diameter evaluation apparatus 100 and the method for generating the liquid 101b according to the second embodiment are the same as those in the first embodiment, but the state of the fine particles 102b when the particle diameter is detected is the first. Different from the embodiment.
  • the light transmittance with respect to the liquid 101a containing the acrylic resin fine particles 102a in the final state obtained after dropping the monomer emulsion into the reaction vessel in the above-described step A3. was measured, and the particle diameter of the corresponding fine particles 102a was detected.
  • the step A3 in the step A3, light is applied to the liquid 101b containing the acrylic resin fine particles 102b in an intermediate state obtained while the monomer emulsion is dropped into the reaction vessel. The transmittance is measured, and the particle diameter of the fine particles 102b corresponding to the transmittance is obtained.
  • the liquid 101b in the second embodiment is generated using the same sample as the samples 5 to 8 shown in FIG.
  • FIG. 5A shows that the relational expression between the light transmittance and the particle diameter can be derived based on the database 105b in the second embodiment.
  • FIG. 5A is a graph showing a correlation between light transmittance and particle diameter.
  • the data shown in FIG. 5A constitutes the database 105b.
  • control fine particles (acrylic resin fine particles) that are the same quality as the fine particles 102b are dispersed in the control liquid corresponding to the liquid 101b.
  • the vertical axis represents the light transmittance
  • the horizontal axis represents the particle diameter.
  • the light transmittance of the fine particles is measured with light having a specific wavelength (here, 635 nm) using the evaluation apparatus 100 of the present invention.
  • the particle diameter of the fine particles is measured using a dynamic light scattering particle size distribution analyzer (for example, “COULTER N5 type” manufactured by Beckman Coulter, Inc.).
  • the data composing the graph of FIG. 5A are summarized in the table shown in FIG. 5B.
  • samples Samples 13, 14, 15, 16
  • the particle diameter and light transmittance of the fine particles measured using Samples 13 to 16 are shown.
  • the light transmittance and the particle diameter of the fine particles 102b are in a proportional relationship.
  • the particle diameter and the transmittance are measured for the control liquid and the control microparticles in this way, and the database 105b is created in advance. Then, the particle size dispersed in an arbitrary liquid is obtained using the database 105b. Therefore, also in the second embodiment, by using the database 105b in which three or more sets of data of the light transmittance and particle diameter of the fine particles in the liquid are used, the light transmittance and the particle diameter It can be seen from the graph of FIG. 5A that the relational expression can be derived. And it turns out that the particle diameter of the microparticles
  • the dropping time of the monomer emulsion in the step A3 and the particle diameter of the generated acrylic resin fine particles 102b do not have a primary proportional relationship. Therefore, it is difficult to uniquely determine the particle diameter of the fine particles 102b from the dropping time.
  • the particle diameter of the fine particles 102b and the light transmittance are in a first-order proportional relationship.
  • an inclination sufficient to make the particle diameter of the fine particles 102b correspond to the light transmittance one to one is obtained. That is, it can be seen that the particle diameter of the fine particles 102b can be uniquely obtained from the measured light transmittance of the fine particles 102b.
  • a particle diameter evaluation method using the particle diameter evaluation apparatus 100 having the configuration of the second embodiment will be described.
  • the electric signal transmitted from the control unit 104 is converted into irradiation light 107 by the light emitting unit 106, and the irradiation light 107 is irradiated to the liquid 101 b to be measured in the measurement cell 103.
  • the transmitted light 108 that has passed through the measurement cell 103 in the irradiation light 107 is received by the light receiving unit 109, and the energy or wavelength of the light based on the transmitted light 108 is converted into an electrical signal.
  • the light transmittance of the liquid 101b to be measured is calculated and guided.
  • the particle diameter of the fine particles 102b corresponding to the light transmittance derived here is obtained. Can be sought.
  • FIG. 5A the case where the light transmittance and the particle diameter of the fine particles 102b have a linear proportional relationship is shown. However, when monotonously decreasing or increasing within the measurement range, a quadratic or higher function is obtained. By applying it, it is possible to uniquely determine the particle diameter corresponding to an arbitrary light transmittance.
  • FIG. 5A an example of evaluating the particle diameter by aligning three or more sets of data with light transmittance and particle diameter as a set has been described. However, when only one point is used or only two points are used. Moreover, it is possible to evaluate similarly to the method mentioned above.
  • particles that can be applied to a liquid containing fine particles whose particle diameter becomes unstable by dilution such as fine particles that are being formed in a reaction process, such as fine particles that are being formed in a reaction process.
  • a diameter evaluation method can be provided. Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
  • a liquid containing fine particles that become unstable due to dilution such as fine particles being formed in the reaction process, or during the process processing, it is not desired to perform dilution.
  • a particle diameter evaluation apparatus that realizes the above-described evaluation of a liquid can be provided.
  • the configuration of the liquid 101c in which the fine particles 102c and the fine particles 102c are dispersed is different from that of the first embodiment. That is, in the third embodiment, the liquid 101c is composed of the fine particles 102c and the non-aqueous solvent, and accordingly, the number of mass parts of each component of the fine particles 102c is different from that of the first embodiment. Other configurations are the same as those in the first embodiment.
  • FIG. 6A, FIG. 6B, and FIG. 6C are tables summarizing examples of the constituent elements of the raw material 1, the raw material 2, and the raw material 3 for generating the solvent of the liquid 101c, respectively.
  • the left column indicates the name of the component
  • the right column indicates the number of parts by mass of each component.
  • the raw material 1 was composed of 2-ethylhexyl methacrylate (50 parts), glycidyl methacrylate (5 parts), n-butyl acrylate (36 parts), t-butyl peroxide (4.6 parts). ).
  • the raw material 2 was acrylic acid (0.9 parts), 4-tert-butylpyrocatechol (0.01 parts), dimethylaminoethanol (0.1 parts). Consists of. Further, as shown in the table shown in FIG.
  • the raw material 3 was made of styrene (10 parts), methyl methacrylate (24 parts), methyl acrylate (10 parts), 2-hydroxyethyl acrylate (56 parts), 2, Consists of 2-azobisisobutyronitrile (1.5 parts).
  • the liquid 101c containing the acrylic resin fine particles 102c in the third embodiment is generated by the following C1, C2, and C3 steps. That is, in step C1, 70 parts of xylene is blended in the reaction vessel and heated to about 125 ° C. And the raw material 1 is dripped in reaction container over about 4 hours, Acrylic resin varnish is produced
  • the raw material 2 is added to 167 parts of the acrylic resin varnish produced in the step C1.
  • a dispersion stabilizer solution is obtained by stirring for about 3 hours in the state hold
  • Step C3 83.3 parts of the dispersion stabilizer solution produced in Step C2, 100 parts of heptane, and 162 parts of xylene are blended. To this, the raw material 3 is dropped into the reaction vessel over about 4 hours at the reflux temperature. Then, by performing aging for about 2 hours after dropping, a liquid 101c composed of acrylic resin particles 102c and a non-aqueous solvent is obtained.
  • FIG. 7A shows that the relational expression between the light transmittance and the particle diameter can be derived based on the database 105c in the third embodiment.
  • FIG. 7A is a three-line graph showing the correlation between the light transmittance and the particle diameter.
  • the database 105c is configured by the data shown in FIG. 7A.
  • the vertical axis represents the light transmittance
  • the horizontal axis represents the particle diameter.
  • the light transmittance of the fine particles is measured with light of a specific wavelength (here, 950 [nm]) using the evaluation apparatus 100 of the present invention.
  • the particle diameter of the fine particles is measured using a dynamic light scattering particle size distribution analyzer (for example, “COULTER N5 type” manufactured by Beckman Coulter, Inc.).
  • the three-line graph in FIG. 7A corresponds to a liquid in which the concentration of the acrylic resin is adjusted to 40%, 38%, and 36%, respectively, by adding xylene. From these graphs, it can be confirmed that the light transmittance and the particle diameter of the fine particles have a proportional relationship in each concentration of liquid.
  • the particle size and the transmittance are measured for the control liquid and the control microparticles in this way, and the database 105c is created in advance. Then, the particle size dispersed in an arbitrary liquid is obtained using the database 105c.
  • the inclination tends to be constant regardless of the concentration of the acrylic resin fine particles 102c, which is sufficient to correspond one-to-one with the particle diameter of the fine particles 102c and the light transmittance.
  • the particle diameter of the fine particles 102c can be uniquely determined from the light transmittance of the fine particles 102c measured in the liquid 101c having an arbitrary concentration.
  • the concentration dependency of the acrylic resin tends to be constant regardless of the particle diameter of the acrylic resin fine particles 102c, and the particle diameter of the fine particles 102c and the light transmittance are in a one-to-one relationship.
  • the trend is sufficient to make it correspond. That is, it can be seen that in the liquid 101c in which the fine particles 102c having an arbitrary particle size are dispersed, the particle size of the fine particles 102c can be uniquely determined from the measured light transmittance.
  • a particle diameter evaluation method using the particle diameter evaluation apparatus 100 having the configuration of the third embodiment will be described.
  • the electric signal transmitted from the control unit 104 is converted into irradiation light 107 by the light emitting unit 106, and the irradiation light 107 is irradiated to the liquid 101 c to be measured in the measurement cell 103.
  • the transmitted light 108 that has passed through the measurement cell 103 in the irradiation light 107 is received by the light receiving unit 109, and the energy or wavelength of the light based on the transmitted light 108 is converted into an electrical signal.
  • the light transmittance of the liquid 101 c measured based on the electrical signal output from the light receiving unit 109 received by the control unit 104 is calculated and guided.
  • the particle diameter of the fine particles 102c corresponding to the light transmittance derived here is obtained. Can be sought.
  • FIG. 7A shows the case where the light transmittance and the particle diameter of the microparticles 102c have a linear proportional relationship, but when the monotonously decreases or increases within the measurement range, a function of quadratic or higher is expressed. By applying it, it is possible to uniquely determine the particle diameter corresponding to an arbitrary light transmittance.
  • FIG. 7A the example in which the particle diameter is evaluated by aligning three or more sets of data with light transmittance and particle diameter as a set has been described. However, when only one point or only two points are used. Moreover, it is possible to evaluate similarly to the method mentioned above.
  • the fine particles 102c are contained in the liquid 101c at a high concentration, it is not necessary to dilute the liquid 101c because the transmittance can be measured. Therefore, according to the third embodiment, it is possible to provide a particle diameter evaluation method applicable to a liquid that becomes unstable by dilution. Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
  • the particle diameter evaluation that realizes the above-described evaluation for a liquid that becomes unstable due to dilution or a liquid that is in process processing and does not want to be diluted according to the third embodiment.
  • the particle diameter of the fine particles is evaluated from the measured light transmittance using a database in which the correlation between the light transmittance and the particle diameter of the fine particles is shown.
  • the particle diameter contained in an arbitrary liquid to be measured is estimated using a database showing the correlation between the reflectance of light and the particle diameter of the fine particles. .
  • FIG. 9 is a diagram showing a configuration of the particle diameter evaluation apparatus 10 and the display unit 11 attached thereto according to an embodiment of the present invention.
  • the evaluation apparatus 10 includes a measurement unit 12 that performs light irradiation and light reception on the dispersion 1 in which fine particles 2 are dispersed in a liquid, and a control unit 14 that includes a database 15 and the like.
  • the measuring unit 12 receives the measurement cell 13 that accommodates the dispersion 1, the light emitting unit 16 that irradiates the irradiation light 17 toward the measurement cell 13, and the reflected light 18 reflected from the dispersion 1, and converts it into an electrical signal.
  • the light receiving unit 19 is provided.
  • the apparatus and method for measuring the reflectance of the dispersion are not particularly limited, and any known appropriate one can be used.
  • the light emitting unit 16 may be a light source that emits light of a specific wavelength, or may be a light source that emits light having a wide wavelength width, such as white light.
  • a light source that emits light of a specific wavelength such as a laser or a light emitting diode (LED)
  • LED light emitting diode
  • Examples of the light source that emits light having a wide wavelength range include a tungsten lamp and a xenon lamp.
  • a wavelength having a large change in reflected light intensity with respect to the parameter is selected as the specific wavelength, and the reflectance at the specific wavelength is selected. Is preferably measured.
  • a visible light range such as 590 nm or 635 nm is preferable.
  • a shorter specific wavelength such as 950 nm or 1450 nm is selected.
  • a longer specific wavelength such as 1650 nm or 2000 nm. In this embodiment, light having a wavelength of 950 nm is used.
  • Examples of the light receiving unit 19 include a light receiving element such as a photodiode, an optical sensor, and a photodetector.
  • a light source that emits light having a wide wavelength range is used as the light emitting unit 16
  • a band filter that allows only light of a specific wavelength to pass is installed between the light emitting unit 16 and the measurement cell 13.
  • a spectroscope capable of selecting light of a specific wavelength or a filter passing only light of a specific wavelength between the measurement cell 13 and the light receiving unit 19 It is preferable to extract only light.
  • a plurality of light emitting units 16 may be provided.
  • the light receiving unit 19 may be provided to correspond to one light emitting unit 16, or may be provided to correspond to a plurality of light emitting units 16. When a plurality of light emitting units 16 are provided, one of the light emitting units 16 can be selected to emit light, and the reflected light from the dispersion 1 can be received by the common light receiving unit 19.
  • the light 17 When the irradiation light 17 is incident on the dispersion 1 from the light emitting unit 16, the light 17 is emitted from a direction of 45 ° (preferably within ⁇ 25 °, more preferably within ⁇ 15 °) with respect to the normal line of the dispersion surface 4. Irradiation is preferred. In this case, it is possible to suppress the influence caused by the light regularly reflected on the surface of the cell returning to the light emitting unit 16. Further, when the light receiving unit 19 receives the reflected light 18 from the dispersion 1, the reflected light 18 is received in the normal direction of the dispersion surface 4 (preferably within ⁇ 30 °, more preferably within ⁇ 10 °). It is preferable. In this embodiment, light is received at 0 °.
  • the light receiving portion 19 is less likely to receive regular reflection light from the cell wall surface, Scattered light from fine particles can be mainly received.
  • the dispersion 1 is filled in the measurement cell 13.
  • the dispersion itself is irregular in shape, and the shape of the surface 4 is determined by the shape of the inner surface of the measurement cell 13.
  • the surface 4 is preferably flat.
  • the measurement cell 13 can be made of glass, synthetic quartz glass, plastic, semi-precious stone, or the like. In the portion where the irradiation light 17 is not irradiated, an opaque material such as a metal can be combined.
  • an opaque material such as a metal can be combined.
  • water or a high-boiling solvent can be circulated in a jacket around the cell.
  • a database 15 including data indicating the relationship between the particle diameter and the reflectance measured in advance for the dispersion 1 to be measured is attached.
  • the control unit 14 can check the reflectance measurement result against the database 15 to obtain the particle diameter of the fine particles 2 corresponding to the reflectance measurement result.
  • Data showing the relationship between the particle diameter and the reflectance is obtained by preparing a control dispersion, measuring the particle diameter and the reflectance of the dispersion, and associating the obtained particle diameter with the reflectance. It is done.
  • the reflectance of the control dispersion is measured using the evaluation apparatus 10 of the present embodiment in the same manner as the reflectance of the dispersion to be measured.
  • the particle size of the control dispersion is measured by another apparatus and method.
  • a known particle size measuring device can be used, for example, a laser type particle size measuring device using Mie scattering theory or Fraunhofer diffraction theory, dynamic light scattering. Examples thereof include a particle size measuring apparatus using laser diffraction, centrifugal sedimentation, ultrasonic attenuation, image identification, and the like.
  • the particle size measured for the control dispersion is not a particle size distribution but an average particle size consisting of a single numerical value.
  • the average particle size of the control dispersion may be measured by a specific method. That is, the particle diameter converted as described below from the reflectance of the dispersion to be measured is given as an average particle diameter defined by a specific method employed for measuring the average particle diameter of the control dispersion. .
  • the number of points for measuring the particle diameter and reflectance of the control dispersion is preferably 3 or more, but can also be 2 or less.
  • the relationship between the reflectance and the particle diameter provided in the database 15 may be a linear relationship represented by a linear expression as long as it decreases or increases monotonously within the measurement range, and is a quadratic expression or more. The relationship expressed by a higher-order polynomial may be used.
  • the control unit 14 also receives an electrical signal based on the reflected light 18 received by the light receiving unit 19 and the function of transmitting an electrical signal that prompts the light emitting unit 16 to emit the irradiation light 17. It is preferable to have a function of calculating the reflectance. Thereby, the reflectance can be automatically calculated as the intensity ratio between the irradiation light 17 and the reflected light 18. In this case, it is preferable that the light emitting unit 16 generates the irradiation light 17 having a desired intensity based on the electric signal transmitted from the control unit 14.
  • the display unit 11 is not particularly limited as long as the result obtained by the control unit 14 can be displayed, but can be output by a method that can be recognized by the operator, such as characters, figures, sounds, and lights. It is preferable. When an abnormal result is obtained, it is also possible to enable output by a method that can alert a worker particularly, such as a warning or an alarm.
  • the particle diameter evaluation method by the evaluation apparatus 10 can be performed by the following procedures (1) to (4), for example.
  • the electrical signal obtained from the reflected light 18 by the control unit 14 and the electrical signal transmitted to the light emitting unit 16 are compared, and the reflectance of the dispersion 1 is calculated and derived.
  • the particle diameter of the fine particles 2 corresponding to the reflectance of the dispersion 1 obtained by the measurement is obtained with reference to the relationship between the reflectance and the particle diameter provided in the database 15.
  • the evaluation apparatus and the evaluation method of the present embodiment can be applied to a liquid that becomes unstable due to dilution. Moreover, it is applicable also to the dispersion 1 which does not want to perform dilution during a process.
  • the dispersion used for the preparation of the paint is usually mixed with a resin component, which is a vehicle forming component, and other additives at the time of preparation of the paint and further diluted, and therefore usually contains fine particles at a high concentration.
  • the present invention can also be applied to a high-concentration dispersion. However, when handling such a dispersion, it is desirable to employ one that is easy to handle such as measurement and washing.
  • FIG. 3 shows a table summarizing the relationship between the amount of the emulsifier constituting the liquid 101a used in the fourth embodiment and the particle diameter of the acrylic resin fine particles.
  • FIG. 8 is a graph showing the correlation between the light reflectance of fine particles and the particle diameter in a liquid in which fine particles are dispersed.
  • the database of this embodiment is configured by the data shown in FIG.
  • the vertical axis represents the light reflectance
  • the horizontal axis represents the particle diameter.
  • the reflectance of the light of the fine particles is measured with light having a specific wavelength (here, 950 [nm]) using an evaluation apparatus 10 described below. In calculating the reflectance, a white calibration plate is used as a reference.
  • the relationship between the light reflectivity and the particle diameter is obtained by using a database in which three or more sets of data including the light reflectivity and the particle diameter of the fine particles in the liquid are used. It can be seen from the graph of FIG. 8 that the equation can be derived.
  • the reflectance and the particle diameter of the control liquid and the control microparticles are measured as described above, and a database is created in advance. Then, the particle size dispersed in an arbitrary liquid is obtained using a database. That is, it can be seen that the particle diameter of the fine particles can be uniquely determined from the measured light reflectance of the fine particles.
  • the present invention can be applied as a means for managing, for example, particles whose shape changes due to dilution or particles whose particle diameter changes in a short time.
  • DESCRIPTION OF SYMBOLS 100 ... Evaluation apparatus, 101a, 101b, 101c ... Liquid, 102a, 102b, 102c ... Fine particle, 103 ... Measurement cell, 104 ... Control part, 105a, 105b, 105c ... Database , 106 ... light emitting part, 107 ... irradiated light, 108 ... transmitted light, 109 ... light receiving part, 110 ... measuring part, 111 ... display part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

This particle size evaluation method is a method for evaluating the particle size of fine particles (102a) contained in liquid to be measured (101a), including: allowing a light emitting unit (106) to irradiate the liquid to be measured (101a) in a measurement cell (103) with irradiation light (107); allowing a light receiving unit (109) to receive transmitted light (108) transmitted through the measurement cell (103) in the irradiation light (107) and to convert the transmitted light (108) to an electrical signal; allowing a control unit (104) to calculate the light transmittance of the liquid to be measured (101a) on the basis of the electrical signal output from the light receiving unit (109); and obtaining the particle size of the fine particles corresponding to the light transmittance by comparing the calculated light transmittance with a database (105a).

Description

粒子径の評価方法および評価装置Particle diameter evaluation method and evaluation apparatus
 本発明は、粒子径の評価方法および粒子径の評価装置に関する。より詳細には、高濃度の分散体をなす液体に含まれる微粒子の粒子径を、該液体を希釈せずに短時間で評価する方法およびそれを実現する評価装置に関する。
 本願は、2011年4月1日に出願された特願2011-082029号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a particle diameter evaluation method and a particle diameter evaluation apparatus. More specifically, the present invention relates to a method for evaluating the particle diameter of fine particles contained in a liquid forming a high-concentration dispersion in a short time without diluting the liquid, and an evaluation apparatus for realizing the method.
This application claims priority based on Japanese Patent Application No. 2011-082029 for which it applied on April 1, 2011, and uses the content here.
 エマルション等の分散体をなす液体に含まれた微粒子の粒子径を測定し、管理することは、液体が用いられた製品を品質管理する際の、有効な手段となる。エマルション等を構成する微粒子の粒子径は、通常数十nm~数十μm程度のオーダーであり、目的に合わせて一定の範囲内に入るように管理されている。 Measuring and managing the particle size of fine particles contained in a liquid forming a dispersion such as an emulsion is an effective means for quality control of products in which the liquid is used. The particle diameter of the fine particles constituting the emulsion or the like is usually on the order of several tens of nanometers to several tens of micrometers, and is controlled so as to fall within a certain range according to the purpose.
 粒子径を測定する際には、例えば、ミー散乱理論あるいはフラウンホーファー回折理論を利用したレーザー粒子径測定装置等が用いられる(特許文献1)。これらの装置を用いて、高濃度の分散体をなす液体に含まれた微粒子の粒子径を測定する場合、一般に高い倍率での希釈と長い測定時間が必要とされている。 When measuring the particle diameter, for example, a laser particle diameter measuring apparatus using Mie scattering theory or Fraunhofer diffraction theory is used (Patent Document 1). When measuring the particle diameter of fine particles contained in a liquid forming a high-concentration dispersion using these apparatuses, dilution at a high magnification and a long measurement time are generally required.
 しかしながら、液体を構成する溶剤が、微粒子を膨潤させたり、溶解させる性質を有する場合、希釈により微粒子の破壊が促進される(膨潤、溶解が生じる場合がある)。また、溶剤によって微粒子が凝集したり、水系の溶剤を用いる場合に乳化剤の濃度が変わって粒子径が大きくなることもある。そのため、正確な微粒子の粒子径を測定、評価することができなくなり、液体が用いられた製品の品質管理が難しくなる。 However, when the solvent constituting the liquid has the property of swelling or dissolving the fine particles, the destruction of the fine particles is promoted by dilution (swelling and dissolution may occur). In addition, fine particles may be aggregated by a solvent, or when an aqueous solvent is used, the concentration of the emulsifier may be changed to increase the particle size. This makes it impossible to measure and evaluate the exact particle size of the fine particles, making it difficult to control the quality of products using liquids.
特開平8-128943号公報JP-A-8-128943
 本発明は以上のような点を考慮してなされたものであり、高濃度の分散体をなす液体に含まれた微粒子の粒子径を、該液体を希釈せずに求めることが可能な、粒子径の評価方法を提供することを第一の目的とする。 The present invention has been made in consideration of the above points, and is capable of determining the particle diameter of fine particles contained in a liquid forming a high-concentration dispersion without diluting the liquid. The first object is to provide a method for evaluating the diameter.
 また、本発明は、高濃度の分散体をなす液体に含まれた微粒子の粒子径を、該液体を希釈せずに求めることが可能な、粒子径の評価装置を提供することを第二の目的とする。 The second aspect of the present invention provides a particle diameter evaluation apparatus that can determine the particle diameter of fine particles contained in a liquid forming a high-concentration dispersion without diluting the liquid. Objective.
 本発明の第1態様の粒子径の評価方法は、計測される液体中に含まれる微粒子の粒子径の評価方法であって、発光部にて、測定セル内の前記計測される液体に照射光を照射し、前記照射光のうち前記測定セルを透過した透過光を受光部にて受光し、かつ該透過光を電気信号に変換し、制御部にて、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の透過率を演算し、演算された前記光の透過率とデータベースと照合して、前記光の透過率に対応する、前記微粒子の粒子径を求める。ここで、前記データベースは、前記制御部に予め付設されており、前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを3点以上有し、前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、前記3点以上のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を3種類以上用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られている。 The particle diameter evaluation method according to the first aspect of the present invention is a particle diameter evaluation method for fine particles contained in a liquid to be measured. The transmitted light that has passed through the measurement cell in the irradiated light is received by the light receiving unit, and the transmitted light is converted into an electrical signal. The control unit outputs the electrical signal output from the light receiving unit. The light transmittance of the liquid to be measured is calculated based on the above, and the calculated light transmittance is compared with a database to obtain the particle diameter of the fine particles corresponding to the light transmittance. Here, the database is preliminarily attached to the control unit, and the database includes the transmittance of light in the control liquid with respect to irradiation light having a wavelength correlated with the particle diameter, and the control liquid. 3 or more of a set of data indicated by the particle size of the control fine particles contained in the control fine particles, the control fine particles having a specific particle size and the fine particles contained in the measured liquid The three or more points of the data are the same quality, and the three or more types of the control liquid including the group composed of the control microparticles are used, and the control liquid includes the control liquid containing the population of the control fine particles. It is obtained by measuring the particle size of the control fine particles.
 本発明の第1態様の粒子径の評価方法においては、前記発光部は、特定波長の光を発する光源で構成されることが好ましい。 In the particle diameter evaluation method according to the first aspect of the present invention, it is preferable that the light emitting section is composed of a light source that emits light of a specific wavelength.
 本発明の第1態様の粒子径の評価方法においては、前記発光部と前記測定セルとの間、または前記測定セルと前記受光部との間に、特定波長の光のみを通すフィルターを備えていることが好ましい。 In the particle diameter evaluation method according to the first aspect of the present invention, a filter that passes only light of a specific wavelength is provided between the light emitting unit and the measurement cell or between the measurement cell and the light receiving unit. Preferably it is.
 本発明の第1態様の粒子径の評価方法においては、前記発光部と前記測定セルとの間、または前記測定セルと前記受光部との間に、分光器を備えていることが好ましい。 In the particle diameter evaluation method according to the first aspect of the present invention, it is preferable that a spectroscope is provided between the light emitting unit and the measurement cell or between the measurement cell and the light receiving unit.
 本発明の第1態様の粒子径の評価方法においては、前記測定セルは、前記計測される液体を流すフローセルであることが好ましい。 In the particle diameter evaluation method according to the first aspect of the present invention, the measurement cell is preferably a flow cell for flowing the liquid to be measured.
 本発明の第1態様の粒子径の評価方法においては、前記計測される液体は、微粒子と水とで構成されることが好ましい。 In the particle diameter evaluation method according to the first aspect of the present invention, the measured liquid is preferably composed of fine particles and water.
 本発明の第1態様の粒子径の評価方法においては、前記計測される液体は、微粒子と水以外の溶剤とで構成されることが好ましい。 In the particle diameter evaluation method according to the first aspect of the present invention, the measured liquid is preferably composed of fine particles and a solvent other than water.
 本発明の第2態様の粒子径の評価装置は、制御部と、照射光を測定セル内の前記計測される液体に照射する発光部と、前記照射光のうち前記測定セルを透過した透過光を受光し、かつ該透過光に基づく光のエネルギーを電気信号に変換する受光部と、を備える。ここで、前記制御部は、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の透過率を演算し、演算された前記光の透過率とデータベースと照合して前記光の透過率に対応する、前記微粒子の粒子径を求める。また、前記データベースは、前記制御部に予め付設されており、前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを3点以上有し、前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、前記3点以上のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を3種類以上用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られている。
 この評価装置においては、発光部は、制御部から発信された電気信号を照射光に変換して、照射光を測定セル内の前記計測される液体に照射してもよい。また、制御部は、発光部の発光状態(ON)と消灯状態(OFF)とを制御するための信号(発光部を駆動させるための電気信号)を発光部に発信してもよい。
The particle diameter evaluation apparatus according to the second aspect of the present invention includes a control unit, a light emitting unit that irradiates the measured liquid in the measurement cell with irradiation light, and transmitted light that has passed through the measurement cell among the irradiation light. And a light receiving unit that converts light energy based on the transmitted light into an electrical signal. Here, the control unit calculates the light transmittance of the liquid to be measured based on the electrical signal output from the light receiving unit, and compares the calculated light transmittance with a database to check the light transmittance. The particle diameter of the fine particles corresponding to the light transmittance is determined. In addition, the database is attached to the control unit in advance, and the database includes the transmittance of light in the control liquid with respect to irradiation light having a wavelength correlated with the particle diameter, and the control liquid. 3 or more sets of data indicated by the particle size of the included control fine particles, the control fine particles having a specific particle size and the same quality as the fine particles contained in the measured liquid The three or more points of data are obtained by using three or more types of the control liquid including a group composed of the control microparticles, and using the control particle contained in the control liquid by a desired particle size measuring device. It is obtained by measuring the particle diameter of the fine particles for use.
In this evaluation apparatus, the light emitting unit may convert the electric signal transmitted from the control unit into irradiation light, and irradiate the liquid to be measured in the measurement cell with the irradiation light. In addition, the control unit may transmit a signal (an electric signal for driving the light emitting unit) for controlling the light emitting state (ON) and the light-off state (OFF) of the light emitting unit to the light emitting unit.
 本発明の第3態様の粒子径の評価方法は、計測される液体中に含まれる微粒子の粒子径の評価方法であって、発光部にて、測定セル内の前記計測される液体に照射光を照射し、前記照射光のうち前記測定セルを透過した透過光を受光部にて受光し、かつ該透過光を電気信号に変換し、制御部にて、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の透過率を演算し、演算された前記光の透過率とデータベースと照合して、前記光の透過率に対応する、前記微粒子の粒子径を求める。 The particle diameter evaluation method according to the third aspect of the present invention is an evaluation method for the particle diameter of fine particles contained in a liquid to be measured. The transmitted light that has passed through the measurement cell in the irradiated light is received by the light receiving unit, and the transmitted light is converted into an electrical signal. The control unit outputs the electrical signal output from the light receiving unit. The light transmittance of the liquid to be measured is calculated based on the above, and the calculated light transmittance is compared with a database to obtain the particle diameter of the fine particles corresponding to the light transmittance.
 本発明の第3態様の粒子径の評価方法においては、前記データベースは、前記制御部に予め付設されており、前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを複数組有し、前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、前記複数組のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を複数用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られていることが好ましい。 In the particle diameter evaluation method according to the third aspect of the present invention, the database is preliminarily attached to the control unit, and the database is used for reference to irradiation light having a wavelength correlated with the particle diameter. A plurality of sets of data indicated by the light transmittance in the liquid and the particle size of the control microparticles contained in the control liquid, the control microparticles having a specific particle size, It is the same quality as the fine particles contained in the liquid to be measured, and the plurality of sets of data is obtained by using a plurality of the control liquids including a group composed of the control fine particles, and by the desired particle size measuring device. It is preferably obtained by measuring the particle size of the control fine particles contained in the control liquid.
 本発明の第4態様の粒子径の評価装置は、計測される液体中に含まれる微粒子の粒子径の評価装置であって、制御部と、照射光を測定セル内の前記計測される液体に照射する発光部と、前記照射光のうち前記測定セルを透過した透過光を受光し、かつ該透過光に基づく光のエネルギーを電気信号に変換する受光部とを備える。ここで、前記制御部は、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の透過率を演算し、演算された前記光の透過率とデータベースと照合して前記光の透過率に対応する、前記微粒子の粒子径を求める。
 この評価装置においては、発光部は、制御部から発信された電気信号を照射光に変換して、照射光を測定セル内の前記計測される液体に照射してもよい。また、制御部は、発光部の発光状態(ON)と消灯状態(OFF)とを制御するための信号(発光部を駆動させるための電気信号)を発光部に発信してもよい。
A particle diameter evaluation apparatus according to a fourth aspect of the present invention is an apparatus for evaluating the particle diameter of fine particles contained in a liquid to be measured, and includes a control unit and irradiation light to the liquid to be measured in a measurement cell. A light-emitting unit that irradiates; and a light-receiving unit that receives transmitted light transmitted through the measurement cell in the irradiated light and converts light energy based on the transmitted light into an electrical signal. Here, the control unit calculates the light transmittance of the liquid to be measured based on the electrical signal output from the light receiving unit, and compares the calculated light transmittance with a database to check the light transmittance. The particle diameter of the fine particles corresponding to the light transmittance is determined.
In this evaluation apparatus, the light emitting unit may convert the electric signal transmitted from the control unit into irradiation light, and irradiate the liquid to be measured in the measurement cell with the irradiation light. In addition, the control unit may transmit a signal (an electric signal for driving the light emitting unit) for controlling the light emitting state (ON) and the light-off state (OFF) of the light emitting unit to the light emitting unit.
 本発明の第4態様の粒子径の評価装置においては、前記データベースは、前記制御部に予め付設されており、前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを複数組有し、前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、前記複数組のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を複数用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られていることが好ましい。 In the particle diameter evaluation apparatus according to the fourth aspect of the present invention, the database is preliminarily attached to the control unit, and the database is for comparison with irradiation light having a wavelength correlated with the particle diameter. A plurality of sets of data indicated by the light transmittance in the liquid and the particle size of the control microparticles contained in the control liquid, the control microparticles having a specific particle size, It is the same quality as the fine particles contained in the liquid to be measured, and the plurality of sets of data is obtained by using a plurality of the control liquids including a group composed of the control fine particles, and by the desired particle size measuring device. It is preferably obtained by measuring the particle size of the control fine particles contained in the control liquid.
 本発明の第5態様の粒子径の評価方法は、計測される液体中に含まれる微粒子の粒子径の評価方法であって、発光部にて、測定セル内の前記計測される液体に照射光を照射し、前記照射光のうち前記測定セルから反射された反射光を受光部にて受光し、かつ該反射光を電気信号に変換し、制御部にて、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の反射率を演算し、演算された前記光の反射率とデータベースと照合して、前記光の反射率に対応する、前記微粒子の粒子径を求める。 The particle diameter evaluation method according to the fifth aspect of the present invention is an evaluation method of the particle diameter of fine particles contained in a liquid to be measured. The reflected light reflected from the measurement cell in the irradiated light is received by the light receiving unit, and the reflected light is converted into an electrical signal. The control unit outputs the electric light output from the light receiving unit. The light reflectance of the liquid to be measured is calculated based on the signal, and the calculated light reflectance and the database are collated to obtain the particle diameter of the fine particles corresponding to the light reflectance. .
 本発明の第5態様の粒子径の評価方法においては、前記データベースは、前記制御部に予め付設されており、前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の反射率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを複数組有し、前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、前記複数組のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を複数用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られていることが好ましい。 In the particle diameter evaluation method according to the fifth aspect of the present invention, the database is preliminarily attached to the control unit, and the database is used for comparison with irradiation light having a wavelength correlated with the particle diameter. A plurality of sets of data represented by the reflectance of light in the liquid and the particle size of the control microparticles contained in the control liquid, the control microparticles having a specific particle size, It is the same quality as the fine particles contained in the liquid to be measured, and the plurality of sets of data is obtained by using a plurality of the control liquids including a group composed of the control fine particles, and by the desired particle size measuring device. It is preferably obtained by measuring the particle size of the control fine particles contained in the control liquid.
 本発明の第6態様の粒子径の評価装置は、計測される液体中に含まれる微粒子の粒子径の評価装置であって、制御部と、照射光を測定セル内の前記計測される液体に照射する発光部と、前記照射光のうち前記測定セルから反射された反射光を受光し、かつ該反射光に基づく光のエネルギーを電気信号に変換する受光部とを備える。ここで、前記制御部は、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の反射率を演算し、演算された前記光の反射率とデータベースと照合して前記光の反射率に対応する、前記微粒子の粒子径を求める。
 この評価装置においては、発光部は、制御部から発信された電気信号を照射光に変換して、照射光を測定セル内の前記計測される液体に照射してもよい。また、制御部は、発光部の発光状態(ON)と消灯状態(OFF)とを制御するための信号(発光部を駆動させるための電気信号)を発光部に発信してもよい。
A particle diameter evaluation apparatus according to a sixth aspect of the present invention is an evaluation apparatus for the particle diameter of fine particles contained in a liquid to be measured, and includes a control unit and irradiation light to the liquid to be measured in a measurement cell. A light emitting unit for irradiating, and a light receiving unit for receiving reflected light reflected from the measurement cell in the irradiated light and converting light energy based on the reflected light into an electrical signal. Here, the control unit calculates a reflectance of light of the liquid to be measured based on an electrical signal output from the light receiving unit, and compares the calculated reflectance of the light with a database to calculate the reflectance. The particle diameter of the fine particles corresponding to the light reflectance is obtained.
In this evaluation apparatus, the light emitting unit may convert the electric signal transmitted from the control unit into irradiation light, and irradiate the liquid to be measured in the measurement cell with the irradiation light. In addition, the control unit may transmit a signal (an electric signal for driving the light emitting unit) for controlling the light emitting state (ON) and the light-off state (OFF) of the light emitting unit to the light emitting unit.
 本発明の第6態様の粒子径の評価装置においては、前記データベースは、前記制御部に予め付設されており、前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の反射率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを複数組有し、前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、前記複数組のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を複数用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られていることが好ましい。 In the particle diameter evaluation apparatus according to the sixth aspect of the present invention, the database is preliminarily attached to the control unit, and the database is for comparison with irradiation light having a wavelength correlated with the particle diameter. A plurality of sets of data represented by the reflectance of light in the liquid and the particle size of the control microparticles contained in the control liquid, the control microparticles having a specific particle size, It is the same quality as the fine particles contained in the liquid to be measured, and the plurality of sets of data is obtained by using a plurality of the control liquids including a group composed of the control fine particles, and by the desired particle size measuring device. It is preferably obtained by measuring the particle size of the control fine particles contained in the control liquid.
 本発明に係る粒子径の評価方法では、対照用液体に含まれた対照用微粒子が有する光の透過率と粒子径とを一組とするデータを複数備えたデータベースを予め作成している。そして、計測される液体に含まれた微粒子が有する光の透過率を測定して上記のデータベースと照合することにより、測定した光の透過率に対応する微粒子の粒子径を求める。計測される液体に微粒子が高濃度で含まれていても、透過率を測定することができるため、計測される液体を希釈する必要がない。したがって、微粒子を溶解する溶剤を含み、希釈により微粒子の破壊が促進されるような液体に対して適用可能な、粒子径の評価方法を提供することができる。
 また、プロセス処理中であって、希釈を行いたくない液体に対しても適用可能な、粒子径の評価方法を提供することができる。
 また、製造工程の途中、例えば、反応過程における形成途中の微粒子のように、希釈により粒子径が不安定となるような微粒子を分散させた液体に対して適用可能な、粒子径の評価方法を提供することができる。
In the particle diameter evaluation method according to the present invention, a database including a plurality of sets of data of the light transmittance and particle diameter of the control fine particles contained in the control liquid is created in advance. Then, the light transmittance of the fine particles contained in the liquid to be measured is measured and collated with the above database to obtain the particle diameter of the fine particles corresponding to the measured light transmittance. Even if the liquid to be measured contains fine particles at a high concentration, the transmittance can be measured, so that it is not necessary to dilute the liquid to be measured. Therefore, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that contains a solvent that dissolves fine particles and that facilitates the destruction of the fine particles by dilution.
Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
Also, a particle diameter evaluation method that can be applied to a liquid in which fine particles whose particle size becomes unstable by dilution, such as fine particles being formed in the course of a reaction, for example, during the production process is dispersed. Can be provided.
 また、本発明に係る粒子径の評価装置では、対照用液体に含まれた対照用微粒子が有する光の透過率と粒子径とを一組とするデータを複数備えたデータベースを予め作成している。そして、計測される液体に含まれた微粒子が有する光の透過率を測定して上記のデータベースと照合することにより、測定した光の透過率に対応する該微粒子の粒子径が検出される。微粒子が高濃度で液体に含まれていても、透過率を測定することができるため、該液体は希釈された液体でなくてもよい。したがって、微粒子を溶解する溶剤を含み、希釈により微粒子の破壊が促進されるような液体に対して適用可能な、粒子径の評価装置を提供することができる。
 また、プロセス処理中であって、希釈を行いたくない液体に対しても適用可能な、粒子径の評価装置を提供することができる。
 また、製造工程の途中、例えば、反応過程における形成途中の微粒子のように、希釈により粒子径が不安定となるような微粒子を含む液体に対して適用可能な、粒子径の評価装置を提供することができる。
Further, in the particle diameter evaluation apparatus according to the present invention, a database including a plurality of sets of data including the light transmittance and the particle diameter of the control fine particles contained in the control liquid is created in advance. . Then, the light transmittance of the fine particles contained in the liquid to be measured is measured and collated with the above database, whereby the particle diameter of the fine particles corresponding to the measured light transmittance is detected. Even if the fine particles are contained in the liquid at a high concentration, since the transmittance can be measured, the liquid may not be a diluted liquid. Therefore, it is possible to provide a particle diameter evaluation apparatus that can be applied to a liquid that contains a solvent that dissolves fine particles and that facilitates the destruction of the fine particles by dilution.
In addition, it is possible to provide a particle size evaluation apparatus that can be applied to a liquid that is being processed and does not want to be diluted.
Further, the present invention provides a particle size evaluation apparatus that can be applied to a liquid containing fine particles whose particle size becomes unstable by dilution, such as fine particles being formed in the course of a reaction, for example, during the reaction process. be able to.
 本発明に係る粒子径の評価方法では、対照用液体に含まれた対照用微粒子が有する光の反射率と粒子径とを一組とするデータを複数備えたデータベースを予め作成している。そして、計測される液体に含まれた微粒子が有する光の反射率を測定して上記のデータベースと照合することにより、測定した光の反射率に対応する微粒子の粒子径を求める。計測される液体に微粒子が高濃度で含まれていても、反射率を測定することができるため、計測される液体を希釈する必要がない。したがって、微粒子を溶解する溶剤を含み、希釈により微粒子の破壊が促進されるような液体に対して適用可能な、粒子径の評価方法を提供することができる。
 また、プロセス処理中であって、希釈を行いたくない液体に対しても適用可能な、粒子径の評価方法を提供することができる。
 また、製造工程の途中、例えば、反応過程における形成途中の微粒子のように、希釈により粒子径が不安定となるような微粒子を分散させた液体に対して適用可能な、粒子径の評価方法を提供することができる。
In the particle diameter evaluation method according to the present invention, a database including a plurality of sets of data including the light reflectance and particle diameter of the control fine particles contained in the control liquid is created in advance. And the particle diameter of the microparticles | fine-particles corresponding to the measured light reflectance is calculated | required by measuring the reflectance of the light which the microparticles | fine-particles contained in the measured liquid have, and collating with said database. Even if the liquid to be measured contains fine particles at a high concentration, the reflectance can be measured, so that it is not necessary to dilute the liquid to be measured. Therefore, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that contains a solvent that dissolves fine particles and that facilitates the destruction of the fine particles by dilution.
Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
Also, a particle diameter evaluation method that can be applied to a liquid in which fine particles whose particle size becomes unstable by dilution, such as fine particles being formed in the course of a reaction, for example, during the production process is dispersed. Can be provided.
 また、本発明に係る粒子径の評価装置では、対照用液体に含まれた対照用微粒子が有する光の反射率と粒子径とを一組とするデータを複数備えたデータベースを予め作成している。そして、計測される液体に含まれた微粒子が有する光の反射率を測定して上記のデータベースと照合することにより、測定した光の反射率に対応する該微粒子の粒子径が検出される。微粒子が高濃度で液体に含まれていても、反射率を測定することができるため、該液体は希釈された液体でなくてもよい。したがって、微粒子を溶解する溶剤を含み、希釈により微粒子の破壊が促進されるような液体に対して適用可能な、粒子径の評価装置を提供することができる。
 また、プロセス処理中であって、希釈を行いたくない液体に対しても適用可能な、粒子径の評価装置を提供することができる。
 また、製造工程の途中、例えば、反応過程における形成途中の微粒子のように、希釈により粒子径が不安定となるような微粒子を含む液体に対して適用可能な、粒子径の評価装置を提供することができる。
Moreover, in the particle diameter evaluation apparatus according to the present invention, a database including a plurality of sets of data that includes the light reflectance and particle diameter of the control fine particles contained in the control liquid is created in advance. . Then, the light reflectance of the fine particles contained in the liquid to be measured is measured and collated with the above database, whereby the particle diameter of the fine particles corresponding to the measured light reflectance is detected. Even if the fine particles are contained in the liquid at a high concentration, the reflectivity can be measured, so that the liquid may not be a diluted liquid. Therefore, it is possible to provide a particle diameter evaluation apparatus that can be applied to a liquid that contains a solvent that dissolves fine particles and that facilitates the destruction of the fine particles by dilution.
In addition, it is possible to provide a particle size evaluation apparatus that can be applied to a liquid that is being processed and does not want to be diluted.
Further, the present invention provides a particle size evaluation apparatus that can be applied to a liquid containing fine particles whose particle size becomes unstable by dilution, such as fine particles being formed in the course of a reaction, for example, during the reaction process. be able to.
本発明に係る、粒子径の評価装置の構成を説明する図である。It is a figure explaining the structure of the evaluation apparatus of a particle diameter based on this invention. 第一実施形態に用いる、液体の構成要素をまとめた表である。It is the table | surface which put together the component of the liquid used for 1st embodiment. 第一実施形態に用いる液体を構成する、乳化剤の配合を示す表である。It is a table | surface which shows the mixing | blending of the emulsifier which comprises the liquid used for 1st embodiment. 第一実施形態における、微粒子が有する光の透過率に関する測定結果を示すグラフである。It is a graph which shows the measurement result regarding the transmittance | permeability of the light which microparticles | fine-particles have in 1st embodiment. 第一実施形態における、微粒子が有する光の透過率に関する測定結果を示す表である。It is a table | surface which shows the measurement result regarding the transmittance | permeability of the light which microparticles | fine-particles have in 1st embodiment. 第二実施形態における、微粒子が有する光の透過率に関する測定結果を示すグラフである。It is a graph which shows the measurement result regarding the transmittance | permeability of the light which microparticles | fine-particles have in 2nd embodiment. 第二実施形態における、微粒子が有する光の透過率に関する測定結果を示す表である。It is a table | surface which shows the measurement result regarding the transmittance | permeability of the light which microparticles | fine-particles have in 2nd embodiment. 第三実施形態に用いる、液体の構成要素をまとめた表である。It is the table | surface which put together the component of the liquid used for 3rd embodiment. 第三実施形態に用いる、液体の構成要素をまとめた表である。It is the table | surface which put together the component of the liquid used for 3rd embodiment. 第三実施形態に用いる、液体の構成要素をまとめた表である。It is the table | surface which put together the component of the liquid used for 3rd embodiment. 第三実施形態における、微粒子が有する光の透過率に関する測定結果を示すグラフである。It is a graph which shows the measurement result regarding the transmittance | permeability of the light which microparticles | fine-particles have in 3rd embodiment. 第三実施形態における、微粒子が有する光の透過率に関する測定結果を示す表である。It is a table | surface which shows the measurement result regarding the transmittance | permeability of the light which microparticles | fine-particles in 3rd embodiment. 第四実施形態における、微粒子が有する光の反射率に関する測定結果を示す表である。It is a table | surface which shows the measurement result regarding the reflectance of the light which microparticles | fine-particles in 4th embodiment. 第四実施形態における評価方法および評価装置の一例を示す模式図である。It is a schematic diagram which shows an example of the evaluation method and evaluation apparatus in 4th embodiment.
 以下、好適な実施形態に基づき、図面を参照して本発明を説明する。 Hereinafter, based on a preferred embodiment, the present invention will be described with reference to the drawings.
<第一実施形態>
 図1は、本発明の第一実施形態に係る粒子径の評価装置100と、それに付設される表示部111との構成を説明する図である。評価装置100は、計測部110と、制御部104と、制御部104に付設されているデータベース105aとで構成される。計測部110は、アクリル樹脂の微粒子102aが分散した液体101a(計測される液体)を収容する測定セル103と、制御部104から発信された電気信号を照射光107に変換し、かつ、照射光107を測定セル103内に照射する発光部106と、照射光107のうち測定セル103を透過した透過光108を受光し、かつ、透過光108を電気信号に変換する受光部109と、を有する。
 ここで、データベース105aとは、透過率と粒子径とが対応づけされた、例えば、換算表である。この換算表は、製品(液体に微粒子が含有されている製品)の種類に応じて使用される。
 また、このデータベース105aは、制御部に記憶されていてもよい。この場合、データベースは、制御部に電気的に接続された記憶装置に記憶される。
<First embodiment>
FIG. 1 is a diagram illustrating the configuration of a particle diameter evaluation apparatus 100 according to a first embodiment of the present invention and a display unit 111 attached thereto. The evaluation apparatus 100 includes a measurement unit 110, a control unit 104, and a database 105a attached to the control unit 104. The measurement unit 110 converts the measurement cell 103 containing the liquid 101a (liquid to be measured) in which the acrylic resin fine particles 102a are dispersed, the electrical signal transmitted from the control unit 104 into the irradiation light 107, and the irradiation light. A light-emitting unit 106 that irradiates the measurement cell 103 with light 107; and a light-receiving unit 109 that receives the transmitted light 108 transmitted through the measurement cell 103 out of the irradiated light 107 and converts the transmitted light 108 into an electrical signal. .
Here, the database 105a is, for example, a conversion table in which the transmittance and the particle diameter are associated with each other. This conversion table is used according to the type of product (product in which fine particles are contained in a liquid).
The database 105a may be stored in the control unit. In this case, the database is stored in a storage device that is electrically connected to the control unit.
 発光部106は、レーザーやLED等の、波長が限定された光源であってもよいし、白色光等の、波長幅の広い光を発する光源であってもよい。発光部106として、波長が限定された光源を用いる場合には、波長が350~3600[nm]の範囲にある単一光のうち一種類または二種類以上を用いる。また、発光部106として、波長幅の広い光を発する光源を用いる場合には、発せられる光から測定セル103内の微粒子102aと相関している波長の光を取り出す必要がある。したがって、発光部106と測定セル103との間(区間)、および測定セル103と受光部109との間(区間)の少なくとも一方に、分光器または特定波長の光のみを通すフィルターを備える必要がある。分光器を用いれば、発光部106を、タングステンランプ、キセノンランプを光源として用いることが可能となる。 The light emitting unit 106 may be a light source with a limited wavelength, such as a laser or LED, or a light source that emits light with a wide wavelength width, such as white light. When a light source having a limited wavelength is used as the light emitting unit 106, one type or two or more types of single light having a wavelength in the range of 350 to 3600 [nm] are used. When a light source that emits light having a wide wavelength range is used as the light emitting unit 106, it is necessary to extract light having a wavelength correlated with the fine particles 102a in the measurement cell 103 from the emitted light. Therefore, it is necessary to provide a spectroscope or a filter that allows only light of a specific wavelength to pass between at least one of the light emitting unit 106 and the measurement cell 103 (section) and between the measurement cell 103 and the light receiving unit 109 (section). is there. If a spectroscope is used, the light emitting unit 106 can be used as a light source of a tungsten lamp or a xenon lamp.
 複数の発光部106が備えられてもよく、受光部109は、発光部106の数と等しい数だけ備えられる。受光部109の数は、測定したい波長の光の数に応じて変更することができる。なお、複数の発光部106が備えられている場合、すべての発光部106が同時に発光することにより、測定時間を短縮することが可能となる。 A plurality of light emitting units 106 may be provided, and the light receiving units 109 are provided in a number equal to the number of the light emitting units 106. The number of light receiving units 109 can be changed according to the number of light beams having a wavelength to be measured. Note that in the case where a plurality of light emitting units 106 are provided, the measurement time can be shortened because all the light emitting units 106 emit light simultaneously.
 測定セル103は、ガラス、合成石英ガラス、プラスチック、準貴石等により構成される。光の透過率を測定する場合には、測定セル103内の光路を、液体101aの濃度に応じて1[mm]~20[cm]まで変えることができる。 The measurement cell 103 is made of glass, synthetic quartz glass, plastic, semi-precious stone, or the like. When measuring the light transmittance, the optical path in the measurement cell 103 can be changed from 1 [mm] to 20 [cm] according to the concentration of the liquid 101a.
 また、光の透過率を測定する場合に、測定セル103は、計測される液体101aを流すフローセルであってもよい。温度制御して測定を行いたい場合には、水または高沸点溶剤をセル周りに設けられたジャケットに循環させることができる。測定セル103としてフローセルを用いることにより、例えば、プロセス処理中における微粒子102aに対して本発明を適用し、微粒子102aの粒子径を求めることが可能となる。 Further, when measuring the light transmittance, the measurement cell 103 may be a flow cell for flowing the liquid 101a to be measured. When it is desired to perform measurement while controlling the temperature, water or a high-boiling solvent can be circulated through a jacket provided around the cell. By using a flow cell as the measurement cell 103, for example, the present invention can be applied to the fine particles 102a during process processing, and the particle diameter of the fine particles 102a can be obtained.
 第一実施形態では、スチレン(15部)、メチルメタクリレート(35部)、n-ブチルアクリレート(47部)、2-ヒドロキシエチルアクリレート(2部)、アクリル酸(1部)で構成されたアクリル樹脂の微粒子と、脱イオン水(40部)、乳化剤(8部)で構成されたアクリル樹脂の溶剤とで構成された液体101aを、一例として用いる。乳化剤としては、例えば、日本乳化剤株式会社製のポリオキシエチレン鎖を有するアニオン性界面活性剤「Newcol707SF」(有効成分30%)を用いる。図2は、上述したアクリル樹脂とその溶剤の構成要素の一例をまとめた表である。表の左欄が構成要素の名称を示し、右欄が各構成要素の質量部数を示している。 In the first embodiment, an acrylic resin composed of styrene (15 parts), methyl methacrylate (35 parts), n-butyl acrylate (47 parts), 2-hydroxyethyl acrylate (2 parts), and acrylic acid (1 part) As an example, a liquid 101a composed of the above fine particles and a solvent of an acrylic resin composed of deionized water (40 parts) and an emulsifier (8 parts) is used. As an emulsifier, for example, an anionic surfactant “Newcol 707SF” (active ingredient 30%) having a polyoxyethylene chain manufactured by Nippon Emulsifier Co., Ltd. is used. FIG. 2 is a table summarizing an example of the components of the acrylic resin and the solvent described above. The left column of the table shows the names of the components, and the right column shows the number of parts by mass of each component.
 また、第一実施形態では、乳化剤量の配合が異なる3種類の液体101aのサンプル(Sample1~12)を用いる。乳化剤量の配合は、Sample1~4では、16.2[部]、Sample5~8では、8.1[部]、Sample9~12では、14[部]となっている。液体101aを構成する乳化剤量の配合と、アクリル樹脂の微粒子102aの粒子径の関係をまとめた表を、図3に示す。図3において、粒子径150[nm]、193[nm]、255[nm]は、それぞれSample1~4、Sample5~8、Sample9~12における平均値である。 In the first embodiment, three types of liquid 101a samples (Samples 1 to 12) having different amounts of emulsifier are used. The amount of the emulsifier is 16.2 [parts] for Samples 1 to 4, 8.1 [parts] for Samples 5 to 8, and 14 [parts] for Samples 9 to 12. FIG. 3 shows a table summarizing the relationship between the amount of emulsifier constituting the liquid 101a and the particle diameter of the acrylic resin fine particles 102a. In FIG. 3, the particle diameters 150 [nm], 193 [nm], and 255 [nm] are average values in Samples 1 to 4, Samples 5 to 8, and Samples 9 to 12, respectively.
 アクリル樹脂の微粒子102aを分散させた液体101aは、以下に示すA1、A2、A3工程により生成される。すなわち、A1工程において、モノマー乳化物とその溶剤を第一反応容器内に仕込み、窒素気流中で攪拌混合して、約80℃になるまで昇温する。 The liquid 101a in which the acrylic resin fine particles 102a are dispersed is generated by the following steps A1, A2, and A3. That is, in step A1, the monomer emulsion and its solvent are charged into the first reaction vessel, stirred and mixed in a nitrogen stream, and heated to about 80 ° C.
 次に、A2工程において、A1工程を経たモノマー乳化物およびその溶剤の一部と、10%過硫酸アンモニウム水溶液と、を第二反応容器内に導入し、約80℃で20分間保持する。ここでは、10%過硫酸アンモニウム水溶液の質量部数は0.15部である。 Next, in step A2, the monomer emulsion obtained in step A1 and a part of the solvent thereof and a 10% ammonium persulfate aqueous solution are introduced into the second reaction vessel, and held at about 80 ° C. for 20 minutes. Here, the mass part of 10% ammonium persulfate aqueous solution is 0.15 parts.
 そして、A3工程において、A1工程を経たモノマー乳化物およびその溶剤の残部と、10%過硫酸アンモニウム水溶液との混合物を、約4時間かけて反応容器内に滴下し、滴下終了後に約1時間熟成を行うことにより、アクリル樹脂の微粒子102aを含む液体101aが得られる。 In step A3, a mixture of the monomer emulsion obtained in step A1 and the remainder of the solvent and a 10% aqueous solution of ammonium persulfate is dropped into the reaction vessel over about 4 hours. After completion of dropping, the mixture is aged for about 1 hour. By doing so, a liquid 101a containing fine particles 102a of acrylic resin is obtained.
 なお、発光部106は、微粒子102aに適した特定波長の光を発する光源で構成されることが望ましい。また、発光部106又は受光部109が、微粒子102aに適した特定波長の光のみを通すフィルターを備える場合も、同様に、発光部106が微粒子102aに適した特定波長の光を発する光源で構成されることが望ましい。これらの構成によれば、従来の方法のような広範囲の波長の光をモノクロメータ等により分光する工程が不要となるため、より短い時間での測定することが可能となる。したがって、短い時間で変形してしまうような微粒子に対して、時間の経過に伴う粒子径の変化を、より正確に測定することができる。 Note that the light emitting unit 106 is preferably composed of a light source that emits light of a specific wavelength suitable for the fine particles 102a. Similarly, when the light emitting unit 106 or the light receiving unit 109 includes a filter that passes only light having a specific wavelength suitable for the fine particles 102a, the light emitting unit 106 is configured with a light source that emits light having a specific wavelength suitable for the fine particles 102a. It is desirable that According to these configurations, the step of separating light of a wide range of wavelengths with a monochromator or the like as in the conventional method is not required, so that measurement can be performed in a shorter time. Therefore, it is possible to more accurately measure the change in particle diameter with the passage of time for fine particles that are deformed in a short time.
 制御部104は、データベース105aを有する。このデータベース105aは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを3点以上有する。ここで、対照用微粒子は、上述した微粒子102aと同質な微粒子であり、特定の粒子径を有する。このような一組のデータは、照射光107の一波長ごとに得られている。また、光の透過率及び粒子径のデータは、特定の粒子径を有して微粒子102aと同質な対照用微粒子で構成された集団を含む液体(対照用液体)を3種類以上用い、各対照用液体に含まれた微粒子(対照用微粒子)に対して、別々に測定することによって得られる。ここで、光の透過率は本発明の評価装置100を用いて測定されるが、粒子径は、例えば、ミー散乱理論あるいはフラウンホーファー回折理論を利用したレーザー式粒子径測定装置、動的光散乱、レーザー回折、遠心沈降、超音波減衰、画像識別等を利用した粒子径測定装置を用いて測定される。 The control unit 104 has a database 105a. This database 105a is a set of data indicated by the transmittance of light in the control liquid for irradiation light having a wavelength correlated with the particle diameter, and the particle diameter of the control microparticles contained in the control liquid. Has 3 or more data. Here, the control fine particles are fine particles having the same quality as the fine particles 102a described above, and have a specific particle diameter. Such a set of data is obtained for each wavelength of the irradiation light 107. The light transmittance and particle size data are obtained by using three or more types of liquids (control liquids) containing a group of control fine particles having a specific particle diameter and the same quality as the fine particles 102a. It is obtained by separately measuring the fine particles contained in the preparation liquid (control fine particles). Here, the light transmittance is measured using the evaluation apparatus 100 of the present invention. The particle diameter is, for example, a laser-type particle diameter measuring apparatus or dynamic light scattering using Mie scattering theory or Fraunhofer diffraction theory. It is measured using a particle size measuring device utilizing laser diffraction, centrifugal sedimentation, ultrasonic attenuation, image identification, and the like.
 また、制御部104は、発光部106に向けて、照射光107を発するように促す電気信号を送信する機能を有する。また、制御部104は、受光部109が受けた透過光108に基づく電気信号を受信し、液体101aが有する光の透過率を演算する機能を有する。また、制御部104は、データベース105aと演算された透過率とを照合して、演算された光の透過率に対応する、微粒子102aの粒子径を求める機能を有する。 Further, the control unit 104 has a function of transmitting an electrical signal that prompts the light emitting unit 106 to emit the irradiation light 107. In addition, the control unit 104 has a function of receiving an electrical signal based on the transmitted light 108 received by the light receiving unit 109 and calculating the light transmittance of the liquid 101a. Further, the control unit 104 has a function of collating the database 105a with the calculated transmittance to obtain the particle diameter of the fine particles 102a corresponding to the calculated light transmittance.
 ここで、データベース105aに基づき、光の透過率と粒子径との関係式が導けることを、図4Aを用いて示す。
 図4Aは、光の透過率と粒子径との相関を示す4本線のグラフである。この図4Aに示されたデータによって、データベース105aが構成されている。ここでは、微粒子102aと同質の対照用微粒子(アクリル樹脂の微粒子)が、液体101aに対応する対照用液体に分散されている場合について説明する。
 縦軸は光の透過率、横軸は粒子径を示している。微粒子の光の透過率は、本発明の評価装置100を用いて特定波長(ここでは1300[nm])の光で測定されている。微粒子の粒子径は、動的光散乱式粒度分布計(例えば、ベックマン・コールター社製の「COULTER N5型」)を用いて測定されている。各グラフを構成する数値データが、図4Bに示された表にまとめられている。
Here, it is shown using FIG. 4A that the relational expression between the light transmittance and the particle diameter can be derived based on the database 105a.
FIG. 4A is a four-line graph showing the correlation between light transmittance and particle diameter. The database 105a is configured by the data shown in FIG. 4A. Here, a case where the control fine particles (acrylic resin fine particles) of the same quality as the fine particles 102a are dispersed in the control liquid corresponding to the liquid 101a will be described.
The vertical axis represents the light transmittance, and the horizontal axis represents the particle diameter. The light transmittance of the fine particles is measured with light of a specific wavelength (here, 1300 [nm]) using the evaluation apparatus 100 of the present invention. The particle diameter of the fine particles is measured using a dynamic light scattering particle size distribution analyzer (for example, “COULTER N5 type” manufactured by Beckman Coulter, Inc.). The numerical data composing each graph is summarized in the table shown in FIG. 4B.
 図4Aの各グラフを構成する数値データは、図4Bに示された表にまとめられている。
 測定には、乳化剤量の配合が異なる3種類の液体のサンプル(Sample1~12)を用いている。乳化剤量の配合はSample1~4では16.2[部]、Sample5~8では8.1[部]、Sample9~12では4[部]となっている。図4Bに示された表に示す、微粒子の粒子径150[nm]、193[nm]、255[nm]は、それぞれSample1~4、Sample5~8、Sample9~12での平均値である。図4Bに示された表には、Sample1~4、Sample5~8、Sample9~12のそれぞれについて、固形分(アクリル樹脂)の濃度を48[%]、44[%]、35[%]、30[%]とした4種類の液体において測定した、微粒子の光の透過率が示されている。
The numerical data constituting each graph of FIG. 4A is summarized in the table shown in FIG. 4B.
For the measurement, three types of liquid samples (Samples 1 to 12) having different amounts of emulsifier are used. The amount of emulsifier is 16.2 [parts] for Samples 1 to 4, 8.1 [parts] for Samples 5 to 8, and 4 [parts] for Samples 9 to 12. The particle diameters 150 [nm], 193 [nm], and 255 [nm] of the fine particles shown in the table shown in FIG. 4B are average values of Samples 1 to 4, Samples 5 to 8, and Samples 9 to 12, respectively. In the table shown in FIG. 4B, the concentration of solid content (acrylic resin) is 48 [%], 44 [%], 35 [%], 30 for Samples 1 to 4, Samples 5 to 8, and Samples 9 to 12, respectively. The light transmittance of fine particles measured in four types of liquids [%] is shown.
 図4Aの4本線のグラフは、脱イオン水を加えることで、アクリル樹脂の濃度をそれぞれ48%、44%、35%、30%に調整した液体に対応する。これらのグラフから、各濃度の液体において、微粒子が有する、光の透過率と粒子径とが比例関係にあることが確認できる。したがって、各濃度の液体(対照用液体)において微粒子(対照用微粒子)が有する、光の透過率および粒子径を一組とするデータを3点以上揃えたデータベース105aを用いることで、光の透過率と粒子径との関係式を導けることが、図4Aのグラフから分かる。 The four-line graph in FIG. 4A corresponds to a liquid in which the concentration of acrylic resin is adjusted to 48%, 44%, 35%, and 30% by adding deionized water, respectively. From these graphs, it can be confirmed that the light transmittance and the particle diameter of the fine particles have a proportional relationship in each concentration of liquid. Therefore, by using the database 105a in which three or more sets of data of the light transmittance and particle diameter of fine particles (control fine particles) in each concentration of liquid (control liquid) are used, light transmission is achieved. It can be seen from the graph of FIG. 4A that a relational expression between the rate and the particle diameter can be derived.
 図4Aのグラフには、アクリル樹脂の微粒子の濃度が高くなるほど、濃度の傾きが小さくなる傾向があるが、48[%]程度の高濃度であっても、微粒子の粒子径と光の透過率とを、1対1で対応させるのに十分な傾きが得られている。すなわち、少なくとも48[%]以下の濃度の液体において測定された微粒子の光の透過率から、微粒子102aの粒子径を一義的に求められることが分かる。 In the graph of FIG. 4A, the gradient of the concentration tends to decrease as the concentration of the fine particles of the acrylic resin increases, but the particle diameter of the fine particles and the light transmittance even at a high concentration of about 48%. Are sufficiently inclined to correspond to each other on a one-to-one basis. That is, it can be seen that the particle diameter of the fine particles 102a can be uniquely determined from the light transmittance of the fine particles measured in a liquid having a concentration of at least 48%.
 また、図4Aのグラフには、アクリル樹脂の微粒子の粒子径が小さくなるほど、アクリル樹脂の濃度依存性が小さくなる傾向があるが、150[nm]程度の小さい粒子径であっても、微粒子の粒子径と光の透過率とを1対1で対応させるのに十分な傾きが得られている。
 本実施形態においては、このように対照用液体と対照用微粒子とについて、微粒子径と透過率とを測定し、データベース105aを予め作成している。そして、データベース105aを利用して、任意の液体に分散されている微粒子径を求めている。すなわち、少なくとも150[nm]以上の粒子径の微粒子102aを分散させた液体101aにおいて、測定された光の透過率とデータベース105aとを照合することによって、微粒子102aの粒子径を一義的に求められることが分かる。
In the graph of FIG. 4A, as the particle size of the acrylic resin particles decreases, the concentration dependency of the acrylic resin tends to decrease. However, even if the particle size is as small as 150 [nm], A sufficient slope is obtained to make the particle diameter and light transmittance correspond one-to-one.
In the present embodiment, the particle size and the transmittance are measured for the control liquid and the control microparticles in this way, and the database 105a is created in advance. Then, the particle size dispersed in an arbitrary liquid is obtained using the database 105a. That is, in the liquid 101a in which the fine particles 102a having a particle diameter of at least 150 [nm] or more are dispersed, the particle diameter of the fine particles 102a can be uniquely determined by comparing the measured light transmittance with the database 105a. I understand that.
 第一実施形態の構成を備えた粒子径の評価装置100による、粒子径の評価方法について説明する。まず、制御部104から発信された電気信号を発光部106にて照射光107に変換し、かつ照射光107を測定セル103内の計測される液体101aに照射する。 A particle diameter evaluation method using the particle diameter evaluation apparatus 100 having the configuration of the first embodiment will be described. First, the electrical signal transmitted from the control unit 104 is converted into irradiation light 107 by the light emitting unit 106, and the irradiation light 107 is irradiated to the liquid 101 a to be measured in the measurement cell 103.
 次に、照射光107のうち測定セル103を透過した透過光108を受光部109にて受光し、かつ透過光108に基づく光のエネルギーまたは波長を電気信号に変換する。 Next, the transmitted light 108 that has passed through the measurement cell 103 in the irradiation light 107 is received by the light receiving unit 109, and the energy or wavelength of the light based on the transmitted light 108 is converted into an electrical signal.
 次に、制御部104にて受信した受光部109から出力された電気信号に基づき、計測される液体101aが有する光の透過率を演算して導く。 Next, based on the electric signal output from the light receiving unit 109 received by the control unit 104, the light transmittance of the liquid 101a to be measured is calculated and guided.
 そして、予め準備したデータベース105aに基づいて得られている、光の透過率と粒子径との関係式を用いることにより、ここで導かれた光の透過率に対応する、微粒子102aの粒子径を求めることができる。 Then, by using the relational expression between the light transmittance and the particle diameter, which is obtained based on the database 105a prepared in advance, the particle diameter of the fine particles 102a corresponding to the light transmittance derived here is obtained. Can be sought.
 なお、図4Aでは、各濃度の液体101aにおいて、微粒子102aが有する、光の透過率と粒子径とが一次の比例関係にある場合を示したが、測定範囲内で単調減少または増加する場合に、二次以上の関数を適用することにより、任意の光の透過率に対応する粒子径を唯一求めることができる。 4A shows the case where the light transmittance and the particle diameter of the fine particles 102a in the liquid 101a of each concentration are in a first-order proportional relationship, but in the case of monotonously decreasing or increasing within the measurement range. By applying a quadratic or higher-order function, the particle diameter corresponding to an arbitrary light transmittance can be uniquely obtained.
 また、図4Aでは、光の透過率および粒子径を一組とするデータを3点以上揃えて、粒子径を評価する例について説明したが、データが1点のみ用いる場合または2点のみ用いる場合にも、上述した方法と同様に評価することが可能である。 In FIG. 4A, the example in which the particle diameter is evaluated by aligning three or more sets of data with light transmittance and particle diameter as a set has been described. However, when only one point or only two points are used. Moreover, it is possible to evaluate similarly to the method mentioned above.
 微粒子102aが高濃度で液体101aに含まれていても、透過率を測定することができるため、液体101aを希釈する必要がない。したがって、第一実施形態によれば、希釈により不安定となる液体に対して適用可能な、粒子径の評価方法を提供することができる。また、プロセス処理中であって、希釈を行いたくない液体に対しても適用可能な、粒子径の評価方法を提供することができる。 Even if the fine particles 102a are contained in the liquid 101a at a high concentration, it is not necessary to dilute the liquid 101a because the transmittance can be measured. Therefore, according to the first embodiment, it is possible to provide a particle diameter evaluation method applicable to a liquid that becomes unstable by dilution. Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
 そして、第一実施形態によれば、希釈により不安定となる液体、あるいはプロセス処理中であって希釈を行いたくない液体、に対する上述した評価を実現する、粒子径の評価装置を提供することができる。 And according to 1st embodiment, the particle diameter evaluation apparatus which implement | achieves the evaluation mentioned above with respect to the liquid which becomes unstable by dilution or the liquid which is in process processing and does not want to dilute is provided. it can.
<第二実施形態>
 第二実施形態に係る粒子径の評価装置100の構成、および液体101bの生成方法は、第一実施形態と同様であるが、粒子径の検出を実施する際の、微粒子102bの状態が第一実施形態と異なる。
<Second embodiment>
The configuration of the particle diameter evaluation apparatus 100 and the method for generating the liquid 101b according to the second embodiment are the same as those in the first embodiment, but the state of the fine particles 102b when the particle diameter is detected is the first. Different from the embodiment.
 すなわち、第一実施形態では、上述のA3工程において、モノマー乳化物を反応容器内に滴下した後に得られた、最終状態での、アクリル樹脂の微粒子102aを含む液体101aに対して光の透過率を測定し、それに対応する微粒子102aの粒子径を検出した。
 これに対し、第二実施形態では、A3工程において、モノマー乳化物を反応容器内に滴下している間に得られる、中間状態での、アクリル樹脂の微粒子102bを含む液体101bに対して光の透過率を測定し、それに対応する微粒子102bの粒子径を求める。なお、第二実施形態での液体101bは、乳化剤量の配合が、図3に示すSample5~8と同じサンプルを用いて生成される。
That is, in the first embodiment, the light transmittance with respect to the liquid 101a containing the acrylic resin fine particles 102a in the final state obtained after dropping the monomer emulsion into the reaction vessel in the above-described step A3. Was measured, and the particle diameter of the corresponding fine particles 102a was detected.
On the other hand, in the second embodiment, in the step A3, light is applied to the liquid 101b containing the acrylic resin fine particles 102b in an intermediate state obtained while the monomer emulsion is dropped into the reaction vessel. The transmittance is measured, and the particle diameter of the fine particles 102b corresponding to the transmittance is obtained. Note that the liquid 101b in the second embodiment is generated using the same sample as the samples 5 to 8 shown in FIG.
 ここで、第二実施形態におけるデータベース105bに基づき、光の透過率と粒子径との関係式が導けることを、図5Aを用いて示す。図5Aは、光の透過率と粒子径との相関を示すグラフである。この図5Aに示されたデータによって、データベース105bが構成されている。ここでは、微粒子102bと同質の対照用微粒子(アクリル樹脂の微粒子)が、液体101bに対応する対照用液体に分散されている場合について説明する。縦軸は光の透過率、横軸は粒子径を示している。微粒子の光の透過率は、本発明の評価装置100を用いて特定波長(ここでは635nm)の光で測定されている。微粒子の粒子径は、動的光散乱式粒度分布計(例えば、ベックマン・コールター社製の「COULTER N5型」)を用いて測定されている。 Here, FIG. 5A shows that the relational expression between the light transmittance and the particle diameter can be derived based on the database 105b in the second embodiment. FIG. 5A is a graph showing a correlation between light transmittance and particle diameter. The data shown in FIG. 5A constitutes the database 105b. Here, a case will be described in which control fine particles (acrylic resin fine particles) that are the same quality as the fine particles 102b are dispersed in the control liquid corresponding to the liquid 101b. The vertical axis represents the light transmittance, and the horizontal axis represents the particle diameter. The light transmittance of the fine particles is measured with light having a specific wavelength (here, 635 nm) using the evaluation apparatus 100 of the present invention. The particle diameter of the fine particles is measured using a dynamic light scattering particle size distribution analyzer (for example, “COULTER N5 type” manufactured by Beckman Coulter, Inc.).
 図5Aのグラフを構成するデータが、図5Bに示された表にまとめられている。測定には、A3工程におけるモノマー乳化物の滴下時間を1[hour]、2[hour]、3[hour]、4[hour]として生成したサンプル(Sample13、14、15、16)を用いている。図5Bに示された表には、Sample13~16を用いて測定した、微粒子の粒子径および光の透過率が示されている。 The data composing the graph of FIG. 5A are summarized in the table shown in FIG. 5B. In the measurement, samples ( Samples 13, 14, 15, 16) generated by dropping the monomer emulsion in step A3 as 1 [hour], 2 [hour], 3 [hour], 4 [hour] are used. . In the table shown in FIG. 5B, the particle diameter and light transmittance of the fine particles measured using Samples 13 to 16 are shown.
 図5Aのグラフから、微粒子102bが有する、光の透過率と粒子径とが比例関係にあることが確認できる。
 本実施形態においては、このように対照用液体と対照用微粒子とについて、微粒子径と透過率とを測定し、データベース105bを予め作成している。そして、データベース105bを利用して、任意の液体に分散されている微粒子径を求めている。
 したがって、第二実施形態においても、液体において微粒子が有する、光の透過率および粒子径を一組とするデータを3点以上揃えたデータベース105bを用いることで、光の透過率と粒子径との関係式を導けることが、図5Aのグラフから分かる。そして、微粒子102bの粒子径を一義的に求められることが分かる。
From the graph of FIG. 5A, it can be confirmed that the light transmittance and the particle diameter of the fine particles 102b are in a proportional relationship.
In this embodiment, the particle diameter and the transmittance are measured for the control liquid and the control microparticles in this way, and the database 105b is created in advance. Then, the particle size dispersed in an arbitrary liquid is obtained using the database 105b.
Therefore, also in the second embodiment, by using the database 105b in which three or more sets of data of the light transmittance and particle diameter of the fine particles in the liquid are used, the light transmittance and the particle diameter It can be seen from the graph of FIG. 5A that the relational expression can be derived. And it turns out that the particle diameter of the microparticles | fine-particles 102b is calculated | required uniquely.
 図5Bに示された表に示したデータによると、A3工程におけるモノマー乳化物の滴下時間と、生成されたアクリル樹脂の微粒子102bの粒子径とは、一次の比例関係をもたない。そのため、滴下時間から微粒子102bの粒子径を一義的に求めることは難しい。しかしながら、図5Aに示すように、微粒子102bの粒子径と光の透過率とは、一次の比例関係にある。そして、微粒子102bの粒子径と光の透過率とを、1対1で対応させるのに十分な傾きが得られる。すなわち、測定された微粒子102bの光の透過率から、微粒子102bの粒子径を一義的に求められることが分かる。 According to the data shown in the table shown in FIG. 5B, the dropping time of the monomer emulsion in the step A3 and the particle diameter of the generated acrylic resin fine particles 102b do not have a primary proportional relationship. Therefore, it is difficult to uniquely determine the particle diameter of the fine particles 102b from the dropping time. However, as shown in FIG. 5A, the particle diameter of the fine particles 102b and the light transmittance are in a first-order proportional relationship. In addition, an inclination sufficient to make the particle diameter of the fine particles 102b correspond to the light transmittance one to one is obtained. That is, it can be seen that the particle diameter of the fine particles 102b can be uniquely obtained from the measured light transmittance of the fine particles 102b.
 第二実施形態の構成を備えた粒子径の評価装置100による、粒子径の評価方法について説明する。まず、制御部104から発信された電気信号を発光部106にて照射光107に変換し、かつ照射光107を測定セル103内の計測される液体101bに照射する。 A particle diameter evaluation method using the particle diameter evaluation apparatus 100 having the configuration of the second embodiment will be described. First, the electric signal transmitted from the control unit 104 is converted into irradiation light 107 by the light emitting unit 106, and the irradiation light 107 is irradiated to the liquid 101 b to be measured in the measurement cell 103.
 次に、照射光107のうち測定セル103を透過した透過光108を受光部109にて受光し、かつ透過光108に基づく光のエネルギーまたは波長を電気信号に変換する。 Next, the transmitted light 108 that has passed through the measurement cell 103 in the irradiation light 107 is received by the light receiving unit 109, and the energy or wavelength of the light based on the transmitted light 108 is converted into an electrical signal.
 次に、制御部104にて受信した受光部109から出力された電気信号に基づき、計測される液体101bが有する光の透過率を演算して導く。 Next, based on the electrical signal output from the light receiving unit 109 received by the control unit 104, the light transmittance of the liquid 101b to be measured is calculated and guided.
 そして、予め準備したデータベース105bに基づいて得られている、光の透過率と粒子径との関係式を用いることにより、ここで導かれた光の透過率に対応する、微粒子102bの粒子径を求めることができる。 Then, by using the relational expression between the light transmittance and the particle diameter, which is obtained based on the database 105b prepared in advance, the particle diameter of the fine particles 102b corresponding to the light transmittance derived here is obtained. Can be sought.
 なお、図5Aでは、微粒子102bが有する、光の透過率と粒子径とが一次の比例関係にある場合を示したが、測定範囲内で単調減少または増加する場合に、二次以上の関数を適用することにより、任意の光の透過率に対応する粒子径を唯一求めることができる。 In FIG. 5A, the case where the light transmittance and the particle diameter of the fine particles 102b have a linear proportional relationship is shown. However, when monotonously decreasing or increasing within the measurement range, a quadratic or higher function is obtained. By applying it, it is possible to uniquely determine the particle diameter corresponding to an arbitrary light transmittance.
 また、図5Aでは、光の透過率および粒子径を一組とするデータを3点以上揃えて、粒子径を評価する例について説明したが、データが1点のみ用いる場合または2点のみ用いる場合にも、上述した方法と同様に評価することが可能である。 Further, in FIG. 5A, an example of evaluating the particle diameter by aligning three or more sets of data with light transmittance and particle diameter as a set has been described. However, when only one point is used or only two points are used. Moreover, it is possible to evaluate similarly to the method mentioned above.
 微粒子102bが高濃度で液体101bに含まれていても、透過率を測定することができるため、液体101bを希釈する必要がない。したがって、第二実施形態によれば、製造工程の途中、例えば、反応過程における形成途中の微粒子のように、希釈により粒子径が不安定となる微粒子を含む液体に対しても適用可能な、粒子径の評価方法を提供することができる。また、プロセス処理中であって、希釈を行いたくない液体に対しても適用可能な、粒子径の評価方法を提供することができる。 Even if the fine particles 102b are contained in the liquid 101b at a high concentration, it is not necessary to dilute the liquid 101b because the transmittance can be measured. Therefore, according to the second embodiment, particles that can be applied to a liquid containing fine particles whose particle diameter becomes unstable by dilution, such as fine particles that are being formed in a reaction process, such as fine particles that are being formed in a reaction process. A diameter evaluation method can be provided. Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
 そして、第二実施形態によれば、製造工程の途中、例えば、反応過程における形成途中の微粒子のように希釈により不安定となる微粒子を含む液体、あるいはプロセス処理中であって希釈を行いたくない液体、に対する上述した評価を実現する、粒子径の評価装置を提供することができる。 Then, according to the second embodiment, during the manufacturing process, for example, a liquid containing fine particles that become unstable due to dilution, such as fine particles being formed in the reaction process, or during the process processing, it is not desired to perform dilution. A particle diameter evaluation apparatus that realizes the above-described evaluation of a liquid can be provided.
<第三実施形態>
 第三実施形態では、微粒子102cおよび微粒子102cを分散させた液体101cの構成が、第一実施形態と異なる。すなわち第三実施形態では、液体101cが、微粒子102cと非水系溶剤とで構成され、それにともない、微粒子102cの各構成要素の質量部数が、第一実施形態と異なる。その他の構成は、第一実施形態と同様である。
<Third embodiment>
In the third embodiment, the configuration of the liquid 101c in which the fine particles 102c and the fine particles 102c are dispersed is different from that of the first embodiment. That is, in the third embodiment, the liquid 101c is composed of the fine particles 102c and the non-aqueous solvent, and accordingly, the number of mass parts of each component of the fine particles 102c is different from that of the first embodiment. Other configurations are the same as those in the first embodiment.
 図6A、図6B、図6Cは、それぞれ液体101cの溶剤を生成するための原料1、原料2、原料3について、構成要素の一例をまとめた表である。いずれに示された表においても、左欄が構成要素の名称を示し、右欄が各構成要素の質量部数を示している。 FIG. 6A, FIG. 6B, and FIG. 6C are tables summarizing examples of the constituent elements of the raw material 1, the raw material 2, and the raw material 3 for generating the solvent of the liquid 101c, respectively. In any of the tables shown, the left column indicates the name of the component, and the right column indicates the number of parts by mass of each component.
 図6Aに示された表に示すように、原料1は、2-エチルヘキシルメタクリレート(50部)、グリシジルメタクリレート(5部)n-ブチルアクリレート(36部)、t-ブチルパーオキサイド(4.6部)で構成される。また、図6Bに示された表に示すように、原料2は、アクリル酸(0.9部)、4-tert-ブチルピロカテコール(0.01部)、ジメチルアミノエタノール(0.1部)で構成される。また、図6Cに示された表に示すように、原料3は、スチレン(10部)、メチルメタクリレート(24部)、メチルアクリレート(10部)、2-ヒドロキシエチルアクリレート(56部)、2,2-アゾビスイソブチロニトリル(1.5部)で構成される。 As shown in the table shown in FIG. 6A, the raw material 1 was composed of 2-ethylhexyl methacrylate (50 parts), glycidyl methacrylate (5 parts), n-butyl acrylate (36 parts), t-butyl peroxide (4.6 parts). ). Further, as shown in the table shown in FIG. 6B, the raw material 2 was acrylic acid (0.9 parts), 4-tert-butylpyrocatechol (0.01 parts), dimethylaminoethanol (0.1 parts). Consists of. Further, as shown in the table shown in FIG. 6C, the raw material 3 was made of styrene (10 parts), methyl methacrylate (24 parts), methyl acrylate (10 parts), 2-hydroxyethyl acrylate (56 parts), 2, Consists of 2-azobisisobutyronitrile (1.5 parts).
 第三実施形態におけるアクリル樹脂の微粒子102cを含む液体101cは、以下に示すC1、C2、C3工程により生成される。すなわち、C1工程において、反応容器内にキシレン70部を配合し、これを約125℃となるように加熱する。そして、原料1を約4時間かけて反応容器内に滴下し、滴下後に約2時間熟成を行うことにより、アクリル樹脂ワニスが生成される。 The liquid 101c containing the acrylic resin fine particles 102c in the third embodiment is generated by the following C1, C2, and C3 steps. That is, in step C1, 70 parts of xylene is blended in the reaction vessel and heated to about 125 ° C. And the raw material 1 is dripped in reaction container over about 4 hours, Acrylic resin varnish is produced | generated by aging for about 2 hours after dripping.
 次に、C2工程において、C1工程で生成されたアクリル樹脂ワニス167部に対して、原料2を加える。そして、約125℃に保持した状態で約3時間攪拌することにより、分散安定剤溶液が得られる。 Next, in the step C2, the raw material 2 is added to 167 parts of the acrylic resin varnish produced in the step C1. And a dispersion stabilizer solution is obtained by stirring for about 3 hours in the state hold | maintained at about 125 degreeC.
 次に、C3工程において、C2工程で生成された分散安定剤溶液を83.3部、ヘプタンを100部、キシレンを162部の割合で配合する。これに、還流温度で原料3を、約4時間かけて反応容器内に滴下する。そして、滴下後に約2時間熟成を行うことにより、アクリル樹脂の微粒子102cと非水系溶剤とで構成される液体101cが得られる。 Next, in Step C3, 83.3 parts of the dispersion stabilizer solution produced in Step C2, 100 parts of heptane, and 162 parts of xylene are blended. To this, the raw material 3 is dropped into the reaction vessel over about 4 hours at the reflux temperature. Then, by performing aging for about 2 hours after dropping, a liquid 101c composed of acrylic resin particles 102c and a non-aqueous solvent is obtained.
 ここで、第三実施形態におけるデータベース105cに基づき、光の透過率と粒子径との関係式が導けることを、図7Aを用いて示す。図7Aは、光の透過率と粒子径との相関を示す3本線のグラフでる。この図7Aに示されデータによってデータベース105cが構成されている。ここでは、微粒子102cと同質の対照用微粒子(アクリル樹脂の微粒子)が、液体101cに対応する対照用液体に分散されている場合について説明する。縦軸は光の透過率、横軸は粒子径を示している。微粒子の光の透過率は、本発明の評価装置100を用いて特定波長(ここでは950[nm])の光で測定されている。微粒子の粒子径は、動的光散乱式粒度分布計(例えば、ベックマン・コールター社製の「COULTER N5型」)を用いて測定されている。 Here, FIG. 7A shows that the relational expression between the light transmittance and the particle diameter can be derived based on the database 105c in the third embodiment. FIG. 7A is a three-line graph showing the correlation between the light transmittance and the particle diameter. The database 105c is configured by the data shown in FIG. 7A. Here, a case where the control fine particles (acrylic resin fine particles) of the same quality as the fine particles 102c are dispersed in the control liquid corresponding to the liquid 101c will be described. The vertical axis represents the light transmittance, and the horizontal axis represents the particle diameter. The light transmittance of the fine particles is measured with light of a specific wavelength (here, 950 [nm]) using the evaluation apparatus 100 of the present invention. The particle diameter of the fine particles is measured using a dynamic light scattering particle size distribution analyzer (for example, “COULTER N5 type” manufactured by Beckman Coulter, Inc.).
 図7Aの3本線のグラフは、キシレンを加えることで、アクリル樹脂の濃度をそれぞれ40%、38%、36%に調整した液体に対応する。これらのグラフから、各濃度の液体において、微粒子が有する、光の透過率と粒子径とが比例関係にあることが確認できる。
 本実施形態においては、このように対照用液体と対照用微粒子とについて、微粒子径と透過率とを測定し、データベース105cを予め作成している。そして、データベース105cを利用して、任意の液体に分散されている微粒子径を求めている。
 したがって、第三実施形態においても、各濃度の液体において微粒子が有する、光の透過率および粒子径を一組とするデータを3点以上揃えたデータベース105cを用いることで、光の透過率と粒子径との関係式を導けることが、図7Aのグラフから分かる。
The three-line graph in FIG. 7A corresponds to a liquid in which the concentration of the acrylic resin is adjusted to 40%, 38%, and 36%, respectively, by adding xylene. From these graphs, it can be confirmed that the light transmittance and the particle diameter of the fine particles have a proportional relationship in each concentration of liquid.
In this embodiment, the particle size and the transmittance are measured for the control liquid and the control microparticles in this way, and the database 105c is created in advance. Then, the particle size dispersed in an arbitrary liquid is obtained using the database 105c.
Therefore, also in the third embodiment, by using the database 105c in which three or more sets of data of light transmittance and particle diameter that the fine particles have in each concentration of liquid have a set, light transmittance and particles It can be seen from the graph of FIG. 7A that a relational expression with the diameter can be derived.
 図7Aのグラフには、アクリル樹脂の微粒子102cの濃度によらず、その傾きが一定となる傾向があり、微粒子102cの粒子径と光の透過率とを1対1で対応させるのに十分な傾きが見られる。すなわち、任意の濃度の液体101cにおいて測定された微粒子102cの光の透過率から、微粒子102cの粒子径を一義的に求められることが分かる。 In the graph of FIG. 7A, the inclination tends to be constant regardless of the concentration of the acrylic resin fine particles 102c, which is sufficient to correspond one-to-one with the particle diameter of the fine particles 102c and the light transmittance. There is an inclination. That is, it can be seen that the particle diameter of the fine particles 102c can be uniquely determined from the light transmittance of the fine particles 102c measured in the liquid 101c having an arbitrary concentration.
 また、図7Aのグラフには、アクリル樹脂の微粒子102cの粒子径によらず、アクリル樹脂の濃度依存性が一定となる傾向があり、微粒子102cの粒子径と光の透過率とを1対1で対応させるのに十分な傾向が得られている。すなわち、任意の粒子径の微粒子102cを分散させた液体101cにおいて、測定された光の透過率から微粒子102cの粒子径を一義的に求められることが分かる。 In the graph of FIG. 7A, the concentration dependency of the acrylic resin tends to be constant regardless of the particle diameter of the acrylic resin fine particles 102c, and the particle diameter of the fine particles 102c and the light transmittance are in a one-to-one relationship. The trend is sufficient to make it correspond. That is, it can be seen that in the liquid 101c in which the fine particles 102c having an arbitrary particle size are dispersed, the particle size of the fine particles 102c can be uniquely determined from the measured light transmittance.
 第三実施形態の構成を備えた粒子径の評価装置100による、粒子径の評価方法について説明する。まず、制御部104から発信された電気信号を発光部106にて照射光107に変換し、かつ照射光107を測定セル103内の計測される液体101cに照射する。 A particle diameter evaluation method using the particle diameter evaluation apparatus 100 having the configuration of the third embodiment will be described. First, the electric signal transmitted from the control unit 104 is converted into irradiation light 107 by the light emitting unit 106, and the irradiation light 107 is irradiated to the liquid 101 c to be measured in the measurement cell 103.
 次に、照射光107のうち測定セル103を透過した透過光108を受光部109にて受光し、かつ透過光108に基づく光のエネルギーまたは波長を電気信号に変換する。 Next, the transmitted light 108 that has passed through the measurement cell 103 in the irradiation light 107 is received by the light receiving unit 109, and the energy or wavelength of the light based on the transmitted light 108 is converted into an electrical signal.
 次に、制御部104にて受信した受光部109から出力された電気信号に基づいて計測される液体101cが有する光の透過率を演算して導く。 Next, the light transmittance of the liquid 101 c measured based on the electrical signal output from the light receiving unit 109 received by the control unit 104 is calculated and guided.
 そして、予め準備したデータベース105cに基づいて得られている、光の透過率と粒子径との関係式を用いることにより、ここで導かれた光の透過率に対応する、微粒子102cの粒子径を求めることができる。 Then, by using the relational expression between the light transmittance and the particle diameter, which is obtained based on the database 105c prepared in advance, the particle diameter of the fine particles 102c corresponding to the light transmittance derived here is obtained. Can be sought.
 なお、図7Aでは、微粒子102cが有する、光の透過率と粒子径とが一次の比例関係にある場合を示したが、測定範囲内で単調減少または増加する場合に、二次以上の関数を適用することにより、任意の光の透過率に対応する粒子径を唯一求めることができる。 7A shows the case where the light transmittance and the particle diameter of the microparticles 102c have a linear proportional relationship, but when the monotonously decreases or increases within the measurement range, a function of quadratic or higher is expressed. By applying it, it is possible to uniquely determine the particle diameter corresponding to an arbitrary light transmittance.
 また、図7Aでは、光の透過率および粒子径を一組とするデータを3点以上揃えて、粒子径を評価する例について説明したが、データが1点のみ用いる場合または2点のみ用いる場合にも、上述した方法と同様に評価することが可能である。 In FIG. 7A, the example in which the particle diameter is evaluated by aligning three or more sets of data with light transmittance and particle diameter as a set has been described. However, when only one point or only two points are used. Moreover, it is possible to evaluate similarly to the method mentioned above.
 微粒子102cが高濃度で液体101cに含まれていても、透過率を測定することができるため、液体101cを希釈する必要がない。したがって、第三実施形態によれば、希釈により不安定となる液体に対して適用可能な、粒子径の評価方法を提供することができる。また、プロセス処理中であって、希釈を行いたくない液体に対しても適用可能な、粒子径の評価方法を提供することができる。 Even if the fine particles 102c are contained in the liquid 101c at a high concentration, it is not necessary to dilute the liquid 101c because the transmittance can be measured. Therefore, according to the third embodiment, it is possible to provide a particle diameter evaluation method applicable to a liquid that becomes unstable by dilution. Further, it is possible to provide a particle diameter evaluation method that can be applied to a liquid that is being processed and does not want to be diluted.
 そして、第三実施形態によれば、第三実施形態によっても、希釈により不安定となる液体、あるいはプロセス処理中であって希釈を行いたくない液体に対する上述した評価を実現する、粒子径の評価装置を提供することができる。 And according to the third embodiment, the particle diameter evaluation that realizes the above-described evaluation for a liquid that becomes unstable due to dilution or a liquid that is in process processing and does not want to be diluted according to the third embodiment. An apparatus can be provided.
<第四実施形態>
 上述した実施形態においては、光の透過率と微粒子の粒子径との相関関係が示されたデータベースを利用して、測定された光の透過率から微粒子の粒子径を評価していた。これに対し、第四実施形態においては、光の反射率と微粒子の粒子径との相関関係が示されたデータベースを利用して、計測される任意の液体に含まれる粒子径を推定している。
<Fourth embodiment>
In the embodiment described above, the particle diameter of the fine particles is evaluated from the measured light transmittance using a database in which the correlation between the light transmittance and the particle diameter of the fine particles is shown. On the other hand, in the fourth embodiment, the particle diameter contained in an arbitrary liquid to be measured is estimated using a database showing the correlation between the reflectance of light and the particle diameter of the fine particles. .
 まず、第四実施形態において用いる装置について説明する。
 図9は、本発明の一実施形態に係る粒子径の評価装置10と、それに付設される表示部11との構成を示す図である。評価装置10は、液体中に微粒子2が分散してなる分散体1への光照射および受光を行う計測部12と、データベース15等を備える制御部14を有する。
 計測部12は、分散体1を収容する測定セル13と、照射光17を測定セル13に向けて照射する発光部16と、分散体1から反射した反射光18を受光して電気信号に変換する受光部19を有する。
First, an apparatus used in the fourth embodiment will be described.
FIG. 9 is a diagram showing a configuration of the particle diameter evaluation apparatus 10 and the display unit 11 attached thereto according to an embodiment of the present invention. The evaluation apparatus 10 includes a measurement unit 12 that performs light irradiation and light reception on the dispersion 1 in which fine particles 2 are dispersed in a liquid, and a control unit 14 that includes a database 15 and the like.
The measuring unit 12 receives the measurement cell 13 that accommodates the dispersion 1, the light emitting unit 16 that irradiates the irradiation light 17 toward the measurement cell 13, and the reflected light 18 reflected from the dispersion 1, and converts it into an electrical signal. The light receiving unit 19 is provided.
 分散体の反射率を測定する装置および方法は、特に限定されるものではなく、公知の適宜のものを利用可能である。
 発光部16は、特定波長の光を発する光源であってもよいし、白色光等の、波長幅の広い光を発する光源であってもよい。
 発光部16として、レーザーや発光ダイオード(LED)等、特定波長の光を発する光源を用いる場合には、波長が350~3600nmの範囲にある単一光を1種類または2種類以上発することが好ましい。また、波長幅の広い光を発する光源としては、タングステンランプ、キセノンランプ等が挙げられる。
The apparatus and method for measuring the reflectance of the dispersion are not particularly limited, and any known appropriate one can be used.
The light emitting unit 16 may be a light source that emits light of a specific wavelength, or may be a light source that emits light having a wide wavelength width, such as white light.
When a light source that emits light of a specific wavelength, such as a laser or a light emitting diode (LED), is used as the light emitting unit 16, it is preferable to emit one type or two or more types of single light having a wavelength in the range of 350 to 3600 nm. . Examples of the light source that emits light having a wide wavelength range include a tungsten lamp and a xenon lamp.
 微粒子2の粒子径等のパラメータを反射率と対応付けて評価できるようにするためには、該パラメータに対して反射光強度の変化が大きい波長を特定波長として選択し、該特定波長における反射率を測定することが好ましい。
 例えば、微粒子の一次粒子径が10nm以下の場合は、590nmや635nmなど、可視光の範囲が好ましい。また、近赤外光の範囲の光を用いてもよい。また、微粒子の一次粒子径が100nm以下のように粒子径が比較的小さい場合は、950nmや1450nmなど、より短波長の特定波長を選択する。また、微粒子の粒子径が比較的大きい場合は、1650nmや2000nmなど、より長波長の特定波長を選択することが好ましい。本実施形態では、950nmの波長を有する光を用いた。
In order to be able to evaluate a parameter such as the particle diameter of the fine particle 2 in association with the reflectance, a wavelength having a large change in reflected light intensity with respect to the parameter is selected as the specific wavelength, and the reflectance at the specific wavelength is selected. Is preferably measured.
For example, when the primary particle diameter of the fine particles is 10 nm or less, a visible light range such as 590 nm or 635 nm is preferable. Moreover, you may use the light of the range of near infrared light. When the particle diameter is relatively small such that the primary particle diameter of the fine particles is 100 nm or less, a shorter specific wavelength such as 950 nm or 1450 nm is selected. In addition, when the particle diameter of the fine particles is relatively large, it is preferable to select a longer specific wavelength such as 1650 nm or 2000 nm. In this embodiment, light having a wavelength of 950 nm is used.
 受光部19としては、フォトダイオードなどの受光素子や、光センサ、光検出器などが挙げられる。また、発光部16として、波長幅の広い光を発する光源を用いる場合には、発光部16と測定セル13との間に、特定波長の光のみを通過させる帯域フィルターを設置して、帯域フィルターを通した光を分散体に照射したり、測定セル13と受光部19との間に、特定波長の光を選択可能な分光器や特定波長の光のみを通すフィルターを設けて、特定波長の光のみを取り出したりすることが好ましい。 Examples of the light receiving unit 19 include a light receiving element such as a photodiode, an optical sensor, and a photodetector. When a light source that emits light having a wide wavelength range is used as the light emitting unit 16, a band filter that allows only light of a specific wavelength to pass is installed between the light emitting unit 16 and the measurement cell 13. Or irradiating the dispersion with the light passing through, or providing a spectroscope capable of selecting light of a specific wavelength or a filter passing only light of a specific wavelength between the measurement cell 13 and the light receiving unit 19 It is preferable to extract only light.
 発光部16は複数備えられてもよい。受光部19は、1つの発光部16と対応するように備えられてもよいし、複数の発光部16と対応するように備えられてもよい。
 発光部16が複数備えられている場合、そのうち1つの発光部16を選択して発光させ、分散体1からの反射光を共通の受光部19で受光させることもできる。
A plurality of light emitting units 16 may be provided. The light receiving unit 19 may be provided to correspond to one light emitting unit 16, or may be provided to correspond to a plurality of light emitting units 16.
When a plurality of light emitting units 16 are provided, one of the light emitting units 16 can be selected to emit light, and the reflected light from the dispersion 1 can be received by the common light receiving unit 19.
 発光部16から分散体1に照射光17を入射させるとき、分散体表面4の法線に対して45°(好ましくは±25°以内、より好ましくは±15°以内)の方向から光17を照射することが好ましい。この場合、セルの表面で正反射した光が発光部16に戻ることによる影響を抑制することができる。
 また、受光部19が分散体1からの反射光18を受光するとき、分散体表面4の法線方向(好ましくは±30°以内、より好ましくは±10°以内)で反射光18を受光することが好ましい。本実施形態では、0°で受光している。特に分散体表面4の法線に対して45°の方向から光17を照射し、表面4の法線方向で受光する場合は、受光部19にセル壁面からの正反射光が受光されにくく、微粒子からの散乱光を主として受光することができる。
When the irradiation light 17 is incident on the dispersion 1 from the light emitting unit 16, the light 17 is emitted from a direction of 45 ° (preferably within ± 25 °, more preferably within ± 15 °) with respect to the normal line of the dispersion surface 4. Irradiation is preferred. In this case, it is possible to suppress the influence caused by the light regularly reflected on the surface of the cell returning to the light emitting unit 16.
Further, when the light receiving unit 19 receives the reflected light 18 from the dispersion 1, the reflected light 18 is received in the normal direction of the dispersion surface 4 (preferably within ± 30 °, more preferably within ± 10 °). It is preferable. In this embodiment, light is received at 0 °. In particular, when irradiating the light 17 from the direction of 45 ° with respect to the normal of the dispersion surface 4 and receiving light in the normal direction of the surface 4, the light receiving portion 19 is less likely to receive regular reflection light from the cell wall surface, Scattered light from fine particles can be mainly received.
 分散体1は、測定セル13に充填される。分散体自体は不定形であり、その表面4の形状は、測定セル13の内面の形状によって決定される。この表面4は、平面であることが望ましい。
 測定セル13は、ガラス、合成石英ガラス、プラスチック、準貴石等により構成することができる。照射光17が照射されない部分においては、金属などの不透明な材質を組み合わせることもできる。
 分散体1の反射率を測定する際、測定セル13内において、分散体1を運動させる必要はないが、測定セル13が計測される分散体1を流すフローセルであってもよい。温度制御して測定を行いたい場合には、水または高沸点溶剤をセル周りのジャケットに循環させることができる。
The dispersion 1 is filled in the measurement cell 13. The dispersion itself is irregular in shape, and the shape of the surface 4 is determined by the shape of the inner surface of the measurement cell 13. The surface 4 is preferably flat.
The measurement cell 13 can be made of glass, synthetic quartz glass, plastic, semi-precious stone, or the like. In the portion where the irradiation light 17 is not irradiated, an opaque material such as a metal can be combined.
When measuring the reflectance of the dispersion 1, it is not necessary to move the dispersion 1 in the measurement cell 13, but it may be a flow cell through which the dispersion 1 to be measured is passed. When it is desired to perform measurement while controlling the temperature, water or a high-boiling solvent can be circulated in a jacket around the cell.
 制御部14においては、測定対象となる分散体1について予め測定された、粒子径と反射率との関係を示すデータを備えたデータベース15が付設されている。制御部14は、反射率の測定結果をデータベース15と照合して、反射率の測定結果に対応する、微粒子2の粒子径を求めることができる。
 粒子径と反射率との関係を示すデータは、対照用の分散体を調製して、粒子径と分散体の反射率とを測定し、得られた粒子径と反射率とを対応付けることによって得られる。ここで、対照用の分散体の反射率は、測定対象の分散体の反射率と同様に本形態例の評価装置10を用いて測定される。対照用の分散体の粒子径は、別の装置および方法によって測定される。対照用の分散体における微粒子の粒子径の測定には、公知の粒子径の測定装置を使用でき、例えば、ミー散乱理論あるいはフラウンホーファー回折理論を利用したレーザー式粒子径測定装置、動的光散乱、レーザー回折、遠心沈降、超音波減衰、画像識別等を利用した粒子径測定装置が例示される。
 対照用の分散体について測定される粒子径は、粒子径分布ではなく、単一の数値からなる平均粒子径である。平均粒子径には種々の定義があるが、本発明においては、対照用の分散体の平均粒子径を、特定の方法で測定すればよい。すなわち、測定対象の分散体の反射率から後述のように換算される粒子径は、対照用の分散体の平均粒子径の測定に採用した特定の方法により定義される平均粒子径として、与えられる。
In the control unit 14, a database 15 including data indicating the relationship between the particle diameter and the reflectance measured in advance for the dispersion 1 to be measured is attached. The control unit 14 can check the reflectance measurement result against the database 15 to obtain the particle diameter of the fine particles 2 corresponding to the reflectance measurement result.
Data showing the relationship between the particle diameter and the reflectance is obtained by preparing a control dispersion, measuring the particle diameter and the reflectance of the dispersion, and associating the obtained particle diameter with the reflectance. It is done. Here, the reflectance of the control dispersion is measured using the evaluation apparatus 10 of the present embodiment in the same manner as the reflectance of the dispersion to be measured. The particle size of the control dispersion is measured by another apparatus and method. For the measurement of the particle size of the fine particles in the control dispersion, a known particle size measuring device can be used, for example, a laser type particle size measuring device using Mie scattering theory or Fraunhofer diffraction theory, dynamic light scattering. Examples thereof include a particle size measuring apparatus using laser diffraction, centrifugal sedimentation, ultrasonic attenuation, image identification, and the like.
The particle size measured for the control dispersion is not a particle size distribution but an average particle size consisting of a single numerical value. Although there are various definitions of the average particle size, in the present invention, the average particle size of the control dispersion may be measured by a specific method. That is, the particle diameter converted as described below from the reflectance of the dispersion to be measured is given as an average particle diameter defined by a specific method employed for measuring the average particle diameter of the control dispersion. .
 対照用の分散体について粒子径および反射率を測定する点数は、3点以上が好ましいが、2点以下とすることもできる。
 データベース15に備えられる反射率と粒子径との関係は、測定範囲内で単調に減少または増加するものであれば、一次式で表される線形的な関係であってもよく、二次式以上の高次の多項式で表される関係であってもよい。
The number of points for measuring the particle diameter and reflectance of the control dispersion is preferably 3 or more, but can also be 2 or less.
The relationship between the reflectance and the particle diameter provided in the database 15 may be a linear relationship represented by a linear expression as long as it decreases or increases monotonously within the measurement range, and is a quadratic expression or more. The relationship expressed by a higher-order polynomial may be used.
 また、制御部14は、発光部16に対して、照射光17を発するように促す電気信号を送信する機能と、受光部19が受けた反射光18に基づく電気信号を受信し、分散体1の反射率を演算する機能を有することが好ましい。これにより、反射率を照射光17と反射光18との強度比として、自動的に計算することができる。この場合、発光部16は、制御部14から発信された電気信号に基づいて、所望の強度の照射光17を発生するものであることが好ましい。 The control unit 14 also receives an electrical signal based on the reflected light 18 received by the light receiving unit 19 and the function of transmitting an electrical signal that prompts the light emitting unit 16 to emit the irradiation light 17. It is preferable to have a function of calculating the reflectance. Thereby, the reflectance can be automatically calculated as the intensity ratio between the irradiation light 17 and the reflected light 18. In this case, it is preferable that the light emitting unit 16 generates the irradiation light 17 having a desired intensity based on the electric signal transmitted from the control unit 14.
 表示部11は、制御部14によって得られた結果を表示できるものであれば特に限定されるものではないが、文字、図形、音や光など、作業者が認識可能な方式によって出力可能とすることが好ましい。異常な結果が得られたときに警告や警報など特に作業者の注意を喚起できる方式による出力を可能にすることもできる。 The display unit 11 is not particularly limited as long as the result obtained by the control unit 14 can be displayed, but can be output by a method that can be recognized by the operator, such as characters, figures, sounds, and lights. It is preferable. When an abnormal result is obtained, it is also possible to enable output by a method that can alert a worker particularly, such as a warning or an alarm.
 評価装置10による、粒子径の評価方法は、例えば次の(1)~(4)のような手順によって行うことができる。
(1)まず、制御部14から発信された電気信号を発光部16により照射光17に変換し、かつ照射光17を測定セル13内の分散体1に照射する。
(2)次に、分散体1から反射した反射光18を受光部19により受光し、反射光18を電気信号に変換する。
(3)次に、制御部14により反射光18から得られた電気信号と、発光部16に発信された電気信号とを比較して、分散体1の反射率を演算して導く。
(4)そして、データベース15に備えられている反射率と粒子径との関係を参照して、測定で得られた分散体1の反射率に対応する、微粒子2の粒子径を求める。
The particle diameter evaluation method by the evaluation apparatus 10 can be performed by the following procedures (1) to (4), for example.
(1) First, the electrical signal transmitted from the control unit 14 is converted into the irradiation light 17 by the light emitting unit 16, and the dispersion 1 in the measurement cell 13 is irradiated with the irradiation light 17.
(2) Next, the reflected light 18 reflected from the dispersion 1 is received by the light receiving unit 19, and the reflected light 18 is converted into an electric signal.
(3) Next, the electrical signal obtained from the reflected light 18 by the control unit 14 and the electrical signal transmitted to the light emitting unit 16 are compared, and the reflectance of the dispersion 1 is calculated and derived.
(4) The particle diameter of the fine particles 2 corresponding to the reflectance of the dispersion 1 obtained by the measurement is obtained with reference to the relationship between the reflectance and the particle diameter provided in the database 15.
 反射率は、微粒子2が高濃度で分散体1に含まれていても測定可能であるため、分散体1の希釈を行う必要がない。したがって、本形態例の評価装置および評価方法は、希釈により不安定となる液体に対して適用可能である。また、プロセス中の希釈を行いたくない分散体1に対しても適用可能である。 Since the reflectance can be measured even if the fine particles 2 are contained in the dispersion 1 at a high concentration, it is not necessary to dilute the dispersion 1. Therefore, the evaluation apparatus and the evaluation method of the present embodiment can be applied to a liquid that becomes unstable due to dilution. Moreover, it is applicable also to the dispersion 1 which does not want to perform dilution during a process.
 塗料の調製に使用する分散体は、塗料調製時にビヒクル形成成分である樹脂成分やその他の添加物等と混合し、さらに希釈されるため、通常は微粒子を高濃度で含有する。本発明は高濃度の分散体にも適用可能であるが、このような分散体を取り扱う場合、測定や洗浄等の取り扱いが容易なものを採用することが望ましい。 The dispersion used for the preparation of the paint is usually mixed with a resin component, which is a vehicle forming component, and other additives at the time of preparation of the paint and further diluted, and therefore usually contains fine particles at a high concentration. The present invention can also be applied to a high-concentration dispersion. However, when handling such a dispersion, it is desirable to employ one that is easy to handle such as measurement and washing.
 第四実施形態では、乳化剤量の配合が異なる3種類の液体のサンプル(Sample1,5,9)を用いている。このサンプルは、第一実施形態において示されている。特に、乳化剤量の配合は、Sample1では、16.2[部]、Sample5では、8.1[部]、Sample9では、14[部]となっている。第四実施形態において用いられる液体101aを構成する乳化剤量の配合と、アクリル樹脂の微粒子の粒子径の関係をまとめた表は図3に示されている。 In the fourth embodiment, three types of liquid samples ( Samples 1, 5, and 9) having different amounts of emulsifier are used. This sample is shown in the first embodiment. In particular, the amount of emulsifier is 16.2 [parts] for Sample 1, 8.1 [parts] for Sample 5, and 14 [parts] for Sample 9. FIG. 3 shows a table summarizing the relationship between the amount of the emulsifier constituting the liquid 101a used in the fourth embodiment and the particle diameter of the acrylic resin fine particles.
 図8は、微粒子を分散させた液体において、微粒子の光の反射率と粒子径との相関を示すグラフである。この図8に示されデータによって本実施形態のデータベースが構成されている。ここでは、微粒子102aと同質の対照用微粒子(アクリル樹脂の微粒子)が、液体101aに対応する対照用液体に分散されている場合について説明する。
 縦軸は光の反射率、横軸は粒子径を示している。微粒子の光の反射率は、以下に述べる評価装置10を用いて特定波長(ここでは950[nm])の光で測定されている。また、反射率の算出においては、白色校正板が基準として用いられている。
FIG. 8 is a graph showing the correlation between the light reflectance of fine particles and the particle diameter in a liquid in which fine particles are dispersed. The database of this embodiment is configured by the data shown in FIG. Here, a case where the control fine particles (acrylic resin fine particles) of the same quality as the fine particles 102a are dispersed in the control liquid corresponding to the liquid 101a will be described.
The vertical axis represents the light reflectance, and the horizontal axis represents the particle diameter. The reflectance of the light of the fine particles is measured with light having a specific wavelength (here, 950 [nm]) using an evaluation apparatus 10 described below. In calculating the reflectance, a white calibration plate is used as a reference.
 図8のグラフから、微粒子が有する、光の反射率と粒子径とが比例関係にあることが確認できる。したがって、第四実施形態においても、液体において微粒子が有する、光の反射率および粒子径を一組とするデータを3点以上揃えたデータベースを用いることで、光の反射率と粒子径との関係式を導けることが、図8のグラフから分かる。
 本実施形態においては、このように対照用液体と対照用微粒子とについて、反射率と微粒子径とを測定し、データベースを予め作成している。そして、データベースを利用して、任意の液体に分散されている微粒子径を求めている。
 すなわち、測定された微粒子の光の反射率から、微粒子の粒子径を一義的に求められることが分かる。
From the graph of FIG. 8, it can be confirmed that the light reflectance and the particle diameter of the fine particles are in a proportional relationship. Therefore, also in the fourth embodiment, the relationship between the light reflectivity and the particle diameter is obtained by using a database in which three or more sets of data including the light reflectivity and the particle diameter of the fine particles in the liquid are used. It can be seen from the graph of FIG. 8 that the equation can be derived.
In this embodiment, the reflectance and the particle diameter of the control liquid and the control microparticles are measured as described above, and a database is created in advance. Then, the particle size dispersed in an arbitrary liquid is obtained using a database.
That is, it can be seen that the particle diameter of the fine particles can be uniquely determined from the measured light reflectance of the fine particles.
 以上、本発明を好適な実施の形態に基づいて説明してきたが、本発明は上述の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 上記形態では、分散体における微粒子の粒子径を測定する場合に基づいて説明したが、本発明は粒子径の評価に限定されるものではなく、分散体の密度、濃度、色合い等、分散体の反射率に対して有意な差をもたらすものであれば、分散体の状態に関する他のパラメータに適用することも可能である。
As mentioned above, although this invention has been demonstrated based on suitable embodiment, this invention is not limited to the above-mentioned example, Various modifications are possible in the range which does not deviate from the summary of this invention.
In the above embodiment, the case where the particle diameter of the fine particles in the dispersion is measured has been described. However, the present invention is not limited to the evaluation of the particle diameter, and the density, concentration, hue, etc. of the dispersion It can also be applied to other parameters related to the state of the dispersion as long as it provides a significant difference in reflectance.
 本発明は、例えば希釈によって形状が変化する粒子や、粒子径が短時間で変化するような粒子を管理する手段として、適用することができる。 The present invention can be applied as a means for managing, for example, particles whose shape changes due to dilution or particles whose particle diameter changes in a short time.
100・・・評価装置、101a、101b、101c・・・液体、102a、102b、102c・・・微粒子、103・・・測定セル、104・・・制御部、105a、105b、105c・・・データベース、106・・・発光部、107・・・照射光、108・・・透過光、109・・・受光部、110・・・計測部、111・・・表示部。 DESCRIPTION OF SYMBOLS 100 ... Evaluation apparatus, 101a, 101b, 101c ... Liquid, 102a, 102b, 102c ... Fine particle, 103 ... Measurement cell, 104 ... Control part, 105a, 105b, 105c ... Database , 106 ... light emitting part, 107 ... irradiated light, 108 ... transmitted light, 109 ... light receiving part, 110 ... measuring part, 111 ... display part.

Claims (16)

  1.  計測される液体中に含まれる微粒子の粒子径の評価方法であって、
     発光部にて、測定セル内の前記計測される液体に照射光を照射し、
     前記照射光のうち前記測定セルを透過した透過光を受光部にて受光し、かつ該透過光を電気信号に変換し、
     制御部にて、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の透過率を演算し、
     演算された前記光の透過率とデータベースと照合して、前記光の透過率に対応する、前記微粒子の粒子径を求め、
     前記データベースは、前記制御部に予め付設されており、
     前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを3点以上有し、
     前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、
     前記3点以上のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を3種類以上用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られている
     ことを特徴とする粒子径の評価方法。
    A method for evaluating the particle size of fine particles contained in a liquid to be measured,
    In the light emitting unit, irradiate the measurement liquid in the measurement cell with irradiation light,
    The transmitted light that has passed through the measurement cell among the irradiated light is received by a light receiving unit, and the transmitted light is converted into an electrical signal,
    In the control unit, the light transmittance of the measured liquid is calculated based on the electrical signal output from the light receiving unit,
    Compare the calculated light transmittance with the database to obtain the particle diameter of the fine particles corresponding to the light transmittance,
    The database is attached to the control unit in advance,
    The database includes a set of light transmittances in the control liquid for irradiation light having a wavelength that is correlated to the particle size and the particle size of the control microparticles contained in the control liquid. Have 3 or more points of data,
    The control fine particles have a specific particle size and are the same quality as the fine particles contained in the liquid to be measured,
    The data of the three or more points is obtained by using three or more types of the control liquid including a group composed of the control microparticles, and the control microparticles contained in the control liquid by a desired particle size measuring device. It is obtained by measuring a particle diameter. The particle diameter evaluation method characterized by the above-mentioned.
  2.  請求項1に記載の粒子径の評価方法であって、
     前記発光部は、特定波長の光を発する光源で構成される
     ことを特徴とする粒子径の評価方法。
    The particle diameter evaluation method according to claim 1,
    The light emitting section is composed of a light source that emits light of a specific wavelength.
  3.  請求項1に記載の粒子径の評価方法であって、
     前記発光部と前記測定セルとの間、または前記測定セルと前記受光部との間に、特定波長の光のみを通すフィルターを備えている
     ことを特徴とする粒子径の評価方法。
    The particle diameter evaluation method according to claim 1,
    A particle diameter evaluation method comprising: a filter that passes only light of a specific wavelength between the light emitting unit and the measurement cell or between the measurement cell and the light receiving unit.
  4.  請求項1に記載の粒子径の評価方法であって、
     前記発光部と前記測定セルとの間、または前記測定セルと前記受光部との間に、分光器を備えている
     ことを特徴とする粒子径の評価方法。
    The particle diameter evaluation method according to claim 1,
    A particle diameter evaluation method comprising: a spectroscope between the light emitting unit and the measurement cell, or between the measurement cell and the light receiving unit.
  5.  請求項1から請求項4のいずれか一項に記載の粒子径の評価方法であって、
     前記測定セルは、前記計測される液体を流すフローセルである
     ことを特徴とする粒子径の評価方法。
    The particle diameter evaluation method according to any one of claims 1 to 4,
    The measurement cell is a flow cell for flowing the liquid to be measured. A method for evaluating a particle diameter.
  6.  請求項1から請求項5のいずれか一項に記載の粒子径の評価方法であって、
     前記計測される液体は、微粒子と水とで構成される
     ことを特徴とする粒子径の評価方法。
    It is the particle diameter evaluation method according to any one of claims 1 to 5,
    The liquid to be measured is composed of fine particles and water.
  7.  請求項1から請求項5のいずれか一項に記載の粒子径の評価方法であって、
     前記計測される液体は、微粒子と水以外の溶剤とで構成される
     ことを特徴とする粒子径の評価方法。
    It is the particle diameter evaluation method according to any one of claims 1 to 5,
    The liquid to be measured is composed of fine particles and a solvent other than water.
  8.  計測される液体中に含まれる微粒子の粒子径の評価装置であって、
     制御部と、
     照射光を測定セル内の前記計測される液体に照射する発光部と、
     前記照射光のうち前記測定セルを透過した透過光を受光し、かつ該透過光に基づく光のエネルギーを電気信号に変換する受光部と、
     を備え、
     前記制御部は、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の透過率を演算し、演算された前記光の透過率とデータベースと照合して前記光の透過率に対応する、前記微粒子の粒子径を求め、
     前記データベースは、前記制御部に予め付設されており、
     前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを3点以上有し、
     前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、
     前記3点以上のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を3種類以上用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られている
     ことを特徴とする粒子径の評価装置。
    An apparatus for evaluating the particle size of fine particles contained in a liquid to be measured,
    A control unit;
    A light emitting unit for irradiating the measured liquid in the measurement cell with irradiation light;
    A light receiving unit that receives the transmitted light that has passed through the measurement cell of the irradiation light, and converts the energy of the light based on the transmitted light into an electrical signal;
    With
    The control unit calculates a light transmittance of the liquid to be measured based on an electrical signal output from the light receiving unit, and compares the calculated light transmittance with a database to transmit the light. The particle diameter of the fine particles corresponding to the rate is obtained,
    The database is attached to the control unit in advance,
    The database includes a set of light transmittances in the control liquid for irradiation light having a wavelength that is correlated to the particle size and the particle size of the control microparticles contained in the control liquid. Have 3 or more points of data,
    The control fine particles have a specific particle size and are the same quality as the fine particles contained in the liquid to be measured,
    The data of the three or more points is obtained by using three or more types of the control liquid including a group composed of the control microparticles, and the control microparticles contained in the control liquid by a desired particle size measuring device. It is obtained by measuring a particle diameter. The particle diameter evaluation apparatus characterized by the above-mentioned.
  9.  計測される液体中に含まれる微粒子の粒子径の評価方法であって、
     発光部にて、測定セル内の前記計測される液体に照射光を照射し、
     前記照射光のうち前記測定セルを透過した透過光を受光部にて受光し、かつ該透過光を電気信号に変換し、
     制御部にて、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の透過率を演算し、
     演算された前記光の透過率とデータベースと照合して、前記光の透過率に対応する、前記微粒子の粒子径を求める
     ことを特徴とする粒子径の評価方法。
    A method for evaluating the particle size of fine particles contained in a liquid to be measured,
    In the light emitting unit, irradiate the measurement liquid in the measurement cell with irradiation light,
    The transmitted light that has passed through the measurement cell among the irradiated light is received by a light receiving unit, and the transmitted light is converted into an electrical signal,
    In the control unit, the light transmittance of the measured liquid is calculated based on the electrical signal output from the light receiving unit,
    The particle diameter evaluation method, wherein the particle diameter of the fine particles corresponding to the light transmittance is obtained by comparing the calculated light transmittance with a database.
  10.  請求項9に記載の粒子径の評価方法であって、
     前記データベースは、前記制御部に予め付設されており、
     前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを複数組有し、
     前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、
     前記複数組のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を複数用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られている
     ことを特徴とする粒子径の評価方法。
    The particle diameter evaluation method according to claim 9,
    The database is attached to the control unit in advance,
    The database includes a set of light transmittances in the control liquid for irradiation light having a wavelength that is correlated to the particle size and the particle size of the control microparticles contained in the control liquid. Have multiple sets of data,
    The control fine particles have a specific particle size and are the same quality as the fine particles contained in the liquid to be measured,
    The plurality of sets of data are obtained by using a plurality of the control liquids including a group composed of the control microparticles, and determining a particle diameter of the control microparticles contained in the control liquid by a desired particle size measuring device. A particle diameter evaluation method characterized by being obtained by measurement.
  11.  計測される液体中に含まれる微粒子の粒子径の評価装置であって、
     制御部と、
     照射光を測定セル内の前記計測される液体に照射する発光部と、
     前記照射光のうち前記測定セルを透過した透過光を受光し、かつ該透過光に基づく光のエネルギーを電気信号に変換する受光部と、
     を備え、
     前記制御部は、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の透過率を演算し、演算された前記光の透過率とデータベースと照合して前記光の透過率に対応する、前記微粒子の粒子径を求める
     ことを特徴とする粒子径の評価装置。
    An apparatus for evaluating the particle size of fine particles contained in a liquid to be measured,
    A control unit;
    A light emitting unit for irradiating the measured liquid in the measurement cell with irradiation light;
    A light receiving unit that receives the transmitted light that has passed through the measurement cell of the irradiation light, and converts the energy of the light based on the transmitted light into an electrical signal;
    With
    The control unit calculates a light transmittance of the liquid to be measured based on an electrical signal output from the light receiving unit, and compares the calculated light transmittance with a database to transmit the light. An apparatus for evaluating particle diameter, wherein the particle diameter of the fine particles corresponding to a rate is obtained.
  12.  請求項11に記載の粒子径の評価装置であって、
     前記データベースは、前記制御部に予め付設されており、
     前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の透過率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを複数組有し、
     前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、
     前記複数組のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を複数用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られている
     ことを特徴とする粒子径の評価装置。
    The particle diameter evaluation apparatus according to claim 11,
    The database is attached to the control unit in advance,
    The database includes a set of light transmittances in the control liquid for irradiation light having a wavelength that is correlated to the particle size and the particle size of the control microparticles contained in the control liquid. Have multiple sets of data,
    The control fine particles have a specific particle size and are the same quality as the fine particles contained in the liquid to be measured,
    The plurality of sets of data are obtained by using a plurality of the control liquids including a group composed of the control microparticles, and determining a particle diameter of the control microparticles contained in the control liquid by a desired particle size measuring device. A particle diameter evaluation apparatus characterized by being obtained by measurement.
  13.  計測される液体中に含まれる微粒子の粒子径の評価方法であって、
     発光部にて、測定セル内の前記計測される液体に照射光を照射し、
     前記照射光のうち前記測定セルから反射された反射光を受光部にて受光し、かつ該反射光を電気信号に変換し、
     制御部にて、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の反射率を演算し、
     演算された前記光の反射率とデータベースと照合して、前記光の反射率に対応する、前記微粒子の粒子径を求める
     ことを特徴とする粒子径の評価方法。
    A method for evaluating the particle size of fine particles contained in a liquid to be measured,
    In the light emitting unit, irradiate the measurement liquid in the measurement cell with irradiation light,
    The reflected light reflected from the measurement cell among the irradiated light is received by a light receiving unit, and the reflected light is converted into an electrical signal,
    In the control unit, the reflectance of the light that the liquid to be measured has based on the electrical signal output from the light receiving unit is calculated,
    The particle diameter evaluation method, wherein the particle diameter of the fine particles corresponding to the light reflectance is obtained by comparing the calculated light reflectance with a database.
  14.  請求項13に記載の粒子径の評価方法であって、
     前記データベースは、前記制御部に予め付設されており、
     前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の反射率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを複数組有し、
     前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、
     前記複数組のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を複数用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られている
     ことを特徴とする粒子径の評価方法。
    The particle diameter evaluation method according to claim 13,
    The database is attached to the control unit in advance,
    The database includes a set of light reflectivities in a control liquid for irradiation light having a wavelength that is correlated with a particle size and a particle size of control microparticles contained in the control liquid. Have multiple sets of data,
    The control fine particles have a specific particle size and are the same quality as the fine particles contained in the liquid to be measured,
    The plurality of sets of data are obtained by using a plurality of the control liquids including a group composed of the control microparticles, and determining a particle diameter of the control microparticles contained in the control liquid by a desired particle size measuring device. A particle diameter evaluation method characterized by being obtained by measurement.
  15.  計測される液体中に含まれる微粒子の粒子径の評価装置であって、
     制御部と、
     照射光を測定セル内の前記計測される液体に照射する発光部と、
     前記照射光のうち前記測定セルから反射された反射光を受光し、かつ該反射光に基づく光のエネルギーを電気信号に変換する受光部と、
     を備え、
     前記制御部は、前記受光部から出力された電気信号に基づいて前記計測される液体が有する光の反射率を演算し、演算された前記光の反射率とデータベースと照合して前記光の反射率に対応する、前記微粒子の粒子径を求める
     ことを特徴とする粒子径の評価装置。
    An apparatus for evaluating the particle size of fine particles contained in a liquid to be measured,
    A control unit;
    A light emitting unit for irradiating the measured liquid in the measurement cell with irradiation light;
    A light receiving unit that receives reflected light reflected from the measurement cell in the irradiated light, and converts energy of the light based on the reflected light into an electrical signal;
    With
    The control unit calculates a reflectance of light of the measured liquid based on an electrical signal output from the light receiving unit, and compares the calculated reflectance of light with a database to reflect the light. An apparatus for evaluating particle diameter, wherein the particle diameter of the fine particles corresponding to a rate is obtained.
  16.  請求項15に記載の粒子径の評価装置であって、
     前記データベースは、前記制御部に予め付設されており、
     前記データベースは、粒子径に対して相関している波長を有する照射光に対する対照用液体における光の反射率と、前記対照用液体に含まれた対照用微粒子の粒子径とによって示される一組のデータを複数組有し、
     前記対照用微粒子は、特定の粒子径を有すると共に、前記計測される液体に含まれた微粒子と同質であり、
     前記複数組のデータは、前記対照用微粒子で構成された集団を含む前記対照用液体を複数用いて、所望の粒子径測定装置により前記対照用液体に含まれた前記対照用微粒子の粒子径を測定することによって得られている
     ことを特徴とする粒子径の評価装置。
    The particle diameter evaluation apparatus according to claim 15,
    The database is attached to the control unit in advance,
    The database includes a set of light reflectivities in a control liquid for irradiation light having a wavelength that is correlated with a particle size and a particle size of control microparticles contained in the control liquid. Have multiple sets of data,
    The control fine particles have a specific particle size and are the same quality as the fine particles contained in the liquid to be measured,
    The plurality of sets of data are obtained by using a plurality of the control liquids including a group composed of the control microparticles, and determining a particle diameter of the control microparticles contained in the control liquid by a desired particle size measuring device. A particle diameter evaluation apparatus characterized by being obtained by measurement.
PCT/JP2012/058630 2011-04-01 2012-03-30 Particle size evaluation method and particle size evaluation device WO2012137686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013508844A JP6100161B2 (en) 2011-04-01 2012-03-30 Particle diameter evaluation method and evaluation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-082029 2011-04-01
JP2011082029 2011-04-01

Publications (1)

Publication Number Publication Date
WO2012137686A1 true WO2012137686A1 (en) 2012-10-11

Family

ID=46969087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058630 WO2012137686A1 (en) 2011-04-01 2012-03-30 Particle size evaluation method and particle size evaluation device

Country Status (2)

Country Link
JP (1) JP6100161B2 (en)
WO (1) WO2012137686A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216232A (en) * 1988-01-15 1989-08-30 Pacific Scientific Co Optical fine particle size measuring apparatus
JP2005331277A (en) * 2004-05-18 2005-12-02 Kawasaki Heavy Ind Ltd Sample characteristic measuring device and measuring method by light scattering
JP2006518852A (en) * 2003-02-18 2006-08-17 デラヴァール ホルディング アクチボラゲット Method and apparatus for counting somatic cells or fat droplets in milk
JP2008122402A (en) * 2007-12-21 2008-05-29 Sharp Corp Micro object evaluation device
WO2008142762A1 (en) * 2007-05-18 2008-11-27 Shimadzu Corporation Optical measurement method and device
JP2009229239A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Particle size measuring device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175644A (en) * 1986-01-29 1987-08-01 Shimadzu Corp Method and apparatus for measuring particle size for suspension
JPH0820355B2 (en) * 1988-11-24 1996-03-04 元二 神保 Particle size measurement method
JPH07159306A (en) * 1993-12-10 1995-06-23 Sumitomo Rubber Ind Ltd Inspection method for carbon black
JP2973887B2 (en) * 1995-08-31 1999-11-08 株式会社島津製作所 Method and apparatus for analyzing nucleic acid molecules
JP3689278B2 (en) * 1999-05-19 2005-08-31 株式会社堀場製作所 Particle size distribution measuring apparatus and particle size distribution measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216232A (en) * 1988-01-15 1989-08-30 Pacific Scientific Co Optical fine particle size measuring apparatus
JP2006518852A (en) * 2003-02-18 2006-08-17 デラヴァール ホルディング アクチボラゲット Method and apparatus for counting somatic cells or fat droplets in milk
JP2005331277A (en) * 2004-05-18 2005-12-02 Kawasaki Heavy Ind Ltd Sample characteristic measuring device and measuring method by light scattering
WO2008142762A1 (en) * 2007-05-18 2008-11-27 Shimadzu Corporation Optical measurement method and device
JP2008122402A (en) * 2007-12-21 2008-05-29 Sharp Corp Micro object evaluation device
JP2009229239A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Particle size measuring device and method

Also Published As

Publication number Publication date
JPWO2012137686A1 (en) 2014-07-28
JP6100161B2 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
Lamberty et al. Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension
WO2016002357A1 (en) X-ray fluorescence analysis device and method
JP5433517B2 (en) Analysis apparatus and analysis method
Mech et al. Nano or not nano? A structured approach for identifying nanomaterials according to the European Commission’s Definition
CN101201313B (en) Methods for altering one or more parameters of a measurement system
EP2265947A2 (en) Multi-wavelength analyses of sol-particle specific binding assays
JP2010532468A (en) Apparatus and method for measuring static and dynamic scattering light at low volume
JP5134862B2 (en) Analysis equipment
US9291563B2 (en) FRET measurement device and FRET measurement method
EP3091350A1 (en) Sample analyzer and sample analyzing method
JP2023021247A (en) Spectroscopic measurement method
Chicoma et al. In‐Line Monitoring of Particle Size during Emulsion Polymerization under Different Operational Conditions using NIR Spectroscopy
JP6100161B2 (en) Particle diameter evaluation method and evaluation apparatus
WO2012157206A1 (en) Automatic analysis device
JP2583653B2 (en) Method and apparatus for detecting aggregation process of multiple components contained in liquid
Schlappa et al. Advanced particle size analysis in high-solid-content polymer dispersions using photon density wave spectroscopy
JP6069203B2 (en) Method and apparatus for evaluating pigment dispersion
JP5228718B2 (en) Particle size distribution evaluation method and program, and particle size distribution evaluation apparatus
JP3131139U (en) Color matching support device
JP2018151273A (en) Particle diameter measuring method, particle diameter measuring apparatus and quality control method using the same
JP7239300B2 (en) Spectrum analysis device and spectrum analysis method
CN105092433B (en) The measuring method of metal nanoparticle particle diameter
Mingard et al. Improving the consistency of particle size measurement.
JP5318690B2 (en) Luminous body
JP3185560B2 (en) Evaluation method of dispersibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005631

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 12767685

Country of ref document: EP

Kind code of ref document: A1